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Abstract 

Microscopy for years is an instrumental technology for analyzing tissue samples 

and locating cancerous cells. The biopsy is a process that can last for several days and 

is crucial, since the doctor will decide on the most suitable treatment depending on the 

results. The goal of this thesis is to speed up the process of analyzing a biopsy by using 

image stitching algorithms. By creating high-resolution mosaics of the samples, it will 

be easier for different doctors to examine the same sample, while being located in a 

different area or re-examine the same sample, if needed. The chosen algorithm for 

stitching is SIFT, which is distinguishable among other algorithms due to its high 

accuracy. At the same time, the main disadvantage that needs to be mended is the time 

needed to complete a stitching due to its high complexity. Using various techniques 

aiming to reduce the elapsed time, like reducing the image size to be analyzed each 

time and defining regions of interest in the images, can reduce the time needed. By 

applying those techniques, it is possible to speed up the average time of a single 

horizontal stitch by approximately four times. These results suggest that it will be 

viable for the algorithm to be used in a microscope, reducing the time of analysis of 

the samples. 
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1 Introduction 

This chapter outlines the background of microscopy and image stitching, as well 

as introduces the problem that we aim to solve in section 1. It also includes a brief 

mention of the goals of the thesis (section 2) and its purposes. Finally, section 1.3 

includes an outline of the remaining chapters of the thesis. 

1.1 MICROSCOPY & IMAGE STITCHING 

A microscope is a scientific tool used to examine any object that is too small to 

be seen by the naked eye. It is a tool of paramount importance that has aided the 

development of multiple scientific fields for many decades, from examining forensic 

evidence, whereby observing striations in bullets can help determine which gun was 

used to aid the study of the surface of individual atoms. However, perhaps the scientific 

field influenced most from its invention is the medical field, where the use of the 

microscope helped understand the structures of the cells and even the functions of the 

proteins within the cells. Furthermore, it has an important role when a doctor needs to 

examine tissue, which comes from a biopsy, in order to decide whether the sample 

contains cancerous cells. After the doctor obtains the tissue sample, it is sent to a lab 

for analysis. Usually, the sample goes through some processing before being analyzed, 

which includes freezing to preserve the sample, it may get chemically treated and is 

sliced into very thin sections. Those sections of the sample are placed on glass slides 

and sometimes are stained with certain chemical substances to enhance some features 

of the cell that can provide important information, like the cell membrane and the 

nucleus. At this point, the sample is inserted into the microscope in order to be 

examined. By observing the results, the doctor can determine where the cancer was 

originated as well as categorize it depending on how aggressive it is, which is a crucial 

step towards deciding the type of treatment that will follow. Since cancer has such a 

wide variety of types (places to originate), it is not always possible for a single doctor 

to examine the tissue and produce the results. Doctors from different fields, such as a 

hematologist or some other specialty, need to consult and review the sample in order 

to produce the results. Even in cases where a single doctor can perform the 

examination alone, there may be a need for a re-examination by the doctor or colleague 

to reassure the results. In the end, the whole process takes a long time to complete, and 
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even though on some rare occasions, the results can be produced within minutes or 

hours from the time the sample was collected, generally several days will be needed 

to produce results. At this point, the current thesis aims to assist the doctors, not in a 

way to change the standard procedure of the examination, but hopefully reduce the 

time needed between the acquisition of the tissue and the final results.  

Image stitching, otherwise known as mosaicing, is the process where two or 

more images that have some degree of overlap are merged into a segmented panorama 

or high-resolution image. Algorithms for image aligning and stitching are widely used 

in computer vision for several years. Some date back to 1981 when Lucas and Kanade 

[1] introduced a technique known as optical flow. Such algorithms are widely used 

today, from image video stabilization, where aligning is applied for each frame, to 

creation of digital maps from satellite images using image stitching techniques. With 

the increasingly widespread use of smartphones, those algorithms are necessary since 

every camera needs a non-mechanical stabilization solution, as well as the panoramic 

photography mode.   

 

1.2 CONTEXT 

The purpose of this thesis is to create an image stitching application that will be 

designed for a fully automated microscope. The achievement of this goal will be based 

on the usage of the SIFT algorithm, which was first introduced by D.Lowe in 2004 [2]. 

Although this algorithm is not a recent development, it has features that distinguish it, 

even among algorithms that were more recently created. An important characteristic 

of this method is that it is a feature-based algorithm that has certain advantages in 

contrast to other algorithms, the details of which are going to be analyzed in a 

following chapter. The utilization of a stitching algorithm for images taken from the 

microscope is not a new invention. This thesis will examine the results of using the 

SIFT algorithm, whose main disadvantage over similar features-based methods is its 

computational cost. By applying certain techniques, hopefully, the results will be 

suitable to be utilized in a microscope without delaying the whole procedure.  
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1.3 THESIS OUTLINE 

The present thesis is divided into six sections. The first chapter is an introduction 

to the problem that the thesis aims to solve, along with some background information 

about microscopy and image stitching. In chapter 2, we delve deeper into the 

algorithms that were considered to be used, as well as point out the reasons that helped 

decide on the algorithms to be implemented. Chapter 3 further analyses the algorithms 

that were chosen and also analysis their implementation. Additionally, it contains brief 

information about the tools that were used in the thesis (e.g., the microscope). In 

chapter 4, the foci are to analyze the results of the tests that were performed on the 

final application. Lastly, chapter 5 includes the conclusions that were drawn during the 

development of the thesis, as well as some proposals for future work. 
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2 Literature Review 

In this chapter, we will analyze the algorithms that were used in the thesis. In the 

first section, there is a brief summary of algorithms that exist and the reason behind 

the selection of the algorithm that was finally used. Consequently, the next section will 

delve deeper into the chosen algorithm and analyze it from a theoretical perspective. 

Section 3 will analyze the matching process and examine the theoretical background 

of the algorithms to be used. Finally, section 4 includes the algorithms of the blending 

process. 

 

2.1 IMAGE STITCHING ALGORITHMS 

 First of all, it is important to specify which algorithm was chosen for this task 

and what characteristics distinguished him among others, designed for solving the 

same problem (image stitching). The final choice was SIFT, which was developed by 

D.Lowe [2], and the primary advantage that this particular algorithm possesses is the 

high accuracy. According to research published by Bonny and Uddin [3], who 

compared a variety of feature-based methods, including SURF (Speeded Up Robust 

Features), FAST (Features from Accelerated Segment Test), Harris corner detector, 

and MSER (Maximally Stable Extremal Regions), they concluded that among the 

algorithms enlisted in their paper, SURF seems to have the highest accuracy. However, 

they did not include the SIFT algorithm in their research. But according to Karami, 

Prasad, and Shehata [4], who dived deeper into the comparison of SIFT, SURF, and 

ORB (oriented FAST rotated BRIEF), have concluded that although both SURF and 

ORB are generally faster, they cannot achieve the high match rate if SIFT. Especially 

ORB can have up to 19,2% deviation from the high scoring SIFT when it comes to the 

match rate, and the only occasion where ORB accomplishes both a higher match rate 

and speed is when comparing images with different scale, a scenario that generally is 

not expected to be seen in the current application. Similarly, the SURF algorithm, 

although being faster in every experiment, the only instance where its score is higher 

than that of SIFT, is when the images have a different scale. It should also be noted 

that the experiment concerning the scale of the images was implemented, having one 

of them being scaled two times. 
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2.2 SIFT ANALYSIS 

This particular algorithm was originally designed in order to extract features from 
images so that it may be capable of reliably matching objects that are located inside, 
according to the data of a database. During its creation, techniques were applied so 
that the algorithm will have tolerance to noise contained in the images, to some 
differences in luminance, as well as a certain indulgence to affine distortions. It is 
important to note that the whole procedure requires the use of grayscale images. 
 

2.2.1 Keypoint Detection 

The first step towards the specification of the image’s features is the detection 

of the scale-space extrema, i.e., the pixels with the maximum value in comparison to 

the surrounding pixels, which refers to the scale portion, along with the extrema 

between scales. In order to accomplish that, Gaussian filters were applied repeatedly 

with an increasing standard deviation of the gaussian distribution, in addition to a 

series of rescales of the initial image. The result of the described process is the creation 

of a series of octaves, which consist of a set of images. Each octave has the same scale 

between its images, but each individual image differentiates towards the standard 

deviation, and each octave differs from others in the scale. In order to detect points of 

interest in the image, it is essential to distinguish the edges, the corners, and the blobs 

of the objects located inside the image. The most common way to find those points is 

by using the Laplacian filter. However, the application of the filter will increase the 

computational complexity of the algorithm since it will be applied repeatedly in each 

image. An alternative way to achieve the same results while avoiding the increased 

complexity is the creation of the Difference of Gaussians (DoG). In this instance 

Gaussian filter was applied to the image with accretive standard deviation, 

consequently subtracting the results of the filtering, which results in a new image that 

contains only the edges. The Gaussian filter is a smoothing filter, and this may create 

the assumption that other smoothing filters could be used instead in order to achieve 

similar results. Such an assumption is inaccurate according to research made by 

Koenderink [5] and Lindberg [6], who proved that, under some reasonable 

assumptions, the only scale-space kernel is the Gaussian function.         

 

 

𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎) = 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) ∗ 𝐼𝐼(𝑥𝑥,𝑦𝑦), 
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where the L function is called a Gaussian scale space, * stands for convolution and 

𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) corresponds to 2D Gaussian filter 

𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) =
1

2𝜋𝜋𝜋𝜋2
𝑒𝑒−�

𝑥𝑥2+𝑦𝑦2
2𝜎𝜎2 � 

 

 Based on Lowe study [1], the difference of Gaussian function convolved with 

the image,  𝐷𝐷(𝑥𝑥, 𝑦𝑦,𝜎𝜎), is an efficient way to detect keypoints in scale space, and the 

way to compute the function D is through the difference of two consecutive scales, 

from the same octave, that are separated by a constant multiplicative factor k: 

 

𝐷𝐷(𝑥𝑥, 𝑦𝑦,𝜎𝜎) =  � 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎)� ∗ 𝐼𝐼(𝑥𝑥,𝑦𝑦)
= 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐿𝐿(𝑥𝑥,𝑦𝑦,𝜎𝜎)

 

 

Since the L function will be computed either way, due to it being needed for the feature 

descriptor, we can state that using the D function is particularly efficient and the only 

operation needed to acquire the DoG is image subtraction. 
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As mentioned before, the difference of Gaussian function gives results that are a close 

approximation to the scale-normalized Laplacian of gaussian, 𝜎𝜎2𝛻𝛻2𝐺𝐺, as proven by 

Linderberg [2]. As mentioned before, it is important to detect features that are scale-

space extrema. As for the scale part, it is needed to locate the stable features of the 

image, i.e., the features that remain interesting across all scales. Lindenberg’s [2] study 

showed that normalization of the Laplacian with the factor 𝜎𝜎2 is needed for true scale 

invariance. In addition, Mikolajczyk [3] found that the maxima and minima of 𝜎𝜎2𝛻𝛻2𝐺𝐺 

produce the most stable image features compared to a range of other possible image 

Figure 1 : The concept of the Gaussian Pyramid along with the way of creating the 
Difference of Gaussian Pyramid (DOG). Each octave consists of a group of images, 
with all of them having the same scale. The initial image of each octave is convolved 
repeatedly with Gaussians, resulting in the pyramid like shape on left of the image. 
For every new octave to be created the image is down-sampled by the factor of 2.  
Adjacent Gaussian images are then subtracted from each other to produce the 
difference of Gaussians, which again will resemble a pyramid, shown on the right of 
the image. 
Source : Adapted from [4] 
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functions, such as the gradient, Hessian, or Harris corner function.   

  

The D function is related with 𝜎𝜎2𝛻𝛻2𝐺𝐺 through the heat diffusion equation, with the 

key difference of being parametrized using the standard deviation instead of the usual 

𝑡𝑡 = 𝑠𝑠2. 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜎𝜎𝛻𝛻2𝐺𝐺 ⇔

⇔ 𝜎𝜎𝛻𝛻2𝐺𝐺 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≈
𝐺𝐺(𝑠𝑠,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎)

𝑘𝑘𝑘𝑘 − 𝜎𝜎
.
 

and thus, 
𝐺𝐺(𝑥𝑥,𝑦𝑦,𝑘𝑘𝑘𝑘) − 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜎𝜎) ≈ (𝑘𝑘 − 1)𝜎𝜎2𝛻𝛻2𝐺𝐺. 

