
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Reconfigurable Logic-Based Real-Time
Automatic Video Calibration and

Processing to Detect Holes in Aquaculture
Nets.

Author:
Eirini Ntafi

Thesis Committee:
Prof. Apostolos DOLLAS

Prof. Michael ZERVAKIS

Dr. Nikolaos PAPANDROULAKIS (HCMR)

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

22 November, 2022

https://www.tuc.gr/
http://example.com/
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=289&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.ece.tuc.gr/index.php?id=4531&tx_tuclabspersonnel_list%5Bperson%5D=294&tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List
https://www.hcmr.gr/en/papandroulakis-nikos/
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Reconfigurable Logic-Based Real-Time Automatic Video Calibration and
Processing to Detect Holes in Aquaculture Nets.

by Eirini Ntafi

As Computer Vision technology is developing more and more in the last
decade, the areas of application expand to many research sectors, some of
which are for underwater applications, such as in aquaculture. The main
goal of this thesis was to create an embedded system that detects defective
holes in aquaculture nets from underwater videos in various realistic condi-
tions. First, we evaluate an embedded system that is already build against
new video data that were taken in more realistic conditions, including ma-
rine fouling on the nets and fish in the background; such conditions were
never tested before. We created a classification system according to the spe-
cific characteristics and problems that we identified as common in the videos.
Subsequently we improve the detection capabilities of the system, either by
using parameter calibration, or by adding an extra logic block in the existing
system. After testing, the new system resulted on average x6 times better re-
sults over a broad range of realistic videos, which with the previous system
were not detected at all. The software application was developed with MAT-
LAB and the hardware design block was created using Vitis Unified Platform
software (targeting the Alveo U50 Card). In conclusion, the system was im-
proved to work on more realistic underwater conditions and addresses some
of the limitations of the previous system.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Reconfigurable Logic-Based Real-Time Automatic Video Calibration and
Processing to Detect Holes in Aquaculture Nets.

by Eirini Ntafi

Καθώς η τεχνολογία Computer Vision αναπτύσσεται όλο και περισσότερο την
τελευταία δεκαετία, οι τομείς εφαρμογής επεκτείνονται σε πολλούς ερευνητικούς

τομείς, ορισμένοι από τους οποίους αφορούν υποβρύχιες εφαρμογές, όπως στην

υδατοκαλλιέργεια. Ο κύριος στόχος αυτής της διπλωματικής εργασίας ήταν η δη-

μιουργία ενός ενσωματωμένου συστήματος που ανιχνεύει ελαττωματικές τρύπες

σε δίχτυα υδατοκαλλιέργειας από υποβρύχια βίντεο σε διάφορες ρεαλιστικές συν-

θήκες. Αρχικά, αξιολογούμε ένα ενσωματωμένο σύστημα που έχει ήδη αναπτυχθεί

στο Πολυτεχνείο Κρήτης με βάση νέα δεδομένα βίντεο που έχουν ληφθεί σε πιο ρε-

αλιστικές συνθήκες, συμπεριλαμβανομένων θαλάσσιων ρύπων(φύκια) στα δίχτυα

και ψαριών στο παρασκήνιο, που δεν είχαν δοκιμαστεί ποτέ πριν. Δημιουργήσαμε

ένα σύστημα ταξινόμησης σύμφωνα με τα συγκεκριμένα χαρακτηριστικά και προ-

βλήματα που εντοπίσαμε ως κοινά στα βίντεο. Στη συνέχεια τα βελτιώνουμε είτε

χρησιμοποιώντας βαθμονόμηση παραμέτρων, είτε προσθέτοντας επιπλέον λογική

στο υπάρχον σύστημα. Μετά τη δοκιμή, το νέο σύστημα οδήγησε σε επιτυχία κατά

μέσο όσο 6 φορές βελτίωση πάνω σε ρεαλιστικά βίντεο για τα οποία το προηγο-

ύμενο σύστημα είχε πολύ χαμηλά ποσοστά επιτυχίας. Η εφαρμογή λογισμικού

αναπτύχθηκε με το MATLAB ενώ το μπλοκ σχεδιασμού υλικού δημιουργήθηκε
χρησιμοποιώντας το λογισμικό Vitis Unified Software Platform (στοχεύοντας

την κάρτα Alveo U50). Συμπερασματικά, το σύστημα βελτιώθηκε για να λει-
τουργεί σε πιο ρεαλιστικές υποβρύχιες συνθήκες και να εξελίξει το προηγούμενο

σύστημα αντιμετωπίζοντας κάποιους από τους περιορισμούς του.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

vii

Acknowledgements
First of all I would like to express my sincere gratitude to my advisor, Prof.
Apostolos Dollas, for his guidance through every step of this thesis’ process.
His trust in me and his valuable advice made this thesis possible and helped
me grow both personally and academically.

Furthermore, I would like to thank Dr. Nikolaos Papandroulakis and the
Hellenic Centre for Marine Research (HCMR) for providing us with the video
data for this thesis, as well as Prof. Michael Zervakis for his contribution as
a thesis committee member. I would also like to thank all the people in the
MHL Lab and the predecessors of this thesis project for their contribution.

Last but not least i would like to thank my family and friends for their un-
conditional support throughout all these years.

ix

Contents

Abstract iii

Abstract v

Acknowledgements vii

Contents ix

List of Figures xiii

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Scientific Contributions . 2
1.3 Thesis Outline . 3

2 Theoretical Background 5
2.1 Video Processing . 5
2.2 Computer Vision . 6
2.3 Image Classification . 6

Video Classification . 6
2.4 Image Segmentation - Morphological image processing 7

2.4.1 Connected Component Labeling 8
2.4.2 Thresholding . 8

Adaptive Threshold . 9
2.4.3 Flood Fill . 9

2.5 Marine Fouling . 11
2.6 Tools and Libraries Used . 11

2.6.1 For Software Implementation 11
2.6.2 For FPGA Implementation 11

x

2.6.3 Libraries . 11

3 Related Work 13
3.1 Previous Theses at TUC . 13

Nikolaos Badogiannis’ Thesis 13
Stavros Paspalakis’ Thesis 14
Theofilos Zacheilas’ Thesis 14

3.2 Thesis Approach . 14

4 Assessment of Algorithms Under Realistic Datasets 17
4.1 Video Classification System . 17
4.2 Presenting the New Video Data 18
4.3 Assessment of the Pre-Existing Method 23

4.3.1 Analyzing Video Data 23
Video 0 . 23
Video 1 . 24
Video 2 . 24
Video 3 . 25
Video 4 . 25
Video 5 . 26
Video 6 . 26
Video 7 . 27
Video 8 . 28
Video 9 . 29
Video 10 . 30
Video 11 . 31
Video 12 . 31
Video 13 . 32

4.3.2 Evaluation Results . 33
4.4 Video Data Analysis Conclusions 35
4.5 Problems to be Solved . 35

5 Modeling of the System and Progression 37
5.1 Frame and Video Classification 37

5.1.1 Color of the Nets Category and Identification 38
Flood Fill and Variation 40

5.1.2 Marine Fouling Category 43
5.1.3 Zoom - Camera Positioning and Points of View 43

5.2 Further than Image Classification - Parameters Configuration 44

xi

5.2.1 Testing Video 13 . 44
5.2.2 Testing the Remaining Videos 49

Testing Video 12 . 49
Testing Video 11 . 50
Testing Video 10 . 51
Testing Video 9 . 52
Testing Video 8 . 54
Testing Video 7 . 55
Testing Video 6 . 56
Testing Video 5 . 57
Testing Video 4 . 58
Testing Video 3 . 59
Testing Video 2 . 61
Testing Video 1 . 62

5.2.3 Evaluation of Parameter Testing Results for the Deter-
mination of the Changes Needed in the Design 63

5.3 Results . 64
5.4 Chapter Conclusion and Proposed Methods 66

5.4.1 Extra Testing Appendix 66

6 FPGA Design and Results 69
6.1 Tools and Platforms Used . 69

Vivado High Level Synthesis (HLS 2019.1) 69
Vitis Unified Software Platform 70
Platforms and Devices 70

6.2 Net Color Detection (Floodfill Explore) Subsystem Design . . 71
6.2.1 Previous System Design 71

Progressing on Previous Design 73
6.2.2 Creation of Net Color Detect Design(Floodfill Variation) 74

Inside the Kernel . 75
Linear Feedback Shift Register(LFSR) 76
Integration to the main System 77

6.3 FPGA Results and Utilization 78
6.3.1 Verification Testing . 78
6.3.2 Performance . 79

FPGA Resources . 79
Execution Time . 79

6.4 FPGA System Setup . 80

xii

Opencv . 80
Vitis Vision . 80
Useful Links . 80

7 Conclusions and Future Work 81
7.1 Conclusions . 81
7.2 Future Work . 82

xiii

List of Figures

2.1 Flood Fill behavior . 10

4.1 Frame from Video 0 . 18
4.2 Frame from Video 3 . 19
4.3 Frame from Video 1 . 20
4.4 Frame from Video 2 . 20
4.5 Frame from Video 4 . 20
4.6 Frame from Video 9 . 20
4.7 Frame from Video 6 . 20
4.8 Frame from Video 7 . 20
4.9 Frame from Video 5 . 21
4.10 Frame from Video 10 . 21
4.11 Frame from Video 8 . 21
4.12 Frame from Video 11 . 21
4.13 Frame from Video 12 . 22
4.14 Frame from Video 13 . 22
4.15 Frame with results from Video 13 Faulty dark nets 22
4.16 Frame with results from Video 0 23
4.17 Frame with results from Video 1 24
4.18 Frame with results from Video 2 24
4.19 Frame with results from Video 2 25
4.20 Frame with results from Video 3 25
4.21 Frame with results from Video 4 25
4.22 Frame with results from Video 5 26
4.23 Frame with results from Video 5 26
4.24 Frame with results from Video 6 27
4.25 Frame with results from Video 6 27
4.26 Frame with results from Video 6 27
4.27 Frame with results from Video 7 28
4.28 Frame with results from Video 7 28
4.29 Frame with results from Video 7 28

xiv

4.30 Frame with results from Video 8 29
4.31 Frame with results from Video 8 29
4.32 Frame with results from Video 8 29
4.33 Frame with results from Video 9 30
4.34 Frame with results from Video 9 30
4.35 Frame with results from Video 10 30
4.36 Frame with results from Video 11 31
4.37 Frame with results from Video 12 31
4.38 Frame with results from Video 12 32
4.39 Frame with results from Video 12 32
4.40 Frame with results from Video 13 32
4.41 Frame with results from Video 13 33
4.42 Frame with results from Video 13 33

5.1 Frame with results from Video 13 Faulty dark nets detection . 38
5.2 Frame with results from Video 13 Correct holes detection . . . 39
5.3 Flood Fill One pixel Choice in Background 40
5.4 Flood Fill One pixel Choice on Nets 41
5.5 Frames with results from Video 13 with original settings off-

set=50, luminance=0.03, thresholdWindow=9 45
5.6 Frames with results from Video 13 with offset=10 45
5.7 Frames with results from Video 13 with offset=100 45
5.8 Frames with results from Video 13 with offset=200 46
5.9 Frames with results from Video 13 with luminance=0.10 and

offset=50 . 47
5.10 Frames with results from Video 13 with luminance=0.01 and

offset=50 . 47
5.11 Frames with results from Video 13 with luminance=0.02 and

offset=50 . 47
5.12 Frame with results from Video 13 with luminance=001 and off-

set=200 . 48
5.13 Frames with results from Video 12 with offset=50 49
5.14 Frames with results from Video 12 with offset=200 50
5.15 Frames with results from Video 11 with offset=50 51
5.16 Frames with results from Video 11 with offset=200 51
5.17 Frames with results from Video 10 with offset=50 52
5.18 Frames with results from Video 10 with offset=200 52
5.19 Frames with results from Video 9 with offset=50 53
5.20 Frames with results from Video 9 with offset=200 53

xv

5.21 Frames with results from Video 8 with offset=50 54
5.22 Frames with results from Video 8 with offset=200 54
5.23 Frames with results from Video 7 with offset=50 55
5.24 Frames with results from Video 7 with offset=200 55
5.25 Frames with results from Video 6 with offset=50 56
5.26 Frames with results from Video 6 with offset=200 56
5.27 Frames with results from Video 5 with offset=50 57
5.28 Frames with results from Video 5 with offset=200 57
5.29 Frame with results from Video 4 58
5.30 Frames with results from Video 4 with offset=50 58
5.31 Frames with results from Video 4 with offset=200 59
5.32 Frame with results from Video 3 60
5.33 Frames with results from Video 3 with offset=50 60
5.34 Frames with results from Video 3 with offset=200 60
5.35 Frame648 results from Video 2 61
5.36 Frames with results from Video 1 with offset=10 62
5.37 Frames with results from Video 1 with offset=50 62
5.38 Offset Success Rates . 65
5.39 Illumination Success Rates for Vid 13 65
5.40 Frames with results from Video 13 with threshold window

size=4 . 67
5.41 Frames with results from Video 13 with threshold window

size=15 . 67
5.42 Frames with results from Video 13 with threshold window

size=20 . 67

6.1 Top Level System Design - floodfill_explore is the module which
was developed in the present thesis 72

6.2 Input Frame . 73
6.3 Output Frame . 73
6.4 Video 0 test in previous System Design 73
6.5 Host Application Program . 75
6.6 Net Color detection (Floodfill Explore) 75
6.7 Input Frame . 78
6.8 Output Frame . 78
6.9 Video 13 test in Net Color Detection Design 78

xvii

List of Tables

4.1 Video Classification. 18
4.2 Evaluation Results for new videos (v0 is the reference video

from Th. Zacheilas’ Thesis. 34

5.1 Offset parameter in Video 13 frames 46
5.2 Illumination parameter in Video 13 frames with default offset=50 48
5.3 Illumination parameter in Video 13 frames given offset=200 . 48
5.4 Offset parameter in Video 12 frames 50
5.5 Offset parameter in Video 11 frames 51
5.6 Offset parameter in Video 10 frames 52
5.7 Offset parameter in Video 9 frames 53
5.8 Offset parameter in Video 8 frames 54
5.9 Offset parameter in Video 7 frames 55
5.10 Offset parameter in Video 6 frames 57
5.11 Offset parameter in Video 5 frames 58
5.12 Offset parameter in Video 4 frames 59
5.13 Offset parameter in Video 3 frames 61
5.14 Offset parameter in Video 2 frames 61
5.15 Offset parameter in Video 1 frames 62
5.16 Success rate improvement in Videos with offset changes . . . 63
5.17 Execution time of floodfill variation in MATLAB (in an Intel i5

Processor) . 66
5.18 Threshold window parameter in Video 13 frames 68

6.1 Resource Estimates (from Synthesis) for Net Color Detection
(floodfill) Component . 79

6.2 Performance and resource estimates for Previous System . . . 79
6.3 Clock Period Estimates in ns . 79

xix

List of Algorithms

1 : Flood Fill Variation . 42
2 : Random Number Generator for Pixel Coordinates 77

1

Chapter 1

Introduction

Computer vision is a fast growing field that enables computers and digital
systems to derive meaningful information and gain high-level understand-
ing from digital images or videos. This field concerns and analyses imaging
data from many areas and for many uses, including Medicine, Neurobiol-
ogy, Robotic navigation, Autonomous Vehicles and many more. Some of the
computer vision tasks include Motion Analysis and Recognition, as in Ob-
ject Recognition, Identification, or Detection of some specific object, data or
condition.

