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Abstract: As demand for more hydrological data has been increasing, there is a need for the de-
velopment of more accurate and descriptive models. A pending issue regarding the input data of
said models is the missing data from observation stations in the field. In this paper, a methodology
utilizing ensembles of artificial neural networks is developed with the goal of estimating missing
precipitation data in the extended region of Chania, Greece on a daily timestep. In the investigated
stations, there have been multiple missing data events, as well as missing data prior to their installa-
tion. The methodology presented aims to generate precipitation time series based on observed data
from neighboring stations and its results have been compared with a Multiple Linear Regression
model as the basis for improvements to standard practice. For each combination of stations missing
daily data, an ensemble has been developed. According to the statistical indexes that were calculated,
ANN ensembles resulted in increased accuracy compared to the Multiple Linear Regression model.
Despite this, the training time of the ensembles was quite long compared to that of the Multiple
Linear Regression model, which suggests that increased accuracy comes at the cost of calculation time
and processing power. In conclusion, when dealing with missing data in precipitation time series,
ANNs yield more accurate results compared to MLR methods but require more time for producing
them. The urgency of the required data in essence dictates which method should be used.

Keywords: rainfall time series; artificial neural networks; Multiple Linear Regression; Chania

1. Introduction

The successful development of reliable models for predicting the status of water
resources of a particular region is inextricably linked to the quantity and quality of the
climate and hydrological data used [1]. One of the most critical pieces of data for such a
study is the available rainfall data in the area of interest [2]. The possibility of errors or gaps
within an available rainfall data time series is real and may be due to errors in the measuring
instruments, a possible instrument failure, or an extreme weather event. Therefore, the
development of a model capable of accurately simulating, or even complementing, a time
series of rainfall data is necessary.

The importance of rainfall data availability is inarguable in hydrological modelling
as these data are an essential input parameter in almost any approach. Previous research
has supported the notion that the traditional statistical methods for infilling (imputing)
missing data may be inefficient for small temporal and spatial scales [3,4]. Thus, an
indicator of the success of the model is its outperformance over standard interpolation
methods. Such practices have become more nuanced over the years, specifically with the
incorporation of weighting factors that compensate for the variation between stations due
to the morphological features of each case study [5].

