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Abstract

The use of Simultaneous Localization And Mapping (SLAM) algorithms is
widespread in the field of robotics, especially when referring to ground robotic ve-
hicles. SLAM algorithms, based on visual sensor information provided by a cam-
era, require the inclusion of a procedure known as calibration, namely acquisition
or estimation of all camera parameters required for the SLAM algorithm to work
properly. In this diploma thesis, we focus on the use of visual SLAM algorithms,
not on ground robotic vehicles, but on Remotely-Operated underwater robotic
Vehicles (ROVs). In particular, a visual SLAM approach has been developed for
the BlueROV2, which is small-size underwater robot, used for ocean research and
exploration missions up to a depth of 100m. The proposed approach relies on the
ORB-SLAMS3 algorithm and is adapted for onboard execution on the ROV, using
the Robot Operating System (ROS) framework. The successful deployment of our
approach required two hardware modifications on the BlueROV2: replacement
of the pre-installed Raspberry Pi 3 embedded computer with the more powerful
Raspberry Pi 4 and replacement of the pre-installed monocular camera with an
Intel RealSense T265 stereo camera to utilize the capabilities of ORB-SLAMS3.
At the same time, a control algorithm is proposed for the movement of the ROV,
which is able to perform various motion patterns, such as moving along a line, a
rectangle, a circle or a spiral, passing through points provided by the user. The
combination of the proposed SLAM and motion control approaches make the
vehicle able to move in an unknown environment without obstacles, with only
minimal user intervention. Results were obtained through extensive simulations
in water environments, but also in a real indoor environment, nevertheless out-
side the water, since the modified BlueROV?2 is not yet 100% waterproof. In any
case, the proposed approach enables successful navigation, as long as a sufficient

number of visual features are identified in the environment.
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ITepiindn

H yehon ahyoplduny tautdypovou eviomiopol xat yoptoyedgnone (Simultane-
ous Localization And Mapping - SLAM) eivon evpéwe B1adedouévn 6Tov Touéa Tng
POUTOTIXNG, EWBXE OTAY UVAUPEPOUACTE O POUTOTIXG Oy AT 6dpoug. Ot akydpl-
Yot SLAM mou Bastlovtar ot ontixég TAnpogopleg mou mapéyovton and o xduepa,
amoutolV TN cuumeptAndn wog Stadixaciag Yvwotig we Poduovounong, dnhadt Ty
ATOXTNGT 1) TNV EXTIUNOT OAWY TWV TUPUUETEWY TNG XGUERAS TOU UTOUTOOVTOL YIdL
™ 0wo T Aertoupyla Tou aAyopriuov SLAM. Xty nopoloa SimAwuatiny epyaotia,
eondloupe ot yeron aryoplduwy visual SLAM, 6yt oe enlyen pounotind oy
portaL, oAAG o€ UTOPBEUY L POUTIOTIXG OYAUATA TTOU UTOPOLY Vo eEAeY Yol €& amoo-
tdoewe (Remotely-Operated Vehicles - ROVs). Xuyxexpipéva, €yet avomtuyVel pio
mpocéyyion visual SLAM yia to BlueROV2, 1o omnolo eivon éva uixpod peyédouc
uTOBEVYIO POUTOT TOU YENOLWOTOLELTAL Yo AmOCTOAEG €peuvag ot €LEQEOVNONG
oxeavoy Yéypl 1o Bddog twv 100 uétpwv. H mpotewduevn mpocéyyion Pooile-
T otov oAyoprdyo ORB-SLAMS3 xou elvor mpocopuoopévn yio eEXTEAECT) ETEVW
oto ROV, yenowornowwvtac to Robot Operating System (ROS) framework. H
EMTUYNAC avamTuln TNG TEOCEYYIoHE UaC amontoVoE BUO TPOTOTOMACELS UAIXOU GTO
BlueROV2: avtixatdotoom ToU TROEYXATEG TNUEVOU EVOOUITWUEVOU UTONOYIGTH
Raspberry Pi 3 pe tov mo woyupd Raspberry Pi 4 xou avtixatdotaon tng Tpoeyxot-
E0TNUEVNC UOVO-XdUepaC Ue oTepeo-xduepa Intel RealSense T265 yio alomoinon
Twv duvatotAtwy Tou ORB-SLAM3. Tautdypova, mpoteiveton évag alyodprduog
ehéyyou yia Ty xivnon tou ROV, o ornolog eivon og Veom va exteel didpopa potifBa
xynong, Omee xvnom xoTd WAX0g Lo YROUUNS, EVOS TETEUYMVOU, EVOS XUXAOU N
uag omelpog, mepVmVTAS and oruela Tou TopEyel o ypnotne. O cuvduaouds Twv
TpoTEWOUEVWLY TpooeYYioewv SLAM xou eréyyou xivnong xohotd To Oynuo 1xovo
VoL wveltan oe €va dyvwoto TEpBAAAOY ywelc eumddia, ue EAAyLoTN LOVO Tapéuaon

Tou yenotn. Ta amoteréopata mpoéxulay péoo and EXTEVEIC TEOGOPOWOOE OF
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uddTLVOL TEPBAANOVTA, GAAS XL OE EVOL TEAYUATIXO ECWTERXO TEPUSHANOY, kGTOCO
exTOS vepol, @dcov To TponoTonuevo BlueROV2 dev elvor oo 100% adLdPBpoyo.
Ye e meplnTwot, 1 TEOTEWVOUEVY TROCEYYIOT ETULTEENEL TNV EMTUY T TAOHYNOT,

apxel vo EVToTo TEl emapx| dpLIOC OTTIXWY YUPUXTNELO TIXWY GTO TEQLBGANOV.
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Chapter 1

Introduction

1.1 Thesis Motivation

The use of robots for both ground and aerial applications is particularly widespread
nowadays among the general public. However, robots are also used for underwa-
ter missions, and their use is becoming increasingly popular among both the
research community and hobbyists. Remotely operated underwater vehicles, or
"ROVs”, have a wide range of applications. Some of these are seabed mapping,
exploration in inaccessible places and even assistance in rescue missions. In some
of the applications we mentioned, such as rescue, losing communication with the
vehicle during the mission can be disastrous. The use of autonomous navigation

by such vehicles thus becomes essential for such scenarios.