 
 

In essence, the term 𝛻𝛻2𝐺𝐺 can be computed from the finite difference approximation 

to 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,  using the difference of nearby scales at kσ and σ. This shows that when the 

DoG function has scales differing by a constant factor, it already incorporates the σ2 

scale normalization required for the scale-invariant Laplacian. 

The factor (k − 1) in the equation is a constant over all scales and therefore does not 

influence extrema location. The closer the k factor approaches 1, the approximation 

error tends to become 0. According to D. Lowe [4], through experimentation, the value 

of k where the approximation error has minimum impact on the stability of the extrema 

points across scales is 𝑘𝑘 = √2. For the current thesis, no experiment occurred in order 

to confirm the validity of the results described in the paper since we aim to apply the 

SIFT algorithm to a different application, not explicitly improve it.  

 As described before, an efficient way to create the Gaussian pyramid is shown 

in Figure 1. The initial image is repeatedly convolved with Gaussian kernels with 

increasing standard deviation, so images are produced that are separated by a constant 

k in scale space. Each octave is divided into an integer number s (every step of the 

octave doubles the σ), of intervals, in order to have 𝑘𝑘 = 21 𝑠𝑠⁄ . So, the required numbers 

of blurred images to be produced per stack (step) of each octave, in order for the final 

extrema detection to cover a full octave. The next step is the subtraction of adjacent 

images to produce the DoG. Upon completing the aforementioned process, follows the 

resampling of the Gaussian image that has twice the initial value of the σ by taking 
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every second pixel in each row and column. The accuracy of sampling relative to σ 

does not differ in comparison to that of the start of the previous octave, thus achieving 

rescale of the image along with a sort of upscale.   

 

 

 
 

Having created the Difference of Gaussian pyramid, the following task is to compare 

each pixel of the image with its neighboring pixel in order to determine the extrema 

points, in other words, to compare each pixel with the neighbouring eight that belong 

on the same image, along with the neighboring 18 pixels belonging to two closest 

scales of the octave (9 in the scale above, and 9 in the scale below). Now the problem, 

using this method is the repeatability, which in essence is the need to reliably locate 

the extrema each time the program runs. The problem occurs due to the minimum 

spacing between close extrema points being non-existent. For instance, a white circle 

on a black background will have a single scale-space maximum point, where an 

Figure 2 : The extrema points of the image are located by comparing a pixel (marked 
with x), with each of the 26 neighbouring pixels in a 3x3 region surrounding the pixel 
including the adjacent scales. Thus, including the parameter of scale. 
Source : Adapted from [4] 
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elongated ellipse will possess two, one near each of the ends. So, depending on the 

size (elongation) of the ellipse, the two points of interest can come arbitrarily close. 

According to D.Lowe’s study [4], through experimentations, one part for solving this 

problem lies with choosing the appropriate parameters during the creation of the 

Gaussian octaves, and in extend to the Difference of the Gaussian’s octaves.  

 

 

 

 

 

 

 

Figure 3 : The top line corresponds to the percent of keypoints that are repeatably 
detected at the same location and scale in a transformed image as a function of the 
number of scales sampled per octave. The lower line shows the percent of keypoints 
that have their descriptors correctly matched to a large database. 
Source : Adapted from [4] 
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According to that study, the experiment commenced using 32 images, where they were 

submitted to a range of transformations, like rotation, scaling, affine stretch, brightness 

changes, and noise insertion. All this procedure of tempering with the images occurred 

using synthetic changes so that the results could be predicted. This, of course, means 

that using new images, where all the parameters of rotation, brightness, etc., are not 

targeted, the optimal values for the parameters could possibly deviate from the results 

of D.Lowe’s results [4].  Figure 3 shows the optimal number of scales per octave to 

achieve repeatability, which means finding the most stable features in the image. While 

Figure 4 shows how the number of keypoints is fluctuating according to the number 

of scales. In this case, the bigger the number of scales, the number of keypoints 

Figure 4 : This graph shows the total number of keypoints detected in a typical image as 
a function of the number of scale samples. 
Source : Adapted from [4] 
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detected grows along with them. But the effectiveness of those keypoints is diminished 

since it locates not only the most stable keypoints, which are mostly disregarded during 

the matching process. The drawback of increasing the number of scales for the creation 

of the Gaussian pyramid is the computational cost due to the large number of 

convolutions and rescaling of the images. They are leading to the conclusion of 3 

scales per octave as the optimal number. Just as the number of scales was determined 

through experiments, so is the smoothing rate that needs to be applied to the images to 

build the Gaussian pyramid. 

 

 

 

 

 

Figure 5 shows the amount of prior smoothing, which is the standard deviation of the 

Gaussian filter to be applied (𝜎𝜎), that is applied to each image level, in order to 

 

Figure 5 : The top line in the graph shows the percent of keypoint locations that are 
repeatably detected in a transformed image as a function of the prior image smoothing 
for the first level of each octave. The lower line shows the percent of descriptors 
correctly matched against a large database. 
Source : Adapted from [4] 
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construct the scale-space representation for an octave. According to the graph, as the 

σ factor increases, so does the repeatability, but due to the that comes with using large 

standard deviation, in terms of efficiency, 𝜎𝜎 =  1.6 is chosen as optimal since the 

repeatability approaches the upper limit. It is also important to note that by pre-

smoothing the image prior to the extrema detection sequence, the high spatial 

frequencies are cut off, and to counteract this, it is possible to enlarge the size of the 

image, creating more samples than the original. This can happen by doubling the size 

of the image using linear interpolation, by assuming that the original image blur is at 

least 𝜎𝜎 =  0.5, and thus the new image will have 𝜎𝜎 =  1. 

 

2.2.2 Feature point localization 

Up to this point, it has been explained how the basic keypoint detector operates, but 

there is still the problem of detecting even more accurately the extrema points of the 

image since the points located until now are coarsely localized, at best to the nearest 

pixel. The next step is to perform a more detailed localization to the point of sub-pixel 

level of accuracy while removing poor features. This procedure is a method developed 

by Brown (Brown and Lowe, 2002) [5], whereby fitting a Taylor expansion to fit a 3D 

quadratic surface (in x, y, and σ) to the local sample points to determine the 

interpolated location of the maxima and minima. The expansion, ignoring terms above 

the quadratic of the scale-space function 𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎), shifted to the proposed point: 

 

𝐷𝐷(𝑧𝑧0 + 𝑧𝑧) = 𝐷𝐷(𝑧𝑧0) + �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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where the derivatives are evaluated at the suggested point 𝑧𝑧0 = [𝑥𝑥0,𝑦𝑦0,𝜎𝜎0]𝛵𝛵 and  

𝑧𝑧 = [𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿, 𝛿𝛿𝛿𝛿]𝑇𝑇 is the offset from that point. The location of the extrema 𝑧̂𝑧  is 

calculated by setting the derivative with respect to z equal to zero, and the equation 

becomes: 
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The derivatives of D are calculated using the differences of neighboring pixels around 

the target point. The result is a 3×3 linear system that does not burden the algorithm 

with excessive computational cost. In case the offset value that determines where the 

extrema point is greater than 0.5 (half a pixel), the procedure needs to repeat relocating 

the target pixel since the actual maximum will closer to one of the neighboring pixels. 

Now, values that are calculated at that new extremum point and do not satisfy a certain 

threshold are discarded as they are too sensitive to noise. The equation to find those 

values is: 

𝐷𝐷(𝑥𝑥�,𝑦𝑦�,𝜎𝜎�) = 𝛥𝛥(𝑧𝑧0 + 𝑧̂𝑧) ≈ 𝐷𝐷(𝑧𝑧0) +
1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

|𝑧𝑧0�
2

𝑧̂𝑧 

 

 

Another step to take towards finding the most stable keypoints, is discarding keypoints 

that were found along an edge in the image. This is important since those points have 

a large principal curvature across the ridge (edge), but a low one along the other 

direction, making that point relatively unstable towards the position on one of the axis, 

while a well-defined peak that has high curvature in both directions does not insert 

ambiguity to the exact location of the extremum. The principal curvature can be 

estimated from a 2×2 Hessian matrix, H, computed at the location and scale of the 

keypoint: 

𝐻𝐻 = �
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑥𝑥𝑥𝑥
𝐷𝐷𝑥𝑥𝑥𝑥 𝐷𝐷𝑦𝑦𝑦𝑦

� 

 

where the derivatives can be calculated using the differences of neighboring pixels. 

Since only the eigenvalues ratio is needed, there is no need to compute them. Assuming 

the eigenvalue with the greatest magnitude is represented by k1 and the one with the 

smaller magnitude by k2, the sum of the eigenvalues can be determined by the trace of 

the H, while the product by the determinant, resulting in the following equations: 

𝑇𝑇𝑇𝑇(𝐻𝐻)2 = 𝐷𝐷𝑥𝑥𝑥𝑥 + 𝐷𝐷𝑦𝑦𝑦𝑦 = 𝑘𝑘1 + 𝑘𝑘2, 

 
𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻) = 𝐷𝐷𝑥𝑥𝑥𝑥𝐷𝐷𝑦𝑦𝑦𝑦 − 𝐷𝐷𝑥𝑥𝑥𝑥2 = 𝑘𝑘1𝑘𝑘2. 
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𝑇𝑇𝑇𝑇(𝐻𝐻)2

𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻)
=

(𝑘𝑘1 + 𝑘𝑘2)2

𝑘𝑘1𝑘𝑘2
=

(𝑟𝑟𝑟𝑟2 + 𝑘𝑘2)2

𝑟𝑟𝑟𝑟22
=

(𝑟𝑟 + 1)2

𝑟𝑟
 

 

where r corresponds to the ratio between the eigenvalues so that 𝑘𝑘1 = 𝑟𝑟𝑟𝑟2. In the rare 

case where the Det(H) is negative, then that means that the point under inspection is 

not an extremum since the curvatures have different signs and therefore is disregarded. 

From the equation that describes r, it is easy to realize the minimum number curvature 

will be achieved (𝑚𝑚𝑚𝑚𝑚𝑚 ((𝑟𝑟+1)2

𝑟𝑟
)), when the two eigenvalues have equal magnitude, and 

the greater the ratio r is, the greater the curvature will get. So, in order to check if the 

principal curvature is below a threshold, the following need to be satisfied: 

𝑇𝑇𝑇𝑇(𝐻𝐻)2

𝐷𝐷𝐷𝐷𝐷𝐷(𝐻𝐻)
<

(𝑟𝑟 + 1)2

𝑟𝑟
 

 

Figure 6 :  Using the eigenvalues it is possible to determine if the region around a 
keypoint contains an edge or even corner. There is also no need to calculate the 
individual eigenvalues, but only the ratio suffices to discriminate the most important 
keypoints. 
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2.2.3 Orientation of keypoints 

Finally, the keypoints at which the extrema of the image have been located and 

distinguished are the most stable ones. However, to reliably use all those collected 

points, it is not enough to know just the exact location in the scale-space. In order to 

achieve rotation invariance between two images (up to a limit of rotation), besides the 

location of the keypoint, some sort of information about the direction of the image is 

paramount, otherwise in the matching process, the final matched image may have a 

wrong rotation which while may cause the severe image distortion in case of blending 

the two. For example, an image with some feature inside that matches another in a new 

image, which has a slight rotation, may match, and the rotation on the immediate 

surrounding area of that feature could be minimal, to the point of having one-to-two-

pixel offset, but may have consideranble impact to the background information of the 

images.   