When looking at the recently published scientific literature, Artificial Neural Networks
have shown encouraging results in modeling nonlinear problems, such as hydrological
processes [6]. They are able to recognize strong seasonal patterns without the need for
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preprocessing raw data to remove outliers, and there is solid evidence that supports the
accuracy of their prediction [7]. A work similar to the current article has been conducted
using meteorological data from the internet, with the intent of forecasting future rainfall
using multi-layer perceptron (MLP) with back propagation and optimization algorithms [8].
In another work, the MLPs are used for forecasting future precipitation using rainfall
data from nearby weather stations as inputs [9]. As an alternative method for monthly
rainfall prediction, it has been suggested that the use of ANNs with wavelet regression
provides more accurate results compared to models using ANNs, which implies the need
for optimization [10]. An alternative to MLPs is Long Short-Term Memory networks, which
are a class of recurrent neural networks that have shown promising results in estimating
runoff from rainfall. With respect to the problem at hand, the selected neural networks
provide a high degree of regression ability. Using recurrent networks, like those used in
rainfall runoff modelling [11], would not have a physical meaning, since the relationship
between inputs and outputs (daily rainfall values) does not include a temporal delay. Other
techniques for filling in missing data in the field of hydrology include K-nearest neighbors
(KNN), adaptive neuro-fuzzy inference systems (ANFISs) and random forest regression
(RFR) [12–14], but these go beyond the scope of this work and could be considered for
future research. Regarding the number of inputs, large numbers of different inputs do not
guarantee more accurate results. A genetic algorithm can improve the process of selection
when aiming for forecasting, but in this work, in order to reduce computational demands
and given the nature of the network, another optimization method was chosen [15]. Apart
from genetic algorithms as optimization techniques, others exist, such as particle swarm,
cuckoo search, and bat- or kidney-inspired algorithms, depending on the level of strictness
demanded [16]. In this paper, optimization is achieved through the use of a competitive
algorithm in the creation of each ensemble, corresponding to each combination of missing
data from the observation stations. Artificial intelligence tools have been implemented in
the past in different scientific fields, from filling in spatially and temporally missing data
by using augmented interpolation [17] to using photonic neural networks analysis for the
changing morphology of an area [18]. In regions with high unpredictability due to extreme
weather conditions, ANNs have been successful in forecasting rainfall [19]; given this fact,
ANNs might perform even better in regions with strong seasonal patterns and a temperate
climate, such as Crete. In large areas with varied topography, proximity of stations does
not always guarantee a correlation between observed rainfall values, especially if the
stations belong in two different hydrological catchments [1]. In the current case study, the
area is hydrologically homogenous with only a small increase in precipitation at higher
elevations [20]. In addition, fluctuations between extreme values can be smoothed out
by classifying data either spatially [21] or based on intensity [22], which implies training
and using multiple ANNs. Multiple ANNs with targeted training working on their own
niche outperform an all-purpose ANN trained with the whole data set, with differences
being dependent on the physical problem [23]. As hinted previously, multiple ANNs
creating an ensemble might outperform a singular one by minimizing the occurrence of
local minimums and individual biases [24]. The most simplified approach to composing an
ensemble of neural networks is averaging their results using simple or weighted averages.
Previous research has also proposed that the structure of the ANN ensemble can itself
become the input of a general regression neural network [25]. This technique can exploit
the variability of results produced by biased individuals and increase overall accuracy. In
addition, it utilizes a full set of ANNs in which there may be individuals that produce error-
increasing results. In order to address this, it is suggested to develop competitive algorithms
where ANNs or ensembles are compared to each other and the best-performing method
ends up being used for predictions [26]. In the same manner of thinking, elimination of
the least significant input variables can be performed in an ensemble by considering the
correlation coefficient, which has been mostly applied to climatic variables in forecasting
rather than regression-based forecasting [27]. One approach to creating an ensemble with a
limited data set is to alternate between training and testing data sets during the training
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period and eventually average out the ensemble outputs [28]. Another issue arising when
working with ANNs, especially ensembles, is the network architecture, since it can greatly
impact the performance; in most cases, an optimization algorithm is developed since there
is no standard and optimal architecture is defined by trial and error [24]. Finally, one
optimization technique which borders on architecture modification is the dropout method
which randomly turns off units and their connections during training [29], which shows
that random-based optimization might produce adequate results.

This paper aims to develop a methodology to estimate missing daily precipitation
values from weather stations. Five weather stations monitoring rainfall in the prefecture of
Chania, Greece, were used as a case study. This work focuses on the comparison of ANN
ensembles based on multi-layer perceptrons and the more commonly used multiple linear
regression (MLR) for completion of time series of daily rainfall data. This way, the results
of the ANNs are compared to a technique that is standard practice in the field (MLR) [13].
In this approach, the best ANN from each ensemble imputes the missing data values to end
up with a completed dataset for all stations. It is important to state that classification based
on different combinations of missing data (henceforth called cases) adds to the accuracy
of the model in general, since the ANNs are specialized in each case. This would not be
feasible if modeling was done by creating a single ensemble for all stations, or an ensemble
for each station. The respective MLR results are calculated as a baseline for comparison.

2. Materials and Methods
2.1. ANN and MLR Creation

The proposed methodology starts from a dataset with missing rainfall data for some
stations and results in two completed datasets from the ANN ensembles and the MLR. The
first step of the algorithm is to check every date containing recorded data. If a daily dataset
has no missing values, then it is included in the dataset which will be used for training and
validation of the ANN ensembles and validation of the MLR model. Otherwise, it is added
to the dataset meant for imputing. It is important at this point to state that if a daily dataset
has no recorded data at any of the stations, then imputation is unfeasible with the proposed
methodology, primarily because completion of the time series occurs on a daily timestep
by correlating the missing data with the observed data. In addition, a precipitation event
is not dependent on a past precipitation event, and since rainfall is the sole input in this
model, it was deemed both unnecessary and accuracy-decreasing to impute the time series
by correlating data from datasets that correspond to different dates. This is the reason why
the completed time series span from the first recorded dataset up to the current day and
not further into the past or future.