1.1 Problem Statement

There are things that a human eye can not see and situations which could be
dangerous or time-demanding when dealing with aquaculture problems and
other underwater problems. In aquaculture, the cage nets are a basic core in
the creation and the protection of the environment that the living organisms
need. In order to do that, either divers or remote vehicles need to take visual
material in order to inspect the nets and identify possible problems. One of
those problems is the nets wear, which happens either from time or from the
conditions(weather, fish). That decay causes tears and defective holes in the
nets that need to be fixed so that the environment remains intact. Usually
divers have to go underwater to resolve those issues and in this process they
come in contact with the sea and its various conditions.

There are specific underwater vehicles such as Remotely Operated Vehicle
(ROV) and Autonomous Underwater Vehicles(AUV) which allow us to take

2 Chapter 1. Introduction

images and videos underwater. Even with those, the divers still have to con-
front difficulties such as bad visibility, light exposure, marine growth, move-
ment of the waves and more. From the above, we can say that underwater
images with nets are complex enough to process.

This thesis shows the different levels of complexity in a variety of underwater
videos and helps to get closer in creating an automated underwater net holes
detection system in order to find holes in nets faster, cheaper and in a safer
way. In order to do that we use image and video processing techniques that
are suitable for this task. That way the human power needed for some tasks
can be decreased, and also the risks that comes with it.

1.2 Scientific Contributions

This thesis continues the previous work of Th. Zacheilas [1] and N. Bado-
giannis[4]. While N. Badogiannis’ thesis focuses on finding holes in nets of
still images, Th. Zacheilas’ advances the system to work with videos.

The contribution of this thesis is an advance on the previous system in order
to accommodate the needs of new video data provided by the Hellenic Cen-
tre for Marine Research (HCMR). There is an evaluation of performance of
the previous system for the new data and new changes according to the dis-
tinctive processing needs. Specifically, the system was improved in several
ways:

• Analysis of the existing system response in more advanced video data.

• A classification system is being created, where the videos are divided
in categories according to their different characteristics.

• Parameter calibration is introduced as a way to improve the results of
more than one video.

• Creation of automated net color recognition system to help in the de-
fective holes recognition process regardless of the diversity of the new
video data given, and also future video data tests.

The most important thing is how the system improves in these new more
advanced input video data and can be used even on more difficult and de-
manding environmental conditions.

1.3. Thesis Outline 3

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: Theoretical analysis of important
concepts and algorithms.

• Chapter 3 - Related Work: Previous contributions in video processing
on fishery nets from our institution.

• Chapter 4 - Assessment of Algorithms Under Realistic Datasets: Eval-
uate results of previous thesis algorithm applied on new data.

• Chapter 5 - Modeling of the System and Progression: Algorithmic
variations and improvements according to the needs of the system.

• Chapter 6 - FPGA Design and Results: FPGA Design of Net Color
Detection block and the results of its implementation.

• Chapter 7 - Conclusions and Related Work

5

Chapter 2

Theoretical Background

As the given data is actually underwater videos from aquaculture cages, the
problem of detecting defective holes in the cage nets, needs to be approached
using video processing techniques. In this chapter we analyze how video
processing works and a basis of the algorithms used in the project. In order
to fully understand video processing we need to know the basics of image
processing as videos are actually images - that we call video frames - put
together in a stream. When working in a real-time video each frame has to
be processed separately according to the goals of the project and then put
together sequentially to create the processed video output.

2.1 Video Processing

In order to process the aquaculture videos and detect defective holes in the
cage nets, the basic steps of video processing were followed:

1. Reading a video. Matlab environment has specific functions that allow to
import videos from files and read their data.
2. Processing the video. After reading the video, frames are separated and
the program goes through each one to do the main processing goal using
image processing methods. It is essential to say, that the frames are first con-
verted to grayscale and later binary frames for the holes detection process.
There is a loop used to cover each frame the moment it is read.
3. Write back the video as a file or display it on screen. After processing each
frame, the program either displays the video right after processing or writes
it back and saves it as a video file using Matlab functions.

A very important part of a video processing system is whether the processing
is happening in real time or not. If the system is not required to process a
video in real time, we can go as far and as expensive it can be in the terms

6 Chapter 2. Theoretical Background

of algorithmic complexity and hardware use. However, in real time, a video
processing system should be able to output the results that are required in
the time the video lasts. This requires for the broadcasting devise(system) to
perform as well as the processing system. It needs to be both fast - minimum
24fps - and give the correct results.

2.2 Computer Vision

Is a field that studies the interpretation of an image or video from a computer.
For a computer to understand and make a conclusion of what it "sees" in
that image, how close to reality is this conclusion and how true. One of the
most common ways to accomplish this is with Deep Learning techniques
where the system is fed with hundreds or thousands of data similar to the
image/item they want to recognise and then the model learns on its own the
different features that make up the item.

An other way is to apply morphological operations about information of spe-
cific characteristics of the image/item so that the system can be able to recog-
nise them. This can be used both for pre-processing systems before a Deep
Learning model can be applied as well as in a standalone system for final
estimation and interpretation of the needed image/item.

In both cases the system must be able to ’recognise’ and label videos, images,
or parts of them. In order to do that, we need know how to process an input
video/image, extract information from it and classify the image or parts of
it.

2.3 Image Classification

Is the process of assigning labels to an image from a predefined set of cate-
gories. Image classification is a very important procedure in computer vision,
as it assists a system in ’seeing’ and recognizing an image or objects in it.

Video Classification

Continuing in the same way of thinking for Image Classification, Video Clas-
sification is the process of categorising whole videos or parts of them by
putting labels on them according to their characteristics. In video classifi-
cation, it would be safe to check each frame, classify each one of them into

2.4. Image Segmentation - Morphological image processing 7

the pre-existed categories and then choose the most used label for the whole
video.

However, if the process takes a lot of resources or a lot of time, this could
be very nonperforming. Considering this, when the video classification pro-
cess is a part of the video process in real time, it has to be easy, quick and
inexpensive to do while the video is taken.

2.4 Image Segmentation - Morphological image pro-

cessing

As an extension of image classification, in digital image processing and com-
puter vision, image segmentation is the process of partitioning a digital im-
age into multiple image segments, also known as image regions or image ob-
jects (sets of pixels). The goal of segmentation is to simplify and/or change
the representation of an image into something that is more meaningful and
easier to analyze.[1][2] Image segmentation is typically used to locate objects
and boundaries (lines, curves, etc.) in images. More precisely, image seg-
mentation is the process of assigning a label to every pixel in an image such
that pixels with the same label share certain characteristics.

As the main process in Video Processing, focuses on using algorithms to al-
ternate each frame in a way that the information needed can be extracted, it is
easier to approach separated frames, treat them as images and process them
separately with morphological image processing methods. Once an image-
frame is subtracted, it is enhanced by getting through a series of filters that
depend on the processing goal. Some of them may be used for Noise reduc-
tion, Feature extraction, Thresholding and Recognition.

In this thesis, various methods of image segmentation are used in order to
extract all information needed for the purpose of identifying defective holes
in aquaculture nets. Some of them are Guided Filter and Box Filter, which
are edge-aware and haze removal filters used to enhance each frame before
it is used for the holes detection process. These filters are implemented as
described in Th. Zacheilas’ thesis and have the same use. Some more of
these methods are presented below and are fundamental for the following
thesis chapters.

8 Chapter 2. Theoretical Background

2.4.1 Connected Component Labeling

As described in Th. Zacheila’s thesis, this section is crucial and unavoidable
in this kind of research. Specifically, it was initially known that every hole
should, somehow, be recognized as a distinct object, which has its own at-
tributes that separate it from any other hole. This segment is, also, proposed
in N. Badogiannis’ thesis, and is assimilated and changed according to the
current needs. Connected component labeling, in short CCL, performs this
operation. Supposing that nets form the black pixels and holes the white pix-
els, then holes can be separated between each other, with the intervention of
nets, and receive specific labels, based on the connectivity parameter which
can help in calculating valuable features, like their size. The important part
of this algorithm is the observation of the connectivity parameter. This has
to be either eight or four. Connectivity four means that the pixel which is
going to receive a label, takes into account its north and west adjacent pix-
els, whose labels have already been set previously and form with it a vertical
or horizontal line. Similarly, connectivity eight also allows diagonal lines to
be formed. The fact that there is a need to reduce, as much as possible, the
possibility of detecting wrongly faulty holes, especially with such an unde-
termined luminance, it is rational that the connectivity had to encounter less
adjacent pixels, forming an object/hole.

CCL algorithm gives each hole or "possible" hole a number that is called label
for each pixel that is in the hole. Every other pixel of the image that is not
a hole is 0. So there is an array that holds all the hole labels and their sizes
which later is used to find the defective, or possibly defective holes.

2.4.2 Thresholding

Thresholding in image processing is the simplest method of segmentation
that helps in creating a binary image. In this process each pixel of a grayscale
image must be replaced with a black or a white pixel so that the final im-
age becomes a binary one. The way pixels are replaced with black or white
is through a threshold value comparison. First a threshold value is chosen
for the whole image and then each pixel is compared to this value and is
replaced with black if the intensity of the pixel is less than this value and
white if not. In this thesis it is used to separate the background(sea) from the
foreground(nets) in each frame and assign them as black or white.

2.4. Image Segmentation - Morphological image processing 9

Adaptive Threshold

The adaptive thresholding technique is introduced in T.Zacheila’s thesis for
this specific task. It is a thresholding method that separates the foreground
from the background in a nonuniform illumination environment. It breaks
down the image into windows and extracts local thresholds with mean or
median values. It takes a given window size and exports a binary image that
clearly separates the foreground which is later taken advantage to character-
ize is as nets.

It already exists in the previous version of the algorithm and later on, the
adjustments made through parameter configuration in the method, are im-
portant in order to adapt in new conditions according to the new data.

2.4.3 Flood Fill

Flood fill or seed fill is an algorithm with the purpose of coloring an entire
area of connected pixels with the same color and it’s often used in tools like
the "bucket tool" color fill in the paint program.

The most common version of the algorithm lets the user select a pixel in an
image, and then fills all the surrounded same-colored pixels with the color
of the users choice. There are two ways to implement the algorithm, called
4-way and 8-way. The difference between them is that in the 4-way flood-fill
implementation the algorithm moves in 4 directions while in the 8-way im-
plementation it moves in 8 directions (same way as the connectivity in CCL).
Practically this means that the 8-way version of flood fill could be more effi-
cient for narrow spaces like diagonal lines but it can also be useless for spaces
enclosed in narrow lines as it will leak from the diagonal pixels, shown in Fig-
ure 2.1. The red dot symbolises the starting point and the red X the area that
is filled in different situations.

This is usually implemented with a recursive function where the algorithm
checks all the surrounding pixels of the selected one and if their color matches
the color of the selected pixel, then it replaces their colors with the color of
the users choice. And continues to do so for the next pixels in the area in the
same way.

Specifically in the 4-way version of the algorithm that is applied on an image,
the first step is to set a starting point(a pixel in the area the user wants to
fill) and request a color to be filled in the area around that starting point.

10 Chapter 2. Theoretical Background

Area 4-way Area 8-way

Net 4-way Net 8-way

FIGURE 2.1: Flood Fill behavior

The algorithm then checks if the pixel is within the image limits and also if
it is not already the requested color, or else it exits. If not, then it changes
the pixel to the new color requested and searches the surrounding pixels in
four directions - north, east, south, west - for the same color. Each time it’s
calling the same function and passes the new direction pixel as the start point,
checking again for the image limits and the color of each pixel. The function
ends when the region of interest is filled with the chosen color.

Matlab already has a function called imfill() that does fill image regions from
a user specified point. However, as recursion is not supported in Vivado HLS
tools, the algorithm used in this project is based on a non-recursive method
with a stack. This works in the same way with the only difference being that
instead of moving to the next pixel with recursion, is uses a stack to push
every new position and a while loop that continues until that stack is empty.

2.5. Marine Fouling 11

2.5 Marine Fouling

Marine Biofouling, also known as marine fouling or marine growth, occurs
when microorganisms, plants and algae attach themselves to underwater ob-
jects like boats, ropes and nets, pipes and building structures.

The primary focus in fish culture relates to the mitigation of net fouling,
as this leads to compromised cage structure and detrimental effects on fish
health mainly through low flow-through of water, leading to poor dissolved
oxygen availability. From this thesis perspective, marine fouling also lowers
the visibility in our videos which increases the probability of errors in the
defective holes detection algorithm.

There are many methods of preventing the attachment of microorganisms on
underwater surfaces called antifouling methods. However, for this project
the goal is not to prevent marine growth from occurring rather than accept
the existence of marine fouling on the aquaculture cage nets, and recognise
the problems that come with that.