 

 

 

 

 

Figure 7 : On the left, there is a sample of the image where at the centre is a keypoint. 
The magnitude and orientation of the gradient are computed and represented with the 
vectors. After smoothing using a Gaussian filter (blue circle) an angle histogram is 
created that will help to filter out some keypoints. 
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The procedure of assigning orientation to each keypoint starts by selecting the scale of 

the keypoint and use that image, which is a Gaussian smoothed version of the original 

𝐿𝐿, so that all computation to be performed corresponds to the correct scale and thus be 

scale-invariant. Then, for every pixel in the image, 𝐿𝐿(𝑥𝑥,𝑦𝑦), the magnitude, 𝑚𝑚(𝑥𝑥, 𝑦𝑦), 

and orientation, 𝜃𝜃(𝑥𝑥,𝑦𝑦), are to be calculated using pixel differences: 

 

𝑚𝑚(𝑥𝑥,𝑦𝑦) = ��𝐿𝐿(𝑥𝑥 + 1,𝑦𝑦) − 𝐿𝐿(𝑥𝑥 − 1,𝑦𝑦)�
2

+ �𝐿𝐿(𝑥𝑥, 𝑦𝑦 + 1) − 𝐿𝐿(𝑥𝑥, 𝑦𝑦 − 1)�
2 

 

𝜃𝜃(𝑥𝑥,𝑦𝑦) = tan−1 �
𝐿𝐿(𝑥𝑥,𝑦𝑦 + 1) − 𝐿𝐿(𝑥𝑥,𝑦𝑦 − 1)
𝐿𝐿(𝑥𝑥 + 1,𝑦𝑦) − 𝐿𝐿(𝑥𝑥 − 1,𝑦𝑦)� 

 

 

With all those magnitudes and orientations be precomputed, an orientation histogram 

can be created based on the gradient orientation of each pixel that within a certain 

range around every keypoint. The histogram possesses 36 bins representing the 360-

degree range of orientations, with a resolution of 10 degrees per pixel, which is divided 

uniformly across the 36 bins. Now each pixel that is added to the histogram is weighted 

corresponding to the magnitude of the gradient and by a Gaussian weighted circular 

window with σ that is 1.5 times the scale of the keypoint. The weight system is used 

in order to keep track of the dominant directions of local gradients, which will appear 

at the peaks in the histogram. The biggest peak of the histogram is selected along with 

any other local peak that is within 80% of the value of the highest peak in order to 

create a profile of the certain keypoint. Also, parabola interpolation is used to increase 

the accuracy of the process by targeting the three highest values of each peak. This 

process also contributes to the stability of each keypoint. 

 

2.2.4 Feature Descriptor 

Finally, all the procedures to describe with accuracy the location, scale, and orientation 

of the keypoints of the image are completed. All these parameters will allow for a local 

2D coordinate system to be created, one that describes every keypoint and its 

surrounding area. The next step is to construct a descriptor that holds enough 



 

26 

 

information about those areas neighboring each keypoint, that is highly distinctive so 

that there will be as few mismatches as possible, while at the same time be as invariant 

as possible to remaining variations, such as those of change in illumination in the 

image, as well to an extent, tolerance to affine transformations, i.e., changes in the 3D 

viewpoint. One way to achieve some of those effects would be by using the intensities 

of the pixel in a certain area circling the keypoint and always considering the scale in 

order to match them through a normalized correlation measure. The version of the 

descriptor that was finally implemented is based on the usage of the gradient 

magnitude and orientation. Having precomputed the magnitude and orientation of the 

pixel in the desired area and taking account the Gaussian blur to achieve scale 

invariance, the next problem is the orientation invariance that is needed to be achieved. 

For that, all the gradients and orientations need to be corrected (rotated) relative to the 

orientation of the keypoint. The further a pixel is from the location of the keypoint, the 

lesser is the importance of that particular pixel, so there should be a weighting system 

in order to avoid random high values of magnitude in the outer circle inside the 

designated area surrounding the keypoint. That value may often be high, not due to 

some kind of noise or misregistration error, but may be related to another neighboring 

extremum (keypoint) and thus have a significant magnitude. Either way, such 

occasions can and should be foreseen, and countermeasures need to be taken. This 

leads to the usage of a Gaussian weighting function with σ chosen so that it is 1.5 times 

the width of the descriptor window, and of course the weight diminishes smoothly the 

furthest from the center. 
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Figure 9 : On the left, is the 4x4 area surrounding the keypoint that needs to be 
analysed. This area is further divided into small subregions and an orientation 
histogram is created for each one. 

Figure 8 : On the left is a part of the image containing a keypoint. Every pixel’s 
gradient has been calculated and is represented with an arrow. On the right is the 
keypoint descriptor that contains an orientation vector that describes the corresponding 
subregion in the image.   
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Next up is the division of the selected area around the keypoint into 4×4 subregions 

where a histogram for each region is created. The way that is represented in Figure 8, 

each arrow indicates a direction that is represented by a bin in the histogram (each bin 

corresponds to different orientations), and the length of each arrow is proportional to 

the cumulative magnitude of all the vectors of the gradients that point to the same 

direction and belong to one of those subregions.  The descriptor in Figure 9 is the 

descriptor implemented in the algorithm and consists of a normalized 128-dimensional 

vector, a 4×4 spatial grid (subregions) is used, and each subregions histogram divided 

into 8 orientations (128 = 4×4×8). 

 

 

 

 

 

For simplicity, in order to understand better the purpose and the way the descriptor 

operates, an alternative version such as Figure 8 will be used as an example, where 

 

Figure 10 : According to this graph the optimum width of the descriptor, since above 
4 there is no significant change, along with the most suitable number of orientations 
to be used. 
Source : Adapted from [4] 
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there is only a 2×2 descriptor array computed by an 8×8 set of samples. This style of 

4×4 sample regions provides a significant shift in gradient positions. A gradient sample 

on the left can sift up to 4 sample positions while still contributing on the right, and 

thus giving tolerance to larger local positional changes. A problem that can occur in 

this stage is boundary effects, where the descriptor abruptly changes because of a 

sample shifting from being in one histogram and changes to a neighboring histogram 

or an orientation change. To counter this problem, trilinear interpolation is 

incorporated in order to distribute the value of each gradient weight of 1- d for each 

dimension, where d is the distance of the sample from the central value of the bin as 

measured in units of the histogram bin spacing. The vector that is created and 

represents the descriptor can be modified to counter some of the unwanted illumination 

changes that can occur between images. In the case of linear changes, such as a simple 

offset between the values of luminance, either an increase or decrease of brightness, 

the problem is already solved since the gradient values are computed by pixel 

differences. As for contrast changes in the image, those will multiply the gradients of 

the pixels by a constant, in which case a vector normalization will suffice as a 

countermeasure. With all these problems solved, it can be said that the descriptor is 

invariant to affine changes in illumination. As for the non-linear changes of 

illumination, the solution is not as clear. Such changes that occur due to camera 

saturation and other sources will have a considerable effect on the vector magnitudes 

for some gradients but are less likely to affect the orientation also. To reduce this effect, 

a threshold is employed to the already normalized gradient magnitudes so that no value 

exceeds the 0.2 threshold limit and then renormalizing. This will make the system 

value the importance of the large gradients less and make it focused on the distribution 

of the orientations. The value of 0.2 has been suggested by 

D. Lowe in his paper [4]. 

 
 

2.3 MATCHING FEATURES 

Like the feature detector algorithm, there are numerous approaches for the problem of 

matching two images. One such approach is to utilize the data of the pixels of the 

images at the connection point by shifting and wrapping them relative to each other 

and then check if the corresponding pixels much. Such methods are often referred to 
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as “direct methods” and require the utilization of an error metric in order to decide the 

accuracy of the matching of the two images, along with a suitable search method, to 

find the pixels that minimize those error metrices. Such methods include the full 

search, which is an exhaustive search of the pixels of the two images, searching for all 

possible alignments. The full search has a major drawback that is the time needed to 

complete the search due to the high computational complexity that comes with 

checking all possible pairs for matches, making this process unsuitable for many 

applications. Alternatively, in order to avoid such time-consuming methods, Fourier 

transform can be used to speed up the computation. Also, a Taylor series expansion is 

often used to increase the accuracy of the methods. As for the error metrics, there are 

also a variety of techniques. The simplest method, after aligning and sifting the images 

relative to each other, is to find the sum of the squared differences (SSD) function. 

Given the first image 𝐼𝐼0(𝑥𝑥) sampled at a pixel location 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖), and the goal is to 

find the corresponding pixel on the second image 𝐼𝐼1(𝑥𝑥), then the function that 

calculates the SSD forms as: 

𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆(𝑢𝑢) = �[𝐼𝐼1(𝑥𝑥𝑖𝑖 + 𝑢𝑢) − 𝐼𝐼0(𝑥𝑥𝑖𝑖)]2
𝑖𝑖

= �𝑒𝑒𝑖𝑖2

𝑖𝑖

 

 

where u corresponds to the displacement of the two images and 
 𝑒𝑒𝑖𝑖 = 𝐼𝐼1(𝑥𝑥𝑖𝑖 + 𝑢𝑢) − 𝐼𝐼0(𝑥𝑥𝑖𝑖) is the residual error. An alternative method is replacing the 
squares error terms with a robust function 𝑝𝑝(𝑒𝑒𝑖𝑖) to achieve 

 

𝐸𝐸(𝑢𝑢) = ∑ 𝑝𝑝(𝑒𝑒𝑖𝑖)𝑖𝑖 . 

 

This is known as robust error metric, and a widely used robust function is the sum of 

absolute differences (SAD) which, compared to the SSD, is a function that does not 

grow as quickly due to the lack of the squares. Both of the above metrics are not 

suitable for gradient descent approaches since the function are not differentiable at the 

origin. Another similar metric is that of the spatially varying weights, which is similar 

to the SSD metric but has the ability to be applied only in certain parts of the image. It 

is also known as windowed SSD function. This, of course, gives the advantage of 

filtering the pixel that is needed to be checked between the images, assuming the 

knowledge of the limits of the overlap region that the images will have. 
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𝐸𝐸𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑢𝑢) = ∑ 𝑤𝑤0(𝑥𝑥)𝑤𝑤1(𝑥𝑥𝑖𝑖 + 𝑢𝑢)[𝐼𝐼1(𝑥𝑥𝑖𝑖 + 𝑢𝑢) − 𝐼𝐼0(𝑥𝑥𝑖𝑖)]2𝑖𝑖 . 

 

 

Up to this point, a number of techniques have been mentioned that are used for image 

alignment (matching). All of those techniques compose a small number of the existing 

methods developed for the solution of the problem of the matching images, with each 

one having advantages over the others and vice versa. These methods are primarily 

designed and used for intensity base stitching, where the matching of the images will 

be based on the information given by the values contained in the pixels but not the 

features of the images described by the pixels in that area. In this thesis, a feature-

based technique is used (SIFT algorithm), which is another approach to solving the 

same problem, so all of the above methods cannot be used directly since it would waste 

all the resources that were used to accurately describe and locate the keypoints of each 

image. Although that does not completely exclude the use of those techniques or some 

of the elements they use. 

Feature matching is essentially the procedure in which, utilizing the feature detectors 

that are already produced by the SIFT analysis in order to find the correlation between 

the features, it is possible to locate identical features that are located in different images 

so that the two images using the proper displacement can be matched correctly. Image 

stitching is widely used in a variety of applications, including document mosaicing, 

video stitching, medical imaging, and others. Depending on the constraints created by 

the different applications and their needs, entirely different approaches can be adopted 

to accomplish the stitching process. In instances where a large collection of images 

needs to be stitched into one image and the geometric correlation of the images is 

obscure, the most common approach would be the analysis of the whole collection, 

finding keypoints in every image and afterwards by comparing those features the exact 

location of each image is uncovered. On the other hand, when it comes to video 

stitching, an interesting technique is one called “detect then track,” where at first the 

translation between matching points of neighboring frames is calculated and then using 

that distance to predict the next displacement of that feature in the next batch of frames. 

A major advantage of this procedure is the need to analyze the images infrequently, 

mostly when tracking has failed. Another constraint to be found in some of the 
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stitching applications is affine translation. Especially in the panorama photography 

mode, that almost every modern phone possesses, the user takes consecutive pictures 

while primarily standing at the same location while rotating around himself. Those 

pictures taken with this method do have not only a displacement on the x and possibly 

the y-axis but also possess a translation on the z-axis that has to be considered when 

matching the keypoints and finally blending the images together. The problem of in-

plane rotations is restricted to finding the primary orientation that characterizes the 

feature before computing the descriptor of that particular keypoint. One way of finding 

that dominant orientation is searching for the average gradient orientation in a 

designated area around each feature. Another more promising approach is the one 

adopted by Lowe [4], which searches for the maximum value of the gradient in the 

orientation histogram. This method is generally more accurate than using the average 

orientation. Since the application of this thesis is based on the microscope, not all of 

the above problems are present, and thus not all the countermeasures for them need to 

be taken in order to accomplish the goal that is image stitching. The method that was 

used for this application resembles mostly the one that is deployed when there is a 

large collection of images to be stitched together and create a big mosaic. The main 

difference though, is that since it is possible to acquire the images one by one, there is 

no need to analyze all of them at once. 