The outcomes of the separation are two datasets: a complete and an incomplete one.
The full daily datasets will be used for the training and validation of the ANN ensemble.
Due to the different cases of missing data, it was deemed necessary to create multiple ANNs
(multiple layer perceptron) that are specialized to each case, since inputs and outputs for
each case differ, which implies a different topology for each case. The inputs and outputs
are always daily rainfall values from weather stations, and for each different combination
of missing data, the stations with observed values are used as input nodes and the stations
with missing values are used as output nodes. In order to increase the accuracy of the model
altogether, for each case an ensemble of 10,000 ANNs with one hidden layer was trained,
in which the daily datasets for training and validation were randomly selected from the
full set. With the use of a competitive algorithm, only one ANN—the best-performing one,
according to its test error value—was selected to give outputs, using MATLAB’s ANN
tool version 2017b. According to the literature [30,31], one hidden layer is sufficient and
might also outperform ANNs with multiple hidden layers when used for regression. The
competitive algorithm selects the best-performing ANN based on training error and the
results are produced solely based on that ANN. The use of ensembles instead of one single
ANN addresses any concerns regarding the reliability, performance, and behavior of the
proposed approach. The calibration (training and validation) dataset was 80% of the full
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available dataset with complete records, and the testing dataset consisted of the remaining
20% for all ANNs. After the training and validation are conducted, the ensembles are ready
to complete the time series. Similarly, the MLR functions are created by the training and
validation dataset for each case. After both processes have completed the time series, all
negative values that are generated are turned into zeroes.

The whole process is graphically represented in Figure 1 below.

Figure 1. Flowchart of the methodology.

2.2. Model Evaluation

The validity of the results of both models is verified by the calculation of the correlation
coefficients between the target and the simulated value. The value of the Nash–Sutcliffe
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coefficient is calculated, which can take values from minus infinity to one (−∞ to 1),
based on which the validity of the model is determined, with a value of one (1) indicating
complete agreement between the simulated values given by the model and those observed
by the stations. According to the literature, an NSE index value above 0.7 corresponds to a
very good estimation [32]. Finally, the Root Mean Square Error is extracted from the model
results in each of the cases considered [32].

2.3. Case Study

In the prefecture of Chania, near the northern coast of Crete, there are five automatic
weather stations at a relatively close distance (approximately 5 km) to each other, as shown
in Figure 2.

Figure 2. Weather station locations.

Regarding the locations of the stations as shown in Figure 2, the overall highest value
of rainfall, historically, has occurred at Alikianos station, while the lowest has occurred at
Platanias station. Platanias station has the lowest recorded altitude at 12 m, while Alikianos
station is located at 95 m. Chania station (137 m) is located at a higher altitude than
Alikianos station (95 m). Although it would be expected that a station at a higher altitude
has a greater amount of rainfall, it was observed from the data that Alikianos station has a
greater amount of rainfall. The reason for this might be that Alikianos station is furthest
from the sea compared to all the other stations considered and is situated at the foot of the
Lefka Ori. Platanias, on the other hand, is located a short distance from the sea and at a
low altitude.

Table 1 contains a summary of the recorded daily precipitation values available from
the automatic weather station NOANN network [33] (in total 15,040 records).
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Table 1. Daily data availability and initial operating day of each rainfall station.

Station Altitude (m) Number of Data Start of Data

Alikianos 95 3044 1 September 2012
Chania 137 5448 1 February 2006

Chania (Center) 7 3745 1 October 2010
Platanias 12 2011 1 July 2015

Stalos 93 792 1 November 2018

Based on these records, a timeline showing the availability and gaps in the datasets
for the study period is shown in Figure 3. In total, 759 days had a complete dataset and
were used for calibration and 4689 days had at least one missing value.

Figure 3. Timeline of daily rainfall data availability and gaps in the datasets (red color indicates gaps).

