
1

Technical University of Crete
School of Electrical and Computer Engineering

THESIS

SPECTRAL IMAGING AND MACHINE LEARNING

TECHNOLOGIES FOR AUTOMATION OF DIAGNOSTIC

MICROSCOPY

Gialitakis Emmanouil

Supervisor: Professor Costas Balas

Thesis committee: Professor Costas Balas

 Professor Michalis Zervakis

Associate Professor Michail G. Lagoudakis

Chania, August 2021

1

Abstract

Microscopy for years is an instrumental technology for analyzing tissue samples

and locating cancerous cells. The biopsy is a process that can last for several days and

is crucial, since the doctor will decide on the most suitable treatment depending on the

results. The goal of this thesis is to speed up the process of analyzing a biopsy by using

image stitching algorithms. By creating high-resolution mosaics of the samples, it will

be easier for different doctors to examine the same sample, while being located in a

different area or re-examine the same sample, if needed. The chosen algorithm for

stitching is SIFT, which is distinguishable among other algorithms due to its high

accuracy. At the same time, the main disadvantage that needs to be mended is the time

needed to complete a stitching due to its high complexity. Using various techniques

aiming to reduce the elapsed time, like reducing the image size to be analyzed each

time and defining regions of interest in the images, can reduce the time needed. By

applying those techniques, it is possible to speed up the average time of a single

horizontal stitch by approximately four times. These results suggest that it will be

viable for the algorithm to be used in a microscope, reducing the time of analysis of

the samples.

2

Table of Contents

1 Introduction ... 9

1.1 Microscopy & image Stitching .. 9

1.2 Context .. 10

1.3 Thesis Outline .. 11

2 Literature Review ... 12

2.1 Image Stitching algorithms ... 12

2.2 SIft Analysis .. 13

2.3 Matching Features ... 29

2.4 Blending .. 35

3 Research Design ... 39

3.1 Review Thesis goal ... 39

3.2 Applications and Equipment ... 39

3.3 Design Analysis ... 40

4 Results ... 71

4.1 SIft parametrization & results ... 71

4.2 Matching parametrization & results .. 75

4.3 Time Analysis .. 81

5 Conclusions ... 88

1.1 Conclusion ... 88

1.2 Future work ... 88

3

List of Figures

Figure 1 : The concept of the Gaussian Pyramid along with the way of creating
the Difference of Gaussian Pyramid (DOG). Each octave consists of a
group of images, with all of them having the same scale. The initial
image of each octave is convolved repeatedly with Gaussians,
resulting in the pyramid like shape on left of the image. For every new
octave to be created the image is down-sampled by the factor of 2.
Adjacent Gaussian images are then subtracted from each other to
produce the difference of Gaussians, which again will resemble a
pyramid, shown on the right of the image. ... 15

Figure 2 : The extrema points of the image are located by comparing a pixel
(marked with x), with each of the 26 neighbouring pixels in a 3x3
region surrounding the pixel including the adjacent scales. Thus,
including the parameter of scale. .. 17

Figure 3 : The top line corresponds to the percent of keypoints that are
repeatably detected at the same location and scale in a transformed
image as a function of the number of scales sampled per octave. The
lower line shows the percent of keypoints that have their descriptors
correctly matched to a large database. .. 18

Figure 4 : This graph shows the total number of keypoints detected in a typical
image as a function of the number of scale samples. 19

Figure 5 : The top line in the graph shows the percent of keypoint locations that
are repeatably detected in a transformed image as a function of the
prior image smoothing for the first level of each octave. The lower
line shows the percent of descriptors correctly matched against a large
database. .. 20

Figure 6 : Using the eigenvalues it is possible to determine if the region
around a keypoint contains an edge or even corner. There is also no
need to calculate the individual eigenvalues, but only the ratio suffices
to discriminate the most important keypoints. 23

Figure 7 : On the left, there is a sample of the image where at the centre is a
keypoint. The magnitude and orientation of the gradient are computed
and represented with the vectors. After smoothing using a Gaussian
filter (blue circle) an angle histogram is created that will help to filter
out some keypoints. .. 24

Figure 8 : On the left is a part of the image containing a keypoint. Every pixel’s
gradient has been calculated and is represented with an arrow. On the
right is the keypoint descriptor that contains an orientation vector that
describes the corresponding subregion in the image. 27

Figure 9 : On the left, is the 4x4 area surrounding the keypoint that needs to be
analysed. This area is further divided into small subregions and an
orientation histogram is created for each one. 27

4

Figure 10 : According to this graph the optimum width of the descriptor, since
above 4 there is no significant change, along with the most suitable
number of orientations to be used. .. 28

Figure 11 : Left: First iteration of RANSAC, two points are chosen as
temporary inliers for the current run that will the define a line. All the
points (blue) that are within the acceptable range (dotted lines) will be
considered as inliers and the black ones will 34

Figure 12 : The axis of the camera .. 36

Figure 13 : Overview of the image stitching procedure that can be divided in
three sections. .. 41

Figure 14 : An example of the Gaussian pyramid. In this case there are 4
octaves with 5 scales in each one. The red lines show the size, in terms
of width and height, of the images in each octave. 43

Figure 15 : DoG (Difference of Gaussian) pyramid. This pyramid has the same
number of octaves as the Gaussian pyramid but each octave contains
on less scale... 44

Figure 16 : By subtracting two neighbouring scales of the Gaussian pyramid,
one scale of the DoG pyramid is generated. 45

Figure 17 : Sample with 1179 keypoints. ... 47

Figure 18 : Orientation histogram around a randomly selected keypoint. 49

Figure 19 : On the left a keypoint is shown with its orientation. On the right
the16x16 window around the keypoint is presented. 52

Figure 20 : This figure shows how the 16x16 window will look like after
adapting to the keypoints rotation. .. 52

Figure 21 : Assuming this is a sample, the grid represents the pictures that will
be captured by the microscope and the blue arrows indicate the path of
the camera. The green circle is the starting point while the yellow
circles are the points where the camera changes the direction of
movement. ... 54

Figure 22 : An example of vertical stitching. The first image consists of 3
horizontally stitched images, while the second image contains 2
images. The third image is the result of the vertical stitch and the
black box is created due to the width difference of the stitched lines. 57

Figure 23 : This image is to be stitched vertically. The yellow designated area
defines the overlapping region with the image to be stitched. 58

Figure 24 : Sample of vertical small stitch. The first image is part of a
composite image (row of images) and is used instead. The second
image is the second composite image that will be stitched with the one
to who belongs the first image. ... 58

Figure 25 : A flowchart of the matching process. The output of the procedure
will be the distance in pixels of the matching keypoints. 59

Figure 26 : Both images are different iterations of RANSAC. The matching
pair of keypoints are represented with the blue lines. The red line is
one of the chosen as inliers matching pair of keypoints, while with

5

green line are highlighted the pairs that are inliers in accordance to the
red line. ... 62

Figure 27 : Two composite images are shown and their contents divided into
regions depending on the sign of the dy factor. 69

Figure 28: The position of the camera relative to the stage of the microscope. 70

Figure 29 : The percentage of successful stitches depending on the contrast
threshold .. 73

Figure 30 : Average number of keypoints, in horizontal stitch, relative to the
contrast threshold. ... 73

Figure 31: Average number of keypoints, in horizontal stitch, relative to the
contrast threshold. ... 74

Figure 32 : The percentage of successful stitches depending on the contrast
threshold .. 74

Figure 33 : This figure shows the correlation of the feature descriptor gap
threshold with the size of the matching pair of keypoints. 76

Figure 34 : The threshold can influence the accuracy of the stitch algorithm. . 77

Figure 35 : This figure shows the amount of false positive stitching that were
done during the test, while the threshold is changing. The false
positives are included in the graph of the success rate. 77

Figure 36 : Depiction of the fluctuation of the number of inliers located
depending on the threshold. .. 79

Figure 37 : The accuracy decreases as the inlier threshold increases. 79

Figure 38 : This figure shows the number of mistakes created due to false
positive matching. ... 80

Figure 39 : This shows the difference of matching pair sizes between the “big”
stitch method and the “small” stitch. .. 80

Figure 40 : The information given by this figure are important for the
initialization of the RANSAC algorithm. ... 81

Figure 41 : Time analysis of SIFT algorithm, divided into vertical (upper half)
and horizontal (lower half) stitching. .. 84

Figure 42 : Average time of completion of matching process for the horizontal
stitches... 84

Figure 43 : Average time needed for completion of a vertical match. 85

Figure 44 : Elapsed time for the full search method to complete (only
horizontal) ... 85

Figure 45 : Average performance of RANSAC .. 86

Figure 46 : The average time that will be needed to blend two images. 86

6

List of Tables

Table 1 Results of running full search and RASNAC methods. 87

7

List of Abbreviations

BRIEF Binary Robust Independent Elementary Features
CPU Central processing unit
DoG Difference of Gaussians
DoL Difference of Laplacians
FAST Features from Accelerated Segment Test
FS Full Search
GPU Graphics processing unit
MSER Maximally Stable Extremal Regions
OpenCV Open-Source Computer Vision Library
ORB Oriented FAST and Rotated BRIEF
RANSAC Random sample consensus
ROI Regions of interest
SAD Sum of absolute differences
SIFT Scale Invariant Feature Transform
SSD Sum of the squared differences
SURF Speeded-Up Robust Features

8

Acknowledgements

First of all, I would like to express my deepest appreciation to my supervisor, Prof.
Costas Ballas, for his continuous and invaluable support and guidance throughout the
work of this thesis.

 Furthermore, I would like to thank all the members of the Electronics Lab for the
immediate help provided whenever needed. Moreover, I am deeply thankful to my
friends and colleagues in the lab that helped me come up with new ideas and insights
on solving numerous problems that would come up through the work of the thesis.

Finally, I would like to express my deepest gratitude to my family and friends who
have always been supportive throughout the years of my studies.
My sincerest thanks to all of you.

9

1 Introduction

This chapter outlines the background of microscopy and image stitching, as well

as introduces the problem that we aim to solve in section 1. It also includes a brief

mention of the goals of the thesis (section 2) and its purposes. Finally, section 1.3

includes an outline of the remaining chapters of the thesis.

1.1 MICROSCOPY & IMAGE STITCHING

A microscope is a scientific tool used to examine any object that is too small to

be seen by the naked eye. It is a tool of paramount importance that has aided the

development of multiple scientific fields for many decades, from examining forensic

evidence, whereby observing striations in bullets can help determine which gun was

used to aid the study of the surface of individual atoms. However, perhaps the scientific

field influenced most from its invention is the medical field, where the use of the

microscope helped understand the structures of the cells and even the functions of the

proteins within the cells. Furthermore, it has an important role when a doctor needs to

examine tissue, which comes from a biopsy, in order to decide whether the sample

contains cancerous cells. After the doctor obtains the tissue sample, it is sent to a lab

for analysis. Usually, the sample goes through some processing before being analyzed,

which includes freezing to preserve the sample, it may get chemically treated and is

sliced into very thin sections. Those sections of the sample are placed on glass slides

and sometimes are stained with certain chemical substances to enhance some features

of the cell that can provide important information, like the cell membrane and the

nucleus. At this point, the sample is inserted into the microscope in order to be

examined. By observing the results, the doctor can determine where the cancer was

originated as well as categorize it depending on how aggressive it is, which is a crucial

step towards deciding the type of treatment that will follow. Since cancer has such a

wide variety of types (places to originate), it is not always possible for a single doctor

to examine the tissue and produce the results. Doctors from different fields, such as a

hematologist or some other specialty, need to consult and review the sample in order

to produce the results. Even in cases where a single doctor can perform the

examination alone, there may be a need for a re-examination by the doctor or colleague

to reassure the results. In the end, the whole process takes a long time to complete, and

10

even though on some rare occasions, the results can be produced within minutes or

hours from the time the sample was collected, generally several days will be needed

to produce results. At this point, the current thesis aims to assist the doctors, not in a

way to change the standard procedure of the examination, but hopefully reduce the

time needed between the acquisition of the tissue and the final results.

Image stitching, otherwise known as mosaicing, is the process where two or

more images that have some degree of overlap are merged into a segmented panorama

or high-resolution image. Algorithms for image aligning and stitching are widely used

in computer vision for several years. Some date back to 1981 when Lucas and Kanade

[1] introduced a technique known as optical flow. Such algorithms are widely used

today, from image video stabilization, where aligning is applied for each frame, to

creation of digital maps from satellite images using image stitching techniques. With

the increasingly widespread use of smartphones, those algorithms are necessary since

every camera needs a non-mechanical stabilization solution, as well as the panoramic

photography mode.

1.2 CONTEXT

The purpose of this thesis is to create an image stitching application that will be

designed for a fully automated microscope. The achievement of this goal will be based

on the usage of the SIFT algorithm, which was first introduced by D.Lowe in 2004 [2].

Although this algorithm is not a recent development, it has features that distinguish it,

even among algorithms that were more recently created. An important characteristic

of this method is that it is a feature-based algorithm that has certain advantages in

contrast to other algorithms, the details of which are going to be analyzed in a

following chapter. The utilization of a stitching algorithm for images taken from the

microscope is not a new invention. This thesis will examine the results of using the

SIFT algorithm, whose main disadvantage over similar features-based methods is its

computational cost. By applying certain techniques, hopefully, the results will be

suitable to be utilized in a microscope without delaying the whole procedure.

