

14-Sep-23

TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

EMBEDDED SYSTEM FOR MULTIPLE-USER ACCESS TO

MICROPROCESSOR-BASED EDUCATIONAL PLATFORM

Author: Thesis Committee:
Panagiotis Anastasiou Prof. Apostolos DOLLAS, THESIS SUPERVISOR

 Assoc. Prof. Sotirios IOANNIDIS

 Dr. Evripidis SOTIRIADIS

A thesis submitted in fulfillment of the requirements

for the Diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

https://www.tuc.gr/index.php?id=4992

TECHNICAL UNIVERSITY OF CRETE

ABSTRACT

School of Electrical and Computer Engineering

Electrical and Computer Engineer

EMBEDDED SYSTEM FOR MULTIPLE-USER ACCESS TO MICROPROCESSOR-

BASED EDUCATIONAL PLATFORM

by Panagiotis Anastasiou

 The aim of this thesis is to develop and assess an embedded system, intended for use in

an educational environment. Specifically, the platform accommodates a user interface,

capable of exchanging information with a host server allowing the remote access of multiple

users to an embedded system, supporting upload of files and commands to various

microcontrollers through a master microcontroller, while providing real-time visual feedback

through a webcam. A server was developed using Python to communicate with a database

and was hosted in the laboratories within the Technical University of Crete. For the

experiment, an STK500 development board was used to program an ATMEGA32A for the

upload of the .bin files and commands to a pair of ATMEGA328P controllers and a pair of

ATMEGA168P. Further, various operational tests were performed remotely using a windows

computer. Tests deemed the overall operation of the system successful, including the log-in

and reservation slot feature of the user interface. Further, a successful upload of .bin files was

noted, with a stable real-time video feed from the webcam. Tests also detected some

instabilities within the log-in and reservation phase of the system, with unsuccessful login and

undesired termination of the application within the user system.

https://www.tuc.gr/index.php?id=4992

TECHNICAL UNIVERSITY OF CRETE

ABSTRACT

School of Electrical and Computer Engineering

Electrical and Computer Engineer

EMBEDDED SYSTEM FOR MULTIPLE-USER ACCESS TO MICROPROCESSOR-

BASED EDUCATIONAL PLATFORM

by Panagiotis Anastasiou

 Στόχος της παρούσας διπλωματικής εργασίας είναι η ανάπτυξη και αξιολόγηση ενός

ενσωματωμένου συστήματος, που προορίζεται για χρήση σε εκπαιδευτικό περιβάλλον.

Συγκεκριμένα, η πλατφόρμα φιλοξενεί μια διεπαφή χρήστη, ικανή να ανταλλάσσει

πληροφορίες με έναν διακομιστή που επιτρέπει την απομακρυσμένη πρόσβαση πολλών

χρηστών σε ένα ενσωματωμένο σύστημα, υποστηρίζοντας μεταφόρτωση αρχείων και

εντολών σε διάφορους μικροελεγκτές μέσω ενός κύριου μικροελεγκτή, ενώ παρέχει οπτική

ανατροφοδότηση σε πραγματικό χρόνο μέσω κάμερας. Αναπτύχθηκε ένας διακομιστής με

χρήση Python για την επικοινωνία με μια βάση δεδομένων και φιλοξενήθηκε στα εργαστήρια

του Πολυτεχνείου Κρήτης. Για το πείραμα, χρησιμοποιήθηκε μια πλακέτα ανάπτυξης STK500

για τον προγραμματισμό ενός ATMEGA32A για τη μεταφόρτωση των αρχείων .bin και των

εντολών σε ένα ζεύγος ελεγκτών ATMEGA328P και σε ένα ζεύγος ATMEGA168P. Περαιτέρω,

διάφορες λειτουργικές δοκιμές πραγματοποιήθηκαν εξ αποστάσεως χρησιμοποιώντας έναν

υπολογιστή με Windows. Οι δοκιμές έκριναν ότι η συνολική λειτουργία του συστήματος ήταν

επιτυχής, συμπεριλαμβανομένης της δυνατότητας ταυτοποιήσεις και κράτησης

μικροελεγκτή από τη διεπαφή χρήστη. Επιπλέον, σημειώθηκε επιτυχής μεταφόρτωση

αρχείων .bin, με σταθερή ροή βίντεο σε πραγματικό χρόνο από την κάμερα. Οι δοκιμές

εντόπισαν επίσης ορισμένες αστάθειες στη φάση σύνδεσης και κράτησης του συστήματος,

με ανεπιτυχή σύνδεση και ανεπιθύμητο τερματισμό της εφαρμογής εντός του συστήματος

χρήστη.

https://www.tuc.gr/index.php?id=4992

Table of Contents
ABSTRACT .. 3

ABSTRACT .. 5

Table of Contents ... 6

Table of Figures .. 8

List of Tables .. 10

List of Abbreviations .. 11

Chapter 1 Introduction ... 1

1.1 Problem Statement ... 1

1.2 Objectives ... 1

1.3 Scope of the Thesis .. 2

1.4 Thesis Outline ... 2

Chapter 2 Related Work ... 4

2.1 Integrated System for Logic Design exercises ... 4

2.2 FPGA e-Lab ... 5

2.3 ATMEL AVR ICSP based on Wi-Fi and ZigBee .. 7

2.4 Development and Application of Remote Laboratory for Embedded Systems

Design .. 8

2.5 Web-based User interface with RPDs interaction ... 9

2.6 Remote labs based on the ESP32 and NOD-red ... 10

2.7 CAD Tools .. 11

2.8 WebLab-PLD ... 11

2.9 An Embedded System for Remote Access of Microcontroller for University

Laboratory Exercises .. 12

Chapter 3 Methodology ... 14

3.1 Goal and Objectives ... 14
3.1.1 User login and reservation slots .. 15
3.1.2 File Transmission .. 19
3.1.3 Real-Time visual feedback .. 23
3.1.4 Multiple users .. 25
3.1.5 Flexible .. 26
3.1.6 Expansion Possibilities .. 26
3.1.7 Scalable ... 27

3.2 Apparatus .. 28
3.2.1 Platforms Connection layout ... 28
3.2.2 Hardware Components ... 29
3.2.3 Software Components ... 34

3.3 Assumptions and Limitations .. 39

Chapter 4 User and Institution System Perspective ... 41

4.1 User Perspective ... 41
4.1.1 Installation instructions for Ubuntu/Windows .. 41
4.1.2 Using the application ... 41
4.1.3 Writing programs ... 43

4.2 Engineer’s Perspective... 47
4.2.1 setupdb.py ... 47
4.2.2 addUser.py .. 47
4.2.3 removeUser.py .. 48
4.2.4 serverv2.py .. 48
4.2.5 CameraStreamWebSockets.ino .. 49
4.2.6 WebSocketServer.ino .. 51
4.2.7 Atmega32Av2.atsln ... 52
4.2.8 Main.py .. 58

Chapter 5 System Verification and Evaluation .. 60

5.1 Testing and validation procedures .. 60
5.1.1 Initial Development and Component Testing .. 60
5.1.2 Login System and Database Testing ... 61
5.1.3 File Transmission Testing .. 64
5.1.4 Microcontroller Programming Testing .. 65
5.1.5 Real-Time Camera Access Testing ... 68
5.1.6 Multi-Microcontroller Integration Testing ... 69

5.2 System Evaluation .. 70

Chapter 6 Conclusion and Future Work ... 72

6.1 Conclusion .. 72

6.2 Future work ... 73

Chapter 7 Appendix ... 74

7.1 Hardware Schematics ... 74

7.2 Example Applications ... 75

7.3 Parts List ... 78

References .. 79

Table of Figures

Figure 2.1 - Interconnection between the distinct elements of the platform - Source [1] 4

Figure 2.2 - Schematic diagram of a remote interface system – Source [2] 5

Figure 2.3 - The GUI showing the FPGA development board – Source [2] 6

Figure 2.4 - System Block Diagram of Wireless Programmer – Source [3] 7

Figure 2.5 - Overview of RELDES – Source [4] ... 8

Figure 2.6 - Communication flow of RPD system – Source [5] .. 9

Figure 2.7 - Software Architecture – Source [6] ... 10

Figure 2.8 - Last Iteration Software Architecture – Source [7] .. 11

Figure 2.9 - Schematic diagram of the Platform – Source [8] .. 12

Figure 2.10 - Main Web Page of Remote Lab – Source [8] ... 13

Figure 3.1 - Overall Layout .. 14

Figure 3.2 - Server Communication Diagram .. 16

Figure 3.3 - Database Fields ... 17

Figure 3.4 - Login Stage .. 17

Figure 3.5 - Reservation Stage ... 18

Figure 3.6 - Unavailable Slot Stage ... 19

Figure 3.7 - Send File/Command flowchart ... 20

Figure 3.8 - ESP File Receive Flowchart ... 21

Figure 3.9 - ATMEGA32A Receive File .. 22

Figure 3.10 - ESP32-CAM Flowchart .. 24

Figure 3.11 - Platforms Connection Layout ... 28

Figure 3.12 - ATmega328P and ATmega168P Diagram .. 30

Figure 3.13 - ATMEGA32A Diagram .. 31

Figure 3.14 - ESP32-S Diagram .. 32

Figure 3.15 - ESP32-CAM Diagram .. 33

Figure 4.1 - Available file to be Uploaded .. 42

Figure 4.2 - Control Menu ... 42

Figure 4.3: New Project ... 43

Figure 4.4: Device Selection ... 44

Figure 4.5: Programmer Selection... 44

Figure 4.6: HEX File Location ... 45

Figure 4.7 - Adding / Removing User From DB ... 47

Figure 4.8 - ESP32-CAM Flowchart .. 49

Figure 4.9 - Wi-Fi Module Flowchart ... 51

file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068589
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068590
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068591
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068592
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068593
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068594
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068595
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068596
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068597
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068598
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068599
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068600
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068601
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068602
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068603
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068604
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068605
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068606
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068607
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068608
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068609
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068610
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068611
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068612
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068613
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068614
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068615
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068616
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068617
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068618
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068619
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068620
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068621
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068622