The recording of the data used in this work starts with the creation of Chania station
on 1 February 2006. This means that for the period from 1 February 2006 to 30 September
2010, the available rainfall data originates only from Chania station. As of the next day, on
1 October 2010, when Chania station (Center) was put into operation, the recorded rainfall
data come from the two stations previously mentioned. On 1 September 2012 the Alikianos
meteorological station was put into function, therefore the recorded rainfall data come
from the above three meteorological stations. To continue, on 1 July 2015, the recording
of rainfall data from Platanias meteorological station starts, which means that the model
input data comes from four stations. Finally, on 1 November 2018, the last station, Stalos,
was put into operation. Therefore, for the next period, we have logging data from all five
stations until 31 December 2020. It is worth noting that the period of time that a station is
in operation is not always the same as the period of time that it records data, as there may
be losses due to errors in the measuring instruments, a possible instrument failure, or an
extreme weather phenomenon. This is clearly shown in Figure 3 of the paper.

2.4. Different Combinations of Stations Missing Data (Cases)

There are five rainfall stations in our study and each one of them has a different
installation date, from which point on data are available. In addition, there are periods
when, for different reasons (maintenance, power cuts, malfunction), one or more daily
values are missing from the time series. The values missing for each day, together with the
values available, can be categorized into different cases, in order to organize and group the
different dates based on different calculation needs.

Figure 4 shows all the possible combinations of stations having or missing a daily
record. By having all the possible cases identified, the algorithm is able to create ensembles
for cases that have not occurred yet.

In the full, observed dataset, 9 cases occur out of a total of 32 that were theoretically
possible. Specifically, the included cases are Case 2, Case 3, Case 6, Case 11, Case 14, Case
15, Case 22, Case 24, and Case 29. In three cases, namely Cases 2, 3 and 6, one station had a
missing value; in three other cases, namely Cases 11, 14 and 15, two stations had missing
values; in two cases, Cases 22 and 24, three stations had missing values; and in the last case,
Case 29, four stations had missing values. The numbering of each case is not derived from
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the numerical order, but from the corresponding case, as shown in Figure 4. For example, in
Case 2 the input precipitation data are the values from Chania, Chania (Center), Platanias
and Stalos stations, and the output is the precipitation value for Alikianos station.

Figure 4. Possible combinations of availability of daily rainfall data. Red indicates that the station in
question has no recorded rainfall value for the day of recording. Cases occurring in the dataset are
shown in bold.

3. Results

After completing a full run of the algorithm built using the proposed methodology,
the incomplete time series of each station receives model-generated data for the full period
in which at least one of the five stations has an observed value. In the following charts
(Figure 5), the results of the two methodologies are shown for all stations. In the left column,
the model-generated values of the ANN have an orange color, and in the right column,
the model-generated values of the MLR have a red color, while the observed values in all
charts are in a blue color.
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Figure 5. Observed values (blue), and model-generated values from the ANNs (orange) and MLR
model (red).

To compare the two methods, three different metrics were used, the root mean square
error, the Nash–Sutcliffe efficiency coefficient, and the correlation coefficient. The results
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are shown on a per-case basis, as the two methods might show different sensitivities to
missing data. Comparative tables at the end of each section summarize the results of the
testing dataset.

Concerning the computational effort and time needed for the two methods, the ANN
did take a considerably large amount of time to optimize its structure (almost 36 h on a
PC (Personal Computer) with an Intel i7 8th generation processor). On the other hand, the
MLR was significantly faster, and required only a few minutes to run.

3.1. Root Mean Square Error (RMSE)

The RMSE index indicates the deviation between the observed and simulated values
and indicates whether the data are clustered around the line of best fit. The models
calculate the Root Mean Square Error (RMSE) for each of the cases considered. Regarding
the Artificial Neural Network model, the best value is presented in Case 15 and shows an
error equal to 1.16 mm, while the worst value is presented in Case 29, with an error value
equal to 2.42 mm. The corresponding results of the Multiple Linear Regression model are
shown in Case 3 with a value of 2.37 mm and Case 2 with a value of 6.43 mm. Overall, the
Artificial Neural Network model shows lower errors, ranging from 42% to 72.6%, compared
to the Multiple Linear Regression model.