11

1.3 THESIS OUTLINE

The present thesis is divided into six sections. The first chapter is an introduction

to the problem that the thesis aims to solve, along with some background information

about microscopy and image stitching. In chapter 2, we delve deeper into the

algorithms that were considered to be used, as well as point out the reasons that helped

decide on the algorithms to be implemented. Chapter 3 further analyses the algorithms

that were chosen and also analysis their implementation. Additionally, it contains brief

information about the tools that were used in the thesis (e.g., the microscope). In

chapter 4, the foci are to analyze the results of the tests that were performed on the

final application. Lastly, chapter 5 includes the conclusions that were drawn during the

development of the thesis, as well as some proposals for future work.

12

2 Literature Review

In this chapter, we will analyze the algorithms that were used in the thesis. In the

first section, there is a brief summary of algorithms that exist and the reason behind

the selection of the algorithm that was finally used. Consequently, the next section will

delve deeper into the chosen algorithm and analyze it from a theoretical perspective.

Section 3 will analyze the matching process and examine the theoretical background

of the algorithms to be used. Finally, section 4 includes the algorithms of the blending

process.

2.1 IMAGE STITCHING ALGORITHMS

 First of all, it is important to specify which algorithm was chosen for this task

and what characteristics distinguished him among others, designed for solving the

same problem (image stitching). The final choice was SIFT, which was developed by

D.Lowe [2], and the primary advantage that this particular algorithm possesses is the

high accuracy. According to research published by Bonny and Uddin [3], who

compared a variety of feature-based methods, including SURF (Speeded Up Robust

Features), FAST (Features from Accelerated Segment Test), Harris corner detector,

and MSER (Maximally Stable Extremal Regions), they concluded that among the

algorithms enlisted in their paper, SURF seems to have the highest accuracy. However,

they did not include the SIFT algorithm in their research. But according to Karami,

Prasad, and Shehata [4], who dived deeper into the comparison of SIFT, SURF, and

ORB (oriented FAST rotated BRIEF), have concluded that although both SURF and

ORB are generally faster, they cannot achieve the high match rate if SIFT. Especially

ORB can have up to 19,2% deviation from the high scoring SIFT when it comes to the

match rate, and the only occasion where ORB accomplishes both a higher match rate

and speed is when comparing images with different scale, a scenario that generally is

not expected to be seen in the current application. Similarly, the SURF algorithm,

although being faster in every experiment, the only instance where its score is higher

than that of SIFT, is when the images have a different scale. It should also be noted

that the experiment concerning the scale of the images was implemented, having one

of them being scaled two times.

13

2.2 SIFT ANALYSIS

This particular algorithm was originally designed in order to extract features from
images so that it may be capable of reliably matching objects that are located inside,
according to the data of a database. During its creation, techniques were applied so
that the algorithm will have tolerance to noise contained in the images, to some
differences in luminance, as well as a certain indulgence to affine distortions. It is
important to note that the whole procedure requires the use of grayscale images.

2.2.1 Keypoint Detection

The first step towards the specification of the image’s features is the detection

of the scale-space extrema, i.e., the pixels with the maximum value in comparison to

the surrounding pixels, which refers to the scale portion, along with the extrema

between scales. In order to accomplish that, Gaussian filters were applied repeatedly

with an increasing standard deviation of the gaussian distribution, in addition to a

series of rescales of the initial image. The result of the described process is the creation

of a series of octaves, which consist of a set of images. Each octave has the same scale

between its images, but each individual image differentiates towards the standard

deviation, and each octave differs from others in the scale. In order to detect points of

interest in the image, it is essential to distinguish the edges, the corners, and the blobs

of the objects located inside the image. The most common way to find those points is

by using the Laplacian filter. However, the application of the filter will increase the

computational complexity of the algorithm since it will be applied repeatedly in each

image. An alternative way to achieve the same results while avoiding the increased

complexity is the creation of the Difference of Gaussians (DoG). In this instance

Gaussian filter was applied to the image with accretive standard deviation,

consequently subtracting the results of the filtering, which results in a new image that

contains only the edges. The Gaussian filter is a smoothing filter, and this may create

the assumption that other smoothing filters could be used instead in order to achieve

similar results. Such an assumption is inaccurate according to research made by

Koenderink [5] and Lindberg [6], who proved that, under some reasonable

assumptions, the only scale-space kernel is the Gaussian function.

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) = 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) ∗ 𝐼𝐼(𝑥𝑥,𝑦𝑦),

14

where the L function is called a Gaussian scale space, * stands for convolution and

𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) corresponds to 2D Gaussian filter

𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) =
1

2𝜋𝜋𝜋𝜋2
𝑒𝑒−�

𝑥𝑥2+𝑦𝑦2
2𝜎𝜎2 �

 Based on Lowe study [1], the difference of Gaussian function convolved with

the image, 𝐷𝐷(𝑥𝑥, 𝑦𝑦,𝜎𝜎), is an efficient way to detect keypoints in scale space, and the

way to compute the function D is through the difference of two consecutive scales,

from the same octave, that are separated by a constant multiplicative factor k:

𝐷𝐷(𝑥𝑥, 𝑦𝑦,𝜎𝜎) = � 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎)� ∗ 𝐼𝐼(𝑥𝑥,𝑦𝑦)
= 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎)

Since the L function will be computed either way, due to it being needed for the feature

descriptor, we can state that using the D function is particularly efficient and the only

operation needed to acquire the DoG is image subtraction.

15

As mentioned before, the difference of Gaussian function gives results that are a close

approximation to the scale-normalized Laplacian of gaussian, 𝜎𝜎2𝛻𝛻2𝐺𝐺, as proven by

Linderberg [2]. As mentioned before, it is important to detect features that are scale-

space extrema. As for the scale part, it is needed to locate the stable features of the

image, i.e., the features that remain interesting across all scales. Lindenberg’s [2] study

showed that normalization of the Laplacian with the factor 𝜎𝜎2 is needed for true scale

invariance. In addition, Mikolajczyk [3] found that the maxima and minima of 𝜎𝜎2𝛻𝛻2𝐺𝐺

produce the most stable image features compared to a range of other possible image

Figure 1 : The concept of the Gaussian Pyramid along with the way of creating the
Difference of Gaussian Pyramid (DOG). Each octave consists of a group of images,
with all of them having the same scale. The initial image of each octave is convolved
repeatedly with Gaussians, resulting in the pyramid like shape on left of the image.
For every new octave to be created the image is down-sampled by the factor of 2.
Adjacent Gaussian images are then subtracted from each other to produce the
difference of Gaussians, which again will resemble a pyramid, shown on the right of
the image.
Source : Adapted from [4]

16

functions, such as the gradient, Hessian, or Harris corner function.

The D function is related with 𝜎𝜎2𝛻𝛻2𝐺𝐺 through the heat diffusion equation, with the

key difference of being parametrized using the standard deviation instead of the usual

𝑡𝑡 = 𝑠𝑠2.

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎𝛻𝛻2𝐺𝐺 ⇔

⇔ 𝜎𝜎𝛻𝛻2𝐺𝐺 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≈
𝐺𝐺(𝑠𝑠,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎)

𝑘𝑘𝑘𝑘 − 𝜎𝜎
.

and thus,
𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) ≈ (𝑘𝑘 − 1)𝜎𝜎2𝛻𝛻2𝐺𝐺.

In essence, the term 𝛻𝛻2𝐺𝐺 can be computed from the finite difference approximation

to
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, using the difference of nearby scales at kσ and σ. This shows that when the

DoG function has scales differing by a constant factor, it already incorporates the σ2

scale normalization required for the scale-invariant Laplacian.

The factor (k − 1) in the equation is a constant over all scales and therefore does not

influence extrema location. The closer the k factor approaches 1, the approximation

error tends to become 0. According to D. Lowe [4], through experimentation, the value

of k where the approximation error has minimum impact on the stability of the extrema

points across scales is 𝑘𝑘 = √2. For the current thesis, no experiment occurred in order

to confirm the validity of the results described in the paper since we aim to apply the

SIFT algorithm to a different application, not explicitly improve it.

 As described before, an efficient way to create the Gaussian pyramid is shown

in Figure 1. The initial image is repeatedly convolved with Gaussian kernels with

increasing standard deviation, so images are produced that are separated by a constant

k in scale space. Each octave is divided into an integer number s (every step of the

octave doubles the σ), of intervals, in order to have 𝑘𝑘 = 21 𝑠𝑠⁄ . So, the required numbers

of blurred images to be produced per stack (step) of each octave, in order for the final

extrema detection to cover a full octave. The next step is the subtraction of adjacent

images to produce the DoG. Upon completing the aforementioned process, follows the

resampling of the Gaussian image that has twice the initial value of the σ by taking

17

every second pixel in each row and column. The accuracy of sampling relative to σ

does not differ in comparison to that of the start of the previous octave, thus achieving

rescale of the image along with a sort of upscale.

Having created the Difference of Gaussian pyramid, the following task is to compare

each pixel of the image with its neighboring pixel in order to determine the extrema

points, in other words, to compare each pixel with the neighbouring eight that belong

on the same image, along with the neighboring 18 pixels belonging to two closest

scales of the octave (9 in the scale above, and 9 in the scale below). Now the problem,

using this method is the repeatability, which in essence is the need to reliably locate

the extrema each time the program runs. The problem occurs due to the minimum

spacing between close extrema points being non-existent. For instance, a white circle

on a black background will have a single scale-space maximum point, where an

Figure 2 : The extrema points of the image are located by comparing a pixel (marked
with x), with each of the 26 neighbouring pixels in a 3x3 region surrounding the pixel
including the adjacent scales. Thus, including the parameter of scale.
Source : Adapted from [4]

18

elongated ellipse will possess two, one near each of the ends. So, depending on the

size (elongation) of the ellipse, the two points of interest can come arbitrarily close.

According to D.Lowe’s study [4], through experimentations, one part for solving this

problem lies with choosing the appropriate parameters during the creation of the

Gaussian octaves, and in extend to the Difference of the Gaussian’s octaves.

Figure 3 : The top line corresponds to the percent of keypoints that are repeatably
detected at the same location and scale in a transformed image as a function of the
number of scales sampled per octave. The lower line shows the percent of keypoints
that have their descriptors correctly matched to a large database.
Source : Adapted from [4]

19

According to that study, the experiment commenced using 32 images, where they were

submitted to a range of transformations, like rotation, scaling, affine stretch, brightness

changes, and noise insertion. All this procedure of tempering with the images occurred

using synthetic changes so that the results could be predicted. This, of course, means

that using new images, where all the parameters of rotation, brightness, etc., are not

targeted, the optimal values for the parameters could possibly deviate from the results

of D.Lowe’s results [4]. Figure 3 shows the optimal number of scales per octave to

achieve repeatability, which means finding the most stable features in the image. While

Figure 4 shows how the number of keypoints is fluctuating according to the number

of scales. In this case, the bigger the number of scales, the number of keypoints

Figure 4 : This graph shows the total number of keypoints detected in a typical image as
a function of the number of scale samples.
Source : Adapted from [4]

20

detected grows along with them. But the effectiveness of those keypoints is diminished

since it locates not only the most stable keypoints, which are mostly disregarded during

the matching process. The drawback of increasing the number of scales for the creation

of the Gaussian pyramid is the computational cost due to the large number of

convolutions and rescaling of the images. They are leading to the conclusion of 3

scales per octave as the optimal number. Just as the number of scales was determined

through experiments, so is the smoothing rate that needs to be applied to the images to

build the Gaussian pyramid.

Figure 5 shows the amount of prior smoothing, which is the standard deviation of the

Gaussian filter to be applied (𝜎𝜎), that is applied to each image level, in order to

Figure 5 : The top line in the graph shows the percent of keypoint locations that are
repeatably detected in a transformed image as a function of the prior image smoothing
for the first level of each octave. The lower line shows the percent of descriptors
correctly matched against a large database.
Source : Adapted from [4]

21

construct the scale-space representation for an octave. According to the graph, as the

σ factor increases, so does the repeatability, but due to the that comes with using large

standard deviation, in terms of efficiency, 𝜎𝜎 = 1.6 is chosen as optimal since the

repeatability approaches the upper limit. It is also important to note that by pre-

smoothing the image prior to the extrema detection sequence, the high spatial

frequencies are cut off, and to counteract this, it is possible to enlarge the size of the

image, creating more samples than the original. This can happen by doubling the size

of the image using linear interpolation, by assuming that the original image blur is at

least 𝜎𝜎 = 0.5, and thus the new image will have 𝜎𝜎 = 1.