Figure 4.10 - AVR910 Programing Flowchart .. 54

Figure 4.11 – ATMEGA32A File Receive ... 56

Figure 5.1 - Database Records ... 60

Figure 5.2 - Login Portal .. 61

Figure 5.3 - Reservation Panel .. 62

Figure 5.4 - Database with Populated Fields ... 62

Figure 5.5 - Next Available Slot Panel ... 62

Figure 5.6 - Removed Reservation .. 63

Figure 5.7 – Adding & Removing Users... 63

Figure 5.8 - Control Panel Without A Selected File .. 64

Figure 5.9 - Control Panel With A Selected File ... 64

Figure 5.10 - Blink File LEDs OFF... 65

Figure 5.11 - Blink File LEDs ON ... 66

Figure 5.12 - Buttons Test File .. 66

Figure 5.13 - Buttons File Button1 Pressed ... 67

Figure 5.14 - Buttons File Button2 Pressed ... 67

Figure 5.15 - All Users Upload Different Files .. 69

Figure 7.1 - Hardware Schematics .. 74

Figure 7.2 - Blink ... 75

Figure 7.3 - Buttons .. 75

file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068623
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068624
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068625
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068626
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068627
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068628
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068629
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068630
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068631
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068632
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068633
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068634
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068635
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068636
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068637
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068638
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068639
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068640
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068641
file:///G:/Latest/EMBEDDED-SYSTEM-FOR-MULTIPLE-USER-ACCESS-TO-MICROPROCESSOR-BASED-EDUCATIONAL-PLATFORM.docx%23_Toc144068642

List of Tables

Table 1 - Database Fields and Types .. 47

Table 2 - Utilized Ports .. 57

Table 3 - Testing Login Entries .. 61

List of Abbreviations

BIN Binary
CAD Computer Aided Design
CPU Central Processing Unit
DDRC Data Direction Register for Port C
DDRD Data Direction Register for Port D
EEPROM Electrically Erasable Programmable Read-Only Memory
FOTA Firmware Over-the-Air
FPGA Field-Programmable Gate Array
FTDI Future Technology Devices International
GPIO General-Purpose Input/Output
GUI Graphical User Interface
HEX Hexadecimal
HTTP Hypertext Transfer Protocol
ICSP In-Circuit Serial Programming
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IP Internet Protocol
ISP In-System Programming
ISR Interrupt Service Routine
JSON JavaScript Object Notation
LED Light-Emitting Diode
LMS Learning Management System
MHL Microprocessor and Hardware Laboratory
MISO Master In, Slave Out
MOSI Master Out, Slave In
MQTT Message Queuing Telemetry Transport
PC Personal Computer
PLD Programmable Logic Device
RELDES Remote Laboratory for Embedded Systems Design
RPD Remote Programing Device
RS Recommended Standard
RXC Receive Complete
SCK Serial Clock
SPCR Serial Port Control Register
SPDR Serial Port Data Register
SPI Serial Peripheral Interface
SPIF Serial Peripheral Interface Flag
SPSR Serial Port Status Register
SRAM Static Random-Access Memory
SS Slave Select
SW Switch
TCP Transmission Control Protocol
UART Universal Asynchronous Receiver/Transmitter
UCSRA Universal Serial Control Register A
UDR Universal Receive Data Register

UDRE Universal Receive Data Register Empty
UI User Interface
URL Uniform Resource Locator
USART Universal Synchronous/Asynchronous Receiver/Transmitter
USB Universal Serial Bus
VCP Virtual COM Port
VGA Video Graphics Array
VPN Virtual Private Network
WPA Wi-Fi Protected Access

1

Chapter 1 Introduction

 Many institutes aim to increase student engagement with the introduction of new

educational platforms providing a better hands-on learning experience. This thesis presents

the design and implementation of a remote access Embedded System for Multiple-User

Access to a Microprocessor-Based Educational Platform. The platform aims to enable

multiple users to remotely access a set of microcontrollers. Enabling the user to program,

control, and monitor a microcontroller in real-time. Such a platform could be easily accessible

from anyone at any time and can reduce the costs of providing one development board to

each student who desires to develop and test its projects.

1.1 Problem Statement

 A lot of publicly available tools like Tinkercad circuits that allow users to create and

simulate electronic circuits do not meet the requirements of institutes to integrate them into

their course’s curriculum. Its supported programming languages are Blockly and Python

whereas, institutes mostly prefer to use low-level programming languages like C and assembly

enabling better utilization of their hardware. This absence of online presence in many cases

where students are not able to attend at their institutions limits their interaction with

microcontrollers. Resulting in an absence of understanding of embedded systems and their

capabilities.

1.2 Objectives

The primary objectives are:

• The implementation of a user-friendly interface that allows users to easily navigate it

and interact with their microcontrollers within the educational platform.

• Support real-time file uploading to the system enabling multiple users to remotely

program and control their microcontrollers.

2

• Integrated a camera stream from the target microcontroller into the User Interface to

enhance the overall experience for the end user by providing them with a visualization

of the results in real-time.

• Ensuring the stability and responsiveness of the application as students will need to

be able to depend on the system's proper functionality under various conditions.

1.3 Scope of the Thesis

This thesis focuses on developing a user-friendly User Interface that allows multiple

users to access remotely a multi-microcontroller-based embedded system that supports real-

time monitoring through an integrated camera. Whilst, enabling users to program their

assigned microcontroller and interact with them using software buttons. The scope of the

thesis also includes the selection of suitable hardware and software components.

While the platform attempts to offer each of its users a cohesive experience, certain

limitations should be recognized. Some of them may include hardware compatibility, potential

security risks, the processing capabilities of the selected microcontrollers, and any network

stability issues.

1.4 Thesis Outline

This thesis is organized into six chapters:

 Chapter 2: Includes related work regarding multi-microcontroller systems that support

multiuser access with real-time monitoring and control.

 Chapter 3: Details the methodology followed for the development of the proposed

platform, and provides the selection criteria for hardware and software components.

 Chapter 4: Provides information on how the user can use the proposed platform and

expands on the software that fulfills the platform requirements.

3

 Chapter 5: Focuses on describing the testing and verification procedures that were

followed to evaluate and ensure the proper functionality of the developed platform.

 Chapter 6: Concludes the thesis and expands on future work to improve the proposed

platform.

4

Chapter 2 Related Work

Affected by the pandemic the demand for multi-microcontroller platforms in education

with real-time control and monitoring was increased. To accommodate the increased demand

new embedded systems are required for a more inclusive and interactive learning experience.

These systems need to provide access to different types of equipment that cannot be used or

borrowed by the students outside the laboratory. Providing access to that type of equipment

could potentially increase active engagement by students in various courses due to the

convenience of using the otherwise restricted equipment in their own time. Allowing them to

explore the capabilities of the equipment in their free time. Further, students can utilize such

systems to recreate previous laboratory experiments and learn from any potential issues they

might have encountered.

This chapter researches related work on similar projects and provides insides while

establishing a foundation for the proposed platform. By exploring previous implementations

various key aspects can be identified and deployed in this research to effectively achieve set

goals and objectives.

2.1 Integrated System for Logic Design exercises

In the research “Design and Implementation of an Integrated System for Logic Design

exercises” by Lykos Emmanouil [1]. A platform was developed to accommodate the needs of

Figure 2.1 - Interconnection between the distinct elements of the platform - Source [1]

Logical
Circuit

Physical
interface

Graphical
interface

5

the “Logic Design” lab-course and it consists of two main components as presented in Figure

2.1. The physical interface "MHL Development Board" is used to control the physical circuits,

this system was developed using an STM32F072B-DISCKO platform which was chosen for its

low cost, various features, and USB support. The other part is the graphical interface the "MHL

Development Board Control" that allows users to control the I/O to verify the systems

operations and to send a new clock pulse. The communication between the graphical

interface and the physical interface is established through a VCP (Virtual Com Port) and the

STM USB Stack. Overall, this implementation offered real-time control and effective support

for experimental exercises in the "Logic Design" course.

2.2 FPGA e-Lab

Similarly, another research had an approach to implement a remote access technique for

designing and testing FPGA-based experiments in a laboratory setting. The proposed system

Figure 2.2 - Schematic diagram of a remote interface system – Source [2]

6

by Reza Hashemian and Jason Riddley [2] utilizes Microsoft XP Remote Desktop to provide

users with complete control over the laboratory PC, enabling remote access (Figure 2.2).

The FPGA development board, specifically the Xilinx Spartan-3E Starter Kit, serves as the

target for hardware interfacing. As illustrated in Figure 2.3, the control of the development

board is facilitated through the LabView GUI and the NI PCI-6025E/CB-100 data acquisition

hardware. The system follows 7 stages for its digital design process, allowing for

programming, verification, and modification. Additionally, the system demonstrates its

flexibility by supporting additional equipment through the interface. This remote access

technique offers numerous benefits and enhances FPGA-based experimentation in

educational settings.