2.6 Tools and Libraries Used

2.6.1 For Software Implementation

Matlab tool was used for the initial modeling process of the system. With
Matlab tool the basic algorithms and different methods were tested before
deciding if the results are satisfactory to proceed to a hardware design.

2.6.2 For FPGA Implementation

For the old hardware design, Xilinx Vivado tools were used and specifically
the Vivado HLS 2019.1 for the simulation of the system which later were
implemented on an FPGA device(ZCU102).

The new design targeted an Alveo U50 Acceleration Card, using Vitis Unified
Software Platform 2020.2 tool and is described in detail in chapter 6.

2.6.3 Libraries

OpenCV consists of Computer Vision Library tools that were used both in
software implementation as well as in hardware implementations.

12 Chapter 2. Theoretical Background

The Vitis vision library has been designed to work in the Vitis development
environment, and provides a software interface for computer vision func-
tions accelerated on an FPGA device. Vitis vision library functions are mostly
similar in functionality to their OpenCV equivalent.

13

Chapter 3

Related Work

As Computer Vision technologies evolve, Technical University of Crete in
collaboration with the Hellenic Centre for Marine Research took the initia-
tive to study and explore the technological possibilities of underwater videos
from fisheries. Each research is done with the goal of creating an automated
Net Hole Detection System as a whole. The following works are a basic core
we follow to continue and subsequently reach our goal.

3.1 Previous Theses at TUC

Nikolaos Badogiannis’ Thesis

Nikolaos Badogiannis’ thesis[3] with title "Real-Time Embedded System for
Hole Detection in Fish Cage Nets" is the first one to introduce this subject of
processing videos from fisheries in our institution. In this thesis, two meth-
ods were developed and tested on still images which simulate nets with holes
in ideal conditions and low complexity.

The first method used to pinpoint holes is Template Matching which works
by setting a template image that has the information we need to locate and
matching it with our source image to compare and calculate the difference
degree of the pixels in the two images. The second method used is Edge
Detection which first blurs the initial image with a Gaussian filter and uses
Sobel filter thresholding to convert to binary. Then dilates the image and uses
Connected Component Labeling algorithm to label the possible holes and de-
termine which are the defective ones by their size(at least double size).
In both methods the results are satisfactory as the system actually detects
holes in ideal conditions and makes some mistakes in more complex ones.

14 Chapter 3. Related Work

Specifically the Template Matching is a good method for controlled condi-
tions and repeatable patterns while this Edge Detection method seems to be
more flexible and precise where there is not much noise in the images.

Stavros Paspalakis’ Thesis

In this thesis[4] a totally different approach is developed with the same goal:
to detect defective net areas. There are used two processes a local process
and a global process. In the local process the frame is divided in parts and
in each part are applied algorithms of a local Hough transform, edge detec-
tion and line detection, then uses the Otsu method for detection and then
the line distances for discontinuities. In the global process the whole frame
goes through a Hough transform where it gets patterns from sets of points
in the frame(lines, circles, ellipses). Both of the processes are needed for the
different lighting and background.

Theofilos Zacheilas’ Thesis

The next thesis with title "Reconfigurable Logic-Based System for Image Pro-
cessing of Fishery Nets"[2] follows N. Badogiannis’ Thesis. Here, Theofi-
los Zacheilas modifies the second method to be implemented in a series of
frames(video) and then test it and change it according to the needs of a real
video from aquaculture nets. In order to do that, the following things are
developed for each frame. Firstly, a haze image model was applied to de-
termine a hazy factor for the brightness between water and nets. Then the
image goes through a guided filter that does Edge Detection, Haze removal
and Lighting Smoothing for more clear detection of holes and nets. After
that, Connected Component Labeling is applied to separate the holes as dif-
ferent components and label them, so later it can brake down the frame in
windows to determine the defective holes from their size in each window
and then marking of all faulty holes and nets in the final image. Last, a com-
bination and comparison of consecutive frames is done for safer conclusions
in the whole video.

3.2 Thesis Approach

While all the above previous work are excellent each one on its own, we
are called to work on new challenges and see what happens when the input
data(images or videos) are not similar to those already tested. In the first

3.2. Thesis Approach 15

two thesis the image data used, is controlled or simulated, while the third
is tested in a real video from fisheries but with very good environmental
conditions. In this thesis we continue and analyse some of the previous thesis
proposals in order to improve the methods already used according to new,
more realistic and complex data models.

17

Chapter 4

Assessment of Algorithms Under
Realistic Datasets

In order to improve on the previous work, an evaluation of it is necessary.
With new data that was given by the Hellenic Centre for Marine Research
(HCMR), the existing project was tested on 13 new videos. We name the
videos with numbers 0 to 13 and refer to them like this from now on, with
Video 0 being the reference video used as a base for the initial system design.
This chapter, analyses the characteristics of the videos and the performance
we get when we apply the already existing algorithm on them.

4.1 Video Classification System

The first thing needed to be done was the assessment of the new video data.
For that purpose, five new categories were created according to some char-
acteristics seen in the videos (Table 4.1).

The first category refers to the color of the nets each video has. Specifically, it
is the concept of whether the nets are darker or lighter than the background,
and so when turned into binary, they become black or white. In the sec-
ond column the videos were categorised according to the amount of marine
growth that is attached on the aquaculture nets. It varies, from videos with
clear nets, to those with very high concentration of marine fouling. Another
category is about the camera’s position, and specifically if it is close to the
nets or not. Last, two more categories were created that indicate if a video
has noise(other objects than the nets) in its foreground or its background.
These last two categories are important for the videos evaluation result and
not the video processing itself, as they help to get more information about
the systems errors and successes.

18 Chapter 4. Assessment of Algorithms Under Realistic Datasets

Video Color of Marine Zoom & Camera Foreground Background
Nets Growth Movement Noise Noise

v0 White No No No No
v1 Black High Yes Yes No
v2 Black High No Yes Ye
v3 Black High No No Yes
v4 Black High Yes Yes Yes
v5 Black Low No No Yes
v6 Both Low-Medium No No Yes
v7 Black Medium No Yes(hand) Yes
v8 Black Medium No No Yes
v9 Black Medium Yes No Yes
v10 Black Medium No No Yes
v11 Black Medium-High Yes Yes Yes
v12 Black Medium Yes No Yes
v13 Black Low Yes No No

TABLE 4.1: Video Classification.

4.2 Presenting the New Video Data

In his thesis[1], Th. Zacheilas works on a video (Video 0) which has specific
environmental parameters, so the method and the algorithm produced, try
to fit and work best with the characteristics of this video.
When a frame from Video 0 (4.3) is extracted, it is clear to see where the nets

FIGURE 4.1: Frame from Video 0

and the defective holes are. The video has great exposure and the nets do

4.2. Presenting the New Video Data 19

not have any marine growth on them or other physical interference on the
foreground and background of the nets.

The same can not be said for the new video data. One of the first observations
made when the algorithm was applied to the new videos is how much the
complexity increases. For example in a frame from Video 3 (4.2), the first
difficulties arise and are easy to point out just by looking at the image. It is
difficult to find the defective hole(s) in the frame even with our eyes. There
is a lot of marine fouling attached on the nets which means both foreground
and background noise is stronger and the video is taken from an angle which
again makes it hard to see a hole-shaped item, whether it is defective of not.
It is not easy to determine the boundaries where the actual nets end, and the
background begins.

FIGURE 4.2: Frame from Video 3

The same is for Video 1(4.3) with additional noise. Video 1 as one can see,
has a lot of marine growth attached on the nets and has a background object
on them as well.

A more intense environment can be seen in Video 2(4.4). There are already
closed holes and in addition to the marine growth add up to more foreground
noise. This concludes to an image that is difficult to read and extract infor-
mation at first sight. From this specific frame it is not easy to make an obser-
vation of whether there is a defective hole or not.

The same goes for Video 4(4.5). The environment is not good to determine
whether there are holes in the nets or if there are, how many they are.

20 Chapter 4. Assessment of Algorithms Under Realistic Datasets

FIGURE 4.3: Frame
from Video 1

FIGURE 4.4: Frame
from Video 2

FIGURE 4.5: Frame
from Video 4

FIGURE 4.6: Frame
from Video 9

In Video 9(4.6) however, the visibility is much better. The structure of the
nets is clear and with the naked eye it is easy to see that there are no holes in
this frame. It does have marine growth attached to the nets, but the quantity
is much less than that of previous videos.

Video 6(4.7) and Video 7(4.8) seem quite similar in colors, in noise and in dis-
tance from the camera. The camera is positioned further than that of the pre-
vious videos and as the videos proceed, it changes and gets different points
of view.

FIGURE 4.7: Frame
from Video 6

FIGURE 4.8: Frame
from Video 7

Video 5(4.9) is very clear. It does not have any marine growth attached on
the nets and apart from the background fish, it is the closest video data to the

4.2. Presenting the New Video Data 21

original Video 0. On the other hand, Video 10(4.10) has more marine growth
noise and the colors are different. Both of them have more sea on the scope
than other videos, which changes the uniformity of each frame.

FIGURE 4.9: Frame
from Video 5

FIGURE 4.10:
Frame from Video

10

Video 8(4.11) and video 11(4.12) both have a lot of marine fouling but the
colors and the exposure are very different. In Video 8 the structure of the
nets is clear while in Video 11 it has more marine growth attached on them.
More of the supportive frame of the nets is also visible in both frames which
is categorised as foreground noise.

FIGURE 4.11:
Frame from Video

8

FIGURE 4.12:
Frame from Video

11

In the last two videos, Video 12(4.13) and Video 13(4.14) there is a big differ-
ence in the vision. The frames are taken from a closer range and even though
the nets are not completely clear, they are clear enough for the human eye to
detect the defective holes easily.

From the above brief presentation of the new video data combined with in-
formation from Table 4.1, it is easy to observe that there is one main char-
acteristic that remains the same in all the new videos and that is the color
of the nets. In all new videos the foreground(nets) is darker then the back-
ground(sea) and when converted to binary, makes the nets to be black, in

22 Chapter 4. Assessment of Algorithms Under Realistic Datasets

FIGURE 4.13:
Frame from Video

12

FIGURE 4.14:
Frame from Video

13

contrast to the old video where the nets are lighter and so they appear white
in the binary conversion. The original algorithm is planned for white/ light
colored nets so, where the new videos have black / dark colored nets, the
algorithm gets confused and shows wrong defective holes in the place where
the actual nets are. For example in Video 13 (4.15) it is clear that the red pixel
areas are on top of where the nets are supposed to be and not the holes.

FIGURE 4.15: Frame with results from Video 13
Faulty dark nets

It would be logically wrong to evaluate and make assumptions of how the
algorithm works on these new videos without changing this basic detail first
as it is no longer detecting holes, but nets. After changing this detail the new
videos were tested in a way where the algorithm detects the nets whichever
the color and shows a better logical result.

In the next chapter(5) there is a detailed analysis on how this new classifica-
tion of the nets into black or white is done autonomously and more details
about the new video dataset.

4.3. Assessment of the Pre-Existing Method 23

4.3 Assessment of the Pre-Existing Method

The first step was to test the existing algorithm from Th. Zacheilas’ thesis
as it is, for all the new video data(with the additional black to white nets
color change). The goal in this section is to introduce the new videos and
take a look at the challenges each one presents. Observations also need to
be made of how well the algorithm responds to different data situations and
how different and challenging the new environmental conditions will be to
get the expected outcome. One or more frames are presented of each video
with the output results of the initial algorithm that show the difficulties, the
errors and the successes of each video. Some of them are common between
them, some appear multiple times and some of them exist only in specific
moments-frames. In the figures presented in the following section, the de-
fective holes are shown with red color and yellow represents the potential
defective holes, that are compared in consecutive frames and either defined
as defective holes in the next frames or discarded.

4.3.1 Analyzing Video Data

Video 0

Video 0 (4.16) is the one that was already tested in the pre-existing algorithm
in thesis[1] and the results are excellent as we can see in figure 4.4.

FIGURE 4.16: Frame with results from Video 0

The image is very clear, the nets are clean and the holes in them are easily
spotted.

24 Chapter 4. Assessment of Algorithms Under Realistic Datasets

Video 1

A sample frame of the first new video we tested in Figure 4.17. This is the
only video that is originally in 568x320 resolution. In this specific frame at
first glance, the response of the algorithm is faulty, but it can also be seen
that it spotted as red(=defect) in the area where the actual defective hole is.
The problem is that it also ’sees’ more defective holes, and potential defective
holes where there actually are none.

FIGURE 4.17: Frame with results from Video 1

Video 2

In figure 4.18 is a frame of the second new video tested. Even with the naked
eye it is not easy to define if there is a defective hole and where. The sys-
tem responds with the output of many potential defective holes and some
defective holes even though there are none.

FIGURE 4.18: Frame with results from Video 2

Later, in another frame of the same video 4.19 the results are different. There
are fish in the background and the system gets confused and can not recog-
nise the existence of the defective hole. In this frame, the camera has also
moved closer to the nets and the frame appears to be zoomed in.

4.3. Assessment of the Pre-Existing Method 25

FIGURE 4.19: Frame with results from Video 2

Video 3

In this video it is clear that the system recognises many false positive holes. It
also outputs some potential defective holes in the area where the aquaculture
nets end and sea begins.

FIGURE 4.20: Frame with results from Video 3

Video 4

The algorithmic result in Video 4 does not seem that bad on each own as it
appears to output only a few defective holes and assess the others as poten-
tial. However, when compared with the original colored frame, it is made
clear that are all faulty and with marine fouling attached the system can not
determine the correct results.

FIGURE 4.21: Frame with results from Video 4

26 Chapter 4. Assessment of Algorithms Under Realistic Datasets

Video 5

In Video 5 the initial results are more positive. The algorithm does not detect
defective holes in the biggest part of the nets. The problem arises when the
aquaculture cage outline ends and sea begins, where the system finds some
defective holes and many potential defective holes.

FIGURE 4.22: Frame with results from Video 5

FIGURE 4.23: Frame with results from Video 5

In another frame from Video 5, shown in Figure 4.23 it is easy to observe
that as the camera gets closer to the nets, the system outputs more defective
holes where the normal holes of the nets are. Also in this specific situation
the outcome is not affected by the background fish.

