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Design in HDL of a DMA engine that complies with the AMBA 5 CHI
communication protocol

by Angelos KOURKOULOS

A Direct Memory Access (DMA) is a system that allows a device to trans-
fer data directly to and from main memory, bypassing the central processing
unit (CPU). This can be useful for transferring quickly large amounts of data,
as it allows the CPU to perform other tasks while the DMA controller handles
the data transfer. The aim of this thesis is to design, optimize and verify in
HDL an IP Core (Intellectual Property Core) DMA engine that complies with
AMBA 5 CHI(Coherent Hub Interface) protocol and efficiently transfers data
to and from the CHI hub which can be used in HPC (High-Performance Com-
puting) to improve the performance. This DMA controller is designed to be
able to handle a scalable amount of memory transfers, generically schedule
them based on the user’s demands and transfer the appropriate data at any
address byte offset in memory. The proposed DMA is designed to work with
systems that use AMBA 5 CHI architecture as it is a state-of-the-art technol-
ogy designed by ARM that classifies different components in a system by
node type and provides a means for communication between nodes. CHI
is designed for High bandwidth, efficiency, scalability, and reliability, while
it offers the capability for memory and cache coherency which are the basic
reasons that CHI is widely used in HPC. By complying with this protocol,
the presented IP Core can utilize the advantages that CHI provides as well
as the features of the DMA architecture and be a useful tool to improve the
performance of systems that would incorporate it.
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by Angelos KOURKOULOS

Η ΄Αμεση Πρόσβαση Μνήμης (DMA) είναι ένα σύστημα το οποίο επιτρέπει σε μια
άλλη συσκευή να μεταφέρει δεδομένα σε και από την κεντρική μνήμη προσπερνόν-

τας την κεντρική μονάδα επεξεργασίας (CPU). Αυτό ειναι χρήσιμο για τη μεταφορά
μεγάλου όγκου δεδομένων γρήγορα αφού επιτρέπει στηCPU να εκτελεί άλλες διερ-
γασίες κατα την διάρκεια που η DMA διαχειρίζεται την μεταφορά των δεδομένων.
Ο στόχος αυτής της διπλωματικής είναι η σχεδίαση σε HDL ενός IP Core DMA
για διασύνδεση με συστήματα μέσω του πρωτοκόλου AMBA 5 CHI(Coherent
Hub Interface) η οποία θα μεταφέρει αποτελεμσατικά δεδομένα μέσα στο κεντρικό
σύστημα, η οποία μπορεί να χρησιμοποιηθεί για τη βελτίωση της απόδωσης κάποιου
HPC. Αυτη ηDMA ειναι σχεδιασμένη ώστε να μπορεί να διαχειριστεί ενα κλιμακό-
μενο αριθμό μεταφορών, να τις δρομολογεί με βάση τις απαιτήσεις του χρήστη και
μεταφέρει τα απαραίτητα δεδομένα σε οποιαδίποτε διεύθηνση μνύμης. Η προτεινό-
μενη DMA είναι σχεδιασμένος να λειτουργεί με συστήματα που χρησιμοποιουν
την AMBA 5 CHI αρχιτεκτονική αφού είναι τεχνολογία αιχμής σχεδιασμένη από
την ARM η οποία κατατάσει διαφορετικά αντικείμενα μέσα σε ένα σύστημα με

την μορφή κόμβων και παρέχει ένα μέσο επικοινωνίας μεταξύ τους. Το CHI εί-
ναι σχεδιασμένο να παρέχει υψηλό εύρος ζώνης, αποδοτικότητα, επεκτασιμότητα
και αξιοπιστία ενώ προσφέρει δυνατότητα για κύρια μνήμη και μνήμη cache co-
herency που είναι οι βασικοί λόγοι που χρησιμοποιείται ευρέως σε υπολογιστές
υψηλής απόδοσης. Με τη συμβατότητα σε αυτό το προτόκολο το παρουσιαζόμενο
IP Core μπορεί να αξιοποιήσει τα πλεονεκτήματα που προσφέρει το CHI καθώς
και τα χαρακτηριστικά της αρχιτεκτονικής της DMA ώστε να είναι ένα χρήσιμο
εργαλείο για να βελτιώσει την απόδοση των συστημάτων που θα το ενσωματώσει.
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Chapter 1

Introduction

1.1 Motivation

High-Performance Computing (HPC) refers to the use of powerful comput-
ers or computing clusters that use parallel processing and advanced algo-
rithms for solving complex computational problems and processing mas-
sive multi-dimensional datasets delivering significantly higher performance
compared to traditional computers. HPC systems typically consist of clus-
ters of computers or supercomputers that work together to provide results
about difficult problems that require highly intensive calculations such as
automated sequence DNA, simulations, artificial intelligence (AI), analyzing
radar and GPS systems, stock trading, etc. However, a critical bottleneck
in HPC performance is usually data movement. To encounter this problem
many HPC systems implement devices called DMA engines which is a key
component in reducing this bottleneck.

Direct Memory Access (DMA) is a specialized hardware technology that is
widely used in modern digital systems and HPC. It is very useful because
it works with processors and reduces their workload. As the term indicates
DMA’s purpose is to directly access data from memory i.e. without the in-
volvement of a processor. This way many devices can access memory directly
through DMA and leave processor with more free time to execute other tasks.
Subsequently, the parallelism of the system is improved hence the overall
performance is boosted[1]. Also, DMA typically has higher bandwidth and
it can transfer data in larger chunks than the processor without the delays
and interruptions that can occur when the CPU is involved in the process
hence the data movement can be more efficient. When the DMA has finished
the data movement, the core can be informed of the completion by polling
the status of the DMA or by receiving an Interrupt from the engine. Since
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DMA handles the data movement it allows the CPU to enter a low-power
state which can reduce the overall power consumption of the system as the
processor is one of the units that consume the most energy [2]. Some other
hardware entities that usually use DMAs are disk drive controllers, graphics
cards, network cards, sound cards, etc.

Another very important and common technique that many HPC and in gen-
eral computer systems with multiple processors use nowadays to improve
their performance is coherency. Coherency refers to the ability of devices
in a system to access shared memory in a consistent and coherent manner
which reduces the impact of data movement on system performance by en-
suring that all processing units have access to the most up-to-date data. This
means that all devices can see the same view of the memory and can read and
write to it without interference. Also, there are some specialized types of co-
herency called cache coherency and IO coherency which can help to further
improve the performance by giving specialized characteristics to the devices
that implement them. Cache coherency refers to the use of a cache coherency
protocol to ensure that all processors have a valid form of data within their
caches which are not modified in another processor’s cache by keeping track
of the status of each cache line in the system. Cache coherency is often used
in multi-processor systems to improve performance by reducing the num-
ber of memory accesses and minimizing cache coherence traffic. Although
in such systems the conservation of cache coherency is a vital requirement
for many processors, there is a need for some components to read and write
the last snapshot of memory but do not require to be informed of changes
in data by other processors from the cache coherent protocol as they proba-
bly do not implement a cache. These devices can coexist with other cache-
coherent components but they are in a different category and referred to as
IO-coherent. Coherence protocols are implemented by systems that allow
the connected components to successfully obtain memory/cache coherency
by obeying a set of rules defined by a communication protocol. There are a
variety of such protocols that promise sustainable memory coherency with a
high communication rate. A very recent protocol that ensures the conserva-
tion of coherency and high-speed transmission that this thesis is focused on
is the AMBA 5 Coherence Hub Interface (CHI).
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AMBA (Advanced Microcontroller Bus Architecture) is an interconnect spec-
ification that ARM developed in the late 1990s and it is widely used for on-
chip communications in systems-on-a-chip (SoCs), application-specific in-
tegrated circuits (ASIC), and embedded systems. It defines a set of inter-
faces for interconnecting a large number of devices such as processors, mem-
ory controllers, and peripheral devices, and provides a standard way for
these components to communicate with each other. AMBA introduced many
buses with the corresponding communication protocols starting from the
Advanced System Bus (ASB) and the Advanced Peripheral Bus (APB) in
1996. In the next few years, AMBA evolved its protocols and released new
updated buses and interfaces. The latest protocol that AMBA supports is the
Coherence Hub Interface (CHI) which is an evolution of the AXI Coherency
Extensions (ACE) protocol. CHI is a top-of-the-line protocol for creating large
and complex systems. It offers scalability, high bandwidth, and high avail-
ability which can help to improve the performance of many applications.
Also, it provides capabilities for Coherency, Coherence’s distributed caching,
and IO Coherency that speed up the load-store Data operations and signif-
icantly decrease memory access time. AMBA 5 CHI is used in a variety of
systems that require efficient communication as the components in the sys-
tem increase and the volume of traffic grows. Some of the systems that em-
ploy CHI in practice are the Cache coherent network based on ARM Core-
Link CCN-504 [3] [4] and the CoreLink CMN-600 [5] which interconnects
Cortex-A76/A60 and other components with dynamic memory controllers.
Due to its special characteristics, CHI has been also recently implemented for
gem5 Ruby which performs a detailed simulation model for memory sub-
systems[6]. In general, this protocol applies very effectively in a variety of
applications such as automotive, mobile, data centers, and networking.

In this thesis we thoroughly designed the architectural components of a CHI-
compliant IP Core DMA engine that can potentially be utilized and improve
HPC systems, implemented in system-verilog HDL (Hardware Description
Language), and verified its operation by the use of behavioral simulations.
The DMA controller is designed to interact with AMBA 5 CHI protocol and
allow the CPU to perform other tasks since DMA transfers data to and from
memory exploiting the advantages that the CHI interconnection offers. At
the end of this work, the interconnection independent through and latency
are measured with the use of behavioral simulation, and the utilization of
the system is approximated from the synthesis tool with great results in all
measurements.
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1.2 Scientific Contributions

This thesis gave us the opportunity for developing a modern and effective
DMA engine that can be utilized to improve the performance of a multi-
processor system while advancing our knowledge about the subject for fur-
ther development in the future. It also provided us the chance for advancing
our expertise in the architectural design field, improving our skills in hard-
ware optimization and debugging, and enhancing our experience with HDL
and the tool of Xilinx. The thesis presents in detail the architecture of a CHI-
based DMA Controller, a subject for which, to the best of our knowledge,
there is no similar work. The designed IP Core allows devices that coop-
erate with it to move data in cache-coherent systems compatible with the
CHI protocol. The CHI compliance of the DMA engine allows it to oper-
ate more efficiently, enhancing the speed of data transfers and benefiting the
other devices to drastically improve their performance. The cache coherence
feature that CHI provides has a big influence on the performance of the sys-
tem, as the DMA can read data from some processor’s cache, if it has the
desired data, instead of the main memory. In addition, the proposed DMA
has been designed to be generic and parameterized for effortless future ex-
pansion and to be flexible in adjustments that could occur due to changes
in technology or demands of the application. More specifically, the engine
can receive a programmable amount of transfers using an architecture that
leverages a BRAM as transfer Descriptor space. Also, it provides a generic
method for scheduling the execution of memory transfers from different pro-
cesses, which is useful as the optimal scheduling way can vary according to
the implemented communication protocol or the application. Furthermore,
as already stated, the proposed DMA controller utilizes the CHI as it is a
state-of-the-art communication protocol and provides high-performance ca-
pabilities for coherence systems. However, as the technology evolves, a new
better protocol could be released and outperform CHI. For this reason, the
DMA engine has been designed to keep all the communication logic within
one module. This can be easily modified and make the engine operate with
any different state-of-the-art protocol without changing the core of the de-
sign. In this case, the generic scheduling is very helpful, as it adapts to the
protocol demands. Overall, the use of an IP core DMA that uses the AMBA
5 CHI protocol enables system designers to easily integrate the DMA engine
into their designs, making it a versatile and cost-effective solution for HPC
applications. It can achieve the maximum possible throughput and minor
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latency in most cases and improves the performance and efficiency of the
system by reducing the data movement bottleneck and enabling faster and
more efficient data transfers between processors and memory.

1.3 Thesis Outline

The rest of this thesis is organized as follows.

• Chapter 2 - Theoretical Background and Related Work: Βriefly de-
scription of specifications about other projects based on DMAs and the
CHI.

• Chapter 3 - Architecture of DMA: Presentation of the architecture of
the IP Core and analyzing the implementation of its main components.

• Chapter 4 - Simulation and Testing: Description of the simulation and
verification methods used for the validation of the system

• Chapter 5 - Results: Performance representation of the DMA. Through-
put, Latency, and Utilization.

• Chapter 6 - Conclusions and Future Work: Conclusion of the thesis
and report for optimizations and further development that can be inte-
grated in the future.
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Chapter 2

Theoretical Background and
Related Work

The concept of using a DMA to improve the performance of the CPU is well
known since last century. The first personal computer of IBM that used a
DMA engine, is the IBM PC (model 5150) and released in 1981 [7], while older
computers like IBM System/360 included channels for transferring data be-
tween a peripheral and main memory, that could be compared to DMA [8].
For this reason, there are many projects on the subject each of which targets
a different field of application. Some recent publications about DMA con-
trollers are presented in the following sections.

2.1 DMAs based on the AHB bus architecture

The AHB (Advanced High-performance Bus) protocol is a high-performance,
synchronous, and pipelined bus protocol. It is developed by ARM and it is
one of the protocols specified by AMBA. It is used to connect high-speed
components in a system design. It is designed to provide a high-speed in-
terconnect between numerous devices, such as processors, memories, and
peripherals.

2.1.1 Design and Implementation of a Direct Memory Access

Controller Based on Microcontroller Unit

This work was made by Chao Lu and published in 2022 [9]. In this publica-
tion, the author describes the design of a DMA controller based on AHB-Lite
protocol aiming to exempt MCU (Microcontroller Unit) from data transfers
to improve the overall system performance. This proposed design presents
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a multichannel controller with a fixed priority level arbitration for the selec-
tion of each channel. It also supports a configurable source and destination
data width, configurable burst type, and 4 methods to transfer data between
memory and peripheral.

FIGURE 2.1: Overall architecture of DMA controller (Source:
Chao LU)[9]

As shown in the diagram of the architecture Fig.2.1 there is the AHB-Lite
slave module which receives the appropriate information from the CPU in
AHB compliant manner about the configuration of channels. Then there are
the Channel request and transfer control modules which produce the transfer
request signal according to the targeted devices and generate the necessary
control signals for the data transfer process respectively. The Arbiter module
gives priority based on the request signals of each channel to the highest
priority request. Moreover, when a burst transfer or all of a whole channel
is finished the Handshake module generates a clear signal in response to the
clear request signal of the peripheral unit. Also, there is a response module
to generate an interrupt when a transfer is over. Lastly, the AHB-Lite master
module is responsible for the execution of the transfer based on the control
information for the appropriate channel and the AHB interface.

Finally, the proposed DMA controller was verified based on the ARM Cortex-
M3 system as shown in the figure with transfers triggered from software and
hardware, and by using transfer channel switching.
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FIGURE 2.2: Environment diagram for DMA verification
(Source: Chao LU)[9]

2.1.2 Design and Implementation of an Advanced DMA Con-

troller on AMBA-Based SoC

In this publication of 2009 the authors Guoliang Ma and Hu He describe the
Design and implementation of a DMA engine based on AMBA protocols[10].
More specifically the DMA works with both AHB and APB(Advanced Pe-
ripheral Bus) protocols as it lies between the two buses and it can inter-
act with memory, MPU(microprocessor unit) and also functions as an APB
bridge for peripheral communication Fig.2.3.

FIGURE 2.3: DMA Connectivity (Source: Guoliang Ma)[10]

The controller achieves the two buses to run in parallel by adopting buffer or
non-buffer data transfer mode. This proposed DMA implements 8 channels
with trigger support from hardware and software and it is able for linking
operations, channel chaining transfers, and multi-dimensions transmission.
The arbitration of the channels adopts hardware priority combined with a
weighted priority rotational algorithm.

The procedure begins with the MPU programming the parameter set of the
appropriate channel by the AHB slave interface. The requests from peripher-
als, software, or chaining transfers are handled by the Request and Respond
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FIGURE 2.4: DMA Architecture (Source: Guoliang Ma)[10]

module shown in figure 2.4. These requests are controlled by the arbiter mod-
ule and program the corresponding parameter set for the submission of the
transfer. Subsequently, the AHB master and APB master modules assert the
appropriate signals to control the corresponding bus and execute their part
of the transfer between the bus and FIFOs. AHB and APB operations are in-
dependent and can process in parallel. When the transfer is over or there is
an error an interrupt is generated for the MPU.

2.1.3 AMBA Based Advanced DMA Controller for SoC

Again in this work, the authors Abdullah Aljumah and Mohammed Altaf
Ahmed propose a DMA controller design based on AHB-Lite and APB pro-
tocols to enhance the overall performance of SoC(System on Chip)[11]. The
proposed DMA functions with both AHB and APB buses and allow them to
work simultaneously by implementing buffering mechanism with an asyn-
chronous FIFO for their synchronization. It is designed to perform a large
volume of data transfer with very low timing characteristics while keeping a
low gate count.

The designed DMA consists of a generic FIFO, a priority Arbiter, and AHB
and APB modules for the interconnection with the buses and the transfer of
data Fig.2.6. Also, in the figure can be seen the connection of an ARM proces-
sor and the system memory with the DMA. The procedure begins when the
CPU configures the DMA. Subsequently, when the priority Arbiter grants
the appropriate request it informs the AHB master to initiate the transfer.
The AHB master then completes the transmission between the AHB and
FIFO. In the same way, the APB master executes the transmission between
FIFO and APB when it achieves control of the bus. The AHB and APB inter-
faces are independent and can operate concurrently. The DMA can achieve
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FIGURE 2.5: AMBA system (Source: Abdullah Aljumah)[11]

FIGURE 2.6: DMA Architecture (Source: Abdullah
Aljumah)[11]

memory-to-memory, peripheral-to-memory, and memory-to-peripherals. In
this implementation, the DMA can work only in one master and many slaves
mode(AHB-Lite protocol) but in a later work of the project, the multiple mas-
ters and multiple slaves mode is achieved.[12]

2.2 DMA projects based on AXI bus protocol

The AXI (Advanced eXtensible Interface) is another widely used communica-
tion protocol of AMBA. This protocol is designed to achieve communication
between components in an SoC with high bandwidth, low latency, and high
throughput. Although AXI and AHB both target common goals they have
many differences in their architecture and feature support like outstanding
or out-of-order transactions with AXI being the more advanced protocol.
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2.2.1 AXI Central Direct Memory Access by Xilinx

Xilinx introduces an IP Core of a Central Direct Memory Access based on
the AXI4 communication protocol that provides high bandwidth transfers
between a memory-mapped source address and a memory-mapped destina-
tion address for use in an embedded system [13]. The proposed IP core sup-
ports three AXI interfaces, one AXI4 for the transfer of data, one AXI4-Lite
slave for accessing the registers of the DMA, and one AXI4 master for the
optional Scatter/Gather function. It supports optional Scatter/Gather for se-
quencing tasks from the CPU and also supports optional Data Realignment
Engine.