1.2 Thesis Contribution

This thesis proposes a solution to the problem of autonomous navigation of such
vehicles by using a Simultaneous Localization and Mapping (SLAM) algorithm
based on vision. The SLAM algorithm used is ORB-SLAMS3, an open source
SLAM algorithm that supports stereo vision camera and IMU. Knowing the po-
sition of the ROV from SLAM and the coordinates of the target, the underwater
vehicle can be moved with the help of the motion control algorithm implemented

for autonomous navigation.



1.3 Thesis Outline

In Chapter 2, we present all the background information needed for this thesis.
We refer to basic knowledge of concepts, like computer vision and SLAM, as well
as describing the software packages used.

In Chapter 3, we refer to the basic problem that this thesis proposes to solve,
while related work is also presented.

In chapter 4 we describe our approach to the problem and the steps we took to
accomplish the goal of this thesis.

In Chapter 5, we present the results in the simulator, as well as in a real-world
indoor environment. We also discuss the reason why we do not have results from
a real-world underwater environment.

Finally, in Chapter 6, we conclude and suggest future work to extend our ap-

proach.



Chapter 2

Theoretical Background

2.1 Robot Operating System (ROS)

The Robot Operating System (ROS) [3] is an open-source set of software libraries
and tools that help community of engineers, developers and hobbyists to build
their robots. ROS is not an operating system. ROS is a distributed framework of
processes that enables executables to be individually designed and loosely coupled
at runtime. It simplifies many of the challenges of robotics development, such as
sensor integration, communication between different components, and managing
multiple robots. ROS also has a large and active community that contributes to

the development of libraries, tools, and algorithms, making it a valuable resource

for roboticists.

Publishing /topic on
Localhost: 1234

Subscribing to Mtopic

Publisher

A

Master

L 4

A
Localhost: 1234 is

publishing ftopic

h 4

Subscriber

Figure 2.1: ROS architecture diagram. Image created by Yahya Tawil

ROS supports multiple programming languages, including C++4, and Python,
allowing developers to choose the language that best suits their needs. ROS fol-

lows a publish-subscribe messaging model, known as the ROS communication

Message data for /topic




infrastructure, where nodes (individual software modules) can publish and sub-
scribe to messages on specific topics. This decoupled architecture allows for easy
integration of various sensors, actuators, and algorithms, making it ideal for com-
plex robotic applications.
ROS MASTER

The ROS Master is a crucial component of the ROS communication infras-
tructure. It acts as a centralized coordination point for all nodes in a ROS system.
The ROS Master manages the registration and discovery of nodes, facilitates com-
munication between nodes, and provides other essential services. When a ROS
node starts, it typically registers with the ROS Master, informing it about its
presence, name, and the topics it publishes or subscribes to. This registration
allows other nodes in the system to discover and communicate with the newly
registered node.
NODES

Each node in ROS can communicate with other nodes by sending and re-
ceiving messages. This communication is facilitated by the ROS communication
infrastructure, which follows a publish-subscribe model. Nodes can publish mes-
sages on specific topics, and other nodes can subscribe to those topics to receive
the messages.
TOPICS

In Robot Operating System (ROS), topics are a communication mechanism
that allows nodes to exchange messages with each other. Topics facilitate the
exchange of data between nodes in a publish-subscribe manner. They are a
fundamental component of the ROS communication infrastructure.
SERVICES

Services provide a request-response communication mechanism between nodes.
They enable nodes to send specific requests to other nodes and receive correspond-
ing responses. ROS services allow for synchronous, bi-directional communication,

where the requesting node waits for a response before proceeding further.



2.2 Sensors

2.2.1 Inertial Measurement Unit (IMU)

An Inertial Measurement Unit (IMU) is a device that consists of multiple sensors
to measure accelerations and angular velocities in multiple axes. It can also
integrate these measurements to determine orientation and position over time.
IMUs are commonly used in a wide range of applications including aerospace,

robotics, virtual reality, and autonomous vehicles.

Figure 2.2: Inertial Measurement Unit (IMU), source: Utmel Electronic

The low price of an IMU sensor compared with the data which provides, makes
it one of the main options in these applications. The inertial measurement unit
can be divided in four components. Accelerometer that provides the acceleration
along the 3-axes, gyroscope that provides the angular velocity about the axes,
magnetometer that measures the magnetic field and a barometer that measures
air pressure.

The IMU sensor, when the main goal is the position estimation, operates
additionally with other type of sensors due to accumulated error. For example,

double integration of the noisy acceleration leads to an inaccurate position.



Z-AXIS

My
y . ,/f}mnxlg
?Ama:_":‘: ;,-' :a-":;
o sz:'./'
PiM 1
9poF | 10DOF
# 3-axis accelerometer (linear) 6DOF

¢ 3-axis gyroscope (rotation rate)

» 3-axis magnetometer (magnetic field)
¢ Barometer (altitude)

Figure 2.3: IMU’s Degree of freedom, source: Utmel Electronic

2.2.2 Camera

This section describes how a point in three-dimensional space can be transformed

into a 2D pixel and how to extract the intrinsic parameters of the camera [4].

Extrinsic Matrix Intrinsic Matrix

Figure 2.4: From three-dimensional point to pixel, image by Aqeel Anwar

Assume a random point in space P,, = (X, Yu, Z,) in a Cartesian coordinate
system with an arbitrary origin. In a second coordinate system with origin the
center of camera, the point which was selected previously has new coordinates
P. = (X, Y., Z.). Conversion from the first coordinate system to the camera

coordinate system is possible through the Camera Extrinsic Matrix.
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Figure 2.5: Pinhole camera model, source: learnopencv

Next, the point will be reflected onto the 2D plane. After passing through the
center of the camera hole, the rays are projected onto the 2D plane, resulting in
the point in 3D space projected by the reflected rays. The new coordinates of the
point in 2D can be found by the law of similar triangles. The distance between
the 2D plane and camera hole is called the focal length (f).