 

For the feature matching to take place, there is a need to find matching pairs of features 

between the two images in question. The simplest and most accurate yet most time and 

resource-consuming method is that of the exhaustive search in which every feature 

that is contained in each image needs to be compared to every feature belonging to the 

second image. This method has great results regarding finding a matching pair of 

features whose descriptors have minimal differences, but regarding its computational 

complexity, which is 𝑂𝑂(𝑛𝑛2), where n represents the number of features. The high 

computational cost is making the usage of this method forbidding for some 

applications where the completion speed is important, or even for applications that the 

images contain a large number of features.    
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2.3.2 RANSAC 

In these types of situations, the most widely used method to find matching 

features between images is the Random Sample Consensus (RANSAC) [6]. This 

algorithm is a relatively simple yet effective way to filter data contaminated with 

outliers. Generally, in data sets, the data that are used can be divided into two 

categories, inliers, and outliers. Outlier is defined as an observation that deviates too 

much from other observations that it arouses suspicions that it was generated by a 

different mechanism from other observations [7]. Inlier, on the other hand, is defined 

as an observation that is explained by the underlying probability density function. In 

clustering, outliers are considered as noise observations that should be removed in 

order to make more reliable clustering [7]. RANSAC is a highly effective technique 

of grouping and distinguishing data into those categories, and the procedure can be 

implemented in three primary steps. For example, when fitting a line in a set of data, 

which is also represented in Figure 11, the first step would be to choose two random 

samples, which at first will be considered inliers, even though that may not be true in 

the final result. According to those selected inliers, a model will be constructed. In this 

example, a line will be fitted. The second step of the algorithm would be to count the 

number of data points that will agree with the constructed model, and those will be the 

points that their distance from the line created won’t exceed a threshold that was 

chosen. The last step for RANSAC to be completed is to repeat this process again, 

choosing a new set of inliers each time so that the iteration with the most inliers will 

be considered correct. The stopping criterion for the algorithm may vary depending on 

the application and the desired results since the accuracy of the model will increase 

along with the number of iterations. Furthermore, the iterations 𝑁𝑁 needed can be 

calculated in order to achieve the desired accuracy. 

 

 𝑁𝑁 =    
log(1 − 𝜌𝜌)
log(1 − 𝑟𝑟𝑠𝑠) (2.3.1) 

 
Where p stands for the probability of finding a model without any outliers, r is 

the inlier ratio of the data set, while s represents the number of data points that are 

assumed as inliers (in the current example 2). 
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According to a study by Fischler and Bolles [6] The RANSAC paradigm is more 

formally stated as follows: 

Given a model that requires a minimum of n data points to instantiate its free 

parameters and a set of data points P such that the number of points in P is greater 

than n [#(𝑃𝑃)  ≥ 𝑛𝑛], randomly select a subset SI of n data points from P and 

instantiate the model. Use the instantiated model M1 to determine the subset SI* 

of points in P that are within some error tolerance of Ml. The set SI* is called 

the consensus set of S1. If # (SI*) is greater than some threshold t, which is a 

function of the estimate of the number of gross errors in P, use SI* to compute 

(possibly using least squares) a new model MI *. If # (SI*) is less than t, 

randomly select a new subset $2 and repeat the above process. If, after some 

predetermined number of trials, no consensus set with t or more members have 

been found, either solve the model with the largest consensus set found or 

terminate in failure [6]. 

 

Figure 11 : Left: First iteration of RANSAC, two points are chosen as temporary 
inliers for the current run that will the define a line. All the points (blue) that are 
within the acceptable range (dotted lines) will be considered as inliers and the 
black ones will 
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2.4 BLENDING 

The last task needed for the whole sequence of stitching to complete is the blending 

process of the images. Similarly, to all the processes that were mentioned up to this 

point, depending on each situation, a different approach is needed to accomplish the 

task of blending. The first thing that needs to be cleared is the final composite sur-

face along with the view of the reference image since in each case there will be a 

need of some parametrization for the coordinates assuming the final surface is not 

flat. For example, for a simple panorama shot taken by a user, it is safe to assume 

that the camera will be rotated around the z-axis (as shown in Figure 12) to take the 

consecutive shots instead of moving along the x-axis for the additional image. When 

such a thing occurs, while not having a large number of images to stitch, it is possi-

ble to disregard the distortion created by the rotation around the z-axis by warping all 

the images to the coordinate system of the reference image, which should be the im-

age placed at the geometrical center of the final result, not necessarily the first image 

that was taken. However, when the rotation around the z-axis is substantial, such an 

approach will produce undesirable distortion to the contents and the connection of 

the images. (In practice, flat panoramas start to look severely distorted once the field 

of view exceeds 90◦ or so.) The usual choice for compositing larger panoramas is to 

use a cylindrical [8], [9], or spherical [10] projection [11]. Having a projection other 

than flat requires the parametrization of the pixel coordinates and the construction of 

the mappings between the input and output image. When the final compositing sur-

face is a texture-mapped polyhedron, a slightly more sophisticated algorithm must be 

used. Not only do the 3D and texture map coordinates have to be properly handled, 

but a small amount of overdraw outside of the triangle footprints in the texture map 

is necessary to ensure that the texture pixels being interpolated during 3D rendering 

have valid values [11]. 
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By clarifying the coordinate system that will be used according to the needs of 

the application, it is possible to move on to the next task, which is selecting the 

appropriate algorithm for blending the images. Generally, the target of such 

algorithms, aside from stitching the images, is to minimize as much as possible and 

eliminate certain effects the are being produced in the stitching process, like visible 

seams at the connection point, which appears due to exposure difference of the two 

images, blur which is caused by misregistration of the pixels and ghosting that appears 

when there is a moving object.  

The most straight forward algorithm to use is to calculate the average of each 

pixel to create the final composite image.  

 

𝐶𝐶(𝑥𝑥) =  
∑ 𝑤𝑤𝑘𝑘(𝑥𝑥) 𝐼𝐼′𝑘𝑘(𝑥𝑥)𝑘𝑘

∑ 𝑤𝑤𝑘𝑘(𝑥𝑥)𝑘𝑘
  

 

Figure 12 : The axes of the camera 
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𝐼𝐼′𝑘𝑘 stands for the composite image, and 𝑤𝑤𝑘𝑘 takes the value of 1 at a valid pixel and 0 

everywhere else, i.e., it is going to affect pixels of the warped image that are part of 

both the two basic images. Although this method is the simplest to use, little work is 

done towards eliminating the effects of visible seams, blurring, and ghosting. An 

improvement over this method is called feathering, which differs from the simple 

averaging by alternating the distribution of the weight so that they will be focused 

more on the center of the image and fade away while moving to the edges. This can be 

done by computing a distance map, 

 

𝑤𝑤𝑘𝑘(𝑥𝑥) =   �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑦𝑦{‖𝑦𝑦𝑦𝑦‖ | 𝐼𝐼′𝑘𝑘(𝑥𝑥 + 𝑦𝑦) 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖}� 

 

where each valid pixel is tagged with its Euclidean distance to the nearest invalid pixel 

[11]. This approach reduces substantially the visible seams, however does not solve 

the blurring and ghosting effects. 

An alternative method for blending is the one designed by Burt and Adelson [12], 

which involves the use of the Laplacian pyramid. According to the algorithm, each 

warped image is converted into a band-pass (Laplacian) pyramid, which involves 

smoothing each level with a 1/16(1,4,6,4,1) binomial kernel subsampling the 

smoothed image by a factor of 2 and subtracting the reconstructed (low-pass) image 

from the original. This creates a reversible, overcomplete representation of the image 

signal. Invalid and edge pixels are filled with neighboring values to make this process 

well defined [11]. Next, the mask (valid pixel) image associated with each source im-

age is converted into a low-pass (Gaussian) pyramid. These blurred and subsampled 

masks become the weights used to perform a per-level feathered blend of the band-

pass source images [11]. Finally, the composite image is reconstructed by interpolating 

and summing all of the pyramid levels 

 

Poisson Image Editing 

This is another more sophisticated solution to the blending problem than the 

aforementioned methods. In this case, the images to be fused are distinguished to 

source (S) and target (T), and there is also a mask (Ω) that corresponds to the region 

of the source that will be moved to the target image. Another way to describe S and Ω, 
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according to Perez, Gangnet, and Blake [13], S, Ω now become finite point sets defined 

on an infinite discrete grid. Note that S can include all the pixels of an image or only a 

subset of them. The boundary of Ω is now 𝜕𝜕𝜕𝜕 = �𝑝𝑝 ∈ 𝑆𝑆 ∖ 𝛺𝛺:𝑁𝑁𝑝𝑝 ∩ 𝛺𝛺 ≠ 0� [13]. The 

basic idea is to reduce the color mismatch between and target images by creating the 

composite image in the gradient domain. In other words, the goal is, the gradient of 

the composite inside the Ω region to be as close as possible to the sources image 

gradient while matching the boundary (𝜕𝜕𝜕𝜕) to the target image. This is possible to 

achieve by solving the minimization problem of the following equation: 

 

𝑚𝑚𝑚𝑚𝑚𝑚𝑓𝑓�|𝛻𝛻𝛻𝛻 − 𝑣𝑣|2

𝛺𝛺

 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓|𝜕𝜕𝜕𝜕 = 𝑓𝑓′|𝜕𝜕𝜕𝜕 

 

Where 𝑓𝑓 corresponds to an unknown scalar function defined over the interior of Ω 

[13], v is a vector field defined over Ω that is also called guidance field and 𝑓𝑓′ is the 

scalar function defined over 𝑆𝑆 excluding the Ω region. The solution of the equation is 

the unique solution of the following Poisson equation with Dirichlet boundary condi-

tions: 

 

𝛥𝛥𝛥𝛥 = div 𝑣𝑣  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝛺𝛺,𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓|𝜕𝜕𝜕𝜕 = 𝑓𝑓′|𝜕𝜕𝜕𝜕  

 

where 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 is the divergence of 𝑣𝑣 =  (𝑢𝑢, 𝑣𝑣) [8]. The algorithm that to 

Perez, Gangnet and Blake [8] introduced does not end here since they also introduced 

an extension to the method described above that is called mixing gradients compositing 

where the guidance field 𝑣𝑣 will not always use information from the source image 

(𝑣𝑣 =  𝛻𝛻𝑔𝑔), but will choose depending on the magnitude of the gradients of candidate 

images, which can also be described as: 

 

for all  𝑥𝑥 ∈ 𝛺𝛺, 𝑣𝑣(𝑥𝑥) =  �   𝛻𝛻𝑓𝑓
′(𝑥𝑥)      if |𝛻𝛻𝛻𝛻′(𝑥𝑥)| >  |𝛻𝛻𝛻𝛻(𝑥𝑥)|,

   𝛻𝛻𝛻𝛻(𝑥𝑥)        otherwise.                      
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3 Research Design 

3.1 REVIEW THESIS GOAL 

The goal of the current thesis is to design a program that will aid the user, who 

most likely is a doctor, to complete a particular procedure needed when using the 

microscope. Furthermore, by making the whole procedure easier along with 

minimizing the time needed to be dedicated and in case there is a necessity to review 

a specific sample, it will be possible to skip the procedure since the results of the first 

run of the program on a sample will be saved and easy to access. In this section, we 

will analyze the algorithms that were chosen among those mentioned in section 2 while 

examining the reasons that they fit best this particular scenario of the microscope. 

Before moving on to the algorithms, first of all, there is a need to establish which 

programs (apps) were used along with the equipment for all the tests that took place. 

 

3.2 APPLICATIONS AND EQUIPMENT 

 

3.2.1 Lumnia Microscope  

The microscope used for the current thesis is the Lumnia motorized microscope, 

one that the lab developed. One important characteristic that differentiates this 

microscope compared to the classical one is the ability to operate it and observe the 

sample not through the ocular lens but rather through a screen and using the same 

screen to navigate the samples, instead of manually controlling the location of the 

stage. The prototype used in the lab has an intel core i9 9900K for CPU, 64GB DDR4 

RAM, and as for the operating system, Windows 10 are installed. These components 

make the microscope a computer capable of running multiple demanding processes. 

Additionally, it is kitted with a touchscreen that will help with the visualization of the 

samples as well as navigate through the sample and choose which process to operate. 