FIGURE 2.7: CDMA Architecture (Source: Xilinx)[13]

The architecture of the engine is shown in figure 2.7 and it is composed of
many sub-modules. The Register module is programmed from the CPU
through the AXI4-Lite slave interface to configure the transfer’s variables as
it contains Control, Status, SrcAddr, DstAddr, etc. registers. In addition,
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there is the AXI DataMover block which is responsible for the transfer of
data with high throughput. DataMover offers 4 Kb address boundary pro-
tection with automatic burst partitioning, queuing of multiple transfer re-
quests, and byte-level data realignment as it contains the Data Realignment
Engine(DRE). DRE is an optional mechanism that can provide the capability
for read and write transfers from any address byte offset as data are realigned
to the byte level. The coordination of DataMover for the command loading,
the update of status, and in general for the control of the system manages the
DMA Controller module. Finally, there is the Scatter Gather Engine which is
an optionally included module and it uses a dedicated AXI master interface
so it can fetch, process, and update a transfer descriptor chain created by the
software for off-loading CPU management tasks to hardware automation.
The proposed IP Core is designed to improve the performance of embedded
applications.

2.2.2 Design and Verification of Configurable Multichannel

DMA controller

In this work, the authors Meet Dave, Santosh Jagtap describe the design of
their multi-channel AMBA-based DMA controller for efficient and effective
data transfers between processor and memory[14]. The project supports a
configurable number of channels(although the design is presented with 4),
different arbitration schemes, and uses asynchronous FIFOs which make the
controller a flexible and versatile solution.

The structure of the system is composed of 4 channels, one priority arbiter,
a descriptor, some registers for each channel, asynchronous FIFOs, address
multiplexers, three AXI masters, and one AXI slave Fig.2.8. The first AXI
master is associated with the AXI interface of its bus while the rest of the
masters can be connected to external memory or DDR. The usual operation
of the DMA is to transfer a big load of data from the channel with the highest
priority and then it switches and serves the next priority channel. However,
there is a second operation mode called the Descriptor transfer mode. In
this case, the processor sends transfer’s information to the descriptor buffer
ahead of schedule. Subsequently, the Arbiter will select the channel with the
highest priority, Descriptor’s information will load in the work register and
finally, the task will be executed. During the execution, the next transfer is
loaded in the prefetch register and in this way the DMA completes continu-
ously all the transmissions.
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FIGURE 2.8: DMA Architecture (Source: Meet Dave and San-
tosh Jagtap)[14]

2.3 Power efficient DMA controllers

2.3.1 High Performance Low Power AHB DMA Controller

with FSM Decomposition Technique

In this publication by Chetan Sharma and Dr. D. K. Chauhan the authors
present the Design of a DMA controller and they try to optimize this design
in terms of power consumption[15]. The technique used for the reduction of
the total power consumption is called FSM decomposition and it splits the
FSM into more and smaller FSMs to save the energy of the unused ones.

The architecture of this DMA engine is depicted in the figure 2.9 and it is
designed to transfer data from memory to peripherals and vice versa. The
DMA is constructed to comply with the AMBA AHB bus and for this reason,
it implements the AHB communication protocol. Hence there is one AHB
master and one AHB slave module. The AHB slave receives transfer requests
from the processor while the AHB master transfers the data to/from memory.
There are also 2 FIFOs, one for the data transmission from peripheral to AHB
master and hence to memory and the second for transmission from memory
to peripheral. In this way, the system succeeds to execute the data transfers
and allows the processor to execute other tasks and enhance its performance.

The AHB DMA controller uses FSM components to schedule its operations.
To reduce the power consumption of the controller the paper describes the
decomposition of the FSM into 2 parts which are coupled with each other
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FIGURE 2.9: DMA Architecture (Source: Chetan Sharma)[15]

Fig.2.10. In this way, one of the two sub-machines will work most of the time
while the other will be idle saving energy. The switching activity between
sub-machine has a crucial role in power saving which will be minimized by
the technique.

FIGURE 2.10: FSM decomposition (Source: Chetan Sharma)[15]

The simulation results show the new DMA controller saves 30% of the total
power. The drawback of the controller is when both sub-FSM are working
where the is no power benefit.
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2.3.2 Design and implementation of Efficient Direct Memory

Access (DMA) Controller in Multiprocessor SoC

This paper by authors Yasha Jyothi M Shirur, Kritika M Sharma, and Aish-
warya published in 2018 and describes the design and implementation of a
DMA that suits the MPSoC (Multiprocessor System on Chip) environment[1].
The authors describe that the area and power consumption in modern MPSoc
is a major concern. For this reason, this approach performs area and power
optimizations compare to the existing method which is also implemented.

The proposed DMA can execute data transfers related to both memory and
peripherals. It also supports word or byte transfers, up to eight transfer chan-
nels with configurable priority, burst, cycle stealing, or transparent mode,
and interrupt or polling transfers.

FIGURE 2.11: Block diagram of DMA (Source: Yasha Jyothi M
Shirur)[1]

The DMA controller consists of 2 multiplexers, Source and Destination ad-
dress generators, an FSM, a Source Decoder, a FIFO, and the control logic
Fig.2.11. The muxes are used to select the source and destination. The control
logic provides the starting source and destination addresses to the 2 address
generators respectively and they produce the next addresses for the trans-
fer by increasing the given addresses by a step they receive as input. Source
Decoder configures the inserted data based on control signals received from
FSM to give them the appropriate format. Some of the effects that the de-
coder can make on data are the type of endian and the choice of the number
of bytes that will be used for the transfer. Finally, there is the FSM which is
the heart of the system as it provides the necessary control signals for every
stage of the transfer.
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The paper, also describes the optimizations that were applied in the microar-
chitecture for some of the modules which impact the overall area and power
consumption compared to the conventional method. The main improve-
ments were the input bits reduction of the Source and Destination address
generators’ signals and the reduction of the number of multiplexers used by
the Source decoder. According to the publication, the consumption of power
reduced by 22% and are by 20%.

2.4 CHI projects

Although many projects and implementations of efficient DMA controllers
have been introduced, as shown earlier, a publication about a DMA that uses
the AMBA 5 CHI protocol could not be found. However, there are some
publications about other devices that comply with the CHI protocol. Some
of them are presented in this section.

2.4.1 Extending a modern RISC-V vector accelerator with di-

rect access to the memory hierarchy through AMBA 5

CHI

This thesis produced by Roset Julia in 2022 participates in the improvement
of the eProcessor of the EuroHPC project [16]. More specifically, this thesis
aims to improve the RISC-V vector accelerator which is the co-design of ePro-
cessor by changing the way it accesses the level 2 cache. In the previous ver-
sion of the project, the accelerator could access the L2 cache with an OVI pro-
tocol through a scalar processor core and an NoC(Network on Chip) which
introduces significant latency. To attack this problem this project achieved
direct access to the NoC by the use of the AMBA 5 CHI protocol.

As shown in figure 2.12 the project implements an RN-I(IO coherent Request
Node) which is responsible for generating and executing read and write CHI
transactions with the L2 cache through the NoC. The Load/Store Unit of the
system sends the appropriate information to the RN-I with a custom inter-
face so it can read or write the desired data from the L2 cache. In this way,
the memory state is preserved according to the RISC-V memory coherence
model. Final results showed that the accelerator could successfully access
the L2 cache replacing the old interface and improving the performance of
the system.
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FIGURE 2.12: system block diagram (Source: Roset Julia)[16]

2.4.2 Design of an Open-Source Bridge Between Non-Coherent

Burst-Based and Coherent Cache-Line-Based Memory

Systems

This paper was published by authors Matheus Cavalcante, Andreas Kurth,
Fabian Schuiki, and Luca Benini in 2020[17]. They describe that in hetero-
geneous computers CPU executes the serial part of the program while Pro-
grammable Manycore Accelerators (PMCAs) operate on the parallel sections
which creates the need for efficient data sharing between these components.
However, PMCAs are based on non-coherent memories where data is usu-
ally transferred by DMA controllers in burst mode. For this reason, they de-
signed a bridge that connects burst-based non-coherent memory hierarchy
with a coherent cache-line-based one. More specifically, this paper describes
the design of the bridge that converts the AXI to CHI protocol Fig.2.13 as
it connects a multi-core accelerator that uses the AXI protocol for its inter-
nal communication with a host CPU that uses CHI for coherent cache line
accesses.
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FIGURE 2.13: heterogeneous computer with the bridge high-
lighted (Source: Matheus Cavalcante)[17]

As shown in figure 2.14 the architecture contains several protocol translators
which are simple FSMs that send requests and receive responses. The trans-
lators work in parallel and each one converts one AXI transaction to CHI.
The generated CHI FLITs from all translators are multiplexed to satisfy the
CHI protocol. The AXI transactions with the same AXID are handled by the
same translator to preserve the order of the requests. In this case, the order
of the responses must be the same and for this reason, Reorder Buffers(ROB)
are employed to adjust the order of the responses.

FIGURE 2.14: bridge architecture (Source: Matheus Caval-
cante)[17]

The design was implemented and simulated successfully and the results showed
that the bridge can achieve up to 97% of peak throughput over a wide range
of realistic linear algebra kernels
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2.4.3 Thesis Approach

Although there are many implementations of Direct Memory Accesses with
a variety of communication protocol utilization and architectures as previ-
ously shown, a publication for an analytic description of a DMA engine that
complies with the AMBA 5 CHI protocol could not be found. In addition, co-
herence has become a critical aspect of high-performance computing as with-
out it HPC systems would not be able to deliver the computational power
required for many complex applications. Also, Coherence Hub Interface is
the most modern of the protocols introduced by AMBA and it offers high-
performance coherence interconnection. For these reasons, and as to the best
of our knowledge there are not any CHI-based DMAs, this work provides
a detailed description of the design of an IP Core scalable DMA controller
with generic scheduling, capability for reading and writing to memory at
any address byte offset, and a CHI-Converter that makes the engine com-
pliant with the AMBA 5 CHI interface. In comparison with the other DMA
controllers except for the fact that our implementation uses the most mod-
ern and efficient communication protocol, it is more flexible than most of the
other models as it can handle reliably and execute a configurable from the
user number of independent memory transfers which most of the other en-
gines can not. These features make the controller an appropriate component
for many systems, as it can be easily adjusted for satisfying the demands
of the application. The proposed DMA can be smoothly integrated into a
bigger Coherent system as an IO Coherent node and efficiently execute the
data transfers minimizing the workload on the processor and improving the
overall system’s performance.
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Chapter 3

Proposed Architecture and Design

3.1 Architecture of DMA

This section presents the high-level architecture of the DMA system that was
designed in this thesis. Initially, an overview of the necessary interface for
interacting with the DMA Controller from both the processor and CHI per-
spective is provided. Subsequently, a comprehensive analytical description
is presented, outlining the architecture and module arrangement within the
system.

3.1.1 Interface of DMA

This DMA, as already described, is designed to transfer Data from one mem-
ory location to another by using the CHI communication protocol. The nec-
essary procedure for the transferring of data begins when the appropriate in-
structions are communicated to the DMA. The DMA is able to handle many
transfers at a time by accepting the instructions for the next transfer before
the previous ones are finished. This is achieved by implementing a BRAM
which holds the information for a memory transfer in each one of its ad-
dresses.
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FIGURE 3.1: DMA Interface

The only signals which are needed for the unit which will assign the memory
transfer to the DMA are the signals of a BRAM port. These signals are:

1. WE(input): Write Enable is an 8-bit signal. Each enabled bit of this
signal indicates the corresponding field of the Data that will be written
in DMA

2. ADDR(input): The Address signal indicates the position in BRAM where
the instruction for the transfer will be stored

3. DataIn(input): This signal contains the information for the transfer, is
composed of 8 fields and each field is being written in DMA when the
corresponding WE bit is active

4. DataOut(output): This signal provides the information of a transfer that
has been assigned to DMA at the given Address.

Address input is a 10-bit signal which allows up to 210 = 1024(as the size of
the BRAM) different transfers to be handled at the same time by DMA but
this number can be modified easily to fit the needs of the application as it
is parameterized. In order to find an available address, the processor has to
examine the Status of the address by reading BRAM. Data In and Out signals
are 256-bit and contain all the information about a transfer. The fields of
these Data are 32-bit wide and indicate (from the least significant bits): the
address from where the data will be taken, the address where the data will be
transmitted, the number of bytes for the transmission, the number of bytes
that have been scheduled for transfer, the status of transfer and 3 unused
fields 3.1.



3.1. Architecture of DMA 23
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TABLE 3.1: fields of Descriptor

In order for the processor to assign a new transfer to the DMA it should first
read the BRAM of the system by setting a valid value to the Address in-
put. In the next cycle, the information about the transfer which is assigned
at the given address will be received on the DataOut output. Subsequently,
the processor has to check the value of the Status field of the received Data.
In the case where the Status is in Idle state(value = 0) then the address that
was given is free for writing a new transfer because if there was another
transfer at this address it is finished. In the case where the Status is in Er-
ror state(value = 2) then the transfer that was written in the given address
is finished but it didn’t complete successfully and the processor can try to
re-write it or ignore it and write a new transfer at this address. Finally, in the
case where the Status is in Active State(value = 1) then there is a transfer in
this address that is not finished yet and the processor must not modify the
information of this transfer in order to be executed correctly, hence it has to
search for another address. When the processor finds a free address to assign
the next transfer it has to set the Status field active with the appropriate in-
formation of the transfer in order for DMA to start its execution. When DMA
completes a FULL transfer, it changes the Status of this transfer from Active
to Idle if data were moved normally or Error if there was a problem during
the procedure. However, this system does not implement an interrupt line
to inform the CPU about the completion of a transfer as the DMA processes
multiple transfers at a time, and an interrupt request line is not scalable. For
this reason, even if in some cases it is time-consuming, the only way for the
processor to find out when a transfer has been finished is with the polling
method by observing when the Status field of an assigned transfer switches
from Active to Idle or Error.

For the transferring of Data, five channels are implemented as the CHI re-
quires. These channels are connected with the CHI interconnect so the data
can be read and written at the appropriate location of memory. The five
channels are Request Channel, outbound Response and Data channels, and
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inbound Response and Data channel Fig.3.2.

FIGURE 3.2: Channel Overview

DMA generates read and write requests for the CHI system with the Request
channel, then the interconnect replies on the Data or Response channel with
the necessary information, and finally DMA after processing the received
data send them to the outbound Data channel for write. In this way, every
transfer that was given by the processor is executed.

3.1.2 High-level design of DMA

The basic components of the DMA as seen in Figure 3.3 DescBRAM (BRAM),
Scheduler, CHi-Converter(CHI-Conv) and a BarrelShifter. DescBRAM is com-
posed of many Descriptors which is the main module that stores information
for a transaction and every Descriptor is practically a different address of the
BRAM. When the processor finds an empty Descriptor in BRAM, which can
be found by reading it from one input/output port of BRAM that belongs
exclusively to the processor, the procedure begins.

Firstly processor writes the Descriptor with the appropriate information for
the transfer and at the same time the corresponding address pointer is writ-
ten in the main FIFO of the system which contains all the addresses of non-
scheduled Descriptors in order for them to be scheduled. Except for the pro-
cessor, there is another module called Scheduler which needs access to the
main FIFO. For this reason, an Arbiter is necessary for allowing only one



3.1. Architecture of DMA 25

FIGURE 3.3: Architecture of DMA

component to access FIFO for writing at a time. This Arbiter gives always
priority to the processor so the execution of its program won’t slow down.
With this design, the processor can write in DMA a new transfer at any time,
even in consecutive cycles without being delayed. It is safe to assume that
the hazard of the Arbiter never letting the Scheduler use FIFO because the
processor is writing in every cycle will never happen because a real proces-
sor would not do that for a large period of time. Even if this bad scenario
could occur, the engine would not stop working it would just slow down
and it would finish the operations after BRAM would be full and the proces-
sor would not have an empty Descriptor to write in.

When FIFO is not empty Scheduler starts its operation by reading the De-
scriptor’s data, through the second input/output port of DescBRAM, of the
address pointer which is stored in FIFO. When the Descriptor’s data have
been read Scheduler passes the appropriate information about a part of the
Descriptor’s transfer to the CHI-Converter which is responsible to execute
the proper CHI transactions. While Scheduler passes the information to CHI-
Converter it also updates the Descriptor’s stored information about how
many bytes are scheduled. The amount of bytes for transfer that will be sent
to CHI-Converter for execution is a generic value determined by the user
who implements the DMA by a parameter called Chunk. When this Chunk
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of transactions has been scheduled, Scheduler must schedule the next De-
scriptor and leave the previous one for later scheduling. This is achieved by
dequeuing the first pointer from the FIFO, re-enqueuing it back in the queue,
and obtaining the new pointer. This operation is possible only after the Ar-
biter responds to the request of the Scheduler to access the main FIFO. If the
Arbiter can’t give the Scheduler access to the main FIFO because the proces-
sor is writing it too then Scheduler has to wait until the processor is finished
and Arbiter changes the occupation of FIFO. With this procedure, every ac-
tive Descriptor is served equally, and a Descriptor with a very small trans-
action at the end of the queue won’t need to wait a very long time in cases
where are many addresses of Descriptors with huge transactions in front of it
in FIFO. When the Scheduler schedules all transactions for a Descriptor then
it removes its address pointer of the start of FIFO without waiting to obtain
access from the Arbiter because there is no need to rewrite the pointer at the
end of the queue and keep servicing the next Descriptor.