By the law of similar triangles: XT =X h_X

Ze ? f Ze

X; £ 0 0| |X.
il =10 f 0] | Yo
Z 00 1| |z



Where the matrix containing the focal length is the camera to image trans-

formation matrix.

The last part is the discretization. To do that, divide the image coordinates
by the pixels” width and height (pixel’s width and height denoted as p, and p,

respectively) .

Xe

Pu Pu Ze

1 Y,

Y v Y Pu f Ze

Define p—lu- f=frand piv- f=1f,. frand f, are two of the intrinsic parameters
and are the focal length of the camera in pixels for the z and y axes, respectively.
Because the origin of the pixel coordinate system is in the left-top corner, a

translation operator (c,,c,) is also necessary in addition to the discretization.

U=1T;+ Cpy, V=0Y; + Cy,

where ¢, and ¢, are the other two intrinsic parameters and are the optical

center of the camera in pixels for the x and y axes, respectively.

The last transformation matrix has the form seen below :

U L0 el | X
Pu

vl =10 piv Cy Y;

w 0 0 1 Z.

Now the process has been completed and a point has been converted from 3D

space to pixel coordinate system.



2.2.3 Stereo Camera

Figure 2.6: Stereo Camera, source: theimagingsource

There are applications in which we are interested in knowing the depth of
an image, like in localization and mapping cases. However, the basic function
of cameras, as discussed above, is to project the three-dimensional space onto a
two-dimensional plane. Various solutions have been proposed for the problem of
depth estimation; here, we analyze the use of stereo cameras for depth estimation.
A camera with two or more lenses and a separate image sensor or film frame for
each lens is called a stereo camera. Due of this, the camera is able to replicate
human binocular vision.

By projecting a point in space onto the two-dimensional plane, we lose the depth
information due to this projection. We cannot recover information about the

position of the original point with a monocular camera.
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Figure 2.7: Pinhole Stereo Camera [1]

Assume we place an identical second camera at a distance (b) from the first
camera on the z-axis and that there is a point P (xy, Yy, 2y) in both cameras’
fields of view, with projections P, and P, for the left and right cameras, respec-
tively. The origin of the axes of the two cameras is O; for the left and O, for the
right.

Knowing O; and point P, we find the line that passes through these points and
certainly passes through point P, but we do not know the exact coordinates of
P. Similarly for the second camera, knowing O, and P,, we find a second line
that also passes through point P. Therefore, we can now find the coordinates of

the point, by finding where these two lines intersect.

The projections’ coordinates (P, and P,) are calculated as follows:

Xe Y. X.—b Y.
B(ul’vl) :Pl(fz'——FCx,fy'?—i-Cy) 7pr(u7">vr):Pr(fx' 7 +C;t:fy'7+cy)

Ze
fzs fys €z, ¢y, b are known.

Solving for z,y,z :

b (u — )

(ug — u,)

10



b for(vi—cy)

e e )
b- f.

Zy= ——
(ur — )

2.3 Simultaneous Localization And Mapping (SLAM)

In autonomous navigation and path planning tasks, in both indoors and out-
doors environments, the robot needs the ability to localize itself based on the
constructed maps. In cases in which the environment is unknown, the use of
SLAM (simultaneous localization and mapping) algorithms is necessary. SLAM
finds wide application in automatic car piloting, rescue, exploration and many

more scenarios.

Figure 2.8: An example of SLAM in an outdoor environment, source: Universidad
Zaragoza

The process typically involves two main steps: mapping and localization
[5],[6]. In Mapping, the device builds a map of the environment by creating
a set of features from the sensor data, such as corners or edges in a camera im-
age, and registering these features with the current position of the device. Over

time, the map becomes more complete and accurate, as the device collects more

11



sensor data. In Localization, the device determines its position within the map
by comparing the current sensor data with the map and finding the best match
between the two. This process is repeated in real-time as the device moves, al-

lowing it to continuously update its location and the map.

Backend
Frontend

Sensor Data B i I Filters 3 Reconstruction
/1sual Odometry L R
< Optimization

Loop Closing

Figure 2.9: Stages from sensor’s data to SLAM estimation, source: Github
slambook-en.pdf

The sensors used in SLAM are typically separated in two main caterories:
interoceptive sensors and exteroceptive sensors. Interoceptive sensors generate
relative position measurements whose error is used cumulatively in measurement
uncertainty. Such sensors are wheel odometers and IMUs. Exteroceptive sensors
provide absolute position measurements. In Exteroceptive sensors are included
acoustic sensors, lasers and visuals sensors. As acoustic sensors, sonars are mostly
used underwater. Lasers have high speed and accuracy, however the price is the
usual stumbling block. On condition, visual sensors mainly refer to monocular,
stereo and RGB-D cameras. The two main sensors categories, if used alongside

each other, they could compensate for errors, like odometry drift.

2.3.1 ORB-SLAMS3

ORB-SLAMS is a feature-based SLAM that is able to perform visual-inertial

SLAM with monocular, stereo, and RGB-D cameras in both indoors and outdoors

12



environments. The term “feature-based SLAM” refers to SLAM that minimizes
the feature reprojection error by extracting a set of sparse features from the input
images, matching the features derived from various poses, and solving the SLAM
issue. Simple point characteristics, like corners, more complicated features, like
edges and blobs, and even complex things, like doorways and windows, are among

the features that are of interest.