Figure 2.3 - The GUI showing the FPGA development board – Source [2]

7

2.3 ATMEL AVR ICSP based on Wi-Fi and ZigBee

In the research of “Wireless ATMEL AVR In-Circuit Serial Programmer based on Wi-Fi and

ZigBee” [3] various implementations to allow remote programming in microcontrollers have

been reviewed to address the limitations of traditional programming methods. This led to the

introduction of FOTA which is a method that is used to remotely update the firmware of

embedded devices to keep them up-to-date and bug-free extending their lifetime. The paper

presents an ICSP based on an AVR microcontroller, which when combined with a Wi-Fi or

ZigBee module, it enables the remote programming of its target microcontroller. The

presented wireless programmer can read, write, verify the EEPROM and Flash memories, and

modify the fuse bits. The system has three components Figure 2.4 a target microcontroller, a

Wi-Fi programmer, and a PC/Phone subsystem which includes compiler software, burner

software, and a Wi-Fi Virtual COM Port Converter software.

The system was tested and validated with both the Wi-Fi and ZigBee modules which are

used to handle the wireless communication between the PC and the remote programmer.

Figure 2.4 - System Block Diagram of Wireless Programmer – Source [3]

8

Overall, the paper focuses on the development of a wireless ATMEL AVR ICSP based on Wi-Fi

and ZigBee. Highlighting its potential in enabling remote programming and debugging of

microcontrollers. Concluding that the system can be utilized in educational and academic

projects as well as in industrial systems.

2.4 Development and Application of Remote Laboratory for Embedded

Systems Design

Similarly, another research developed RELDES (Remote Laboratory for Embedded

Systems Design) [4]. The proposed approach aims to improve the current state of the art in

embedded systems design, allowing to accelerate stages of hardware-software integration

and testing. This system uses a server to provide access for testing and programming, while

it also enables visual feedback through a camera feed. The server can compile a code that is

received from a client and return the compilation results. Consequently, it enables code

upload upon microcontroller availability or applies a client queue for the in-use hardware.

Figure 2.5 - Overview of RELDES – Source [4]

9

2.5 Web-based User interface with RPDs interaction

In the research of “Remote Programming and Reconfiguration System for Embedded

Devices” [5] the approach of a remote management add-on system, specifically resource-

constrained wireless sensors and IoT nodes was presented for embedded devices. The system

allows for remote management, operation monitoring, and firmware updates and can be

easily customized for various microcontrollers or other programmable logic chips (Figure 2.6).

Providing a Web-based UI that enables interaction with the connected RPDs, also allows the

flexibility for modification to allow remote laboratory access for educational purposes. A

proof-of-concept prototype has been successfully developed and evaluated using commonly

available hardware. The implementation utilizes standard protocols and interfaces, providing

flexibility and versatility. The proposed system addresses the challenge of remote

management and firmware updates for embedded devices in IoT systems, offering a practical

and adaptable solution.

Figure 2.6 - Communication flow of RPD system – Source [5]

10

2.6 Remote labs based on the ESP32 and NOD-red

The research by Abekiri, N. [6] aims to address the challenges faced by educational

institutions, during the COVID-19 pandemic, where conventional teaching and laboratory

work were restricted or disrupted. To accomplish this, the researchers utilized LMS Chamilion

and Node-RED to create an interactive environment that allows students and teachers to

access the laboratories remotely via the MQTT protocol. Connecting an ESP-32 to the

instruments and I/O devices, the platform enabled students to control the targeted systems

and acquire real-time data. Additionally, with the ESP-32 CAM, a live video was provided from

the lab.

The software was built on Node.js offering input-output nodes to allow scenarios to be

represented graphically (Figure 2.7). Users can further customize these scenarios using the

included JavaScript editor. The Node-RED, in conjunction with Mosquitto as a broker,

facilitates the transformation of ESP32 messages to JSON format through the MQTT protocol.

This ensures seamless communication between the remote access platform and the

laboratory instruments.

Figure 2.7 - Software Architecture – Source [6]

11

2.7 CAD Tools

 To utilize the previously mentioned platforms, a suite of different CAD tools is needed to

aid in the development and compilation of the respective codes. Various publicly available

platforms can support the unique demands of logic design, FPGA development, and

microcontroller programming. Tools such as Logisim and Digital Works are user-friendly

solutions for logical design, providing visual circuit creation and simulation. For FPGA design,

Quartus Prime and Vivado offer advanced features for design, simulation, and programming.

Microcontroller programming can be accomplished utilizing environments like Arduino IDE,

Atmel Studio, and MPLAB X IDE, each designed to accommodate different processor

architectures and complexities providing an integrated environment for writing, compiling,

and uploading code to microcontrollers.

2.8 WebLab-PLD

In the research “Evolving towards better architectures for remote laboratories: a practical

case” [7] the system utilizes WebLabs for students to access remotely and control hardware

using TCP/IP and monitor the progress through a web camera or any other means. Further, it

explores the different implementations of web labs before presenting the WebLab-PLD. This

system is made to control PLD programmable devices allowing students to access and control

the equipment through a website that allows them to upload a Jedec file, change inputs, and

Figure 2.8 - Last Iteration Software Architecture – Source [7]

12

see the results over a web camera. The research goes through multiple iterations of this

system before presenting the last iteration showing the process and evolution from 1 user, 1

server, and 1 programmable device to multiple users, 1 server, and multiple programmable

devices Figure 2.8.

The last iteration replaced the RS-232 cable which was used for communication to the

server with a micro server to allow commutations through HTTP using the XLM encoding

standard, transforming each programmable device to a networked node, and enabling

communication between them without using the server.

2.9 An Embedded System for Remote Access of Microcontroller for University

Laboratory Exercises

In this thesis by Athanasios Kalliontzis at the School of ECE, Technical University of Crete

[8] an embedded system for remote access was designed and implemented. The remote

access was achieved through a website that is stored on the ATmega32A and hosted by the

Figure 2.9 - Schematic diagram of the Platform – Source [8]

13

ESP12-E module. The platform aims to allow students to remotely program a target

microcontroller such as ATMEGA328P and receive graphical feedback that is achieved using

an I/O port expander to read or set values for specific ports of the ATMEGA328P. The

ATMEGA32A-PU uses a binary file and the AVR910-ISP protocol [9] to program the

ATMEGA328P through the SPI protocol (Figure 2.9).

To use the system a user must log in to the web application (Figure 2.10). The web

application offers various functionalities such as:

• code upload for microcontroller programming

• Chip erase

• program verification

• microcontroller reset

• Adjustment of input values within the application

• Display of output values for ports PD0-PD7

• Activity/Action report

Figure 2.10 - Main Web Page of Remote Lab – Source [8]

14

Chapter 3 Methodology

3.1 Goal and Objectives

Figure 3.1 - Overall Layout

15

The goal of this thesis is to expand a previously developed to support multiple users and

assess the technology and viability of the proposed system toward its integration into an

educational environment. Developing an educational platform requires each aspect to

support the desired functionality. To ensure that the platform is capable of handling multiple

users facilitates remote access, and enables interaction through uploading files or commands

to a microcontroller and providing real-time visual feedback.

The block in Figure 3.1 represents the necessary software utilized in the platform as

described in the sections below. To transition the existing single-user system into a multiple-

user setup, several changes are required. These include the implementation of a user login

system to manage multiple users' access and a reliable file transmission process must be

developed to facilitate seamless interaction between users and microcontrollers. Also,

ensuring real-time video feed delivery to connected users is a key aspect of the platform.

Further, expanding on aspects such as the system's flexibility, expansibility, and scalability is

vital for a better understating of the platform’s potential applications.

 To ensure a common understanding of the terminology used throughout this thesis, the

term "system" refers to the hardware and software components. Specifically, the system

includes the ESP32-S Wi-Fi module, ATMEGA32A, ATMEGA328P, ATMEGA168P

microcontrollers, and the ESP32-CAM camera module. Whilst, the term "platform" represents

the complete ecosystem. Including the user interface (UI), the server, and the database

infrastructure along, with the “system”.

3.1.1 User login and reservation slots

 From the perspective of the end user, the student should be able to obtain access to the

system by logging in with some form of credentials, which could vary from his personal login

information. Further, the access obtained should be limited in time, so that it will allow other

users to use the platform afterward.

 Necessary for the achievement of these goals, is a creation of a user interface in which the

user will be able to log in. To establish that the input credentials are valid, the system should

16

have a database, which will be used to store and cross-match the input data with the stored

valid credentials. Upon verification, it should then allow the user to choose various fixed

timeframes in which access will be granted. Further, the system should be able to revoke the

access from a user once the set time-period expires. Lastly, to view and edit the database,

authorized personnel should have a way to access the database for view and modification. To

ensure a basic level of security, the communication between UI and the database should be

encrypted.

 The communication between the login system and the database can be established

through two possible methods: either directly through the application or a server. In the direct

approach, the application itself connects to the database to fetch and verify user login

credentials. Alternatively, in the server-based approach, the login system communicates with

a server that acts as an intermediary between the application and the database. Though the

low scale of the project would require fewer procedures and equipment to operate in the

application-based approach, the server-based approach is chosen as it is in line with the pre-

existing technologies of educational institutions, and their scalability.

During the setup procedure (section 4.2.1) a database is created on the institution server,

as well as an intermediary portal which will establish the communication between the server

database and the UI which will be installed on the user's system (Figure 3.2).

Figure 3.2 - Server Communication Diagram

17

The database consists of a single table (Figure 3.3), which can further be altered to

withhold additional information according to the necessities of each institute. For this

experiment, it holds the essential operating parameters, such as the username, password,

client, and reservation time. The program holds for each available slot the client which

reserved the given module and the reservation time. More information about the database's

operation can be found in section 4.2.

The flow chart in (Figure 3.4) above, illustrates the operating procedure for the login stage.

In this stage, the user inputs their credentials to the system. This packet is then sent through

the server into a query, which looks for any records containing the same data.