When a CHI-Read have been sent by CHI-Converter and the Read-Response
arrives then the data enters as an input to the BarrelShifter module where
they are getting shifted by a proper amount of bytes and then they are driven
to the CHI-Converter where a CHI-Write transaction will begin. When all
CHI-Writes of a Descriptor have been finished and there are no other trans-
actions for this Descriptor to be made then the Status register of the Descrip-
tor must be set to Idle so it can be recognized as a finished Descriptor and
the processor can be informed for the end of the transfer and rewrite the
Descriptor with the next task if needed. This status update is initiated by
CHI-Converter and happens from the second input port of BRAM since the
first input port belongs exclusively to the processor. Although the second
input port is already used by Scheduler to update some of the Descriptor’s
fields while scheduling them, as previously mentioned in this section, so a
second Arbiter has to be used to allow only one of the updates to happen at
a time because the updates would probably be for different Descriptors and
should be only two input ports in the BRAM.
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3.2 Design of Components

3.2.1 Descriptor, BRAM

FIGURE 3.4: Descriptor

Descriptor is the main module that stores information for one memory trans-
fer. There are two input signals inserted in Descriptor: WE which is 8-
bit wide, DataIn which is 256-bit package, and one output: DataOut which
is also 256-bit Fig.3.4. Descriptor is composed of 8 32-bit wide registers:
Source Address (SrcAddr) that keeps the memory address from where data
should be read, Destination Address (DstAddr) that keeps the memory ad-
dress where read data should be written, Bytes To Send (BTS) that keeps
the number of bytes that should be transferred from the Source to Destina-
tion address, SentBytes (SB) that keeps the number of bytes that have been
already transferred(or at least they have been scheduled to be transferred),
Status that keeps the state of the Descriptor which can be idle, active or error,
etc. and 3 more registers which are reserved and have no use so they are not
present in the image. The reserved registers are needed in Descriptor so its
width will be a power of 2 and it can represent a memory line (of BRAM).
Each register is written when the corresponding bit of input WE is set and
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the value that takes is the corresponding 32-bit from DataIn package. For ex-
ample, SrcAddr takes the first 32 bits of DataIn DstAddrReg takes the second
32 bits which are from bit 32 to 63 and so on. Finally, all output bits of every
register are getting merged to a 256-bit package with the same logic as the in-
put DataIn and create the output of the module DataOut. It is worth noting
that the signals Data in and out are 256-bit wide but the useful information
that one Descriptor stores is 32 · 5 = 160 bit as the last 3 registers which stores
the most significant 256 − 160 = 96 bits are not used. The Descriptor should
be written from the processor only when the status register is in idle or error
state and when the Descriptor is written and Status changes to active state,
then it shouldn’t be modified until all its transfer is over and status changes
state again. SentBytes field will be updated from the Scheduler every time
a number of bytes will be sent (or scheduled) and when all bytes are sched-
uled and the full transfer of the Descriptor has been truly finished then the
idle value will be written to StatusReg to make the Descriptor available for
use from processor again. If something goes wrong with the procedure, then
the error value should be written in the status and the problem should be
handled appropriately.

DescBRAM:

FIGURE 3.5: Location of BRAM in the Design

To improve the system and allow the DMA to handle more than one trans-
fer at a time it is necessary to implement a structure that contains more than
one Descriptor for holding the information for many transfers. As the num-
ber of Descriptors increases this register space structure which must classify
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and address all of the Descriptors tends to become a BRAM Fig.3.6. For this
reason, in this DMA instead of having a custom module with a big number
of different Descriptors, the system implements a DescBRAM which has the
same use. Each row(Address) of DescBRAM represents 1 Descriptor. Each
row of BRAM consists of many columns that represent the corresponding
registers of Descriptor. More specifically each row of BRAM has 8 columns
of 32 bits each, which makes the row width 256 bits. BRAM has 2 ports for
read-write, one that belongs exclusively to the processor so it can read the
Descriptors and write the appropriate transactions in them, and one for the
components of the DMA. Each port of BRAM is composed of 3 inputs: WE
which is 8 bits and decides which columns of the Descriptor will be writ-
ten, the Address which determines the chosen Descriptor, and 256 bits Data
packet with the appropriate fields for the Descriptor. In the same way, as
Descriptor was, Data packet’s fields should be :

1. SrcAddr: Source Address of transaction

2. DstAddr: Destination Address of transaction

3. BytesToSend: transaction’s number of bytes should be transferred

4. SentBytes: Number of already sent bytes

5. Status: State of Descriptor (Idle, Active, Error, etc)

6. Reserved: 3 more fields that are reserved and are not used

FIGURE 3.6: DescBRAM

Every time Processor needs to make a memory transfer it should read De-
scBRAM from DMA and when it finds a Descriptor with the Status field to
be Idle or Error it can write the desired transfer in this Descriptor Fig.3.5.
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When a Descriptor of DescBRAM is written, the appropriate input signals
are driven to the top Arbiter which gives them priority, and hence the ad-
dress pointer is written in the main FIFO which will initiate the scheduling
for the written Descriptor and its transfer will be executed. The Hazard of
both ports writing the same Descriptor is ignored because it will never hap-
pen as long as the processor won’t write a Descriptor with an active status.
DMA’s component will not modify any Descriptor with idle or error status
so it is the processor’s responsibility not to update an active Descriptor and
cause such a hazard in order for the transfer of this Descriptor to be executed
normally.

3.2.2 Scheduler

FIGURE 3.7: Location of Scheduler in the Design

Scheduler is responsible to manage the service order and the number of
transactions that will be scheduled for each ready Descriptor. The process
of Scheduler is to read the Descriptors from BRAM and pass the appropriate
information to CHI-Converter as shown in Fig. 3.7. Its operation is impor-
tant for making the transactions of active descriptors be executed equally
by scheduling a part of each Descriptor’s transfer at a time. To accomplish
this operation the scheduler is composed of an FSM (Finite State Machine)
which is the component that produces the necessary control and output sig-
nals, one register to keep the address of the Descriptor read from BRAM, and
some combinational logic Fig.3.8.
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FIGURE 3.8: Scheduler

Scheduler has six inputs which are: one Data packet that is 256 bit, which
comes from BRAM and contains all the information for one Descriptor, two
Ready signals that come from the two Arbiters (BRAM’s Arbiter and FIFO’s
Arbiter), and inform if there is access through Arbiter to the corresponding
module when access is requested, a CmndFIFOFULL signal that comes from
a FIFO placed in CHI-converter module and when is set indicates that CHI-
converter can not receive more instructions from scheduler hence there is no
more space to schedule other transaction and two signals from the main FIFO
that keeps the address pointer of Descriptors which are an Empty signal and
the address pointer.

For the first output, the number of bytes that will be scheduled is added to
the SentBytes field of the Data packet that came from BRAM and it constructs
a new packet that goes back to BRAM and will update the corresponding De-
scriptor. The number of bytes which are added to the input Data packet and
scheduled is depending on the parameter Chunk which is the number of de-
sired CHI transactions. If Descriptor has enough bytes then the number of
bytes that will be scheduled and be added to the SentBytes field of DataIn
packet is Chunk · ChiDataWidth(which is 64 bytes in this case) else it is all
of the remaining bytes of Descriptor BytesToSend − SentBytes. In the case
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where it is the first chunk that will be scheduled from a Descriptor so its Sent-
Bytes field is zero then instead of scheduling Chunk · ChiDataWidth bytes,
Scheduler sends Chunk ·ChiDataWidth− (SrcAddr mod ChiDataWidth) bytes.
This is an optimization so the module that will make the transactions(CHI-
Converter) will never need to read the same memory line twice for the same
Descriptor. This is happening because the source address is probably mis-
aligned compared to the data pieces that will be read from the memory and
by subtracting the misalignment of SrcAddr the last read transaction of the
chunk will be finished on an aligned address in memory which prevents the
reading of the same memory line again from the next chunk of the same De-
scriptor. The representation of the optimization can be seen in Fig.3.9

FIGURE 3.9: optimized scheduling

This way Scheduler provides a generic way of scheduling based on the pa-
rameter Chunk that can adapt to the needs of the application. To ensure
optimal system performance, it is essential to set a sufficiently large value for
the Chunk parameter. This ensures that the CHI-Converter always has the
opportunity to initiate a new CHI transaction until the Scheduler proceeds to
schedule the next command(a chunk of transactions).

Furthermore, there are two more outputs signals that go to BRAM which
are Write Enable (WE) which is controlled by the FSM and will enable the
necessary bytes for the update, and the BRAMAddress which is the address
obtained from FIFO, and which is the position of Descriptor in BRAM. In or-
der to connect the above signals to BRAM it is necessary to get access from
BRAM’s Arbiter which is requested by a Valid output signal controlled by
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FSM. When this Valid signal and the corresponding Ready signal from Ar-
biter are active then all the appropriate signals are connected to BRAM and
they will read and write it on the next cycle. FSM is also controlling the out-
put signals: Dequeue that ejects the first Descriptor address pointer from the
FIFO when a chunk for a Descriptor has been scheduled, a Valid signal which
requests control from Arbiter to this FIFO when is set in order to enqueue
back the address pointer if needed, and an Issue signal which indicates that
there is a valid Chunk of transactions ready for CHI-Converter. The opera-
tion of the FSM and how it produces the necessary signals is described below
Fig.3.10.

Another necessary action is to store the address pointer obtained by the input
signal that comes from FIFO inside a register. This is happening every time
the FSM set a Write Enable signal for this register. This action is important
because there should be a way to remember the address pointer, so it can be
written back to FIFO when a dequeue operation happens and this address
pointer is ejected from the FIFO. Also in the case where there is only one
pointer in FIFO then the next address that will be used for reading BRAM
is the same address pointer which is dequeued, stored in the register, and
will be written back to FIFO so Scheduler uses it directly from the register for
read BRAM to avoid one cycle delay instead of writing it to FIFO, reading it
again and then read from BRAM.

Finally, the last thing Scheduler does is to pass the right information to CHI-
Converter so every transaction can be executed. This is accomplished by us-
ing the input DataIn that comes from BRAM and creating the fields: ReadAddress =
SrcAddr+SentBytes, WriteAddress = DstAddr+SentBytes, Length = Chunk ·
ChiDataWord (64) or Chunk ·ChiDataWidth−SrcAddr mod ChiDataWidth(if
possible), DescAddr and LastDescTrans that composes the command packet.

• ReadAddress: calculated by SrcAddr + SentBytes

• WriteAddress: calculated by DstAddr + SentBytes

• Length: calculatedbyChunk ·ChiDataWord (64) or Chunk ·ChiDataWidth−
SrcAddr mod ChiDataWidth(if possible)

• DescAddr: is the address of Descriptor in BRAM

• LastDescTrans: indicates the last chunk of a Descriptor

This is the required information for a chunk of CHI transactions to be ex-
ecuted which are valid when the Issue output is set. The 2 last fields of
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the command(LastDescTrans and DescAddr) are necessary to be configured
when the upcoming transaction to be scheduled represents the final transac-
tion of a Descriptor. In this way, CHI-Converter can update the status field
of the appropriate Descriptor.

FSM of Scheduler:

FIGURE 3.10: FSM of Scheduler

Scheduler’s FSM is a mealy state machine, as it provides outputs that depend
on the state and the inputs. There are three states in this FSM: IdleState,
IssueState, and WriteBackState Fig.3.10. At the beginning of the procedure,
the state is set to IdleState. In IdleState basically, FSM is doing nothing by
keeping all its output to zero as long as the input signal Empty is on, so
there are no ready Descriptors to be served. When the Empty input gets low,
which indicates that there is an address pointer in FIFO, the FSM requests
control of BRAM from Arbiter by setting the output signal ValidBRAM, so
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the appropriate data can be read. As long as the input signal ReadyBRAM is
low, there is no access to BRAM yet, so the FSM stays in IdleState and keeps
the ValidBRAM on. When the ready input from BRAM is activated then the
access has been obtained and on the positive edge of the next clock cycle, the
Data are read and the state transitions to IssueState.

In IssueState FSM sends a new command that is a number Chunk of CHI-
transactions when possible to be scheduled and updates the appropriate De-
scriptor in BRAM when the appropriate conditions are met. In this state,
firstly the signal WE for the register is activated, and the address pointer is
written to the register. When the input signal CmndFIFOFULL from CHI-
converter is set then there is no space to schedule extra transactions so the
FSM is just waiting. When the input signal FULL is off and there is the control
of BRAM(ReadyBRAM set) then a command which is Chunk transactions
can be scheduled so the FSM enables the output signal Issue and controls the
WE output signal to take the right value for updating BRAM. If the control of
BRAM is lost, the state changes to IdleState until control is regained. In case
when there is control of BRAM, input FULL is off and the remaining bytes
are the last command for the Descriptor then the Dequeue signal is enabled
to remove the first element of FIFO, and as there is no reason for the address
pointer to be written back in FIFO the state changes to IdleState.

When the state is WriteBackState Scheduler tries to re-enqueue the address
pointer of Descriptor to FIFO because there are more transactions to be sched-
uled later. FSM firstly deactivates all signals except ValidBRAM which re-
quest access to BRAM and the ValidFIFO output signal which requests access
to FIFO to re-enqueue the address pointer. As long as access to FIFO cannot
be obtained, the FSM is waiting in WriteBackState. Subsequently, when the
ReadyFIFO input signal is enabled which means that the control of FIFO has
been obtained then the address pointer is written back to FIFO and if there
is still access to BRAM then the state changes to IssueState and FSM start
scheduling new transaction otherwise the state changes to IdleState where it
will stay until control of BRAM is re-obtained.

The optimal Chunk (the number of scheduled transactions each time) in or-
der for the DMA to operate in the faster possible way depends on the nature
of this FSM. The Chunk should be big enough so the CHI-Converter will al-
ways have enough work to do until the next command gets scheduled. In
this case, the FSM needs at least 2 cycles to return from the IssuState back
to IssuState to schedule the next command and to keep CHI-Converter busy
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needs a Chunk bigger than 1. Also, there is the case where the control of
BRAM or FIFO is lost for a few cycles because the corresponding Arbiter
gives priority to some other module and FSM is late to return back to the
IssuState which creates the need for a bigger Chunk to accomplish the opti-
mal scheduling. If the value of Chunk, with this system, is greater than 4 – 5
then FSM will always have more than enough time to schedule the next com-
mand before CHI-Converter finishes all the requests for the transactions. If
in an unfortunate case, many Descriptors have very small transactions then
the scheduler will not be able to schedule Chunk transactions, and it will be
forced to schedule as many transactions as there are in each Descriptor at
a time that can result in CHI-Converter waiting for Scheduler for the next
command which can make the system slower. This problem can be solved
by changing the design of the DMA and instead of having arbiters, use a
different structure that would store the Status of every Descriptor in a Differ-
ent component and wouldn’t force the modules of the system to conflict on
BRAM’s Arbiter as they both need to use the same ports of BRAM which can
be an optimization for future work. For the current design, the throughput of
transferring data from Scheduler to CHI-Converter and hence of the overall
system is determined from the size of transactions in Descriptors if the value
of the Chunk is big enough for optimal scheduling.

3.2.3 CHI-Protocol

In this section, we provide an overview of the CHI architecture specifications.
This overview aims to facilitate a better understanding of the subsequent
module designs described in the following sections.

CHI protocol[18] introduces 3 types of nodes :

1. Request node (RN): Generates protocol transactions, including reads
and writes to the interconnect (CHI system)

2. Home node (HN): Node located within the interconnect that receives
protocol transactions from RNs, schedules them and drives them to the
correct Slave node

3. Slave node (SN): An SN receives a request from an HN, completes the
required action and returns a response.

This DMA is a Request node, since it has to generate new requests to transfer
data from one memory location to another by reading and writing them to
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memory. Every type of Node can be further divided into some categories. A
Request node can be :

• RN-F Fully coherent Request Node: Must communicate via snoop chan-
nel with other request nodes to update data when a change happens at
shared address location

- Includes a hardware-coherent cache

- Permitted to generate all transactions defined by the protocol

- Supports all Snoop transactions.

• RN-D IO coherent Request Node with DVM (Distributed Virtual Mem-
ory) support:

- Does not include a hardware-coherent cache.

- Receives DVM transactions.

- Generates a subset of transactions defined by the protocol.

• RN-I IO coherent Request Node: Can read and write the last snapshot
of memory and force the other Request nodes to update their Data, but
it won’t answer on snoops or be informed of changes to Data by other
Requesters.

- Does not include a hardware-coherent cache.

- Does not receive DVM transactions.

- Generates a subset of transactions defined by the protocol.

- Does not require snoop functionality.

The Designed DMA is an IO coherent Request Node (RN-I) which means
that it won’t communicate directly with other Request nodes. It will com-
municate with the interconnect to read the last snapshot of memory, and the
interconnect is responsible to find which node has valid data of the requested
address and send them to DMA. The CHI channels that DMA needs to im-
plement are:

1. Request Channel: Begin a new read or write Request

2. Outbound Response Channel: Response to received Data or another
Response

3. Outbound Data Channel: Send Data for write
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4. Inbound Response Channel: Receive Response for a corresponding Re-
quest

5. Inbound Data Channel: Receive Data for a Read Request

It is worth noting that in general there is one more inbound channel called
Snoop channel, and it is used for Request nodes to update their cashes when
a change happens on its Data from other Request nodes. However, the Snoop
channel is not implemented in this case because this is an IO-coherent and
not a fully coherent DMA which means that it does not integrate a cash or
needs feedback for data changes so Snoop transactions are not supported.