Video 6

In video 6 frame the lower part of the image is closer to the camera, and so it
seems zoomed in, which makes the algorithm output faulty defective holes.

4.3. Assessment of the Pre-Existing Method 27

FIGURE 4.24: Frame with results from Video 6

However in another frame of the same video, the faulty defective holes are
limited to the area outside the nets borders

FIGURE 4.25: Frame with results from Video 6

FIGURE 4.26: Frame with results from Video 6

Video 7

The same thing happens in video 7, where the results are more positive. The
system recognises only a few faulty holes in the actual nets, and the rest of
them near the border with the sea.

28 Chapter 4. Assessment of Algorithms Under Realistic Datasets

FIGURE 4.27: Frame with results from Video 7

FIGURE 4.28: Frame with results from Video 7

However, later in the video there is external foreground noise - the diver’s
hand - in the frame, which causes problems in the performance of the algo-
rithm as it outputs many defective holes in its place. In this specific frame
there are also more false defective holes detected, as the camera has moved
closer and changed the perspective.

FIGURE 4.29: Frame with results from Video 7

Video 8

Video 8 responds even better in the first frames, as it shows many poten-
tial(yellow) defective holes, but does not mark them red as if they actually
are.

4.3. Assessment of the Pre-Existing Method 29

FIGURE 4.30: Frame with results from Video 8

The problem here arises later in the video where, as seen from the frames 4.31
and 4.32, the border structure and the light in the upper part of the frames,
create many false positive defective holes.

FIGURE 4.31: Frame with results from Video 8

FIGURE 4.32: Frame with results from Video 8

Video 9

Similar problems appear in video 9, in the border between nets and sea,
where the algorithm is not able to see it correctly.

30 Chapter 4. Assessment of Algorithms Under Realistic Datasets

FIGURE 4.33: Frame with results from Video 9

However, the system responds excellent in the rest of the video 4.34, where
there are only nets. It outputs only possible defective holes and not defi-
nite defective ones and in an environment with a medium amount of marine
growth.

FIGURE 4.34: Frame with results from Video 9

Video 10

Video 10 also has the same problem with the sea around the nets borders.
There is also a problem with lighting in this frame, as the lower part of the
image appears to have holes, where in reality it is nets that are dark from the
lack of light.

FIGURE 4.35: Frame with results from Video 10

4.3. Assessment of the Pre-Existing Method 31

Video 11

In this video we also have a problem that appears in some of the previous
videos: the net’s frame structure. This is categorised as foreground noise and
responds badly as input in the existing algorithm.

FIGURE 4.36: Frame with results from Video 11

Video 12

In the first frames of Video 12 the output is a positive image, as it detects
many possible, but only a few defective holes that are wrong. The main
problem in this frame is that the real defective hole is not recognised by the
system. It is marked as possible defective hole and not as a real one.

FIGURE 4.37: Frame with results from Video 12

Thankfully, in the next frames the actual defective hole is recognised, but
with this achievement came more wrongly recognised holes.

32 Chapter 4. Assessment of Algorithms Under Realistic Datasets

FIGURE 4.38: Frame with results from Video 12

It gets worse as the camera moves closer and the frames are zoomed in. The
algorithm detects many false positive holes, when in reality they are regular
holes that appear bigger due to the position of the camera.

FIGURE 4.39: Frame with results from Video 12

Video 13

In the last video test, Video 13 there are some similarities with Video 12. In
the the first frames the results are not so bad, as only a few are false positives,
and it also recognises the real hole in the frame.

FIGURE 4.40: Frame with results from Video 13

The problem again arises when the camera changes position to get closer,
and the system sees the magnified normal net holes, as defective holes.

4.3. Assessment of the Pre-Existing Method 33

FIGURE 4.41: Frame with results from Video 13

FIGURE 4.42: Frame with results from Video 13

4.3.2 Evaluation Results

The rate data were taken after sampling through the videos and calculating
an average.

From every video some basic statistical data was exported which is needed
for easier evaluation of the algorithm’s performance on the new video data.
As some of the numbers that were exported were changing with each frame,
for purposes of readability and easier comparison, information was extracted
from some frames found in different stages of each video. For example for
Video 4, we took 6 frames smoothly distributed through the video in order
to get data about the algorithmic statistics from all the different perspectives
this video presents. The same thing was done for each video, getting infor-
mation about the holes this algorithm outputs. Then, a success rate for each
of these individual frames is calculated according to the holes the algorithm
outputs as defective holes and the real existing holes that can be seen in the
videos(with naked eyes). Last, there is a combination of the above to get an
average success rate of each video as we can see in Table 4.2.

The ’detected holes’ tab in Table 4.2 holds an average number of the holes
the algorithm found in the frames, including both the real defective holes
and the faulty ones. For example in video 2, the system ’sees’ 83.2 holes aver-
age when in reality there is only one. For the number 83.2 to be generated, an

34 Chapter 4. Assessment of Algorithms Under Realistic Datasets

average calculation was done from the defective holes result found in each
random sample frame from each video. Specifically, the defective holes re-
sults of each sample frame of a Video V (V=0,1,...,13) were added and then
divided by the number of the sample frames taken from Video V.

video duration real holes average detected average success
(sec) holes holes rate(%)

v0 72 2 2 100
v1 24 1 7.5 19.8
v2 38 1 83.2 1.79
v3 33 1 91.8 1.45
v4 11 0 76.6 1.72
v5 40 0 49.8 3.29
v6 38 1 50.2 7.52
v7 30 1 50.5 4.45
v8 24 0 55.6 2.86
v9 64 0 36.5 4.15
v10 50 0 36.6 2.92
v11 21 1 157.8 0.673
v12 8 1 164.8 0.752
v13 9 1 127.5 1.13

TABLE 4.2: Evaluation Results for new videos (v0 is the refer-
ence video from Th. Zacheilas’ Thesis.

Video 0 is separated from the rest, as it is the video that the whole previous
system was based and build on. As the previous system was build based on
the specific environmental characteristics of of Video 0 and was only tested
with that as input, it is reasonable to have a 100% success rate. That is not the
case for the new videos though, that output an incredibly low success rate.

There is an important note to be made about the success rates calculation. In
many of the videos there is exactly one real defective hole in the nets while in
some others the nets seem intact, which means that either there is no defec-
tive hole, or it is very difficult to determine that due to difficulties in vision.
The target output number of the detected defective holes should be zero,
and yet in most cases the algorithm outputs a larger number, and as a result
the success rate should be zero as well. In that way if the number of defec-
tive holes detected is decreased and closer to zero(which is the target), the
progress of the detection cannot be seen. In order to show that progress of
the algorithmic results - especially for the results in chapter 5 - , when the
actual defective hole number is zero, it is assumed to be one. For example if
a Video V has 0 real defective holes, and detects also 0, then the algorithm is

4.4. Video Data Analysis Conclusions 35

100% successful. If in the same Video V detects 50 defective holes, then the al-
gorithm has 0% success and if it decreases that number to 25 defective holes
it still has 0% success in the detection. However when assumed that there
is at least 1 real defective hole, then for 50 detected holes the rate would be
1/50=2% and when it improves to 25 holes detected, its has 1/25=4%, which
shows a 2% increase in the detection and the improvement the algorithm
made.

4.4 Video Data Analysis Conclusions

From Table 4.2 it is easy to conclude that the algorithm does not respond well
in the new video data. There are lower success rates (a bigger error) in the
last 2 videos which for now can only be assumed that this may be due to the
camera being closer to the nets as if it is zoomed.

There are some safe observations to be made from the above data introduc-
tion. First, the acknowledgment of the increased difficulty to detect defective
holes in some of the new data even with naked eyes. In some videos, marine
growth makes the net lines hide and the nets are no longer in a pattern. Ma-
rine growth also changes the color and the illumination of some videos and
so it does make it difficult for the existing threshold to have good results.
Also in other videos it is not clear where the edges of the nets end and the
background sea begins.

4.5 Problems to be Solved

In order to raise the success rates higher, there are some problems that need
to be solved. The fact that all these videos are a lot different, creates the
problem of seeing the similarities, compare them and put them in categories
with common features as we did in the beginning of this chapter in Table 4.1.

Some basic problems of the system response are:
1. The color of the nets versus the background.
2. The borderline of the aquaculture cages where the nets end and there is a
solid sea background area.
3. Movement and position of the camera. Whether the camera goes fast and
there are blurs or it gets too close to the nets as if zoomed in, the system can
not readjust and recognise the correct defective holes.
4. Marine growth attached on the nets.

36 Chapter 4. Assessment of Algorithms Under Realistic Datasets

In the next chapter some of these problems are solved and in some there is
significant progress towards the solution for the best outcome.

37

Chapter 5

Modeling of the System and
Progression

In this chapter there is a progression of the existing algorithm towards a more
advanced system and suitable adjustments according to each video, trying
to find changes that benefit all or some of the videos. Here there is a pre-
sentation of some algorithmic variations and improvements according to the
needs of the new dataset.

5.1 Frame and Video Classification

Image classification is the process of categorizing and labeling groups of pix-
els or vectors within an image based on specific rules. Video classification
is the same in a way that when a video is classified, some frames of parts of
the frames are taken into consideration to extract a label for the whole video.
From the analysis in the previous chapter, we have already established some
basic categorization for the video data used in this thesis, shown in Table 4.1.

From Chapter 4, it is concluded that even though the new videos are more
complex, with more noise and generally difficult to process, they all have
some things in common. One of them is the color of the nets. In all the new
video data, the nets are always darker, in black or brown colors, than the
background which is usually a light blue or green depending on the lighting
and the nets. So, our first attempt is to classify the videos in two categories:
white net and the black net videos. This distinction is crucial as the algorithm
used to detect the defective holes takes into consideration the color of the
nets.

As shown in Table 4.1, the videos were parted in more than one categories.
Another one of the classification categories is made by the fact that some of

38 Chapter 5. Modeling of the System and Progression

the videos are zooming in on the nets and the holes are much more visible.
For example video 12 and video 13. Also, one more category was made ac-
cording to the clearness of the nets and the water. Marine fouling attached
on the nets plays an important role in the system’s response needs to be con-
sidered.

The reason for creating those categories is no other than to make the process-
ing easier. putting more than one videos in the same category, means that
they have some characteristics that look alike, or that they respond to the
system in the same way and can be processed in similar ways. Separating
the videos and or parts of them in categories, means that the problems of
each category can be solved separately and then apply the solutions to the
other same-category videos.

5.1.1 Color of the Nets Category and Identification

As was established above, the first category-video label, was made according
to the color of the nets each video has, whether it is due to lighting or to other
factors such as marine fouling.

In the original video (Video 0) the nets are white while in all of our new
videos the nets are black. That causes a problem in the algorithm as shown
in the results of the videos in the previous chapter, and since the new videos
have black nets, the nets are recognised as defective holes(5.1). The reason
for this problem is that the algorithm recognising the defective holes (Con-
necting Component Labeling algorithm) takes as input the fact that the nets
are white and the holes black.

FIGURE 5.1: Frame with results from Video 13
Faulty dark nets detection

When the input is changed, considering that the nets are black and not white
the results appear in Figure 5.2. We do not necessarily have better results as a
number of detected defective holes, but is is correct now in the sense of logic.

5.1. Frame and Video Classification 39

The algorithm detects the defective holes in the real holes of the nets and not
on them which is a significant progress on the algorithmic performance.

That was done by changing the input image in the CCL function. This func-
tion uses a grayscale frame of the video being processed that is an output of
an enhancement method and then it is thresholded to create a binary frame.
To change the output, the complement of that binary frame was taken and
used from the CCL algorithm.

FIGURE 5.2: Frame with results from Video 13
Correct holes detection

As the purpose of this project is the creation of an automated system, there
was a need for this task to be done autonomously. So first, the system needs
to identify if the nets of each are black or white and give that information
back in order to keep the given frame or change it to it’s complement accord-
ingly.

This is the first category/classification and it is something that can be done
just by the first frame of each video.(so it will be cheap- as we check only one
frame. We can also make a variation that checks the video every few frames
as some of the videos have complex enough lighting that might change through
the video, or have different lighting in the same frame that outputs an image
with black nets on one side and white nets in the other. This happens only
one time in our system, but it should be considered as a variation for future
realistic video models)

When considering a way to output a label for a whole video into Black Net
Video or White Net Video, there were some attempts made to find an easy
way to label them. The first experimentation was based on the thought that
the nets would take less space than the background - whether it be solid sea
or just the background of the holes. So after the frame is being converted
to binary and before it goes to the CCL function, we counted the number of

40 Chapter 5. Modeling of the System and Progression

black and number of white pixels in the frames. This attempt did not work.
In most of the scenarios, the content ratio was about 40%-60% of either color
and so the results were ambiguous. If the nets are slim and there is no marine
fouling and generally the conditions are ideal, that would give good results
as the nets take ’less’ space in a frame. But the conditions on our new video
data are not ideal and the reality is more complex than that. Marine fouling
also played some part in the complexity of the outcome as well as the angle
and position of the camera.

Flood Fill and Variation

When proceeding to experiment with another way of recognising the color,
there are better results using a variation of the Flood Fill algorithm . The basic
logic is that as flood fill actually fills a specific colored area with the color of
your choosing, it goes through that area until all the same colored pixels are
changed to the new color. When we apply this in a aquaculture nets frame,
the pixels that we choose would be either on the nets or on the background
area. When the pixel choice is in one of the holes, the flood fill algorithm will
fill only this hole with the color choice (Figure 5.3). But when the pixel choice
is on the nets, the algorithm will fill the nets in the hole frame as they are
connected (Figure 5.4). This determines that when the pixel choice is on the
nets it would follow a much bigger and slower path as it goes through more
loops to cover the net area.