Figure 3.3 - Database Fields

Figure 3.4 - Login Stage

18

Initially, the system checks if the credentials of the user are already found in any of the

reservation slots. In this event, the system should allow the user to continue using the system

without denying access, or allowing for a second reservation to be made. If no match is found

the system, then checks if any of the four slots are available for reservation. If there is an

available slot, the user is prompted to the reservation stage, otherwise, access is denied.

Once prompted to the reservation stage, the user can select from a dropdown list a

duration to complete their reservation. This information is then used to update the database’s

first available slot with the user’s credentials and the reservation time.

Figure 3.5 - Reservation Stage

19

The flow chart in (Figure 3.6) above, illustrates the operating procedure when there are

no available time slots. A query looks for the closest available time that a slot is obtainable

and notifies the user.

3.1.2 File Transmission

The file transmission must happen reliably each time no matter the network conditions.

Files should reach their destination without any data loss to ensure the system's seamless

operation. Therefore, when evaluating available options for sending files it, is important to

prioritize reliability. Responsiveness is also a consideration to maintain a smooth user

experience.

To achieve a fast and reliable file transamination, the chosen method must have the

capability to handle binary files, as that is the format used by the system. Additionally, file

transmission should happen in chunks for example 256 bytes each time or as large as the

system's buffer allows. Considering that storing files in the system may not be feasible due to

the limitations of the microcontroller's memory. Further, the system must be limited to

receiving one file at a time. Permitting more than one file at a time the system will require

more buffers (memory) and processing power. Further, explanation in section 3.2.3.4.

Figure 3.6 - Unavailable Slot Stage

20

 The file transition can be broken into 3 stages. In the first stage the end user can choose a

file to be Uploaded. The selected file must be in HEX (Hexadecimal) or BIN (binary) format.

After the user chooses a file, the application checks whether that file is in binary format. If

not, the file gets converted and saved to the user’s PC for future use. For the upload to be

successful the application must connect to ESP32-S (Wi-Fi module) which is responsible for

receiving and passing data to the ATmega32A (Figure 3.7).

 Based on the file transmission requirements, WebSockets proves to be a suitable method.

WebSockets offer bidirectional communication ensuring efficient data exchange between the

application and the Wi-Fi module. To ensure reliable transmission and avoid conflicts, the

ESP32-S should only accept one connection at a time. If a user is currently uploading a file and

another user attempts to upload simultaneously, the application will continuously attempt to

Figure 3.7 - Send File/Command flowchart

21

connect to the ESP32-S. The connection is established when the ongoing file transmission is

completed.

 When a connection is established, the application sends essential information to the

master microcontroller (ATMEGA32A). This information consists of a client number, which is

used to identify the file's destination along, with the file size to enable the microcontroller to

identify the end of the file. Afterward, the application reads and sends the file in chunks, this

allows the implementation of a simple flow control. Between each transmission, the

application waits for a confirmation from the Wi-Fi module which is sent after the data are

passed on to the ATMEGA32A.

 This method allows the system to efficiently control memory usage but also to ensure that

large files can be transmitted without overwhelming the master microcontroller. Once all the

data are sent, the connection between the application and the Wi-Fi module is closed allowing

other users to connect a interact with their microcontroller.

 In the 2nd stage, after a connection is established the Wi-Fi module waits for data to

arrive. When the data transmission is completed, a function is called to write that data over

Figure 3.8 - ESP File Receive Flowchart

22

to USART for the microcontroller to read. This process is repeated until the connected user

closes the connection. Once a connection is closed the internet module can now establish a

connection with other users (Figure 3.8).

 In the final stage, the master microcontroller (ATmega32A) reads the data serially from

the Wi-Fi module and stores them in a buffer. To initiate the programming procedure or to

perform any other desired function the received data are compared against some keywords

(Figure 3.9). The master microcontroller before initializing the programming procedure

expects to receive commands and client identifications only, any other data gets discarded. If

a client identification is received then a file size is expected. When the file size is received the

programming can start. Since the programming happens in pages the microcontroller waits

Figure 3.9 - ATMEGA32A Receive File

23

for the buffer to fill or reach the end of the file. To successfully, program a slave microcontroller

(ATMEGA328P or ATMEGA168P) 4 stages are used. Further, explanation in section 4.2.7.4.

3.1.3 Real-Time visual feedback

 Providing users with real-time visual feedback is essential for the feasibility of the

proposed platform. Users should experience minimal latency between the camera feed and

its display on the user interface and minimal frame loss. The quality of the stream needs to

be good enough to differentiate the LEDs. Further, the stream should require a minimal

amount of bandwidth to allow the application to be usable in case of an inconsistent network

connection.

 There are several possible ways to accomplish real-time video feedback. One way is for

the ESP32-CAM to host a website where the stream will be posted. Then the application would

connect to the website capture the stream and display it in the UI. However, this method

requires a web server capable of handling multiple connections, which might require more

processing power than what is available on the ESP32-CAM.

 Another feasible approach is to broadcast the frames from the Camera module to the

application utilizing the WebSockets communication protocol. The frames that way will be

broadcast in real-time and the application can process the frame and update the UI with the

new frames instantly. The latter approach is preferred due to its simplicity, efficiency, and

direct connection between the ESP32-CAM and the application. This ensures that the video

stream reaches the user interface with minimal latency.

24

 For the stream to reach the end user, the camera shares its IP address with the server. The

server sends that IP to each instance of the application. The application then, using

WebSockets connects with the ESP32-CAM. To reduce the required bandwidth a frame

interval is introduced which can be calculated based on the time a frame needs to arrive at

the application. This ensured that no or little frames would be lost. To send the frames to the

UI a connection is established the moment the log-in process is completed. When the interval

passes, a frame is sent to all connected users, and the UI is updated with the new frame (Figure

3.10).

 In this approach, a camera is used for 4 users. The stream gets divided into 4 parts by the

application and each user gets to see only its allocated microcontroller. Based on availability

and the budget for the overall system the university can use one camera for each

microcontroller allowing a better stream quality. Further discussed in Future work.

Figure 3.10 - ESP32-CAM Flowchart

25

3.1.4 Multiple users

 The systems need to allow only a certain number of users at once. This number should be

determined by the number of the available slave microcontrollers. While multiple users are

using the system, its performance and reliability should not be affected. Further, each

microcontroller must be programmable and receive commands only from its assigned user.

 To handle multiple users a set of rules needs to be followed to avoid conflicts and provide

a fair allocation of resources. First, the number of available microcontrollers needs to be

predetermined to avoid non-existing resources being allocated to users. Based on that

number a server should be able to allocate all the available resources starting from number

1-4. The number also indicates allocation priority for example if we have multiple systems like

A and B each consisting of 4 microcontrollers. The first microcontroller to be allocated is A1

and then B1, not A2. This will reduce the system's load by using all available resources equally.

Also, the server needs to free those resources when their reservation expires to allow other

users to use the system. To allow an automatic log-out function to work properly a way is

needed to inform the application about each user’s period of reservation.

 When users enter their credentials and the verification is completed, the server checks if

the user has a reservation. If so, the server sends the corresponding client number to the

application along with the remaining time of the reservation. The client identifier is sent

before each file or along with commands to the ATMEGA. The ATMEGA then identifies the

destined microcontroller and performs the necessary actions. That helps the system to avoid

collisions and provides access only to the user’s microcontroller. The application revokes

access to the user when its reservation expires and empties a slot to enable other users to use

the system. Also, the limit of allowed users is set by the server.

26

3.1.5 Flexible

 In terms of flexibility, the proposed platform should aim to allow the integration of various

components that are available and widely used by the institute. It must support multiple

microcontrollers, both for the main microcontroller which acts as the master of the system,

and for the slave microcontrollers.

 To achieve flexibility, the system should be able to identify and distinguish between

different slave microcontrollers. The UI should provide clear information about the type of

microcontroller a user is assigned and even be allowed to choose which microcontroller they

want to reserve. By being able to select a specific microcontroller, users can learn to identify

which type of microcontroller is more suitable for them based on their project's needs.

 The flexibility also extends to the possibility of running the main code, designed for the

master microcontroller (ATMEGA32A), on other microcontrollers with similar pinout and

oscillator speeds. As for the slave microcontrollers (ATMEGA328P), the current version can

support only ATMEGA microcontrollers which are programmed in pages (not Bytes) and have

up to 32kB of memory.

3.1.6 Expansion Possibilities

 Considering any expansion possibilities of the platform in the development stage ensures

that it will potentially remain relevant over time. An expandable platform can be easily

adapted to be used in different courses. Offering the flexibility to expand if its user's needs

change over time.

 To ensure that the platform could expand in the future the microcontroller's different pin

capabilities like support for I2C or USART should be assessed. Having access to those pins

allows for future additions to expand the platform's capabilities. For instance, the platform

could be used in fields like robotics just by allowing the potential integration of a motor

controller and sensors should enable students to program and control robotic systems

remotely.

27

 For any new expansion to be integrated effectively into the platform, the documentation

should be regularly updated with guidelines on how to use any newly added module. Also,

testing and evaluation of all modules after any new addition is required to ensure

compatibility and to define the module's capabilities to provide users with ample instructions

for the new modules. Additionally, the UI should be updated, if necessary, to support the

operations and interactions required by the newly added components.

 While the current platform was developed and tested without additional modules, certain

pins were left unused, making them available for connecting supported modules. For

example, pins that support USART and the I2C protocol remain accessible, providing users the

freedom to interface with modules supporting these communication standards.

3.1.7 Scalable

 A scalable platform must be able to adapt to the institute's different needs over time. It

must be able to scale in both ways upwards and downwards depending on current needs.

Offering cost-effectiveness and allowing spare parts to be reused in other projects.