An alternative option for navigating through the sample is the usage of a joystick that 

can be plugged in to provide with more instinctive control of the movements. 

Furthermore, the Lumnia is kitted with a multimodal camera, being able to capture 

images in different wavelengths, thus giving the ability to observe different 
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characteristics of the sample each time. Moreover, it possesses an epi-illumination 

system, magnification encoder, XY linear translation stage as well as a motor for the 

z-axis. The magnification encoder, in conjunction with the translation in the z-axis, is 

responsible for focusing on the sample, while the XY translation motors move the 

stage, so that a new image can be taken in a different location of the sample. The 

accuracy of the XY movement is up to 0.75μm, while the range of motion is up to 

10𝑐𝑐𝑐𝑐2. Through the menu built for Lumnia, the user is able to perform some 

operations, one of which is the stitching. It is essential to mention that because of the 

XY axis resolution and the ability to know the exact location of each image by reading 

the movements of the motors, it was possible to translate each movement of the stage 

from μm to pixels, and consequently have knowledge whether a stitch is successful or 

not.  

  

3.2.2 QT and OpenCV  

The entirety of this thesis was implemented using the C++ programming 

language and was written in the Qt platform. Qt is a widget toolkit for creating multi-

platform applications capable of running on most desktop platforms, and provides 

tools for creating GUIs. The Qt software is available in both commercial licensing as 

well as open-source licenses, and in this case, the latter was used. Apart from the 

environment used, there are quite a few libraries that were created to support C++, one 

of which that was extensively used in the current thesis is OpenCV (Open Source 

Computer Vision Library), which is an open source computer vision and machine 

learning software library. 

 

3.3 DESIGN ANALYSIS 

When a user operates a classical microscope, regardless of the type of 

microscope, either being optical, electron, etc., in other words, a non-automated one 

like the those mentioned earlier, after choosing the desired magnification, he scans the 

samples that have been placed, sometimes multiple times to arrive and examine a 

specific location on the sample or has to view multiple parts of the same sample. By 

using an image stitching program, this procedure is expected to become more 

accessible and faster. The image stitching procedure will result in making a panorama-
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like image of the sample inserted into the microscope by taking the multiple images 

captured by the microscopes camera into a large high-resolution image, so the final 

image (output) will encapsulate the whole sample while aiming to minimize any 

alteration of the contents to the pixels of the original images. The image stitching 

procedure can be divided into three primary stages, as shown in Figure 13. In the 

paragraphs to follow, an analysis will commence on each stage separately.   

 

 

 

 

 

3.3.1 Feature analysis (Stage 1)  

 

The first order of things is to load the images into the program in order for the 

analysis to start. The default assumption here is that all the images will be in an RGB 

format, but the algorithm is not restricted to just a 3-channel image. It can also operate 

without any changes, even if a 1-channel image is inserted. That is due to the fact that 

the inserted images are initially converted to grayscale in order to proceed with the 

algorithm. It should also be noted that although the feature analysis done by SIFT will 

commence in each image separately, and only at the next stage (matching), the 

comparison between the images will take place. The next step is determining the 

Figure 13 : Overview of the image stitching procedure that can be divided in three sections. 
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number of octaves to be used, which will be 4, and the number of scales for each 

octave, in this case, are 5 scales. Now the task is to compute the Gaussian octaves. 

This is accomplished by blurring the image as many times as the number of scales we 

want in each octave, each time using a different standard deviation (𝜎𝜎), increasing it 

in each scale. Afterwards, the image is rescaled to have half the size of the images in 

the previous octave and repeating this sequence until all octaves are constructed. A 

function of OpenCV was used to apply the gaussian blur, as well as the rescaling 

function. Initially, a value is assigned to the standard deviation for the first scale of the 

base octave, 𝜎𝜎 =  1.6 , and k also takes the value of √2, and for all the rest of the scales 

in the octave the standard deviation will be calculated from the following equation: 

𝜎𝜎′ = 𝑘𝑘 ∗ 𝜎𝜎 . It should be noted that Lowe [4] in his paper suggests the initial standard 

deviation be 𝜎𝜎 =  1.6. Once a complete octave has been processed, we resample the 

Gaussian image that has twice the initial value of 𝜎𝜎 (it will be 2 images from the top 

of the stack) [4]. The result of this procedure can be seen in Figure 14 where each 

column of images corresponds to one octave, it also shows the size of the pictures in 

each octave. It is visible the difference between the scales due to the standard deviation 

of the Gaussian filters. 
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Figure 14 : An example of the Gaussian pyramid. In this case there are 4 octaves with 
5 scales in each one. The red lines show the size, in terms of width and height, of the 
images in each octave. 
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Figure 15 : DoG (Difference of Gaussian) pyramid. This pyramid has the same number of 
octaves as the Gaussian pyramid but each octave contains on less scale. 
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The next task is the creation of the Difference of Gaussians (DoG) pyramid, which is 

produced by subtracting the neighboring scales in each octave, which is shown in 

Figure 16. It is possible to take advantage of some parallelism and compute the DoG 

pyramid alongside the Gaussian pyramid. The subtraction of the images will result in 

an image that will have all black pixels, except of the outlines that are going to have 

non-zero values, thus imitating the Laplacian filter. The final result will look like in 

Figure 15 where the pyramid once again consists of 4 octaves, each one having 4 

scales. 

Figure 16 : By subtracting two neighbouring scales of the Gaussian pyramid, one scale 
of the DoG pyramid is generated. 
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 Now it possible to coarsely locate the maxima and minima points in the DoG pyramid. 

This can be done by comparing each pixel with its 8 neighbors that are on the same 

scale, but also comparing them with the 9 neighboring pixels in the scale above and 

the corresponding 9 the scale below as indicated in Figure 2, where x marks the pixel 

to be checked and the green circle are the 26 neighbouring pixels. Although an iteration 

through all the pixels is needed, in the majority of the cases, just from the first few 

checks, it will be sufficient to discard the non-maxima/minima points. By now, we 

have narrowed down the location of the keypoints, but still, they are not detailed 

enough. Among those, there are unstable keypoints that need to be discarded. First, to 

be cleared are the low contrast keypoints, and those are simply the keypoints whose 

pixel values are below a certain threshold we have defined, in this case  |𝐷𝐷| ≥ 0.03, 

where 𝐷𝐷(𝑥𝑥,𝑦𝑦,𝜎𝜎) is the value of a pixel in a certain layer in the pyramid. Next, 

keypoints to be filtered are those on the edges. The basic idea here is, using the 

gradients of the keypoints, there are three cases:  

• The area surrounding the keypoint is flat. Because of that, the gradients (one on 
each axis x,y) will have low values. 

• The keypoint is on an edge, which means that only one of the gradients will have 
a high value, the one that is perpendicular to the edge. 

• The keypoint is on a corner and so it is expected for both gradients to have high 
values. 

Based on that, it is easy to realize that the keypoints that are located on corners are 

more important and stable than others. Now using the Hessian matrix, it is possible 
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to compute the curvature ratio of the keypoint, and once again, if it does not satisfy 

a certain threshold (≥ 12.1), it will be eliminated. Having eliminated the more 

unstable keypoints in the image, the result should look like  Figure 17. It should 

be noted that all those keypoints are not all from the same octave. This gives the 

ability to search for different kind of keypoints, since in the first octave we detect 

the finer details as opposed the next layers, which explains why there are some 

keypoints that do not seem to be located at a corner. Knowing in which octave is 

located each keypoint, achieves scale invariance. For example, if image “A” 

contains a cube but has double the size of image “B” which also has the same cube 

inside, the keypoints to be matched are not expected to be located on the first 

octave, but instead on one or maybe multiple octaves that follow.  

 

 
 
 
Although due to the application of the microscope, images with different scales are not 

expected, this part of the algorithm could not be skipped and just use the basic octave, 

since apart from scale invariance, the pyramid provides keypoints of different 

Figure 17 : Sample with 1179 keypoints. 
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categories, like finer details in the first octaves vs. coarse details in the lower ones, that 

could be important to finding matching keypoints between images later.    

 

 
 

The next thing to assign to each keypoint is an orientation. This process is important 

in order to achieve rotation invariance. The basic idea is to make the keypoints even 

more distinct by introducing one more parameter, apart from its coordination in the 

pyramid. By collecting gradient orientations and magnitudes around each keypoint it 

will be easier for the matching process in case two keypoints are relatively close to 

each other, there will be a possibility to distinguish the correct match from the 

orientation. First, the magnitude and the orientation of the pixels surrounding each 

keypoint, which will depend on the scale of the keypoint, are calculated and placed in 

bins of a histogram. The histogram consists of 36 bins that correspond to the 360 

degrees of orientations and each bin will contain gradients from certain points. Every 

entry is weighted by the gradient magnitude. In other words, the orientation will give 

which bin a point will be allocated while the magnitude will inform about the 

significance of that particular point. A representative histogram of this kind is shown 
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in  Figure 18, where the keypoint will have one primary orientation. After being 

accumulated, the orientation histogram is smoothed by applying six times a circular 

convolution with the three-tap box filter 
[1,1,1]
3

 [14], and a parabolic interpolation 

will occur to make small corrections to the position of the peak. The interpolation will 

occur with the interest points being the two besides the main peak. Assuming that those 

three points are located at x1 = -1, x2 = 0 and x3 = 1 the procedure can be simplified 

into the following equations: 

𝑎𝑎 = 𝑦𝑦2 −
𝑦𝑦1 + 𝑦𝑦3

2
 , 

 

𝑏𝑏 =
𝑦𝑦3 − 𝑦𝑦1

4
  

𝑥𝑥𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑏𝑏
𝑎𝑎

  , 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑦𝑦2 + 𝑏𝑏2

𝑎𝑎
 

 

  

 

 
Figure 18 : Orientation histogram around a randomly selected keypoint. 
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Although cases such as in Figure 18 are the most common ones, there are exceptions 

where the histogram of a keypoint may have multiple peaks in the histogram and in 

case those picks are significant enough, another keypoint can be created at the same 

position but with different orientation, if the local peaks value is not adjacent to another 

peak (essentially checking if there is a peak) and if: 

𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 0.8 ∗ 𝑚𝑚𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
 

where m is the magnitude of the peak.  
 

 
 
 
 
By now, all the keypoints have been located and assigned an orientation. The next to 
do is to create a unique “fingerprint” for each one. For this, we will take a 16x16 
window surrounding the keypoint and divide it into smaller sections. Each section will 
be a 4x4 window where, once again, the gradients of the pixels inside will be computed 
and organized in smaller this time angle histograms. The new angle histograms will 
have 8 bins that range from 0-44, 45-89, 90-134, 135-179, 180-224, 225-269, and 270-
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359 degrees. This way, we will obtain information not just for the keypoint itself but 
also for the surrounding area, thus further decreasing the probability of finding 
matching keypoints between two unrelated ones (false positive). The 16x16 window 
will also have to take into account and neutralize the angle of the keypoint, so cases 
where the same feature is located in two different images, but due to them having 
different orientations, no match between the keypoints is found (false negative) will 
not occur frequently. To achieve this, the first task is to also rotate the 16x16 window 
by the appropriate angle and locate the positions of the pixels in the image that will be 
inside the rotated window. For that information, the sine and cosine of the keypoint 
angle will be utilized and the formula is as follows: 
 

 𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ∗ cos(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 ∗ sin(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑘𝑘𝑥𝑥 
𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑜𝑜 ∗ (− sin(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜)) + 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜 ∗ cos(𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜) + 𝑘𝑘𝑦𝑦 

 
 

Naturally, not all the 4x4 blocks around the keypoint will provide the same 
significance to the identification of the keypoint, since the further away a block is, the 
higher are the chance for the same block to be utilized again by a nearby keypoint, 
which can occur for multiple blocks at the same time. For that reason, a Gaussian 
weighting function can be used so the information given from the furthest gradients 
will have a more minor impact on the results. The whole procedure can be visualized 
in Figure 19 and Figure 20. In the first case (Figure 19), the blue lines of the grid define 
the borders of the 4x4 blocks aforementioned. In Figure 20 the representation of the 
grid is exaggerated in order to be easier to conceptualize.   
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Figure 20 : This figure shows how the 16x16 window will look like after adapting to 
the keypoints rotation. 

Figure 19 : On the left a keypoint is shown with its orientation. On the right the16x16 
window around the keypoint is presented. 
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The last step to conclude the feature descriptor’s creation, is to use a threshold of 0.2 
as suggested by Lowe [4] and then normalize it. 
 

