
Information Systems 88 (2020) 101442

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Network-wide complex event processing over geographically
distributed data sources
Ioannis Flouris a, Nikos Giatrakos b,a,∗, Antonios Deligiannakis b,a, Minos Garofalakis b,a

a School of Electrical and Computer Engineering, Technical University of Crete, University Campus., 73100 Chania, Greece
b ATHENA Research and Innovation Centre, Artemidos 6 & Epidavrou, 15125 Athens, Greece

a r t i c l e i n f o

Article history:
Received 18 December 2018
Received in revised form 25 May 2019
Accepted 21 September 2019
Available online 10 October 2019
Recommended by Matthias Weidlich

a b s t r a c t

In this paper we focus on Complex Event Processing (CEP) applications where the data is generated
by sites that are geographically dispersed across large regions. This geographic distribution, combined
with the size of the collected data, imposes severe communication and computation challenges.
To attack these challenges, we propose a novel approach for geographically distributed CEP, which
combines algorithmic and systems contributions. At an algorithmic level, our work combines an in-
network processing approach, which pushes parts of the processing (i.e., CEP operators) towards the
sources of their input events, along with a push–pull paradigm, in order to reduce the amount of
communicated events. We present optimal (but computationally expensive) solutions which seek to
minimize the maximum bandwidth consumption given input latency constraints for detecting events,
as well as efficient greedy and heuristic algorithmic variations for our problem. At a systems level,
we explain how existing CEP engines can support, with minimal modifications, our algorithms. Our
experimental evaluation, using mainly real datasets and network topologies, demonstrates that the
power of our techniques lies in the combination of the in-network with the push–pull paradigm,
thus allowing our algorithms to significantly outperform related centralized push–pull or conventional
in-network processing approaches.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Complex event processing (CEP) has become an essential tool
for quickly detecting events of interest in Big Data systems and
applications [1–3]. The languages of CEP systems allow the defi-
nition of complex patterns and conditions that need to be fulfilled
over the input primitive events (PEs), so that a complex event
(CE) of interest is detected. Primitive events may, for instance,
involve a suspicious mobile phone call or credit card transaction,
or an abnormal sensor temperature measurement. An application
defines CEP queries composed of operators such as [2,4,5] logical
disjunctions (OR), conjunctions (AND), time ordered conjunctions
(SEQ) of PEs and/or CEs, or aggregations. Each such query can
be represented as a directed acyclic graph, termed as the event
detection graph (EDG), in which PEs lack incoming edges.

CEP applications include [1,6], but are not limited to, network
health monitoring, mobile and sensor networks, smart cities and
Internet-of-Things (IoT) applications, computer clusters, smart

∗ Corresponding author at: School of Electrical and Computer Engineering,
Technical University of Crete, University Campus., 73100 Chania, Greece.

E-mail addresses: gflouris@softnet.tuc.gr (I. Flouris),
ngiatrakos@imis.athena-innovation.gr, ngiatrakos@softnet.tuc.gr (N. Giatrakos),
adeli@imis.athena-innovation.gr, adeli@softnet.tuc.gr (A. Deligiannakis),
minos@imis.athena-innovation.gr, minos@softnet.tuc.gr (M. Garofalakis).

energy grids, detection of security attacks, such as denial-of-
service attacks, intrusions or fake identities. In the business sec-
tor, accounting, logistics, warehousing and stock trading appli-
cations are also included among the ever-growing areas of ap-
plication. Many CEP applications are time-critical, requiring the
detection of all interesting events as soon as possible. For ex-
ample, attacks need to be detected in real time and imposing
constraints on the maximum allowed latency for detecting an
attack is often desired.

The initial CEP systems require the collection of all events
at a central location (computer or data center — cluster) for
processing. A large body of works [5,7–15] optimize CEP in a non-
parallel, centralized setting [6]. More scalable systems employ
parallel CEP approaches [12,16–22] to optimize CEP over clusters
in local data centers mostly aiming at throughput maximization
and elastic resource allocation [3]. In this work we term the cen-
tralized and parallel approaches described above as centralized,
in the sense that they operate on a single site (machine or data
center). However, such centralized processing systems are not
scalable for massive Big Data and respective applications. First of
all, in applications with truly Big Data, bandwidth is still an issue
and the central site (data center) becomes a communication and
computation bottleneck. Prior work [23] has pointed out that the
maximum stream processing rate that can be achieved in cen-
tralized settings is network bound. Therefore, what is important

https://doi.org/10.1016/j.is.2019.101442
0306-4379/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.is.2019.101442
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2019.101442&domain=pdf
mailto:gflouris@softnet.tuc.gr
mailto:ngiatrakos@imis.athena-innovation.gr
mailto:ngiatrakos@softnet.tuc.gr
mailto:adeli@imis.athena-innovation.gr
mailto:adeli@softnet.tuc.gr
mailto:minos@imis.athena-innovation.gr
mailto:minos@softnet.tuc.gr
https://doi.org/10.1016/j.is.2019.101442

2 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

in massive scale CEP applications is to reduce communication in
the network and control the network latency so as to loosen or
better control this bound. Second, in many monitoring applica-
tions, most events are actually rather ‘‘useless’’, since interesting
events occur rarely. For example, when monitoring for attacks or
intrusions at a system, most of the time such attacks do not occur,
or when looking for malfunctioning machines in data centers
or such sensors in IoT applications, most of the time things are
operating correctly. Thus, centrally transmitting and processing
all events overburdens the central site with little benefit. Third,
the transmission of events by generating sources often comes at
a cost and should be avoided if possible. This is often true in cases
of data collected by battery-powered sites (i.e., sensors or IoT
devices), in which data transmission is a major cause of energy
drain [24].
Overview of Approach and Relationship to Prior Work. In this
paper we target this important type of CEP applications, where
the data is generated by sites that are geographically dispersed
across large regions. For example, network elements, IoT devices,
energy grid applications, etc that span one or more countries. We,
thus, look into algorithms to perform CEP in a distributed (across
different sites) way, while respecting application latency require-
ments. Table 1 shows how our work uniquely (given prior work)
combines features that are vital for modern geo-distributed, CEP
Big Data platforms. More details follow in Section 2. Such features
include:
[A] Algorithmic: our techniques are the first to effectively blend:
[A1] In-network operator placement: assigns the evaluation of
CEP operators to sites that are close to the sources of relevant
input events, so as to limit data transmission and to speed up
event detection; and
[A2] CEP-tailored forwarding (push–pull): this is a set of lazy
evaluation strategies that further reduce communicated events by
prioritizing transmission of frequent events conditional upon the
occurrence of rarer input events of the same operator.
[B] Service-Oriented: compliance with Service Level Agreements
(SLAs) is critical in public, hybrid cloud settings. Our techniques
seek to optimize geo-distributed CEP based on a constrained,
bi-criteria optimization problem including pay-as-you-go com-
munication cost ([B1]) and network latency related Quality-of-
Service (QoS) ([B2]). Several related techniques, do not (and can-
not) support the constrained optimization of both criteria (Ta-
ble 1):
[B1] Network Pricing: We provide minimization of intra-query
and multi-query communication load produced by CEP analytics
tasks per query client and under network latency-constraints. Us-
ing Stream Analytics [25] in Microsoft Azure [26], Apache Storm
(and thus EsperOnStorm [27], IBM ProtonOnStorm [28]) in Mi-
crosoft HDInsight [29], Apache Spark and Flink (CEP) in Google
Cloud [30,31], or WSO2 [32] in Amazon AWS [33] entails a pay-
as-you-go network pricing model (i.e., the monetary cost depends
on communicated data volumes). Minimizing the communication
cost under this model interprets to fair customer charges.
[B2] Network-Aware QoS criteria: Network latency-constrained
optimization is incorporated in our techniques as it allows com-
pliance with QoS criteria defined on SLAs or on requirements
of time critical applications. Network (instead of computational)
latency-constrained optimization is often not supported as shown
in Table 1.
[C] System oriented: Our algorithms are incorporated in a real-
world streaming multi-cloud platform, which has been demon-
strated in FERARI [34,35].

Both [A1], [A2] are prerequisites for CEP optimization and our
approach is the first to provide algorithms that blend both of
them for complex EDGs. Fig. 1 depicts the intuition of the Algo-
rithmic feature category [A]. The top part of the figure contains

the input EDG. The bottom part of Fig. 1 shows sites S1 − S16,
while ℓi−j on network links involve communication latency values
among the sites. Pentagons show PEs detected at certain sites.
Placing CEP operators close to their input event sources helps
improving the detection latency, reduces bandwidth consump-
tion, and does not overload a central processing site. Because of
[A1], for instance, the AND and the leftmost SEQ operators of the
EDG have been placed closer to the sources of their input events
so that they are evaluated early and, thus, (a) only aggregate
information is communicated further in the network, (b) event
detection is sped up. Each operator may function using a push–
pull paradigm [A2] (not depicted in the figure). Our evaluation
shows that techniques using only [A1] or [A2] yield severely
suboptimal solutions. From a service viewpoint (i.e., [B]), the
aforementioned sub-optimality results in overcharges in the pay-
as-you-go model. To justly lower charges as much as possible,
but simultaneously abide by QoS constraints, a properly mod-
eled optimization problem is needed. We provide a bi-criteria,
constrained optimization model that supports [B1], [B2] incor-
porating [A1], [A2]. Criterion [C] strengthens our claims for the
true applicability of our approaches. The development of a real
system tested in real application scenarios implied by [C] is a
quite important feature. As a result of the development of a
streaming multi-cloud platform that uses our algorithms [34,35],
our work elaborates on real system implementation aspects and
enhances its contributions along these lines. On the contrary,
prior techniques such as [4,36] may, for instance, opt for [A2]
but because of lacking [C] they do not comment on architectural
aspects or provide implementation hints over real networks, as
we do.
Contributions. Our contributions can be summarized as follows:
• We define the problem of geographically distributed CEP as

an operator placement problem, where each operator can be
instructed to operate in a push–pull fashion.

• We present both optimal (but computationally expensive) solu-
tions, as well as efficient greedy and heuristic variations, which
seek to minimize the maximum bandwidth consumption given
input latency constraints for detecting events. Our greedy and
heuristic variants combine different optimizations that can be
easily enabled/disabled.

• At a systems level, we explain how (we believe many) existing
CEP engines can be easily modified to support our algorithms.
Our suggested modifications allow us to transform existing CEP
engines to engines that support geographically distributed CEP.

• We present a detailed experimental evaluation, using a variety
of setups, mainly real data and real topologies. Our analy-
sis demonstrates that our solutions significantly outperform
central push–pull [4] or conventional in-network processing
approaches [37].
The rest of the manuscript is organized as follows. In the

upcoming section we discuss related work. Section 3 presents
the utilized event data model, the supported operators, the event
detection graph and the network of sites that are input to our
optimization problem. We further present the push–pull rationale
in detail. In Section 4 we outline the statistics that are necessary
to our optimization algorithms for devising a preferable plan
for executing the posed geo-distributed CEP analytics tasks and
provide the formal Push–pull Enhanced CEP Operator Placement
(PECOP) problem definition. We introduce Dynamic Programming
(DP) and Exhaustive Search (ES) algorithms that provide optimal
solutions to PECOP in the absence (DP) or existence (ES) of events
that are shared among CEP operators, in Section 5. Besides the
computationally expensive DP and ES, Section 5 presents greedy
and heuristic algorithms for quickly deriving efficient solutions to
PECOP in practical scenarios. Section 6 details how CEP systems
operating over state-of-the-art Big Data platforms need to be
minimally modified to support our algorithms for geo-distributed
CEP. Experimental results are demonstrated in Section 7, while
Section 8 includes concluding remarks.

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 3

Fig. 1. Overview of our Optimization Framework. The top part of the figure shows an exemplary event detection graph composing one or more CEP queries. Complex
events are the output of AND,OR,SEQ operators, while primitive events are noted with pentagons on the figure. The bottom part of the figure illustrates a physical
network of sites {S1, . . . , S16}. Edges correspond to communication links among them, while network latency values are noted on the links among pairs of sites
(Sx, Sy) as ℓx−y . The bottom part of the figure also illustrates a possible in-network placement of the CEP operators so that they are evaluated near the sources of the
relevant, primitive events and, thus, only aggregate event information is further forwarded in the network, finally reaching the query source. A push–pull strategy
(not shown in the figure) along with in-network placement is applied by our framework.

2. Related work

2.1. Overview and comparative analysis

Table 1 shows that our techniques are the first to compose
a solution that addresses criteria [A], [B], [C], the importance of
which was explained in the introduction. From a purely algorith-
mic viewpoint, that is [A], the task of coming up with a proper
geo-distributed event query execution plan is non-trivial. First,
one needs to examine every possible in-network placement of
each operator on par with a number of alternative push–pull
strategies that may be applicable. What is more, each pair of
(push–pull strategy, in-network placement) for a given operator
affects the push–pull and placement choices not only of all di-
rectly connected operators, but also of all EDG paths that pass
through that given operator. Some of the efforts outlined in this
section attempt to tackle specific aspects of the problem, such as
[A2] [4] or restrict [A] to a single operator instead of an EDG and
its aforementioned paths [36]. Hence, they do not confront the
greater challenge of the generic problem setup addressed by our
work, as described above.
Geographically Distributed CEP [64]: There is a pair of works
that are more closely related to ours. The first is the work
of Comet [36], which proposes to combine in-network opera-
tor placement with a push–pull mechanism for communication-
efficient and latency-aware CE detection over mobile networks.
Nonetheless, the approach is restricted to CEP queries with only
one operator per query. This is only a very special case that is
covered by the algorithms proposed in our work. The impact of
this restriction is that Comet cannot address the service-oriented
criterion [B] and its sub-criteria in the general case. Moreover,
contrary to our approach, Comet is not incorporated or tested in
a real world distributed system. On the other hand, our work does
not account for mobile networks, which would be an interesting
direction for future work.

The second technique that is closer in spirit to ours is that
of [4], which applies a push–pull paradigm, but performs central
event data collection at a fixed site (Table 1). [4] falls short with
respect to criterion [A1] and [C]. In our evaluation we significantly

outperform [4] (termed CPP). Geo-distributed CEP appears in Her-
mes [40], PADRES [45], Cordies [44] and DHCEP [41]. Hermes uses
a Distributed Hash Table (DHT) to determine in-network operator
placement. DHTs simply minimize the hop count and are severely
suboptimal regarding network latency or bandwidth [37]. Thus,
respective techniques fall short with respect to criteria [A2], [B].
PADRES and Cordies fall short with respect to [A1], [A2], [B],
as they neither take into account system specific statistics nor
propose specific operator placement strategies. DHCEP, uses a
network usage metric during its optimization process. Network
usage is the sum of products of dataRate × latency on communi-
cation links. However, such a blended metric in DHCEP (and [37,
46,47] discussed shortly) does not allow for latency-constrained
optimization and network pricing separately ([B]).
Broader Distributed Stream Processing (DSP) [65]: To avoid
repetition, we state that all efforts discussed here fall short with
respect to [A2] (Table 1) and are represented by the GRIN (GReedy
IN-network placement without push–pull) approach in our ex-
periments, which is a best case scenario satisfying [B] and only
lacking [A2]. The early work of [42] is DHT-based. As we already
argued, such techniques cannot abide by [B]. The seminal work
of SBON [37] employs a metric similar to network usage. Thus, as
previously described, it cannot support constrained optimization
per metric and thus [B]. The same hold for efforts [46,47] that
employ a similar utility or usage metric. Moreover, although [46,
47] and [66] also try to support latency constraints, this comes
after (in [46,47]) or before (in [66]) having determined operator
placement. [38] neglects operator sharing falling short in [A2],
[B1], despite considering the intra-query communication burden.