~

\

o )
N &

Previous mapped
regions are used from
the beginning

Speed: X6  Sequence: Magistrales

Figure 2.10: ORB-SLAMS3 running with a stereo camera, source: GitHub - UZ-
SLAMLab/ORB_SLAM3

The function of the algorithm can be divided into 3 parts: tracking, local
mapping and loop closing. Tracking: This determines where the camera is in
each frame and when to add fresh keyframes to the map. Keyframes keep track
of the camera postures and the extracted ORB features that reduce information
duplication. If it becomes lost, it will search the previously saved maps for the
scenario; if not, it will create a new one. Local mapping: enhances the active map
by adding keyframes and points, removes the redundant ones, and refines the map.
Loop closing: The process of observing the same scene by non-adjacent frames
and adding a constraint between them, significantly reducing the accumulated

drift in the pose estimate.
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Figure 2.11: Diagram of ORB-SLAM3 [2]

SITL, or Software-in-the-Loop, is a type of simulator used in the field of robotics
and unmanned aerial vehicles (UAVs). SITL simulators allow engineers and de-
velopers to test and develop software in a virtual environment, without the need
for physical hardware. The SITL simulator operates by creating a virtual environ-
ment that mimics the physical behavior of the UAV or robot. The simulator uses
models of the physical system, such as aerodynamic models for UAVs or kine-
matic models for robots, to simulate the movement and behavior of the system.
The software being tested is then integrated with the simulated environment,
allowing the developer to test the software’s functionality in a realistic and con-
trolled setting. SITL simulators are useful in a variety of applications, such as
testing autonomous flight algorithms for UAVs or developing control software for

robotic manipulators. Figure 2.12 shows SITL running on the computer, simu-
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lating BlueROV2. On the left, the ROV, which is in bold blue, is located at a
random point chosen on the map as a starting point. On the top right is the

terminal screen running SITL, and on the bottom right is the console showing us

useful information about the ROV (battery power, speed, depth, etc.).
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Figure 2.12: SITL with BlueROV2 model

2.5 Gazebo-Simulator

Gazebo Simulator is an open-source software tool that enables users to simulate
and test their robotics and autonomous systems. Gazebo is based on a physics
engine that simulates the behavior of objects in a 3D environment, making it an
ideal tool for testing robotic systems. It allows users to create virtual environ-
ments that mimic real-world situations, enabling them to test their systems in a
safe and controlled environment. One of the key benefits of using Gazebo is its
flexibility. It supports a wide range of sensors and actuators, allowing users to
simulate a variety of different robots and systems. It also provides a range of cus-
tomization options, allowing users to adjust the parameters of their simulations to
meet their specific needs. Gazebo is also widely used in the robotics community,

because of its integration with other software tools. It can be used with ROS
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(Robot Operating System). Figure 2.13 shows BlueROV2 in the gazebo world

we created.

w4 O A OB |===|8 bkl

Figure 2.13: A Gazebo world with the BlueROV2 model
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Chapter 3

Problem Statement

3.1 BlueROV2

BlueROV2 is an underwater remotely operated vehicle (ROV) designed for use in
marine research, exploration, and inspection tasks. It is a compact and modular
ROV that is capable of diving to depths of up to 100 meters (328 feet) and
provides high-quality video and data collection capabilities. The BlueROV2 has a
durable, watertight design and is equipped with six thrusters for precise movement
and control. It is also equipped with a suite of sensors, including high-resolution
camera, IMU, and other instruments for collecting data about the underwater
environment. The BlueROV2 is designed to be operated remotely and can be
deployed quickly and easily for a variety of missions. The ROV can be configured
to meet the specific requirements of each mission, making it a versatile tool for
ocean research and exploration.

A Raspberry Pi 3 is located inside the BlueROV2’s as main control board and
is wired via Ethernet to a top-side PC. The electrical tube also has a Pixhawk in
it in addition to the Raspberry Pi 3. A Fathom-X Tether Interface, which offers
a long-distance Ethernet connection over a single twisted pair of wires, is used to
transfer the Ethernet communication top-side. On the front side a 1080p USB

camera is mounted and on the back side there is a pressure sensor.



Figure 3.1: BlueROV 2, source: Blue Robotics
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Figure 3.2: BlueROV2 inside (Top View), source: Blue Robotics
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Figure 3.3: BlueROV2 inside (Starboard View), source: Blue Robotics
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Figure 3.4: BlueROV2 inside (Port View), source: Blue Robotics
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Figure 3.5: BlueROV2 inside (Front View), source: Blue Robotics
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3.1.1 Pixhawk

Pixhawk 1 is an advanced autopilot system that runs the ArduSub control soft-
ware for the BlueROV2, also supports the ArduPilot, ArduCopter, ArduRover
software. Pixhawk 1 is based on the PX4 autopilot system and uses a 32-bit ARM
Cortex-M4F processor for fast and efficient control. It also has a wide range of
sensors, including accelerometers, gyroscopes, magnetometers, barometers, and
GPS. A MPUG6000 is used as the main accelerometer and gyroscope. One of the
key features of Pixhawk 1 is its modularity and flexibility. It has a wide range of
compatible peripherals and accessories, allowing users to customize their vehicle
for their specific needs. Additionally, it can be programmed with different modes
and mission parameters, making it suitable for a variety of applications in the

world of autonomous vehicles.

Figure 3.6: Pixhawk 1 Flight Controller, source: Blue Robotics
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3.1.2 Connection with Computer

Topside Computer
ip 192.168.2.1

| Raspberry Pi

| ip 192.168.2.2
Pilot |

| |

! |

! |

-_ Control | 1 1
Il | I

Telemetry - 1

| !

1

1

Pilot

Figure 3.7: BlueROV2 communication diagram, source: Blue Robotics

The communication of BlueROV2 with the computer is achieved through a
single twisted pair of wires on two ports: on port 14550, the data from the
pixhawk is sent via the MavLink protocol with MAVROS, while the image is sent
on port 5600, as we can see in the diagram. Using the QGroundControl program,
we have a visualization of the data received from the ROV, both from the camera

and the IMU.

Video Display

Figure 3.8: QGroundControl
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3.2 Underwater Localization and Mapping

For an autonomous underwater vehicle (AUV) to perform underwater missions, it
is necessary to know its position, map the unknown environment, and, of course,
move autonomously in this space. The use of GPS, when we are below the sea
surface, which is the focus of this thesis, is not possible. The receiver cannot
pick up the electromagnetic signals from the orbiting satellites, because they are
significantly dampened in water. Our goal in this thesis is to solve the problems
of localization and mapping with a SLAM algorithm based on vision for the

BlueROV2 Underwater Vehicle.