Every CHI channel consists of 4 signals :

1. FLITPEND: One-bit signal, indicates that a FLIT will be sent on the next
cycle.

2. FLITV: One-bit signal, indicates that data are valid and should be re-
ceived.

3. FLIT: Many bits vector, consists of many fields that contain the infor-
mation of the channel(Request, Response, Data)

4. LCRDV: One-bit inverse signal, can be asserted by the entity of the op-
posite side of the channel’s direction and indicates that the receiver is
ready to accept one more FLIT

An example of a CHI channel is shown in figure Fig.3.11 that represents the
Request Channel :

FIGURE 3.11: Request Channel

The signal FLITPEND is used to prepare the receiver to wait for the next FLIT
on the next cycle, but it is not obligatory for the system to operate normally
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since it can receive the corresponding FLIT just by observing the FLITV sig-
nal. In this DMA there is not any performance improvement that could pos-
sibly happen with the use of the FLITPEND signal and for this reason, this
signal is always 0 (inactive).

Every channel has a vector of signals called FLIT. FLIT is the information of
the transaction. There are 3 types of FLITs :

• REQFLIT: Contains all the information about a Request such as if it’s a
Read or Write request(opcode), Addr, Size, etc.

• RSPFLIT: Contains information about the Response to a Request such
as type (opcode), if there is an error or the message has been received
successfully etc.

• DATFLIT: It is the largest FLIT. Contains the requested Data, what type
of Data is it(opcode), if there is an error etc.

All FLITs have a field that is called TxnID (Transaction ID). CHI requires that
every transaction has a unique TxnID. TxnID is an 8-bit field that allows ev-
ery Request node to do up to 256 outstanding transactions. If a Request node
generated all 256 transactions without receiving any Response from the in-
terconnect, then it has to wait for a response in order to reuse the finished
TxnID. The Responder has the responsibility to use the same TxnID for the
response with the request to allow the Request node to know where this re-
sponse is referring to and which TxnID it can reuse.

CHI is a credit-based protocol. In credit-based protocols, every node can
generate as many transactions as the number of credits they have received.
In CHI, for example, every channel has an LCRDV signal which indicates
when credit is given for the corresponding channel. Every cycle that the
LCRDV signal is on, the owner of the channel gains one more credit, and it
has the responsibility to count the number of received credits on each channel
and decrease this number when using one credit by sending a FLIT with the
activation of the signal FLITV. When a channel has 0 credits then it is not
possible for the node to send a FLIT on this channel, and it is not possible
to use a credit from a different channel, so it has to wait until it receives a
new credit on this specific channel. In general, there is not a specific number
of Credits that can be sent in a credit-based protocol, but CHI doesn’t allow
more than 15 Credits to be sent on each channel.
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Every Flit of CHI has a field called opcode which determines the type of
transaction. For example, the CHI supports 38 different opcodes for Requests
channel, 11 for Response channel, and 10 for Data channel. This DMA needs
to do 2 types of Requests: Read and Write. More specifically, it has to do
a read of the last snapshot of memory and a write that will inform every
node which keeps data from the written address that data have been modi-
fied. This is succeeded by the use of the opcodes: ReadOnce(0×03) for read
requests and WriteUniquePtl(0×18) for write requests. For those requests,
there are a few possible sequences that could happen. Some of them are de-
scribed below :

FIGURE 3.12: Read Transaction

Read Transaction Fig.3.12:

1. Firstly when there is at least 1 credit on the Request channel then the Re-
quest node generates a read request with: opcode ReadOnce, a unique
TxnID, the required address, ExpCompAck field (which indicates if
there will be an extra acknowledgment response from requester) etc.
The ReadOnce opcode is used because DMA is an IO-CoherentNode
and ReadOnce transaction is used to read the last snapshot of a Mem-
ory Address

2. After some time when the requested data are ready and at least 1 credit
has been sent from the requester on the Data channel, the interconnect
sends the Data Response FLIT with opcode CompData, TxnID the same
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with the request, the corresponding data, the DBID field which the Re-
quester must use as a TxnID field if it will send a CompAck Response,
and other fields.

3. Finally, after the Data have been received, the requester must send a
Response with opcode CompAck on the Response channel to indicate
that Data was received normally if the request that happened had the
ExpCompAck field on. If this field is 0 when the request is sent, then
the responder does not wait for CompAck Response and the transac-
tion is over when Data is received by the Request node. If the Request
node has active ExpCompAck on the request and will send CompAck
Response, then the TxnID of the response must be the same as the DBID
field that was received previously in order for the interconnect to un-
derstand which transaction this CompAck is referring to.

In this DMA the ExpCompAck is always off in Read request, hence the Com-
pAck Response is not sent because there is not any performance difference.

FIGURE 3.13: Write Transaction

Write Transaction Fig.3.13:

1. Firstly when there is at least 1 credit on the Request channel then the
Request node generates a write request with opcode WriteUniqueuePtl,
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a unique TxnID, the required address, ExpCompAck field, etc. WriteU-
nique transactions are used from IO-Coherent nodes to perform a store
as it inform the interconnect to notify the RN-F nodes that had a copy
of the data from the same address that data changed.

2. In this case, there are 2 options for transactions that could happen. The
first is to Receive 2 separate responses the DBIDResp and Comp on the
Response channel with random order and delay, and the second case is
to receive a CompDBIDresp which is the other 2 responses combined.

(a) In the first case when there are enough credits, the Response comes
with a DBIDResp opcode, an Error field a DBID field, etc. DBIDResp
response provides a data buffer identifier to indicate that it can ac-
cept the written data for the transaction. Also, a Response that will
come or Response channel is the Comp (opcode) Response. This
response can come before or after of DBIDResp. Comp response
indicates that the transaction is observable by other Requesters.

(b) In the second case, one response can come with opcode CompDBIDResp,
a DBID field, etc, and indicates that the Responder can accept
the data for write and the transaction is observable by other Re-
questers.

3. Subsequently, when the DBIDResp Response or CompDBIDResp is re-
ceived the Request node sends the Data for write with the Data Re-
sponse NonCopyBackWrData (opcode) if DBIDResp and CompAck were
sent separately or NCBWrDataCompAck (opcode) if one CompDBIDResp
was sent. The requirement for the Data Response is to set the TxnID
equal to the DBID that is received with the Response, so the receiver
can understand which transaction the sent data are referring to. At this
point, data have been written, and the transaction is over if the Exp-
CompAck field isn’t set on the corresponding request.

4. Finally, in the case where the ExpCompAck was active in the write
request, then the Requester has to send a CompAck Response on the
Outbound Response channel to interconnect and indicate that the data
was received successfully. In this case, the TxnID of the Response must
be equal to the DBID that was received in the previous DBIDResp re-
sponse. If the ExpCompAck field is 0 when the request is sent, then the
Responder does not wait for CompAck Response and the transaction
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is over when Data was sent with the NonCopyBackWrData or NCBWr-
DataCompAck Data transaction by the Request node.

In this DMA the ExpCompAck is always off in Read request, hence the Com-
pAck Response is not sent because there is not any performance difference.
However, a programmable way for including a CompAck response from
DMA could be implemented in a future work in order to make the DMA
compatible with every kind of slave (if the slave requires a CompAck to op-
erate correctly). Also, the NonCopyBackWrData is used as a Data response
in any case (separate DBIDResp and Comp or CompDBIDResp). All the
above information can be found in the C version of AMBA 5 CHI manual
of ARM[18].

3.2.4 CHI-Converter

FIGURE 3.14: Location of CHI-Converter in the Design

In general, CHI allows data width of 128, 256, or 512 bits with a number of 4,
2, or 1 packets respectively. In this case, the data width is 512 bits (64 Bytes)
which makes the number of transferred packets 1 for each request. Source,
Destination addresses can be misaligned, which means that data for write can
not be sent unchanged but should be shifted left or right according to these
addresses. Also, there are cases where one read should become two writes
transaction or in reverse. For this reason, CHI-Converter does not receive
data directly from the Inbound Data Channel but requests them from Barrel
Shifter which is responsible for shifting, merging read data from different
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transactions and delivering the data to CHI-Converter every time they are
ready.

CHI-Converter is the module that receives commands from the Scheduler of
the system and based on the command’s information it transfers data from
one memory location to another by using the Coherence Hub Interface pro-
tocol Fig.3.14. To accomplish this operation, CHI-Converter has to generate
a few Read and Write transactions for each command.

FIGURE 3.15: CHI-Converter

Read and Write Requests are generated by the Read and Write Requester
blocks, respectively, Fig.3.15. These blocks create the correct request FLITs
by completing their appropriate fields. Some of these fields are SrcID, TgtId,
QoS, etc. which are parameters of the module. One of these fields is the op-
code, which indicates the type of request. Read Requester always uses the
appropriate opcode for ReadOnce request, which indicates that the transac-
tion is a read and requests the last snapshot of memory at the address field
of FLIT. In the same way, the write Requester uses the opcode for the Write-
UniquePtl request, which means that it is a write transaction and data must
be written at the Address of FLIT. When there is at least one credit in the
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Request channel, Command FIFO is not empty and the Requesters have cre-
ated the appropriate FLIT then if they want to transmit it they must enable
the FLITV signal of the outbound request channel. However, there is only
one Request channel for both Read and Write requests, which creates the
need for an Arbiter. Each of the Requester blocks asks for control of the
Request channel from the Arbiter when they want to send a new request.
When only one of the Requesters asks for permission of the Request channel,
then the Arbiter gives this module immediately permission. When both Re-
questers want the permission, then the Arbiter gives alternately permission,
called round-robin. The reason for the selection of the round-robin method
on arbiter is because a full memory transfer needs the response from both a
read and a write request. For this reason, it would be preferable if the CHI-
Converter could receive read and write responses alternately for starting the
data transmission for write as fast as possible, instead of receiving all read or
all write responses continuously and waiting for the corresponding response
to arrive.

Every time the Read Requester generates the first transaction from each com-
mand, it passes the corresponding command to the Barrel Shifter, so it can
modify the incoming data correctly. Each command in CHI-Converter has
come from Scheduler, and it can contain a “Chunk” number of CHI-transactions.
This means that CHI-Converter has to execute at least “Chunk” number of
Reads and “Chunk” number of Writes for each command, as the engine has
to copy the data from one memory location and transfers them to a differ-
ent one. This is achieved by storing in 2 registers the number of requested
Read and Write bytes for the current command. This number is calculated
by adding to the previous values of these registers the outcome of 64 (which
is CHI data width) -(the corresponding command address + the previous
value of the register) modulo 64. This way each Requester knows the num-
ber of requested bytes for the top command and by adding this number to
the corresponding Address of the command they generate the appropriate
Address field of FLIT which is necessary for the next Read and Write trans-
actions. If the value of one register becomes greater than the length of the
command then the corresponding Requester has requested all of the trans-
actions of the command, it stops asking permission for the request channel
and activates its dequeue signal which means that this block wants to oper-
ate with the next command. When both values of registers are greater than
the command’s length, then all transactions from both Requesters have been
sent. Subsequently, both Read and Write Requesters have the corresponding
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dequeue signal enabled which means that they agree to Dequeue the finished
command and the 2 registers that store the number of requested bytes are set
back to 0.

CHI allows up to 256 different TxnID since TxnID is an 8-bit field. Each Read
or Write Request must have a unique TxnID in order for every response to be
distinguished. For this reason, there are 2 blocks called TxnIDProducer that
generate a unique TxnID for Read and Write Requesters respectively. The
first TxnIDProducer generates TxnIDs from 0 to 127 and the second from 128
to 255. TxnIDProducers give every ID of their range to the corresponding
Requester with circular order (after 127 generates 0 and after 255 generates
128 respectively) by increasing a counter every time a request is made and
containing one more register that counts the number of free TxnID. These
registers are set to 128 when the system resets, and this number is decreased
when the corresponding Read or Write Request begins. When a response
comes, then the corresponding register increases. When one of the registers
is 0 then the corresponding ValidTxnID signal deactivates and prevents the
Requester from generating a new request. When a response comes and the
register’s value increase, then the corresponding ValidTxnID will activate
again, and the Requester will be able to generate its next request. The given
TxnIDs are always unique because in order to repeat a TxnID, TxnIDPro-
ducer must give the rest 127 TxnIDS first. If all TxnIDs are given, then the
counter for free TxnIDs is 0 and TxnIDProducer can’t give more TxnIDs. If a
response is received and the counter increases then the finished transaction
must be the first TxnID that has been sent because all responses are coming
in order and then the first TxnID can be reused.

In CHI-Converter there is one more FIFO Fig. 3.15 which stores the appro-
priate information that the blocks Data Sender and the Completer need to
construct each Data FLIT for write transactions, and update DescBRAM re-
spectively. The FIFO is needed for keeping the received DBID field that
comes from the Inbound Response Channel in response to every write re-
quest which will be used for the next Data write transaction and the corre-
sponding error, if there is any, in order Completer to update the Status of
Descriptor if needed by the use of a small FSM described below Fig.3.17.
DBID indicates the Data Buffer ID that the CHI interconnect has reserved
for the Data that will be sent on the next Data Write, and it must be used
in the FLIT of Data Write as the TxnID field. This FIFO enqueues the DBID
and error fields from Response FLIT every time there is a valid DBIDResp
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or CompDBIDResp response on the inbound Data channel. Every time this
FIFO is non-Empty and there is at least 1 credit on the outbound Data Chan-
nel, then the block Data sender requests the shifted Data and the Byte Enable
field from Barrel Shifter by enabling the ValidDataBS signal. When Barrel
Shifter has received the appropriate inbound read Data, it enables the input
of CHI-Converter ReadyDataBs and places the correct values to input sig-
nals Data and BE. This way Data sender receives the configured Data and
constructs the corresponding Data FLIT with opcode NonCopyBackWrData
which is sent on the outbound Data channel. Every time a valid FLIT is sent
on the outbound Data channel and a FULL memory transfer is completed the
Completer updates Descriptor’s Status if needed and the FIFO with the ap-
propriate DBID and RespError fields are dequeued, so the Data Sender will
gain the next fields for the next Data write.

Completer receives DescAddr, RespErr, and LastDesctrans(Final Transaction
of Descriptor) from DBID FIFO and from Barrel Shifter when it responds to
DataSender’s request and if there is an error or all transactions of a Descriptor
are over it updates the status of the corresponding Descriptor.

FIGURE 3.16: Completer

Completer is composed of one FIFO and one FSM Fig.3.16. Every time a
data write is sent on the outbound data channel if the error field from Data
or DBID is not 0 or LastDescTrans is active then the ValidUpdate signal is
enabled, and these 3 fields are written inside the FIFO. If FIFO is not empty
then FSM is executing the following operation Fig.3.17:



48 Chapter 3. Proposed Architecture and Design

FIGURE 3.17: FSM of Completer

When the top element of FIFO has a non-zero error field, and it is not the
last transaction of the Descriptor, then FSM requests to take access to BRAM
by activating the ValidArbiter signal. If the Arbiter responds with the corre-
sponding ready signal, then FSM enables the correct bits of the Write Enable
signal, writes the Descriptor at the given address with a temporary error sta-
tus, and dequeues the first element of FIFO. In the case where the first ele-
ment of FIFO indicates the last transaction of the descriptor then FSM reads
this Descriptor on the first cycle and on the second, it transitions to Write
State where it will write the Status of the Descriptor with Idle if Descriptor
has an Active Status or with Error if there is a non-zero error in FIFO or the
status of the Descriptor was temporary Error. After this operation, FSM ex-
tracts the first element of FIFO and returns back to the starting State. In this
way, Descriptors stay up-to-date every time a memory transfer has been fully
completed and the processor is able to know when to re-write the finished
Descriptor.

Finally, the last component of the CHI-Converter is the Credits Manager.
Each channel has a reverse signal on its direction which is called LCRDV
and indicates when a channel receives a Credit and thus it is able to execute
one more transmission. This block is responsible for counting the number
of Credits on the outbound channels and sending the appropriate number
of credits on the inbound channel. Credit Manager contains three counters,
one for each inbound channel which are increasing when the corresponding
LCRDV signal is set and decreases when a transmission is executed on the
same channel. This way, this module can inform every other component of
CHI-Converter when there are enough inbound credits for them to use one
of the channels. Another operation of this component is to send credits on
the inbound response channel. This task is a little trickier as there should not
be given more credits than the free space in DBID FIFO because there would
be the danger of overflowing. For this reason, there are two counters for
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the inbound response channel, one for counting the number of given credits
which increases every time the LCRD signal is set and decreases when a re-
sponse is received and one for counting the difference of the free spaces in
FIFO with the given credits on this channel. When this difference is greater
than zero and the number of given credits on this channel is less or equal to
the max number of credits that CHI allows which is 15 then an extra credit
is transmitted on this channel. This way the inbound response channel will
always have the maximum number of credits without being able to overflow
the DBID FIFO. It is worth noting that there is not any logic for managing the
credits on the inbound Data channel as the master of this channel is Barrel
Shifter and it has the responsibility for the management of its credits.

CHI-Converter by implementing all these components described before is
able to interact with a CHI interconnect and be the master which will ini-
tiate and execute a full memory transfer based on the commands that will
be inserted within its FIFO. It always requests Data from memory by the
ReadOnce transaction which will give the last snapshot of the memory and
writes data with the WriteUnqieuPtl transaction which will make the other
masters to be informed for the written data if they want to use them which
makes CHI-Converter a Requester I/O Coherent node of CHI system. CHI-
Converter is able to operate with the type of responses that already have
been described before, but it can be further developed in the future to sup-
port more sophisticated responses from the CHI interconnect. The Disad-
vantage of the CHI-Converter is that it supports only in-order execution so
it requires receiving all responses in the same order as requested to operate
normally. This issue can be solved in the future by implementing one extra
BRAM where all responses will be stored based on the TxnID and they can
be accessed in any order, which will allow CHI-Converter to handle out-of-
order responses.

3.2.5 Barrel Shifter

Barrel Shifter is designed with the hypothesis that all the data responses are
received in the same order in which they have been requested.

Barrel Shifter is the component that receives Data responses from the external
CHI system, and it is responsible for shifting and merging Data in order to be
written at the correct memory address Fig.3.18. More specifically, the number
of Data that will be read from Memory is 64 bytes as the number of Data that
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FIGURE 3.18: Location of Barrel Shifter in the Design

will be sent for write. However, the Source and Destination Addresses of
transfers may be aligned with the piece of Data that the CHI system uses
for every Data transaction (64 bytes). In addition, Source and Destination
address can be misaligned within this piece of Data (ie. SrcAddr modulo
CHI-DATA-WIDTH != DstAddr modulo CHI-DATA-WIDTH) which makes
the use of Barrel Shifter necessary for adjusting the read Data so they can be
ready for write transactions.