JetStream [49] restricts itself to obvious in-network place-
ment on source nodes or nearest site of relevant data presence,
essentially lacking [A1]. Iridium [48] examines data migration in-
stead of operator placement to optimize query response latency.
Geode [57] purely focuses on minimizing bandwidth cost and
does not account for criterion [B2]. Similarly, SQPR [56] accounts
for computational, instead of network ([B2]), latency.

The works in [50–55] aim at optimal component composition
such that load distribution is achieved subject to various func-
tion, resource, and QoS constraints inside clusters. Nonetheless,

4 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

Table 1
Summarizing features of this work vs related techniques.
Feature category Algorithmic Service System

Related work A1 A2 B1 B2 C

Akdere et al [4] # ✓ ✓ ✓ #

Cardellini et al [38], SODA [39] ✓ # # ✓ ✓

SBON [37], Hermes [40], DHCEP [41], SAND [42], SPADE [43] ✓ # # # ✓

Cordies [44], PADRES [45] # # # # ✓

Kumar et al [46], Rizou [47] ✓ # # # #

Iridium [48], JetStream [49] # # ✓ ✓ ✓

Borealis [50], Medusa [51],
Chatzistergiou et al [52],
Gu et al [53], Flux [54], Zhou et al [55]

✓ # # ✓ ✓

SQPR [56], Geode [57] ✓ # ✓ # ✓
Chatzimilioudis et al [58], Srivastava et al [59],
Ying et al [60] ✓ # # # #

Amini et al [61], Benzing et al [62] # # # ✓ #

Repantis et al [63] # # # ✓ ✓

Comet [36] ✓ ✓ # # #

This work ✓ ✓ ✓ ✓ ✓

apart from [A2], [50–53,55] all neglect [B1]. In [53,55] this is
due to examining purely network-oriented metrics (congestion,
communication performance ratio) to balance the load, while in
Medusa [51], Borealis [50], Flux [54] and [52] the focus is to pri-
marily balance the load and minimize usage of available resources
while doing so. Similarly, [61] focuses on weighted throughput
without any latency constraint, while [62,63] seek to maximize
availability while fulfilling QoS and bandwidth constraints, re-
spectively, lacking [A1], [B1] and [C]. Likewise, SODA [39] per-
forms placement for load balancing while also taking into account
resource matching and licensing constraints. SPADE [43] simply
allows to guide placement by specifying host pools.
Sensor Networks: Works such as [58–60], aim at reducing com-
munication and energy costs. Such techniques are mostly tai-
lored for tree-like network organizations [58,59], tree-like query
graphs [60] and lack [A2], [B1] and [B2].

2.2. Other related work: Push–pull paradigm and beyond

With respect to criterion [A2], the push–pull paradigm has
been adopted in broader CEP contexts to optimize centralized [67]
or parallel (within one site) [21] event query execution. In both
cases, the paradigm retains its ability of reducing the unnecessary
processing of partial pattern matches that are unlikely to produce
a full match unless rare events occur.

Choosing a push–pull strategy essentially involves rewriting
the CEP query by reordering the input of an operator so as to
prioritize transmission of frequent events conditional upon the
occurrence of rarer input events. This is not the only kind of
rewriting that is admissible by a CEP query. The work of [12]
is one of the first to formalize query rewriting for optimizing
CEP in centralized and parallel settings. It presents an assertion-
based pattern rewriting framework that aims at splitting pat-
terns into disconnected components that can be independently
processed. The acquisition of the disconnected components is
achieved through the following steps: (i) the pattern is converted
into conjunctive normal form, (ii) a variable dependency graph
is created to recognize independent components and (iii) the
pattern is split into maximal number of independent partitions
which imply the finest granulation that can be performed. The
work argues about the fact that the provided optimizations are
related to code optimization and efficient state management, but
providing disconnected components is also useful in parallelizing
the processing of posed CEP queries. Such query rewriting-based
optimizations are orthogonal to the techniques we present in
this work. They can be applied before our techniques so as to
rewrite the EDG in equivalent forms that can be input to our

algorithms. Moreover, rewritings may be used within each site,
for parallelization purposes, after our algorithms have assigned
an operator to a site in the scope of a geo-distributed execution
plan.

Beyond CEP, the push–pull mechanism has been used in view
maintenance scenarios in data warehouses [68], data integration
and mediation systems [69–71] as well as social networking
applications [72]. In this context, a view is a virtual table defined
by a query, while a materialized view pre-computes and stores
the query result set in an actual table. A conventional view works
in pull mode, in the sense that the content of the view is compiled
from the sources, on demand, at query time. This ensures data
freshness but increases the query execution time. A materialized
view, on the other hand, can quickly provide a query answer
at the cost of extra storage and a potential compromise of data
freshness. To establish proper trade-offs between data freshness
and query execution time, the push mode triggers the sources
to update the materialized view on a regular basis, i.e., after a
number of updates at data sources take place. Hybrid approaches
are also applicable. For instance, the materialized view may get
updated in push mode, but also pull updates, incrementally since
the last push operation, at query time [71].

The use of the push–pull paradigm in the above settings re-
lates to pro-actively (or not) building views so as to avoid infor-
mation or time lags at query time. On the contrary, our techniques
attempt to incrementally evaluate a continuously running CEP
query in steps and to prune unpromising steps (partial pattern
matches), if possible. Contrary to the techniques cited above, the
trade-offs introduced by the push–pull paradigm in our work
engage communication cost and network latency instead of data
freshness and query execution time. Nonetheless, for wide-area
applications [70], the push update mode for materialized views
involves increased communication cost since data updates may
be sent irrespectively of whether a relevant query exists. Another
important observation is that, in our work, sites that transmit
(push) events are not required to cache them anymore (assuming
reliable network delivery) while, for materialized views, data
sources store respective data tuples anyway.

3. Preliminaries

We consider two graphs. The first graph is the event detection
graph which represents the posed CEP queries. The nodes of this
graph are either primitive or complex events. PEs and CEs are
timestamped event occurrences. PEs correspond to nodes with no
incoming graph edges. The rest of the nodes of the graph are CEs
which correspond to CEP operators such as logical disjunctions

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 5

(OR); conjunctions (AND); time ordered conjunctions (SEQ); ag-
gregations etc of PEs or/and CEs. These operators receive input
from/may provide input to other CEs. The second graph is the
physical network where nodes are sites and graph edges refer
to communication links. Each PE is produced at a subset of sites
which are the sources of this PE. These elements are formalized in
Section 3.1. As discussed in the upcoming Section 4, given these
elements along with statistics, the output of our techniques is a
mapping of the event detection graph to the physical network of
sites so that, some sites of the network undertake the evaluation
of, one or more, CEP operators. The evaluation of a CEP operator
assigned to a site may involve the application of the push–pull
rationale introduced in Section 3.2.

3.1. Optimization problem input

Network of Sites. We assume a distributed setting represented
by a graph Net = (S,H). The graph contains a set of vertices
S = {S1, . . . , S|S|} of |S| cardinality, for available sites (including
event sources and potential relay nodes) and a set H of undirected
edges (our algorithms can trivially handle directed graphs as
well). ℓi−j,∀(Si, Sj) denotes the communication latency between
neighboring (connected through an edge) sites Si, Sj.

Definition 1 (Event Data Model). A set E = {e1, . . . e|E|} of
cardinality |E| is the union of primitive event types that can
be observed across the network. A tuple ⟨ei, t⟩ represents an
observed PE instantiating a particular event type ei at time t . We
use ‘‘event’’ and ‘‘event type’’ equivalently for simplicity.

Operators, CEP Queries and Event Detection Graph (EDG). Our
algorithms support all major operator categories (and subcate-
gories) included in [2] (Chapter 9, up to 9.3.3), excluding negation
of events, i.e., requiring the input to a CEP operator be the non-
occurrence of an event of a particular type. This operator list
includes the following popular [2,4–6,15,21] operators:
• AND outputs a CE when all participating events occur.
• SEQ outputs a CE when all participating events occur in speci-

fied chronic sequence.
• OR outputs a CE whenever any participating event occurs.
• AGGREGATION operators (COUNT, SUM, etc.). These operators

may accept a frequency parameter which specifies when they
run, i.e. if an operator accepts a frequency parameter of 1, it
runs every time a new input event is received. Aggregation
operators can be used along with a specified threshold. Then, a
CE is produced when the performed aggregation surpasses or
falls below that threshold.
Operators may incorporate the definition of an event selec-

tion policy. Event selection policies define which events may be
allowed in a pattern match by posing conditions about whether
we are allowed to skip any events, deemed as ‘‘irrelevant’’, or not.
Another type of policy is the event consumption policy which
specifies the number of matches in which an event can partici-
pate. Operator definitions may include a selection policy among
those defined in SASE [15,73] (having solved delayed event ar-
rivals as described in Section 6), while we consider a reuse
consumption policy. reuse means that an event can participate
in all pattern matches where it is considered relevant. This is the
default, and sometimes the only, consumption policy in popular
CEP engines and prototypes [5,9,15,21,73–75].

Moreover, all operators that are admissible in our setup bear
a time window W (which may differ across different operators),
which expresses the maximum time period within which the

e ee

CE
e e e

CE

e e e
CE

Fig. 2. Three alternative NFAs for different push–pull orderings for the AND
operator of Fig. 1. Self-transiting edges are used for the occurrence of ei ’s at
the corresponding state. Colored edges represent events that may be pulled.
Pulling events reduces bandwidth, but increases latency. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

input events of an operator should appear. The same is true even
for aggregation operators.1

Operators are applied on PEs (i.e., ei events) and/or receive
input from other operators. Application CEP patterns are queries,
composed of operators, that are submitted as input to our prob-
lem setting. Interdependencies among operators, i.e., one oper-
ator providing input to another, e.g. SEQ(AND(e1, e2), e3), form
a directed acyclic graph, hereafter termed as Event Detection
Graph (EDG). Given an EDG operator Opi, we refer to operators
or PEs which contribute input to Opi as its upstream operators,
while downstream operators are the ones that receive input from
Opi. We term as output operators those operators that have no
downstream operators (i.e., that do not provide their output as
input to other operators). To an EDG we add a top level OR operator
with incoming edges from all output operators.2

Definition 2 (Event Detection Graph). A CEP query is represented
by a directed acyclic graph, EDG = (Op, X) with |Op| nodes,
Opi ∈ {SEQ, AND, OR} or Opi is an aggregation operator, and |X |

edges (Opi → Opj) among operators that receive input from one
another. For multi-query optimization purposes, output operators
of the EDG are connected to a top level OR operator.

Fig. 1 provides an example of an EDG. At the top of Fig. 1, the
top level OR with dotted incoming edges is added a posteriori
unifying the underlying queries at a common sync point in the
EDG. The leaves of the EDG are PEs, while intermediate nodes are
distinct query operators forming a set Op, of |Op| cardinality. Such
operators correspond to complex events synthesizing information
from PEs or other CEs. The edges of the EDG denote the use of
CEs or PEs as input. Event types that are common input for two
or more operators are referred to as shared events. The output of
an operator Opi ∈ Op is always a CE.

1 To understand why time windows may be useful in the case of aggregation
operators, one reason is that there are several pattern policies that are associated
with each operator, beyond selection and consumption policies, which help
disambiguate the semantics of the output event and of the pattern matching
process for the operator. One such pattern policy is the evaluation policy, which
specifies when output events are produced by the operator. They can either be
outputted incrementally (Immediate evaluation policy) or at the end of the time
window (Deferred evaluation policy). For details on pattern policies, please refer
to [2]. The above discussion also holds for the OR operator.
2 Actually the addition of this top level OR operator is only needed in the

case of EDGs with multiple output operators, in order to make the EDG rooted.
However, its presence helps simplify our discussion hereafter, especially at the
problem definition of Section 4.2.

6 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

3.2. The push–pull rationale

Instead of having every Si transmit input for Opi as soon
as relevant events occur, i.e., setting all of them in push mode,
some input events can initially be set to pull mode [4,21,67],
being cached at the location where they are produced and trans-
mitted only upon request. The pull mode thus increases the
storage/buffering requirements at some sites and also increases
the latency but, as explained shortly, it can avoid unnecessary
communication. Reversely, the push mode may increase commu-
nication, but reduces latency since it instantly forwards events as
soon as they occur.

The push–pull strategy is not feasible for any operator. It is
feasible for operators requiring the participation of all of their
input events, such as a SEQ and AND operator. A complex event
cannot occur in these operators unless all relevant events have
been observed somewhere in the network (and within a window
W). Among the relevant input, some events may be less frequent
than others. Then, until rare events occur, communicating fre-
quent events (each of which expires after W time units) will
only consume bandwidth with little potential to output a CE. On
the other hand, if the rarest input event to the operator occurs,
relevant frequent events within the window W should then be
transmitted to allow for its evaluation. Other types of operators
(i.e., OR or aggregation operators) cannot operate using a push–
pull strategy, but their in-network placement can be optimized
using our algorithms.

For this push–pull process, it holds that (a) it is performed
in a number of steps, no more than the number of the input
events, and that (b) the input events provided in each step admit
different orderings. Each available option can be represented
using a graph of states, whose number is equal to the number
of steps, and edges marking the inputs for each step. We use
Non-deterministic Finite Automata (NFAs) as the most popular
structure [6] for that purpose. The number of available options for
an operator with M inputs is equal to the Bell number T (M) [76].

Example 1. Fig. 2 depicts three (but not all) alternative push–
pull strategies for the AND operator of Fig. 1. These are also
applicable for the SEQ operators, i.e., with PEs (e6, e7, e8). Possible
strategies include: (i) setting all e1, e2, e3 in push mode: all such
input events are immediately transmitted to our operator (top
of the figure), (ii) choosing a two step push–pull strategy where
e3, e1 are set to push mode, while e2 is set to pull mode: e3, e1
are directly communicated, while e2 is cached at the sites that
generate it. If a pair e3, e1 occurs, then e2 events are pulled,
so that cached and new e2 instances are communicated for a
time window (middle of the figure), (iii) a three step push–pull
strategy that can set e3 in push mode, and e1, e2 to pull mode,
but in two successive steps. As Fig. 2 states, the 1-state NFA (top)
provides the minimum latency, while moving towards a 3-state
NFA (bottom), increases latency while decreasing communication
as transmission is conditional upon the occurrence of prerequisite
PEs.

All edges in the NFA may have additional constraints. For
example, Fig. 3 depicts a three-step NFA for the SEQ(e6, e7, e8) of
Fig. 1. In order to ensure correctness, please note that conditions
involving timestamps have been added to NFA edges, ensuring
that te6 < te7 < te8 . □

4. Problem definition

In a nutshell, each solution provided by our algorithms is a
mapping of EDG to Net (Section 3.1) combined with a particular
push–pull strategy that optimizes the communication cost, given
constraints on the maximum latency for detecting events.

Fig. 3. A three-step NFA for the SEQ(e6, e7, e8) operator of Fig. 1. W denotes
the time window of the operator, while ti denotes the timestamp of event ei .
Constraints on NFA edges are present in order to ensure correctness.