2.2.2 Feature point localization

Up to this point, it has been explained how the basic keypoint detector operates, but

there is still the problem of detecting even more accurately the extrema points of the

image since the points located until now are coarsely localized, at best to the nearest

pixel. The next step is to perform a more detailed localization to the point of sub-pixel

level of accuracy while removing poor features. This procedure is a method developed

by Brown (Brown and Lowe, 2002) [5], whereby fitting a Taylor expansion to fit a 3D

quadratic surface (in x, y, and σ) to the local sample points to determine the

interpolated location of the maxima and minima. The expansion, ignoring terms above

the quadratic of the scale-space function 𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎), shifted to the proposed point:

𝐷𝐷(𝑧𝑧0 + 𝑧𝑧) = 𝐷𝐷(𝑧𝑧0) + �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑧𝑧0�
𝑇𝑇
𝑧𝑧 + 1

2
𝑧𝑧𝑇𝑇 �𝜕𝜕

2𝐷𝐷
𝜕𝜕𝑧𝑧2

|𝑧𝑧0� 𝑧𝑧 (1)

where the derivatives are evaluated at the suggested point 𝑧𝑧0 = [𝑥𝑥0,𝑦𝑦0,𝜎𝜎0]𝛵𝛵 and

𝑧𝑧 = [𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿]𝑇𝑇 is the offset from that point. The location of the extrema 𝑧̂𝑧 is

calculated by setting the derivative with respect to z equal to zero, and the equation

becomes:

𝑧̂𝑧 = − �𝜕𝜕
2𝐷𝐷
𝜕𝜕𝑧𝑧2

|𝑧𝑧0�
−1
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑧𝑧0� (2)

22

The derivatives of D are calculated using the differences of neighboring pixels around

the target point. The result is a 3×3 linear system that does not burden the algorithm

with excessive computational cost. In case the offset value that determines where the

extrema point is greater than 0.5 (half a pixel), the procedure needs to repeat relocating

the target pixel since the actual maximum will closer to one of the neighboring pixels.

Now, values that are calculated at that new extremum point and do not satisfy a certain

threshold are discarded as they are too sensitive to noise. The equation to find those

values is:

𝐷𝐷(𝑥𝑥�,𝑦𝑦�,𝜎𝜎�) = 𝛥𝛥(𝑧𝑧0 + 𝑧̂𝑧) ≈ 𝐷𝐷(𝑧𝑧0) +
1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑧𝑧0�
2

𝑧̂𝑧

Another step to take towards finding the most stable keypoints, is discarding keypoints

that were found along an edge in the image. This is important since those points have

a large principal curvature across the ridge (edge), but a low one along the other

direction, making that point relatively unstable towards the position on one of the axis,

while a well-defined peak that has high curvature in both directions does not insert

ambiguity to the exact location of the extremum. The principal curvature can be

estimated from a 2×2 Hessian matrix, H, computed at the location and scale of the

keypoint:

𝐻𝐻 = �
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑥𝑥
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑦𝑦𝑦𝑦

�

where the derivatives can be calculated using the differences of neighboring pixels.

Since only the eigenvalues ratio is needed, there is no need to compute them. Assuming

the eigenvalue with the greatest magnitude is represented by k1 and the one with the

smaller magnitude by k2, the sum of the eigenvalues can be determined by the trace of

the H, while the product by the determinant, resulting in the following equations:

𝑇𝑇𝑇𝑇(𝐻𝐻)2 = 𝐷𝐷𝑥𝑥𝑥𝑥 + 𝐷𝐷𝑦𝑦𝑦𝑦 = 𝑘𝑘1 + 𝑘𝑘2,

𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻) = 𝐷𝐷𝑥𝑥𝑥𝑥𝐷𝐷𝑦𝑦𝑦𝑦 − 𝐷𝐷𝑥𝑥𝑥𝑥2 = 𝑘𝑘1𝑘𝑘2.

23

𝑇𝑇𝑇𝑇(𝐻𝐻)2

𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻)
=

(𝑘𝑘1 + 𝑘𝑘2)2

𝑘𝑘1𝑘𝑘2
=

(𝑟𝑟𝑟𝑟2 + 𝑘𝑘2)2

𝑟𝑟𝑟𝑟22
=

(𝑟𝑟 + 1)2

𝑟𝑟

where r corresponds to the ratio between the eigenvalues so that 𝑘𝑘1 = 𝑟𝑟𝑟𝑟2. In the rare

case where the Det(H) is negative, then that means that the point under inspection is

not an extremum since the curvatures have different signs and therefore is disregarded.

From the equation that describes r, it is easy to realize the minimum number curvature

will be achieved (𝑚𝑚𝑚𝑚𝑚𝑚 ((𝑟𝑟+1)2

𝑟𝑟
)), when the two eigenvalues have equal magnitude, and

the greater the ratio r is, the greater the curvature will get. So, in order to check if the

principal curvature is below a threshold, the following need to be satisfied:

𝑇𝑇𝑇𝑇(𝐻𝐻)2

𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻)
<

(𝑟𝑟 + 1)2

𝑟𝑟

Figure 6 : Using the eigenvalues it is possible to determine if the region around a
keypoint contains an edge or even corner. There is also no need to calculate the
individual eigenvalues, but only the ratio suffices to discriminate the most important
keypoints.

24

2.2.3 Orientation of keypoints

Finally, the keypoints at which the extrema of the image have been located and

distinguished are the most stable ones. However, to reliably use all those collected

points, it is not enough to know just the exact location in the scale-space. In order to

achieve rotation invariance between two images (up to a limit of rotation), besides the

location of the keypoint, some sort of information about the direction of the image is

paramount, otherwise in the matching process, the final matched image may have a

wrong rotation which while may cause the severe image distortion in case of blending

the two. For example, an image with some feature inside that matches another in a new

image, which has a slight rotation, may match, and the rotation on the immediate

surrounding area of that feature could be minimal, to the point of having one-to-two-

pixel offset, but may have consideranble impact to the background information of the

images.

Figure 7 : On the left, there is a sample of the image where at the centre is a keypoint.
The magnitude and orientation of the gradient are computed and represented with the
vectors. After smoothing using a Gaussian filter (blue circle) an angle histogram is
created that will help to filter out some keypoints.

25

The procedure of assigning orientation to each keypoint starts by selecting the scale of

the keypoint and use that image, which is a Gaussian smoothed version of the original

𝐿𝐿, so that all computation to be performed corresponds to the correct scale and thus be

scale-invariant. Then, for every pixel in the image, 𝐿𝐿(𝑥𝑥,𝑦𝑦), the magnitude, 𝑚𝑚(𝑥𝑥, 𝑦𝑦),

and orientation, 𝜃𝜃(𝑥𝑥,𝑦𝑦), are to be calculated using pixel differences:

𝑚𝑚(𝑥𝑥,𝑦𝑦) = ��𝐿𝐿(𝑥𝑥 + 1,𝑦𝑦) − 𝐿𝐿(𝑥𝑥 − 1,𝑦𝑦)�
2

+ �𝐿𝐿(𝑥𝑥, 𝑦𝑦 + 1) − 𝐿𝐿(𝑥𝑥, 𝑦𝑦 − 1)�
2

𝜃𝜃(𝑥𝑥,𝑦𝑦) = tan−1 �
𝐿𝐿(𝑥𝑥,𝑦𝑦 + 1) − 𝐿𝐿(𝑥𝑥,𝑦𝑦 − 1)
𝐿𝐿(𝑥𝑥 + 1,𝑦𝑦) − 𝐿𝐿(𝑥𝑥 − 1,𝑦𝑦)�

With all those magnitudes and orientations be precomputed, an orientation histogram

can be created based on the gradient orientation of each pixel that within a certain

range around every keypoint. The histogram possesses 36 bins representing the 360-

degree range of orientations, with a resolution of 10 degrees per pixel, which is divided

uniformly across the 36 bins. Now each pixel that is added to the histogram is weighted

corresponding to the magnitude of the gradient and by a Gaussian weighted circular

window with σ that is 1.5 times the scale of the keypoint. The weight system is used

in order to keep track of the dominant directions of local gradients, which will appear

at the peaks in the histogram. The biggest peak of the histogram is selected along with

any other local peak that is within 80% of the value of the highest peak in order to

create a profile of the certain keypoint. Also, parabola interpolation is used to increase

the accuracy of the process by targeting the three highest values of each peak. This

process also contributes to the stability of each keypoint.

2.2.4 Feature Descriptor

Finally, all the procedures to describe with accuracy the location, scale, and orientation

of the keypoints of the image are completed. All these parameters will allow for a local

2D coordinate system to be created, one that describes every keypoint and its

surrounding area. The next step is to construct a descriptor that holds enough

26

information about those areas neighboring each keypoint, that is highly distinctive so

that there will be as few mismatches as possible, while at the same time be as invariant

as possible to remaining variations, such as those of change in illumination in the

image, as well to an extent, tolerance to affine transformations, i.e., changes in the 3D

viewpoint. One way to achieve some of those effects would be by using the intensities

of the pixel in a certain area circling the keypoint and always considering the scale in

order to match them through a normalized correlation measure. The version of the

descriptor that was finally implemented is based on the usage of the gradient

magnitude and orientation. Having precomputed the magnitude and orientation of the

pixel in the desired area and taking account the Gaussian blur to achieve scale

invariance, the next problem is the orientation invariance that is needed to be achieved.

For that, all the gradients and orientations need to be corrected (rotated) relative to the

orientation of the keypoint. The further a pixel is from the location of the keypoint, the

lesser is the importance of that particular pixel, so there should be a weighting system

in order to avoid random high values of magnitude in the outer circle inside the

designated area surrounding the keypoint. That value may often be high, not due to

some kind of noise or misregistration error, but may be related to another neighboring

extremum (keypoint) and thus have a significant magnitude. Either way, such

occasions can and should be foreseen, and countermeasures need to be taken. This

leads to the usage of a Gaussian weighting function with σ chosen so that it is 1.5 times

the width of the descriptor window, and of course the weight diminishes smoothly the

furthest from the center.

27

Figure 9 : On the left, is the 4x4 area surrounding the keypoint that needs to be
analysed. This area is further divided into small subregions and an orientation
histogram is created for each one.

Figure 8 : On the left is a part of the image containing a keypoint. Every pixel’s
gradient has been calculated and is represented with an arrow. On the right is the
keypoint descriptor that contains an orientation vector that describes the corresponding
subregion in the image.

28

Next up is the division of the selected area around the keypoint into 4×4 subregions

where a histogram for each region is created. The way that is represented in Figure 8,

each arrow indicates a direction that is represented by a bin in the histogram (each bin

corresponds to different orientations), and the length of each arrow is proportional to

the cumulative magnitude of all the vectors of the gradients that point to the same

direction and belong to one of those subregions. The descriptor in Figure 9 is the

descriptor implemented in the algorithm and consists of a normalized 128-dimensional

vector, a 4×4 spatial grid (subregions) is used, and each subregions histogram divided

into 8 orientations (128 = 4×4×8).

For simplicity, in order to understand better the purpose and the way the descriptor

operates, an alternative version such as Figure 8 will be used as an example, where

Figure 10 : According to this graph the optimum width of the descriptor, since above
4 there is no significant change, along with the most suitable number of orientations
to be used.
Source : Adapted from [4]

29

there is only a 2×2 descriptor array computed by an 8×8 set of samples. This style of

4×4 sample regions provides a significant shift in gradient positions. A gradient sample

on the left can sift up to 4 sample positions while still contributing on the right, and

thus giving tolerance to larger local positional changes. A problem that can occur in

this stage is boundary effects, where the descriptor abruptly changes because of a

sample shifting from being in one histogram and changes to a neighboring histogram

or an orientation change. To counter this problem, trilinear interpolation is

incorporated in order to distribute the value of each gradient weight of 1- d for each

dimension, where d is the distance of the sample from the central value of the bin as

measured in units of the histogram bin spacing. The vector that is created and

represents the descriptor can be modified to counter some of the unwanted illumination

changes that can occur between images. In the case of linear changes, such as a simple

offset between the values of luminance, either an increase or decrease of brightness,

the problem is already solved since the gradient values are computed by pixel

differences. As for contrast changes in the image, those will multiply the gradients of

the pixels by a constant, in which case a vector normalization will suffice as a

countermeasure. With all these problems solved, it can be said that the descriptor is

invariant to affine changes in illumination. As for the non-linear changes of

illumination, the solution is not as clear. Such changes that occur due to camera

saturation and other sources will have a considerable effect on the vector magnitudes

for some gradients but are less likely to affect the orientation also. To reduce this effect,

a threshold is employed to the already normalized gradient magnitudes so that no value

exceeds the 0.2 threshold limit and then renormalizing. This will make the system

value the importance of the large gradients less and make it focused on the distribution

of the orientations. The value of 0.2 has been suggested by

D. Lowe in his paper [4].

2.3 MATCHING FEATURES

Like the feature detector algorithm, there are numerous approaches for the problem of

matching two images. One such approach is to utilize the data of the pixels of the

images at the connection point by shifting and wrapping them relative to each other

and then check if the corresponding pixels much. Such methods are often referred to

30

as “direct methods” and require the utilization of an error metric in order to decide the

accuracy of the matching of the two images, along with a suitable search method, to

find the pixels that minimize those error metrices. Such methods include the full

search, which is an exhaustive search of the pixels of the two images, searching for all

possible alignments. The full search has a major drawback that is the time needed to

complete the search due to the high computational complexity that comes with

checking all possible pairs for matches, making this process unsuitable for many

applications. Alternatively, in order to avoid such time-consuming methods, Fourier

transform can be used to speed up the computation. Also, a Taylor series expansion is

often used to increase the accuracy of the methods. As for the error metrics, there are

also a variety of techniques. The simplest method, after aligning and sifting the images

relative to each other, is to find the sum of the squared differences (SSD) function.