3.3 Related Work

From the literature, we identified other approaches to the problem of localization
and mapping, such as underwater GPS (UGPS) and the use of SLAM with sonar.
Underwater GPS [7],[8] uses base stations on the sea surface or on board a ship
that know their position via GPS. They then communicate with the ROV via
acoustic signals and can calculate its exact position. In the case of underwater
SLAM, as we read in the literature, the main sensor used is the sonar. Several
versions have been proposed. One case is the use of Doppler Velocity Log (DVL)
and ring gyro as complementary sensors [9], and there is a publication [10] with
visual, inertial, and depth sensors in parallel with sonar. ORB-SLAM2 modified

to enable acoustic odometry estimation [11] has also been used.
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Chapter 4

Our Approach

4.1 SLAM algorithm selection

There are many SLAM open-source algorithms that one can find and experiment
with, like MapLab, LDSO, VINS-Mono, and OpenVINS. However, the one that
was finally chosen for this thesis is ORB-SLAMS3. The criteria that were chosen
are that it supports stereo-inertial SLAM, it supports ROS [12], and it has real-
time performance without the need for GPUs. The possibility of not using a
GPU is very important in applications like ours because it reduces the processing
power requirements, so we gain in energy consumption and can be implemented
in embedded systems like the Raspberry Pi we used. Furthermore, ORB-SLAM3
shows good results [13] in different environments, sensor setups and even with
dynamic objects. The reasons for that are a quality implementation and both

fast and reliable visual features and the back-end part of the algorithm.



4.2 First approach

Our first approach was an architecture which consists of the following steps: The
data is sent to the top-side computer. Then the ORB-SLAMS3 reads the camera
and IMU’s data from the appropriate ROS topics and subsequently the odometry
messages, which is the output data of the SLAM, are sent back to the ROV to

update its position coordinates.

Disadvantages:

e The data is sent to the computer and returned to the ROV by the same
twisted pair cable, but the bandwidth is limited, so to avoid losing data we

need to reduce the refresh rate of the sensor values.
e If communication with the computer is lost, the ROV loses its position.
Advantages:

e The top-side computer is more powerful, so the algorithm can use more

frames per second and does not lose localization in sudden direction changes.

' Raspberry Pi
pilot ! ip192.168.2.2

Control :
- :
elemetry

Topside Computer
ip 192.168.2.1

Pilot

.
e e

Figure 4.1: Communication diagram of the first approach
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4.3 Proposed approach

Trying to solve the problems of the previous implementation, I ended up changing
both the architecture of the communication between the ROV and the top-side

computer and upgrading the ROV’s hardware.

4.3.1 Proposed architecture

The ORB-SLAMS3 will now run on the main board of the ROV, so the vehicle
does not need external intervention for localization and mapping, which reduces
the amount of data that needs to be sent. Therefore, the data from the sensors
is sent to the Raspberry Pi, where the SLAM algorithm takes over to process the
camera and IMU data. The odometry message updates the coordinates of the
position of the vehicle itself and is also sent to the top-side computer in order to

visualize its movement.

Topside Computer
ip 192.168.2.1

RaspberryPi
ip 192.168.2.2

e a
e

Figure 4.2: Communication diagram of the new approach
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4.3.2 Hardware Upgrades
Embedded Systems

The implementation of the proposed architecture was not feasible using the Rasp-
berry Pi 3 (which came pre-installed on ROV) as the hardware on which the algo-
rithm would run. Therefore, we needed to choose a microcomputer that met our
requirements both in terms of performance and consumption. Because of these
factors, the BlueROV2’s main board (the Raspberry Pi 3) was replaced with the

Raspberry Pi 4 (8 GB).

Figure 4.3: Raspberry Pi 4, source: wikipedia

The Raspberry Pi 4 is a single-board computer that was introduced in 2019
as the fourth generation of the Raspberry Pi series. It is a low-cost and high-
performance device designed to be versatile and suitable for a wide range of
applications. One of the key features of the Raspberry Pi 4 is its powerful Broad-
com BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz processor,
which makes it much faster and more capable than its predecessors. It also comes
with up to 8GB of LPDDR4 RAM, which makes it more suitable for demanding
applications that require more memory. In addition, the Raspberry Pi 4 has dual-
band 802.11ac wireless and Bluetooth 5.0 connectivity, which allows it to connect

to a wide range of devices and networks. It also has two micro-HDMI ports (up
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to 4Kp60 supported) for dual monitor support, USB 3.0 and USB 2.0 ports, and
a 40-pin GPIO header for connecting to electronics projects. The Raspberry Pi 4
runs on a variety of operating systems, including Raspberry Pi OS, Ubuntu, and

more. In this project Raspberry Pi 4 runs on Ubuntu 18.04 server edition (stable
version for ORB-SLAMS3).

Stereo Camera (Intel Realsense T265)

The Intel RealSense T265 is a device equipped with a fisheye stereo camera and
an IMU (Inertial Measurement Unit) that provides real-time positional tracking
for use in augmented and virtual reality applications. The device uses computer
vision algorithms to track the movements of the camera and to provide accurate
and low-latency 6DoF (six degrees of freedom) position and orientation informa-
tion. The T265 is designed to work as a standalone device or in conjunction with
other sensors to provide even more accurate tracking information. Intel’s Visual
SLAM algorithm runs directly on the T265. However, its use was limited only
as a stereo camera in our implementation, because real-time positional tracking
was implemented via ORB-SLAM3. The use of this camera over the factory cam-

era was aimed at better SLAM performance, since it utilizes the stereo-inertial

capability of the ORB-SLAM3.

Figure 4.4: T265 tracking camera on the left (source: Intel RealSense) and a
frame of the T265 on the right (source: ROS)
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4.4 Calibration

To run the algorithm, ORB-SLAMS3 looks for the intrinsic parameters (fs, fy, ¢z,
and ¢,) and the distortion coefficients of the camera, as well as the IMU noise
parameters. The coefficient parameters [14],[15], model the radial and tangential
lens distortion to represent a real camera. An ideal pinhole camera, such as the
one described in Chapter 2, does not have a lens, and for this reason, only the
camera’s intrinsic parameters were analyzed. The IMU noise parameters, model

the sensor’s error.