Fig. 4. Computing solutions for the top level OR operator of the EDG of Fig. 1
based on Pareto optimal solutions computed on input operators. For each CEP
operator we examine its placement at different sites (along with a push–pull
strategy where applicable). The folded cards below each operator AND, OR,
SEQ illustrate the Pareto fronts that are formed for each such possible in-
network placement of the corresponding operator at a site. To compute solutions
for the top level OR operator, our algorithms consider combinations (triplets)
of solutions from its input complex events and a particular combination is
marked using squares around dots inside each visible folded card. Given this
combination, the communication cost and network latency of the top level OR
operator will be computed using the respective formulas included in Appendix.

4.1. Statistics and candidate solutions

Besides EDG, Net our algorithms further require the following
simple statistics to be periodically collected over the network:
• Local and Global Event Rates — Frequencies: f (e, Si) stands

for the number of e occurrences at Si per time unit (equivalent
to a Poisson parameter). The global frequency of a particular e
∈ E is F (e) =

∑
Si∈S

f (e, Si).
• Minimum Latency Paths: Note that Net incorporates latency

values ℓi−j for each symmetric communication link between
sites Si and Sj. Further exploiting ℓi−js, we can easily compute
the minimum latency paths mℓpathi−js (i.e., using an all pairs
shortest path algorithm) for every Si, Sj in the network and
their associated latency mℓi,j =

∑
∀(Sφ ,Sψ)∈mℓpathi−j

ℓφ−ψ . The
number of nodes in a respective minimum latency path is
denoted by hops(Sj, Si).

Based on these simple statistics, one can easily compute the
following statistics, used by our algorithms:
• Hoped Frequency hf (e, Si) is the cumulative event rate (fre-

quency) for collecting all e data at Si from all over the network:
hf (e, Si) =

∑
Sj∈S

f (e, Sj) · hops(Sj, Si).
• Maximum Placement Latency mpℓi,j is the maximum latency

required to gather ei from all over the network (for every site
Sb where ei occurs) to site Sj: mpℓi,j = max∀Sb∈S:ei ↦→Sb{mℓj−b}.
Based on these input parameters, our algorithms compute for

each operator Opi a set of candidate solutions. Each candidate so-
lution corresponds to a set of decisions for (a) the placement of all
operators in the subgraph of Opi in the EDG, and (b) the push–pull
strategy (NFA type) for each operator. For each candidate solution,
our algorithms compute the communication cost and the latency
for this solution (i.e., for all operators in the entire subgraph of

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 7

Opi). Our algorithms differ in the number of placement decisions
that they examine, on the way that they compute these solutions
and on the number of solutions that they maintain per operator.
However, for each operator our algorithms will compute a set of
Pareto optimal solutions — one set for each potential placement
of the operator (excluding our most Greedy variants, which main-
tain one solution per operator). Pareto optimal solutions are not
dominated in all dimensions (i.e., cost, latency) from any other
candidate solution in the same set.

The formulas for the estimation of the frequency of CEs and
the network latency calculation can be found in Appendix. This
is due to readability purposes and because our algorithms are
equally applicable using as their basis either our own estimation
formulas for the output rate of an operator, or using the analysis
of other (i.e., [4]) works that use a push–pull approach.

Example 2. Fig. 4 depicts the process our algorithms will use
to compute solutions. In this example, we consider the case of
the top level OR operator of the EDG of Fig. 1, which receives
as input the CEs ce1, ce2 and ce3 produced by the AND, OR and
SEQ operators, correspondingly. For each input event we examine
its placement at different sites. For the input event ce1, ce2, ce3
we have maintained a list of Pareto optimal solutions for each
such placement. The event ce2 is output by the lower level OR of
Fig. 1, for which only a 1-state NFA is admissible (Section 3.2),
but since in Fig. 1 its input events include a SEQ operator (which
admits push–pull - Example 1), a Pareto front is formed as well.
To compute solutions for the top level OR operator, for a particular
placement of it, our algorithms consider combinations (triplets)
of solutions from its input events (a particular combination is
depicted by squared dots), along with their frequencies (F (ce1),
F (ce2), and F (ce3)) and the communication latencies between the
sites.

Iterating over (not necessarily all) combinations of operator
placements and NFA states, our algorithms will compute a set
of candidate solutions for each operator per placement decision
and then maintain the Pareto optimal subset of these candidate
solutions per placement. If one (or more) of the input events
was primitive (i.e., instead of ce3 we had as input the PE e5),
the process would only need to compute the cost of collecting
e5 to the location of the top level OR operator, with respect to
e5’s position in the NFA chain. □

In our discussion hereafter, we will use the notation CSµi,j to
denote the set of candidate solutions for placing operator Opi at
site Sj and evaluating it using the µ-th possible NFA. CSµi,j is a
set because it contains candidate solutions created by different
combinations of their input events (i.e., from different triplets of
solutions in Fig. 4). We use csµi,j ∈ CSµi,j to denote a particular
candidate solution in this set, and denote the cost and latency
of this candidate solution as csµi,j.cost and csµi,j.lat , respectively.

4.2. Formal PECOP problem definition

Definition 3 (PECOP Problem Definition). A Push–pull Enhanced
CEP Operator Placement (PECOP) plan p is a placement of the
operators Op of an EDG to sites in S with a specific NFA-based
push–pull strategy per operator. Assume that Op0 is the top level
OR operator of the EDG and S0 is the desired location of this
operator. Given that, for the top level (and any) OR operator only
a µ = M = 1-state NFA is admissible (i.e., T(M) = 1), for a latency
constraint L > 0:

minimize cs10,0.cost

subject to cs10,0.lat ≤ L

where cs10,0 ∈ CS10,0

Typically all detected events are collected at a site/database —
this determines the desired location of top level OR. The PECOP
problem can trivially be shown to be NP-Hard by a reduction from
the Optimal CET-Graph Partitioning problem [76].

Problem Variations. Our problem supports different latency
constraints per output event. Simply put, all solutions, computed
at the operator that produces this output event, that violate
the latency constraint of the operator can trivially be pruned.
A second variation includes cases when we only care about the
communication cost at specific links of our network (i.e., do
not care about high bandwidth links). This can also be trivially
handled by setting the hop count across these links to 0 (this
zeros the transmission cost across those links in our formulas).
Monetary costs (i.e., for pay-as-you-go network pricing scenar-
ios where the cost per link scales proportionally to size of the
communicated data [30] within it) can be supported by using the
monetary cost in the formulas per communication link, instead
of the currently used communication cost.

5. Plan generation algorithms

In this section we propose a dynamic programming algorithm,
which is optimal when the number of upstream operators is 1
for each event (i.e., a PE/CE event is not input to more than one
operator). We explain why the DP algorithm (while applicable)
is no longer optimal when there is event sharing, in which case
we propose a Brute-Force, Exhaustive Search approach to reach
optimal solutions. We also propose heuristic variants, with dif-
ferent optimizations that can be enabled in them. All algorithms
share a preprocessing time cost for network, EDG and basic statis-
tics (Section 4.1) related data structures maintenance; which
is dominated by O

(
|S|3

)
, i.e., the complexity of the all-pairs-

shortest-path (APSP) algorithm, used to compute the inter-site
communication latency and number of hops values.

5.1. The dynamic programming algorithm

Algorithm 1 presents our dynamic programming (DP) algo-
rithm. DP first sorts the operators in the EDG using a topological
sort. The sortedList in Line 3 includes the result of the topological
sorting. Then, it computes the Pareto optimal plans, calling the
BuildPlans procedure, for each operator op (Line 5) using this sort
order, which ensures that an operator is processed after all of its
input operators. The BuildPlans procedure (Lines 6–15) takes as
input an operator op to process, along with its index opIndex in
the sortedList , and considers all potential placements (Line 7) and
all possible NFA chain configurations (Line 8) for this operator.
For each such combination of operator location Sj and NFA chain
configuration µ, the procedure then iterates through all possible
combinations of solutions computed at the input operators of op
(Lines 10–11) and computes their cost and latency (Line 12), using
the ideas presented in Section 4.1 and based on the formulas
of Appendix. Each computed candidate solution p is checked to
see if it satisfies the input constraints (i.e., latency constraints)
and for Pareto optimality (Line 13) within the corresponding
CSµopIndex,j set. If so, p is inserted into the set (Line 15), removing
candidate solutions that were dominated by p (Line 14).
A Note on the Principle of Optimality. Regarding the optimality
of the problem, we need to explain why (1) it suffices to maintain
a set of Pareto optimal solutions per potential placement (site) for
each operator, and (2) why it does not suffice to keep a single set
of Pareto optimal solutions per operator (and we need one set
per site). Regarding (1), consider two candidate solutions cs1 and
cs2, corresponding to a particular placement of operator opj, such
that cs1 dominates cs2. Let us consider a candidate solution cs′
computed at opi, where opi receives as input the output event

8 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

Algorithm 1: Dynamic Programming Algorithm
1 Initialize all CSµi,j sets to empty
2 Procedure CreatePlans(EDG)
3 List sortedList = topologicalSort(EDG)
4 foreach op ∈ sortedList do
5 BuildPlans (op, op.index)

6 Procedure BuildPlans(op, opIndex)
7 foreach Sj ∈ S do
8 foreach nfa.eventSet µ ∈ powerSet(op.inputEvents) do
9 Plan p = new Plan(opIndex, j, µ)

10 inputPoList = All combinations of solutions from op’s
input operators

11 foreach subPlanSet ∈ inputPoList do
12 p.computeCostAndLatency(subPlanSet)
13 if p.satisfiesInputConstraints()∧

p.isParetoOptimalIn(CSµopIndex,j) then
14 Remove from CSµopIndex,j solutions dominated by

p
15 CSµopIndex,j.add(p)

of opj. It is trivial to see that cs′ will always produce a more
preferable solution (in terms of achieved cost and latency) when
considering cs1, than when considering cs2, in combination with
any other candidate solutions from other input operators to opi.

Regarding (2), the key is that if cs1 and cs2 corresponded to
different placements, then keeping just cs1 does not suffice, even
if cs1 dominated cs2. To see this, consider that the communication
cost for the output of opj to reach opi depends on the placement
of these operators. Candidate solutions that correspond to dif-
ferent placements of opj require different communication costs
and different latencies. For example, cs2 may initially seem less
preferable than cs1, but if opi is placed closer (or at) the location
of cs2, then cs2 may yield a lower cost/latency for opi than cs1.
Running Time and Space Complexities. Let c denote the maxi-
mum number of CEs that are input to an operator and let τ denote
the maximum number of Pareto optimal plans that are kept per
placement and operator. Our DP algorithm makes O(|S| · T (c))
iterations per operator opi. Each iteration considers all combina-
tions with candidate solutions at input operators of opi, which
are O((|S| · τ)c). This yields a total of O(|Op| · T (c) · |S|c+1

· τ c) for
all operators, placements and NFA chain combinations. The space
complexity in this case will be O(|Op| · |S| · τ).

5.2. Event sharing case: Exhaustive search

The DP algorithm, is no longer optimal if the EDG contains
primitive or complex events that are shared among (i.e., are
input to two or more) different operators of the EDG. Consider
the CE e3, where e3 is shared by the operators SEQ(e3, e4) and
AND(e1, e2, e3) in Fig. 1. Each Pareto optimal solution that is
maintained for each operator corresponds to the total commu-
nication cost and maximum latency for the entire subtree of this
operator (thus, it is a cumulative cost). The non optimality upon
an event sharing arises because of two reasons: (i) if e3 is a
CE, then the communication cost of all Pareto optimal solutions
computed at e3 is added to the solutions of all of its downstream
operators (and is, thus, added more than one time), and (ii) the
algorithm cannot correctly compute the communication cost for
transmitting the output events of e3 to its downstream operators,
since if two or more downstream operators of e3 are placed at
the same location, then the cost of e3 in this case should be
counted just once. Therefore, here we describe an Exhaustive
Search (ES) algorithm which is optimal even when event sharing

exists. In a nutshell, the ES algorithm described in Algorithm
2 considers all possible placements for each operator and (for
each operator placement) all possible push–pull strategies for the
operator. For each such combination, ES can compute the correct
cost of each plan and return the optimal one that abides by input
(network latency) constraints. Contrary to the DP Algorithm 1
which maintains a set of Pareto optimal solutions per potential
placement (site) for each upstream operator of an operator op,
in ES there are no such precomputed plans. In other words, the
plans for the upstream operators of op, are not restricted to those
that are Pareto optimal up to that point of the topologically sorted
EDG. This is essentially what allows ES to take into consideration
all possible cases, including the sharing of events.

The Exhaustive Search (ES) algorithm starts by creating a topo-
logically sorted list of all operators of the EDG (Line 2) and then
proceeds by iterating through all possible operator placement
combinations (Line 3). Then, it iterates for all possible NFA (push–
pull) combinations (Line 4) among all operators. This is because
each such combination may introduce different cost based on the
shared event’s place in the NFA (i.e., push–pull order). Based on
the already found snapshot, where the combination of operator
placement and NFA configuration (push–pull strategy) has been
decided, a new, overall plan is initiated (Line 5) and the actual
cost of each operator can be found by iterating over the topolog-
ically sorted list of operators, additionally taking into account all
sharing dependencies (Lines 6–11). Intuitively, when two opera-
tors placed at the same site share an event and one operator has
set the shared event in the first state of the NFA (in push mode),
then in the second operator we can be sure that this event will
be timely delivered if detected in a site without the need of a
pull request. Thus, the cost for event delivery will have already
been computed by the first operator. In any case, the cost for a
given set of plans that share an event can be computed by the
formulas presented in Appendix. Upon the iteration reaches the
top level OR operator, if the computed network latency satisfies
constraints and the cost of the currently computed plan is lower
than the previously optimal one stored in CS10,0 (Line 10), the
algorithm keeps the current plan as the new optimal (Line 11)
and accordingly resets the rest of CSµi,j with the current placement
and NFA configuration for each operator (Line 13). Notice that for
each operator we just keep one candidate solution, which is the
one that gives the minimum cost at the top level OR. Therefore,
CSµi,j ≡ csµi,j (Line 1).
Running Time and Space Complexities. Again, let |Op| denote
the number of operators, |S| the number of sites and c denote the
maximum number of input events among the operators. The algo-
rithm considers O(|S|) placements for each operator, and for each
placement it considers O(T (c)) NFA configurations. This leads
to an O((|S| · T (c))|Op|) number of combinations, each requiring
O(|Op|) time to compute its cost, for a total of O(|Op|·(|S|·T (c))|Op|)
running time. ES does not need to keep sets of Pareto optimal
solutions in memory, and thus (although being much slower)
requires less memory than DP.