Given the first image 𝐼𝐼0(𝑥𝑥) sampled at a pixel location 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), and the goal is to

find the corresponding pixel on the second image 𝐼𝐼1(𝑥𝑥), then the function that

calculates the SSD forms as:

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑢𝑢) = �[𝐼𝐼1(𝑥𝑥𝑖𝑖 + 𝑢𝑢) − 𝐼𝐼0(𝑥𝑥𝑖𝑖)]2
𝑖𝑖

= �𝑒𝑒𝑖𝑖2

𝑖𝑖

where u corresponds to the displacement of the two images and
 𝑒𝑒𝑖𝑖 = 𝐼𝐼1(𝑥𝑥𝑖𝑖 + 𝑢𝑢) − 𝐼𝐼0(𝑥𝑥𝑖𝑖) is the residual error. An alternative method is replacing the
squares error terms with a robust function 𝑝𝑝(𝑒𝑒𝑖𝑖) to achieve

𝐸𝐸(𝑢𝑢) = ∑ 𝑝𝑝(𝑒𝑒𝑖𝑖)𝑖𝑖 .

This is known as robust error metric, and a widely used robust function is the sum of

absolute differences (SAD) which, compared to the SSD, is a function that does not

grow as quickly due to the lack of the squares. Both of the above metrics are not

suitable for gradient descent approaches since the function are not differentiable at the

origin. Another similar metric is that of the spatially varying weights, which is similar

to the SSD metric but has the ability to be applied only in certain parts of the image. It

is also known as windowed SSD function. This, of course, gives the advantage of

filtering the pixel that is needed to be checked between the images, assuming the

knowledge of the limits of the overlap region that the images will have.

31

𝐸𝐸𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑢𝑢) = ∑ 𝑤𝑤0(𝑥𝑥)𝑤𝑤1(𝑥𝑥𝑖𝑖 + 𝑢𝑢)[𝐼𝐼1(𝑥𝑥𝑖𝑖 + 𝑢𝑢) − 𝐼𝐼0(𝑥𝑥𝑖𝑖)]2𝑖𝑖 .

Up to this point, a number of techniques have been mentioned that are used for image

alignment (matching). All of those techniques compose a small number of the existing

methods developed for the solution of the problem of the matching images, with each

one having advantages over the others and vice versa. These methods are primarily

designed and used for intensity base stitching, where the matching of the images will

be based on the information given by the values contained in the pixels but not the

features of the images described by the pixels in that area. In this thesis, a feature-

based technique is used (SIFT algorithm), which is another approach to solving the

same problem, so all of the above methods cannot be used directly since it would waste

all the resources that were used to accurately describe and locate the keypoints of each

image. Although that does not completely exclude the use of those techniques or some

of the elements they use.

Feature matching is essentially the procedure in which, utilizing the feature detectors

that are already produced by the SIFT analysis in order to find the correlation between

the features, it is possible to locate identical features that are located in different images

so that the two images using the proper displacement can be matched correctly. Image

stitching is widely used in a variety of applications, including document mosaicing,

video stitching, medical imaging, and others. Depending on the constraints created by

the different applications and their needs, entirely different approaches can be adopted

to accomplish the stitching process. In instances where a large collection of images

needs to be stitched into one image and the geometric correlation of the images is

obscure, the most common approach would be the analysis of the whole collection,

finding keypoints in every image and afterwards by comparing those features the exact

location of each image is uncovered. On the other hand, when it comes to video

stitching, an interesting technique is one called “detect then track,” where at first the

translation between matching points of neighboring frames is calculated and then using

that distance to predict the next displacement of that feature in the next batch of frames.

A major advantage of this procedure is the need to analyze the images infrequently,

mostly when tracking has failed. Another constraint to be found in some of the

32

stitching applications is affine translation. Especially in the panorama photography

mode, that almost every modern phone possesses, the user takes consecutive pictures

while primarily standing at the same location while rotating around himself. Those

pictures taken with this method do have not only a displacement on the x and possibly

the y-axis but also possess a translation on the z-axis that has to be considered when

matching the keypoints and finally blending the images together. The problem of in-

plane rotations is restricted to finding the primary orientation that characterizes the

feature before computing the descriptor of that particular keypoint. One way of finding

that dominant orientation is searching for the average gradient orientation in a

designated area around each feature. Another more promising approach is the one

adopted by Lowe [4], which searches for the maximum value of the gradient in the

orientation histogram. This method is generally more accurate than using the average

orientation. Since the application of this thesis is based on the microscope, not all of

the above problems are present, and thus not all the countermeasures for them need to

be taken in order to accomplish the goal that is image stitching. The method that was

used for this application resembles mostly the one that is deployed when there is a

large collection of images to be stitched together and create a big mosaic. The main

difference though, is that since it is possible to acquire the images one by one, there is

no need to analyze all of them at once.

For the feature matching to take place, there is a need to find matching pairs of features

between the two images in question. The simplest and most accurate yet most time and

resource-consuming method is that of the exhaustive search in which every feature

that is contained in each image needs to be compared to every feature belonging to the

second image. This method has great results regarding finding a matching pair of

features whose descriptors have minimal differences, but regarding its computational

complexity, which is 𝑂𝑂(𝑛𝑛2), where n represents the number of features. The high

computational cost is making the usage of this method forbidding for some

applications where the completion speed is important, or even for applications that the

images contain a large number of features.

33

2.3.2 RANSAC

In these types of situations, the most widely used method to find matching

features between images is the Random Sample Consensus (RANSAC) [6]. This

algorithm is a relatively simple yet effective way to filter data contaminated with

outliers. Generally, in data sets, the data that are used can be divided into two

categories, inliers, and outliers. Outlier is defined as an observation that deviates too

much from other observations that it arouses suspicions that it was generated by a

different mechanism from other observations [7]. Inlier, on the other hand, is defined

as an observation that is explained by the underlying probability density function. In

clustering, outliers are considered as noise observations that should be removed in

order to make more reliable clustering [7]. RANSAC is a highly effective technique

of grouping and distinguishing data into those categories, and the procedure can be

implemented in three primary steps. For example, when fitting a line in a set of data,

which is also represented in Figure 11, the first step would be to choose two random

samples, which at first will be considered inliers, even though that may not be true in

the final result. According to those selected inliers, a model will be constructed. In this

example, a line will be fitted. The second step of the algorithm would be to count the

number of data points that will agree with the constructed model, and those will be the

points that their distance from the line created won’t exceed a threshold that was

chosen. The last step for RANSAC to be completed is to repeat this process again,

choosing a new set of inliers each time so that the iteration with the most inliers will

be considered correct. The stopping criterion for the algorithm may vary depending on

the application and the desired results since the accuracy of the model will increase

along with the number of iterations. Furthermore, the iterations 𝑁𝑁 needed can be

calculated in order to achieve the desired accuracy.

 𝑁𝑁 =
log(1 − 𝜌𝜌)
log(1 − 𝑟𝑟𝑠𝑠) (2.3.1)

Where p stands for the probability of finding a model without any outliers, r is

the inlier ratio of the data set, while s represents the number of data points that are

assumed as inliers (in the current example 2).

34

According to a study by Fischler and Bolles [6] The RANSAC paradigm is more

formally stated as follows:

Given a model that requires a minimum of n data points to instantiate its free

parameters and a set of data points P such that the number of points in P is greater

than n [#(𝑃𝑃) ≥ 𝑛𝑛], randomly select a subset SI of n data points from P and

instantiate the model. Use the instantiated model M1 to determine the subset SI*

of points in P that are within some error tolerance of Ml. The set SI* is called

the consensus set of S1. If # (SI*) is greater than some threshold t, which is a

function of the estimate of the number of gross errors in P, use SI* to compute

(possibly using least squares) a new model MI *. If # (SI*) is less than t,

randomly select a new subset $2 and repeat the above process. If, after some

predetermined number of trials, no consensus set with t or more members have

been found, either solve the model with the largest consensus set found or

terminate in failure [6].

Figure 11 : Left: First iteration of RANSAC, two points are chosen as temporary
inliers for the current run that will the define a line. All the points (blue) that are
within the acceptable range (dotted lines) will be considered as inliers and the
black ones will

35

2.4 BLENDING

The last task needed for the whole sequence of stitching to complete is the blending

process of the images. Similarly, to all the processes that were mentioned up to this

point, depending on each situation, a different approach is needed to accomplish the

task of blending. The first thing that needs to be cleared is the final composite sur-

face along with the view of the reference image since in each case there will be a

need of some parametrization for the coordinates assuming the final surface is not

flat. For example, for a simple panorama shot taken by a user, it is safe to assume

that the camera will be rotated around the z-axis (as shown in Figure 12) to take the

consecutive shots instead of moving along the x-axis for the additional image. When

such a thing occurs, while not having a large number of images to stitch, it is possi-

ble to disregard the distortion created by the rotation around the z-axis by warping all

the images to the coordinate system of the reference image, which should be the im-

age placed at the geometrical center of the final result, not necessarily the first image

that was taken. However, when the rotation around the z-axis is substantial, such an

approach will produce undesirable distortion to the contents and the connection of

the images. (In practice, flat panoramas start to look severely distorted once the field

of view exceeds 90◦ or so.) The usual choice for compositing larger panoramas is to

use a cylindrical [8], [9], or spherical [10] projection [11]. Having a projection other

than flat requires the parametrization of the pixel coordinates and the construction of

the mappings between the input and output image. When the final compositing sur-

face is a texture-mapped polyhedron, a slightly more sophisticated algorithm must be

used. Not only do the 3D and texture map coordinates have to be properly handled,

but a small amount of overdraw outside of the triangle footprints in the texture map

is necessary to ensure that the texture pixels being interpolated during 3D rendering

have valid values [11].

36

By clarifying the coordinate system that will be used according to the needs of

the application, it is possible to move on to the next task, which is selecting the

appropriate algorithm for blending the images. Generally, the target of such

algorithms, aside from stitching the images, is to minimize as much as possible and

eliminate certain effects the are being produced in the stitching process, like visible

seams at the connection point, which appears due to exposure difference of the two

images, blur which is caused by misregistration of the pixels and ghosting that appears

when there is a moving object.

The most straight forward algorithm to use is to calculate the average of each

pixel to create the final composite image.

𝐶𝐶(𝑥𝑥) =
∑ 𝑤𝑤𝑘𝑘(𝑥𝑥) 𝐼𝐼′𝑘𝑘(𝑥𝑥)𝑘𝑘

∑ 𝑤𝑤𝑘𝑘(𝑥𝑥)𝑘𝑘

Figure 12 : The axes of the camera

37

𝐼𝐼′𝑘𝑘 stands for the composite image, and 𝑤𝑤𝑘𝑘 takes the value of 1 at a valid pixel and 0

everywhere else, i.e., it is going to affect pixels of the warped image that are part of

both the two basic images. Although this method is the simplest to use, little work is

done towards eliminating the effects of visible seams, blurring, and ghosting. An

improvement over this method is called feathering, which differs from the simple

averaging by alternating the distribution of the weight so that they will be focused

more on the center of the image and fade away while moving to the edges. This can be

done by computing a distance map,

𝑤𝑤𝑘𝑘(𝑥𝑥) = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦{‖𝑦𝑦𝑦𝑦‖ | 𝐼𝐼′𝑘𝑘(𝑥𝑥 + 𝑦𝑦) 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}�

where each valid pixel is tagged with its Euclidean distance to the nearest invalid pixel

[11]. This approach reduces substantially the visible seams, however does not solve

the blurring and ghosting effects.

An alternative method for blending is the one designed by Burt and Adelson [12],

which involves the use of the Laplacian pyramid. According to the algorithm, each

warped image is converted into a band-pass (Laplacian) pyramid, which involves

smoothing each level with a 1/16(1,4,6,4,1) binomial kernel subsampling the

smoothed image by a factor of 2 and subtracting the reconstructed (low-pass) image

from the original. This creates a reversible, overcomplete representation of the image

signal. Invalid and edge pixels are filled with neighboring values to make this process

well defined [11]. Next, the mask (valid pixel) image associated with each source im-

age is converted into a low-pass (Gaussian) pyramid. These blurred and subsampled

masks become the weights used to perform a per-level feathered blend of the band-

pass source images [11]. Finally, the composite image is reconstructed by interpolating

and summing all of the pyramid levels

Poisson Image Editing

This is another more sophisticated solution to the blending problem than the

aforementioned methods. In this case, the images to be fused are distinguished to

source (S) and target (T), and there is also a mask (Ω) that corresponds to the region

of the source that will be moved to the target image. Another way to describe S and Ω,

38

according to Perez, Gangnet, and Blake [13], S, Ω now become finite point sets defined

on an infinite discrete grid. Note that S can include all the pixels of an image or only a

subset of them. The boundary of Ω is now 𝜕𝜕𝜕𝜕 = �𝑝𝑝 ∈ 𝑆𝑆 ∖ 𝛺𝛺:𝑁𝑁𝑝𝑝 ∩ 𝛺𝛺 ≠ 0� [13]. The

basic idea is to reduce the color mismatch between and target images by creating the

composite image in the gradient domain. In other words, the goal is, the gradient of

the composite inside the Ω region to be as close as possible to the sources image

gradient while matching the boundary (𝜕𝜕𝜕𝜕) to the target image. This is possible to

achieve by solving the minimization problem of the following equation:

𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓�|𝛻𝛻𝛻𝛻 − 𝑣𝑣|2

𝛺𝛺

 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓|𝜕𝜕𝜕𝜕 = 𝑓𝑓′|𝜕𝜕𝜕𝜕

Where 𝑓𝑓 corresponds to an unknown scalar function defined over the interior of Ω

[13], v is a vector field defined over Ω that is also called guidance field and 𝑓𝑓′ is the

scalar function defined over 𝑆𝑆 excluding the Ω region. The solution of the equation is

the unique solution of the following Poisson equation with Dirichlet boundary condi-

tions:

𝛥𝛥𝛥𝛥 = div 𝑣𝑣 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝛺𝛺,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓|𝜕𝜕𝜕𝜕 = 𝑓𝑓′|𝜕𝜕𝜕𝜕

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the divergence of 𝑣𝑣 = (𝑢𝑢, 𝑣𝑣) [8]. The algorithm that to

Perez, Gangnet and Blake [8] introduced does not end here since they also introduced

an extension to the method described above that is called mixing gradients compositing

where the guidance field 𝑣𝑣 will not always use information from the source image

(𝑣𝑣 = 𝛻𝛻𝑔𝑔), but will choose depending on the magnitude of the gradients of candidate

images, which can also be described as:

for all 𝑥𝑥 ∈ 𝛺𝛺, 𝑣𝑣(𝑥𝑥) = � 𝛻𝛻𝑓𝑓
′(𝑥𝑥) if |𝛻𝛻𝛻𝛻′(𝑥𝑥)| > |𝛻𝛻𝛻𝛻(𝑥𝑥)|,

 𝛻𝛻𝛻𝛻(𝑥𝑥) otherwise.