FIGURE 5.3: Flood Fill One pixel Choice in Background

5.1. Frame and Video Classification 41

FIGURE 5.4: Flood Fill One pixel Choice on Nets

For the purposes of this thesis, the process of loop iteration for a pixel choice
on the nets is what is important. {The general idea is that when you count the
iterations that happen to fill a chosen area, the count value in the background
holes areas will always be smaller than that of the net areas.}

The Flood Fill variation being used(introduced) in this thesis has a different
perspective, as the space does not actually need to be filled with a new color
or to have a specific space determined as a result like the original flood fill
algorithm. The main goal is to get the ’longer’ paths filled that logically have
only the boundary of the image. These longer paths will represent the nets
while the short ones will be the holes. Contrary to the classic flood fill algo-
rithm, we do not use recursion and the variation is based on a non-recursive
4-way method with a stack. The variation was made for the purpose of being
more robust. The original algorithm would work excellent as well.

A function was created for the purposes of identifying whether the nets are
dark or not using the flood fill algorithm. This function takes as input a
binary frame, that the adaptive_threshold process outputs, and then is used
in the CCL algorithm. The first thing the floodfill function does is to select
1% of the total frame pixels at random in order to represent enough covered
areas but not too many so that it takes a lot of time to process them all and
make a conclusion. Specifically, as the frame’s size at this point is 270x480(for
the videos that were initially 1080x1920) the total number of pixels is 129600
pixels and one percent of them is equal to 1296 pixels. For each one of those
the floodfill algorithm is applied and starts to fill the areas of each pixel. For
every repetition of a pixel fill there is a counter -countFlood that counts the
amount of times the while loop takes, in order for the area to fill. As we
specified above, the longest paths will be of the nets areas while the shorter
will be that of holes.

42 Chapter 5. Modeling of the System and Progression

However, as the new video data are very complex, some extra things were
done in order to be safe about the net’s color decision. While taking into con-
sideration that many frames cover some continuous areas with background
sea, and others have marine fouling noise, a simple maximum value of the
countFlood array could be the wrong output for the frame. That is why get-
ting the result not only of one max value, but of the color that appears the
most among the max countFlood values, is optimal. This also solves the
problem of when the nets appear thin and a 4-way flood fill does not go as
far as the 8-way version would. In this case, many paths are considered and
from the tests that were done it always gets the correct results.

Algorithm 1 : Flood Fill Variation

onePercentPixelnum← numPixelFrame/100
randomPixelArray← randi(pixels)
for onePercentPixelnum do

currentPixel ← randomPixelArray(i)
oldColor ← currentPixel
while exit f lag == 0 And pixelinimage do

if northPixel is oldColor then
Set new pixel north

else if eastPixelisoldColor then
Set new pixel east

else if southPixelisoldColor then
Set new pixel south

else if westPixelisoldColor then
Set new pixel west

else
exit f lag to go back to start

end if
countFlood← countFlood + 1

end while
countFloodArray(i)← countFlood
oldColor(i)← oldColor

end for
maxCountFlood← max(countFloodArray)
if maxCountFlood.oldColor == 0 then

The Nets are black
else

The Nets are white
end if

Even though the initial testing of the flood fill algorithm was done with Mat-
lab, the main reason for not using the original recursive method of flood fill is

5.1. Frame and Video Classification 43

because the xilinx Vivado HLS tools that will be used for the FPGA architec-
ture design do not support recursion. So we designed the algorithm without
recursion. However, this also makes the algorithm faster. And as it is not
only for one pixel but for 1296 at a time, this more robust version is better.

5.1.2 Marine Fouling Category

A basic problem that arises with the new video data, is the appearance of
marine fouling or marine growth attached on the nets. While Video 0 is clean
and clear, many of the other videos have low performance due to marine
fouling noise which alters basic features of each frame and makes the process
of detecting defective holes even more difficult. And that is why a whole
category of them was made to label the videos according to the concentration
of marine growth attached on the nets.

The goal is to determine if an aquaculture nets video has marine growth on
the nets and if it has, how much it is, and measure it with a low, medium or
high factor.

A future proposed task would be to find a way to reduce it or even remove
it from the frames, in order to make the net’s structure clear and visible with
the purpose of getting better results in the defective holes detection, or even
reducing the extent of the system.

From the evaluation we did in all the test videos in chapter 4, we observe
that the videos with marine growth, whether its concentration is high or low,
they have some things in common like the color.

5.1.3 Zoom - Camera Positioning and Points of View

Another category made was the Zoom category, which refers to the point of
view the videos were taken. It was established as a category, after seeing the
results of the system response in chapter 4, as there were many parts of the
videos that had a problem with the output when the position of the camera
was closer to the nets or it was changing through the video.

This category is essential and the next section’s results can be used to signifi-
cantly improve some of the category’s problems.

44 Chapter 5. Modeling of the System and Progression

5.2 Further than Image Classification - Parameters

Configuration

Categorizing the videos and changing the nets from white to black is simple
and effective but not enough. As we can see from Figure 5.2 even though we
changed the colour of the nets, the results are not as positive as we want. The
output recognises a lot of faulty holes as in holes that do not really exist.

In the pre-existing algorithm there were some parameters set specifically for
the needs of Video 0. The values of these parameters need to be tested and if
needed, to readjust for the new video data.

5.2.1 Testing Video 13

Video 13 has many differences with Video 0, but it has a clear structure and
is easy to spot when the results are better and that is why it was the choice
as the first test subject. Video 13 has 483 frames in total, so the sampling that
was done for the video was every 80 frames and get the frames 80, 160, 240,
320, 400 and 480. As some of them have similarities in the test results we
show only the frames 160 and 400 from every test to simplify the imaging
comparisons and quick assessment of the modification results. The complete
numerical results are summed up in Tables after every test made and show
the number of defective holes the system recognises as well as the success
rate calculated the same way with the evaluation success rates in Chapter 4.
As in Video 13 we only have one real defective hole in the nets, the results
are better in the cases where the result is closer to one and worse when the
defective hole count of the system is larger.

In Figure 5.5 are sampled frames with the original parameter set: offset=50,
luminance=0.03, threshold window=9.

The first change to be made, is the offset parameter. It was initially set as 50
which refers to the window size (50x50) and is used to sample the frame after
the CCL algorithm in order to detect and define the defective holes.

We first set the values to be one smaller and one larger than the initial and
see how the system responds with the change so we can move further ac-
cordingly.

5.2. Further than Image Classification - Parameters Configuration 45

Frame160 Frame240

Frame400 Frame480

FIGURE 5.5: Frames with results from Video 13 with original
settings offset=50, luminance=0.03, thresholdWindow=9

Frame160 Frame400

FIGURE 5.6: Frames with results from Video 13 with offset=10

Frame160 Frame400

FIGURE 5.7: Frames with results from Video 13 with offset=100

As we can see from figures 5.6 and 5.7, the frames from the video that were
exported when the offset is set to 100 have better results, than those with

46 Chapter 5. Modeling of the System and Progression

offset set to 10. We continue to set the parameter higher until we set it to
200(no more because of frame size) and we see the results in figure 5.8.

Frame160 Frame400

FIGURE 5.8: Frames with results from Video 13 with offset=200

In Table 5.1, we can clearly see that when the offset is higher, the false positive
results are fewer. If we combine the statistical results with the visual, we can
see that the real defective hole is marked as well and so the algorithm does
improve a lot with this modification.

offset 10 50 100 200
frame80 297 52 15 9
frame160 264 84 23 8
frame240 312 148 60 21
frame320 280 151 73 26
frame400 260 162 94 25
frame480 283 168 65 31

success rate 0.4% 1.1% 3.3% 7.9%

TABLE 5.1: Offset parameter in Video 13 frames

Another parameter that could be adapted is the illumination threshold set
initially to the value of 0.03. All the video data have differences in lighting
and illumination, and all the new ones differentiate a lot with the originally
tested Video 0 in these areas, so we need to test how a change in this param-
eter could help or not in improving the results.

The frame results after testing Video 13 with the original set parameters
is shown in Figure 5.5. Continuously, while keeping the offset parameter
steady, the illumination threshold alternates between values below and above
the initial 0.03.

We begun testing with a higher value set to 0.1 and then a lower set to 0.01.
The results shown in Figure 5.10 and Figure 5.10 correspondingly, seem to be
better in lower values. So we set a value in between, and see the results in
Figure 5.11

5.2. Further than Image Classification - Parameters Configuration 47

Frame160 Frame400

FIGURE 5.9: Frames with results from Video 13 with lumi-
nance=0.10 and offset=50

Frame160 Frame400

FIGURE 5.10: Frames with results from Video 13 with lumi-
nance=0.01 and offset=50

Frame160 Frame400

FIGURE 5.11: Frames with results from Video 13 with lumi-
nance=0.02 and offset=50

As it is clearly seen from the above testing, when the illumination threshold
value is lower, the results are better and the following Table 5.2 confirms
those results.

48 Chapter 5. Modeling of the System and Progression

Illumination Threshold 0.005 0.01 0.02 0.03 0.07 0.1

frame80 47 49 53 52 79 99
frame160 54 57 64 84 98 127
frame240 122 124 145 148 177 170
frame320 141 139 148 151 172 159
frame400 129 141 149 162 170 166
frame480 117 126 130 168 157 140

success rate 1.4% 1.3% 1.2% 1.1% 0.9% 0.8%

TABLE 5.2: Illumination parameter in Video 13 frames with de-
fault offset=50

The previous testing of the offset parameter(5.1) shows that the algorithm
gives best results with offset=200, so the next step is to test the illumination
threshold parameter for that optimal offset.

Illumination Threshold 0.005 0.01 0.02 0.03 0.07 0.1

frame80 5 7 9 9 12 21
frame160 5 5 7 8 21 25
frame240 13 14 13 21 39 58
frame320 14 15 15 26 53 61
frame400 21 21 22 25 43 72
frame480 19 22 23 31 51 60

success rate 12.9% 11.5% 9.7% 7.9% 4.4% 3%

TABLE 5.3: Illumination parameter in Video 13 frames given
offset=200

Frame160 Frame400

FIGURE 5.12: Frame with results from Video 13 with lumi-
nance=001 and offset=200

5.2. Further than Image Classification - Parameters Configuration 49

If the focus is only on the success rate data, the answer for the optimal value
would be to set the illumination threshold to 0.005. But when the visual
result is also taken into consideration, We can see that the defective hole is
barely detectable and maybe it would be better to have a bigger value of the
threshold in order to have the one correct hole detected and find solution for
the rest in another way.

5.2.2 Testing the Remaining Videos

The rest of the video data were also tested for changes with the offset parame-
ter with the purpose of seeing improvement and finding a possible common
value that would be optimal for many of them. For that reason, the tests
were made with the same values as those of Video 13’s testing. In this sec-
tion, some of the results of the testing are presented both as statistical success
ratings as well as visual frame results. The testing was executed in the same
way as before, sampling the videos with frames harmoniously distributed
through each video. For purposes of readability and easier comparison, only
a few frame results of each video are presented.

Testing Video 12

Video 12 is similar with Video 13 in terms of perspective and point of view.
And that may be the reason why it responds to the algorithm similarly. As
the camera goes closer to the nets, more faulty defective holes are detected as
seen in Figure 5.13.

Frame140 Frame350

FIGURE 5.13: Frames with results from Video 12 with offset=50

50 Chapter 5. Modeling of the System and Progression

Frame140 Frame350

FIGURE 5.14: Frames with results from Video 12 with off-
set=200

offset 10 50 100 200

frame70 439 113 38 9
frame140 392 172 72 36
frame210 404 190 107 48
frame280 392 185 98 41
frame350 463 180 80 28
frame420 371 149 78 42

success rate 0.2% 0.7% 1.7% 4.8%

TABLE 5.4: Offset parameter in Video 12 frames

The offset success rate shows some improvement and visually as the offset
increases (to 200) there is a reduction of faulty detective holes that can be seen
in Figure 5.14 for the same frames. However, the statistical data alone are not
acceptable as in frame 140, the real defective hole is not detected at all.

Testing Video 11

Video 11 is one of the lower success rated video of the video data, along
with Video 12 and Video 13. The reason for that is because it has a lot of
cage borders as in foreground noise and also the perspective of the camera
changes through the video and appears zoomed in in later frames. As seen
from the evaluation on Chapter 4, both of these elements contribute in more
faulty detection.

5.2. Further than Image Classification - Parameters Configuration 51

Frame179 Frame537

FIGURE 5.15: Frames with results from Video 11 with offset=50

FIGURE 5.16: Frames with results from Video 11 with off-
set=200

offset 10 50 100 200

frame179 295 106 48 17
frame358 331 124 49 18
frame537 303 174 96 44
frame716 240 187 117 65
frame895 244 198 141 51

success rate 0.3% 0.6% 1.3% 3.4%

TABLE 5.5: Offset parameter in Video 11 frames

Changing the offset parameter does actually give higher success rate, how-
ever the visual results strongly suggest that there should be another way to
minimise output errors.

Testing Video 10

Contrary to the previous video, at first glance, Video 10 has better visual out-
put and of course the success rate data confirm that. The few faulty detected

52 Chapter 5. Modeling of the System and Progression

holes are centered around the cage borders areas and background sea. All
the other ones initially detected in the net area, they improve as the offset
parameter increases.

Frame840 Frame2100

FIGURE 5.17: Frames with results from Video 10 with offset=50

Frame840 Frame2100

FIGURE 5.18: Frames with results from Video 10 with off-
set=200

offset 10 50 100 200

frame420 185 49 27 21
frame840 132 49 22 15

frame1260 156 39 31 25
frame1680 125 47 21 20
frame2100 79 19 12 12
frame2520 79 22 12 9

success rate 0.8% 3.7% 6.5% 7.9%

TABLE 5.6: Offset parameter in Video 10 frames

Testing Video 9

After tested Video 9 for different offset values, that Video 9 respond in sim-
ilar way to the previous Video 10. The main difference, and thus why it has

5.2. Further than Image Classification - Parameters Configuration 53

bigger increase in the rates, is that many of the wrongly detected holes came
from movement and not a foreground object. The movement errors are elim-
inated as the offset variable increases.