5.3. PaNORAMA: Push–pull in-network plan placement algorithm

Candidate Selection Process Overview. We now present an al-
gorithm with several greedy and heuristic variants. The basic
intuition is to limit the number of sites that we consider for
the placement of each CEP operator. We term this procedure as
Candidate Selection. We compute two types of locations per PE
and per operator using the statistics of Section 4.1: the Candidate
Centers (CCs) and the Candidate Locations (CLs). For each PE, we
define its Candidate Centers (CCs) as the union of two sets. The
first set contains those sites that minimize the Hoped Frequency
of the event. The second set contains those sites that minimize

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 9

Algorithm 2: Exhaustive Search Algorithm
1 Initialize all csµi,j ≡ CSµi,j sets to empty
2 List topSortList = topologicalSort(EDG)
3 foreach placement ∈ setOfPossiblePlacementCombinations do
4 foreach nfaCombination ∈ setOfPossibleNFACombinations do
5 Plan p = new Plan()
6 foreach op ∈ topSortList do
7 p.add(opIndex, Sj =placement.siteOf(opIndex), µ =nfaCombination.nfaFor(opIndex))
8 copse = findCoplacedOperatorsSharingEvents(opIndex, topSortList, placement)
9 p.computeCostAndLatency(p.inputCostAndLantecyFor(opIndex), copse)

10 if opIndex = 0 ∧ p.satisfiesInputConstraints() ∧ p.isOptimalIn(CS10,0) then
11 newOptimalPlan p

12 if newOptimalPlan then
13 reset all CSµi,j according to p

Fig. 5. Example network composed of sites {S1, . . . , S16}. Edges correspond to communication links among them, while network latency values (in milliseconds) are
noted on the links.

the maximum transmission latency from the locations where the
PE is detected. The basic idea for these two sets is quite intuitive.
The first set finds the sites where we can collect all events of a PE
with minimum cost. The second set finds the corresponding sites
with the minimum collection latency. The locations in these two
sets constitute (along with their neighboring sites) a good starting
location of where an operator having as input this PE should be
placed. For PEs, the notion of CCs and CLs coincides.

For each operator opi that has inputs just PEs, we set as its CCs
the union of the CLs of the input events of opi. We then create
a queue of candidate locations (candidateQueue) that initially
contains these CCs. For each candidate location in candidateQueue,
the algorithm will compute the cost of candidate solutions for opi,
starting from a naive plan (i.e., all input events in push mode) for
each solution. Each candidate solution that is Pareto optimal is
examined further, expanding our search in two ways. First, the
NFA chain of the Pareto optimal candidate solution is expanded
to look for solutions that potentially have lower communication
cost (yet still satisfying the latency constraint). Second, since it
seems as an intuitive idea that opi should be placed somewhere
‘‘in-between’’ its CCs, we consider a site to be in the vicinity of
the CCs, if the maximum latency from the site to the CCs does
not surpass the maximum pairwise latency of the CCs. Given this,
we expand the area of search with the potential insertion of such
neighboring sites of the candidate location to the candidateQueue.
The process ends when NFA expansions cannot provide any more
Pareto optimal solutions (that satisfy the latency constraint) for
opi and when all candidate locations in the candidateQueue list
have been processed. At that point, the locations corresponding to
the remaining Pareto optimal solutions constitute the Candidate
Locations for opi. The algorithm for operators that also have as
inputs CEs is the same, since we just mentioned how we compute
the CL list of a complex event.

Example 3. Before formally presenting our algorithms, we out-
line the function of the Greedy variant of PaNORAMA’s Plan
Generation process for the operator SEQ(e3, e4) from the EDG of
Fig. 1 on the network example illustrated in Fig. 5. We assume
that the Candidate Selection process assigned S9 site as Candidate
Center for event e3 and Candidate Center S4 for event e4. Then, the
algorithm will create the naive 1-state NFA plan with both events
(e3, e4) on push mode. This plan will be placed to the first site (S9)
of the candidateQueue and will be inserted in the operator’s single
Pareto optimal list. Then, the algorithm will iterate for other NFA
configurations, such as e3 in the first state and e4 in the second
state. Let us further assume that the latter NFA plan provides less
communication cost but more detection latency than the already
inserted naive plan. Thus, the Pareto optimality criterion upholds
and the plan is inserted in the Pareto optimal list. Since a plan
entered the Pareto optimal list for S9, all neighboring sites are
examined for admission in the operator’s candidateQueue. Please
note that the maximum minimum latency among the CCs (S4
and S9) is 14 ms. Among all neighbors of S9, only S7 enters the
candidateQueue, because its maximumminimum latency from the
CCs is 7 ms < 14 ms. All other neighbors of S9 are not considered
to be in the vicinity of S4 and S9. For example, site S11 is not
admitted since its latency distance (17 ms) for one of the CCs
(namely S4) is greater than our bound. After the algorithm has
exhausted all NFA plan configurations, or has reached a point that
new plans provide worst cost gain than the last ones, for site
S9, the algorithm moves to the next candidate in candidateQueue
which is S4 and the process is continued until no other site is left
in candidateQueue. In this example, at most 4 sites (the only site
in the vicinity of S4 and S9 that may be added if S7 helps generate
Pareto optimal solutions is S5) will be considered. □

Greedy and Heuristic Variations. The pseudocode of our algo-
rithms is presented in Algorithm 3. The Greedy algorithm begins
by creating a topological sorted list from the operators of the

10 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

Algorithm 3: PaNORAMA: Greedy, Heuristic and Plus(+)
Variations
1 Algorithm PaNORAMA(EDG, isHeuristic, isPlus)
2 List<Op> topSortList = topologicalSort(EDG)
3 if isHeuristic then
4 planLists = new HashMap<op, HashMap<site, List>>
5 else
6 planLists = new HashMap<op, List>
7 foreach op ∈ topSortList do
8 if !isHeuristic then
9 list = new List()

10 candidateQueue = findCandidateCenters(op)
11 while ((site = candidateQueue.pop()) != null) do
12 Plan p = new Plan(op, site, 1) // 1-step Naive Plan -

Inputs in push mode
13 if isHeuristic then
14 list = new List()
15 boolean pWasAdded = false
16 // start with the combination of the 1st PO lists from

each input
17 whichPOListPerInput[|op.inputEvents|] = {1, . . . , 1}
18 do
19 if op.inputEvents contain CEs then
20 Set subPlanSet to the combination of the most

efficient candidate solutions from each
whichPOListPerInput

21 p.computeCostAndLatency(subPlanSet)
22 do
23 p.setToNaivePlan()
24 Plan pToExpand = p
25 boolean naiveWasExpanded = false
26 do
27 if p.satisfiesInputConstraints() ∧

p.isParetoOptimalIn(list) then
28 list.add(p)
29 pWasAdded = true;
30 naiveWasExpanded = true
31 pToExpand = p
32 p = pToExpand.getNextNFAConfiguration()
33 while p != null ∧ naiveWasExpanded = true
34 p = 1-step plan computed using the next

combination of Pareto optimal solutions in
op’s input whichPOListPerInput

35 while isPlus ∧ p != null
36 Set whichPOListPerInput to the next valid

combination of input Pareto optimal lists to
process

37 while isHeuristic ∧ whichPOListPerInput.isValid()
38 if pWasAdded then
39 for candidate ∈ site.getNeighbours() do
40 if isInTheVicinity(candidate, op.candidateCenters)

then
41 candidateQueue.add(candidate)

42 if !isHeuristic then
43 planLists.add(op, list)

44 if isHeuristic then
45 planLists.get(op).add(site, list)

46 return planLists

EDG (topSortList in Line 2). A single plan list is created for each
operator op (planLists in Line 6), since for the Greedy algorithm
isHeuristic = false (Line 3). Then, the algorithm iterates for every
operator in the topologically sorted list (Line 7–45). A set of
candidate centers are found for the operator op (Line 10) and

placed in a queue (candidateQueue). The pseudocode does not
have the details of this operation, which was however described
at the beginning of Section 5.3. The algorithm then proceeds by
iterating through all the sites in the candidateQueue (Lines 11–
43). A new naive plan p (i.e., a 1-state plan with all inputs in
push mode) is then created and placed on the candidate site in
question (Line 12). The cost and latency of this plan are computed
as described in Section 4.1, using for each input operator the most
efficient, in terms of communication cost, Pareto optimal solution
computed at that input operator (variable whichPOListPerInput
initialized in Line 17 and used in Lines 19–21). Thus, only one
combination of solutions from input operators is considered in
Greedy.

For Greedy, the do-while loops in Lines 18–37 and 22–35
are only accessed once per candidate site, since the isHeuristic
and isPlus flags are set to false. At their first execution (within
each do-while loop in Lines 22–35), Lines 27–31 consider if the
current 1-step plan satisfies the input constraints and provides a
new Pareto optimal solution. If not, Line 33 terminates the do-
while loop due to the naiveWasExpanded variable being false and
the candidate solution is discarded. If yes, we continuously try
in Lines 26–33 to expand this plan by considering NFA chains
that are longer by 1 step (as we did in Example 3). For each
plan that we consider to expand, there are multiple possible NFA
expansions (and, thus, the loop). If an NFA expansion provides a
Pareto optimal solution, then we start trying to further expand
the plan with this new NFA (pToExpand = p in Line 31 and
pToExpand.getNextNFAConfiguration() in Line 32). If a naive plan
helped generate a Pareto optimal solution, then all of the candi-
date site’s neighbors are inserted in the candidateQueue (Line 41),
given that they reside in the vicinity of the Candidate Centers
(isInTheVicinity in Line 40).

For Algorithm 3, based on the value of its two Boolean pa-
rameters (isHeuristic , isPlus), we first name and then explain the
versions of our algorithmic variants (besides Greedy which was
outlined above):
• Greedy: PaNORAMA(EDG, F, F)
• Greedy+: PaNORAMA(EDG, F, T)
• Heuristic: PaNORAMA(EDG, T, F)
• Heuristic+: PaNORAMA(EDG, T, T)

The number of combinations of candidate solutions considered
for the cost and latency of an operator is different among our
algorithmic variants:
• The Greedy+ variation keeps one Pareto optimal set per op-

erator, but checks all combinations of solutions from input
operators.

• The Heuristic variation maintains one Pareto optimal set per
placement of an operator. When computing candidate solutions
for op, Heuristic considers all combinations of placements of
its input operators (whichPOListPerInput), but processes just
one candidate solution (as the Greedy variation does) per such
combination.

• The Heuristic+ variation keeps one Pareto optimal set per
operator placement. To compute candidate solutions for op,
Heuristic+ considers all combinations of placements of its in-
put operators (whichPOListPerInput) and of candidate solutions
within each Pareto optimal set.
The previously explained differences between Greedy,

Greedy+, Heuristic and Heuristic+ correspond here to whether
the do-while loops in Lines 18–36 and 22–34 will be executed
just once, or multiple times. For Heuristic and Heuristic+, Line 36
essentially moves the processing to the next combination of
input Pareto optimal solutions (i.e., combinations of site loca-
tions) computed at input operators. Moreover, Lines 44–45 store
a Pareto optimal list per operator op and site location (thus,
keeping multiple lists per operator). Similarly, for the Plus(+)

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 11

variations, Line 34 considers the next combination of candidate
solutions from the Pareto optimal solutions computed at the
input operators of op.
Running Time Complexity. Let c, τ as defined in Section 5.1.
In the worst case, if the candidate centers are on the opposite
edges of the network, the Greedy algorithm may have to visit
most sites in the network, i.e., O (|S| · |Op| · T (c)) complexity. The
corresponding complexity for Heuristic is O

(
|S|c+1

· |Op| · T (c)
)
.

The complexity bound increases to O (τ c · |S| · |Op| · T (c)) for
Greedy+ and O ((|S| · τ)c · |S| · |Op| · T (c)) for Heuristic+.

6. System implementation

In this section we first discuss the necessary modifications to a
(distributed or centralized) CEP system so that it can support the
push–pull approach. A distributed CEP system can run on more
than one machines inside each site (e.g. combined with Apache
Storm [27,28,75]) and may execute each operator assigned to a
site in parallel across different cluster machines. We then de-
scribe the architecture that needs to encompass each CEP system
(installed at each site), its operation, and the required rewritings
that the optimizer performs. Our architecture has been designed
so that it is not dependent on the underlying CEP engine, since
it only requires logic and code to be added to places where an
event is produced inside a CEP system. Since all CEP systems are
built to detect events, such a place exists in all of them. The code
to be added inside a CEP engine includes: (a) Registering this list
of detected events that are initially at pull mode when receiving
the plan from the optimizer, and (b) Transmitting detected events
that may be pulled from remote sites outside the CEP engine for
caching.

The algorithms of Section 5 have been implemented within
the FERARI system [34,35], as part of a query optimizer running
on top of the IBM ProtonOnStorm [28] distributed CEP system.
ProtonOnStorm employs the concepts discussed in [2,12] as it
organizes the processing in an Event Processing Network (EPN)
composed of Event Processing Agents (EPAs) each dividing its
operation in filtering, matching and derivation steps (please refer
to [28] for further details). With respect to our previous dis-
cussion, when a CEP engine follows these concepts, the EDG
corresponds to the constructed EPN for the posed CEP query,
while CEP operators correspond to EPAs. Other CEP engines follow
different conceptualizations but can still be incorporated in FER-
ARI. For instance, for validation purposes, we have recently suc-
cessfully incorporated EsperOnStorm [27] in FERARI and applied
the same modifications ((a), (b) mentioned above) on top of it.
EsperOnStorm employs a different conceptualization composed
of a mixture of trees, automata and logic programming-related
concepts.

Each of the modules described below and shown in Fig. 6,
in [34,35] are encapsulated in bolts in Apache Storm topologies
run at individual sites. Thus, any CEP engine encapsulated in
a bolt can be directly supported by our architecture and this
is not even limited to Apache Storm. The exact same design
directly applies to popular streaming platforms including Apache
Heron [77], Apache Flink [78], Apache Ignite [79] among oth-
ers. The optimizer runs a plan generation algorithm and decides
which operators are assigned at each site. It then creates the
corresponding CEP logic for each site, after performing rewritings
mentioned later on in this section. The optimizer transmits the
CEP logic to each site, which is used as input in its CEP system.
Modifications to a CEP System. Fig. 6 depicts the architecture
for each site. In distributed (clustered) architectures, the CEP
engine used could be a distributed one (i.e., EsperOnStorm [27],
ProtonOnStorm [28] etc.). The CEP engine (at each site) executes
the CEP logic transmitted to it from the optimizer. Existing CEP

engines support communication with remote sites. We thus fo-
cus on the required modifications for supporting the push–pull
approach.

Pull messages need to occur only upon a state transition in a
NFA automaton. Upon each state transition, an event is emitted
inside the CEP engine. Upon seeing this event, a pull request is
also emitted from inside the CEP engine towards the Communi-
cation Module (this particular step involves adding code within
the CEP engine). This pull request is just a message/event that the
CEP system needs to emit. The pull request contains the name of
the pulled events (these are inputs to the next NFA state of the
specific operator and are simple to find from the CEP logic/file
that the optimizer transmitted) and specifies the time window
for which these events are pulled. These time windows depend
on the operator (AND, SEQ) and are explained promptly.

The remaining logic for the push–pull has been pushed to
the other components of our architecture. The Communication
Module is responsible for sending/receiving events or pull re-
quests from remote sites. The Communication module stores the
pull requests (the pulled intervals per event type) at the Time
Buffer Module, to ensure that two pull requests for the same
event will not overlap (thus, ensuring that the same event will
not be pulled twice). At the site pulling an event, multiple pull
requests for an event that is actively being pulled by a previous
request are aggregated and a single pull request for them (with
the maximum desired pull duration) is transmitted shortly before
the pull window expires. Received pulled data are forwarded to
the CEP engine. The Time Buffer Module also stores all derived
complex events that are input to other sites, but are by default
cached (unless they are pulled). This is essentially a buffer of
events and pull requests.