 
 
  
 
An important thing to have in mind is that aside from the functionality, the goal is to 
run the algorithm in a logical amount of time. If the characteristics of the microscope 
are recalled, the output images that it is able to capture, have high resolution, 
something that in terms of time needed to analyze each image, can be a hindrance. A 
countermeasure taken for this reason is the downscaling of the images that are inserted 
into the algorithm. This change will have an effect on the accuracy of the program 
since the smaller image in terms of resolution (less detailed) will probably mean a 
smaller amount of keypoints detected and thus lower chances of finding two matching 
keypoints between images. This of course, will also depend on the amount of 
downscaling that is going to occur, as well as depend highly on the contents of the 
image, and in the case of the microscope there are occurrences where the image is 
mostly empty, due to capturing the edges of the sample. Namely, the initial images 
that are captured have a resolution of 2500x1900 pixels, and the resolution after the 
rescaling can be either 1250x950 or 800x608. It should be noted that it is essential to 
keep the aspect ratio so that no distortion to the contents will occur due to the rescaling, 
especially since that kind of change can result in a doctor making a false diagnosis. 
After the analysis and even the blending process are done, the composite image can be 
rescaled again to the original resolution. 
Another slight alteration that aims to the reduction of the execution time is to take 
advantage of the information given by the microscope and use them to introduce 
regions of interest (ROI) in the image. Since the microscope captures images of the 
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sample consequently and there is access to the movement’s orientation, there no need 
to analyze the whole image every time. Instead, depending on the orientation of the 
movement, the proper region is selected from the image to be analyzed. Furthermore, 
when the microscope starts its automatic image capturing process, it will start from the 
left part of the sample and move on by capturing consecutive shots until it reaches the 
rightmost part of the sample on that particular line it started from. Subsequently, it will 
move down and to the left, making the reverse motion until it finds the end of the 
sample once again. This process will repeat until the whole sample is captured and a 
small part of it is showcased in Figure 21. In accordance with that knowledge, when 
performing stitching between images, it is possible to know which sides are 
overlapping, and thus limit the search for the keypoints as well as diminish the sizes 
of the pyramids.  
 

Figure 21 : Assuming this is a sample, the grid represents the pictures that will 
be captured by the microscope and the blue arrows indicate the path of the 
camera. The green circle is the starting point while the yellow circles are the 
points where the camera changes the direction of movement. 
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At this point, the implementation of the basic SIFT algorithm is complete. However, 
as shown in Figure 21, the current application may differ from the classical panoramic 
photography, where multiple pictures are stitched together and belong to the same line 
concerning the x-axis while having a slight deviation at the y-axis from image to 
image, producing the elongated field of view. In this case, depending on the sample 
size as well as the parameters set by the user (magnification), it rare for a sample to be 
able to fit in one row of images. In most cases, there will be multiple rows needed to 
cover the entire sample fully. This results in the need for vertical stitching. As for the 
SIFT algorithm, there is no need for parametrization to handle this case, as the 
algorithm operates without the need-to-know what mode is active (vertical/horizontal 
stitching), with the only prerequisite being to appropriately define the ROIs. The whole 
sequence of the stitching will change slightly. The camera will perform the same 
movement as before and the images will be stitched first in lines. Upon the end of 
capturing entire lines of images, the vertical stitching of those two outputs will be 
performed. The result of the vertical stitching is shown in  Figure 22. 
 
Another improvement that was developed this time for the vertical stitching, and it 
extends the application of the ROI. Generally, the vertical stitch is more time and 
resource-consuming than its horizontal counterpart and this can be explained by the 
different sizes of the ROIs. In the horizontal case, the images to be analyzed have 
approximately the same size regarding the image height (size of 1 image), whereas 
their width may vary (size of multiple images), but it is countered from the usage of 
ROIs that limit the width to be analyzed. In the vertical case, usually, the images to 
stitched are composites containing multiple images and thus having large overlapping 
regions, as shown in Figure 23. This extended overlapping region is not always needed 
to find a match between the images. Instead, a small part of it can be chosen to 
represent the whole line and checked for matches with the other composite image. In 
more detail, during the creation of each composite image (row of images), data are 
stored containing details of each individual image that is being merged, including size, 
position relative to the other images, etc. Using that information, it is possible to 
substitute the composite line image with one of its compounds and run the algorithm 
between the compound and another composite image as shown in Figure 24.  From the 
list of images that are contained in a composite image, every image will be analyzed 
and compared until a match is found, this is done since the two composite images to 
be merged can differ substantially in length, so much that some images have no 
corresponding image in the following composite. This can be spotted in Figure 22. So, 
in the best case, the first image that will be checked will have a match with the next 
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composite image, and in the worst case, all the images will be checked from the list. 
This technique can substantially speed up the process (as long the worst-case scenario 
does not occur) since the row of images (composite) can become arbitrarily big in 
terms of width and even height. Since we limit the area to be analyzed, there will be a 
smaller number of keypoints and there will be a penalty to the accuracy. This technique 
could also be extended to both the composites, so in the end, only two compound 
images will be compared and the vertical stitching will have the approximately same 
results as the horizontal stitching in terms of time, but only in the best-case scenario 
where the first two images will find a match. Otherwise, up to 𝑛𝑛2 comparison of images 
can occur to find a match. For this reason, the technique was used to only one of the 
composite images. 
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Figure 22 :  An example of vertical stitching. The first image consists of 3 horizontally 
stitched images, while the second image contains 2 images. The third image is the result of 
the vertical stitch and the black box is created due to the width difference of the stitched 
lines. 
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Figure 24 : Sample of vertical small stitch. The first image is part of a composite image 
(row of images) and is used instead. The second image is the second composite image 
that will be stitched with the one to who belongs the first image. 

Figure 23 : This image is to be stitched vertically. The yellow designated area defines 
the overlapping region with the image to be stitched. 
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Another way to minimize the execution time of the algorithm the “blind stitching”. It 
was observed that when it comes to the horizontal stitching, the disposition needed to 
be correctly stitched is around the same with a deviation of 3 to 4 pixels. So, harnessing 
this knowledge, it is possible to skip the SIFT algorithm for some images when a stable 
distance is found. This can substantially speed up the stitching process but significantly 
increase the chance of erroneous results. For this reason, periodically, a standard 
stitching will occur (using SIFT) to those correct distances are used and rebalance if 
there is a need. When referring to distances, at this point, they are the x-distance and 
y-distance that the images need to be moved to be stitched. At first, only the first row 
of images captured were used to find those distances, and they would result from 
averaging the stitching results up to this point. This was fairly unstable since there 
were occurrences where the first line was too small to produce a good average distance. 
Another approach that was used was using the 10 first successful stitched results as a 
guide to finding the most frequent feature distance using a tolerance of 1 pixel on each 
side. Having that distance as a guide, the blind stitching process can follow. The rest 
of the distance matrix entries will not be discarded since every time a regular stitch 
(SIFT) occurs, the matrix will progressively rebalance itself by taking into account 
every new valid result. This means that even if at the start of the stitching process there 
are some consecutive erroneous stitch results after given some time, the correct 
distance will be used.     
 
 

3.3.2 Matching (Stage 2) 

 

 

Figure 25 : A flowchart of the matching process. The output of the procedure will be 
the distance in pixels of the matching keypoints. 
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At this point, the feature analysis process implantation has concluded and the output 
of the previous procedure is one feature descriptor for each image that was inserted. 
However, until now, only the contents of each individual image have been examined, 
not the relationship between the two images inserted into the program. For this reason, 
the matching process was implemented and its output will have information about the 
distance of the matching keypoints of the 2 images if there are any, or in other words, 
the displacement that needs to occur in order for two matching keypoints to be on top 
of each other and merge.  
 
Feature matching 

The first step for the matching process is to utilize the information given from the 

process that took place before (feature analysis). For each keypoint in each image there 

is a matrix of 128 elements representing the descriptor of that keypoint. To identify 

which keypoints match between the images, it is needed to find which descriptors 

match. This is done by using the sum of squared differences (SSD) for the descriptors 

and using a threshold to decide if the descriptors are correlated. The threshold value 

was chosen through experimentation and the final value was 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠  =  100. 

This will be a first filtering of the descriptors, but multiple may still satisfy this 

threshold and yet referring to different keypoints. So, the next step is to choose from 

the descriptions that remain, the one that will have the minimum SSD. However, there 

is still a case that a descriptor is not appearing in both images, so choosing the 

minimum SSD is still not sufficient. For that reason, another strict threshold is used 

with a value of one. Having found the matching keypoints, every pair will be inserted 

in a list containing information of the id of the matching keypoints and their SSD. The 

following analysis will distinguish the inliers and outliers of the matched pairs. The 

metric that will be used as the criterion that divides the sample points (pairset) will be 

the squared Euclidean distance.  The most reliable method to find the inliers for this 

problem is to perform a full search, search every matched pair with each other and 

calculate the squared Euclidean distance and if the result satisfies a certain threshold 

that is chosen depending on the application, then we proceed to calculate the number 

of inliers and choose one of them to be representative. In this application, the threshold 

can be flexible using a value of 500 as a reference, since when a mismatch occurs 

typically the distance will have values of 40000. Although with this method the highest 

accuracy is achieved, the computational cost is quadratic ( 𝑂𝑂(𝑛𝑛2)).   
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RANSAC implementation 

An alternate way to distinguish the matched pairs of keypoints into inliers and outliers 

is the RANSAC algorithm. For this implementation, we will choose the minimum 

number of samples. In this case, the least number it needed is 2 matched pairsets. The 

randomly chosen matching pairs will be considered as inliers, and the square Euclidean 

distance will be the guide for choosing the rest of the inliers. Having the inliers chosen, 

we will cycle through every pairset that is not an inlier and compare it with one of the 

inliers. In case, the distance of the candidate inlier satisfies a threshold, then it is also 

added to the pool of inliers and naturally, if it exceeds the threshold value, it will be 

considered an outlier. This procedure will repeat itself choosing new inliers every time 

until a certain number of repetitions are completed, that is calculated from the 

RANSAC equation (2.3.1), and it depends on the probability of any sample being an 

outlier, the (outlier ratio) and the minimum number of samples and the desired 

accuracy of the algorithm. Assuming the outlier ratio of the images is 20%, then only 

5 repetitions are needed to achieve 99% accuracy. Once the appropriate number of 

repetitions is done, the candidate that produces the highest number of inliers will be 
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considered correct. In Figure 26 a more graphical explanation of the RANSAC 

algorithm is represented. The red line indicates the pairset that is assumed as inliers, 

consequently every other pair will be compared with the red line and only those that 

match its orientation will be considered inliers (green lines). So, in the first case, the 

pairset will have 0 inliers, while in the second case 6 inliers are found, which indicates 

that the second choice is superior. 

 

 

Figure 26 : Both images are different iterations of RANSAC. The matching pair of 
keypoints are represented with the blue lines. The red line is one of the chosen as 
inliers matching pair of keypoints, while with green line are highlighted the pairs that 
are inliers in accordance to the red line.  
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During the implementation of the Full Search method (FS), and due to a logical error, 

abnormally high values of the squared Euclidean distance were observed, even for 

inliers. This would result in the majority of inliers being rejected and have an image 

filled with outliers. In the first attempt to resolve this problem, the thresholds were 

adjusted and relaxed in order for the inliers to be accepted, although this resulted in 

increasing the chance of an outlier also being accepted as an inlier. This eventually led 

to cases where multiple samples had a large number of inliers and a lot of cases where 

multiple points had the same number of inliers, but different orientations, and in case 

the wrong “inlier” was chosen, then erroneous results were visible in the blending 

process. In an attempt to minimize this effect, a grading system was developing for the 

inliers, taking also into account the squared Euclidean distance when two or more 

“inliers” with different distances would exist. This way the sample with the maximum 

number of inliers and the minimum distance will be considered as the true inlier. The 

accuracy of the method was measured at 80%, which is suboptimal in this application.  

Although with this implementation, the initial results were somewhat promising, 

determining the true inliers, when the logical error was fixed, this method became 

obsolete and just provided additional computational load. In addition, even if the 
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accuracy could increase with better parametrization, the whole process was abandoned 

and so, it was omitted from the final application. 