 For any platform to be scalable it should offer the flexibility for administrators to add or

remove components as required. To accomplish this the system must be designed to handle

multiple instances of the system. Ideally, a truly scalable platform can be replicated by creating

a copy of the existing system and deploying it as needed. Permitting the platform to utilize all

available resources without any additional changes. While the application itself requires no

modifications to handle any number of additional systems, certain changes are necessary for

the server and database to achieve full scalability.

 Due to time and resource constraints, the platform is not fully scalable at this stage. Future

work could focus on improving the scalability of the platform. Addressing the server and

database considerations could enable the platform to handle more users and be sustainable

to be used as an educational platform.

28

3.2 Apparatus

 This section provides an overview of the hardware and software components used in the

platform and their selection criteria. Providing a clear understating behind each choice to

accommodate the platform. Further, the platform layout is presented along with connection

diagrams for each hardware component.

3.2.1 Platforms Connection layout

 The overall platform layout as illustrated above in Figure 3.11 consists of a server that acts

as an Intermediate for the UI and database. The system supports up to 4 simultaneous users,

each of them interacting with their microcontroller independently. An ESP32-CAM camera is

utilized to provide a live stream, allowing users to observe results in real-time.

 The ESP32-S communicates with the ATMEGA32A within the STK500 development board

through the USART communication interface providing a bridge between the Wi-Fi network

Figure 3.11 - Platforms Connection Layout

29

and the master microcontroller. Allowing the reception of files and commands from users via

the UI.

 Also, the system includes four slave microcontrollers consisting of two ATMEGA328P and

two ATMEGA168P. These microcontrollers are connected to the ATMEGA32A using the SPI

interface. Overall, this architecture allows multiple users to interact with the platform

simultaneously, observe real-time results, and control a slave microcontroller using the user

interface.

3.2.2 Hardware Components

 Illustrated above is the connection of the selected hardware components. The

selection criteria are mentioned in the sections below providing an overview for each choice.

3.2.2.1 Selection Criteria

Several factors were taken into account in the selection of the hardware components.

Primarily, as the main functionality of the embedded system is focused on the interaction

between the end-user and the slave microcontroller, the selected type and specific models of

slave microcontrollers acted as the main determinant for the selection of all other equipment,

to enable compatibility. Furthermore, the selection had under consideration the fulfillment of

the additional objectives previously mentioned, whilst taking into consideration the product's

accessibility and cost-effectiveness.

Figure 3.12 - Hardware Layout

30

3.2.2.2 ATMEGA328P & ATMEGA128P – Slave Microcontroller

The selection of the slave microcontroller should fulfill various technical characteristics to

ensure the desired functionality of the embedded system. Firstly, the microcontroller should

support the synchronous serial communication interface (SPI) protocol to allow programming

using the AVR910 protocol, along with ground and Vcc out pins. Even though these are usually

found in most microcontrollers, for this research the controllers should also include digital

and analog i/o pins and should allow connectivity with a timer crystal.

Taking into consideration the most common microcontrollers used in educational

environments, the ATMEGA328P was chosen to fulfill two of the four available slots. The

ATMEGA328P has a very low cost, has ample memory, and plentiful digital and analog i/o pins

which should accommodate future needs for additional components to be inserted into the

board. To test the ability of the system to accommodate different models of microcontrollers,

the ATMEGA168P was chosen, as it possesses half the memory compared to the

ATMEGA328P. This should give an idea of any potential issues that could arise using a

different microcontroller or a microcontroller with less memory.

Furthermore, based on available GPIO pins and according to the specs of the selected

microcontroller each of the slave microcontrollers got two software buttons and four LEDs.

Figure 3.13 - ATmega328P and ATmega168P Diagram

31

The number of LEDs was decided first to occupy only the analog input pins. In this case the

pins from PC0 to PC3 while leaving unused the pins PC4 and PC5 that support the I2C protocol.

Further, the number of buttons was chosen based on the number of LEDs and they were

connected to the pins PD2 and PD3. Allowing users to utilize the interrupt functions of those

pins. Also, the 16MHz oscillator provides sufficient processing power for the microcontroller

while ensuring stable and accurate operation.

3.2.2.3 ATmega32A - Master Microcontroller

The selected microcontroller should be able to act as the system's master microcontroller.

It should be capable of programming the slave microcontrollers using the AVR910 instructions.

Also, ample I/O pins are required to support the necessary functionalities. Such as software

buttons for each slave microcontroller, along with their individual reset lines. Further,

although most AVR microcontrollers support protocols such as USART and I2C the selected

microcontroller must support either to communicate with the Wi-Fi module.

Considering widely used microcontrollers in educational environments and other

applications a few options were available. Access to more detailed guides and supported

libraries was also a consideration for the selection. Allowing to simplify the development

process, troubleshooting and finding solutions to commonly known issues. As a result, two

options were considered the ATMEGA16A and ATMEGA32A. Since, the ATMEGA32A offers

double flash memory and SRAM, it was chosen to act as the systems master microcontroller.

Figure 3.14 - ATMEGA32A Diagram

32

3.2.2.4 ESP32-S - Wi-Fi Module

The selected Wi-Fi module should be reliable, cost-effective, and easily programable. A

viable option could be the ESP8266 System on Chip (SoC). Widely used in IoT devices, this SoC

comes with default firmware containing AT commands, enabling internet capabilities for any

microcontroller. Additionally, it is compatible with the Arduino IDE, thus simplifying the

programming process. A module utilizing this SoC is the ESP12-E which is a more suitable

choice for the early development stages.

Another more advanced and powerful option is the ESP32-S module containing the ESP32

SoC and providing compatibility with WPA2-Enterprise networks. This makes it more suitable

to be deployed in more robust and secure networks that require WPA2-Enterpraise

compatibility.

While both the ESP12-E and ESP32-S offer Wi-Fi connectivity, the ESP12-E is preferred for

its cost-effectiveness. The ESP32-S was chosen because it supports WPA2-Enterprise, making

it an appropriate option for settings that demand higher levels of security.

Figure 3.15 - ESP32-S Diagram

33

3.2.2.5 ESP32-CAM - Camera

The selected camera for the system should be reliable, cost-effective, low power, easily

programable, and have support for the WPA2-Enterprise network. A compelling choice is the

ESP32-CAM which combines an ESP32-S SoC with the OV2640 camera sensor. The 2MP

OV2640 camera sensor is an entry-level camera module and offers stability and reasonable

video quality. Also, it is programable using the Arduino IDE and an FTDI module. The camera

module could also be upgraded if a different streaming quality is required. For the more

powerful 5MP OV5640 camera sensor or other supported modules.

For the platform's needs, the ESP32-CAM with the OV2640 sensor provides a well-

balanced and cost-effective solution. It meets the requirements for reliability, low power

consumption and support for WPA2-Enterprise networks.

Figure 3.16 - ESP32-CAM Diagram

34

3.2.3 Software Components

 The software components also take part in providing a seamless interaction between

users and the embedded system. The software components and their corresponding

functionalities are described in the section below. The software generally could be divided

into two main sections: the User Interface (UI) and the Backend.

3.2.3.1 Programming Languages

 For the development of the User Interface (UI), a high-level programming language is

required. Python was selected since, it offers an extensive standard library, ease of use, and

availability of GUI frameworks like Tkinter. Further, the database can be created utilizing

Python’s SQLite3 library. Access and exchange of information could be established between

the database and server by also using sockets and the SQLite3 library. On the other hand,

programming microcontrollers require a low-level programming language to offer direct

hardware control, efficient memory management, and fast execution speed. Atmel Studio

offers support for both C and assembly languages. The wide variety of supported ATmega

microcontrollers makes it ideal for programming the ATMEGA microcontrollers. While ESP32-

S and ESP32-CAM utilize the Arduino IDE with its modified version of C++.

Figure 3.17 - Software Components

35

3.2.3.2 User Interface Design

Designing the User Interface (UI) poses several challenges. One of the main challenges is

to seamlessly synchronize the interface with the server which acts as the intermediate

between the database and UI. Allowing user authentication, reservation management,

microcontroller assignment, and providing the IP addresses for the video stream, and Wi-Fi

module. Also, it is desired for the graphics to have a modern look therefore, the selected GUI

framework was not Tkinter but a similar UI library based on Tkinter called CustomTkinter [10].

Booting the application, the user should be presented with the login portal. To access the

platform a valid set of credentials is required. Upon verification, one of three possible actions

can occur. The first possible action is to be prompted with a reservation time selection porta.

Users could choose from a dropdown menu containing all the available periods, and their

desired reservation period. Which then should be synchronized with the database, ensuring

a reserved microcontroller for the specified period. Another possible action is to directly

Figure 3.18 - User Interface Flowchart

36

access the platform's UI without requiring to make a reservation this should happen only

when a reservation already exists in the database. Lastly, a notification panel is essential to

inform users when there are no available reservation slots along with information about the

next available slot.

After credential validation and reservation period selection, users should be directed to

the platform's UI. The User Interface could be divided into two distinct parts, the control panel

and a frame containing the live video streaming. All useful information to the user should be

displayed in the control panel, along with the UI elements. The information provided by the

control panel must contain the assigned slave microcontroller model, reservation expired

time, and which file is selected for uploading. Further, it should contain UI elements such as a

file selector to browse and select files and buttons to enable specific actions. Each button is

required to trigger a different desired function for the system (start the uploading

process/programming, send commands). The frame containing the live video stream needs to

be refreshed regularly as new frames arrive and process the incoming frame in such a way

that each user gets to see only its assigned microcontroller. A requirement for the refresh

process is to occur without affecting the User Interface responsiveness.

Moreover, it is mandatory from the UI to log out any users with an expired reservation and

erase their slave microcontroller. Erasing a microcontroller must happen only when the user

desires, and when their reservation is expired. If the user chooses to exit the UI before a

reservation expires the slave microcontroller should not be erased.