The optimizer, besides deciding which operators are placed
at which site, also performs important rewritings, explained be-
low. The events generated in a CEP system can have arbitrary
attributes, and these (along with how to compute their val-
ues) are included in the CEP logic fed into the CEP system. The
optimizer augments each event with an additional timestamp.
This realOccurrence timestamp for primitive events is set to the
time that they were produced. For complex events, its value is
the maximum among the realOccurence timestamps of all input
events to the operator that generated this event. This timestamp
represents the time that the complex event would have been de-
tected, if there was zero processing and communication latency.
All checks regarding the time of each event are performed on this
timestamp.
Operator-Specific Rewriting - AND operator. For an NFA state,
let tmin/tmax denote the minimum/maximum realOccurence times-
tamp of all detected events in the previous NFA states of the
operator. Then, the pull request when the NFA state is acti-
vated includes all detected events with OccurenceTime within the
window tmax − W ≤ tpull ≤ tmin + W .

Fig. 7 presents an example of the execution of the complex
event AND(e1, e2, e3) within W = 2.5 s and a 3-state plan
(e3 → e1 → e2). All depicted timestamps are realOccurence
timestamps. The site hosting the aforementioned plan/operator
waits for events of type e3. Upon detection of an event of type
e3, a pull request is issued upon the transition to the 2nd state of
the NFA that includes events of type e1. The pull request searches
for events of type e1 from event sources in our network with
realOccurence time: te3 − W ≤ te1 ≤ te3 + W . Upon detection
of an event of type e1 a pull request is issued for events of type
e2 with realOccurence time: te1 − W ≤ te2 ≤ te3 + W . Upon the
arrival of an e2 event within the requested time range, a complex
event is generated.
Operator-Specific Rewriting - SEQ operator. The sequence op-
erator is similar to the AND operator but additionally requires

12 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

Fig. 6. Site architecture. A CEP optimizer at a central site collects statistics from and prescribes the execution plan for the running CEP queries using our algorithms.
Each site is composed of a CEP Engine which is the heart of the intra-site architecture. It executes the CEP logic transmitted to it from the optimizer. A Time Buffer
Module is a cache of events and pull requests. A Communication Module is responsible for implementing the required communication according to the prescribed
push–pull strategy.

Fig. 7. AND(e1, e2, e3) with W = 2.5 s execution example.

Fig. 8. SEQ(e6, e7, e8) with W = 3 s execution example.

that the time ordering of the events will also uphold t1st event ≤

· · · ≤ tithevent . As such the SEQ operator is transformed into a
series of AND operators (1 per state of the NFA) and the transition
from one state to the next marks the pull request of the events
included in the next state. The pull request must simultaneously
conform with the time ordering of the events and with the
window constraints.

Fig. 8 presents an example for the execution of the complex
event SEQ (e6, e7, e8) within W = 3 sec and a 3-state plan
(e7 → e8 → e6). In this example, upon detection of an event
of type e7 a pull request is issued upon the transition to the 2nd
state of the NFA that includes events of type e8. The pull request

involves events of type e8 with realOccurrence time: te7 +W ≤ te8
that may occur in the future. Upon detection of an event of type e8
a pull request is issued for events of type e6 with realOccurrence
time: te8 − W ≤ te6 ≤ te7 .
Handling Latency in Event Detection. Up to this point we have
described which events are pulled in NFA state transitions. The
second parameter is how long will the operator wait for these
pulled events to arrive to determine if a CE has occurred. In
order to avoid missing complex events the optimizer enlarges the
plan’s window by adding the plan’s latency (up to the operator)
to the operator’s window size W . By doing so the system waits a
sufficient amount of time for delayed pulled input events. Please

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 13

note though that this window enlargement does not increase the
amount of pulled events — it just ensures that these will arrive
before the operator determines if a complex event (or a state
transition) has occurred.
Filter Conditions and Local CEs. In our event data model (Sec-
tion 3.1), we provide a definition that matters for our algo-
rithmic analysis. Apart from event occurrence and timestamp,
real CEP engines allow for defining attributes of events (PEs or
CEs). Contrary to CEP operators, attributes do not get evaluated,
but are calculated or get sampled from the environment. Hence,
attributes do not get explicitly involved in our algorithms, but
handling selections on attributes, i.e., based on filter conditions,
should be accounted for in practice. As an example, in a mobile
fraud detection scenario [34,35], an outgoing, long call to a pre-
mium location during night hours may produce a mobile fraud
event. The temporal window W interprets to ‘‘night hours’’. The
CEP operator is a thresholded aggregation operator summing up
evolving call durations and comparing the aggregated duration
with the specified threshold for characterizing a call as ‘‘long’’.
The ‘‘call duration’’ is the attribute that is calculated here, but
does not trigger an event per se. Should this attribute surpass
the posed threshold, the call is characterized as long and this is
the produced CE. Finally, there exist two selection criteria for the
input events. The first selection (filter) comes from the fact that
the attribute, say ‘‘call type’’, should equal ‘‘outgoing’’. The second
selection says that the attribute ‘‘call destination’’ should receive
a value from the set of locations that are considered as premium.

Each CEP operator may incorporate selections on attributes of
its input events of the form ei.attrj ⋚ value. The optimizer strips
these conditions from the operator itself and pushes them (as
simple filtering operators) to the sites that generate ei. Filters to
input CEs are pushed to one site, while filters to PEs are pushed
to all sites that observe them.

7. Experimental evaluation

Data Sets and Network. We use two real data sets from the stock
exchange and the telecommunications fields:

• Stock Trade Traces: We use a real data set (also used in [11,
13]) of stock trade traces [80] with 120000 event occurrences
along with their timestamps. The data set includes 10 different
primitive event types which correspond to actual companies’
stock names. The data set was analyzed and event frequencies
were calculated for each primitive event. For this data set, we
placed the PEs in our tested network configurations using a
methodology described shortly. This allowed us to perform a
detailed sensitivity analysis (Figs. 9, 10) for all tested algorithms.

• Telecommunication Data Set: The real data set from a large
Telecom provider [34,35] includes 160 Million, properly anony-
mized, mobile phone call records. The calls were monitored by
a network composed of ∼20000 antennas and the goal is to
detect mobile fraud incidents. The mobile fraud related primitive
events, also properly masked for security reasons, that are being
monitored involve: (PE1) Calls to premium locations, (PE2) Calls
with duration exceeding the threshold XDur, (PE3) Calls whose
monetary cost exceeds the threshold XCost, (PE4) Calls with
duration higher than (StDevDur stands for the standard deviation
of the call duration) Y · StDevDur times the average duration for
the user, and (PE5) Calls with cost higher (StDevCost stands for
the standard deviation of the call cost) than Y ·StDevCost times the
average monetary cost for the user. For company privacy issues,
we were not given the exact values used by the Telecom provider
of the aforementioned thresholds. We thus used (after discussions
with them) reasonable values of XDur = 60 min, XCost = 100
monetary units (all prepaid cards cause zero call cost), and Y
in Y · StDevDur , Y · StDevCost is 2. In this data set, each PE is

Table 2
EDG, network and optimization parameters.
Network related parameters

Name Measurement unit Range (Default)
of sites sites 10–20000 (2000)
Primitive event distribution diameter hops 10–100 (50)
Primitive event distribution Skew number 0.01–10 (0.01)

Event related parameters

Name Measurement unit Range (Default)
of complex events events 1–9 (3)
of shared primitive events events 0–3 (0)
Operator time window (W) sec 0.1–10 (2)
Latency limit factor number 1–4 (3)

associated with an antenna, which is more realistic, but allows
us for a more restrictive sensitivity analysis (Fig. 11).

• Real Network Configuration: a network composed of
∼20000 antennas, with approximate coordinates for each an-
tenna [34,35]. The network contains big groups of antennas
around big cities and smaller groups around smaller cities or vil-
lages. We were able to vary the number of the sites by randomly
sampling on the actual antennas.

The Real Network Configuration, paired with the Real Dataset
and query specifications constitutes a full scale real application
case study for our proposed approaches. To perform stress tests
on our techniques where we vary every possible network or event
related parameter (presented in Table 2 and analyzed below), we
also used the Stock Trade Traces over the real network assigning
event tuples to sites as analyzed below.
(a) Network Related Parameters: Given the overall frequency of
Primitive Events for the Stock Trade Trace dataset, an initial site is
picked at random as the Event Distribution Center (EDC) of each
PE. Starting from the EDC of a PE, a random walk takes place to
determine the sites that detect the particular PE and fuse part of
the overall PE frequency to these sites. The average number of
source sites for each PE is 10. We also vary the network locality
of this event fusion. The tunable parameters for performing this
process are (also see Table 2 describing the parameters of our
experiments): the PE Event Distribution Skew, which is how
much equal is the portion of the overall PE frequency that is
assigned to a site; and the PE Distribution Diameter, which is
the maximum distance (in hops) among sites in which each PE
appears.
(b) Event Related Parameters: Our query generator simulates
queries varying the number of CEs (# of Complex Events in Ta-
ble 2) and the time windows W used for the respective operators.
All parameters are explained in the sensitivity analysis experi-
ments where they are varied. All experiments were executed 100
times under the same random generator parameters.

Finally, the latency limit factor denotes the latency constraint
that is imposed in each case, as a multiple of the latency that
a centralized collection would incur. As we will see, large val-
ues lead to all PaNORAMA algorithms performing similarly
(i.e., Fig. 9), while smaller values close to 1 correspond to tight
latency constraints and help separate the performance of our
techniques.
Compared Candidates. We compare the following algorithms:
Baseline Approaches:
(a) Naive: This is a centralized processing (i.e., without in-network
placement) algorithm, which does not support push–pull. The
communication cost of all other algorithms will be expressed as
a fraction of the corresponding cost of this naive algorithm.
(b) Centralized Push–pull (CPP): The heuristic algorithm, pro-
posed in [4], applies a push–pull paradigm, but performs central
event data collection at a fixed site. In order to avoid placement

14 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

Fig. 9. Cost and quality sensitivity analysis for various network and data related parameters on Stock Data.

Fig. 10. Cost, Time and quality sensitivity analysis on various network, EDG and optimization related parameters.

Fig. 11. Mobile fraud detection case study.

bias, this site was randomly picked and, to be fair, our algo-
rithms also needed to send the resulting CEs, after the in-network
processing, to the same central site,
(c) Greedy In-Network placement without Push–pull (GRIN): This
is a greedy algorithm that performs in-network operator place-
ment, using our Greedy algorithm, but without supporting the
push–pull paradigm. Thus, GRIN is a variant of our techniques as
well.
(d) SBON [37]: We use the highly cited work of SBON [37], to
further (together with GRIN) exhibit the inefficiency of mere
distributed stream processing approaches in CEP settings and

the low potential of blended metrics such as network usage
(Section 2, Table 1). By design SBON does not admit Pareto
or constrained optimization, thus we focus on its communica-
tion performance and sensitivity to network related parameters
(Table 2, Fig. 9).
Optimal Algorithms: including the introduced Dynamic Program-
ming Algorithm (DP), for optimal solutions in the absence of
event sharing and the Exhaustive Search Algorithm (ES) for op-
timal solutions if shared events exist on the EDG. These algo-
rithms were examined in smaller scale experiments due to their
prohibitive time complexity.

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 15

PaNORAMA variations: Greedy, Greedy+, Heuristic and
Heuristic+ algorithmic variations described in Section 5.3, here-
after termed as GR, GR+, HEUR and HEUR+ respectively.
Metrics. The above candidates were compared using these met-
rics:
(i) Transmission Factor: Defined as the ratio among the com-
munication cost (messages/sec) of an algorithm over the com-
munication cost of naive central data collection (no in-network
placement and no push–pull). Lower values are preferable. Under
a pay-as-you-go network pricing model, this metric also provides
an indication of the pricing cost of our techniques, compared to
the naive algorithm.
(ii) Plan Computation Time: Average time a candidate algorithm
needs to be executed and output the plan for geo-distributed CEP.
Lower values are better.
(iii) Plan Discovery Rate: This metric is defined as the average
number of times that an algorithm discovers a solution, given a
latency constraint.
(iv) Proximity to Optimal: This is the fraction of the optimal
communication cost of DP or, under event sharing, ES over GR,
GR+, HEUR, HEUR+, using the same latency limit factor.

7.1. PaNORAMA sensitivity analysis

In Fig. 9 we evaluate all candidate algorithms using the Stock
Trade Traces data set. We note that in this figure, the default
value of the latency limit factor is 3, in which our PaNORAMA
techniques perform similarly. Different values of the latency limit
factor will be evaluated shortly. In subgraphs when two or more
candidates have negligible (indistinguishable) differences, we plot
just the worst of these candidates and merge their names to
create a single candidate (i.e., GR, GR+, HEUR, HEUR+), for en-
hanced graph readability. Additionally, since in these scalability
experiments we use a high, default network size of 2000 sites,
DP and ES are omitted due to their high time complexity.

Network fusion of events. In Fig. 9(a) we alter the PE dis-
tribution diameter. Lower diameter values translate to a smaller
distance among the sites where each PE is detected, making
in-network placement more effective (close to the sources). Con-
trary, larger values force in-network placement closer to a central
(across the distribution diameter) site, since the events are less
localized, which causes GRIN to perform worse. CPP by design
centralizes data at an apriori chosen site and its performance
is not affected by this parameter. Our algorithms, which com-
bine different placement and push–pull strategies in their search
space, achieve 8–10 times lower Transmission Factor compared
to CPP and up to 12 times compared to GRIN .

Consider the (total) number of times that a PE is observed
in the network. If this PE is not observed an equal number
of times at each site where it appears, then the skew of this
number of appearances is denoted as the PE Distribution Skew.
In Fig. 9(b) we depict the performance of all algorithms varying
this parameter. For very skewed distributions of each PE, GRIN
will place the operator near (or on) the site where the larger
part of PE frequency is left, making it more likely to make the
right in-network choice and causing its Transmission Factor to
decrease in Fig. 9(b). CPP remains relatively steady as it neglects
in-network placement. Still, our techniques offer 7 to 12 times
lower Transmission Factor than GRIN and 8 to 17 times lower
Transmission Factor than CPP .

In Figs. 9(a), 9(b), SBON follows GRIN ’s trends but appears
to exhibit the worst performance. This validates our claim in
Section 2 about GRIN being a best case representative for DSP
approaches. SBON fails to admit Pareto optimality, while instead
using a blended, network usage metric. This metric squares the
latency on communication links [37]. Thus, although SBON does

not directly admit latency constraints (it is tested without a la-
tency limit), it favors solutions of low latency, but also potentially
higher cost. This was consistent in other experiments and we,
thus, omit SBON from our remaining evaluation.

Fig. 9(c) demonstrates the impact of our push–pull optimiza-
tion, when varying the utilized window size of the CEP operators.
As the parameter is increased, the probability that a complex
event is detected increases as well. This means that with con-
tinuously increasing probability the input events that are initially
set to pull mode will need to be transmitted, thus minimizing
the benefits of the push–pull optimization (both in our algo-
rithms and in CPP , which may end up performing similarly to the
naive algorithm). This is why our algorithms start approaching
GRIN with higher values of these parameters. GRIN shows steady
behavior as it does not utilize the push–pull rationale.

7.2. Algorithmic differentiation analysis

In Fig. 10 we evaluate our algorithmic variations along with DP
and ES. We designed this set of experiments with network, event
and optimization related parameters that help differentiate our
proposed variants and illustrate their strengths and weaknesses.
For the default values of parameters that are not varied please
see Table 2.