39

3 Research Design

3.1 REVIEW THESIS GOAL

The goal of the current thesis is to design a program that will aid the user, who

most likely is a doctor, to complete a particular procedure needed when using the

microscope. Furthermore, by making the whole procedure easier along with

minimizing the time needed to be dedicated and in case there is a necessity to review

a specific sample, it will be possible to skip the procedure since the results of the first

run of the program on a sample will be saved and easy to access. In this section, we

will analyze the algorithms that were chosen among those mentioned in section 2 while

examining the reasons that they fit best this particular scenario of the microscope.

Before moving on to the algorithms, first of all, there is a need to establish which

programs (apps) were used along with the equipment for all the tests that took place.

3.2 APPLICATIONS AND EQUIPMENT

3.2.1 Lumnia Microscope

The microscope used for the current thesis is the Lumnia motorized microscope,

one that the lab developed. One important characteristic that differentiates this

microscope compared to the classical one is the ability to operate it and observe the

sample not through the ocular lens but rather through a screen and using the same

screen to navigate the samples, instead of manually controlling the location of the

stage. The prototype used in the lab has an intel core i9 9900K for CPU, 64GB DDR4

RAM, and as for the operating system, Windows 10 are installed. These components

make the microscope a computer capable of running multiple demanding processes.

Additionally, it is kitted with a touchscreen that will help with the visualization of the

samples as well as navigate through the sample and choose which process to operate.

An alternative option for navigating through the sample is the usage of a joystick that

can be plugged in to provide with more instinctive control of the movements.

Furthermore, the Lumnia is kitted with a multimodal camera, being able to capture

images in different wavelengths, thus giving the ability to observe different

40

characteristics of the sample each time. Moreover, it possesses an epi-illumination

system, magnification encoder, XY linear translation stage as well as a motor for the

z-axis. The magnification encoder, in conjunction with the translation in the z-axis, is

responsible for focusing on the sample, while the XY translation motors move the

stage, so that a new image can be taken in a different location of the sample. The

accuracy of the XY movement is up to 0.75μm, while the range of motion is up to

10𝑐𝑐𝑐𝑐2. Through the menu built for Lumnia, the user is able to perform some

operations, one of which is the stitching. It is essential to mention that because of the

XY axis resolution and the ability to know the exact location of each image by reading

the movements of the motors, it was possible to translate each movement of the stage

from μm to pixels, and consequently have knowledge whether a stitch is successful or

not.

3.2.2 QT and OpenCV

The entirety of this thesis was implemented using the C++ programming

language and was written in the Qt platform. Qt is a widget toolkit for creating multi-

platform applications capable of running on most desktop platforms, and provides

tools for creating GUIs. The Qt software is available in both commercial licensing as

well as open-source licenses, and in this case, the latter was used. Apart from the

environment used, there are quite a few libraries that were created to support C++, one

of which that was extensively used in the current thesis is OpenCV (Open Source

Computer Vision Library), which is an open source computer vision and machine

learning software library.

3.3 DESIGN ANALYSIS

When a user operates a classical microscope, regardless of the type of

microscope, either being optical, electron, etc., in other words, a non-automated one

like the those mentioned earlier, after choosing the desired magnification, he scans the

samples that have been placed, sometimes multiple times to arrive and examine a

specific location on the sample or has to view multiple parts of the same sample. By

using an image stitching program, this procedure is expected to become more

accessible and faster. The image stitching procedure will result in making a panorama-

41

like image of the sample inserted into the microscope by taking the multiple images

captured by the microscopes camera into a large high-resolution image, so the final

image (output) will encapsulate the whole sample while aiming to minimize any

alteration of the contents to the pixels of the original images. The image stitching

procedure can be divided into three primary stages, as shown in Figure 13. In the

paragraphs to follow, an analysis will commence on each stage separately.

3.3.1 Feature analysis (Stage 1)

The first order of things is to load the images into the program in order for the

analysis to start. The default assumption here is that all the images will be in an RGB

format, but the algorithm is not restricted to just a 3-channel image. It can also operate

without any changes, even if a 1-channel image is inserted. That is due to the fact that

the inserted images are initially converted to grayscale in order to proceed with the

algorithm. It should also be noted that although the feature analysis done by SIFT will

commence in each image separately, and only at the next stage (matching), the

comparison between the images will take place. The next step is determining the

Figure 13 : Overview of the image stitching procedure that can be divided in three sections.

42

number of octaves to be used, which will be 4, and the number of scales for each

octave, in this case, are 5 scales. Now the task is to compute the Gaussian octaves.

This is accomplished by blurring the image as many times as the number of scales we

want in each octave, each time using a different standard deviation (𝜎𝜎), increasing it

in each scale. Afterwards, the image is rescaled to have half the size of the images in

the previous octave and repeating this sequence until all octaves are constructed. A

function of OpenCV was used to apply the gaussian blur, as well as the rescaling

function. Initially, a value is assigned to the standard deviation for the first scale of the

base octave, 𝜎𝜎 = 1.6 , and k also takes the value of √2, and for all the rest of the scales

in the octave the standard deviation will be calculated from the following equation:

𝜎𝜎′ = 𝑘𝑘 ∗ 𝜎𝜎 . It should be noted that Lowe [4] in his paper suggests the initial standard

deviation be 𝜎𝜎 = 1.6. Once a complete octave has been processed, we resample the

Gaussian image that has twice the initial value of 𝜎𝜎 (it will be 2 images from the top

of the stack) [4]. The result of this procedure can be seen in Figure 14 where each

column of images corresponds to one octave, it also shows the size of the pictures in

each octave. It is visible the difference between the scales due to the standard deviation

of the Gaussian filters.

43

Figure 14 : An example of the Gaussian pyramid. In this case there are 4 octaves with
5 scales in each one. The red lines show the size, in terms of width and height, of the
images in each octave.

44

Figure 15 : DoG (Difference of Gaussian) pyramid. This pyramid has the same number of
octaves as the Gaussian pyramid but each octave contains on less scale.

45

The next task is the creation of the Difference of Gaussians (DoG) pyramid, which is

produced by subtracting the neighboring scales in each octave, which is shown in

Figure 16. It is possible to take advantage of some parallelism and compute the DoG

pyramid alongside the Gaussian pyramid. The subtraction of the images will result in

an image that will have all black pixels, except of the outlines that are going to have

non-zero values, thus imitating the Laplacian filter. The final result will look like in

Figure 15 where the pyramid once again consists of 4 octaves, each one having 4

scales.

Figure 16 : By subtracting two neighbouring scales of the Gaussian pyramid, one scale
of the DoG pyramid is generated.

46

 Now it possible to coarsely locate the maxima and minima points in the DoG pyramid.

This can be done by comparing each pixel with its 8 neighbors that are on the same

scale, but also comparing them with the 9 neighboring pixels in the scale above and

the corresponding 9 the scale below as indicated in Figure 2, where x marks the pixel

to be checked and the green circle are the 26 neighbouring pixels. Although an iteration

through all the pixels is needed, in the majority of the cases, just from the first few

checks, it will be sufficient to discard the non-maxima/minima points. By now, we

have narrowed down the location of the keypoints, but still, they are not detailed

enough. Among those, there are unstable keypoints that need to be discarded. First, to

be cleared are the low contrast keypoints, and those are simply the keypoints whose

pixel values are below a certain threshold we have defined, in this case |𝐷𝐷| ≥ 0.03,

where 𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎) is the value of a pixel in a certain layer in the pyramid. Next,

keypoints to be filtered are those on the edges. The basic idea here is, using the

gradients of the keypoints, there are three cases:

• The area surrounding the keypoint is flat. Because of that, the gradients (one on
each axis x,y) will have low values.

• The keypoint is on an edge, which means that only one of the gradients will have
a high value, the one that is perpendicular to the edge.

• The keypoint is on a corner and so it is expected for both gradients to have high
values.

Based on that, it is easy to realize that the keypoints that are located on corners are

more important and stable than others. Now using the Hessian matrix, it is possible

47

to compute the curvature ratio of the keypoint, and once again, if it does not satisfy

a certain threshold (≥ 12.1), it will be eliminated. Having eliminated the more

unstable keypoints in the image, the result should look like Figure 17. It should

be noted that all those keypoints are not all from the same octave. This gives the

ability to search for different kind of keypoints, since in the first octave we detect

the finer details as opposed the next layers, which explains why there are some

keypoints that do not seem to be located at a corner. Knowing in which octave is

located each keypoint, achieves scale invariance. For example, if image “A”

contains a cube but has double the size of image “B” which also has the same cube

inside, the keypoints to be matched are not expected to be located on the first

octave, but instead on one or maybe multiple octaves that follow.

Although due to the application of the microscope, images with different scales are not

expected, this part of the algorithm could not be skipped and just use the basic octave,

since apart from scale invariance, the pyramid provides keypoints of different

Figure 17 : Sample with 1179 keypoints.

48

categories, like finer details in the first octaves vs. coarse details in the lower ones, that

could be important to finding matching keypoints between images later.

The next thing to assign to each keypoint is an orientation. This process is important

in order to achieve rotation invariance. The basic idea is to make the keypoints even

more distinct by introducing one more parameter, apart from its coordination in the

pyramid. By collecting gradient orientations and magnitudes around each keypoint it

will be easier for the matching process in case two keypoints are relatively close to

each other, there will be a possibility to distinguish the correct match from the

orientation. First, the magnitude and the orientation of the pixels surrounding each

keypoint, which will depend on the scale of the keypoint, are calculated and placed in

bins of a histogram. The histogram consists of 36 bins that correspond to the 360

degrees of orientations and each bin will contain gradients from certain points. Every

entry is weighted by the gradient magnitude. In other words, the orientation will give

which bin a point will be allocated while the magnitude will inform about the

significance of that particular point. A representative histogram of this kind is shown

49

in Figure 18, where the keypoint will have one primary orientation. After being

accumulated, the orientation histogram is smoothed by applying six times a circular

convolution with the three-tap box filter
[1,1,1]
3

 [14], and a parabolic interpolation

will occur to make small corrections to the position of the peak. The interpolation will

occur with the interest points being the two besides the main peak. Assuming that those

three points are located at x1 = -1, x2 = 0 and x3 = 1 the procedure can be simplified

into the following equations:

𝑎𝑎 = 𝑦𝑦2 −
𝑦𝑦1 + 𝑦𝑦3

2
 ,

𝑏𝑏 =
𝑦𝑦3 − 𝑦𝑦1

4

𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑏𝑏
𝑎𝑎

 , 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑦𝑦2 + 𝑏𝑏2

𝑎𝑎

Figure 18 : Orientation histogram around a randomly selected keypoint.

50

Although cases such as in Figure 18 are the most common ones, there are exceptions

where the histogram of a keypoint may have multiple peaks in the histogram and in

case those picks are significant enough, another keypoint can be created at the same

position but with different orientation, if the local peaks value is not adjacent to another

peak (essentially checking if there is a peak) and if:

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.8 ∗ 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

where m is the magnitude of the peak.

By now, all the keypoints have been located and assigned an orientation. The next to
do is to create a unique “fingerprint” for each one. For this, we will take a 16x16
window surrounding the keypoint and divide it into smaller sections. Each section will
be a 4x4 window where, once again, the gradients of the pixels inside will be computed
and organized in smaller this time angle histograms. The new angle histograms will
have 8 bins that range from 0-44, 45-89, 90-134, 135-179, 180-224, 225-269, and 270-

51

359 degrees. This way, we will obtain information not just for the keypoint itself but
also for the surrounding area, thus further decreasing the probability of finding
matching keypoints between two unrelated ones (false positive). The 16x16 window
will also have to take into account and neutralize the angle of the keypoint, so cases
where the same feature is located in two different images, but due to them having
different orientations, no match between the keypoints is found (false negative) will
not occur frequently. To achieve this, the first task is to also rotate the 16x16 window
by the appropriate angle and locate the positions of the pixels in the image that will be
inside the rotated window. For that information, the sine and cosine of the keypoint
angle will be utilized and the formula is as follows:

 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ∗ cos(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 ∗ sin(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑘𝑘𝑥𝑥
𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ∗ (− sin(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜)) + 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 ∗ cos(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑘𝑘𝑦𝑦

Naturally, not all the 4x4 blocks around the keypoint will provide the same
significance to the identification of the keypoint, since the further away a block is, the
higher are the chance for the same block to be utilized again by a nearby keypoint,
which can occur for multiple blocks at the same time. For that reason, a Gaussian
weighting function can be used so the information given from the furthest gradients
will have a more minor impact on the results. The whole procedure can be visualized
in Figure 19 and Figure 20. In the first case (Figure 19), the blue lines of the grid define
the borders of the 4x4 blocks aforementioned. In Figure 20 the representation of the
grid is exaggerated in order to be easier to conceptualize.