The following Table 2 contains all the above results aggregated as follows:

Table 2. Root Mean Square Error of testing dataset.

Case
RMSE [mm]

ANN MLR

Case 2 1.76 6.43
Case 3 1.22 2.37
Case 6 1.22 2.92

Case 11 2.30 4.99
Case 14 1.24 3.03
Case 15 1.16 2.46
Case 22 2.19 4.47
Case 24 1.83 3.16
Case 29 2.42 4.94

3.2. Nash–Sutcliffe Efficiency

The Nash–Sutcliffe coefficient can take values from minus infinity to one (-∞ to 1),
where for these values the following applies:

• If NSE = 1, then there is a complete match between the simulated values given by the
model and those observed by the stations;

• If NSE = 0, then the values simulated by the model give the same result as if the
average of the observed values of the stations were used as the forecast model for each
time point;

• If NSE < 0, then the model is practically unusable, as the values simulated by it give
a less accurate result than if the average of the observed values of the stations were
used as a predictive model for each time point.

With respect to the calculation of the Nash–Sutcliffe coefficients, the Artificial Neural
Network model shows, again, higher overall values ranging from 2.1% to 28.7%. For
the Artificial Neural Network model, the best value of the Nash–Sutcliffe coefficient is
presented in Case 15, with a value of 0.989, while the worst value is presented in Case 29,
with a value of 0.911. The corresponding results for the Multiple Linear Regression model
appear in Case 15 with a value of 0.968 and in Case 29 with a value of 0.708.

Similarly, the Nash–Sutcliffe Efficiency values for all cases are presented in the follow-
ing Table 3 which contains all the results in an aggregated way:
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Table 3. Nash–Sutcliffe Efficiencies of testing dataset.

Case
Nash–Sutcliffe Efficiency Simulated Precipitation

Value Station(s)ANN MLR

Case 2 0.967 0.803 Alikianos
Case 3 0.975 0.937 Chania
Case 6 0.981 0.882 Stalos

Case 11
0.954 0.803 Alikianos
0.957 0.882 Stalos

Case 14
0.976 0.908 Platanias
0.969 0.845 Stalos

Case 15
0.989 0.968 Chania (Center)
0.973 0.871 Stalos

Case 22
0.934 0.802 Alikianos
0.957 0.908 Platanias
0.927 0.844 Stalos

Case 24
0.975 0.954 Chania (Center)
0.957 0.869 Platanias
0.943 0.781 Stalos

Case 29

0.911 0.708 Alikianos
0.971 0.933 Chania (Center)
0.968 0.843 Platanias
0.959 0.748 Stalos

The results show a clear increase in the performance of the Nash–Sutcliffe efficiency
when using the ANN instead of MLR. The ANN’s performance was also higher when
fewer stations were available compared to its MLR counterpart, which had a declining
performance especially when one or two stations were available. It is also clear that there
is a great correlation between the Chania (Center) and Chania stations, so when one is
available, the results for the other are always very good. This is confirmed by the results of
Case 3 where only Chania station is missing and from the results of Cases 15, 24 and 29,
where station Chania is available, and Chania (Center) is missing.

3.3. Coefficient of Correlation (R)

The Coefficient of Correlation (R) indicates the proportion of variance of the dependent
variable derived from the independent variable. A value of one (1) is the maximum value
the coefficient can take, which indicates that there is a complete match between the two
compared values.

Regarding the calculation of the Correlation Coefficient (R) for each case, the Artificial
Neural Network model shows higher overall values ranging from 5.4% to 29.7%. More
specifically, the best value of the above coefficient for the Artificial Neural Network model
is presented in Case 15, with a value of 0.99274, while the worst value is presented in Case
6, with a value of 0.93957. The corresponding results for the Multiple Linear Regression
model appear in Case 3, with a value of 0.93740 and in Case 29, with a value of 0.74782.
Similarly, the Coefficients of Correlation for each case are presented in the following Table 4
which contains the aggregated results:

Table 4. Coefficients of Correlation of testing dataset.