Barrel Shifter contains 2 FIFOs: one for commands and one for Data Fig. 3.19.
Commands come from CHI-Converter every time it begins a new transfer of
a chunk and are stored in FIFO when the Enqueue signal is set. Commands
as in CHI-Converter are composed of the fields: SrcAddr, DstAddr, Length,
DescAddr(Descriptor’s Address), and lastDescTrans (Last transaction of De-
scriptor) which are needed to generate the correct shift and some of the out-
puts. When the CHI interconnect responds to a Read request generated by
the CHI-Converter, it promotes the requested data within the DataFLIT on
the Inbound Data Channel. Every time the FLITV signal of this channel is
enabled, the read data and the corresponding error field are being stored in
the Data FIFO of the Barrel Shifter. This FIFO is used to keep all the obtained
Data in order, so they can be modified and passed to the CHI-Converter
when it requests them by activating the ValidDataBS signal.

The shift that must apply on Data is identical for every other Data word from
the same Chunk(bytes that have been requested from one Command) be-
cause the misalignment for all transactions within a command is the same as
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FIGURE 3.19: Barrel Shifter

all the data are being stored at contiguous memory addresses. The proper
shift(in Bytes) that must apply to each Data piece from the same Chunk is
the difference of Source and Destination address modulo the Width of CHI
Data (64 bytes). The modulo operation is very easy to apply on the addresses
as the CHI-Data-Width is a power of 2, so it just needs to ignore the least
square root of CHI-Data-Width bits which is

√
64 = 6 bits. The shift of

Data is always right and circular, which means that the least significant bytes
become the most significant and the rest are moved a few positions right.
For this reason, the subtraction of Source mod 64 and Destination mod 64
Addresses always gives the correct shift for both cases that Data should be
moved right or left. In the first case, where ScrAddr mod 64 > DstAddr
mod 64 so read data must be shifted right, it is obvious that the difference
of these numbers is the appropriate shift needed for the read data to be
aligned with the data that will be written. In the second case where ScrAddr
mod 64 < DstAddr mod 64 the subtraction of the two values produces a
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negative number which is the two’s complement of a result x that would
be produced if the subtraction had been executed with the two values in re-
verse. Nevertheless, by representing this two’s complement result −x with√

ChiDataWidth =
√

64 = 6 bits which is the width of shift signal we end up
with the number ChiDataWidth − x = 64 − x which is the amount of right
circular shift needed to align the data that is equivalent with the left shift of
x bytes.

Another very important component that Barrel Shifter contains is the block
which is responsible for shifting Fig.3.20. This block receives two inputs: the
Data and the shift signal which is created in the way described before. The
function of this module is to execute a right circular shift on the inserted Data
by the amount of its input signal "shift" and provide the processed Data on
its output. This block is pure combinational logic. It is composed of layers of

FIGURE 3.20: Shifting block

multiplexers. Its layer contains 64 multiplexers as the Data width (in bytes)
of CHI. Each multiplexer of the first layer receives on its first input the corre-
sponding data byte unchanged and on its second input the next byte which
is the first input of the next multiplexer of the same layer with the last multi-
plexer’s second input to be the first data byte. Similarly, each multiplexer of
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the second layer receives on its first input, the output of the corresponding
multiplexer of the last layer, and on its second input, the output of the mul-
tiplexer that corresponds to its position + 2 (for example the second input of
the first multiplexer of the second layer is the output of the third multiplexer
of the first layer, etc.). The last multiplexers which do not have corresponding
multiplexers from the last layer to its position + 2 receive the output of the
multiplexer at position + 2 mod 64(CHI-Data-Width) as the shift that must
be done is circular(in this example the last 2 muxes take the output of the
first 2 muxes from the last layer). Subsequently, the multiplexers of mth layer
will receive on their first input the output of the multiplexers of the m − 1
layer and on their second input the output of the (2m−1 + n) mod N of the
m − 1 layer where n the position of the multiplexer and N the number of
multiplexers on its layer (64). With this structure, the inserted Data can be
shifted by any amount from zero to 2m − 1 (in bytes) with m being the num-
ber of layers. Thereby, the number of layers that are needed for data to be
shifted for any amount between the range 0 - 63 are 6 layers and the total
number of multiplexers required for this structure are m · N but m = log2 N
so m · N = N log2 N = 64 log2 64 = 64 · 6 = 384 multiplexers. The sec-
ond input of this component is the control signal shift, which determines the
amount that data must be moved. This signal has width as the number of
layers of multiplexers, which is 6 in this case. Each bit of this signal is con-
nected with the corresponding layer and controls every multiplexer within
this layer. This way each active bit of shift signal forces data to be shifted by
an amount of 2n bytes where n is the position of the active bit and the total
shift that is produced is the sum of the effect from all layers that the control
signal has activated. The output of this block is the Data word that has been
generated at the last layer of multiplexers and it is the read Data aligned with
the Destination Address.

After Data is shifted the Control block of Barrel Shifter decides based on the
request of data from CHI-Converter and the command if it is required for the
shifted Data to be written in a register and the Data FIFO to be dequeued by
enabling the appropriate control signals. Storing shifted data in a register is
necessary in many cases as on the next cycles after the data FIFO is dequeued
the previous shifted data must be available, in order to be merged with the
next shifted Data to create the next CHI data word for the next transaction.

As Barrel Shifter needs to receive the inbound Data from the external CHI
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system, it requires the occupation of the inbound Data channel. For this rea-
son, a component that is responsible for the management of the credits on
this channel is necessary in Barrel Shifter’s implementation. Credit Manager
is composed of two counters: one that counts the number of given credits
and one that keeps the difference between the free space of Data FIFO and
the given credits. The first counter increases every time the LCRD signal of
the inbound Data channel is activated and decreases when a data response
is received. The second counter increases when an element is extracted from
Data FIFO and decreases when a valid response is received on the data chan-
nel. Finally, this module transmits an extra credit every time the number of
credits that the external system possesses is less than the maximum number
that CHI allows which is 15 and the number of sent credits is less than the
free spaces in FIFO. In this way, the external system will always have enough
credits as long as there is free space in FIFO to accept the inbound data re-
sponses.

Another important operation that the Barrel Shifter should do is to gener-
ate the appropriate Byte Enable signal. This signal is a necessary field that
CHI-Converter requires to transmit the Write Data response and it indicates
the position of the bytes in Data that is valid for write. BE field is produced
by combinational logic. If the Destination Address modulo CHI-Data-Width
+ command’s length is less than CHI-Data-Width (64) then the appropriate
bytes that should be enabled are intermediate of the CHI-Data-Word and
should be the bytes from the position DstAddr mod 64 to DestAddr mod
64 + command’s length. In the case where data are not intermediate of the
CHI-Data-Word which means that Destination Address modulo CHI-Data-
Width + command’s length is greater than CHI-Data-Width (64) then if it is
the first transaction of this command the Bytes that should be enabled are the
most significant bytes from the position DestAddr mod 64. In the same case
but when the next transaction is neither the first nor the last from the corre-
sponding command then all bytes must be enabled as the data that will be
transmitted are an intermediate piece of the full chunk and all the bytes must
be written. Finally, when the next transaction is the last but not the first of a
command then the least remaining bytes should be enabled for the comple-
tion of a full chunk transmission. In order for the combinational logic which
manages BE to know if the following transaction is the first, an intermediate,
or the last, there is a counter that counts the transmitted Data for write.
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The counter of transmitted Data for write is reset to zero every time a com-
mand is ejected from command FIFO. Otherwise, when CHI-Converter re-
quests the next shifted data by activating the ValidDataBS signal and Barrel
Shifter responses with the Data and the ReadyDataBS signal then the control
of the system will activate the counter which will be increased by the number
of bytes needed from the Destination address modulo 64 + the current value
of counter until the next aligned address. In this way every time a Data word
is transmitted this counter computes the number of bytes that have been sent
and hence the amount of remaining bytes for each command can be calcu-
lated. Likewise, there is a counter that counts the received read Data. Every
time new Data are extracted from FIFO and delivered to CHI-Converter, the
appropriate signal from the control is enabled, and the read counter com-
putes the total amount of bytes that have been read for the first command in
FIFO in the same way as the write counter.

The two counters are necessary not only for the activation of the correct bits
of BE field, but also for helping the Control block of the system to know
whether it is the first or last read and write transaction for each command,
so it can manage the appropriate control signals of the module. Control is
responsible for the activation of the two counters, the Write Enable signal for
the register that keeps the previous sifted data, the dequeue operation of FI-
FOs, the activation of the ReadyDataBS signal to indicate when data is ready
for CHI-Converter and the creation of the correct data by merging the pre-
vious and current shifted data. The value that each signal will take depends
on the length of the command, the misalignment of the Source and Desti-
nation Address, and the position of the transaction within the command (if
the executed transaction is the first, an intermediate, or the last one). Control
operates only when both of the FIFOs are not empty.

The Control block operates appropriately and produces the necessary sig-
nals based on the case that source and destination address of the command
define. There are 3 cases that the control should behave differently. In the
first case, Source and Destination addresses are aligned, as the right memory
representation in the figure 3.21, or the length of the command is very small
and all bytes of both read and write transactions are placed within only one
line as seen in the left memory representation Fig.3.21. The colors represent
the data movement for every transaction of a chunk. In this scenario control
passes shifted data directly from the combinational shift logic to the output as
there is no need for merging the data. It also activates the data ready signal,
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FIGURE 3.21: Aligned Data Transfer

the counters and dequeues the data FIFO every cycle data are sent to CHI-
Converter. When the data for the last write transaction have been sent, then
control dequeues command FIFO too and the two counters are refreshed.

In the second case, shown in figure 3.22 where addresses are misaligned
and data must be shifted left, the left memory representation shows the data
transfer for every transaction of a chunk where the number of read and write
transactions are the same in contrast with the right representation where the
number of writes are one more than the number of reads. In this particu-
lar scenario, control merges the most significant, 64 – shift, bytes of the next
shifted read data with the least, shift, bytes of the previous shifted read data
that have been stored in the register. This way, control always produces the
correct data on output as it keeps on the write enable signal for shifted Data
register every time a new data piece is sent to CHI-Converter. Similarly to the
previous case, control also activates the counters, the ready signal, dequeues
data FIFO when data are requested and dequeues command FIFO when it is
the last write transaction. However, in this case there is the scenario where
the top data in FIFO are from the last read transaction of the current com-
mand but the next data that will be sent are not for the last write transaction.
This scenario happens for example when one read must become two writes.
In this case, the read counter won’t be activated, and Data FIFO won’t be
dequeued on the first cycle, but they will do on the next one.
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FIGURE 3.22: Misaligned Data Transfer with left shift

In the last case Fig.3.23 where also addresses are misaligned, data must be
shifted right. Similarly, with the previous case, the left representation of the
figure shows the movement of data from one memory location to another
with the number of writes equal to the number of reads and correspondingly
in the right representation the number of reads are 1 more than the number
of writes. Data out in this case is again the concatenation of the most sig-
nificant, 64 – shift, bytes of the next shifted read data with the least, shift,
bytes of the previous shifted read data that have been stored in the register.
The difference, in this case, is that the first read data are not enough for a
Data write to be sent, so control writes the shifted data in the register, de-
queues the data FIFO and updates the read counter without sending Data to
CHI-Converter (ready deactivated). After this important detail on the first
cycle that differs from the left shift case, the continuation of the process is the
same, including the scenario of the last read becoming two writes. This way
the control of the system handles each one of the cases and the Barrel Shifter
is able to shift Data from every direction and pass the data to CHI-Converter
in the appropriate way for all CHI transfers in commands to be completed.
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FIGURE 3.23: Misaligned Data Transfer with right shift
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Chapter 4

Simulation and Testing

To verify that the system operates expectedly, a behavioral simulation is ex-
ecuted for each module individually as well as for their combination, which
constructs the whole DMA by using the vivado simulator (XSIM). The Test-
Benches that were created to verify the individual components are simple,
as they just test the behavior of the module by testing a large number of dif-
ferent inputs and trying to cover every corner cases. On the other hand, the
testing of the full system is a more difficult task, hence its Testbench is more
complex.

4.1 Verification of sub-modules

4.1.1 Simulation of Scheduler

For the verification of the Scheduler, an exhaustive examination of all possi-
ble corner cases is executed by creating a Testbench which assigns the appro-
priate input at the correct time to make the conditions for these cases to be
observed. This method of verification can apply in this module because the
number of different important cases is small, so the test can be deterministic.
For this reason, the correctness of the behavior of the Scheduler is verified by
looking at the waveforms that the simulation tool provides and there was no
need for implementing a self-checking test.

Note: ReadyBRAM and ReadyFIFO indicate that there is access through Ar-
biters to the BRAM and the main FIFO respectively, EmptyFIFO indicates
there is no address pointer in the main FIFO, and CmndFIFOFUll indicates
that CHI-Converter can’t accept more commands because its FIFO is FULL.
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Corner Cases
Input Signals IdleState IssueState WriteBackState
!ReadyBRAM check check check
!ReadyFIFO don’t care don’t care check
EmptyFIFO don’t care impossible check
CmndFIFOFULL don’t care check don’t care

TABLE 4.1: corner cases of scheduler

The test which is created for verifying this module has successfully shown
that the FMS of the component always returns to IdleState whenever the con-
trol of BRAM is lost independently of its current state. Moreover, it checks
that the FSM stays in the IssueState every time the CHI-Converter can’t ac-
cept more transactions and in the WriteBackState when the control of FIFO
has not been obtained. Also, the module’s behavior when there is only one
transfer in the system is important to be checked. This case causes the FSM
to transition in WriteBackState when the main FIFO of the system is empty.
The behavior, in this case, has also been verified as the module uses the ad-
dress pointer that was stored in the register to read the BRAM and write it
back to FIFO simultaneously. Finally, the update of BRAM has been checked
and operates correctly even when the processor has assigned absurd transfer
instructions as the SentBytes field is greater or equal to the BytesToSend field
where Scheduler updates the Status field to Idle. In this way, the verification
of the Scheduler is completed and the module is ready to be integrated into
the whole system.

4.1.2 Simulation of Barrel Shifter

The verification of Barrel Shifter accomplished by the usage of 2 different
methods. The Barrel Shifter receives all the inbound data responses for all
read requests of the same command in order, and it shifts and merges the
inserted data to create the corresponding data for write transactions of the
same command before it serves the next one. For this reason, Barrel Shifter
uses specific patterns to create the appropriate data, which depends on the
direction of the shift and the number of reads/writes for each command.
Hence, the first method verifies the operation of the module by checking that
every possible pattern is executed correctly, Fig.4.1.
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Possible Shift scenarios for a Command
Number of
Reads/Writes

Shift Left Shift Right No Shift

Reads > Writes impossible check impossible
Reads < Writes check impossible impossible
Reads==Writes check check check
1-Read 1-Write check check check

TABLE 4.2: Shift scenarios of Barrel Shifter

FIGURE 4.1: Shift Cases of a Command

For the first method, the test starts by inserting commands that force Barrel
Shifter to execute each one of the possible patterns. In order for the mod-
ule to complete its operation for each of the commands, it is necessary to
receive the corresponding data responses on the inbound Data channel. For
this reason, the TestBench implements a mechanism for counting the credits
that Barrel Shifter sends, and if there is a non-consumed credit on the chan-
nel it sends after a small random delay an inbound Data response with a
random Data field. All the possible cases which are checked by the execu-
tion of the inserted commands which are visualized in the figure above are:
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a small shift where all data for both read and write are placed within a data
line, a multi-read/write aligned transfer, a left shift with the number of reads
to be less and equal with the number of writes, and with the same way a
right shift with the number of reads to be greater and equal to the number of
writes. The verification for each one of the patterns, except by looking at the
waveforms, which is more difficult as both the inserted and shifted data are
512-bit vectors and their comparison is time-consuming, it is also achieved by
some software code that is integrated into the TestBench. This code, stores
every inserted data of the same command in a wide vector, each one next to
the others as well as the given data with the corresponding BE output active
in a different vector. Then every time a command is over it checks if every
bit of the first vector in the range [SrcAddr mod 64(CHI-DATA-WIDTH in
bytes), SrcAddr mod 64 + Length] is equal to the corresponding bit of the
range [DstAddr mod 64, DstAddr mod 64 + Length] of the second vector. If
all the bits of the 2 vectors are matching then the Barrel Shifter operated cor-
rectly for this command and a success message is displayed, else the program
stops, and an error message is printed.

As the TestBench implements this software for automatic verification of each
command it is obvious that the second method that is used to verify this
component is by inserting a large number of commands with random source,
Destination addresses, and Length. In this way, each case of those described
above is tested many times with different shifts and Lengths. Also, this
method covered many of the corner cases, as when the FIFOs are FULL or
when all of the credits have been given. Finally, after a huge amount of ran-
dom commands (around 50000) were executed successfully, the verification
of Barrel Shifter is over as every possible command passes the test.

4.1.3 Simulation of CHI-Converter

The TestBench of the CHI-Converter is designed to receive CHI-Requests
and to respond with the appropriate CHI-Responses after a random delay.
First of all, this TestBench implements a mechanism for counting the credits
that have been sent on the inbound channel and provides its own credits on
the outbound channels after a random delay. Moreover, it implements 2 FI-
FOs, one for storing all the uncompleted read and one for the uncompleted
write requests. The corresponding FLITS are enqueued in FIFOs every time
the FLITV signal is active and there is at least one unused credit on the re-
quest channel. Subsequently, when read FIFO is not empty, the TestBench
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transmits on the inbound Data channel a CompData response with random
data and the appropriate fields after a random time, and in the same way,
when write FIFO is not empty, it transmits a CompDBIDResp response on
the inbound response channel. However, CHI-Converter can not handle the
inbound Data responses on its own so the Barrel Shifter module which is al-
ready verified has been implemented in the TestBench and it receives the in-
bound data and then passes it to CHI-Converter. In this way, CHI-Converter
is able to interact with the TestBench and execute all of the transfers for each
inserted command.