37

3.2.3.3 Backend Development

The back-end software development process includes issues related to Wi-Fi module

functionality, server functionality, master microcontroller tasks, and video streaming (Figure

3.19). The primary objective is to ensure reliable file transmission and commands. To achieve

this, the connection between the Wi-Fi module and the UI should utilize Websockets, which

was determined to be the most suitable approach after considering various available options.

The Wi-Fi module should accept new clients sequentially meaning that while a user

uploads a file no other users can access the Wi-Fi module to upload a file or commands this

approach is further discussed below. Also, a flow control implementation could be essential

to manage larger file uploads.

The server should be able to interact with the database and handle multiple user requests

at once, without creating races (e.g., both users try to acquire the same slave microcontroller).

All the data involving user authentication, reservations, and client assignment should be

processed by the server before being forwarded to the application. Also, communication with

the application should be established through a secure connection.

Figure 3.19 - Backend Components

38

The master microcontroller should be able to receive commands and files via the Wi-Fi

module. Also, differentiating those input destinations is essential to accomplish the system's

desired functionality. File handling capabilities must exceed the allocated buffer size to allow

flexibility in file sizes and improved resource utilization. Further, in order to provide a

comprehensive user experience, all desired functions for all slave microcontrollers must be

supported.

Lastly, the camera should offer users a consistent and stable video streaming experience.

The video quality must allow users to differentiate the available LEDs and the latency minimal

to prove a smother interaction with the system.

3.2.3.4 Considerations and Decision for File Transmission and Programming

This section compares the sequential and simultaneous approaches for file transmission

and the programming of the microcontrollers. The two different processes are presented

along with their possible implementation.

Implementing, sequential programming involves processing clients or tasks one at a time,

completing each task before moving on to the next. In this context, it means that the Wi-Fi

module accepts and processes clients in sequence. Before accepting a new client, the former

client must finish sending the file and the programing of the designated slave microcontroller.

This process also extends to task handling.

On the other hand, concurrent programming involves processing multiple clients or tasks

at the same time. This method allows for parallel execution, in which multiple clients can send

files and program slave microcontrollers without waiting for the previous task to be

completed. Also, this extends to task management which means if one user uploads a file

another can send and execute a command without being affected by other users’ actions.

However, implementing simultaneous programming would have introduced significant

complexity. The ATMEGA32A would have to perform a number of complex tasks to implement

the simultaneous programming method. It would have to track multiple clients and the pages

39

that they are programming. Manage multiple file receptions to ensure that they are processed

in the correct order. Introduce a delay in each cycle to ensure that the target microcontroller

is in programming mode before data is written.

For example, when the buffer is full, it writes the code to the selected slave

microcontroller. Then if a client wants to send data, it must save the page where the

programming was paused along with the destination and pull low the reset line (Reset

disabled) of the selected slave microcontroller. Afterward, it needs to pull the reset line high

(Reset active) for programming to begin for another slave microcontroller. Write the code,

save the page number and destination, and then pull low the reset line to be able to continue

with the previous or next client. This process would have to be repeated each time the

received buffer is full and the pages are written in the selected microcontroller.

This process would also require solving the problem of receiving multiple files at once and

differentiating them. Each packet of data must have a header for where it belongs, or users

must send data in chunks of a pre-defined size and wait for that to arrive before other users

can send theirs. This load could be the responsibility of the ESP32-S (Wi-Fi module).

Additionally, a delay of about 25ms needs to be introduced in each cycle after the reset line

was pulled high, ensuring that the target microcontroller entered its programming mode

before starting to write data.

Overall, given these complexities and the need to ensure reliable transmission, the

decision was made to pick the sequential programming method. This approach, while simpler

and lacks support for instant interaction with the system. It ensures reliable transmission and

avoids conflicts by processing one client at a time.

3.3 Assumptions and Limitations

40

 Various assumptions and limitations were considered throughout the experiment's

execution. Initially, the system compatibility was tested only on two types of devices,

regardless of their broad capabilities, due to component availability and consideration of cost-

effectiveness. The time delay between the virtual button trigger and visual feedback was

tested manually. While the application is designed to operate on multiple operating systems

including Linux, Windows, and MacOS, tests were conducted only on Windows and Linux

environments.

 Although the system should be fully operational without an STK, the tests were performed

with the master microcontroller in the STK. These tests only included basic functions of the

slave microcontroller such as digital out. Therefore, other features such as analog read and

write, and pulse width modulation were not tested. The system does not accommodate a

method to receive messages from the master or slave microcontroller, therefore this prohibits

testing for serial communication.

 Lastly, as with any online system, regardless of its intended use, it is good practice to

assume all possible exploitations of the systems. However, as the security of the system is not

of primary concern for this research, it is assumed that users have no malicious intent. Further,

the database reservation slots operate under the assumption that the user’s system

DATETIME is similar to the DATETIME of the server system.

41

Chapter 4 User and Institution System Perspective

4.1 User Perspective

 The following section provides instructions for installing the application to the user’s

computer, using the application, and writing programs for the provided microcontrollers.

Further, the provided instructions are verified for devices using Windows and Ubuntu

Operating Systems but not for MacOS.

4.1.1 Installation instructions for Ubuntu/Windows

 Before running the code for the application, follow these steps to install the required

Python packages from the provided folder:

1. Ensure that your computer has Python 3 Installed.

2. Open a terminal and navigate to the directory where the "requirements.txt" file is

located.

3. Use pip install -r requirements.txt command to install all the necessary packages.

4. If a specific packet was not installed correctly, use the pip install

<package_name>==<version> command to try installing it separately. The correct

name of every packet along with its version can be found in the "requirements.txt"

file.

4.1.2 Using the application

Before running the application script, connect to the university’s network directly or via

the university's VPN. Afterward, open a terminal and navigate to the directory that contains

the “main.py” file, and use the python3 main.py command to start the application.

https://www.tuc.gr/index.php?id=183

42

If any abnormalities are encountered during the application startup, it might be due to

the utilization of the CustomTkinter library for the GUI. In such cases, to resolve the issue

manually re-install the CustomTkinter library.

Once the application is launched a login portal is opened (Figure 5.2). Use the provided

username and password to log in. After the credentials are verified a reservation panel should

be displayed. Use the drop-down menu to choose the duration of the reservation (Figure 5.3),

which cannot be changed later. If the reservation expires while using the application an

automatic logout will occur. Further, if the application is closed before the time expires when

login back in the reservation will still exist unless the period has expired (if a reservation

happens at 14:00 for 30 minutes it will expire at 14:30 under any conditions). The UI should

be displayed without the need for a reservation when a reservation exists. Lastly, if no slots

are available a notification panel will be displayed with information about the next available

slot (Figure 5.5).

At the main window, the control panel is located on the left side. There, a reservation

expiration time is displayed. The user's ID is next to the slave microcontroller part number

Atmega328P or Atmega168P. Followed by buttons that give access to the system's supported

functions. A file browser is included to search and select files along with an upload button to

Figure 4.1 - Available file
to be Uploaded

Figure 4.2 - Control
Menu

43

send the code file. At the bottom of the control panel the reset, erase, and the two buttons

labeled SW1 and SW2 are located (Figure 4.2). The upload button becomes available after

selecting a file as illustrated in Figure 4.1.

When selecting a file two options are available, to select a .bin or .hex file. The Atmel

Studio provides only hex files select the .hex inside the projects folder and the program will

create a .bin file and store it in the location of the project so it can be used the next time. The

.bin file is required to successfully program the microcontroller.

Before trying to upload any code is recommended to Erase the microcontroller first, and

upload the “Blink.bin” file before uploading any other code. This helps to verify that the

system is working properly. Before writing a program consult the “Blink” and “Buttons”

programs provided in the Example Applications section.

4.1.3 Writing programs

To write programs use the current version of Atmel Studio, create a new project select

the “GCC C Executable Project” option give it a name and then press “OK” Figure 4.3.

Figure 4.3: New Project

https://www.microchip.com/en-us/tools-resources/develop/microchip-studio
https://www.microchip.com/en-us/tools-resources/develop/microchip-studio

44

In the next windows select the allocated slave microcontroller name (ATMEGA328P or

ATMEGA168P) as illustrated in Figure 4.4. At the tools window which can be accessed by

pressing the Simulator (1st rectangle below) select the simulator from the options in the 2nd

rectangle in Figure 4.5.

Figure 4.4: Device Selection

Figure 4.5: Programmer Selection

2

1

45

Before writing any code, ensure that the F_CPU is set to 16MHz at the top of the code, as

shown in the Example Applications. This value corresponds to the frequency of the oscillator

used by the salve microcontroller. Failing to set the F_CPU correctly could lead to issues when

using functions or libraries that rely on this value for their operation.

To provide visual feedback, the slave microcontroller is connected to four LEDs on PortC

(pins 0-3). These can be set as outputs using the command DDRC |= 0b00001111; and then

the LEDs can be utilized as desired. Additionally, two software buttons are connected to PortD

(Pins 2-3). To set these as inputs, use the command DDRD &= ~((1 << PD2) | (1 << PD3));. For

guidance on how to check if a button is pressed, please refer to the Buttons example.

The .hex file is created when the program gets build (Build tab) and to locate the .hex file

(Figure 4.6 1st square) there is a path provided in the properties window 2nd square.

To upload the code and program to the microcontroller locate and select the HEX file using

the applications file browser. Afterward, the selected file presented in the control panel

should have a BIN extension and the upload button should be enabled. By pressing the

Figure 4.6: HEX File Location

46

button, the file is used to program the microcontroller. If everything is correct with the code

and the LEDs are utilized the desired output is expected in the video stream.