 

Case of Failure 

Generally, the SIFT algorithm, as mentioned earlier, is described by its high 

accuracy and the ability to produce a higher number of keypoints, compared to other 

similar methods. Also, two different algorithms for matching have been reviewed up 

to this point, both having above 90% probability of finding a good match, assuming 

the parameters were chosen appropriately. Nevertheless, there are occurrences where 

the two images will be inserted into the program and no match will be found. Such 

cases are most probable to happen when the images that were analyzed are located on 

the edge of the sample that the microscope is reviewing, since the background of the 

sample is empty and no feature can be detected. The case that was just described does 

not occur only when the image is empty, but even if the image contains a portion of 

the sample and that portion is small enough, then once again, there is the possibility of 

failing. Since the usage of ROI has been adopted, if a stich is attempted with the wrong 

orientation (vertical instead of horizontal), once again the algorithm most likely will 

not find a match. Finally, even if the orientation is correct and the image contains a 

sufficient amount of sample, there is still a chance of not finding a match. When such 

a case occurs, depending on the level that the matching process failed, there is a 

possibility of correcting such an error. When the descriptors of the two images are 

compared and produce no pair of matching keypoints, then it was observed that by 

repeating the SIFT process can generate different results in the descriptors and 

consequently increase the matching pairs found between the images. This method will 

increase the computational time since the process will be repeated but only by the 

amount that SIFT needs to be completed, and it is used as a last resort allowing up to 

three repetitions for each pair of images.       

 

3.3.3 Blending (Stage 3)  

The output of the matching process will be the set of inliers, the best matching 

pair of keypoins of the two images. The basic idea of the blending process is to use 

that information and extract the disposition of the x-axis and y-axis that the images 
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need in order for the two keypoints to merge and be located at the same point (x,y). As 

mentioned in section 2.4, there are numerous algorithms designed for that purpose, but 

due to the nature of this scenario, the feathering method was chosen as the most 

suitable for the application. Since the images provided from the microscope are 

calibrated in a way that no rotation or different size of images are expected to be 

inserted, the application requirements are limited to location finding and solving the 

merging side-effects that may occur (seams, etc.). So, there is no real need to use a 

more sophisticated algorithm that results in an unnecessary increase of the 

computational time. Additionally, the mentioned algorithms were designed for more 

general cases of merging images, where the merging point can be anywhere on the 

image (even at the center), while in the scenario of the microscope, the merging will 

take place only on the edges of the images. Another argument that could be raised for 

choosing the feathering method is because it does not solve the problems of blurring 

and ghosting, which are not expected to occur in a successful stitch, it will be probably 

more recognizable by the user that the stitching made an error, rather than guiding the 

user to the wrong conclusion due to an alteration on the image of the sample, that 

occurred on the process of blending the two images.  

The basic idea of the feathering algorithm is that the merged pixel intensities will 

result from a combination of the intensities of the individual pixels of the two images 

at the merging point after applying weights on each one. In this method, the closest a 

pixel is to the center of the image, the more significant its contents are, and thus, the 

closest to the edge each pixel is, the less value it has. So, in the overlapping region of 

the composite image, each pixel will be weighted relevant to its location in the 

compound image. This primarily solves the problem of having different brightness 

levels between the images and does not produce a seam when the merge occurs.  For 

the implementation of the method, the first step is to choose one of the compound 

images as a reference. For example, when horizontal stitching is performed, then the 

leftmost image can be the reference. Any pixel that is not located in the overlapping 

region will take its value from the image it corresponds to by copying the contents of 

the compound image. While the pixels reside in the overlap region, their values will 

be calculated by the following equation: 
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𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑖𝑖𝐴𝐴  
�𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑥𝑥�

|𝑑𝑑𝑑𝑑| + 𝑖𝑖𝐵𝐵  
�𝑥𝑥 − �𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑑𝑑��

|𝑑𝑑𝑑𝑑|   

 

Where, 𝑖𝑖𝐴𝐴(𝑥𝑥,𝑦𝑦), 𝑖𝑖𝐵𝐵(𝑥𝑥,𝑦𝑦) are the values of the pixels of image A and B 

respectively at (𝑥𝑥,𝑦𝑦), 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑟𝑟𝑟𝑟𝑟𝑟 is the width of the reference image and 𝑑𝑑𝑑𝑑 is the output 

of the matching method and the movement the images need to make in order to match. 

 

The output of the matching algorithm will produce a set of 𝑑𝑑𝑑𝑑 and 𝑑𝑑𝑑𝑑, that is the 

distance the images need to be shifted. Those can be positive, negative or even equal 

to zero depending on the type of stitching that is performed. In the case of the 

horizontal stitch, if the 𝑑𝑑𝑑𝑑 factor equals to zero, that would mean that there is no 

overlapping region between the images and they will be placed right next to each other, 

a negative value would mean that in the composite image, there will be a gap between 

the compound images (again no overlap region exists), while with a positive 𝑑𝑑𝑑𝑑 the 

images will overlap (typical outcome). The 𝑑𝑑𝑑𝑑 factor will translate into a difference in 

the position on the y-axis. The best-case scenario where 𝑑𝑑𝑑𝑑 = 0, there will only be the 

𝑑𝑑𝑑𝑑 factor to consider, but in any other case, the two will not align perfectly and a set 

of pixels in the composite image will belong to neither of the two compound images, 

and since there is no information about the contents of those pixels it was decided to 

assign them with a value of zero (black regions). Depending on the sign of 𝑑𝑑𝑑𝑑 two 

cases of horizontal stitching can be distinguished as shown in Figure 27, and each case 

needs to be handled properly, so the correct region is assigned with the right values. 

The phenomenon of the black regions is generated by a slight offset of the 

microscope’s camera angle relative to the stage where the sample is placed, which can 

be showcased in Figure 28. If the camera has even a very small angle on the z-axis 

compared to the stage, in the 2D representation of the image, a small 𝑑𝑑𝑑𝑑 offset will 

take place and will stay the same each time a new is performed, increasing each the 

black region by a small margin. So, the black region can through off the blending 

process by little every time, and grow increasingly larger, although it is easily 

corrected by adding the same offset to the 𝑑𝑑𝑑𝑑 factor. The same phenomenon will also 

appear in the vertical stitching process, this time the black region will form on the x-

axis, but ultimately the solution will remain the same. However, this is not the only 
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way the black region will affect the vertical stitching, since some of them may appear 

from the horizontal process. When the vertical starts the ROIs that are defined will 

also need to be adjusted, otherwise there is the risk of excluding the overlapping region 

of the images from the ROI if the black region has a certain size. As to the final result, 

the black regions will appear only on the outer layer of images, that are primarily free 

of sample, will in areas filled with sample any black region will be covered by 

overlapping images.    

The blending of the vertical stitch is slightly more complex than the horizontal 

case due to the side effect of performing the stitch using one reference image to 

represent a whole line of horizontal stitched images. When applying this method that 

was analyzed in section 3.3.1, the size of one of the images that will be stitched (the 

one represented by the reference) will be lost and also the location of the reference 

image. In other words, the results of the matching process will not be complete and 

further correction of the 𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑 will be needed. For this reason, when using the 

“vertical small stitch” method, a list is used to store the information that would be lost. 

For example, the first horizontal stitch produces a composite image 𝑠𝑠1 from 5 

individual images, while the second horizontal stitch results in image 𝑠𝑠2 that is made 

from 6 individual images. When the “vertical small stitch” is performed and assuming 

that the 𝑠𝑠1 is replaced by the 3rd in-line image then if a match is found with the 𝑠𝑠2 then 

the resulting 𝑑𝑑𝑥𝑥, 𝑑𝑑𝑑𝑑 will correspond to the start of the reference image (3rd), which is 

not the start of the  𝑠𝑠1. By storing the blending points ( 𝑏𝑏𝑏𝑏 =

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ –  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) and not just the sizes of the images already 

stitched, the location of the image will be available to use in the blending process. 
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Figure 27 : Two composite images are shown and their contents divided into regions 
depending on the sign of the dy factor. 
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Figure 28: The position of the camera relative to the stage of the microscope. 
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4 Results 

In the previous chapter, a review was done of all the algorithms that were used 

in this application. They were analyzed over their implementation and the expected 

results those methods should produce, and suggesting various improvements that 

mainly aim at the performance aspect. In the current chapter, the results of these 

algorithms will be investigated as well as the optimal parameter values that will yield 

the best results. Once again, the whole process can be divided into three major parts 

(feature analysis, matching and blending). The testing proceeded by taking a random 

sample from the microscope of 45 images and performing stitch on that set repeatedly 

while changing the appropriate parameter values. Of this sample, 35 horizontal stitches 

are to be performed and the rest will be vertical. The chosen sample contains a variety 

of cases, from images that have low feature density (located on the outskirts of the 

sample), and images with numerous features. The structure of the chapter consists of 

three sections. In the first, the results presented are due to parametrizing some values 

of the SIFT algorithm to perform more accurately to the scenario given. The second 

section takes place the parametrization of the matching algorithms and the view of 

their results. While the final section analyses the time of each process and scenario.  

 

4.1 SIFT PARAMETRIZATION & RESULTS 

 The SIFT algorithm has numerous variables that need to be tuned in order to 

produce good results. Most of those parameters have been examined and their values 

determined by D.Lowe in his research [4], through testing in artificially created images 

in order to pinpoint the most optimal values, so the algorithm produces accurate and 

stable results regardless of the set of images that will be inserted as input. Some of 

those parameters include the number of octaves to be used along with the number of 

scales in each octave and both of them are important to achieve scale invariance. In 

addition, the amount of blurring (sigma) between each scale and each octave is also 

determined the same way. All of these parameters that were defined by the author of 

SIFT were not examined further in order to confirm their effect. Instead, the contrast 

threshold and the curvature threshold will be examined in order to better fit this 

particular scenario.  
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First of all, it is needed to determine the parameters that will help us decide 

whether a set of values produce a “good” result. The first thing that will help with that 

decision is the number of keypoints. However, this alone can lead to false conclusions. 

For example, if the thresholds to be used are too strict, many potential keypoints will 

be rejected, which could be crucial at a later stage, finding a match between the images. 

On the other, in case the thresholds are more relaxed, there is a possibility of keypoints 

being located that will lead to overshadowing the important ones and producing a false 

result during the matching (false positive). For this reason, along with the number of 

keypoints, also the accuracy (success rate) will be taken into account, even if that 

includes more using the matching process, and thus the test will not be entirely 

independent of each process. In Figure 30, the correlation of the keypoints and the 

contrast threshold is depicted, the latter of which is ranging from 0.02 to 0.8. As shown 

in Figure 29 and Figure 30, the smaller the keypoints number is, the probability of a 

successful stitch diminishes. A plateau is forming in the graph the accuracy that is 

indicating the region with the best results before the success rate starts dropping once 

again, this time due to a large number of keypoints. In Figure 31 and Figure 32 we 

have a graph that connects the number of keypoints to the curvature threshold and the 

success rate to the curvature threshold, respectively. Once again, there is a connection 

between the amount of keypoints discovered in the image and the success rate of the 

stitch. Too few keypoints, lead to errors due to not finding a match, while a large 

number of keypoints can lead to false-positive results. For the curvature threshold, the 

value that seems to provide with the best results is 10.  
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Figure 30 : Average number of keypoints, in horizontal stitch, relative to the 
contrast threshold.  

Figure 29 :  The percentage of successful stitches depending on the contrast 
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Figure 31: Average number of keypoints, in horizontal stitch, relative to the contrast 
threshold. 

Figure 32 : The percentage of successful stitches depending on the contrast threshold 
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It should be noted that all four of the figures above (Figure 29, Figure 30, Figure 31, 

Figure 32) show the results of only the horizontal stitching. The reason that the sample 

is limited that way is because of the ability to ensure that all the images that contribute 

to those results have the same size. So, the only factors that will have an impact are 

the threshold variables that are under investigation and the contents of the images. The 

number of keypoints that are located during a vertical stitch will depend on the size of 

the images, along with the type of vertical method that is applied and will be multiple 

of the number detected at a horizontal version. 