For the verification of the module, TestBench starts by inserting a large num-
ber of commands in CHI-Converter with random Source, Destination ad-
dresses, and Length which are also stored in an array. When the module
receives the first command as well as the necessary credits, it starts generat-
ing read and write requests and the CHI interaction of the module with the
TestBench begins. Every time a valid FLIT is transmitted on any channel,
an automatic mechanism checks if there is at least one credit on this chan-
nel. If there are no credits on this channel then the operation stops and an
error message is printed, differently, a copy of the FLIT is stored in an ar-
ray according to the transmission channel. Also, another condition that the
test is checking during the execution of transactions is the correctness of the
TxnID field. Every time a CHI request is transmitted, an automatic proce-
dure checks if its TxnID is unique or if another uncompleted transaction has
already used it. This is succeeded by comparing it with all the TxnIDs of the
Request FLITs that have been previously stored in the array which haven’t
receive a response, so the FLITs in the corresponding position of the other
arrays are 0.

When all transactions are over and hence all of the commands have been
executed, a Task is triggered which checks the operation of the module by
looking at the arrays that have been written with the information about the
commands and every transaction on each channel. The conditions that this
task examines in order to verify that all the transactions were executed cor-
rectly are :

1. All the read and write requests must use the appropriate address field
based on the Source and Destination addresses of the corresponding
command

2. All read requests must have the correct opcode ReadOnce
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3. All the inbound Data responses must have opcode CompData

4. All the write requests must have the correct opcode WriteUniquePtl

5. All inbound responses must have opcode CompDBIDResp or DBIDResp

6. the TxnID of the inbound responses must have the same TxnID as the
requests

7. All outbound Data transactions must have NonCopyBackWrData

8. All outbound Data transactions must have the same TxnID as the DBID
received in the DBIDResp response

If the above conditions apply to every transaction that has been transmitted
and stored in the arrays then a successful message is displayed else an error
message is printed with the information about the transaction that failed the
test.

This TestBench is executed many times with different delay times to verify
the module’s behavior under different conditions. More specifically, in one
of the executions the TestBench was giving extra credits for the outbound
channels after a long time which resulted in the Command and Data FIFOs
being FULL most of the time. In a different execution, TestBench was giving
Data Responses very rarely and DBID responses very fast which resulted in
the DBID FIFO being FULL very often, etc. After many possible executions
passed all of the tests, the behavior of the CHI-Converter to interact with a
CHI interconnect with the CHI protocol is fully verified.

4.1.4 Simulation of Completer

The operation of the module to update the BRAM when a full transfer of
a Descriptor is over has been individually tested by a different TestBench
which verifies the behavior of the sub-module Completer. In the same way as
the previous testing, it inserts in completer many different instructions about
Descriptors that their transfer has been fully finished, or an error occurred
during the process. Then Completer requests the control of BRAM and tries
to read Descriptor’s Data by setting its appropriate output signals. When
these signals are active, TestBench enables the input that allows permission
in BRAM and gives random Descriptor’s Data to the module with the Status
field to be Active or TempError. Finally, Completer updates the Status of
Descriptor by managing its output signals WE, Address, and StatusData.
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For the verification of this sub-module the TestBench as for CHI-Converter,
stores the inserted instructions, the read Descriptor’s data, and the output
signals of the component in arrays every time the input ValidUpdate or the
output WE signals are not zero respectively. When an update for each in-
serted instruction is executed and the FIFO of the Completer is empty, the
system verifies that the process operated correctly by checking the appro-
priate information that was stored in the arrays. The conditions which are
checked are :

1. if there is an error in the transfer, and it is not the last transaction of
Descriptor status should be updated to TempError

2. if there is not an error, it is the last transaction, and Descriptor’s Status
is Active the updated status must be Idle

3. if it is the last transaction, and Descriptor’s Status is tempError the up-
dated status must be Error

4. if there is not an error, it is the last transaction, and Descriptor’s Status
is Active the updated status must be Error

Note: tempError Status is a value that Completer writes in Descriptor when
an error occurred in the process, but Descriptor has not fully transferred, so
the processor should not rewrite this Descriptor yet. TempError Satus will
always end up being updated to Error when Descriptor’s transfer has been
fully completed.

After it is checked that Completer is operating successfully in all cases and
there are no problems with the FIFO being FULL, the verification of the sub-
module Completer and hence for the module CHI-Converter is completed.

4.2 Verification of FULL system

4.2.1 Functionality Check

In order to verify that the full DMA operates as expected, a TestBench was
created which examines the functionality of the system. The verification of
the functionality is divided into two parts.

First part of verification:
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In this part, Testbench checks if the operation is executed correctly until
the scheduling of the commands. This is succeeded by using a TestVec-

FIGURE 4.2: scheduling verification

tor for storing the information that the processor writes in every Descriptor
and some logic that checks if the commands that Scheduler sends to CHI-
Converter are correct based on the corresponding Descriptor. More specifi-
cally TestVector, just like BRAM, stores the information for every Descriptor
that is assigned in DMA which are the Source, Destination addresses, the
number of bytes to send, the number of scheduled bytes, and the last field is
the LastDescTrans which indicates if all of the bytes of the Descriptor have
been scheduled. Every time the WE input is active, the first four fields are
written in TestVector at the corresponding input address. Subsequently, ev-
ery time the Scheduler enables the issue output signal which indicates that
there is a valid command and the CmndFull of CHI-Converter is disabled,
then the verification logic checks if the scheduled command can be valid
based on the corresponding inserted transfer. The examination operation be-
gins by checking if the Source and Destination addresses of the command are
the same as the Source and Destination addresses of the transfer in TestVector
at the command’s address + the number of its scheduled bytes. If that’s true,
then the command contains the correct addresses and the SendBytes field of
TestVector is updated by adding the Length of the command. The next field
which is checked is the LastDescTrans of the command. If this field is on then
this command should be the last one for the corresponding transfer. For this
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reason, if LastDescTrans is on then the system checks if the SentBytes field
of the transfer + the length of the command is the same as the BytesToSend
field of the same transfer. Otherwise, if the LastDescTrans of command is
off, then the SentBytes field of the transfer + Length of command must be
less than the BytesToSend field. If that’s correct, the LastDescTrans field of
the corresponding transfer in TestVector is also updated. In case, where one
of the above conditions is not satisfied, the TestBench stops and an Error
message is displayed. Lastly, when all transactions of the test are over, the
system checks if all transfers which are written in TestVector are completely
scheduled by examining if all of the SentBytes fields are equal with the cor-
responding BytesToSend fields and if the LastDescTrans is enabled for all
transfers. In this way, the system can ensure that all transfers have been fully
scheduled and none is lost somehow in the process. A representation of the
verification structure is shown in figure 4.2.

Second part of verification:

In this part of verification, Testbench checks if the CHI interaction between
the DMA and the interconnect is executed correctly based on the commands
that CHI-Converter receives and if the data are transferred properly.

After the first part, it is verified that the commands which are inserted in
CHI-Converter are correct, and the verification of the rest of the system is
based on these commands. So a new structure which is shown in Fig.4.3 is
built to ensure that the rest of the system operates correctly based on the pro-
duced commands. First of all, six FIFOs are implemented for storing infor-
mation about the received commands and the transactions which are trans-
mitted on every CHI channel. Two of those FIFOs keep the read and write
request FLITs respectively, one the inbound Data FLIT, one the inbound Re-
sponse FLIT, one the outbound Data FLIT, and one the inserted commands.
When all of the FIFOs are not empty, then a transfer of a CHI-Word has been
finished and the verification logic checks if all the CHI transactions have been
executed correctly based on the corresponding command. The conditions
which are examined are the same as those described in the verification of
CHI-Converter. If there is an error in the process, then the operation stops
and a message is displayed. Otherwise, if the transfer is executed correctly,
the verification logic extracts the first element of every FLIT FIFO and exam-
ines the next transfer when it is finished. If all the transfers of a command are
completed which can be understood by counting the number of transferred
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FIGURE 4.3: CHI verification

bytes, then the FIFO that stores the commands extracts its first element at the
same time with the other FIFOs.

There is a large vector on the other side of the CHI channel interface which
represents the DDR of the CHI system, which is initialized randomly when
the reset signal is active. All the transmissions which are sent to DMA in
response to read requests contain data from the requested address of this
vector, and all the data that are sent from the DMA for write with the corre-
sponding BE bit active are stored in the same way at the requested address
of the same vector. This pseudo-DDR is very important, as it provides a
way to truly verify that the DMA has transferred the data correctly. Every
time, a finished command has the LastDescTrans field active which indicates
that the whole transfer of a Descriptor is completed, the verification logic
reads the instructions SrcAddr, DstAddr, BytesToSend that were written in
TestVector of the first part of verification at the command’s address, and it
compares every bit in the range [SrcAddr, SrcAddr + BytesToSend] with the
corresponding bits in [DstAddr, DstAddr + BytesToSend] of DDR. If all bits
of the 2 ranges are the same then the transfer is executed successfully and a
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message is printed with the address of the completed Descriptor.

4.2.2 Interaction With DMA

As we can not have access to an implemented CHI system, there is no need to
download the designed DMA in an FPGA because there is no way to check
its functionality by observing its interaction with a real system. Therefor,
the evaluation of the DMA is accomplished via synthesis which provided
a good approximation about the maximum frequency that the system can
handle and its utilization. For this reason, the verification of the system is
accomplished exclusively by simulation and the interaction with the DMA is
achieved by the use of two independent virtual units, Fig.4.4. One of these
two units is necessary for assigning to DMA the appropriate transfers for
execution, and the other one is for responding in CHI compliant way to DMA
on the CHI requests that DMA generates.

FIGURE 4.4: interaction with DMA

Pseudo CPU:

Pseudo-CPU is the unit that writes the Descriptors of the DMA for the appro-
priate transfers to be initiated. This component behaves differently based on
its current phase. In order for the Pseudo-CPU to transition in any of its valid
phases, it has to receive the appropriate inputs. More specifically, the unit is
controlled by 2 inputs: newPhase, and phase. At the positive edge of the
clock, if the input newPhase is active, then the second input phase is written
in a register that the module contains and the behavior of the Pseudo-CPU is
determined based on this register. Pseudo-CPU operates in 9 different phases
and its behavior is:
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1. phase 1: Inserts in DMA 1 small transfer which will need one read and
one write transaction to be completed as all its read and write data are
placed within one line respectively.

2. phase 2: Inserts in DMA 1 small misaligned transfer which will need
two read and one write transactions to be completed

3. phase 3: Inserts in DMA 1 small misaligned transfer which will need
one read and two write transactions to be completed

4. phase 4: Inserts in DMA 1 large misaligned transfer which will need
many read and many write transactions to be completed

5. phase 5: Inserts in DMA continuously many(250) small transfers which
will need one read and one write transaction to be completed

6. phase 6: Inserts in DMA continuously many(250) small misaligned trans-
fers which will need one or two read and one or two write transactions
to be completed

7. phase 7: Inserts in DMA continuously many(15) large misaligned trans-
fers which will need many read and many write transactions to be com-
pleted

8. phase 8: Inserts in DMA many (45) large and small misaligned transfers
with a random delay between the insertions and will need single or
multi read/write transactions to be completed

9. phase 9: Inserts in DMA many (450) misaligned transfers with random
size after a random delay between the insertions and in random De-
scriptors

Note: In all phases, the module inserts the transfers at continuous Descriptor
addresses except at the last one which the Descriptors are random, so the
module needs to read them first, and then if their status is Idle or Error it
writes the instructions for the transfer.

Pseudo CPU assigns transfers in DMA by managing the input signals of the
first port of BRAM. When the module inserts a new transfer it always sets
the SentByte field to zero and the Status field to one which indicates the Ac-
tive Status. In addition, the pseudo-CPU must ensure when it assigns a new
transfer that the ranges [Source Address, Source Address + Bytes To Send]
and [Destination Address, Destination Address + Bytes To Send] do not over-
lap. This is important because two such overlapping ranges may cause an
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incorrect transfer by the DMA as the number of data which are moved at
a time is 512 bits (one CHI-Word) and in this way, some data may be over-
written before they are read from the engine resulting in the subsequent data
that gets moved being the written data instead of the expected data. This
scenario with the overlapping ranges is not expected to happen in real appli-
cations except if there is a software bug and for this reason, this DMA does
not implement any mechanism to handle this. Noteworthy is that two such
overlapping ranges with safe distance could be a valid behavior, neverthe-
less, it was not considered of significant usability, and would impair correct-
ness checking. Another condition that pseudo-CPU should control, in phases
where many transfers will be assigned in DMA, is to prevent 2 independent
transfers to write in the same region of memory. This case except it is an
absurd behavior from the software also does not allow the TestBench to ver-
ify the correctness of the overlapping transfers, as when it checks if the data
have been moved in memory it won’t find the right result on the destination
region and the test will fail. For these reasons, this module is designed to use
correctly distributed areas for Source and Destination addresses to allow the
TestBench to successfully check the result of the movements and hence the
operation of the system.

CHI-Responder:

The second unit which is necessary to interact with the DMA so the Test-
Bench will be able to verify the function of the system is called CHI-Responder.
This module is responsible for receiving CHI-Requests from the DMA, and
it produces in order the appropriate CHI-Responses. More specifically, CHI-
Responder counts the number of credits that are sent on each channel and
when a ReadOnce or a WriteUniqueuePtl request is sent on the request chan-
nel, it enqueues the requested FLIT in the corresponding (read or write) FIFO.
Subsequently, when one of these FIFOs is not empty then the module waits
for an amount of time to simulate the delay until the response of the CHI-
system, and then it transmits a CompData response on the inbound Data
channel or a CompDBIDResp response on the inbound Response channel
respectively according to the non-empty FIFO. The delay times before each
response and credit transmission can be random or constant and are param-
eterized, so they can be adjusted to the demands of the simulation.

CHI-Responder also implements a Large array that is initialized randomly
at the start of the process when the reset signal is enabled, representing the



72 Chapter 4. Simulation and Testing

CHI-system’s DDR as mentioned in the previous subsection. Every time a
CompData response is transmitted by the Responder the data field attached
to the response takes the value of this pseudo-DDR at the position of the cor-
responding requested address. In the same way, the Data which are transmit-
ted with the NonCopyBackWrData response on the outbound data channel
are written in the same array at the requested address. However, the address
of the write request and the data are transmitted in different FLITs by the
DMA as the write CHI transaction is a three-way handshake. For this reason,
an extra FIFO is implemented in this module to keep the requested addresses
for the write transactions until the corresponding data are received, so they
can be written at the correct position of pseudo-DDR. In this way, the test
can successfully check the operation of the DMA by observing if the data are
properly moved in this array.

4.3 Simulation

The system was simulated many times under different conditions as the be-
haviors of the CHI-Responder and pseudo-CPU were adjusted to cover most
of the regular and extreme cases that could happen. Although some of these
cases are described in this section, the presented waveforms are produced
by the simulation where CHI-Responder was giving unlimited credits to the
DMA and also was responding after a constant number of cycles (11) from
the moment it was receiving each request, as this is the simulation which will
be used to measure the performance of the system.

4.3.1 Unlimited Credits Simulation

The first phase of the simulation with the described CHI-Responder is pre-
sented analytically to clarify which is the structure of the CHI-transactions
that are generated by the DMA and how they are represented in the wave-
forms.

Phase 1:
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FIGURE 4.5: phase 1: transfer insertion

At the start of the phase, the pseudo-CPU assigns a transfer to DMA at the
descriptor address 1 by enabling all the bits of WE input, Fig.4.5. At the
same time, the information about the transfer is delivered in DMA from the
DataIn input. The values of the fields that compose the Data are SrcAddr: 65,
DstAddr: 14976, BytesToSend: 63, Status: 1(Active), and the rest fields, which
are SentBytes and Reserved, are 0 as expected. The SrcAddr mod 64(CHI −
Data−WIDTH) = 65 mod 64 = 1 and DstAddr mod 64 = 14976 mod 64 =

0 and as the number of bytes that will be sent are 63 the transactions which
are expected to be generated are one read and one write because all the bytes
that will be read and be written are within only one line respectively.

FIGURE 4.6: phase 1: Read Request

After a few cycles, the read request for the inserted transaction is generated
by the activation of the TXREQFLITV of the request channel as shown in the
figure 4.6. This operation is possible because the DMA has received several
credits on the request channel, as the CHI-Responder makes sure to give the
maximum number of credits to the DMA. Simultaneously with the assertion
of the TXEREQFLITV signal, the appropriate values of the fields that com-
pose the FLIT are set. The first 3 values of the TXREQFLIT vector are the
QoS, TgtID, and SrcId which are parameters and can be adjusted according
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to the system where the DMA will be used. Subsequently, there is the TxnID
which is unique for every transaction, and it is 0 as it is the first request. Then
the next 3 fields are always zero, as they are utilized in transactions that the
DMA doesn’t use. Afterward, there is the opcode field that indicates the type
of request with the value of 3 as the transaction is a ReadOnce, and the size
field with always the value of six as it indicates that the number of bytes that
will be transferred is 64. The next field is the requested read address that
has the value of 64 (40hex)as it is the previous aligned address of the assigned
transfer’s SrcAddr with the value of 65. Finally, the rest of the fields are zero
or constants, and they are not useful for the transaction.