52

Figure 20 : This figure shows how the 16x16 window will look like after adapting to
the keypoints rotation.

Figure 19 : On the left a keypoint is shown with its orientation. On the right the16x16
window around the keypoint is presented.

53

The last step to conclude the feature descriptor’s creation, is to use a threshold of 0.2
as suggested by Lowe [4] and then normalize it.

An important thing to have in mind is that aside from the functionality, the goal is to
run the algorithm in a logical amount of time. If the characteristics of the microscope
are recalled, the output images that it is able to capture, have high resolution,
something that in terms of time needed to analyze each image, can be a hindrance. A
countermeasure taken for this reason is the downscaling of the images that are inserted
into the algorithm. This change will have an effect on the accuracy of the program
since the smaller image in terms of resolution (less detailed) will probably mean a
smaller amount of keypoints detected and thus lower chances of finding two matching
keypoints between images. This of course, will also depend on the amount of
downscaling that is going to occur, as well as depend highly on the contents of the
image, and in the case of the microscope there are occurrences where the image is
mostly empty, due to capturing the edges of the sample. Namely, the initial images
that are captured have a resolution of 2500x1900 pixels, and the resolution after the
rescaling can be either 1250x950 or 800x608. It should be noted that it is essential to
keep the aspect ratio so that no distortion to the contents will occur due to the rescaling,
especially since that kind of change can result in a doctor making a false diagnosis.
After the analysis and even the blending process are done, the composite image can be
rescaled again to the original resolution.
Another slight alteration that aims to the reduction of the execution time is to take
advantage of the information given by the microscope and use them to introduce
regions of interest (ROI) in the image. Since the microscope captures images of the

54

sample consequently and there is access to the movement’s orientation, there no need
to analyze the whole image every time. Instead, depending on the orientation of the
movement, the proper region is selected from the image to be analyzed. Furthermore,
when the microscope starts its automatic image capturing process, it will start from the
left part of the sample and move on by capturing consecutive shots until it reaches the
rightmost part of the sample on that particular line it started from. Subsequently, it will
move down and to the left, making the reverse motion until it finds the end of the
sample once again. This process will repeat until the whole sample is captured and a
small part of it is showcased in Figure 21. In accordance with that knowledge, when
performing stitching between images, it is possible to know which sides are
overlapping, and thus limit the search for the keypoints as well as diminish the sizes
of the pyramids.

Figure 21 : Assuming this is a sample, the grid represents the pictures that will
be captured by the microscope and the blue arrows indicate the path of the
camera. The green circle is the starting point while the yellow circles are the
points where the camera changes the direction of movement.

55

At this point, the implementation of the basic SIFT algorithm is complete. However,
as shown in Figure 21, the current application may differ from the classical panoramic
photography, where multiple pictures are stitched together and belong to the same line
concerning the x-axis while having a slight deviation at the y-axis from image to
image, producing the elongated field of view. In this case, depending on the sample
size as well as the parameters set by the user (magnification), it rare for a sample to be
able to fit in one row of images. In most cases, there will be multiple rows needed to
cover the entire sample fully. This results in the need for vertical stitching. As for the
SIFT algorithm, there is no need for parametrization to handle this case, as the
algorithm operates without the need-to-know what mode is active (vertical/horizontal
stitching), with the only prerequisite being to appropriately define the ROIs. The whole
sequence of the stitching will change slightly. The camera will perform the same
movement as before and the images will be stitched first in lines. Upon the end of
capturing entire lines of images, the vertical stitching of those two outputs will be
performed. The result of the vertical stitching is shown in Figure 22.

Another improvement that was developed this time for the vertical stitching, and it
extends the application of the ROI. Generally, the vertical stitch is more time and
resource-consuming than its horizontal counterpart and this can be explained by the
different sizes of the ROIs. In the horizontal case, the images to be analyzed have
approximately the same size regarding the image height (size of 1 image), whereas
their width may vary (size of multiple images), but it is countered from the usage of
ROIs that limit the width to be analyzed. In the vertical case, usually, the images to
stitched are composites containing multiple images and thus having large overlapping
regions, as shown in Figure 23. This extended overlapping region is not always needed
to find a match between the images. Instead, a small part of it can be chosen to
represent the whole line and checked for matches with the other composite image. In
more detail, during the creation of each composite image (row of images), data are
stored containing details of each individual image that is being merged, including size,
position relative to the other images, etc. Using that information, it is possible to
substitute the composite line image with one of its compounds and run the algorithm
between the compound and another composite image as shown in Figure 24. From the
list of images that are contained in a composite image, every image will be analyzed
and compared until a match is found, this is done since the two composite images to
be merged can differ substantially in length, so much that some images have no
corresponding image in the following composite. This can be spotted in Figure 22. So,
in the best case, the first image that will be checked will have a match with the next

56

composite image, and in the worst case, all the images will be checked from the list.
This technique can substantially speed up the process (as long the worst-case scenario
does not occur) since the row of images (composite) can become arbitrarily big in
terms of width and even height. Since we limit the area to be analyzed, there will be a
smaller number of keypoints and there will be a penalty to the accuracy. This technique
could also be extended to both the composites, so in the end, only two compound
images will be compared and the vertical stitching will have the approximately same
results as the horizontal stitching in terms of time, but only in the best-case scenario
where the first two images will find a match. Otherwise, up to 𝑛𝑛2 comparison of images
can occur to find a match. For this reason, the technique was used to only one of the
composite images.

57

Figure 22 : An example of vertical stitching. The first image consists of 3 horizontally
stitched images, while the second image contains 2 images. The third image is the result of
the vertical stitch and the black box is created due to the width difference of the stitched
lines.

58

Figure 24 : Sample of vertical small stitch. The first image is part of a composite image
(row of images) and is used instead. The second image is the second composite image
that will be stitched with the one to who belongs the first image.

Figure 23 : This image is to be stitched vertically. The yellow designated area defines
the overlapping region with the image to be stitched.

59

Another way to minimize the execution time of the algorithm the “blind stitching”. It
was observed that when it comes to the horizontal stitching, the disposition needed to
be correctly stitched is around the same with a deviation of 3 to 4 pixels. So, harnessing
this knowledge, it is possible to skip the SIFT algorithm for some images when a stable
distance is found. This can substantially speed up the stitching process but significantly
increase the chance of erroneous results. For this reason, periodically, a standard
stitching will occur (using SIFT) to those correct distances are used and rebalance if
there is a need. When referring to distances, at this point, they are the x-distance and
y-distance that the images need to be moved to be stitched. At first, only the first row
of images captured were used to find those distances, and they would result from
averaging the stitching results up to this point. This was fairly unstable since there
were occurrences where the first line was too small to produce a good average distance.
Another approach that was used was using the 10 first successful stitched results as a
guide to finding the most frequent feature distance using a tolerance of 1 pixel on each
side. Having that distance as a guide, the blind stitching process can follow. The rest
of the distance matrix entries will not be discarded since every time a regular stitch
(SIFT) occurs, the matrix will progressively rebalance itself by taking into account
every new valid result. This means that even if at the start of the stitching process there
are some consecutive erroneous stitch results after given some time, the correct
distance will be used.

3.3.2 Matching (Stage 2)

Figure 25 : A flowchart of the matching process. The output of the procedure will be
the distance in pixels of the matching keypoints.

60

At this point, the feature analysis process implantation has concluded and the output
of the previous procedure is one feature descriptor for each image that was inserted.
However, until now, only the contents of each individual image have been examined,
not the relationship between the two images inserted into the program. For this reason,
the matching process was implemented and its output will have information about the
distance of the matching keypoints of the 2 images if there are any, or in other words,
the displacement that needs to occur in order for two matching keypoints to be on top
of each other and merge.

Feature matching

The first step for the matching process is to utilize the information given from the

process that took place before (feature analysis). For each keypoint in each image there

is a matrix of 128 elements representing the descriptor of that keypoint. To identify

which keypoints match between the images, it is needed to find which descriptors

match. This is done by using the sum of squared differences (SSD) for the descriptors

and using a threshold to decide if the descriptors are correlated. The threshold value

was chosen through experimentation and the final value was 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 100.

This will be a first filtering of the descriptors, but multiple may still satisfy this

threshold and yet referring to different keypoints. So, the next step is to choose from

the descriptions that remain, the one that will have the minimum SSD. However, there

is still a case that a descriptor is not appearing in both images, so choosing the

minimum SSD is still not sufficient. For that reason, another strict threshold is used

with a value of one. Having found the matching keypoints, every pair will be inserted

in a list containing information of the id of the matching keypoints and their SSD. The

following analysis will distinguish the inliers and outliers of the matched pairs. The

metric that will be used as the criterion that divides the sample points (pairset) will be

the squared Euclidean distance. The most reliable method to find the inliers for this

problem is to perform a full search, search every matched pair with each other and

calculate the squared Euclidean distance and if the result satisfies a certain threshold

that is chosen depending on the application, then we proceed to calculate the number

of inliers and choose one of them to be representative. In this application, the threshold

can be flexible using a value of 500 as a reference, since when a mismatch occurs

typically the distance will have values of 40000. Although with this method the highest

accuracy is achieved, the computational cost is quadratic (𝑂𝑂(𝑛𝑛2)).

61

RANSAC implementation

An alternate way to distinguish the matched pairs of keypoints into inliers and outliers

is the RANSAC algorithm. For this implementation, we will choose the minimum

number of samples. In this case, the least number it needed is 2 matched pairsets. The

randomly chosen matching pairs will be considered as inliers, and the square Euclidean

distance will be the guide for choosing the rest of the inliers. Having the inliers chosen,

we will cycle through every pairset that is not an inlier and compare it with one of the

inliers. In case, the distance of the candidate inlier satisfies a threshold, then it is also

added to the pool of inliers and naturally, if it exceeds the threshold value, it will be

considered an outlier. This procedure will repeat itself choosing new inliers every time

until a certain number of repetitions are completed, that is calculated from the

RANSAC equation (2.3.1), and it depends on the probability of any sample being an

outlier, the (outlier ratio) and the minimum number of samples and the desired

accuracy of the algorithm. Assuming the outlier ratio of the images is 20%, then only

5 repetitions are needed to achieve 99% accuracy. Once the appropriate number of

repetitions is done, the candidate that produces the highest number of inliers will be

62

considered correct. In Figure 26 a more graphical explanation of the RANSAC

algorithm is represented. The red line indicates the pairset that is assumed as inliers,

consequently every other pair will be compared with the red line and only those that

match its orientation will be considered inliers (green lines). So, in the first case, the

pairset will have 0 inliers, while in the second case 6 inliers are found, which indicates

that the second choice is superior.

Figure 26 : Both images are different iterations of RANSAC. The matching pair of
keypoints are represented with the blue lines. The red line is one of the chosen as
inliers matching pair of keypoints, while with green line are highlighted the pairs that
are inliers in accordance to the red line.

63

During the implementation of the Full Search method (FS), and due to a logical error,

abnormally high values of the squared Euclidean distance were observed, even for

inliers. This would result in the majority of inliers being rejected and have an image

filled with outliers. In the first attempt to resolve this problem, the thresholds were

adjusted and relaxed in order for the inliers to be accepted, although this resulted in

increasing the chance of an outlier also being accepted as an inlier. This eventually led

to cases where multiple samples had a large number of inliers and a lot of cases where

multiple points had the same number of inliers, but different orientations, and in case

the wrong “inlier” was chosen, then erroneous results were visible in the blending

process. In an attempt to minimize this effect, a grading system was developing for the

inliers, taking also into account the squared Euclidean distance when two or more

“inliers” with different distances would exist. This way the sample with the maximum

number of inliers and the minimum distance will be considered as the true inlier. The

accuracy of the method was measured at 80%, which is suboptimal in this application.

Although with this implementation, the initial results were somewhat promising,

determining the true inliers, when the logical error was fixed, this method became

obsolete and just provided additional computational load. In addition, even if the

64

accuracy could increase with better parametrization, the whole process was abandoned

and so, it was omitted from the final application.

Case of Failure

Generally, the SIFT algorithm, as mentioned earlier, is described by its high

accuracy and the ability to produce a higher number of keypoints, compared to other

similar methods. Also, two different algorithms for matching have been reviewed up

to this point, both having above 90% probability of finding a good match, assuming

the parameters were chosen appropriately. Nevertheless, there are occurrences where

the two images will be inserted into the program and no match will be found. Such

cases are most probable to happen when the images that were analyzed are located on

the edge of the sample that the microscope is reviewing, since the background of the

sample is empty and no feature can be detected. The case that was just described does

not occur only when the image is empty, but even if the image contains a portion of

the sample and that portion is small enough, then once again, there is the possibility of

failing. Since the usage of ROI has been adopted, if a stich is attempted with the wrong

orientation (vertical instead of horizontal), once again the algorithm most likely will

not find a match. Finally, even if the orientation is correct and the image contains a

sufficient amount of sample, there is still a chance of not finding a match. When such

a case occurs, depending on the level that the matching process failed, there is a

possibility of correcting such an error. When the descriptors of the two images are

compared and produce no pair of matching keypoints, then it was observed that by

repeating the SIFT process can generate different results in the descriptors and

consequently increase the matching pairs found between the images. This method will

increase the computational time since the process will be repeated but only by the

amount that SIFT needs to be completed, and it is used as a last resort allowing up to

three repetitions for each pair of images.