Imposing latency constraints. Fig. 10(a) examines the Plan
Discovery Rate of the algorithms that do not fall in the op-
timal category under various Latency Limit Factors. Note that
our PaNORAMA algorithms prune the search space (i.e., do not
consider placing each operator at each site) and may end up with
no execution plan that satisfies the posed latency limit. As shown
in the figure, CPP , HEUR and HEUR+ can always come up with a
distributed execution plan (note though that this is not theoret-
ically guaranteed for our approaches), while the same happens
for GRIN for Latency Factors above 2. GR naturally exhibits the
lowest plan discovery rate, which is expected, as it maintains
and considers the fewest candidate solutions per operator. To
depict the quality (in terms of their communication cost) of the
plans discovered in Figs. 10(a), 10(b) depicts the Transmission
Factor for the same experiment. Algorithms that do not find
a solution in a particular run use the naive solution for that
run. As we decrease the value of the Latency Limit Factor, we
essentially restrict the length of the NFA chains of each operator,
thus limiting the number of its states and the amount of ‘‘pulling’’.
The expected behavior is that this will lead our algorithms to a
higher Transmission Factor, which justifies the behavior shown
in the figure. As the problem becomes more constrained, HEUR+
remains the algorithm of choice.

Variations’ Sensitivity. We have noticed that the quality of
the solutions of the PaNORAMA algorithms becomes more appar-
ent as the queries become more complex (i.e., the EDG contains
larger paths). In Fig. 10(c) we create an increasingly larger chain
of complex events (CEs), creating EDGs with more levels. To
achieve this, we created CEs (1 to 9, in the figure) that always
have 3 inputs. The bottom-most CE has as input 3 PEs. Any other
CE has as input 2 PEs and the CE at the immediately ‘‘lower’’
level of the EDG. This creates a chain of 1 to 9 CEs. In Fig. 10(c)
we confirmed our expectation that the discriminating factor in
the performance of our variations would be the use of the (+)
feature. In such EDGs, where each CE is input to the next, the best
plan of the kept lists is rarely the plan that minimizes the overall
Transmission Factor. Our variations that have the ability to check
all plans from the kept lists exhibit significant gains (up to 52%)
from the ones that do not (GR, HEUR) as the CE chain grows.

Plan Computation times, proximity to optimality and statis-
tical importance. In Fig. 10(d) we present the plan computation
times required by the algorithms in the optimal category DP , ES,

16 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

versus the other candidates. Due to the poor scalability of the
ES and the DP algorithm we restrict our experiment to 150 and
400 sites, respectively, for them. The plan computation time of
ES is more than 2 orders of magnitude higher than DP , which in
turn is from 160–700 times higher compared to the most costly
of the non-optimal algorithms. The GR, GR+ variations, which
examine a narrowed search space, require just a few milliseconds.
The cost of HEUR, HEUR+ increases by increasing the network
size as they maintain a Pareto optimal set per placement (site)
of an operator. Fig. 10(e) shows the proximity of our algorithmic
variations (computed as the ratio of the Transmission Factor of
the optimal algorithm to the Transmission Factor of each corre-
sponding variation) to the optimal solutions, in a scaled down
experiment of up to 400 sites. This ratio varied between 81%
and 97%, which shows that our algorithms, while much faster
than DP and ES, provide solutions with communication cost close
to the solution generated by the DP algorithm. To display the
statistical significance of our results, due to the random nature
of the event fusion, we conducted an experiment with 1000 runs
with the default configuration values. In Fig. 10(f) we can see
the boundaries of the algorithmic results, for the default config-
uration values, with more than 90% confidence. It can easily be
observed that GR, GR+, HEUR, HEUR+ all exhibit small deviation
from their average Transmission Factor, contrary to CPP and GRIN ,
thus demonstrating that their performance is more robust to
different parameter settings.

7.3. Mobile fraud detection case study

Imposing latency constraints. We now apply our proposed
algorithms on the set of telecommunication data, network setup
and application rules described at the beginning of this section.
In Fig. 11(a) we observe that with the exception of GR, which
however exhibits a rate > 80% in most cases, our algorithms
quickly approach 100% Discovery Rate even for Latency Limit Fac-
tors just above its minimum value of 1. Switching to Fig. 11(b), it
is evident that CPP can lead to plans that are up to 14 times worse
than our approaches, with GRIN also being up to 6 times worse.
From our approaches, HEUR+ exhibits the best Transmission
Factor, with its benefits, compared to our other algorithms, being
larger in more latency constrained setups, while GR+ also seems
as a good candidate, given its balance between communication
reduction and plan discovery rate. Please recall that in Fig. 10(d)
GR+ possesses negligible plan computation time. CPP and GRIN
may exhibit even lower plan computation time, but as shown in
Fig. 11(b) they produce significantly worse solutions.

Quality and scalability Since the rest of the parameters are
fixed by the application field, we can only vary the number of
participating sites of the telecommunication network. We next
perform a significantly smaller experiment with up to 400 sites
and check the proximity of our solutions to the ones generated
by the DP algorithm. In Fig. 11(c) we can see that our proposed
algorithms exhibit a 89%–94% proximity to the DP one. Finally, in
Fig. 11(d) the scalability of our proposed methods is illustrated
with increasing number of sites. CPP is up to 9 times worse,
while the GRIN approach is 3–4 times worse than the PaNORAMA
approach. Note that the number of PEs is only 5 in this real data
set, implying that fewer operators are placed and fewer gains are
expected, compared to the Stock Trade Traces data set.

7.4. Rules of thumb for PaNORAMA variations

Up to this point, the efficiency of our proposed algorithms
compared to other candidates has been validated in a variety
of setups and parameter settings. We conclude our evaluation
by providing a list of rules of thumb in accordance with the

main findings previously discussed in our experimentation. These
rules are intended to guide future adopters with respect to which
PaNORAMA variation is more suitable given the characteristics of
a studied application scenario.

• Strict Latency Constraints — High Plan Computation Time
Allowed: The HEUR+ variation is preferable when the appli-
cation poses strict network latency constraints, but it allows
higher plan computation times. The latter mainly depends on
the volatility of the streaming setting itself, i.e., how often
statistics change so that higher plan computation times do not
provide outdated solutions. In this particular occasion, HEUR+
can, practically always, provide an execution plan which yields
the best transmission factor among the PaNORAMA variations.

• Strict Latency Constraints — Lower Plan Computation Time
Required: The HEUR variation is preferable when the appli-
cation poses strict network latency constraints, but it is less
willing to wait for an execution plan to be computed. In such
a case, HEUR retains the ability to always provide an execution
plan and this plan is computed much faster (around 5 times
compared to HEUR+ in Fig. 10(d)). However, the transmission
factor of the computed plan may fall short compared to, not
only HEUR+ but also GR+.

• Mediocre Latency Constraints — Lower Plan Computation
Time Required: Based on the observations drawn through-
out our experimental study, the GR+ PaNORAMA variation
is not capable of providing an execution plan when severe
latency constraints are posed by the application. In case these
constraints are looser, however, GR+ quickly provides an ex-
ecution plan that is the second best in terms of transmission
factor among the proposed variations.

• Loose Latency Constraints — Minimum Plan Computation
Time Required: The GR PaNORAMA variation is useful in set-
tings where the fast computation of an execution plan is of
utmost important, i.e., in highly volatile streaming settings. This
is because the main characteristics of GR are that it surely
provides a plan only when the latency constraints are loose,
it possesses the lowest plan computation time and still outper-
forms other candidates proposed in the literature, such as GRIN ,
CPP or SBON .

8. Conclusions and future work

In this work we presented a novel approach for detecting
complex events in geographically distributed, streaming event
applications. Our work employs in-network CEP operator place-
ment along with incorporating the push–pull paradigm, in an
effort to reduce the communication cost while also controlling
network latency. Our proposed techniques vary from optimal (but
very time consuming) algorithms to fast and efficient greedy ones
that intuitively handle the reduction of the placement search
space. Additionally, at a systems level we elaborate on how many
existing CEP systems can be modified to support our algorithms.
Our experiments, focusing on real data sets and a real topology,
reveal the superiority of our approach compared to prior work.

There exist other optimization metrics that have been used
in the literature, which focus on the performance of algorithms
destined to operate on a single site. For instance, parallel CEP
approaches [12,16–21] aim at optimizing throughput and/or com-
putational latency at a single site. These techniques are orthog-
onal to ours. Besides, prior work comments that the maximum
processing rate that such centralized approaches can reach is net-
work bound [23]. Our work is devoted to loosening this network
bound, which will also have a positive effect on throughput and
latency within sites.

Our future work concentrates on more challenges encountered
in real-world settings where constraints beyond network latency

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 17

exist. In particular, intra-site capacity constraints related to CPU
utilization and memory consumption should also be taken into
consideration. For instance, if in-network placement assigns mul-
tiple heavy load CEP operators to a site, the memory or CPU
capacity of the site must be enough to carry out their evaluation,
otherwise the provided solution is not a feasible one. Our ongo-
ing work re-examines the Pareto front of possible solutions or
attempts to find solutions that were erroneously pruned because
they were dominated by the infeasible one. Moreover, there are
memory consumption versus network latency trade-offs due to
the fact that the push–pull application requires caching events
until they are pushed or get expired. Although in the real sce-
nario used in our evaluation these constraints and trade-offs
had only a minor effect, they may arise in resource constrained
environments such as sensor network settings.

Besides, network latency is not the only dimension that may
affect alignment with SLAs and QoS requirements. Network con-
gestion is another real-world aspect that affects QoS. The diffi-
culty in this case is that the in-network operator placement and
the push–pull application may cause themselves heavy traffic,
leading to network congestion. Extensions of our techniques will
account for network congestion by incorporating (inbound, out-
bound) bandwidth capacity limits per link during geo-distributed
CEP evaluation.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has received funding from the EU Horizon 2020
research and innovation program INFORE under grant agreement
No 825070.

Appendix. Communication cost & latency computation

Consider a solution provided by our algorithms which in-
cludes, for each operator Opi of the EDG, a placement at a network
site Sj and a prescribed push–pull strategy, expressed via a cor-
responding NFA, for evaluating the operator (see Section 3.2).
The question is how the communication cost of this operator is
formed. Before we formally present our cost calculation formulas,
we discuss the intuition behind them. The first factor to consider
is that all events of certain event types that are input to the oper-
ator may need to travel through the network to site Sj. Each such
event type is included in a state k of the prescribed NFA. There-
fore, each state k of the adopted NFA has a communication cost
which we term below as State Cost. This State (communication)
Cost is composed of (i) the amount (frequency) of, relevant to k,
events that are produced within a window interval W , (ii) the
times these events need to be re-transmitted while following the
routing paths (hops) of the network from the sites that produce
the events to Sj. The second factor that should be accounted for,
is that the events of a state k are pushed to Sj conditional upon
the occurrence of other events that are included in all previous
states of the NFA. Therefore, the aforementioned State Cost is not
always charged. It is charged when, withing W , all events of the
previous NFA states have occurred somewhere in the network.
This happens with a certain probability of reaching a point in W
at which the events of state k need to actually be pushed to Sj. We
term this probability as State Reachability Probability. The latter
probability multiplied by the State Cost quantifies the expected
communication cost of a particular NFA state. Summing up these

costs up to the final NFA state forms the overall communication
cost of the operator. Moreover, we need to account for NFA states
and, thus, event types that are shared among multiple operators
placed at the same site.

To formalize the above discussion, we define a numbering on
the possible NFAs with M ≥ 1 states and let A(Opi,M, µ) the
µth possible M−state NFA that is admissible by Opi. Let e ∈

A(Opi,M, µ, k) to denote that an event e ∈ Opi is input to a
particular state k ≤ M of the µth NFA admissible by Opi. Recall
that the OR and AGGREGATION operators have exactly 1 state,
while the AND and SEQ operators may have a maximum number
of steps equal to the number of input events. In this section,
for symbol uniformity, we abusively assume an identity operator
mapping PEs to themselves, i.e., Opa = a if a ∈ E.

The State Cost (SC), for a candidate placement at Sj ∈ S and
NFA (push–pull) alternative, is the event rate within W time units
triggering a push–pull step corresponding to state A(Opi,M, µ, k).
We use M ′, µ′ to denote the fact that the NFA participating in
the recursive formula may be of a different number of states and
numbering compared to NFA A(Opi,M, µ):
SC(Sj, A(Opi,M, µ, k))

=

∑
∀Opa ∈ A(Opi,M, µ, k),

∀Sb ∈ S : Opa ↦→Sb

hops(Sj, Sb)

·

∑
∀A(Opa,M ′, µ′, l) ∈

A(Opa,M ′, µ′)

SC(Sb, A(Opa,M ′, µ′, l)) · 2 · W

The above formula says that in order to compute the state cost
for Opi that has been placed at Sj, being evaluated using the
µth possible M−state NFA that is admissible by Opi, we do the
following: for every operator Opα (primitive or complex event)
that is input to the kth state of the NFA and is placed at site
Sb, we sum up the product of the hops in the minimum latency
path connecting Sj, Sb multiplied by the total state cost of the
NFA based on which Opα is evaluated at Sb. The latter is the
overall event rate of Opα stemming from Sb. Sb is unique for
operators (complex events) because we examine solutions that
place them at a particular site, but primitive events may originate
from multiple sites and therefore the ∀Sb ∈ S : Opa ↦→Sb in the
first summation. Having received events at previous NFA states,
the pull request will ask for events occurring W time units before
or after the already pushed events. This explains the 2 · W factor
above.

Notice that in case of an Opi receiving a single primitive
event Opa = a, we are going to (virtually) have a 1-state NFA
triggered with the frequency of the PE. Then, the first summation
will simply perform an addition over all sites that receive PE
a. The subsequent summation, because we have a 1-state NFA,
will reduce to f (a, Sb). Therefore, overall we get a summation of
hops(Sj, Sb) · f (a, Sb) terms for all sites where Opa = a appears,
i.e., ∀Sb ∈ S : Opa ↦→Sb. This is equivalent to the hoped frequency
for host site Sj, hf (a, Sj) as defined in Section 4.1.

The State Reachability Probability (SRP) is the probability
of reaching state A(Opi,M, µ, k) of a given NFA. This is a func-
tion of the frequency of the event(s) that activate the state
A(Opi,M, µ, k) (in case of NFA states triggered by other operators
— CEs this entails that they should reach their final state), as well
as the frequency of events that are supposed to have activated
all previous NFA states, i.e., {A(Opi,M, µ,m)}m<k, within W time
units:
SRP(A(Opi,M, µ, k))

=

∑
∀Opl∈A(Opi,M,µ,k)

SRP(A(Opl,M ′, µ′,M ′))

·

∏
∀Opa∈

⋃k−1
m=1 A(Opi,M,µ,m)

SRP(A(Opa,M ′′, µ′′,M ′′)) · W

18 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

Notice that in case of a PE, where we (virtually) have a 1-
state NFA that is activated based on the event arrival rate, SRP
trivially reduces to F (a), i.e., the global frequency of PE Opa = a
(Section 4.1). Moreover, in case an event is shared by a set of op-
erators assigned to Sj, it will simultaneously appear on transition
edges of multiple NFAs. In this case the state will be activated if it
is activated in at least one NFA. For simplicity, we assume that in
case states in NFAs of different operators share at least one input
event, A(Opi,M, µ, k) is shared in its entirety. Therefore, the SRP
for shared event inputs, termed SSRP(Sj, A(Opi,M, µ, k)), among
operators simultaneously placed on site Sj ∈ S, will be given (we
only describe the rationale of calculation to avoid cumbersome
formulas) by 1−

∏
(1−βl) where βl the SRP in any NFA examined

at Sj that includes that state. For communication cost calculation
we further need Srd(Sj, A(Opi,M, µ, k)) to denote the degree of
sharing of an examined state at site Sj.