FIGURE 4.7: phase 1: Write Request

The next cycle, as seen in Fig.4.7, DMA generates the write request from the
same transfer as the TXREQLCRDV signal was asserted for many cycles, so
there are enough credits on the channel, although one credit is already used.
The write transaction, in the same way as the read transaction, begins with
the activation of the valid signal TXEREQFLITV and the assignment of the
appropriate values in FLIT’s fields . The only different values of fields in this
request are the TxnID which is 128(80hex) as it must be unique, the opcode
which is 24(16hex) as this is the value that indicates the WriteUniqueuePtl,
and the address field which has the same value with the DstAddr 14976 as it
is an aligned address (because it is a power of 64(CHI-DATA-WIDH))
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FIGURE 4.8: phase 1: Data Response

Eleven cycles after the read request has been sent and the DMA has sent
the necessary credits, the data response arrives on the inbound data channel,
Fig.4.8. The DMA notices the presence of the response by observing the valid
signal of the channel. With the activation of this signal, the appropriate in-
formation is received with the FLIT on the inbound RXDATFLIT vector. As
shown in the waveform, the TxnID field of the response that is placed after
the Qos, TgtID, and SrcID fields has a value of 0 which is the same value of
TxnID that was sent with the request as the CHI protocol requires. Two fields
after it is the opcode which has the value of 4 as the response is a CompData.
Next, it follows the RespError field, which indicates if there is an error in the
response. The value of this field is 0 in this case, so there is no error, but it
could be also 2 or 3 which indicates that is a data error or a non-data error
respectively. Finally, there are the fields BE which is full of 1 because the re-
quested bytes were 64 as the width of this field, and the Data which are 64
bytes from the address that was requested. The rest of the fields are not used
for this transaction. After receiving this reply, the read transaction is over.
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FIGURE 4.9: phase 1: DBID Response

On the next cycle, the DBID Response is received on the inbound Response
channel as the write request was generated one cycle after the read and CHI-
Responder responds after a constant number of cycles, Fig.4.9. The important
fields of the received FLIT are the TxnID with value 128(80hex)which is the
same as the sent TxnID with the request, the opcode with the value of 5 as the
transaction is a CompDBIDResp response, the RespError that is zero as there
is no error, but it could be 2 or 3 if there was a problem with the transaction
and the DBID which indicates the ID of the data buffer that the CHI system
has reserved for the data that will be sent from DMA, and it should be used
as TxnID in the final write transmission. The transmission of this response is
possible because the DMA sent at least one credit on the inbound response
channel earlier.

FIGURE 4.10: phase 1: Data Transmission
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After both Data and DBID responses have arrived, the DMA generates the
data transmission on the outbound data channel, Fig.4.10. This transmission
is necessary to send the data that will be written at the requested address,
and begins with the assertion of the TXDATFLITV signal. At the same time
the TxnID field of FLIT takes the value of the previously received DBID with
the response FLIT, the opcode the value of 3 which indicates the NonCopy-
BackWrData type of transmission, the RespError is zero as there was not any
error in the received DBID response, the BE activates all of its bits except the
first one as the bytes of data that must be written are the first 63 bytes be-
cause DstAddr mod 64 is 0 and the data have the same value with the data
that received with read transaction but shifted one byte right. It is worth
noting that if a response contains an error, the data transmission will still
be executed with an error value in the error field, as CHI requires all trans-
actions with errors to complete in a protocol-compliant manner. After the
completion of this transmission, the write transaction has been finished and
the transfer of the descriptor has been fully completed.

FIGURE 4.11: phase 1

The image Fig.4.11 presents the whole of phase 1 which is the combination
of the previously described parts to clarify the timing between the events.
When the phase is over, the automatic verification mechanism of TestBench
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that is described at Functionality Check also displays the appropriate mes-
sage to inform if the inserted transfers are executed successfully.

Phase 2:

A few cycles after the transfer of the last phase is finished, the phase changes
to phase two. In this phase, the pseudo-CPU sends a transfer to DMA with
DstAddr mod 64 < SrcAddr mod 64 which will need 2 read and one write
transactions to be executed for the transfer to be completed. This phase is
important to verify the ability of the DMA to generate more read than write
transactions for one transfer and to shift, and merge the data properly to
create the proper outbound data.

FIGURE 4.12: phase 2

As shown in the Figure 4.12 the phase begins with the insertion of the appro-
priate transaction in DMA. Three cycles later the requests’ procedure starts
and the DMA generates sequentially one read one write and extra read re-
quests. Eleven cycles later, the first data response arrives on the inbound
Data channel. Then the next cycle, the DBID response is received on the in-
bound Response channel. However, in this phase, these 2 responses are not
sufficient for the data transmission to be generated as there are not enough
data and the system waits for the next data response that was requested with
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the extra read which arrives on the next cycle. Finally, DMA sends the data
on the outbound Data channel, which is created with the shift and merge of
the received data from the 2 data responses. Noteworthy is that there are
no credit exchanges on any channel before the request and the responses, as
both the DMA and the CHI-Responder have sent the maximum number of
credits in the last phase, but they send extra credits every time they use some.

Phase 3:

After the completion of the last phase, the test moves to the third phase.
In this phase, the pseudo-CPU assigns a transfer to DMA with DstAddr
mod 64 > SrcAddr mod 64 and appropriate BTS field, so it will need 1 read
and 2 write transactions to be executed for the completion of the transfer.
This phase is important, in the same way as the last one, to verify the abil-
ity of the DMA to generate more write than read transactions for one transfer
and to shift, and merge the data properly to create the proper outbound data.

FIGURE 4.13: phase 3

As in every phase, the procedure starts with the pseudo-CPU to insert the
transfer in DMA, Fig.4.13. Tree cycles later, the DMA transmits the appro-
priate requests which are 2 write and one read requests alternately. After
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the constant delay of the CHI-Responder the responses arrive in consecu-
tive cycles with one DBID response on the inbound Response channel, one
Data response on the inbound Data channel, and one extra DBID response on
the inbound Response channel respectively. When the first DBID and Data
responses have been received, the DMA adjusts the inserted data and trans-
mits the first data for the write transaction on the outbound Data channel.
At the same time when the DMA transmits the data, it also receives the sec-
ond DBID response. For this reason and as the data that have been read are
enough for both writes, the DMA generates on the next cycle the last data
transmission with the remaining data. In the same way as the last phase,
there are no credits exchanges between the units before the transmissions as
the maximum number of credits have been sent from both sides on every
channel and all the consumed credits are re-transmitted one cycle after the
consumption.

Phase 4:

The next phase that follows is phase 4 where a large transfer is inserted in
DMA by the pseudo-CPU. The size of the transfer is 6402 bytes which is
generated randomly, so it will need more than 100 read and write transac-
tions for its completion. The SrcAddr mod 64 happens to be smaller than
the DstAddr mod 64 as they also produced randomly, but it would not be a
big difference if they were in reverse. In this phase will be verified that the
transfers which are divided and scheduled in multiple chunks are executed
correctly.
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FIGURE 4.14: phase 4

Tree cycles after the insertion of the transfer, the DMA start the transmissions
of new requests. The number of request transmissions is much larger com-
pared to the previous phase, as the size of the transfer is much bigger. The
transfer is scheduled in chunks of 5 which means that the Length of the com-
mand can be up to 320 bytes. For this reason, as shown in Figure 4.14, the
DMA generates 5 read and 5 write requests for every command alternately.
However, as the addresses of the transfer are misaligned and the data must
be shifted left, the DMA needs to request one more write transaction at the
end of every command to write the remaining read data. Therefore, the sys-
tem generates a total of 5 read and 6 write transactions for each command.
This phase would be very similar even if the shift was right, with the only
difference being that there would be a total of 5 read and 5 write requests for
the first command of the entire transfer because the number of needed bytes
would be bigger only for the first command. After the constant delay time,
the Data and DBID responses arrive on the corresponding channel in the
order they requested. The 2 last DBID responses of every command arrive
at consequent cycles as there is one extra write request for each command.
When one DBID and one Data response are received, the DMA generates
the outbound data transmission on the next cycle. Nevertheless, for the last
write transaction of each command, DMA doesn’t need a Data response to
generate a data transmission as there are unsent bytes from the last response.
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For this reason, after DMA receives the last DBID response, it generates di-
rectly the data transmission, which results in 2 consequent transmissions at
the end of every command on the outbound Data channel.

Phase 5:

In this phase, DMA receives a large number(250) of small transfers which
need one read and one write transaction to be completed. These transfers
have the same form as the transfer in phase 1 but with this phase, we can ob-
serve the behavior of DMA when it handles a large number of them, as their
small length will prevent the system from performing the optimal schedul-
ing. This is happening because the scheduler of the system is not able to
schedule commands with the expected length due to the minor size of every
transfer, and the process flows in the following way.

FIGURE 4.15: phase 5

When the phase begins, the pseudo-CPU inserts in DMA a new small trans-
fer on every cycle, Fig.4.15. A little time after the first insertion, the DMA
starts generating the appropriate requests. The requests for the first 8 trans-
fers are transmitted normally, with each write after the corresponding read
request and the transmission of all requests from every transfer in consecu-
tive cycles. Subsequently, for the next few cycles, the DMA stops requesting
and the TXREQFLITV signal deactivates. Afterward, the system activates
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the valid signal for 16 cycles which generates the appropriate requests for
the next 8 transfers, and then it deactivates again. This pattern continues
periodically for the rest of the phase until all the transfers have ended. The
reason for this strange behavior of the DMA is that all the transfers are pretty
small and the Scheduler of the system is not in time to schedule enough bytes
for transfer before it loses access to BRAM and can’t read the next transfers
to schedule them. The access to BRAM for this module is lost after the sys-
tem has received the first data and DBID responses and sends the first data
transmission. At that moment, one transfer has been fully completed (as all
transfers are very small)and the completer of CHI-Converter must update
the Status field of the corresponding Descriptor in BRAM. For this reason
and as the Arbiter that controls the second port of BRAM always gives a
priority to Completer, the Scheduler loses the ability to read the next De-
scriptor, and thus it can not schedule a new command. In addition, as the
CHI-Responder responds after a constant number of cycles, by the time the
Status of the Descriptor is updated the DBID and Data responses for the next
transfer have arrived, the corresponding data transmission has been sent and
the Status for the next Descriptor must be updated. This situation occurs 8
continuous times as the number of requested transfers and for this reason,
Scheduler loses the access to BRAM for a significant amount of time which
results in commands shortage in CHI-Converter and there is an idle time
on the request channel every 16 requests. In conclusion, this phase reveals
the inability of the DMA to transmit new requests on every cycle due to the
small size of a large number of the inserted transfers, which causes a constant
conflict between the Scheduler and the CHI-Converter for the occupation of
BRAM’s port. Worth noting is that even if the arbiter of BRAM switches the
access priorities of modules, the behavior of the system is similar and the
results are not better. Nevertheless, the Design of the system could be im-
proved and the Status of the Descriptors could be stored in a different BRAM
or array that would abolish the Arbiter of the BRAM and would allow both
the Scheduler and CHI-Converter to operate simultaneously which would
maximize the performance of DMA in this phase. This optimization can be
implemented in future work.

Phase 6:

In this phase, DMA receives a large number(250) of small transfers which
need one or two read and one or two write transactions to be completed.
The inserted transactions have the same form as the transaction in phases 1,
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2, or 3. In the same way as the last one, this phase is important to observe
the behavior of the DMA to handle a large number of small transfers but this
time they may need a different number of read than write transactions which
changes the pattern of waveforms.

FIGURE 4.16: phase 6

As shown in the waveform Fig.4.16, the DMA in this phase suffers from the
same problem as in the last phase. Due to the conflict of the Scheduler with
the Completer of CHI-Converter for the control of the second port of BRAM,
the CHI-Converter runs out of commands, which causes temporary inabil-
ity from the module to generate new CHI-Requests. This is represented by
the deactivation of the TXREQFLITV signal of the Request channel in the
waveform for some time. In addition, by comparing this waveform with
the last one it is easy to be noticed that the activity of the request channel is
chaotic in contrast with the previous phase where it was periodic because the
number of reads and writes transactions in this phase is random for every in-
serted transfer (it can be one or two read or writes). However, even if there
is chaotic behavior the dead time of the request channel is less than phase
5 because even so, the number of overall executed transfers is the same the
number of requests is greater due to the probable multi-read-write necessity
for each transfer. The problem of the DMA for this phase can be solved in
the same way as for the last phase, that is by the implementation of an extra
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BRAM or array where it would store only the Statuses of Descriptors, and
it would allow the CHI-Converter and Scheduler to operate normally at the
same time.

Phase 7: Phase 7 is performed to check the ability of the DMA to handle
efficiently multiple large transfers. For this reason, pseudo-CPU assigns 15
transfers to DMA with more than 3000 bytes in length. The Source and desti-
nation addresses are chosen to not overlap, but the addresses are random so
the shift which is needed for every transfer is different.

FIGURE 4.17: phase 7

The phase begins with the insertion of all the transfers in continuous cycles,
Fig.4.17. Three cycles after the first assignment, the DMA starts to generate
the requests for the first command. However, after these requests, there is
a small gap in the request channel where the DMA does not generate any
requests for a small time. This is happening because the pseudo-CPU is in-
serting in DMA new transfers non-stop and hence it uses the system FIFO
continuously, which prevents the Scheduler from writing the old Descrip-
tor pointer and hence from scheduling new commands. For this reason, the
CHI-Converter runs out of commands and stops requesting until all of the
transfers have been assigned, and then the operation continues normally.
Nevertheless, this behavior of the CPU is not realistic, it is safe to assume
that such a case will never happen in a real application and this issue does
not constitute a problem. When CHI-Converter receives commands again,
the request channel stays active all the time until all the requests are sent. A
constant time after each request is transmitted, the DBID or Data response is
received on the corresponding channel. Finally, for each write request, the
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appropriate received data are modified to be transmitted and written in the
correct location. Noteworthy is the fact that there are a few small delays in
the outbound transmissions of some data. This is happening on the first com-
mand of the transfers which their data must be shifted right because there are
not enough data from the first read and the second read must arrive to gen-
erate the first outbound data transmission. Except for the first command of
each transfer, there is no other command which needs a right shift and cre-
ates a delay in the outbound transmission because the Scheduler manages
all read addresses after the first command to be aligned(multiple of 64) and
hence all the shifts will be left.

Phase 8 and 9:

Phase 8 and 9 is used to verify the DMA in situations where the CPU be-
haves realistically. In phase 8 the pseudo-CPU inserts in DMA 45 transfers
with random length, Source, and Destination addresses which are stored in
continuous descriptor addresses. Each insertion in phase 8 happens after a
small random delay, which is more realistic as a real CPU would not assign
many new transfers on continuous cycles. Similarly, in phase 9 the pseudo
CPU assigns random transfers after random delay but this time in random
Descriptor addresses. To achieve this, the pseudo-CPU has to read a ran-
dom Descriptor of BRAM and only if its Status is Idle or Error it can assign
the transfer in DMA, else it has to read a different Descriptor. In phase 9,
a total of 450 different transactions are assigned in DMA, which forces the
DMA to operate for a long time non-stop and its behavior can be verified for
long-term bugs.
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FIGURE 4.18: phase 8,9

For both phases 8 and 9, the DMA operates normally and executes all the
transfers successfully. The request channel is always active and there are no
gaps as expected for normal cases, Fig.4.18. The responses come after the
constant delay that the CHI-Responder creates, and the data transmission is
executed when the necessary responses have been received. The small delay
that happens occasionally on the outbound data channel is due to the first
commands of the transfers which need a right data shift, and it is normal
behavior. Finally, as in all other phases, the self-checking mechanism that
the Testbench implements prints a message when the phases are over which
verifies the correctness of the system.

4.3.2 Stress Testing

To further verify the behavior of the DMA, and to ensure that it will operate
correctly in all conditions, the previous simulation where the CHI-Responder
provided infinite credits to DMA and responds after constant time is not
enough. For this reason, several different tests were applied to the system
to check its reliability under extreme cases. The tests that were performed
are :

1. Random data transmission and Response time:
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In this test, CHI-Responder doesn’t give infinite credits to the DMA
but it counts the number of issued credits on every channel, and if it is
less than the maximum number that CHI protocol allows then it pro-
vides a credit on the corresponding channel after a small random delay.
This behavior creates a situation where the DMA doesn’t have always
enough credits to generate new requests and it has to wait until it re-
ceives a new credit. In this way, the ability of the system to manage
and use the credits properly can be verified in every phase. In addition,
in this test CHI-Responder generates the appropriate response to every
request that the DMA generates after a small random number of cycles.
This operation creates situations where the DMA obtains slightly more
DBID than Data responses or in reverse at particular periods of time
which allows the verification of the system when the responses are not
one-to-one.

2. High latency of data responses:

In this test, CHI-Responder provides DBID responses approximately
ten times faster than the Data responses (there is some randomness in
the response time, so the time delay won’t be constant). This behav-
ior causes the DBID and command FIFOs of the CHI-Converter to be
FULL most of the time, while the Data FIFO is empty. In addition, the
Scheduler of the system operates match slower as there is no free space
in the FIFO of CHI-Converter to schedule new commands. Also as the
Data responses are received at a much slower rate than the DBID re-
sponses, the CHI-Converter runs out of TxnIDs for read requests very
fast. At the same time its TxnIDs for write requests are plenty that force
the module to transmit read and write requests with different rates.
Another corner case that appears in some phases, is that the command
FIFO of the Barrel Shifter gets full. This occurs because there are not
enough data for the module to operate, but the CHI-Converter doesn’t
stop requesting and passing more commands. In conclusion, this huge
difference in the response time by the type of request results in a load
imbalance on many units of the system. With this testing, we can en-
sure that the DMA can handle a probable bad case that could happen
with this form.

3. High latency of DBID responses:

This test is very similar to the previous one with the difference that the
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response times are in reverse. This time the DBID responses are pro-
duced approximately ten times slower than the Data responses which
cause the corresponding problems with the previous test. More specif-
ically, when CHI-Converter has generated enough requests, its DBID
FIFO is almost always empty while the Data FIFO of Barrel Shifter is
getting full very quickly. Subsequently, the CHI-Converter eventually
runs out of TxnIDs for write due to the big response time, and again
it generates read and write requests with different rates. Also, in some
cases, the CHI-Converter is unable to request because the command
of Barrel Shifter gets full, and the system has to wait for the arrival of
the DBID response to continue its operation. To conclude, this test was
necessary as supplementary to the previous one, and it creates extreme
cases in which the system’s behavior must definitely be tested.