47

4.2 Engineer’s Perspective

 The following programs are utilized by the platform. Each programs functionality is

described in detail providing a better understanding of how the platform works. While it

equips engineers with the necessary information to make modifications and resolve any

issues that may arise.

4.2.1 setupdb.py

 Using the following command python3 setupdb.py will create the database table.

Table 1 - Database Fields and Types

 The table above contains all the required fields for the system's database. The username
and password cannot be Null and the username must be unique. The client number should
be from 1-4 since that is how many slave microcontrollers the current system supports. And
the reserve time is the time of expiration for the user’s reservation.

 Also, the script adds a few usernames and passwords to the database. To add a level of
security the passwords are encrypted with a sha256 encryption provided by the “hashlib”
library.

4.2.2 addUser.py

 This script is used to add a new user to the database using the following command inside
the database directory python3 addUser.py <username> <password>. The username and
password can be anything except “NULL” and the username must be unique (Figure 4.7).

Field name Type

username VARCHAR (255) NOT NULL UNIQUE

password VARCHAR (255) NOT NULL

client INTEGER UNIQUE CHECK (client >= 1 AND client <= 4)

reserve_time DATETIME

Figure 4.7 - Adding / Removing User From DB

48

4.2.3 removeUser.py

 To remove a user since only the administrator has access to the database only a username
is required. To remove the user, use the python3 removeUser.py <username> command
(Figure 4.7).

4.2.4 serverv2.py

 The server acts as an intermediate between the Database and Application, and it has the
following functionalities:

• authenticate users

• provide IP addresses for the system Wi-Fi modules

• add reservations to the Database

• provide the user's client number to the Application

• decline access if there are no slots available

• remove expired reservations from the Database

 The server script must be executed after the database is set up and before powering on
the system. To start the server, use the python3 serverv2.py command.

 The server has 4 threads each supporting a different functionality. Two threads are used
to receive the module's IP address. The other one is used to check for an expired reservation
every 15 seconds and remove it from the database. Further, the 4th thread is used to connect
with the Application receive the user’s credentials and authenticate them. In succession, if
the credentials match a database record it makes the following actions:

1. Checks if the user has a reservation, if it does it sends to the application the

remaining time for the reservation and the user's assigned client number.

2. If the user needs to make a reservation a search is performed to determine

whether there are any available slots. If a slot is available, it assigns a client number

to the user and waits for the reservation period to update the database with it.

3. If no slots are available, it searches the database for the closest expiration time and

sends that to the application.

49

4.2.5 CameraStreamWebSockets.ino

This Arduino sketch is used to program the ESP32-CAM. First, each GPIO is defined for the

specific module model which is an AI-THINKER. Then a username and password are declared

to be used to connect to the university's Wi-Fi. After that, there are two instances one for an

AsyncWebServer that is used to host an HTTP web page which allows to verify if the

connection to the university's network is established correctly this instance can be removed.

The other one is for a WebSocketServer which is used to send the frames to all connected

users. Moreover, a frame interval is introduced to control the time between frame captures

and broadcasts to the users.

The initializeCamera() function initializes the camera with specific configurations the most

important parts are the pixel_format which is set to jpeg to reduce data size, the frams_size

is set to VGA higher qualities are laggier, grab_mode to CAMERA_GRAB_WHEN_EMPTY the

Figure 4.8 - ESP32-CAM Flowchart

50

camera will grab a new frame when the frame buffer is empty, jpeg_quality is set to 8 which

provided the best result in terms of response, stability, and quality, and the fb_count is set to

1. This setting can change to accommodate the network conditions the camera will be

operating on.

The broadcastFrame() function broadcast the frames to all connected users.

The sendIPAddress() function sends the IP address to the server.

In the setup() function all the required initializations are made. The connection to the wifi

is established using WiFi.begin(), the initializeCamera() function is called to initialize the

camera, both servers get initialized, and the AsyncWebServer posts a Hello, world! message

to the IP address, and the sendIPAddress() is called to send that IP address to the server.

Finally, in the loop() function, webSocketServer.loop() is used to check for WebSocket

events, and using the interval every 50ms a new frame is broadcast.

51

4.2.6 WebSocketServer.ino

This Arduino sketch is used to program the ESP32-S. Also, it can program the ESP12-E by

changing the wifi libraries. This sketch uses a custom WebSocketServer library and the

WebSocketServer.h file can be found here on GitHub along with instructions on how to install

the library. Then a username and password are declared to be used to connect to the

university's Wi-Fi. After that, there is the WiFiServer instance with the port that is going to be

used and the instance of the WebSocketServer. Moreover, there is a Data string to store the

received data and a WiFiClient instance for the clients.

The sendIPAddress() function sends the IP address to the server.

Figure 4.9 - Wi-Fi Module Flowchart

https://github.com/morrissinger/ESP8266-Websocket

52

The writeString() function is called to write the received data to serial one by one.

In the setup() function all the required initializations are made. It sets up the serial

communication at 76800bps, connects to the Wi-Fi using WiFi.begin(), the server gets

initialized, and the sendIPAddress() is called to send that IP address to the server.

Finally, in the loop() function, It checks for a connected client, performs a WebSocket

handshake, and then enters a loop. There it reads data from the WebSocket connection and

calls writeString() to send this data over the serial connection. Then a delay function is called

making sure there is enough time to write the data. Then a response is sent back to the client

to inform that the data was received and in order to send more data or to disconnect.

4.2.7 Atmega32Av2.atsln

The main code for this project is in the Main.c file. This project includes the myAVR910.c,

SPI_At16.c, and usart.c files, along with their respective .h counterparts.

4.2.7.1 Usart file

This code includes routines for initializing the USART, receiving a character, transmitting

a character, and sending a string of characters.

The UART_init() function initializes the USART protocol. Specifies the baud rate and

enables transmission and reception of 8-bit characters. Also, the baud rate prescaler is

calculated based on the system clock and the desired baud rate and loaded into the

appropriate registers.

The USART_RxChar() function waits until a character is received (RXC flag in the UCSRA

register), then returns the received character using the UDR register.

53

The USART_TxChar() function waits until the transmit buffer is empty (UDRE flag in the

UCSRA register), then loads the character to be transmitted into the UDR register.

The USART_SendString() function writes a string of characters. This is accomplished by

calling the USART_TxChar() function for each character in the string. When a null character is

encountered that’s the end of the string.

4.2.7.2 SPI file

This code includes functions to initialize the SPI and to send and receive data.

The SPI_Init() function configures the necessary hardware settings for SPI communication.

It sets the MOSI (Master Out Slave In), SCK (Serial Clock), and SS (Slave Select) pins as output

and the MISO (Master in Slave Out) pin as input. It also configures the SPI Control Register

(SPCR) to enable SPI, set the microcontroller as the master, and set the SPI clock rate to

fosc/128.

The SPI_Write() function sends a byte of data over SPI. It writes the data to the SPI Data

Register (SPDR), then waits until the transmission is complete. After the transmission, it reads

the SPDR to clear the SPIF flag in the SPI Status Register (SPSR), which indicates that the

transmission is complete.

The SPI_Read() function reads a byte of data over SPI. It sends a the byte 0xFF to initiate

the SPI clock and waits until the reception is complete. Then it returns the received data.

54

4.2.7.3 myAVR910 file

The provided code is an implementation of programming an AVR microcontroller using

the AVR910 In-System Programming over the SPI protocol. The main function, program (),

manages the programming process, which includes entering the serial programming mode,

enabling programming, reading the microcontroller's signature, erasing the chip, and loading

and writing memory pages.

Further, the program () function has 4 different states. The first state named Starting is

used at the beginning of the programming and it pulls the reset line low (active) on the

selected microcontroller to enter the programming mode. Also, in this state, the

“enableProgramming” function is called to check if the microcontroller can be programmed.

Figure 4.10 - AVR910 Programing
Flowchart

55

The “program” function can also be called to erase the microcontroller not to program it. The

Starting is like the Little Data state but in the Little Data state when the pages are written the

reset line is pulled high to exist the programming mode. The Starting and Middle stages keep

the reset line low because the program expects more data. When the last bit of data is sent,

the state is Done to inform that no more data are expected and to pull the reset line high.

For the “program” function to erase a microcontroller it follows the same proses as

programming it needs to call the “enableProgramming” function to enter in programming

mode and instead of writing data it calls the “chipEraes” function to erase them. Then releases

the reset line and the erase is completed.

Finally, to write the code the “loadMemoryPage” function loads a page of data into the

microcontroller's memory buffer using the Load Program Memory Page command (0x40 for

low byte, 0x48 for high byte). The “writeFlashMemoryPage” function writes a page of data

from the memory buffer to the flash memory using the Write Program Memory Page

command (0x4C).

The enableProgramming() function sends the Programming Enable command (0xAC,

0x53), as specified in the AVR910 protocol, to the microcontroller, which is necessary to start

the programming process.

The readVendorCode(), readPartFamilyAndFlashSize(), and readPartNumber() functions

read the microcontroller's signature, which includes the vendor code, part family and flash

size code, and part number code, respectively. These functions use the Read Signature Bytes

command (0x30) from the AVR910 protocol.

The chipErase() function sends the Chip Erase command (0xAC, 0x80) from the AVR910

protocol to erase the microcontroller's memory, preparing it for new data.

The readProgramMemory() function reads a byte of data from the program memory using

the Read Program Memory command (0x20 for low byte, 0x28 for high byte).

56

The poll() function is used to wait until the microcontroller is ready for the next command.

4.2.7.4 Main file

This contains the main function for the Atmega32Av2.atsln project. It is used to initialize

USART, SPI, and all the required Ports are set as inputs or outputs.