4.4.1 Distortion Coefficients
Radial Distortion

When light rays bend differently near a lens’s edges and in its optical center, the
result is radial distortion. The distortion increases with lens size. The radial

distortion coefficients model is described by the following equations:

v, =ax(l+k 12+ ky -1+ k3 r®)
yr =y(1+ky 1%+ ky - vt + k3 - %)
Ty, - distorted points
x,y : undistorted pixel locations

ki, ko, and k5 : radial distortion coefficients of the lens

roor? =24 >

Tangential Distortion

When the lens and the image plane are not parallel, tangential distortion happens.
This kind of distortion is modeled by the tangential distortion coefficients. The

model’s equations are shown below:
r=x+2-p-x-y+pr-(r*+2-27%
Yyr=y+[pr-(r*+2-y°)+2-p2- -y
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2,y - distorted points
x,y . undistorted pixel locations
p1 and ps : tangential distortion coefficients of the lens

r:rt=a%4+9?

4.4.2 IMU noise parameters

Briefly, the noise parameters of the IMU are as follows: accelerometer noise den-
sity, accelerometer random walk, gyroscope noise density and gyroscope random

walk.

Noise Density

The noise density is equal to the noise divided by the sampling rate’s square

root. For instance, the noise density for an accelerometer can be expressed as

m/s?/vhz and that for a gyroscope as rad/s/v/hz.

Random Walk

When a noisy sensor output signal is integrated, such as when an angular rate
signal is integrated to derive an angle, the integration will drift over time as a
result of the noise. Since it will seem as though the integration is moving at
random from one sample to the next, this drift is known as a random walk.
Angle random walk, which applies to gyroscopes, and accelaration random walk,
which applies to accelerometers, are the two primary varieties of random walk for
inertial sensors. For gyroscopes and accelerometers, the specification for random

walks is commonly stated in units of rad/s*/v/hz and m/s®/v/ hz, respectively.

4.4.3 Software to calculate parameters

The parameters needed for the algorithm were calculated with the help of al-

lan_variance_ros and Kalibr.
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Allan_variance_ros

The Allan variance ROS package is an implementation of the Allan variance
algorithm for ROS. It is designed to work with ROS sensor messages and provides
a way to evaluate the stability of the IMU measurements. The package computes
the Allan deviation and Allan variance for different time intervals and provides
plots to visualize the results. To use the Allan variance ROS package for the
calibration of the IMU, the IMU data needs to be published on a ROS topic.
For our calibration, a 3-hour rosbag is recorded, during which the IMU was at
rest. The package then subscribes to this topic, computes the Allan deviation

and variance, and extracts the parameters as shown in figure 4.5.

I#Accelerometer
accelerometer_noise_density: 0.004494919864148074
|accelerometer_random_walk: 0.0003938229339813333

#HGyroscope
gyroscope_noise_density: 0.0004871158387229554
gyroscope_random_walk: 4.920256144620228e-06

rostopic: 'gx5/imu/data’
update_rate: 30.0

Figure 4.5: Calibration file of ROV’s IMU from allan_variance_ros

Kalibr

The Kalibr camera calibration toolbox [16] is a powerful open-source software
package designed for calibrating cameras and other sensors in robotics and com-
puter vision applications. Camera calibration is a crucial step in many computer
vision and robotics applications, as it enables accurate measurements of the 3D
world from 2D images. The Kalibr toolbox provides a suite of tools for calibrating

cameras and other sensors, including monocular, stereo, and RGB-D cameras, as

well as IMUs and LIDARs.
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4.4.4 Description of the calibration process

For the process of camera calibration, we used the aprilgrid, which is shown in

Figure 4.16.

Figure 4.6: Aprilgrid, source: OpenCV

The Aprilgrid was placed on a glass, and then a record was made on a rosbag
of the camera and IMU topics, and we recorded the movement of the ROV in
front of the Aprilgrid in all axes, with the Aprilgrid however staying in the field

of view of the camera.

Figure 4.7: Screenshots from the time of the rosbag recording

Then the .bag file and the file from the Allan_variance_ros package is imported
into Kalibr and we have the final file from calibration. This file gives information

both for the parameters mentioned above and for the transformations in the case
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of the stereo camera from the coordinate system of the right to the left camera

and for the coordinate system of the IMU with respect to the left camera.

4.5 Ground Truth

In order to be able to compare the results from ORB-SLAMS3 with real-world
distances, a 3D representation of the interior of the Senselab was created with

the help of a 3D scanner. As shown in Figure 4.8, 15 points have been used,

which are marked with a red dot on the floor and walls.

Figure 4.8: Points which were used in the 3d scanner
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In order to be able to scan the whole space inside with more detail, we placed
the 3D scanner in two places. So, what we see in Figures 4.9 and 4.10 is the result
of merging the two different 3D images we took. The blue circles in Figures 4.9
and 4.10 are the points where we placed the 3D scanner, and the green line that

appears in these figures is the imaginary line that connects these two points that

we chose.

Figure 4.9: 3D-scanner’s result

T 7

B4

Figure 4.10: 3D-scanner’s result with the points we choose

On the 3D visualization, we found these points; they are the points shown
circled in Figure 4.10, and then we took the distances between them and compared

them with the actual ones. The deviation was of the order of £0.01m.
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These points are then plotted in a 3D plot (Figure 4.11). We then removed
from the 3D plot the points referring to the dots on the walls, leaving only the
points referring to the dots on the floor. We created a path between the points
that remained, which was then the path we used as ground truth to compare
with the results of ORB-SLAMS3. The path is shown in Figure 4.12. The results
of ORB-SLAM3 are shown and analyzed in Section 5.2.
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Figure 4.11: Points in 3D-plot
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Figure 4.12: Path between the points referring to the dots on the floor
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4.6 Simulation

In order to implement the autonomous movement of the ROV, a virtual environ-
ment was created in order to test it safely, before the final tests in real conditions.
The simulation required several simulator programs for both the physical system
and communication over the MavLink protocol with MAVROS and the virtual

3D environment and hydrodynamic model.