 

 

 

4.2 MATCHING PARAMETRIZATION & RESULTS 

Similar to the previous paragraph, where some of the parameters of SIFT are tested to 

establish the best possible results, the matching process and all of the methods used 

contain numerous parameters that need to be tweaked. The way the results are 

produced is similar, as the same sample is used and the whole procedure is repeated 

multiple times in order find the average values that will unveil the most optimal 

combination of values. In this case, the two parameters that will be examined are going 

to be the matching pair size and the inliers produced by the different algorithms, and 

at a later stage, the elapsed time of each method will be analyzed. The matching pair 

size is created by comparing every keypoint in both of the input images and checking 

them for similarities. If the criteria are met, the pair will be a candidate inlier that will 

be decided later. So, the number of matching pairs can range from 0, and can even 

surpass the number of keypoints in the image, which is the case when a feature has 

multiple occurrences in the image. However, such a scenario is a rare occurrence. In 

most cases the pair size will not even exceed the keypoints number. The parameter that 

greatly influences the matching pair size is the feature descriptor gap threshold that is 

set. When creating a matching pair, the algorithm iterates through the keypoints in 

order to find the one with the minimum SSD (sum of the squared differences). If the 

final minimum SSD exceeds the chosen threshold, then the pair is rejected. The four 
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figures show the results of the method when the threshold value is fluctuating. Figure 

33 shows the rate at which the size of the matching pairs of keypoints can be located. 

Interestingly, in the range 1 to 2.5, the rate is linear, while after exceeding the threshold 

of 5, the size that can be located between two images reaches an upper limit. The most 

important graph is the one depicted in Figure 34, where it is clear that for values 

smaller than 1.5 of the feature descriptor thresholds, the accuracy of the stitch is 

lowering rapidly due to the insufficient amount of keypoint matches that were 

established. On the other side, for values greater than 1.5, the success rate of the 

algorithm once again decreases as the threshold increases but with a smoother slope.  

Lastly, in Figure 35, it is shown how many of the mistakes depicted in the success rate 

figure are false-positive results, and in conjunction with Figure 34 the other two 

figures, when the size of the matching pair increases above a certain value, the list of 

keypoints contains a large number of outliers that if not appropriately recognized can 

lead bad stitching results. It should be mentioned that thanks to features provided by 

the microscope, it is possible to locate a false positive outcome even if the algorithm 

regards the results as successful stitching, due to the sensors that can give the accurate 

locations of each picture taken. 

Figure 33 : This figure shows the correlation of the feature descriptor gap threshold 
with the size of the matching pair of keypoints. 
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Figure 34 : The threshold can influence the accuracy of the stitch algorithm. 

Figure 35 : This figure shows the amount of false positive stitching that were done 
during the test, while the threshold is changing. The false positives are included in the 
graph of the success rate. 
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Having finished with the parametrization of the feature gap thresholds that is 

responsible for the size of keypoint pairs, it is time to move on to uncover the most 

optimal threshold value that will discriminate the inliers from the outliers. The testing 

process took place using the FS method instead of the RANSAC that was also 

implemented. The reason for such a choice can be explained through the requirements 

of the test itself. RANSAC is described by its relatively high accuracy and the speed 

that is needed to find the inliers. However, in this testing process, where the intent is 

to check and find the optimal value for a certain threshold, the completion time of the 

algorithm is irrelevant and only accuracy is required. So, since RANSAC has a 99% 

accuracy, depending on the parameters chosen, there is the probability, although very 

small, for the algorithm to be unable to locate the correct set of inliers, thus making it 

not ideal for this scenario. An important thing to be mentioned at this point, is that in 

the test that follows, one more sample was used in addition to the one used in the 

previous test in order to provide additional information and help clarify some results. 

Starting with Figure 36, where the change in the number of inliers is shown. Although 

there may seem like significant fluctuations, the number is in a range between 17 to 

22 inliers each time. This phenomenon can be explained through Figure 39 and Figure 

40. The four different lines belong to the 2 samples that were tested, once using the 

“big” stitch method and once again using the “small” stitch method. Due to the fact 

that only a small portion of the image is overlapping, in the “big” stitch, many 

keypoints will be located that will not provide with helpfull information and the 

majority will be filtered by the Full Search or the RANSAC methods. In Figure 37, the 

plot shows how the accuracy is changing by altering the threshold, while in Figure 38 

the number of false-positive matches is shown, and this time they are the only source 

of mismatch. By the guidance of figures 37 and 38, the value for the inlier threshold 

that seems to be more effective is under 500. Figure 40 is especially useful for the 

implementation of the RANSAC algorithm since, during the initialization there is need 

to determine the inlier ratio, and according to this plot, there are significant changes 

from method to method that will be taken into consideration during the time analysis.  

 



  

79 

 

 

 

 

Figure 36 : Depiction of the fluctuation of the number of inliers located depending 
on the threshold. 

Figure 37 : The accuracy decreases as the inlier threshold increases. 
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Figure 38 : This figure shows the number of mistakes created due to false positive 
matching. 

Figure 39 : This shows the difference of matching pair sizes between the “big” stitch 
method and the “small” stitch. 
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4.3 TIME ANALYSIS 

Having finished with the testing process for finding the values that will provide 

the most promising results, we are able to move on to analyzing the time needed for 

each method to be completed.  The same sample from the previous testing will be used, 

which contains 45 different images, and thus the stitching process will be called 45 

times, 35 of which are going to be performed as horizontal, while the remaining 10 are 

going to be vertical stitches. For measuring the elapsed time of each process, built-in 

functions of OpenCV were used. The first one is the getTickCount(), which returns the 

number of clock-cycles after a reference event and so it is possible to calculate the 

difference between two reference points, the start and the end of each algorithm. After 

that, utilizing the function getTickFrequency(), which returns the frequency of clock-

Figure 40 : The information given by this figure are important for the initialization of 
the RANSAC algorithm. 



  

82 

 

cycles, or the number of clock-cycles per second. So, to find the time of execution in 

seconds, we only need to divide the difference of the clock cycles by the frequency. 

At this point the test will contain four different variations of the program, to uncover 

which of the techniques analyzed previously will provide with the best results. The 

four variations include a combination of “big/small” stitch and changing the region of 

interest each time between 100%, which covers the entire image, and 10% that 

includes the region of the images that overlap. Moreover, the tests will include 

different image sizes in order to measure the potential performance gain when using 

smaller images. Figure 41 presents the average time a stitch call will take depending 

on the type (horizontal/vertical). As expected, the lower the resolution of the input 

images is, the time needed for completion decreases, to the point of achieving up to 8 

times faster completion time for the horizontal. The reason behind such a significant 

difference between the vertical and the horizontal timings can be explained by the 

structure of the vertical images. In most cases, the images that consist as the input of a 

vertical stitch will comprise of multiple images stitched together horizontally, thus 

having one image to be analyzed with a bigger scale, reaching up to ten times larger 

than the basic input image. According to that explanation it is easy to understand, that 

in case of a bigger sample (>45 images), the times for the horizontal will stay about 

the same, while the vertical timings are going to increase. Generally, utilizing the 

“small” stitch method seems to be more effective than narrowing down the region to 

be analyzed by the algorithm. Nevertheless, combining those two methods provide 

with the minimum elapsed time. In Figure 42,  we see a repetition of the previous 

pattern, for the results, with the exception of the combination of methods “big” stitch 

with 10% overlap and “small” stitch with 100% overlap, where it is unclear which of 

those provide with the better performance. Especially in Figure 43, utilizing that small 

stitch method in combination with setting to analyze the whole image seems to not 

perform as effectively as other methods. This can be explained through the size of the 

area that needs to be analyzed in each method since a larger area will probably produce 

more keypoints, and thus more time is needed to check the compatibility of them and 

match them. When performing vertical stitch in this test, the average width of the 

images involved is about 4 times bigger in size compared to the basic input image of 

a horizontal stitch. In this case, the region in the image where keypoints can be found 

can be calculated and for the “big” stitch with 10% overlap, it is equivalent to 

analyzing an image of size 1000x760 (in case the original image is of size 2500x1900), 
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while in case of “small” stitch with 100% overlap, the image to be analyzed has a size 

of 2500x1900. Figure 44, Figure 45 follow the same principles mentioned before, for 

Figure 42, Figure 43. The big difference is that the runtime is limited to milliseconds. 

The reason of this similar pattern is due to the fact that, both full search and RANSAC 

algorithms are a direct extension of the matching process and they are highly 

dependent on the outcome that was produced by the latter. In Table 1, we compare the 

two methods for finding the inliers and all the contents of the table are in milliseconds. 

Overall, the RANSAC algorithm performs better, having a faster completion time that 

can be up to 10 times faster in some cases. That is a logical result since the RANSAC 

does not need to search the whole list of keypoints in order to locate the inliers. It is 

important to mention that during the tests, the number of iterations of the RANSAC 

algorithm were needed to change according to the method that was used since the 

different methods did not generate the same number of keypoints during the first 

match, and consequently, the inlier ratio changed. Lastly, Figure 46 shows the time 

needed for a blend of two images to take place. Contrary to the previous figurers, the 

current one does not show any particularly important differences between the 

performance of each method used. The reason behind this is that the methods are 

intended to reduce the runtime of the SIFT and matching sequences, so they do not 

affect the blending process. The only difference that takes place in this figure is the 

change in the size of the images, where the bigger the image to be stitched, the longer 

will be the time needed to complete the blend. 
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Figure 41 : Time analysis of SIFT algorithm, divided into vertical (upper half) and horizontal 
(lower half) stitching.   

Figure 42 : Average time of completion of matching process for the horizontal stitches. 
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Figure 43 : Average time needed for completion of a vertical match. 

Figure 44 : Elapsed time for the full search method to complete (only horizontal) 
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Figure 45 : Average performance of RANSAC 

Figure 46 : The average time that will be needed to blend two images.  
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Table 1 Results of running full search and RASNAC methods. 
 Small stitch Big Stitch 

overlap 10 % overlap 100% overlap 10 % overlap 100% 
Full Search 2500x1900 0.246881 12.3239 2.39682 11.9319 

1250x950 0.282861 3.41423 0.405167 6.83218 
800x608 0.200144 1.45305  0.187897 1.88234 

RANSAC 2500x1900 0.0432 3.58155 1.5814500 4.50411 
1250x950 0.0372222 2.46075 0.0314361 3.59778 
800x608 0.0349306 1.21553  0.0382472 1.83279 
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5 Conclusions 

The final chapter of this thesis will contain some conclusions drawn out during 

the implementation of the thesis and in conjunction with the results analyzed 

previously. Furthermore, even if the goal of this thesis has been achieved, there is 

always room for improvement, therefore there is also a section related to ideas for 

future work. 

1.1 CONCLUSION  

The work covered in this thesis was indended to create a system that would apply 

image stitching to pictures taken through the microscope, so that the whole sample will 

be available in one high-resolution image. The ultimate goal would be to use this 

system in automated microscopes to assist doctors and speed up the process of 

analyzing the samples. The big problem with using SIFT in such scenarios is the main 

disadvantage that the algorithm has, high computational cost, but by applying a 

number of techniques, and eliminating certain scenarios that are not expected to occur 

to the nature of the microscope (e.g., having images of successively different scale), 

that would otherwise increase the complexity of the problem and consequently 

increase the time needed for completion, the algorithm can be applied, providing with 

promising results. The important information to keep from the results is that using a 

combination of narrowing down the region of interest as well as rescaling the image 

in some cases can speed up the process of horizontal stitching up to 4 times. The results 

also showed that using a ROI of a smaller size provides a more significant advantage 

over just using the “small” stitch method on the full image. Aside from that, it seems 

to be always the better choice to combine all those techniques in order to minimize the 

time needed. Another vital thing to mention is the somewhat unexpected results of the 

comparison of RANSAC and Full Search methods. Although RANSAC always has 

better performance, since it will not need to search all the combinations of keypoints, 

due to the small size of the matching pair of keypoints and the inlier ratio. 

1.2 FUTURE WORK 

Although this thesis may be complete, there are numerous ideas that can extend 

this work. In mater of performance improvement, utilizing multithreading 
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programming and using the large number of cuda cores provided by GPUs, could 

potentially yield a significant performance gain from parallelism. Since the algorithm 

is not limited to only the scenario introduced in this thesis, another idea for future work 

would be to use the system for different kind of microscopic images. For example, it 

would be interesting to observe how differently the algorithm will perform when 

provided with images taken at different parts of the spectrum. Lastly, since an effort 

to analyze the contents of the images is already done in search of keypoints, it would 

be interesting analyze the image searching for cancerous cells, using some 

classification algorithm or utilizing neural networks trained to locate such cells in the 

sample.     
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