4. Instant responses:

In this test, CHI-Responder if there are enough credits on the corre-
sponding channel, transmits the responses on the next cycle after it re-
ceives the requests. In this way, the DMA is able to generate requests
and data very fast. The test is executed many times with different credit
production rates from CHI-Responder which results in CHI-Convert
transmitting non-stop or waiting to receive the next credit according to
the case. This test is useful to check if the DMA operates correctly when
the responses are received in the fastest possible way

5. Sudden changes in response time:

This test was simulated many times with different credit rates. The
CHI-Responder in this scenario responds to the requests very slowly
for a period of time, and then it changes its behavior and responds very
fast for some time. This process repeats periodically until all phases
and hence the simulation is finished. In this way, many components
of the system, every time the response rate changes, transition rapidly
from being overloaded to empty or unused. This test was performed
to verify the reliability of the system when the external factors push the
DMA to different extreme cases very fast.

6. Lack of credits:

In this test, CHI-Responder provides very rarely credits to DMA to
check its behavior under this extreme condition. More specifically, the
credits are transmitted on each channel after a random but very long
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time which is many times larger than the response time. This situation
forces the DMA to wait a long time until it obtains new credit for re-
questing or transmitting data, although it has received the appropriate
responses. Also, the lack of credits in combination with the faster re-
sponses causes most of the FIFOs of the system to be FULL at the same
time for many cycles. As the credits are received so slowly, the simula-
tion needs much time to complete as expected. In conclusion, this test
creates multiple corner cases in which the operation of the system was
necessary to be verified.

7. BRAM overload:

This simulation aimed to verify that the system operates properly if the
CPU fills the whole BRAM with (1024) transfers. To achieve this, a new
transfer was assigned in DMA in continuous cycles until there was no
other free space in BRAM as all Descriptors had an Active Status. In
this test, the credits and the responses were received after a reasonable
amount of time and the Testbench verified that all the transfers were
successfully executed.
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Chapter 5

Results

5.1 Latency and Throughput

A necessary step in the design process is the performance measurement of
the system in order to ensure that the DMA meets the required specifica-
tions, is optimized for its specific application, and is cost-effective. Also, this
process assists in identifying potential bottlenecks or areas for optimization
in the design. In this part, the performance of the DMA is evaluated by mea-
suring its latency which is the time it takes for the core to complete a single
operation, and the throughput which is the amount of data it can process in
a given period of time. Those quantities were measured by using the wave-
forms of the simulation, where CHI-Responder provided unlimited credits
to the DMA, and it responded after a constant number of cycles by the time
it received each request. The reason for the selection of this simulation is that
the transmission time of the CHI requests and data is not affected by laten-
cies from external factors, and the speed of the design depends only on its
performance and the boundaries of the protocol.

Latency:

First of all, the simulation was executed with a 40 nanoseconds clock, which
is a reasonable speed that the DMA could clearly perform, and subsequently
the results will be converted to the maximum possible clock frequency. As
shown in the waveforms of the last chapter, the DMA starts the transmis-
sion of the requests in every phase 120 nanoseconds after the first transfer
insertion without having credit dependencies. This behavior implies that the
latency of the DMA for generating requests is constant, and it is 3 cycles that
equal 120 nanoseconds. In the same way, it is easy to calculate the latency of
the outbound data transmission. This latency depends on the response time
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of the CHI-Responder as both responses of read and write transaction are
needed for one data transmission and the type of the transfer. More specif-
ically, the delay time until the outbound data transmission is 640 ns for the
transfers which need a left shift and 680 ns for those that need a right shift.
These times result from the request latency (120) + 12 or 13 cycles, which is
the response time for the first 2 or 3 requests + 1. The extra cycle in the la-
tency for the right shift is expected, as the DMA needs one more response to
generate the first data transmission. Finally, the latency until the finish of all
requests or the whole transfer is not constant, as it depends on the size of the
transfer.

Throughput:

The throughput of the system was measured by counting the amount of re-
quested or transmitted data within a period of time. However, the behavior
of the DMA and the amount of processed data are different according to the
phase. For this reason, the throughput is measured separately for each phase
of the simulation. There is no point in measuring the throughput in the first 3
phases as the transfers are very small and only a few transactions are needed
for their completion, hence the measurement begins in phase 4.

By looking at the waveform of phase 4, it is easy to notice that the requesting
throughput is the maximum possible, as the DMA requests on every cycle
until all requests are sent. This makes the requesting throughput: 1 req

cycle =

109

40
req
sec = 25 · 106 req

sec Although the request throughput is maximum, the through-
put of the overall transferred data doesn’t depend only on requests, but it
also relies on the type of transfer. If the source and destination addresses of
the transfer are aligned then the transmission of data throughput is the max-
imum possible which is 64 bytes every 2 cycles. Unfortunately, the trans-
fer can’t be executed faster than this because one data transmission needs
2 requests (1 read and 1 write) and therefore at least 2 cycles. Hence, the
throughput of phase 4, if the data was aligned, would be: 64

2
bytes
cycle = 64

80
bytes

ns =

64
80·10−9

bytes
sec = 8 · 108 bytes

sec = 80·108

10242
MegaBytes

sec = 762, 9Mbps. However, the trans-
fer in this phase is not aligned which creates the need for one extra write
transmission in every command, and for this reason, 5 · 64 bytes which is
the amount of data that is transferred for each command are transmitted ev-
ery 11 cycles. Therefore, the useful throughput is: 5·64

11
bytes
cycle = 320

440
bytes

ns =

0, 727 · 109 bytes
sec = 727·106

10242
Mb
sec = 693Mbps
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In the same way, the throughput of the next phase can be calculated. In phase
5 neither the request nor the data transmission throughput is the maximum
as there is the conflict between the Scheduler and CHI-Converter about the
control of BRAM. The consequence of this problem is that the DMA gen-
erates requests for the first 16 cycles, and then it stops for the next 16 cy-
cles. This behavior continues periodically until all the requests are sent. With
this in mind, it is easy to measure the requesting throughput by calculating
the number of requests that are generated in a certain amount of time. The
throughput of requests in this phase is : 16

32
requests

cycle = 0.5 req
cycle = 5·108

40
req
sec =

125 · 105 req
sec . As the sent requests are 16 in each period and as one data trans-

mission needs exactly 2 responses to be generated because each transfer in
this phase will be moved in one line respectively, it is logical that the out-
bound data responses are also transmitted periodically with 8 transfers in
each period. More specifically, for the first 16 cycles in one period, the sys-
tem generates 1 data transmission every 2 cycles. Subsequently, the system
doesn’t generate any transmissions on the next 16 cycles, and then the same
process repeats again. Hence, the throughput of the system in this phase is:

8·64
16+16

bytes
cycle = 16 bytes

cycle = 16·109

40
bytes
sec = 4·108

10242
Megabytes

sec = 381, 5Mbps. It is easy to
observe that the throughput in this phase is half of the maximum throughput
that was calculated for the last phase which makes sense as the DMA in this
phase requests and transmits half of the time.

Phase 6 is basically a worse phase 5 as there is the same problem of the con-
flict on BRAM but also the transfers may need more than 2 transactions to
be completed. For this reason, the data throughput is expected to be worse.
Nevertheless, the throughput of the requests seems to be better than phase
5 because the number of requests for each transfer is bigger and the corre-
sponding idle time of the channel of the last phase can be used to perform
extra requests. The throughput of the requests is approximately: 97

133
requests

cycle =
97

5320
requests

ns = 18, 23 · 106 requests
sec . In the same way, the number of data trans-

missions per time is bigger than in the last phase. However, each transmis-
sion does not contain the maximum possible useful information due to the
bad scenario of this phase and the throughput ends up being worse. The use-
ful data throughput of this phase is : 250·64

1116
bytes
cycle = 14, 33 bytes

cycle = 14,33·109

40
bytes
sec =

0,36·109

10242
Megabytes

sec = 343Mbps.

Finally, for the last three phases the DMA operates with the maximum possi-
ble throughput. This is obvious by looking at the activity of the request and
the outbound data channel. A first intuition for the maximum throughput is
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that, in all of these 3 phases, a new request is transmitted on every cycle until
all requests have been sent. The small dead time of the channel in phase 7 due
to continuous insertion by CPU is ignored as it is not a realistic behavior. For
this reason, the requesting throughput in these phases is the maximum which
is: 1 req

cycle = 109

40
req
sec = 25 · 106 req

sec . Subsequently, the data throughput is calcu-
lated. By the waveforms, it can be observed that the DMA generates one data
transmission every 2 cycles, and at the end of each command one extra data
transmission. This behavior implies that the data are transmitted in the most
efficient way on the outbound data channel as it is impossible to generate
more useful transmissions due to the limitation of one request per cycle and
the need of two requests for one transmission. Therefore, the data through-
put is: 5·64

11
bytes
cycle = 320

440
bytes

ns = 0, 727 · 109bytessec = 727·106

10242
Mb
sec = 693Mbps. The

first command of each transfer that needs a right shift of data has one less
transmission than the rest of the commands, hence there is one cycle where
the system doesn’t transmit but its effect is negligible on the overall through-
put.

Phases Request
Latency

Transmission
Latency

Request
Throughput

Transmission
Throughput

phase 1 120 ns 640 ns x x

phase 2 120 ns 680 ns x x

phase 3 120 ns 640 ns x x

phase 4 120 ns 640 ns 25 · 106 req
sec 693 Mbps

phase 5 120 ns 640 ns 12, 5 · 106 req
sec 381 Mbps

phase 6 120 ns 640 ns 18, 2 · 106 req
sec 343 Mbps

phase 7 120 ns 680 ns 25 · 106 req
sec 693 Mbps

phase 8 120 ns 680 ns 25 · 106 req
sec 693 Mbps

phase 9 120 ns 680 ns 25 · 106 req
sec 693 Mbps

TABLE 5.1: Performance

From the table, it can be seen that the system’s latency is constant in contrast
with the throughput, which is different according to the situation. In most
cases, the system approaches the maximum possible throughput which is 693
Mbps, but its weakness is revealed in phases 5 and 6 where the transfers are
very small, and the throughput is about half of the maximum with the worst
case being phase 6 with 343 Mbps where all transfers are very small and need
multiple transactions. It is worth reiterating that, as previously stated in the
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simulation overview of phase 5 and 6, the problem could be resolved in the
future by preventing Scheduler and Completer trying to access the same port
of BRAM, through arbiter, and then the throughput could be the maximum
one in every case. It is important to emphasize that the results showed in
table 5.1 is a minimum boundary of the realistic results, as the clock used in
the simulation is relatively slow (40 ns). However, these results are utilized
to calculate the realistic results described in the subsection 5.1.1.

5.1.1 Synthesis results and realistic performance

The HDL implementation of the designed DMA engine is constructed to be
synthesizable. The RTL-specified implementation was successfully synthe-
sized and analyzed by the synthesis tool of vivado. The FPGA part used
for the synthesis is “xcvu37p-fsvh2892-2L-e”, which belongs in the Virtex
UltraScale+ FPGA family of Xilinx manufacturer. This device is selected be-
cause it is one of the most high-end FPGA available in vivado tool where
the design could be synthesized optimally. The FPGA is considered a large
FPGA as it provides many resources, as 1.3 million CLB LUTs and 2.6 million
CLB Regs. After synthesis was completed, timing summary results showed
that the critical path of the system which was located in the communica-
tion between Barrel Shifter and CHI-Converter with 17 levels of logic and
a 4.367 ns total delay. The critical path makes sense to be located in this
position, as the control of the Barrel Shifter is quite big and needs to exe-
cute many combinational calculations to generate the appropriate signals for
CHI-Converter. The total delay is an approximation of the minimum time
that is necessary for the clock to spread to every endpoint of the circuit.
With this specification it is easy to calculate the maximum clock frequency
that can be applied to the circuit without affecting its behavior which is:

1
4.367·10−9 Hertz = 0, 22899 · 109Hertz = 228, 99MHz and the minimum clock
period which is: 4.367 ns. Also, by using the minimum clock period and
adding the clock uncertainty which results in about 4.4 ns, compared with
the clock used in the simulation: 4,4

40 = 0.11, the latency and throughput that
would have been produced for every phase can be calculated, converting the
results from simulation.
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Phases Request
Latency

Transmission
Latency

Request
Throughput

Transmission
Throughput

phase 1 13.2 ns 70,4 ns x x

phase 2 13.2 ns 74,8 ns x x

phase 3 13.2 ns 70,4 ns x x

phase 4 13.2 ns 70,4 ns 227 · 106 req
sec 6300 Mbps

phase 5 13.2 ns 70,4 ns 114 · 106 req
sec 3464 Mbps

phase 6 13.2 ns 70,4 ns 165 · 106 req
sec 3118 Mbps

phase 7 13.2 ns 74,8 ns 227 · 106 req
sec 6300 Mbps

phase 8 13.2 ns 74,8 ns 227 · 106 req
sec 6300 Mbps

phase 9 13.2 ns 74,8 ns 227 · 106 req
sec 6300 Mbps

TABLE 5.2: Maximum Performance

5.2 Resources

As already mentioned, the FPGA part which is used for this project is “xcvu37p-
fsvh2892-2L-e”. With this FPGA, the synthesis tool can provide an estimation
of the resource utilization that the RTL design will commit. In the table below
there are the resource requirements of the DMA and also an approximation
for the individual utilization portion of each module.

As shown in the table5.3, the modules with the most demands for space are
Barrel Shifter, CHI-Converter, and the system FIFO. The reason for the size
of the FIFO is the large number of elements that it can store before it be-
comes full, which is necessary to be able to store as many pointers as the
BRAM’s addresses which justifies the result. Moreover, the CHI-Converter
was expected to be expensive in resources as it contains many FIFOs and all
the functioning logic that is necessary for interaction with the external CHI
system. However, the most costly module in the DMA is the Barrel Shifter.
Barrel Shifter is so demanding for space because it handles and manages the
datapath. It contains the widest FIFO as it stores the received data which
are 64 bytes and it has to perform operations on these data such as shifting,
merging, and temporarily storing them which leads to the module being the
most expensive in utilization. With this information, it is easy to conclude
that the significant factor for the space requirements of the system is the dat-
apath. The rest of the modules which are the 2 Arbiters, the Scheduler, and
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BRAM occupy the least space as they perform simpler operations.

FIGURE 5.1: Total Utilization(%)

The overall utilization of the DMA, as shown in Fig.5.1 which is produced
by the synthesis tool, is very little compared to the resources of the FPGA.
The percentage of the committed LUTs (Look Up Tables) and FF (Flip Flops)
is close to one percent of the total availability, and the used BRAM Tiles are
less than one percent of the maximum possible.
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Name CLB
LUTs

CLB
Regs

CARRY
8

F7
Muxes

F8
Muxes

Block
RAM
Tile

Utiliza-
tion %

System
FIFO

3965 10357 2 1360 680 0 LUTs 28%
FF 30 %
BRAM 0%

Scheduler 260 12 24 0 0 0 LUTs 2%
FF 0,5 %
BRAM 0%

CHI-
Converter

1878 4407 42 528 0 0 LUTs 13%
FF 13,5 %
BRAM 0%

Barrel
Shifter

8093 18917 36 2276 0 0 LUTs 56%
FF 56,6 %
BRAM 0%

Arbiter-
FIFO

11 0 0 0 0 0 LUTs 0,1%
FF 0 %
BRAM 0%

Arbiter-
BRAM

45 0 0 0 0 0 LUTs 0,3%
FF 0 %
BRAM 0%

BRAM 0 0 0 0 0 8 LUTs 0%
FF 0 %
BRAM
100%

TOTAL 14262 33693 104 4164 680 8

Available 1303680 2607360 162960 651840 325920 2016

TABLE 5.3: Utilization
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presents a comprehensive design and verification of a Direct Mem-
ory Access (DMA) engine IP-Core. The DMA controller intends to improve
coherent High-Performance Computing systems(HPC), by taking over the
responsibility for memory data movements. The proposed DMA has been
designed to receive instructions for a parameterizable amount of transfers,
schedule them in a generic way, and execute the transmissions in a CHI-
compliant manner. This engine is an IO Coherent Requester which reads
data from the last snapshot of memory, even if they are placed inside the
cache of another component by exploiting the cache coherence feature that
CHI provides, and write them back in a different memory location forcing
the CHI interconnect to inform other devices for the changes if that is neces-
sary. The design of the DMA also contains a Barrel-Shifter module capable
of handling misaligned transfers by shifting the read data and creating the
appropriate data for write transactions which makes the engine able to read
and write in memory at any address byte offset. When one of the transfers
is completed or there is an error in the operation, the DMA updates the cor-
responding status register, so the processor can be notified about the state of
the transfer by polling the register. The DMA controller is implemented and
verified in system-verilog HDL. For the verification, a series of tests were ap-
plied to the system using behavioral simulation to check most of the corner
cases and confirm that the system is error-free. From the simulation, the la-
tency and throughput that do not depend on the latency of the memory or
interconnect were measured. In the majority of cases, the throughput was ob-
served to reach its maximum potential. Finally, the engine was synthesized
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by the vivado synthesis tool, and the minimum possible clock cycle and uti-
lization were measured. The highest achievable clock frequency could be
228,99 MHz while utilization of FPGA resources by the design was found to
be less than 1% of the total available resources.

6.2 Future Work

The development of a DMA IP Core is a complex and challenging process es-
pecially combined with a complex protocol like CHI that requires significant
specification knowledge. Here we list potential optimizations and ideas for
future development of the IP Core presented in this thesis that will improve
the engine.

• Creation of a register space out of BRAM for the storing of Statuses so
Scheduler and Completer modules will not conflict for the access on
BRAM and perform the maximum throughput in all cases.

• Acknowledgement support from the DMA side, so it can be compatible
with peripherals or devices that requires it.

• Support for out-of-order receipt of CHI responses as this version oper-
ates correctly only for in-order responses.

• Make the slave side of the DMA CHI compliant, so the processor can
access BRAM and assign transfers to the engine via the CHI interface.

• Implementation of Scatter-Gather mechanism for more efficient trans-
fer of data when they are stored in non-contiguous memory locations.

• Support for handling the Retry response that the CHI interconnect could
potentially provide.

• Physical realization of the design(in FPGA, or ASIC, etc.) and testing
within a real system with a processor, memory, and CHI interconnect.
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