4.6.1 Github repositories

There are many repositories out there that implement scripts for drones, rovers,
and underwater vehicles for the Gazebo Simulator. bluerov_ros_playground and
uuv_simulator are these were used to create a virtual environment for gazebo

simulator to test ORB-SLAM3 and autonomous driving of BlueROV2.

bluerov_ros_playground

bluerov_ros_playground [17] consist of scripts to help BlueROV2 integration with
ROS. It provides video streaming capture with OpenCV, read and write over
mavlink protocol with MAVROS, Joystick interaction, BlueROV2 model and

Gazebo simulation.

Figure 4.13: Underwater map from bluerov_ros_playground, source: Github
BlueRov-ROS-playground
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UUYV Simulator

The Gazebo plugins and ROS nodes included in the UUV Simulator package [18]
enable the simulation of unmanned underwater vehicles like ROVs and AUVs.
The UUV Simulator provides many examples of underwater maps. It was ex-
ploited to create a new map based on implemented maps of the repository and

test ORB-SLAMS3 in different light and fog conditions.
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Figure 4.14: Stereo camera on BlueROV2
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Figure 4.15: ORB-SLAMS3 running in the map we created
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4.7 Flow Diagrams

The flow diagram in Figure 4.16 describes the process by which, using the camera
and IMU data, we get to give motion to the ROV. The arrows indicate the
topics that each node publishes at or subscribes to (publishing is done from the
node where the arrow starts, while subscribing is done from the node where
the arrow reaches). ORB-SLAMS3 uses the camera and IMU data and outputs
an Odomentry message. Then, from this message, we keep the position and
orientation and update the position of the ROV in MissionPlanner, while inserting
the information in the code responsible for the ROV movement by publishing it
in topic /mavros/vision_pose/pose. Finally, after calculating the distance from
the target and the angle of rotation that the vehicle will perform, we send a

RC_OVERRIDE message back to the ROV to start its movement.

Mission Planiner

&

Camera

peod/ea0d GO /SO0,

Jessa/odom Smovros/vision_pose/pose
ORB-5LAM 3 —_— 4

from /oedom to
MAVROS
— » p [pose topic (seript)
ry /tesse/odom

IMU —

/mawvros/re/override

Motors

favros/re/override
| 20 /e ol UDB(A/SO LWL/

’

Figure 4.16: From camera and IMU data to ROV’s motion
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The ROV motion class is divided into four sub-classes: OnePoint, Multiple

Points, Spiral and Rectangle as shown in Figure 4.17.

Motion
L 4 v v
One Point Spiral Rectangle

v

Muitiple Points

Figure 4.17: class diagram of ROV’s motion algorithm

In the OnePoint and MultiplePoints classes, the user enters the points in
coordinates (x,y,z) that he wants the ROV to follow. In the case of OnePoint we
enter only one point, while in the other case, the user can enter a large number
of points. In the case of Rectangle we enter the length and width, and then the
points are calculated based on the position where the ROV is at that moment
and starts to execute the path, until it completes the movement on the perimeter
of the rectangle once. In all three classes the vehicle corrects the orientation and
depth to the target and then starts moving along the target. During movement,
it constantly corrects both the orientation and the depth at which it is located.
In the case of the spiral trajectory, the vehicle does not stop moving until the user
presses the corresponding exit button. In the spiral trajectory, the user can set
the maximum and minimum depths the ROV will reach, as well as the velocity in
the yaw, x, and z axes. The speed during the movement is constant on both the
yaw axis and the z axis. On the z axis, the velocity magnitude remains constant,
but changes direction depending on whether the ROV has crossed the limits of

maximum and minimum depth.

38



START

Coordinates

i

Calculate Distance
from the target

Did you reach i} END
the target 7
NO
Fix Qrientation
Fix Depth
YES
Do you have - W Go Forward

the right orientation?

NO

|

Publish
RC_Override

Figure 4.18: Flowchart diagram in the case of straight line motion
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Figure 4.19: Flowchart diagram in the case of motion between multiple points
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Figure 4.20: Flowchart diagram in the case of motion in a rectangle
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Figure 4.21: Flowchart diagram in the case of spiral trajectory
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Chapter 5

Results

This chapter will present the results of the experiments, which are divided into
two sections. The first section deals with the results of the simulation. In the

following, the results of ORB-SLAM3 are taken from inside SenseLab.

5.1 Simulation Results

Activitles [T ORB-SLAM3: Map Viewer =

ORB-SLAM3: Map Viewear
[TIFallow Camera
[_camera view |
| Top View
[TIshow Points
[Ti8how KeyFrames
|—Shm' Graph =
[Tishow Inertial Graph
ULucal ization Mode

EDeO0BEEN?DO

Figure 5.1: The picture above shows, on the left, the image from the camera with
the ORB features of ORB-SLAM3. On the bottom right is the path followed

according to the SLAM, and on the top right is the tracing of the path through
the mission planner.

In Figure 5.1, we can see that, as the algorithm runs, the position is updated in
mapViewer, and with the help of the script, which was described in the previous

Chapter, it is also updated in the Mission Planner. In the Mission Planner, we



define the geographic coordinates of the ROV, so by giving the coordinates of the
point where it is located, we know in real time the exact position of the vehicle
on earth.

In the simulation process, four different motions were followed: a) motion in
a straight line; b) motion in multiple points; ¢) motion in a rectangle; and d)
motion in a spiral trajectory. For each movement, the result through MapViewer
is given and then a plot with the movement of the ROV recorded by ORB-SLAMS3

in a common plot with the ground truth of the path.