Frame1078 Frame2695

FIGURE 5.19: Frames with results from Video 9 with offset=50

Frame1078 Frame2695

FIGURE 5.20: Frames with results from Video 9 with offset=200

offset 10 50 100 200

frame539 182 12 2 2
frame1078 287 53 26 17
frame1617 265 47 21 15
frame2156 265 37 18 11
frame2695 167 37 19 11
frame3234 200 33 23 13

success rate 0.5% 4.1% 14.7% 17.6%

TABLE 5.7: Offset parameter in Video 9 frames

Someone could say that without the background sea in the left part of the
frame, the results would be close to perfect in this video, as the algorithm
only detects a few uncertain defective holes. For example the frame2695 in
Figure 5.20 with offset set to 200 has only one uncertain defective hole de-
tected in the net area.

54 Chapter 5. Modeling of the System and Progression

Testing Video 8

In the first frames Video 8 has already good results considering that most of
the defective holes shown, are yellow as the algorithm is uncertain. However
later the small part that is the background sea, outside of the nets gives some
faulty detection and lowers the success rates.

Frame404 Frame1010

FIGURE 5.21: Frames with results from Video 8 with offset=50

Frame404 Frame1010

FIGURE 5.22: Frames with results from Video 8 with offset=200

offset 10 50 100 200

frame202 296 17 8 7
frame404 373 45 10 4
frame606 337 51 25 14
frame808 328 69 27 17

frame1010 355 56 22 12
frame1212 368 96 33 20

success rate 0.3% 2.8% 7.5% 13.1%

TABLE 5.8: Offset parameter in Video 8 frames

The increase in the rates are significant and the visual results corroborate in
the that fact. The faulty results that came from the movement, the perspective

5.2. Further than Image Classification - Parameters Configuration 55

and the zoom, are decreased significantly, which both the statistical and the
visual data confirm.

Testing Video 7

The next video tested, Video 7 has generally good result already, as in the
beginning the video responds the same way as frame 500. Only in the latest
frames the movement is faster and the frames become more hazy, and so the
algorithm outputs faulty defective holes.

Frame500 Frame1500

FIGURE 5.23: Frames with results from Video 7 with offset=50

Frame500 Frame1500

FIGURE 5.24: Frames with results from Video 7 with offset=200

offset 10 50 100 200

frame250 315 29 10 5
frame500 467 27 4 2
frame750 610 92 20 5

frame1000 490 80 26 6
frame1250 430 23 11 8
frame1500 562 154 52 24

success rate 0.2% 2.8% 10.9% 24.6%

TABLE 5.9: Offset parameter in Video 7 frames

56 Chapter 5. Modeling of the System and Progression

The increase in the success rates show how much this small change of the
offset parameter actually affects the output results and the visual comes to
confirm this. The only thing that stays unchanged is the foreground object -
the diver’s hand, that stays the same through all the offset changes.

Testing Video 6

Video 6 is the video with the most success rate increase. From the initial
setting with offset=50, at 3.4% to 27.3% when setting the offset=200. This is
one more video where most of the faulty detected holes is due to movement
of the camera and as the visual results present, it is improved a lot with the
offset set high.

Frame640 Frame1600

FIGURE 5.25: Frames with results from Video 6 with offset=50

Frame640 Frame1600

FIGURE 5.26: Frames with results from Video 6 with offset=200

5.2. Further than Image Classification - Parameters Configuration 57

offset 10 50 100 200

frame320 291 25 12 2
frame640 372 81 24 10
frame960 325 49 31 19

frame1280 349 97 41 21
frame1600 262 13 2 3
frame1920 489 70 13 3

success rate 0.3% 3.4% 15.1% 27.3%

TABLE 5.10: Offset parameter in Video 6 frames

Testing Video 5

Video 5’s visual output resembles a lot that of videos 9 and 10, where most of
the wrongly detected defective holes are not on the net area but on the back-
ground sea around the cage borders. Even though the increase in the success
rate is there, it is not as substantial as others, as the cage border remains has
almost the same algorithmic response for different offset changes.

Frame674 Frame1685

FIGURE 5.27: Frames with results from Video 5 with offset=50

Frame674 Frame1685

FIGURE 5.28: Frames with results from Video 5 with offset=200

58 Chapter 5. Modeling of the System and Progression

offset 10 50 100 200

frame337 143 48 27 15
frame674 80 30 20 15

frame1011 105 31 21 17
frame1348 94 30 16 15
frame1685 212 50 27 20
frame2022 172 40 29 22

success rate 1% 3.2% 5.3% 7%

TABLE 5.11: Offset parameter in Video 5 frames

Testing Video 4

Video 4 is different than the previous videos. The main reason for the faulty
holes is the foreground noise. Marine fouling is in high concentration and
there are plastic bindings that get in the front and confuse the outcome.

FIGURE 5.29: Frame with results from Video 4

Frame198 Frame495

FIGURE 5.30: Frames with results from Video 4 with offset=50

5.2. Further than Image Classification - Parameters Configuration 59

Frame198 Frame495

FIGURE 5.31: Frames with results from Video 4 with offset=200

The success rate is higher as the offset is increased though, which eliminates
many of the faulty output holes and gives the desirable outcome. However, it
is probably not good to make assumptions at this point, as when comparing
it to the colored frame, whether there are defective holes or not, is uncertain
due to visibility.

offset 10 50 100 200

frame99 222 51 19 7
frame198 487 98 45 30
frame297 252 106 41 19
frame396 468 88 27 12
frame495 273 48 16 4
frame594 449 69 24 4

success rate 0.3% 1.7% 4.8% 16.2%

TABLE 5.12: Offset parameter in Video 4 frames

Testing Video 3

Video 3 is similar to Video 4 in the way that the faulty detection is due to
foreground noise (marine fouling). The main difference in these two is the
defective hole that clearly exists in Video 3.

60 Chapter 5. Modeling of the System and Progression

FIGURE 5.32: Frame with results from Video 3

Frame564 Frame1410

FIGURE 5.33: Frames with results from Video 3 with offset=50

Frame564 Frame1410

FIGURE 5.34: Frames with results from Video 3 with offset=200

This is where we can see that the success rate alone, does not necessarily
mean the correct result. Even though its is increased, which means eliminat-
ing many faulty holes, it also eliminates the correct one and thus is wrong.
It would be better to keep the offset setting low as the defective hole is still
detected and find another way to improve the rest.

5.2. Further than Image Classification - Parameters Configuration 61

offset 10 50 100 200

frame282 470 62 22 12
frame564 469 81 29 10
frame846 473 63 22 5

frame1128 461 81 27 7
frame1410 501 98 31 20
frame1692 449 166 82 41

success rate 0.2% 1.4% 4.1% 12%

TABLE 5.13: Offset parameter in Video 3 frames

Testing Video 2

Video 2 is also similar to the previous two. However the success rate in-
crease is lower and the visual frame results show why. It has many more
foreground objects that the offset parameter change does not affect, and also
marine fouling noise makes it hard too be sure about the credibility of the
rate’s output.

Offset=50 Offset=200

FIGURE 5.35: Frame648 results from Video 2

offset 10 50 100 200

frame324 228 38 22 9
frame648 211 77 33 17
frame972 243 57 29 12

frame1296 218 172 85 31
frame1620 232 60 33 19
frame1944 203 95 58 37

success rate 0.5% 1.7% 3.3% 7.3%

TABLE 5.14: Offset parameter in Video 2 frames

62 Chapter 5. Modeling of the System and Progression

Testing Video 1

As Video 1 has lower resolution than the others, the size frames are signifi-
cantly lower and thus they cannot be sampled above a window size. Of all
the previous values only the fist two are accepted for testing.

Frame240 Frame600

FIGURE 5.36: Frames with results from Video 1 with offset=10

Frame240 Frame600

FIGURE 5.37: Frames with results from Video 1 with offset=50

It seems that the initial offset=50 setting, was optimal and does not need
change. It has both better visual and success rate results. This video also has
a lot of marine fouling attached on the nets and is difficult to determine many
faulty defective holes.

offset 10 50

frame120 37 11
frame240 38 6
frame360 41 5
frame480 50 11
frame600 40 9
frame720 51 3

success rate 2.8% 19.8%

TABLE 5.15: Offset parameter in Video 1 frames

5.2. Further than Image Classification - Parameters Configuration 63

5.2.3 Evaluation of Parameter Testing Results for the Deter-

mination of the Changes Needed in the Design

For every one of the above video tests, all outputs were taken into considera-
tion and were compared with each visual video frame output as well as with
the initial colored input frame. Bellow, Table 5.16 shows all the statistical
success rates of each video with the initial settings (offset=50), the changed
offset=200 setting that had the best results and the improvement between
them.

Video # 1 2 3 4 5 6 7
offset 50 success rate(%) 19.8 1.7 1.4 1.7 3.2 3.4 2.8
offset 200 success rate(%) - 7.32 12 16.2 7 27.3 24.6
Improvement Factor (X
times better) - 4.3 8.5 9.5 2.2 8 8.7

Video # 8 9 10 11 12 13
offset 50 success rate(%) 2.8 4.1 3.7 0.6 0.7 1.1
offset 200 success rate(%) 13.1 17.6 7.9 3.4 4.8 7.9
Improvement Factor (X
times better) 4.7 4.3 2.1 5.7 6.8 7.2

TABLE 5.16: Success rate improvement in Videos with offset
changes

The highest improvement happens in Video 4 with an improvement factor of
9.5, when setting the offset to 200. However, all of the other videos have also
a great difference, considering that the initial rates are low and some of them
even close to 0. This shows how much can be improved in the results with
only simple parameter changes.

Generally it seems that when turning the offset parameter equal to 200 value,
the results are better for all the videos. However, the offset parameter is not
the only one that needs to be considered in order to make the correct con-
clusions, since when combined with the visual output the 200 offset value is
not always optimal. In many cases like in videos 3 and 4, the success rates
are significantly increased, but in the visual output frames, the actual defec-
tive hole is not detected and so, it is considered wrong. A combination with
other parameter settings may give better results, or for now, just the offset
remaining in it’s original value at 50.

Also some safe conclusions that can be made, are those of the specific cases

64 Chapter 5. Modeling of the System and Progression

the offset increased the success rates. When a video consists of movement er-
ror outputs, the increase in the offset parameter value, gives a significant in-
crease in both the success rate and the visual output. This happens in Videos
6, 7, 8 and 9 in which we also have the maximum increase in the success rate
results. The increase of the offset also helps in cases of zoomed , since videos
10, 12 and 13 are significantly improved both visually and statistically.

The only category that is not affected by the offset parameter’s change, is that
of marine growth. In low to medium concentration, there is no impact on the
output results, while in cases of videos 1, 2, 3 and 4 where it is in high con-
centration, the output results are unreliable visually and occasionally even
made worse with higher offset.

Video 10 is a case, that has the lowest increase factor in the success rates
results. That may be because it is affected by more than one difficult envi-
ronmental situations, like many net cage borders, marine fouling attached
on them and a zoomed in perspective of the camera.

5.3 Results

Matlab results are important for visual conclusions, as they summarize an
analysis in just an image. A variety of frame outputs after video testing is
shown and analysed in detail in section 5.2.2.

A low to medium amount of marine fouling does not seem to affect the al-
gorithm on giving results and only the high concentration gives negative
results. Another observation is that in most scenarios seen in chapter 4 the
good results are affected mostly from the foreground noise and not the back-
ground, as in most cases, even though there are fish in the background, the
algorithm still outputs correct results.

Figure 5.38 shows the increase on the performance of the algorithm with var-
ious offset changes. As clearly seen, all of them give better results when the
offset is increased to 200.

All this is done considering the change in the frame color with the Net Color
Detection, the floodfill variation. If the color was not changed, the success
rates would be 0, as this resulted in detecting holes on the nets.

5.3. Results 65

FIGURE 5.38: Offset Success Rates

Figure 5.39 shows the connection between the offset parameter and the il-
lumination and how the results are optimum when the illumination has its
lowest value(0.005) an the offset the highest(200).

FIGURE 5.39: Illumination Success Rates for Vid 13

66 Chapter 5. Modeling of the System and Progression

In Table 5.17 are presented the execution times of both the system(without
floodfill) and the Net Color Detection(floodfill) function in Matlab.

Video # 1 2 3 4 5 6 7
system run time(min) - 22.8 - 7.3 22.3 21.5 16.9
floodfill run time(sec) 1.2 3.1 2.5 2.6 2.6 2.2 2.5

Video # 8 9 10 11 12 13
system run time(min) 13.4 24.8 31 13.7 5.8 6.16
floodfill run time(sec) 2.6 2.3 3.1 2.3 2.4 2.3

TABLE 5.17: Execution time of floodfill variation in MATLAB
(in an Intel i5 Processor)

5.4 Chapter Conclusion and Proposed Methods

This whole chapter’s focus was on how to best take advantage of the clas-
sification system and eventually increase the output results of the already
existing method on the new video data.

In the first category ’Color Nets’ the obstacle was overcome, since a function
was created for the automated color detection of the nets. The output of this
is positive for all the videos as they give excellent output results.

As for further optimisation in the other categories, the results concluded that
the ’Zoomed’ -generally camera perspective- category, can be improved with
increase in the offset parameter. The success rate results were excellent and
give up to 29.3% increase, with the increase of the offset.

The other categories were not explored in this thesis, but here are some pro-
posals for further exploration:

For the marine growth : first check the illumination parameter and possible
changes in the enhancement function’s and the adaptive threshold’s param-
eter settings. Another way may be through colored rgb frames before the
process .

5.4.1 Extra Testing Appendix

Some extra testing was executed for Video 13, that it was not continued for
the other videos, is presented bellow.

5.4. Chapter Conclusion and Proposed Methods 67

-Another parameter is the adaptive threshold window size used in the adap-
tive threshold algorithm to produce a suitable threshold in order to make the
frame binary. In Th. Zacheilas’ thesis, it is tested for video 0 with the values
of 4, 9, 15 and 20, so we test the same values for this parameter.