Communication Cost. The cost for a particular Opi being
placed at Sj ∈ S and executed based on a particular push–pull
strategy (NFA) is given by:

csµi,j.cost =

∑
∀A(Opi,M, µ, k)
∈ A(Opi,M, µ)

SC(Sj, A(Opi,M, µ, k))
Srd(Sj, A(Opi,M, µ, k))

· SSRP(Sj, A(Opi,M, µ, k))

Division by Srd is required to charge the cost of shared operators
only once, upon being co-located at Sj. In case of absence of
shared events, Srd(Sj, A(Opi,M, µ, k)) = 1 and
SSRP(Sj, A(Opi,M, µ, k)) = SRP(A(Opi,M, µ, k)).

Network Latency. Again, consider a solution provided by our
algorithms which includes, for each operator Opi of the EDG,
a placement at a network site Sj and a prescribed push–pull
strategy, expressed via a corresponding NFA. Each state k of the
prescribed NFA receives a number of input event types and the
network latency of that state is the maximum among the laten-
cies of its input events. This is because, for k to be activated given
that its input events have occurred somewhere in the network, in
the worst case, it needs to wait an amount of time proportional
to the latency of the slowest network path followed by input
data of an event type. The aforementioned maximum latency, on
the other hand, is formed by the time the pull request needs to
reach sites with relevant data and an equivalent amount of time
required for Sj to receive a reply with relevant, to the pull request,
events. In addition, the overall latency up to the point of reaching
k incorporates the latency of the previous state or, if the input
to k is a CE produced by another operator of higher latency, the
latency added by that operator for reaching the final state of its
own NFA. Given these, the latency of the candidate solution is the
latency accumulated at the final state of the NFA prescribed for
Opi, placed at Sj.

More formally, the latency for a particular Opi being placed
at Sj ∈ S and executed based on a particular push–pull strategy
(NFA) is computed as follows. LetMLjb(Opa) express an aggregated
latency value for event Opa, defined as :

MLjb(Opa) =

{ ∑
∀(Sφ ,Sψ)∈mℓpathj−b

ℓφ−ψ ,Opa ∈ Op
mpℓa,j ,Opa = a ∈ E

The above holds due to the fact that in case of Opa = a,
i.e., a ∈ E, the PE may be produced in a variety of sources.
Then, site Sj that gathers relevant events needs to wait an amount
of time proportional to the maximum of the latency among the
sources (more than one Sbs). This is mpℓa,j (Section 4.1). In case
of Opa ∈ Op, the CE is derived from a single source where the
respective CEP operator has been placed and, thus, the charged

latency involves the minimum latency path between sites Sj, Sb
derived via mℓpathj−b (Section 4.1).

csµi,j.lat = Lat(Sj, A(Opi,M, µ,M)) = max
∀Opa ∈ A(Opi,M, µ,M),

Sb ∈ S : Opa ↦→ Sb{
MLjb(Opa) + max{Lat(Sb, A(Opa,M ′, µ′,M ′)),
MLjb(Opa) + Lat(Sj, A(Opi,M, µ,M − 1))}

}
Notice that Lat(Sb, A(Opa, M ′, µ′,M ′))= 0 for PEs: Opa = a
for a ∈ E since their (virtually) 1-state NFA reaches its final
state simultaneously with the PEs occurrence. Moreover, we note
that Lat(Sj, A(Opi,M, µ, 1)) involves a maximum of MLjb(Opa) +

Lat(Sb, A(Opa,M ′, µ′,M ′)) for event types set in push mode (first
NFA state), since there is neither a pull request causing latency
while being sent nor a previous NFA state. Those aside, the first
MLjb accounts for the latency of sending the pull request. If Opa
is indeed an operator outputting CEs, Lat(Sb, A(Opa,M ′, µ′,M ′))
expresses the latency required for Opa to reach its final state M ′.
MLjb(Opa) + Lat(Sj, A(Opi,M, µ,M − 1)) expresses the latency
of reaching the previous state (M − 1) of Opi and receiving
the response from Sb to Sj for Opa. It is trivial to see that if
Lat(Sb, A(Opa,M ′, µ′,M ′)) > MLjb(Opa) + Lat(Sj, A(Opi,M, µ,M −

1)) then Lat(Sb, A(Opa, M ′, µ′,M ′)) is the latency factor being
charged because, until state M ′ is reached, A(Opi,M, µ,M−1) has
been activated and the pull request has been sent. On the other
hand, if Lat(Sb, A(Opa,M ′, µ′,M ′)) ≤ MLjb(Opa) +

Lat(Sj, A(Opi,M, µ,M − 1)) then the term MLjb(Opa) +

Lat(Sj, A(Opi,M, µ,M − 1)) is the latency being charged because
A(Opa,M ′, µ′,M ′) has been activated and awaits for the pull
request from Sj.

References

[1] M. Dayarathna, S. Perera, Recent advancements in event processing, ACM
Comput. Surv. 51 (2) (2018) 33.

[2] O. Etzion, P. Niblet, Event Processing in Action, Manning Publications Co,
2011.

[3] N. Giatrakos, A. Artikis, A. Deligiannakis, M. Garofalakis, Complex event
recognition in the big data era, Proc. VLDB Endow. 10 (12) (2017)
1996–1999, http://dx.doi.org/10.14778/3137765.3137829.

[4] M. Akdere, U. Cetintemel, N. Tatbul, Plan-based complex event detection
across distributed sources, in: Proceedings of VLDB, 2008.

[5] Y. Mei, S. Madden, Zstream: A cost-based query processor for adaptively
detecting composite events, in: Proceedings of SIGMOD, 2009.

[6] I. Flouris, N. Giatrakos, A. Deligiannakis, M. Garofalakis, M. Kamp, M. Mock,
Issues in complex event processing: Status and prospects in the big data
era, J. Syst. Softw. 127 (2017) 217–236.

[7] A. Adi, O. Etzion, Amit - the situation manager, VLDB J. 13 (2) (2004)
177–203.

[8] R.S. Barga, J. Goldstein, M. Ali, M. Hong, Consistent streaming through
time: A vision for event stream processing, in: Proceedings of 3rd Biennial
Conference on Innovative DataSystems Research, CIDR, 2007.

[9] A. Demeers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, W. White,
Cayuga: A general purpose event monitoring system, in: Proceedings of
3rd Biennial Conference on Innovative DataSystems Research, CIDR, 2007.

[10] O. Poppe, C. Lei, E.A. Rundensteiner, D. Dougherty, Context-aware event
stream analytics, in: Proceedings of the 19th International Conference on
Extending Database Technology, EDBT, EDBT ’16, 2016, pp. 413–424, URL
https://openproceedings.org/2016/conf/edbt/paper-112pdf.

[11] Y. Qi, L. Cao, M. Ray, E.A. Rundensteiner, Complex event analytics: Online
aggregation of stream sequence patterns, in: Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’14,
ACM, New York, NY, USA, 2014, pp. 229–240, URL http://doi.acm.org/
101145/25885552593684.

[12] E. Rabinovich, O. Etzion, A. Gal, Pattern rewriting framework for event
processing optimization, in: Proceedings of the 5th ACM International Con-
ference on Distributed Event-Based System, DEBS ’11, ACM, New York, NY,
USA, 2011, pp. 101–112, URL http://doi.acm.org/101145/20022592002277.

[13] M. Ray, C. Lei, E.A. Rundensteiner, Scalable pattern sharing on event
streams*, in: Proceedings of the 2016 International Conference on Manage-
ment of Data, SIGMOD ’16, ACM, New York, NY, USA, 2016, pp. 495–510,
URL http://doi.acm.org/101145/28829032882947.

http://refhub.elsevier.com/S0306-4379(19)30494-6/sb1
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb1
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb1
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb2
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb2
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb2
http://dx.doi.org/10.14778/3137765.3137829
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb6
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb6
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb6
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb6
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb6
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb7
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb7
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb7
https://openproceedings.org/2016/conf/edbt/paper-112pdf
http://doi.acm.org/101145/25885552593684
http://doi.acm.org/101145/25885552593684
http://doi.acm.org/101145/25885552593684
http://doi.acm.org/101145/20022592002277
http://doi.acm.org/101145/28829032882947

I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442 19

[14] D. Wang, E.A. Rundensteiner, R.T. Ellison III, Active complex event pro-
cessing over event streams, Proc. VLDB Endow. 4 (10) (2011) 634–645,
http://dx.doi.org/10.14778/2021017.2021021.

[15] E. Wu, Y. Diao, S. Rizvi, High performance complex event processing over
streams, in: Proceedings of SIGMOD, 2006.

[16] G. Cugola, A. Margara, Complex event processing with t-rex, J. Syst. Softw.
85 (8) (2012) 1709–1728, http://dx.doi.org/10.1016/j.jss.2012.03.056.

[17] G. Cugola, A. Margara, Low latency complex event processing on parallel
hardware, J. Parallel Distrib. Comput. 72 (2) (2012) 205–218.

[18] M. Hirzel, Partition and compose: Parallel complex event processing, in:
Proceedings of the 6th ACM International Conference on Distributed Event-
Based Systems, DEBS ’12, 2012, pp. 191–200, URL http://doi.acm.org/
101145/23354842335506.

[19] R. Mayer, C. Mayer, M.A. Tariq, K. Rothermel, Graphcep: Real-time data an-
alytics using parallel complex event and graph processing, in: Proceedings
of the 10th ACM International Conference on Distributed and Event-based
Systems, DEBS ’16, 2016, pp. 309–316.

[20] R. Mayer, M.A. Tariq, K. Rothermel, Minimizing communication overhead
in window-based parallel complex event processing, in: Proceedings of
the 11th ACM International Conference on Distributed and Event-Based
Systems, DEBS ’17, ACM, New York, NY, USA, 2017, pp. 54–65, URL http:
//doi.acm.org/101145/30937423093914.

[21] N.P. Schultz-Møller, M. Migliavacca, P. Pietzuch, Distributed complex event
processing with query rewriting, in: Proceedings of the Third ACM Inter-
national Conference on Distributed Event-Based Systems, DEBS ’09, ACM,
New York, NY, USA, 2009, pp. 4:1–4:12, URL http://doi.acm.org/101145/
16192581619264.

[22] L. Woods, J. Teubner, G. Alonso, Complex event detection at wire speed
with fpgas, Proc. VLDB Endow. 3 (1–2) (2010) 660–669.

[23] E. Zeitler, T. Risch, Massive scale-out of expensive continuous queries, Proc.
VLDB Endow. 4 (11) (2011) 1181–1188.

[24] S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, Tinydb: an acquisi-
tional query processing system for sensor networks, ACM Trans. Database
Syst. 30 (2005) 122–173.

[25] Microsoft, Azure Stream Analytics, https://azure.microsoft.com/en-us/
services/stream-analytics/, [Online]. (Accessed 24-November-2018).

[26] Microsoft, Bandwidth Pricing Details, https://azure.microsoft.com/en-us/
pricing/details/bandwidth/, [Online]. (Accessed 24-November-2018).

[27] Esperonstorm, https://github.com/tomdz/storm-esper.
[28] Ibm proactive technology online on storm, https://github.com/ishkin/

Proton/.
[29] Microsoft, Azure HDInsight Documentation, https://docs.microsoft.com/en-

us/azure/hdinsight/, [Online]. (Accessed 24-November-2018).
[30] Google, Google Cloud Platform Pricing Calculator, https://cloud.google.com/

products/calculator/, [Online]. (Accessed 24-November-2018).
[31] Google, Stream Analytics Solutions, https://cloud.google.com/solutions/big-

data/stream-analytics/, [Online]. (Accessed 24-November-2018).
[32] WSO2, WSO2 Complex Event Processor, https://wso2.com/products/

complex-event-processor/, [Online]. (Accessed 24-November-2018).
[33] Amazon, Cloud Services Pricing – Amazon Web Services (AWS), https:

//aws.amazon.com/pricing/services/, [Online]. (Accessed 24-November-
2018).

[34] I. Flouris, V. Manikaki, N. Giatrakos, A. Deligiannakis, M. Garofalakis, et al.,
Complex event processing over streaming multi-cloud platforms: The ferari
approach: Demo, in: Proceedings of the 10th ACM International Conference
on Distributed and Event-based Systems, DEBS ’16, 2016, pp. 348–349.

[35] I. Flouris, V. Manikaki, N. Giatrakos, A. Deligiannakis, M. Garofalakis, e. al,
Ferari: A prototype for complex event processing over streaming multi-
cloud platforms, in: Proceedings of the 2016 International Conference on
Management of Data, SIGMOD ’16, 2016, pp. 2093–2096.

[36] J. Chen, L. Ramaswamy, D.K. Lowenthal, S. Kalyanaraman, Comet: Decen-
tralized complex event detection in mobile delay tolerant networks, in:
2012 IEEE 13th International Conference on Mobile Data Management,
IEEE, 2012, pp. 131–136.

[37] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, M. Seltzer,
Network-aware operator placement for stream-processing systems, in:
Proceedings of the 22Nd International Conference on Data Engineering,
ICDE ’06, IEEE Computer Society, Washington, DC, USA, 2006, p. 49, http:
//dx.doi.org/10.1109/ICDE.2006.105.

[38] V. Cardellini, V. Grassi, F. Lo Presti, M. Nardelli, Optimal operator placement
for distributed stream processing applications, in: Proceedings of the 10th
ACM International Conference on Distributed and Event-Based Systems,
DEBS ’16, ACM, New York, NY, USA, 2016, pp. 69–80, URL http://doi.acm.
org/101145/29332672933312.

[39] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle, K.-L. Wu,
L. Fleischer, Soda: An optimizing scheduler for large-scale stream-based
distributed computer systems, in: Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware, Springer-Verlag New York, Inc.,
2008, pp. 306–325.

[40] P.R. Pietzuch, B. Shand, J. Bacon, A framework for event composition
in distributed systems, in: Proceedings of the ACM/IFIP/USENIX 2003
International Conference on Middleware, Middleware ’03, 2003, pp. 62–82,
URL http://dl.acm.org/citation.cfm?id=15159151515921.

[41] B. Schilling, B. Koldehofe, K. Rothermel, Efficient and distributed rule
placement in heavy constraint-driven event systems, in: Proceedings of
the 2011 IEEE International Conference on High Performance Computing
and Communications, HPCC ’11, 2011, pp. 355–364, http://dx.doi.org/10.
1109/HPCC.2011.53.

[42] Y. Ahmad, U. Çetintemel, Network-aware query processing for stream-
based applications, in: Proceedings of the Thirtieth International Confer-
ence on Very Large Data Bases, vol. 30, VLDB ’04, VLDB Endowment, 2004,
pp. 456–467.