8 T T T T T T T T

©  ORB-SLAM3 .
7F O ground-truth = -]

y-axis in meters
o+

¥-axis in meters

Figure 5.2: Ground truth and ORB-SLAM’s path in common plot in the case of
straight line motion.
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Figure 5.3: ORB-SLAM'’s path as recorded in MapViewer in the case of motion
between waypoints.
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Figure 5.4: Ground truth and ORB-SLAM’s path in common plot in the case of
motion between waypoints.
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[ IsShow KeyvFrames
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Figure 5.5: ORB-SLAM’s path as recorded in MapViewer in the case of motion

in a rectangle.
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.
T

0 ORB-SLAMS3
& ground-truth

Figure 5.6: Ground truth and ORB-SLAM’s path in common plot in the case of
motion in a rectangle.
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ORB-SLAM3: Map Viewer
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| Camera View | - = L o "
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[(show KeyFrames e £ 6 i ¢ Fa RIS ;
[lShow Graph
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| RIIE‘S.EE. |
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Figure 5.7: ORB-SLAM’s path as recorded in MapViewer in the case of spiral
trajectory (side view).
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Figure 5.8: Ground truth and ORB-SLAM’s path in common plot in the case of
spiral trajectory (side view).
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Figure 5.9: ORB-SLAM’s path as recorded in MapViewer in the case of spiral
trajectory (plan view).
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Figure 5.10: Ground truth and ORB-SLAM’s path in common plot in the case
of spiral trajectory (plan view).
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Figure 5.11: The results of the different styles of ROV’s motion in MissionPlanner

H Motion Cases | Mean squared error (MSE) (m?) H

Straight line 0.2552
Waypoints 1.9412
Rectangle 2.0149

Circle 0.3633
Spiral 0.2679

Table 5.1: Error estimation for every path was tested

From the results of the above table, we see that the algorithm has much less
error in the cases where it performs motion in a straight line and in the spiral
trajectory (the case of the circular trajectory reported in the table is derived
from the spiral setting the minimum depth equal to the maximum). In the other
two cases, the effects of the error are much larger as the error is additive, as can
be seen in the figures with the paths followed by the vehicle. As we saw in the
figures, the deviation from ground truth becomes larger as we add points that

the ROV has to pass through.
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5.2 ORB-SLAMS3 Indoor Results

In this section, the experiments were performed on the path from the SenseLab
interior shown in Chapter 4. In addition to comparing the results of ORB-SLAMS3
with the ground truth in a common plot, we also have the results from the tracking

of RealSense T265.

B LB -G ORB-SLAM3]
1) PETERE :3:::':9-. - 3D-Scanner
WO - T265

Figure 5.12: Ground truth, ORB-SLAM’s path and slam from t265 in common
plot

In Figure 5.12, we compared eight points on the path followed during the
experiments. However, the path we followed in this experiment does not go from
point to point in the graph above by moving along the straight line segment
joining two adjacent points, but follows a more complex path. These eight points

are shown in Flgure 5.13, on the path recorded by the SLAM algorithm.
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Figure 5.13: ORB-SLAM'’s points from Figure 5.12 with the entire path followed.
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Figure 5.14: The entire path of the ORB-SLAMS3 in comparison with the result
of T265 tracking camera’s slam.
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SLAM Mean squared error (MSE)

ORB-SLAM3 2.8031
T265 0.0210

Table 5.2: Error estimation for ORB-SLAM3 and T265 tracking camera

In the experiment inside the lab, the ORB-SLAMS3 shows similar results to
the previous case, where we had over a point where the ROV would pass. Com-
pared to the result of the T265 acting as a tracking camera, the MSE error from
RealSense T265 is much lower compared to the ORB-SLAMS3 using the T265
as a stereo camera. A separate waterproof case was required, because the T265

camera could not fit into the existing ROV waterproof casing.

5.3 Waterproof case construction attempts

To get results from an underwater environment, several attempts were made to
build a waterproof case for the T265 stereo camera, as in a test with the factory

camera the ROV originally had, the ORB-SLAMS3 failed to run underwater.

Figure 5.15: On the left we see BlueROV2’s first test in the sea and on the right
we see that ORB-SLAM3 cannot extract any features with the factory camera in
this experiment.

First, we designed a 3D-printed mold for the case, placed the threads, and
finally filled the inside of the mold with resin. Unfortunately, during the peeling
process, the resin broke. We chose a more elastic material for the mold; however,

we had problems during printing, and this implementation was not completed.
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In the last attempt, we used a resin printer for printing, where we would not
print the case mold first, but directly the case itself. Therefore, we redesigned
the case design and started printing. Even in this print, there were imperfections

that prevented the camera from being waterproofed.

Figure 5.16: The 3D-printed mold for the case on the left, and the mold filled
with resin on the right

Figure 5.17: Waterproof case just after the printing

Therefore, the task of placing the T265 camera in a safe, waterproof case is

still open for full deployment of the modified BlueROV2 underwater.
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Figure 5.18: Waterproof case inside UV Curing Machine

4
Figure 5.19: Waterproof case just after the Curing Machine
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Chapter 6

Conclusion

6.1 Summary

The main objectives of this thesis were two. The first was to construct an al-
gorithm that is responsible for navigating autonomously the vehicle based on
information about its position and the locations of the points it has to pass
through.The second part concerned the localization and mapping of the environ-
ment to enable the underwater vehicle to move in this unknown environment.
The localization and mapping process was vision-based using the open-source al-
gorithm ORB-SLAM3. Since we are talking about autonomous navigation, this
means that the user does not interfere in the navigation process of the ROV, and
the ROV itself can continue its navigation even if it loses communication with
the topside computer. This led us to choose an architecture in which the SLAM
algorithm can run on the BlueROV2 embedded. This, in turn, led to the need to
upgrade the hardware to be able to support our architecture. The SLAM part
was tested both in simulation and in a real-world indoor environment, while the
autonomous navigation part was only seen in simulation. What is missing is a
test in a real-world underwater environment. This test did not take place as we

could not solve the problem of waterproofing the stereo camera.



6.2 Future work

The section on autonomous navigation and using SLAM based on vision for un-
derwater scenarios has many open topics that can be read and experimented
with. In our own approach, certainly one of the things to be done is testing
in real-world underwater environments, where the effects of lack of illumination
and distortion are more pronounced. This, of course, requires the appropriate
equipment, such as a waterproof stereo camera, which is a problem we need to
solve. We could still work on ways in which we could integrate other sensors into
the ORB-SLAMS3, such as sonar, and, in this way, have more accuracy in our
data. In terms of autonomous ROV navigation, the next steps to be taken are to

recognize obstacles and avoid them, or people to help rescue them.
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