3.3.3 Blending (Stage 3)

The output of the matching process will be the set of inliers, the best matching

pair of keypoins of the two images. The basic idea of the blending process is to use

that information and extract the disposition of the x-axis and y-axis that the images

65

need in order for the two keypoints to merge and be located at the same point (x,y). As

mentioned in section 2.4, there are numerous algorithms designed for that purpose, but

due to the nature of this scenario, the feathering method was chosen as the most

suitable for the application. Since the images provided from the microscope are

calibrated in a way that no rotation or different size of images are expected to be

inserted, the application requirements are limited to location finding and solving the

merging side-effects that may occur (seams, etc.). So, there is no real need to use a

more sophisticated algorithm that results in an unnecessary increase of the

computational time. Additionally, the mentioned algorithms were designed for more

general cases of merging images, where the merging point can be anywhere on the

image (even at the center), while in the scenario of the microscope, the merging will

take place only on the edges of the images. Another argument that could be raised for

choosing the feathering method is because it does not solve the problems of blurring

and ghosting, which are not expected to occur in a successful stitch, it will be probably

more recognizable by the user that the stitching made an error, rather than guiding the

user to the wrong conclusion due to an alteration on the image of the sample, that

occurred on the process of blending the two images.

The basic idea of the feathering algorithm is that the merged pixel intensities will

result from a combination of the intensities of the individual pixels of the two images

at the merging point after applying weights on each one. In this method, the closest a

pixel is to the center of the image, the more significant its contents are, and thus, the

closest to the edge each pixel is, the less value it has. So, in the overlapping region of

the composite image, each pixel will be weighted relevant to its location in the

compound image. This primarily solves the problem of having different brightness

levels between the images and does not produce a seam when the merge occurs. For

the implementation of the method, the first step is to choose one of the compound

images as a reference. For example, when horizontal stitching is performed, then the

leftmost image can be the reference. Any pixel that is not located in the overlapping

region will take its value from the image it corresponds to by copying the contents of

the compound image. While the pixels reside in the overlap region, their values will

be calculated by the following equation:

66

𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑖𝑖𝐴𝐴
�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑥𝑥�

|𝑑𝑑𝑑𝑑| + 𝑖𝑖𝐵𝐵
�𝑥𝑥 − �𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑑𝑑��

|𝑑𝑑𝑑𝑑|

Where, 𝑖𝑖𝐴𝐴(𝑥𝑥,𝑦𝑦), 𝑖𝑖𝐵𝐵(𝑥𝑥,𝑦𝑦) are the values of the pixels of image A and B

respectively at (𝑥𝑥,𝑦𝑦), 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟 is the width of the reference image and 𝑑𝑑𝑑𝑑 is the output

of the matching method and the movement the images need to make in order to match.

The output of the matching algorithm will produce a set of 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑, that is the

distance the images need to be shifted. Those can be positive, negative or even equal

to zero depending on the type of stitching that is performed. In the case of the

horizontal stitch, if the 𝑑𝑑𝑑𝑑 factor equals to zero, that would mean that there is no

overlapping region between the images and they will be placed right next to each other,

a negative value would mean that in the composite image, there will be a gap between

the compound images (again no overlap region exists), while with a positive 𝑑𝑑𝑑𝑑 the

images will overlap (typical outcome). The 𝑑𝑑𝑑𝑑 factor will translate into a difference in

the position on the y-axis. The best-case scenario where 𝑑𝑑𝑑𝑑 = 0, there will only be the

𝑑𝑑𝑑𝑑 factor to consider, but in any other case, the two will not align perfectly and a set

of pixels in the composite image will belong to neither of the two compound images,

and since there is no information about the contents of those pixels it was decided to

assign them with a value of zero (black regions). Depending on the sign of 𝑑𝑑𝑑𝑑 two

cases of horizontal stitching can be distinguished as shown in Figure 27, and each case

needs to be handled properly, so the correct region is assigned with the right values.

The phenomenon of the black regions is generated by a slight offset of the

microscope’s camera angle relative to the stage where the sample is placed, which can

be showcased in Figure 28. If the camera has even a very small angle on the z-axis

compared to the stage, in the 2D representation of the image, a small 𝑑𝑑𝑑𝑑 offset will

take place and will stay the same each time a new is performed, increasing each the

black region by a small margin. So, the black region can through off the blending

process by little every time, and grow increasingly larger, although it is easily

corrected by adding the same offset to the 𝑑𝑑𝑑𝑑 factor. The same phenomenon will also

appear in the vertical stitching process, this time the black region will form on the x-

axis, but ultimately the solution will remain the same. However, this is not the only

67

way the black region will affect the vertical stitching, since some of them may appear

from the horizontal process. When the vertical starts the ROIs that are defined will

also need to be adjusted, otherwise there is the risk of excluding the overlapping region

of the images from the ROI if the black region has a certain size. As to the final result,

the black regions will appear only on the outer layer of images, that are primarily free

of sample, will in areas filled with sample any black region will be covered by

overlapping images.

The blending of the vertical stitch is slightly more complex than the horizontal

case due to the side effect of performing the stitch using one reference image to

represent a whole line of horizontal stitched images. When applying this method that

was analyzed in section 3.3.1, the size of one of the images that will be stitched (the

one represented by the reference) will be lost and also the location of the reference

image. In other words, the results of the matching process will not be complete and

further correction of the 𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑 will be needed. For this reason, when using the

“vertical small stitch” method, a list is used to store the information that would be lost.

For example, the first horizontal stitch produces a composite image 𝑠𝑠1 from 5

individual images, while the second horizontal stitch results in image 𝑠𝑠2 that is made

from 6 individual images. When the “vertical small stitch” is performed and assuming

that the 𝑠𝑠1 is replaced by the 3rd in-line image then if a match is found with the 𝑠𝑠2 then

the resulting 𝑑𝑑𝑥𝑥, 𝑑𝑑𝑑𝑑 will correspond to the start of the reference image (3rd), which is

not the start of the 𝑠𝑠1. By storing the blending points (𝑏𝑏𝑏𝑏 =

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ – 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) and not just the sizes of the images already

stitched, the location of the image will be available to use in the blending process.

68

69

Figure 27 : Two composite images are shown and their contents divided into regions
depending on the sign of the dy factor.

70

Figure 28: The position of the camera relative to the stage of the microscope.

71

4 Results

In the previous chapter, a review was done of all the algorithms that were used

in this application. They were analyzed over their implementation and the expected

results those methods should produce, and suggesting various improvements that

mainly aim at the performance aspect. In the current chapter, the results of these

algorithms will be investigated as well as the optimal parameter values that will yield

the best results. Once again, the whole process can be divided into three major parts

(feature analysis, matching and blending). The testing proceeded by taking a random

sample from the microscope of 45 images and performing stitch on that set repeatedly

while changing the appropriate parameter values. Of this sample, 35 horizontal stitches

are to be performed and the rest will be vertical. The chosen sample contains a variety

of cases, from images that have low feature density (located on the outskirts of the

sample), and images with numerous features. The structure of the chapter consists of

three sections. In the first, the results presented are due to parametrizing some values

of the SIFT algorithm to perform more accurately to the scenario given. The second

section takes place the parametrization of the matching algorithms and the view of

their results. While the final section analyses the time of each process and scenario.

4.1 SIFT PARAMETRIZATION & RESULTS

 The SIFT algorithm has numerous variables that need to be tuned in order to

produce good results. Most of those parameters have been examined and their values

determined by D.Lowe in his research [4], through testing in artificially created images

in order to pinpoint the most optimal values, so the algorithm produces accurate and

stable results regardless of the set of images that will be inserted as input. Some of

those parameters include the number of octaves to be used along with the number of

scales in each octave and both of them are important to achieve scale invariance. In

addition, the amount of blurring (sigma) between each scale and each octave is also

determined the same way. All of these parameters that were defined by the author of

SIFT were not examined further in order to confirm their effect. Instead, the contrast

threshold and the curvature threshold will be examined in order to better fit this

particular scenario.

72

First of all, it is needed to determine the parameters that will help us decide

whether a set of values produce a “good” result. The first thing that will help with that

decision is the number of keypoints. However, this alone can lead to false conclusions.

For example, if the thresholds to be used are too strict, many potential keypoints will

be rejected, which could be crucial at a later stage, finding a match between the images.

On the other, in case the thresholds are more relaxed, there is a possibility of keypoints

being located that will lead to overshadowing the important ones and producing a false

result during the matching (false positive). For this reason, along with the number of

keypoints, also the accuracy (success rate) will be taken into account, even if that

includes more using the matching process, and thus the test will not be entirely

independent of each process. In Figure 30, the correlation of the keypoints and the

contrast threshold is depicted, the latter of which is ranging from 0.02 to 0.8. As shown

in Figure 29 and Figure 30, the smaller the keypoints number is, the probability of a

successful stitch diminishes. A plateau is forming in the graph the accuracy that is

indicating the region with the best results before the success rate starts dropping once

again, this time due to a large number of keypoints. In Figure 31 and Figure 32 we

have a graph that connects the number of keypoints to the curvature threshold and the

success rate to the curvature threshold, respectively. Once again, there is a connection

between the amount of keypoints discovered in the image and the success rate of the

stitch. Too few keypoints, lead to errors due to not finding a match, while a large

number of keypoints can lead to false-positive results. For the curvature threshold, the

value that seems to provide with the best results is 10.

73

Figure 30 : Average number of keypoints, in horizontal stitch, relative to the
contrast threshold.

Figure 29 : The percentage of successful stitches depending on the contrast

74

Figure 31: Average number of keypoints, in horizontal stitch, relative to the contrast
threshold.

Figure 32 : The percentage of successful stitches depending on the contrast threshold

75

It should be noted that all four of the figures above (Figure 29, Figure 30, Figure 31,

Figure 32) show the results of only the horizontal stitching. The reason that the sample

is limited that way is because of the ability to ensure that all the images that contribute

to those results have the same size. So, the only factors that will have an impact are

the threshold variables that are under investigation and the contents of the images. The

number of keypoints that are located during a vertical stitch will depend on the size of

the images, along with the type of vertical method that is applied and will be multiple

of the number detected at a horizontal version.

4.2 MATCHING PARAMETRIZATION & RESULTS

Similar to the previous paragraph, where some of the parameters of SIFT are tested to

establish the best possible results, the matching process and all of the methods used

contain numerous parameters that need to be tweaked. The way the results are

produced is similar, as the same sample is used and the whole procedure is repeated

multiple times in order find the average values that will unveil the most optimal

combination of values. In this case, the two parameters that will be examined are going

to be the matching pair size and the inliers produced by the different algorithms, and

at a later stage, the elapsed time of each method will be analyzed. The matching pair

size is created by comparing every keypoint in both of the input images and checking

them for similarities. If the criteria are met, the pair will be a candidate inlier that will

be decided later. So, the number of matching pairs can range from 0, and can even

surpass the number of keypoints in the image, which is the case when a feature has

multiple occurrences in the image. However, such a scenario is a rare occurrence. In

most cases the pair size will not even exceed the keypoints number. The parameter that

greatly influences the matching pair size is the feature descriptor gap threshold that is

set. When creating a matching pair, the algorithm iterates through the keypoints in

order to find the one with the minimum SSD (sum of the squared differences). If the

final minimum SSD exceeds the chosen threshold, then the pair is rejected. The four

76

figures show the results of the method when the threshold value is fluctuating. Figure

33 shows the rate at which the size of the matching pairs of keypoints can be located.

Interestingly, in the range 1 to 2.5, the rate is linear, while after exceeding the threshold

of 5, the size that can be located between two images reaches an upper limit. The most

important graph is the one depicted in Figure 34, where it is clear that for values

smaller than 1.5 of the feature descriptor thresholds, the accuracy of the stitch is

lowering rapidly due to the insufficient amount of keypoint matches that were

established. On the other side, for values greater than 1.5, the success rate of the

algorithm once again decreases as the threshold increases but with a smoother slope.

Lastly, in Figure 35, it is shown how many of the mistakes depicted in the success rate

figure are false-positive results, and in conjunction with Figure 34 the other two

figures, when the size of the matching pair increases above a certain value, the list of

keypoints contains a large number of outliers that if not appropriately recognized can

lead bad stitching results. It should be mentioned that thanks to features provided by

the microscope, it is possible to locate a false positive outcome even if the algorithm

regards the results as successful stitching, due to the sensors that can give the accurate

locations of each picture taken.

Figure 33 : This figure shows the correlation of the feature descriptor gap threshold
with the size of the matching pair of keypoints.

77

Figure 34 : The threshold can influence the accuracy of the stitch algorithm.

Figure 35 : This figure shows the amount of false positive stitching that were done
during the test, while the threshold is changing. The false positives are included in the
graph of the success rate.