Case
Coefficient of Correlation (R)

ANN MLR

Case 2 0.98353 0.80337
Case 3 0.98777 0.93740
Case 6 0.99066 0.88198

Case 11 0.97737 0.76844
Case 14 0.98639 0.87493
Case 15 0.99101 0.90800
Case 22 0.96842 0.78287
Case 24 0.97975 0.86749
Case 29 0.96998 0.74782
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4. Discussions

This work developed and compared two models for the simulation of precipitation
values, which simulated and accurately completed five time series of precipitation data
from five meteorological stations in the region of Chania, Crete. The first model was devel-
oped using an Artificial Neural Network ensemble approach (similar to other previously
published works [6,10,27]), while the second model was developed using the Multiple
Linear Regression method, both in a MATLAB environment.

It is observed that the four meteorological stations that are relatively close to the
sea, while at the same time are relatively close to each other (Chania, Chania (Centre),
Platanias and Stalos), show similar results for their total rainfall values (Figure 5). From
a hydrological standpoint, both models present results that are in accordance with the
theoretical expectations; the simulated values at the weather stations near the seafront are
always lower when compared to those of stations at higher altitude. In addition, there is a
small decline in the precipitation values along the west to east axis, which is expected since
most of the water load in the clouds is released when they reach the coastal fronts coming
from the Western Mediterranean.

Looking at the ANN results, a couple of simulated values might draw the attention
of the reader as being exceptionally high and possibly outliers (e.g., October 2006 and
January 2019). Nevertheless, the scientific literature and the observed values from already
installed stations confirm that these were months with extreme rainfall events, confirming
the plausibility of these simulated values. In October 2006, extreme rainfall events occurred
throughout the study area, leading to flooding in the city of Chania, serious material
damages and one casualty [20]. At that time, the only installed and operating station
was the one in Chania, which had a very high observed value of 214.6 mm, one of the
highest ever recorded. For the same month, the simulated precipitation value for Alikianos
station is 345 mm based on ANNs, while the corresponding value using the MLR method
is 194 mm. These values, although they seem quite high for the area concerned, are in
accordance with the value observed in Chania. In January and February 2019, other extreme
rainfall events occurred with similar results. In 2019, all weather stations were operational,
but there was a 10-day gap in the beginning of January in Alikianos station, possibly
because of device failure due to the extremity of the rainfall events. Regarding the month
of January 2019, the simulated precipitation value for Alikianos station is 692 mm based on
ANNs, while the corresponding value using the MLR method is 362 mm. The extremity of
those values is confirmed by the literature, while the events continued in February with
the Chionis and Oceanida storms [20]. The seemingly high simulated value for January
is confirmed by the observed values in February at all weather stations. In Figure 5, the
observed values in February are significantly high, with the highest value recorded at
Alikianos station (568.8 mm in total) and the next highest value at Chania station (360 mm
in total). Based on the above, we conclude that the simulated values for Alikianos are
plausible and do not consider them as outliers. Comparing the two models, the results
of the ANN model show that it is more capable of simulating extreme weather values
compared to the model obtained with the MLR method.

5. Conclusions

Both methods have proven more than adequate for the task of imputation of gaps
in the daily rainfall time series. The Nash–Sutcliffe coefficient for both methods is above
0.7 for all cases, a value generally considered as the threshold for very good performance.
Nevertheless, throughout this work, the Artificial Neural Network ensembles consistently
outperformed the Multiple Linear Regression model. The obvious caveat is the increased
time needed for training the ANN model. When comparatively small datasets are available
for training (like in this work), the computational effort for training the ANN ensembles is
also relatively small (taking just over thirty-six hours). In such cases using ANNs might
make more sense, always considering the urgency of the application. In cases where the
available dataset is large the training time is expected to increase, but the results will
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probably be better than those obtained with Multiple Linear Regression. A decision should
be made as to whether accuracy or speed is more important. For increased accuracy,
the results of this study suggest using ANNs, for increased speed, the results point to
using Multiple Linear Regression. Given the good performance of the ensembles in this
work, future work can focus on testing different activation functions like the reLU and
tanhLU [34].
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