Frame160 Frame400

FIGURE 5.40: Frames with results from Video 13 with threshold
window size=4

Frame160 Frame400

FIGURE 5.41: Frames with results from Video 13 with threshold
window size=15

Frame160 Frame400

FIGURE 5.42: Frames with results from Video 13 with threshold
window size=20

68 Chapter 5. Modeling of the System and Progression

Threshold Window Size 4 9 15 20

frame160 264 0 23 8
frame240 312 0 60 21
frame320 280 0 73 26
frame400 260 0 94 25
frame480 283 0 65 31

success rate 0.0011% 0.0% 0% 0%

TABLE 5.18: Threshold window parameter in Video 13 frames

69

Chapter 6

FPGA Design and Results

As the previous chapters indicate, the system for the new video data was
based on the previous system algorithm in Matlab. The same goes for the
hardware implementation. The previous hardware design was taken into
consideration to be improved and match the new data needs. Mainly, the
new function for the identification of the nets color was created in order to
implement it in the system.

For the Hardware Design, the implementation of the algorithm was made in
C++ language through the Xilinx tools, that automatically translate it in HDL
to be used for the final Design. For this thesis, in every reference of Vitis or
Vivado, we are referring to the tools of AMD Xilinx.

6.1 Tools and Platforms Used

The previous system was initially build on a Zedboard device which later
upscale onto a ZCU102 Evaluation Board and was implemented using Xilinx
Vivado Design Suite 2019.1.

Since the Xilinx tools were upgraded in 2020, for the creation of the new
Net Color Detectio(FloodFill) design, the new Xilinx Vitis Unified Software
Platform was used(Specifically Vitis 2020.2). The desing was build using an
Alveo U50 acceleration card.

Vivado High Level Synthesis (HLS 2019.1)

The initial design was implemented with Vivado High Level Synthesis (HLS)
tool. The purpose of HLS is to create an IP block that later can be integrated
on the FPGA Design through Vivado IDE. The Vivado HLS Tool allows the
user to use C++ language and automatically translates it in RTL.

70 Chapter 6. FPGA Design and Results

Vitis Unified Software Platform

The new design was implemented in Vitis 2020.2 which uses a combination
of the old Vivado HLS, Vivado IDE and Vivado SDK all in one. Instead of
creating a project in Vivado HLS and then importing it as an IP in Vivado,
the Vitis tool lets the user write in C/C++ in a kernel code and does the rest
on its own, according to the preferences of the designer. Specifically, Vitis
Tool combines four elements: a Vitis Target Platform(e.g for Alveo cards),
an XRT(API and drivers for the host program), the Vitis core development
kit(compiles, analyzers, debuggers) and the Vitis accelerated libraries(e.g.
for performance-optimized FPGA acceleration functions in image process-
ing that would be otherwise re-implemented by the designer).

In the Vitis core development kit, an application program is split between
a host application and hardware accelerated kernels with a communication
channel between them(PCIe or AXI). Typically, the host first transfers the
data to be operated on by the kernel(s) from host memory to global memory
and after the operations are completed the results are transferred back onto
the host memory.

The main operations of an application program are designed in the kernel(s)
which then are compiled and build onto the system. The Vitis Compiler pro-
vides three different ways to build the design: Software Emulation Build,
Hardware Emulation Build and Hardware Build.

One of the key aspects of the Vitis Unified Software Platform are the Vitis
Accelerated Libraries. For this thesis we are interested in the Vitis Vision
Library that provides us optimized functions for image processing.

Platforms and Devices

For this project, two different platforms were used for the two different sys-
tems. The first is ZCU102 Evaluation Kit with Zynq® UltraScale+™ MP-
SoC(change from initial zedboard to due to space capacity) used through the
Vivado 2019.1 when implementing the previous System. And second the
Alveo U50 Acceleration Card in the new Vitis 2020.2 environment for the
new system implementation.

6.2. Net Color Detection (Floodfill Explore) Subsystem Design 71

6.2 Net Color Detection (Floodfill Explore) Subsys-

tem Design

The goal of this thesis is to work and improve on the Previous System De-
sign for better results in the detection of defective holes in aquaculture nets.
The main addition of the FPGA implementation focuses on the Flood Fill
Variation Algorithm Design that detects the color of the nets and classifies
them. As described in Chapter 4 and later in Chapter 5, there is a solution to
identify the color of the nets and categorize the frames accordingly, in order
to change the frame as needed. This solution is given through the floodfill
variation algorithm (Algorithm 1) that was tested in Matlab. However it is
imperative to present the way this is used in the whole system.

6.2.1 Previous System Design

The Previous System Design Flow is displayed in Figure 6.1 and was imple-
mented in vivado hls in the same way as in Th.Zacheilas’ Thesis[1] - with-
out the red-coloured part. The top level is implemented with a DATAFLOW
pragma optimization, that enables task-level pipelining, allowing functions
and loops to overlap in their operation, increasing the concurrency of the
RTL implementation, and increasing the overall throughput of the design.

Specifically as presented in Figure 6.1, the input and out output streams are
coming from an external source and are imported using OpenCV functions
with a test bench(AXI streaming). Each component represents a different
function, either a Vivado HLS build in function using HLS Video Library or
a custom made. In more details:

• hls::AXIvideo2Mat and hls::Mat2AXIvideo, are build in functions that Con-
verts from a AXI Stream to the HLS::Mat format and the opposite, re-
spectively.

• ex_enhancement applies image filtering with a guided filter. This func-
tion is used as proposed in thesis[1] and prepares the input frame for
further analysis.

• The hls::Duplicate function simply creates two stream copies and passes
them along.

• Erode and Dilate perform morphological opening of the image using the
structuring element strel as input.

72 Chapter 6. FPGA Design and Results

• mat2gray converts input image to an intensity image

FIGURE 6.1: Top Level System Design - floodfill_explore is the
module which was developed in the present thesis

6.2. Net Color Detection (Floodfill Explore) Subsystem Design 73

• mean_filter_2D is a Vivado built in function which performs 2D convo-
lution on image.

• adaptive threshold helps in Nets visualization. Keeps the background(nets).

• threshold function outputs the binarized image.

• CCL - Connected Component Labeling and Windows algorithm for the
hole detection in the binary image. spots the holes (forground)

• AXIstream2Mat merges holes and nets (foreground and background) to
create the result frame.

The system above is tested and works only with Video 0 as input as shown
in Figure 6.4.

FIGURE 6.2: Input
Frame

FIGURE 6.3: Out-
put Frame

FIGURE 6.4: Video 0 test in previous System Design

Progressing on Previous Design

After the whole System is created and tested initially with the old video,
Video 0, the new video data were loaded as input to test the response. With
the current system, in order to get the visual results from the Vivado HLS the
input images must have dimensions 480x270 and resolution 72 dpi.

The previous system is based on a specific input video and is specialized in
the morphology of that video(Video 0). There are a few specific points where
the design is adapted in the video’s morphology like the sizes of the arrays
created and some limitations specifically made for video 0.

The design needs to be adapted to the characteristics of the new video data
and that means that major components of the design need to be changed
altogether. The goal was to change the parameters that had good results in
software and compare them, but after the above observation, we could not
proceed any further with the old design system testing.

74 Chapter 6. FPGA Design and Results

The focus in this thesis was shifted to the Net Color Detect Component that
is presented in Figure 6.1 in red and is analysed below.

6.2.2 Creation of Net Color Detect Design(Floodfill Variation)

For the detection of the nets color and the classification of them in black or
white in the FPGA, the process is similar to the one in matlab. The matlab
algorithm is translated in C++, in order to be suitable for the Vitis environ-
ment.

When migrating the floodfill function in an FPGA Design, there are some
initial observations that need to be made about the differences of the Vitis
tools versus the older Vivado. First, all Vitis Vision kernels are provided with
C++ function templates with image containers as objects of xf::cv::Mat class.
In addition, these kernels will work either in stream based (where complete
image is read continuously) or memory mapped (where image data access is
in blocks).

As in floodfill implementation we need to access specific pixels of the image,
a memory mapped kernel was created to facilitate that. It is more suitable
than the stream based kernel as the images are written in memory blocks
and can be accessed anytime in contrast with the stream input that can be
processed in a FIFO manner.

The whole process begins with the host application program(Fig: 6.5), where
the input image frame/image is read through the openCV function cv::imread()
with the flag cv::IMREAD_GRAYSCALE to indicate that the image read only
has one color channel. After that, the function cv::threshold is used in order
to binarize the image. The input we tested is already only black and white
but the cv::imread() function can not process it directly as binary, and it out-
puts the pixel values as 0 or 255 and that is why the threshold function is
needed. After binarizing, the image is ready to be sent to the kernel applica-
tion. First the device is set, and then the kernel is created with the variables
needed through the openCL enqueueWriteBuffer() function. Then the kernel
is launched using the enqueueTask() function and finally, after the kernel has
done it’s task, the output is passed back to the host with the enqueueRead-
Buffer() function. The last step is to display the output image with imshow()
or write it with imwrite() in order to review the results of the process.

6.2. Net Color Detection (Floodfill Explore) Subsystem Design 75

FIGURE 6.5: Host Application Program

Inside the Kernel

Each frame in the kernel is defined as an object of xf::cv::Mat class in this way:
xf::cv::Mat<XF_8UC1, HEIGHT, WIDTH, NPIX> in_mat(rows, cols, img_inp);,
where XF_8UC1 defines the datatype for the mat container. For this specific
datatype it means 8bits/pixel and 1 color channel. The HEIGHT and WIDTH
variables have the values of the image height and width. Also the NPIX vari-
able is defined with the suitable NPC type which indicates the pixel per clock
cycle processing either XF_NPCC1 for 1 pixel/clock cycle or XF_NPPC8 for
8 pixel/clockcycle.

A function for the main process of floodfill was created, called floodfill_explore()
that takes as input the binary image and outputs either the same image or the
opposite one, depending on whether the input has white nets or black. The
whole process is shown in Figure 6.6.

FIGURE 6.6: Net Color detection (Floodfill Explore)

The components in Figure 6.6 are described below:

◆ Read image to buffer uses Vitis Vision template functions to pass the input
image into the function.

76 Chapter 6. FPGA Design and Results

◆ Random pixel generator function was created using two LFSR(Linear Feed-
back Shift Register) registers in order to generate random input pixel co-
ordinates.There were two LFSR created, one to generate a number for x
axis and one for y axis of the frame that are both analysed below.

◆ Path exploration. is the main flood fill algorithm that traces the Path for
each of the random pixels and finds the longest. The code is written in
the same way described in the pseudo-algorithm [1], where it takes the
randomly selected pixel and checks its four neighbors for their color. If
they have the same, it continues setting them as the next pixel in the
path.

◆ Max path calc. The maximum path is calculated and considered as the
decisive factor to define the color of the nets.

◆ Bitwise not function is created with the purpose of changing the color of
the pixels to the opposite one, if the nets are black to output the opposite
frame of the input.

◆ Image output. This block decides whether to pass the input frame as it
is, or output the Bitwise not frame.

All the loops used in the function are pipelined except the loop that traces the
path(path_loop). The path_loop consists of dependencies that could not be
resolved either with logic, or by using the #pragma HLS dependence directive.
The dependence that is created resonates to fact that every pixel checked,
depends on the check of its previously neighbor pixel.

Since the floodfill algorithm is designed in a high level language through
Vitis, the code resembles that of the software in Matlab with only a few dif-
ferences being the LFSRs and the bitwise_not from Figure 6.6.

Linear Feedback Shift Register(LFSR)

The random pixel generator component, the second of the figure 6.6, consists
of two calls for two different LFSR register functions, randompixel270() and
randompixel480() in order to generate random pixels for each frame.

The LFSR is a shift register that the input bit is fed by the other bits selec-
tion through XOR gates. This outputs a sequence of numbers that is defined
by the specific feedback function that sets the new bit and is bound to be
repeated after a specific amount of outputs. It is necessary to initialize the
LFSR with a seed value before starting to generate the sequence numbers.

6.2. Net Color Detection (Floodfill Explore) Subsystem Design 77

In our design, in order to have many different cases in the random pixel
generator, we chose a 32-bit LFSR and tap into bit 32,22,2 and 1. The pseudo-
algorithm is shown below:

Algorithm 2 : Random Number Generator for Pixel Coordinates

max_rand← 232

function RANDOMPIXEL(seed, load)
#pragma HLS inline
static ap_uint<32> l f sr;
if load == 1 then

l f sr ← seed
end if
bool b_32← l f sr.get_bit(32− 32)
bool b_22← l f sr.get_bit(32− 22)
bool b_2← l f sr.get_bit(32− 2)
bool b_1← l f sr.get_bit(32− 1)
bool new_bit← b_32⊕ b_22⊕ b_2⊕ b_1
l f sr ← l f sr >> 1
l f sr.set_bit← new_bit
unsigned int pix ← l f sr.to_uint()

return pix/(max_rand/axis_dimension)
end function

We choose an lfsr of 32 bits and then scale it to 270 or 480 that only need
9 bits, because the random sequence that repeats has a grater repeat period
than the 9-bit LFSR and we want to increase the randomness. The scale is
different for each of the LFSR created, as the one is for height dimension
and the other is for the width. The difference in the algorithm is only in the
variable axis_dimension that is set 270 or 480 for each dimension.

For the LFSR components, we use #pragma HLS inline directive so that the
Vitis tool recognizes the functions in the same level of hierarchy in the RTL
and not as separate entities.

Integration to the main System

Even though the above application can be used as a standalone project to
determine the color of the nets and simply classify the videos, it was created
with the thought of being used in the previous System. If we want to im-
plement the above process in the top level design of the initial System, this

78 Chapter 6. FPGA Design and Results

would be a block in the dataflow after the threshold function and before the
CCL function begins as shown in Fig:6.1, as the input is a binary image that
comes after threshold and the output is necessary for the CCL.

6.3 FPGA Results and Utilization

This section shows the FPGA results after testing, of the new Net Color De-
tection component that we created, and the timing and resource estimated
taken from Vitis HLS tool after the stage of Synthesis. We did not proceed to
load the design on the actual board.

6.3.1 Verification Testing

The Net Color Detection implementation takes as input a binary frame of a
video and outputs the same or its complement depending on the color of the
nets. Figure 6.8 shows the output for video 13. The same is for the other
videos that have black nets.