78

Having finished with the parametrization of the feature gap thresholds that is

responsible for the size of keypoint pairs, it is time to move on to uncover the most

optimal threshold value that will discriminate the inliers from the outliers. The testing

process took place using the FS method instead of the RANSAC that was also

implemented. The reason for such a choice can be explained through the requirements

of the test itself. RANSAC is described by its relatively high accuracy and the speed

that is needed to find the inliers. However, in this testing process, where the intent is

to check and find the optimal value for a certain threshold, the completion time of the

algorithm is irrelevant and only accuracy is required. So, since RANSAC has a 99%

accuracy, depending on the parameters chosen, there is the probability, although very

small, for the algorithm to be unable to locate the correct set of inliers, thus making it

not ideal for this scenario. An important thing to be mentioned at this point, is that in

the test that follows, one more sample was used in addition to the one used in the

previous test in order to provide additional information and help clarify some results.

Starting with Figure 36, where the change in the number of inliers is shown. Although

there may seem like significant fluctuations, the number is in a range between 17 to

22 inliers each time. This phenomenon can be explained through Figure 39 and Figure

40. The four different lines belong to the 2 samples that were tested, once using the

“big” stitch method and once again using the “small” stitch method. Due to the fact

that only a small portion of the image is overlapping, in the “big” stitch, many

keypoints will be located that will not provide with helpfull information and the

majority will be filtered by the Full Search or the RANSAC methods. In Figure 37, the

plot shows how the accuracy is changing by altering the threshold, while in Figure 38

the number of false-positive matches is shown, and this time they are the only source

of mismatch. By the guidance of figures 37 and 38, the value for the inlier threshold

that seems to be more effective is under 500. Figure 40 is especially useful for the

implementation of the RANSAC algorithm since, during the initialization there is need

to determine the inlier ratio, and according to this plot, there are significant changes

from method to method that will be taken into consideration during the time analysis.

79

Figure 36 : Depiction of the fluctuation of the number of inliers located depending
on the threshold.

Figure 37 : The accuracy decreases as the inlier threshold increases.

80

Figure 38 : This figure shows the number of mistakes created due to false positive
matching.

Figure 39 : This shows the difference of matching pair sizes between the “big” stitch
method and the “small” stitch.

81

4.3 TIME ANALYSIS

Having finished with the testing process for finding the values that will provide

the most promising results, we are able to move on to analyzing the time needed for

each method to be completed. The same sample from the previous testing will be used,

which contains 45 different images, and thus the stitching process will be called 45

times, 35 of which are going to be performed as horizontal, while the remaining 10 are

going to be vertical stitches. For measuring the elapsed time of each process, built-in

functions of OpenCV were used. The first one is the getTickCount(), which returns the

number of clock-cycles after a reference event and so it is possible to calculate the

difference between two reference points, the start and the end of each algorithm. After

that, utilizing the function getTickFrequency(), which returns the frequency of clock-

Figure 40 : The information given by this figure are important for the initialization of
the RANSAC algorithm.

82

cycles, or the number of clock-cycles per second. So, to find the time of execution in

seconds, we only need to divide the difference of the clock cycles by the frequency.

At this point the test will contain four different variations of the program, to uncover

which of the techniques analyzed previously will provide with the best results. The

four variations include a combination of “big/small” stitch and changing the region of

interest each time between 100%, which covers the entire image, and 10% that

includes the region of the images that overlap. Moreover, the tests will include

different image sizes in order to measure the potential performance gain when using

smaller images. Figure 41 presents the average time a stitch call will take depending

on the type (horizontal/vertical). As expected, the lower the resolution of the input

images is, the time needed for completion decreases, to the point of achieving up to 8

times faster completion time for the horizontal. The reason behind such a significant

difference between the vertical and the horizontal timings can be explained by the

structure of the vertical images. In most cases, the images that consist as the input of a

vertical stitch will comprise of multiple images stitched together horizontally, thus

having one image to be analyzed with a bigger scale, reaching up to ten times larger

than the basic input image. According to that explanation it is easy to understand, that

in case of a bigger sample (>45 images), the times for the horizontal will stay about

the same, while the vertical timings are going to increase. Generally, utilizing the

“small” stitch method seems to be more effective than narrowing down the region to

be analyzed by the algorithm. Nevertheless, combining those two methods provide

with the minimum elapsed time. In Figure 42, we see a repetition of the previous

pattern, for the results, with the exception of the combination of methods “big” stitch

with 10% overlap and “small” stitch with 100% overlap, where it is unclear which of

those provide with the better performance. Especially in Figure 43, utilizing that small

stitch method in combination with setting to analyze the whole image seems to not

perform as effectively as other methods. This can be explained through the size of the

area that needs to be analyzed in each method since a larger area will probably produce

more keypoints, and thus more time is needed to check the compatibility of them and

match them. When performing vertical stitch in this test, the average width of the

images involved is about 4 times bigger in size compared to the basic input image of

a horizontal stitch. In this case, the region in the image where keypoints can be found

can be calculated and for the “big” stitch with 10% overlap, it is equivalent to

analyzing an image of size 1000x760 (in case the original image is of size 2500x1900),

83

while in case of “small” stitch with 100% overlap, the image to be analyzed has a size

of 2500x1900. Figure 44, Figure 45 follow the same principles mentioned before, for

Figure 42, Figure 43. The big difference is that the runtime is limited to milliseconds.

The reason of this similar pattern is due to the fact that, both full search and RANSAC

algorithms are a direct extension of the matching process and they are highly

dependent on the outcome that was produced by the latter. In Table 1, we compare the

two methods for finding the inliers and all the contents of the table are in milliseconds.

Overall, the RANSAC algorithm performs better, having a faster completion time that

can be up to 10 times faster in some cases. That is a logical result since the RANSAC

does not need to search the whole list of keypoints in order to locate the inliers. It is

important to mention that during the tests, the number of iterations of the RANSAC

algorithm were needed to change according to the method that was used since the

different methods did not generate the same number of keypoints during the first

match, and consequently, the inlier ratio changed. Lastly, Figure 46 shows the time

needed for a blend of two images to take place. Contrary to the previous figurers, the

current one does not show any particularly important differences between the

performance of each method used. The reason behind this is that the methods are

intended to reduce the runtime of the SIFT and matching sequences, so they do not

affect the blending process. The only difference that takes place in this figure is the

change in the size of the images, where the bigger the image to be stitched, the longer

will be the time needed to complete the blend.

84

Figure 41 : Time analysis of SIFT algorithm, divided into vertical (upper half) and horizontal
(lower half) stitching.

Figure 42 : Average time of completion of matching process for the horizontal stitches.

85

Figure 43 : Average time needed for completion of a vertical match.

Figure 44 : Elapsed time for the full search method to complete (only horizontal)

86

Figure 45 : Average performance of RANSAC

Figure 46 : The average time that will be needed to blend two images.

87

Table 1 Results of running full search and RASNAC methods.
 Small stitch Big Stitch

overlap 10 % overlap 100% overlap 10 % overlap 100%
Full Search 2500x1900 0.246881 12.3239 2.39682 11.9319

1250x950 0.282861 3.41423 0.405167 6.83218
800x608 0.200144 1.45305 0.187897 1.88234

RANSAC 2500x1900 0.0432 3.58155 1.5814500 4.50411
1250x950 0.0372222 2.46075 0.0314361 3.59778
800x608 0.0349306 1.21553 0.0382472 1.83279

88

5 Conclusions

The final chapter of this thesis will contain some conclusions drawn out during

the implementation of the thesis and in conjunction with the results analyzed

previously. Furthermore, even if the goal of this thesis has been achieved, there is

always room for improvement, therefore there is also a section related to ideas for

future work.

1.1 CONCLUSION

The work covered in this thesis was indended to create a system that would apply

image stitching to pictures taken through the microscope, so that the whole sample will

be available in one high-resolution image. The ultimate goal would be to use this

system in automated microscopes to assist doctors and speed up the process of

analyzing the samples. The big problem with using SIFT in such scenarios is the main

disadvantage that the algorithm has, high computational cost, but by applying a

number of techniques, and eliminating certain scenarios that are not expected to occur

to the nature of the microscope (e.g., having images of successively different scale),

that would otherwise increase the complexity of the problem and consequently

increase the time needed for completion, the algorithm can be applied, providing with

promising results. The important information to keep from the results is that using a

combination of narrowing down the region of interest as well as rescaling the image

in some cases can speed up the process of horizontal stitching up to 4 times. The results

also showed that using a ROI of a smaller size provides a more significant advantage

over just using the “small” stitch method on the full image. Aside from that, it seems

to be always the better choice to combine all those techniques in order to minimize the

time needed. Another vital thing to mention is the somewhat unexpected results of the

comparison of RANSAC and Full Search methods. Although RANSAC always has

better performance, since it will not need to search all the combinations of keypoints,

due to the small size of the matching pair of keypoints and the inlier ratio.

1.2 FUTURE WORK

Although this thesis may be complete, there are numerous ideas that can extend

this work. In mater of performance improvement, utilizing multithreading

89

programming and using the large number of cuda cores provided by GPUs, could

potentially yield a significant performance gain from parallelism. Since the algorithm

is not limited to only the scenario introduced in this thesis, another idea for future work

would be to use the system for different kind of microscopic images. For example, it

would be interesting to observe how differently the algorithm will perform when

provided with images taken at different parts of the spectrum. Lastly, since an effort

to analyze the contents of the images is already done in search of keypoints, it would

be interesting analyze the image searching for cancerous cells, using some

classification algorithm or utilizing neural networks trained to locate such cells in the

sample.

90

Bibliography

[1] D. G. Lowe, "Object Recognition from Local Scale-Invariant Features.," The
Proceedings of the Seventh IEEE International Conference on Computer
Vision, vol. 2, pp. 1150-1157, 1999.

[2] T. Lindeberg, "Scale-space theory: A basic tool for analysing structures at
different scales," Journal of Applied Statistics, vol. 21, no. 2, pp. 225-270,
1994.

[3] K. Mikolajczyk, "Detection of Local Features Invariant to Affine
Transformations," 2002.

[4] D. G. Lowe, "Distinctive image features from scale-invariant keypoints,"
Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, November 2004.

[5] M. a. L. D. Brown, "Invariant Features from Interest Point Groups,"
Proceedings of the British Machine Vision Conference, 2002.

[6] M. Fischler and R. Bolles, "Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated
Cartography," Communications of the ACM, vol. 24, no. 6, pp. 381-395, 1981.

[7] V. Hautamäki, I. Kärkkäinen and P. Fränti, "Outlier Detection Using k-Nearest
Neighbour Graph," Proceedings of the 17th International Conference on
Pattern Recognition, 2004. ICPR 2004., vol. 3, pp. 430-433, 20 September
2004.

[8] S. E. Chen, "QuickTime VR – an image-based approach to virtual
environment," Computer Graphics (SIGGRAPH’95), pp. 29-38, 1995.

[9] R. Szeliski, "Image mosaicing for tele-reality applications," in IEEE Workshop
on Applications of Computer Vision (WACV'94), pp. 44-53, 1994.

[10] R. Szeliski and H. Y. Shum, "Creating full view panoramic image mosaics," in
Computer Graphics (SIGGRAPH’97 Proceedings), pp. 251-258, 1997.

[11] R. Szeliski, Image Alignment and Stitching: A Tutorial, vol. 2, Foundations
and Trends® in Computer Graphics and Vision, 2006, pp. 1-104.

[12] P. J. Burt and E. H. Adelson, "A multiresolution spline with applications to,"
ACM Transactions on Graphics, vol. 2, no. 4, pp. 217-236, 1983.

[13] P. Perez, M. Gangnet and A. Blake, "Poisson Image Editing," ACM
Transactions on Graphics, vol. 22, no. 3, 2003.

[14] I. Rey-Otero and M. Delbracio, "Anatomy of the SIFT Method," Image
Processing On Line, vol. 4, pp. 370--396, 2014.

[15] M. Z. Bonny and M. S. Uddin, "Feature-based image stitching algorithms,"
2016 International Workshop on Computational Intelligence (IWCI), pp. 198-
203, 2016.

[16] E. Karami, S. Prasad and M. Shehata, "Image Matching Using SIFT, SURF,
BRIEF and ORB: Performance Comparison for Distorted Images," 2015.

[17] T. Kanade and B. D. Lucas, "An Iterative Image Registration Technique with
an Applicatino to Stereo Vision," Proceedings of Imaging Understanding
Workshop, pp. 121-130, 1981.

[18] J. J. Koenderink, "The structure of images," Biological Cybernetics, vol. 50,
pp. 363-396, 1984.

91

	1 Introduction
	1.1 Microscopy & image Stitching
	1.2 Context
	1.3 Thesis Outline

	2 Literature Review
	2.1 Image Stitching algorithms
	2.2 SIft Analysis
	2.2.1 Keypoint Detection
	2.2.2 Feature point localization
	2.2.3 Orientation of keypoints
	2.2.4 Feature Descriptor

	2.3 Matching Features
	2.3.2 RANSAC

	2.4 Blending
	Poisson Image Editing

	3 Research Design
	3.1 Review Thesis goal
	3.2 Applications and Equipment
	3.2.1 Lumnia Microscope
	3.2.2 QT and OpenCV

	3.3 Design Analysis
	3.3.1 Feature analysis (Stage 1)
	3.3.2 Matching (Stage 2)
	Feature matching
	RANSAC implementation
	Case of Failure

	3.3.3 Blending (Stage 3)

	4 Results
	4.1 SIft parametrization & results
	4.2 Matching parametrization & results
	4.3 Time Analysis

	5 Conclusions
	1.1 Conclusion
	1.2 Future work