[43] B. Gedik, H. Andrade, K.-L. Wu, P.S. Yu, M. Doo, Spade: the system s
declarative stream processing engine, in: Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, ACM, 2008,
pp. 1123–1134.

[44] G.G. Koch, B. Koldehofe, K. Rothermel, Cordies: Expressive event correlation
in distributed systems, in: Proceedings of the Fourth ACM International
Conference on Distributed Event-Based Systems, DEBS ’10, 2010, pp. 26–37,
http://dx.doi.org/10.1145/1827418.1827424.

[45] G. Li, H.-A. Jacobsen, Composite subscriptions in content-based pub-
lish/subscribe systems, in: Proceedings of the ACM/IFIP/USENIX 2005
International Conference on Middleware, Middleware ’05, 2005, pp.
249–269, URL http://dl.acm.org/citation.cfm?id=15158901515903.

[46] V. Kumar, B.F. Cooper, K. Schwan, Distributed stream management using
utility-driven self-adaptive middleware, in: Autonomic Computing, 2005
ICAC 2005 Proceedings. Second International Conference on, IEEE, 2005,
pp. 3–14.

[47] S. Rizou, Concepts and algorithms for efficient distributed processing
of data streams, University of Stuttgart. http://dx.doi.org/10.18419/opus-
3209.

[48] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, I.
Stoica, Low latency geo-distributed data analytics, in: Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication,
SIGCOMM ’15, ACM, New York, NY, USA, 2015, pp. 421–434, URL http:
//doi.acm.org/101145/27859562787505.

[49] A. Rabkin, M. Arye, S. Sen, V.S. Pai, M.J. Freedman, Aggregation and
degradation in jetstream: Streaming analytics in the wide area, in: 11th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 14, USENIX Association, Seattle, WA, 2014, pp. 275–288, URL https://
www.usenix.org/conference/nsdi14/technical-sessions/presentation/rabkin.

[50] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherniack, J.-
H. Hwang, W. Lindner, A.S. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y.
Xing, S. Zdonik, The design of the borealis stream processing engine, in:
Proceedings of the Conference on Innovative DataSystems Research, CIDR,
2005.

[51] M. Balazinska, H. Balakrishnan, M. Stonebraker, Contract-based load man-
agement in federated distributed systems, in: Proceedings of the 1st
Conference on Symposium on Networked Systems Design and Implemen-
tation, vol. 1, NSDI’04, USENIX Association, Berkeley, CA, USA, 2004, p. 15,
URL http://dl.acm.org/citation.cfm?id=12511751251190.

[52] A. Chatzistergiou, S.D. Viglas, Fast heuristics for near-optimal task allo-
cation in data stream processing over clusters, in: Proceedings of the
23rd ACM International Conference on Conference on Information and
Knowledge Management, CIKM ’14, ACM, New York, NY, USA, 2014, pp.
9–1588, URL http://doi.acm.org/101145/26618292661882.

[53] X. Gu, P.S. Yu, K. Nahrstedt, Optimal component composition for scal-
able stream processing, in: Distributed Computing Systems, 2005 ICDCS
2005 Proceedings. 25th IEEE International Conference on, IEEE, 2005, pp.
773–782.

[54] M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, M.J. Franklin, Flux: An
adaptive partitioning operator for continuous query systems, in: Data
Engineering, 2003 Proceedings. 19th International Conference on, IEEE,
2003, pp. 25–36.

[55] Y. Zhou, B.C. Ooi, K.-L. Tan, J. Wu, Efficient dynamic operator placement
in a locally distributed continuous query system, in: OTM Confederated
International Conferences on the Move to Meaningful Internet Systems,
Springer, 2006, pp. 54–71.

[56] E. Kalyvianaki, W. Wiesemann, Q.H. Vu, D. Kuhn, P. Pietzuch, Sqpr:
Stream query planning with reuse, in: Proceedings of the 2011 IEEE 27th
International Conference on Data Engineering, ICDE ’11, IEEE Computer
Society, Washington, DC, USA, 2011, pp. 840–851, URL http://dx.doi.org/
10.1109/ICDE.20115767851.

[57] A. Vulimiri, C. Curino, P.B. Godfrey, T. Jungblut, J. Padhye, G. Vargh-
ese, Global analytics in the face of bandwidth and regulatory con-
straints, in: 12th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 15, USENIX Association, Oakland, CA, 2015,
pp. 323–336, URL https://www.usenix.org/conference/nsdi15/technical-
sessions/presentation/vulimiri.

http://dx.doi.org/10.14778/2021017.2021021
http://dx.doi.org/10.1016/j.jss.2012.03.056
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb17
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb17
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb17
http://doi.acm.org/101145/23354842335506
http://doi.acm.org/101145/23354842335506
http://doi.acm.org/101145/23354842335506
http://doi.acm.org/101145/30937423093914
http://doi.acm.org/101145/30937423093914
http://doi.acm.org/101145/30937423093914
http://doi.acm.org/101145/16192581619264
http://doi.acm.org/101145/16192581619264
http://doi.acm.org/101145/16192581619264
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb22
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb22
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb22
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb23
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb23
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb23
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb24
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb24
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb24
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb24
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb24
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/services/stream-analytics/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://github.com/tomdz/storm-esper
https://github.com/ishkin/Proton/
https://github.com/ishkin/Proton/
https://github.com/ishkin/Proton/
https://docs.microsoft.com/en-us/azure/hdinsight/
https://docs.microsoft.com/en-us/azure/hdinsight/
https://docs.microsoft.com/en-us/azure/hdinsight/
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/
https://cloud.google.com/products/calculator/
https://cloud.google.com/solutions/big-data/stream-analytics/
https://cloud.google.com/solutions/big-data/stream-analytics/
https://cloud.google.com/solutions/big-data/stream-analytics/
https://wso2.com/products/complex-event-processor/
https://wso2.com/products/complex-event-processor/
https://wso2.com/products/complex-event-processor/
https://aws.amazon.com/pricing/services/
https://aws.amazon.com/pricing/services/
https://aws.amazon.com/pricing/services/
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb36
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb36
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb36
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb36
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb36
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb36
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb36
http://dx.doi.org/10.1109/ICDE.2006.105
http://dx.doi.org/10.1109/ICDE.2006.105
http://dx.doi.org/10.1109/ICDE.2006.105
http://doi.acm.org/101145/29332672933312
http://doi.acm.org/101145/29332672933312
http://doi.acm.org/101145/29332672933312
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb39
http://dl.acm.org/citation.cfm?id=15159151515921
http://dx.doi.org/10.1109/HPCC.2011.53
http://dx.doi.org/10.1109/HPCC.2011.53
http://dx.doi.org/10.1109/HPCC.2011.53
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb42
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb42
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb42
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb42
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb42
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb42
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb42
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb43
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb43
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb43
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb43
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb43
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb43
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb43
http://dx.doi.org/10.1145/1827418.1827424
http://dl.acm.org/citation.cfm?id=15158901515903
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb46
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb46
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb46
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb46
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb46
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb46
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb46
http://dx.doi.org/10.18419/opus-3209
http://dx.doi.org/10.18419/opus-3209
http://dx.doi.org/10.18419/opus-3209
http://doi.acm.org/101145/27859562787505
http://doi.acm.org/101145/27859562787505
http://doi.acm.org/101145/27859562787505
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/rabkin
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/rabkin
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/rabkin
http://dl.acm.org/citation.cfm?id=12511751251190
http://doi.acm.org/101145/26618292661882
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb53
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb53
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb53
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb53
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb53
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb53
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb53
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb54
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb54
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb54
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb54
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb54
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb54
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb54
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb55
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb55
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb55
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb55
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb55
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb55
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb55
http://dx.doi.org/10.1109/ICDE.20115767851
http://dx.doi.org/10.1109/ICDE.20115767851
http://dx.doi.org/10.1109/ICDE.20115767851
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/vulimiri
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/vulimiri
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/vulimiri

20 I. Flouris, N. Giatrakos, A. Deligiannakis et al. / Information Systems 88 (2020) 101442

[58] G. Chatzimilioudis, A. Cuzzocrea, D. Gunopulos, N. Mamoulis, A novel
distributed framework for optimizing query routing trees in wireless
sensor networks via optimal operator placement, J. Comput. System Sci.
79 (3) (2013) 349–368.

[59] U. Srivastava, K. Munagala, J. Widom, Operator placement for in-network
stream query processing, in: Proceedings of the Twenty-Fourth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
ACM, PODS ’05, 2005, pp. 250–258, URL http://doi.acm.org/101145/
10651671065199.

[60] L. Ying, Z. Liu, D. Towsley, C.H. Xia, Distributed operator placement and
data caching in large-scale sensor networks, in: INFOCOM 2008 the 27th
Conference on Computer Communications. IEEE, IEEE, 2008, pp. 977–985.

[61] L. Amini, N. Jain, A. Sehgal, J. Silber, O. Verscheure, Adaptive Control
of Extreme-Scale Stream Processing Systems, in: Distributed Computing
Systems, 2006 ICDCS 2006 26th IEEE International Conference on, IEEE,
2006, p. 71.

[62] A. Benzing, B. Koldehofe, K. Rothermel, Efficient support for multi-
resolution queries in global sensor networks, in: Proceedings of the
5th International Conference on Communication System Software and
Middleware, ACM, 2011, p. 11.

[63] T. Repantis, X. Gu, V. Kalogeraki, Synergy: Sharing-aware component
composition for distributed stream processing systems, in: Proceedings
of the ACM/IFIP/USENIX 2006 International Conference on Middleware,
Springer-Verlag New York, Inc, 2006, pp. 322–341.

[64] F. Starks, V. Goebel, S. Kristiansen, T. Plagemann, Mobile distributed
complex event processing – ubi sumus? quo vadimus? in: Mobile Big Data,
Springer, 2018, pp. 147–180.

[65] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, R. Grimm, A catalog of stream
processing optimizations, ACM Comput. Surv. 46 (4) (2014) 46.

[66] N. Cipriani, M. Eissele, A. Brodt, M. Grossmann, B. Mitschang, Nexusds: a
flexible and extensible middleware for distributed stream processing, in:
Proceedings of the 2009 International Database Engineering & Applications
Symposium, ACM, 2009, pp. 152–161.

[67] M. Weidlich, H. Ziekow, A. Gal, J. Mendling, M. Weske, Optimizing event
pattern matching using business process models, IEEE Trans. Knowl. Data
Eng. 26 (11) (2014) 2759–2773.

[68] A.Y. Halevy, Answering queries using views: A survey, VLDB J. 10 (4) (2001)
270–294.

[69] A. Labrinidis, N. Roussopoulos, Balancing performance and data freshness
in web database servers, in: VLDB, 2003, pp. 393–404.

[70] L. Bright, A. Gal, L. Raschid, Adaptive pull-based policies for wide area data
delivery, ACM Trans. Database Syst. 31 (2) (2006) 631–671.

[71] V. Peralta, Data Freshness and Data Accuracy: a State of the Art, Instituto
de Computacion, Facultad de Ingenieria, Universidad de la Republica.

[72] A. Silberstein, J. Terrace, B.F. Cooper, R. Ramakrishnan, Feeding frenzy:
selectively materializing users’ event feeds, in: SIGMOD, 2010, pp.
831–842.

[73] J. Agrawal, Y. Diao, D. Gyllstrom, N. Immerman, Efficient pattern matching
over event streams, in: Proceedings of SIGMOD, 2008.

[74] Flink, https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.
html, [Online]. (Accessed 24-November-2018).

[75] WSO2, Creating a Storm Based Distributed Execution Plan, https:
//docs.wso2.com/display/CEP410/Creating+a+Storm+Based+Distributed+
Execution+Plan, [Online]. (Accessed 24-November-2018).

[76] O. Poppe, C. Lei, S. Ahmed, E.A. Rundensteiner, Complete event trend
detection in high-rate event streams, in: Proceedings of the 2017 ACM
International Conference on Management of Data, ACM, 2017, pp. 109–124.

[77] Heron, https://apache.github.io/incubator-heron/docs/migrate-storm-to-
heron/, [Online]. (Accessed 24-November-2018).

[78] Flink, https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/libs/
storm_compatibility.html, [Online]. (Accessed 24-November-2018).

[79] Ignite, https://apacheignite-mix.readme.io/v2.7/docs/storm-streamer, [On-
line]. (Accessed 24-November-2018).

[80] I. inetats, stock trade traces., http://davis.wpi.edu/dsrg/stockData/
eventstream3.txt, [Online]. (Accessed 24-November-2018).

http://refhub.elsevier.com/S0306-4379(19)30494-6/sb58
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb58
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb58
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb58
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb58
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb58
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb58
http://doi.acm.org/101145/10651671065199
http://doi.acm.org/101145/10651671065199
http://doi.acm.org/101145/10651671065199
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb60
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb60
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb60
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb60
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb60
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb61
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb61
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb61
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb61
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb61
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb61
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb61
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb62
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb62
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb62
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb62
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb62
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb62
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb62
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb63
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb63
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb63
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb63
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb63
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb63
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb63
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb64
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb64
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb64
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb64
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb64
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb65
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb65
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb65
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb66
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb66
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb66
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb66
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb66
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb66
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb66
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb67
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb67
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb67
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb67
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb67
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb68
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb68
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb68
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb70
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb70
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb70
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/libs/cep.html
https://docs.wso2.com/display/CEP410/Creating+a+Storm+Based+Distributed+Execution+Plan
https://docs.wso2.com/display/CEP410/Creating+a+Storm+Based+Distributed+Execution+Plan
https://docs.wso2.com/display/CEP410/Creating+a+Storm+Based+Distributed+Execution+Plan
https://docs.wso2.com/display/CEP410/Creating+a+Storm+Based+Distributed+Execution+Plan
https://docs.wso2.com/display/CEP410/Creating+a+Storm+Based+Distributed+Execution+Plan
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb76
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb76
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb76
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb76
http://refhub.elsevier.com/S0306-4379(19)30494-6/sb76
https://apache.github.io/incubator-heron/docs/migrate-storm-to-heron/
https://apache.github.io/incubator-heron/docs/migrate-storm-to-heron/
https://apache.github.io/incubator-heron/docs/migrate-storm-to-heron/
https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/libs/storm_compatibility.html
https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/libs/storm_compatibility.html
https://ci.apache.org/projects/flink/flink-docs-release-1.7/dev/libs/storm_compatibility.html
https://apacheignite-mix.readme.io/v2.7/docs/storm-streamer
http://davis.wpi.edu/dsrg/stockData/eventstream3.txt
http://davis.wpi.edu/dsrg/stockData/eventstream3.txt
http://davis.wpi.edu/dsrg/stockData/eventstream3.txt

	Network-wide complex event processing over geographically distributed data sources
	Introduction
	Related work
	Overview and comparative analysis
	Other related work: Push–pull paradigm and beyond

	Preliminaries
	Optimization problem input
	The push–pull rationale

	Problem definition
	Statistics and candidate solutions
	Formal PECOP problem definition

	Plan generation algorithms
	The dynamic programming algorithm
	Event sharing case: Exhaustive search
	PaNORAMA: Push–pull in-network plan placement algorithm

	System implementation
	Experimental evaluation
	PaNORAMA sensitivity analysis
	Algorithmic differentiation analysis
	Mobile fraud detection case study
	Rules of thumb for PaNORAMA variations

	Conclusions and future work
	Declaration of competing interest
	Acknowledgments
	Appendix. Communication Cost & Latency Computation
	References