FIGURE 6.7: Input
Frame

FIGURE 6.8: Out-
put Frame

FIGURE 6.9: Video 13 test in Net Color Detection Design

To verify the output results, we run the simulation several times for each
video, for multiple input frames each time. Each time the algorithm outputs
the correct result, characterising the frame with the correct net color. The only
ambiguous results were that of video 6, which was expected (as mentioned
in chapter 5) as the lighting allows to have two different net colors in the
same frame. This resulted in having both the two different outcomes with
the most dominant being the black nets characterisation.

For every other video, the results were 100% correct and considering the ran-
domness of the sample pixels, it shows how accurate and useful is this com-
ponent for the task we need.

6.3. FPGA Results and Utilization 79

6.3.2 Performance

FPGA Resources

Table 6.1, presents the resources needed to create the Net Color Detection(floodfill)
component(targeting Alveo U50). It shows that the amount needed is really
small and can be easily integrated in the old system design without the need
to change the original platform(ZCU102) as the design space is enough. Vitis
HLS Synthesis report, also shows the utilization in percentage(%) but it is too
low and is shown as 0% for all the resources.

Resource Usage BRAM DSP FF LUT URAM
Units Used in Floodfill Component 18 0 4,478 6,362 0

TABLE 6.1: Resource Estimates (from Synthesis) for Net Color
Detection (floodfill) Component

According to Th. Zacheilas[1], the Top Level Design that was targeting ZCU102
Evaluation Board, outputs the resource estimates of Table 6.2

Resource Usage BRAM DSP FF LUT URAM
Units Used in Previous system 1,115 32 180,112 185,526 0

Utilization(%) 61 1 32 67 0

TABLE 6.2: Performance and resource estimates for Previous
System

Combining the above tables, we can conclude that the Net Color detection
component does not need many resources and can be easily included in the
top level design without any FPGA resource problems when targeting the
ZCU102 Evaluation Board which was used in the previous design.

Execution Time

Synthesis report timing estimates in Table 6.3 shows the clock period that the
synthesis report of Vitis HLS tool estimates.

Clock Period Target Set by
the HLS

Estimated after
Synthesis

Uncertainty
in ns

Th. Zacheilas’ Design
(Previous Work) 4 3.5 0.5

Floodfill Design
(Present Thesis) 3.33 2.433 0.9

TABLE 6.3: Clock Period Estimates in ns

80 Chapter 6. FPGA Design and Results

From Table 6.3 we note that the current design does not impair the perfor-
mance of the complete system, and hence the real-time capacity of the system
is maintained.

The Vitis HLS tool also outputs an estimate for the latency in clock cycles and
from that we can calculate the estimated time required for this task.

Execution Time = Period * Latency = 0.03537sec = 35.537msec

We report this estimated execution time for the processing of a complete
frame in order to compare it against software execution in MATLAB of the
same algorithm. Although in MATLAB there exist a few more calculations
vs. the estimated hardware execution time, the difference 35.5msec vs. 2.26sec
as reported in 5.17 shows that the hardware speedup of almost 64X renders
a hardware solution necessary for the problem at hand; even if we coded
the algorithm in C or another language the results would still be orders of
magnitude apart.

6.4 FPGA System Setup

Setting up the system required some settings regarding the specific Vitis
2020.2 and how OpenCV and Vitis Vision Library all corespond together.

Opencv

After downloading OpenCV in our local system, adding path of OpenCV
local location in the build settings of every project component is required.

Vitis Vision

The Vitis Vision Library does not need further installation or inclusion, but
for many of the templates, opencv needs to be included.
Read of Mat() streams is not supported with "«" operator as it was in previous
versions of Xilinx tools and need to be read with read() template function.

Useful Links

After Jan. 1st 2022, when using a previous version of the Vitis tools, an
IPexport error appears that is solved with the patch in the following link:
https://support.xilinx.com/s/article/76960?language=en_US

https://support.xilinx.com/s/article/76960?language=en_US

81

Chapter 7

Conclusions and Future Work

This chapter summarizes the work and contributions this thesis presents. It
also proposes ways to further explore and improve the current system.

7.1 Conclusions

As the goal is to advance the system to work on different and more challeng-
ing input data, the evaluation of the video data(Chapter 4) plays an impor-
tant factor in the process of improving the system results. It shows where
the system is lacking and can be improved as well as different aspects and
different conditions that were not considered before. The classification sys-
tem that was created, contributed in the process of assessing the need of the
video data not separately, but by turning the focus in the common factors
and features of the videos.

This thesis also presents two improvements in the system. The first one refers
to the first of the classification category, with the goal of detection and change
of the color of the nets, which improves the system a lot, in finding less faulty
results as defective holes in the nets. The second improvement is about the
category of the movement of the camera that decreases further the amount
of faulty results by changing the offset parameter as described in Chapter 5.

The Net Color Detection is also implemented both in software with MATLAB
and in hardware on an Alveo U50 using Vitis Tools. In both, the results are
satisfactory as they detect the color of the nets and change it accordingly.

The most important result from this work is that in an existing system we
changed a subsystem with a new one, in such a way that neither the target
FPGA technology nor the speed of the entire system were impaired in any
way. At the same time the new system substantially improves the results of

82 Chapter 7. Conclusions and Future Work

the previous one over a very broad range of realistic datasets from aquacul-
ture nets.

7.2 Future Work

The system is far from perfect yet, as the goal is to create a whole autonomous
underwater net holes detection system. There are many possible paths to
explore and improve the system and are proposed below:

• System integration: the scope of the current work was to improve the
results from a previous system under more realistic conditions, how-
ever, the new design has not been fully integrated with the previous
system, let alone downloaded on actual hardware. This is probably the
first step towards future work.

• Additional parameter Testing. As seen from the offset testing, the re-
sults improved a lot. There are some parameters that may contribute a
lot regarding the new data.

• Marine Fouling is present in many videos and affects the systems re-
sponse a lot. It would make a great difference in the system results
if the videos processed have clear nets as many of them output faulty
holes for that reason.

Could determine the HSV color range of marine growth in order to
remove it or change it or set it as an area of uncertainty before the main
processing. This process should happen when initially the frames are
extracted from the video and are still in RGB color form.

Or for videos with low to medium growth noise like Videos 6, 7, 8, 9,
10, 11, 12 and 13 could work by reducing it as proposed in the paper
"Fishing Net Health State Estimation Using Underwater Imaging" by
Wenliang Qiu

• Zoom factor. While the offset parameter calibration made significant
progress in the videos that belong in the zoom/movement category, it
is not yet optimal.

• Improving the hardware by reviewing the system as a whole. The
FPGA design needs to be revised to accommodate the different input
video data.

7.2. Future Work 83

• Review and analyze more data in realistic and challenging conditions
other than those 14 videos.

As many of the image and video processing applications around the globe
use more and more AI and Machine Learning, that could be another possi-
ble path in the defective net hole detection system. It would be lacking not
to propose it as the research is growing the last few years in that field and
with it the hardware Design tools like Vitis AI and the various platforms that
support it. (choose the hardware wisely- GPU/FPGA/VPU)

85

Bibliography

[1] T. Zacheilas, K. Moirogiorgou, N. Papandroulakis, E. Sotiriades, M.
Zervakis and A. Dollas, "An FPGA-Based System for Video Processing
to Detect Holes in Aquaculture Nets," 2021 IEEE 21st International Con-
ference on Bioinformatics and Bioengineering (BIBE), 2021, pp. 1-6, doi:
10.1109/BIBE52308.2021.9635351.

[2] Th.Zacheilas, Reconfigurable Logic-Based System for Image Processing of
Fishery Nets, Technical University of Crete, Chania, 2021.

[3] Bradley, Derek Roth, Gerhard. (2007). Adaptive Threshold-
ing using the Integral Image. J. Graphics Tools. 12. 13-21.
10.1080/2151237X.2007.10129236.

[4] N. Badogiannis, K. Moirogiorgou, M. Zervakis, A. Dollas, N. Papan-
droulakis. Real-Time Embedded System for Hole Detection in Fish Cage Nets.
IEEE International Conference on Imaging Systems and Techniques
(IST), Dec. 8-10, Abu Dhabi, UAE, IEEE, 2019.

[5] Stavros Paspalakis et al. Automated fish cage net inspection using image
processing techniques. In: vol. 14.10.2020, pp. 2028–2034. DOI:10.1049/iet-
ipr.2019.1667. URL: https://doi.org/10.1049/iet-ipr.2019.1667.

[6] Kaiming He, Jian Sun, and Xiaoou Tang. Single Image Haze Removal Using
Dark Channel Prior. IEEE Transactions On Pattern Analysis And Machine
Intelligence, Vol. 33, No. 12, December 2011.

[7] Ahmad Shahrizan Abdul Ghani, Nor Ashidi Mat Isa. Underwater image
quality enhancement through Rayleigh-stretching and averaging image planes.
International Journal of Naval Architecture and Ocean Engineering, Vol-
ume 6, Issue 4, December 2014, Pages 840-866

[8] Amit Shirsat and Bharat Bhargava. Local geometric algorithm for hole
boundary detection in sensor networks. Published online 11 March 2011 in
Wiley Online Library

86 BIBLIOGRAPHY

[9] Wenhao Zhang, Ge Li, Zhenqiang Ying. A New Underwater Image En-
hancing Method viaColor Correction and Illumination Adjustment. School
of Electronic and Computer Engineering, Peking University Shenzhen
Graduate SchoolLishui Road 2199, Nanshan District, Shenzhen, Guang-
dong Province, China 518055

[10] Sonali Sachin Sankpal and Shraddha Sunil Deshpande. Nonuniform Illu-
mination Correction Algorithm for Underwater Images Using Maximum Like-
lihood Estimation Method. Research Article, Open Access, Volume 2016,
Article ID 5718297

[11] Adam Taylor. Using HLS on an FPGA-Based Image Processing Platform.
Published Online May 31, 2018

[12] Valery Sklyarov, Iouliia Skliarova and Alexander Sudnitson. FPGA-based
Accelerators for Parallel Data Sort. University of Aveiro/IEETA, Portugal,
Tallinn University of Technology, Estonia,
Volume 16: Issue 1, Published online: 27 Jan 2015.

[13] Stephen Neuendorffer, Thomas Li, and Devin Wang. Accelerating
OpenCV Applications with Zynq-7000 All Programmable SoC using Vivado
HLS Video Libraries,

[14] M. Park, K. Brocklehurst, Robert Collins, and Yanxi Liu. Deformed lat-
tice detection in real-world images using mean-shift belief propagation, IEEE
Transactions on Pattern Analysis and Machine Intelligence (2009) (en-
glish).

[15] Vaibhav Gadewar Radhika Chandwadkar, Saurabh Dhole, Deepika
Raut, and Prof. S. A. Tiwaskar. Comparison of edge detection techniques,
6th Annual Conference of IRAJ (2013).

[16] Kurt Schwenk and Felix Huber. Connected component labeling algorithm
for very complex and high resolution images on an fpga platform, SPIE Remote
Sensing. International Society for Optics and Photonics (2015).

[17] N. Senthilkumaran and R. Rajesh. Edge detection techniques for image seg-
mentation – a survey of soft computing approaches, International Journal of
Recent Trends in Engineering, Vol. 1, No. 2 (2009).

[18] Bruce A. Draper, J. Ross Beveridge, A.P. Willem B¨ohm, Charles Ross,
Monica Chawathe, and Jeffrey Hammes. Accelerated image processing on
fpgas, IEEE Transactions on Image Processing (2003).

BIBLIOGRAPHY 87

[19] Ilkoo Ahn and Changick Kim. Finding defects in regular-texture images,
Korea Advanced Institute of Science and Technology (2009).

	Abstract
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Statement
	Scientific Contributions
	Thesis Outline

	Theoretical Background
	Video Processing
	Computer Vision
	Image Classification
	Video Classification

	Image Segmentation - Morphological image processing
	Connected Component Labeling
	Thresholding
	Adaptive Threshold

	Flood Fill

	Marine Fouling
	Tools and Libraries Used
	For Software Implementation
	For FPGA Implementation
	Libraries

	Related Work
	Previous Theses at TUC
	Nikolaos Badogiannis' Thesis
	Stavros Paspalakis' Thesis
	Theofilos Zacheilas' Thesis

	Thesis Approach

	Assessment of Algorithms Under Realistic Datasets
	Video Classification System
	Presenting the New Video Data
	Assessment of the Pre-Existing Method
	Analyzing Video Data
	Video 0
	Video 1
	Video 2
	Video 3
	Video 4
	Video 5
	Video 6
	Video 7
	Video 8
	Video 9
	Video 10
	Video 11
	Video 12
	Video 13

	Evaluation Results

	Video Data Analysis Conclusions
	Problems to be Solved

	Modeling of the System and Progression
	Frame and Video Classification
	Color of the Nets Category and Identification
	Flood Fill and Variation

	Marine Fouling Category
	Zoom - Camera Positioning and Points of View

	Further than Image Classification - Parameters Configuration
	Testing Video 13
	Testing the Remaining Videos
	Testing Video 12
	Testing Video 11
	Testing Video 10
	Testing Video 9
	Testing Video 8
	Testing Video 7
	Testing Video 6
	Testing Video 5
	Testing Video 4
	Testing Video 3
	Testing Video 2
	Testing Video 1

	Evaluation of Parameter Testing Results for the Determination of the Changes Needed in the Design

	Results
	Chapter Conclusion and Proposed Methods
	Extra Testing Appendix

	FPGA Design and Results
	Tools and Platforms Used
	Vivado High Level Synthesis (HLS 2019.1)
	Vitis Unified Software Platform
	Platforms and Devices

	Net Color Detection (Floodfill Explore) Subsystem Design
	Previous System Design
	Progressing on Previous Design

	Creation of Net Color Detect Design(Floodfill Variation)
	Inside the Kernel
	Linear Feedback Shift Register(LFSR)
	Integration to the main System

	FPGA Results and Utilization
	Verification Testing
	Performance
	FPGA Resources
	Execution Time

	FPGA System Setup
	Opencv
	Vitis Vision
	Useful Links

	Conclusions and Future Work
	Conclusions
	Future Work