Starting the CPU frequency is defined based on the oscillator that is used. All the required

libraries are imported and a buffer is declared to store received data. After, all the required

variables are initialized.

 The flowchart illustrates the functionality inside the Interrupt Service Routine (ISR) for

USART data reception. When a character arrives, the ISR is called. There the character is

Figure 4.11 – ATMEGA32A File Receive

57

stored in the buffer and a set of checks is performed. When a client is connected, it is expected

to send either a client number or a command. If none of them match the buffer is cleared.

When a command is sent the appropriate action is executed. If a client number is received

then the next expected information is a file size. When that is received the programming is

starting. There are 4 programming stages the Little Data which is used when the file was

received but the buffer is not full. The Starting stage for when the buffer is full and more data

are expected this stage writes the first two pages on the microcontroller. The Middle stage is

for when the buffer fills a second or third and so on. The Done stage is for when more than 2

pages were written and the buffer is not full but the file was fully transmitted.

The available commands are reset, erase, and 2 software buttons for each client. After

each action, the required rests are made like buffer reset, buffer index, stage indicators, file

size, page numbers, and button resets. The master microcontroller connects with the slave

microcontrollers using the Ports in Table 2. Each software button initially is set to High.

 For the master microcontroller to control the software buttons when a button press

command arrives a check is performed to determine the current state of the Pin Low or High.

Then the state is reversed and a delay of 20 milliseconds is called to make sure the Pin status

changed. Also, when an erase command arrives the software buttons Pin a reverted to their

original state.

Microcontroller Number Reset Software Buttons

1 PB0 PD2/PD3

2 PB1 PD4/PD5

3 PB2 PD6/PD7

4 PB3 PC0/PC1

Table 2 - Utilized Ports

58

4.2.8 Main.py

 The “main.py” file contains the code for the application. The user interface is configured

using the “CustomTkinter” libraries. The communication with the server is handled by the

“socket” library, the video stream frames are received utilizing the “websocket” library and

the file transmission also uses the “websocket” library.

 The TryLoginServer() function connects with the server to authenticate users, receive

client number, reservations expiration time or decline access if no slots are available. When

a client needs to make a reservation the load_reservation() is called and after the user selects

a reservation period that is sent to the server to update the database. If no slots are available

the show_next_client_time(time_only_str) is called to display the earliest time a slot is freed.

Further, if the client has already made a reservation the load_app(reservation_time_minutes)

is called to load the UI.

 Inside the load_app(reservation_time_minutes) after the UI is loaded, the reservation

time is converted to milliseconds, and a timer is set to automatically log out the user when

that time passes and the CameraStream() is called. The CameraStream() connects to the

camera module using the IP it was sent by the server. When a frame is sent it is processed

and divided into 4 parts since the system only uses one camera for 4 users. Afterward, only

the frame corresponding to the current user is displayed.

 Interacting with the UI when the select button is pressed the choose_button_event() is

called. A file explorer is opened which only displays HEX and BIN files. If a HEX file is selected

it gets converted to a BIN using the “hex2bin” function from the “intelhex” package and saved

to the directory of the HEX file. Also, the upload buttons get enabled to enable users to upload

the selected file.

 Pressing the upload button the upload_button_event() is called. This function tries to

connect to the ESP32-S to upload the file. When a connection is established a client

identification is sent (e.g., client1), the file size is sent and finally, the file is sent in chunks of

59

256 bytes. After each “ws.send()” an acknowledgment packet is anticipated before sending

more data.

 Sending commands to the system calls one of the following functions to send the user

identification, such as “C1” alongside the relevant command:

• Switch_button_event_1() sends C1SW1

• Switch_button_event_2() sends C1SW2

• Dev_Rst() sends C1Erase

• Dev_Ers() sends C1Reset

 Moreover, each window has an exit function that closes the application when called. The

exit_bot_Timer() is called when the reservation period expires. Before closing the application

the Dev_Ers() is called to erase the user's slave microcontroller and the stop_event.set() is

used to terminate the camera thread. The rest of the exit function simply closes the current

window except the exit_bot_app() which also stops the camera thread.

 Lastly, a logger is included in the application for debugging purposes and currently only

logs events where exceptions occur. There are additional functions related to the user

interface that are not described above and are responsible for managing the application's

visual elements.

60

Chapter 5 System Verification and Evaluation

5.1 Testing and validation procedures

 In this section, comprehensive testing and validation procedures are outlined to assess

the functionality of the developed educational platform. Each of the main objectives along

with the overall system is evaluated and the results are presented. Subsequently, the following

subsection provides the testing setup layout offering a better understating of the testing

environment.

5.1.1 Initial Development and Component Testing

 To test the system setup, the instructions included in the user guide in section 4.1 were

followed. Simultaneously, various procedures were followed to assess the functionality of the

system and identify any potential issues.

 To test the database setup, the database Python script was executed on laboratory

computers. The database was then opened to verify its successful creation. (Figure 5.1)

 Subsequently, the “server script” was executed on the laboratory computer, the

embedded system was powered on and connected to the institute's network, and the

application was installed on an external computer connected to the same network, acting as

the user computer. It should be noted, that the successful completion of these operations is

simultaneously confirmed by assessing its constituent operating parameters.

Figure 5.1 - Database Records

61

5.1.2 Login System and Database Testing

To assess the login stage, the database was deployed on the laboratory computer. To

ensure that the login procedure works as intended multiple credentials were logged within

the credential database. (Figure 5.1)

 Subsequently, the application was booted on the user’s system. As shown in Figure 5.2

above, the database system was successfully prompted to the application portal. To test the

validation procedure of the login credentials the following data shown below in- Testing Login

Entries were logged.

Table 3 - Testing Login Entries

Username Password Expected Result Result

user1 tuc ACCESS GRANTED ACCESS GRANTED

user1 Aa2A1As ACCESS DENIED ACCESS DENIED

user2 tuc ACCESS DENIED ACCESS DENIED

user52 “Sd12A!as” ACCESS DENIED ACCESS DENIED

NULL NULL ACCESS DENIED ACCESS DENIED

Figure 5.2 - Login Portal

62

The table indicates that all experimental results in column four, are identical to the

expected results. This confirms that only when a correct set of credentials is logged (row1)

access is granted. As row 3 is rejected, it means that the query correctly cross-matches the

data as a set and not exclusively. The rejection of the entry in row 5 indicates that the

application correctly identifies when no text is contained and therefore prohibits access.

Figure 5.3 illustrates the reservation panel which was prompted in the events where

access was granted. To test the reservation stage five trials were executed. Each had a unique

set of credentials from the database.

The first four did populate the database with the credentials and the reservation duration,

as well as the microcontroller slot number. (Figure 5.4)

Figure 5.4 - Database with Populated Fields

Figure 5.5 - Next Available Slot Panel

Figure 5.3 - Reservation Panel

63

The fifth login attempt was denied access as intended, regardless of the correct set of

credentials (Figure 5.5). It should be noted, that a sixth login trial was further executed, with

the credentials of the first user. The software did identify that the database included the same

credentials from the user, and it successfully skipped the reservation stage, thereby prompting

the user to use the User Interface for the remaining duration of their reservation.

With the expiration of the user’s time duration, the slots were updated to be empty and

available, whilst logging out the appropriate user. As shown in (Figure 5.6) “user5” no longer

has a reservation.

Lastly, as illustrated in (Figure 5.7) above running the appropriate scripts “addUser.py”

adds (user9) or “removeUser.py” removes (user 2) users as needed.

Figure 5.6 - Removed Reservation

Figure 5.7 – Adding & Removing Users

64

5.1.3 File Transmission Testing

File transmission tests were conducted to ensure that the application allows users to

select only the appropriate file types. During testing, it was confirmed that the conversion

from a hex file to a binary format works as intended. When navigating the user interface, only

the formats "hex" and "bin" were visible for selection, and selecting one of them made only

that format available for selection.

The automatic conversion was validated by observing that when a hex file is selected

without a corresponding bin file, the UI displays the file with a .bin extension. The newly

created file is now located in the same directory as the hex file, for future use. Additionally,

the application's upload button was disabled before file selection (Figure 5.9) and became

enabled after the selection (Figure 5.8) to enable users to upload their chosen files. This

ensures that when pressing the upload button, a file to be uploaded is selected.

To assess the correct arrival of files at the Wi-Fi module, a text file was used, making it

easier to verify data accuracy. Smaller files transmitted flawlessly, but for larger files,

inconsistencies were observed. To address this issue, the chunk size was reduced, and a small

delay was introduced in the Wi-Fi module between receiving and sending acknowledgments

Figure 5.8 - Control
Panel with a Selected

File

Figure 5.9 - Control
Panel Without a

Selected File

65

for received data. Allowing time for the data to be processed correctly. Repeating the test

demonstrated no data loss for larger files.

Considering that the files need to be passed to the master microcontroller, a similar test

was conducted. This time the master microcontroller output was observed. As before, some

adjustments are required due to inconsistencies when handling larger files. The necessary

adjustments included adjusting the USART Baud Rate.

Furthermore, a test was performed to validate that only one user can upload at a time. By

simulating two or more users attempting to upload different files simultaneously, it was

observed that the files arrived at the Wi-Fi module in succession, demonstrating the proper

handling of one user at a time policy.

5.1.4 Microcontroller Programming Testing

Following the file transmission tests, a series of programing tests were conducted to

validate the operation of the slave microcontrollers. The tests aimed to ensure the programing

method can handle various file types (provide different functionality) and sizes. Several

programs were written and tested using the STK500 for both types of slave microcontrollers

to assess their functionality before testing the system's programming method.

Firstly, a file smaller than the master microcontroller buffer was uploaded using the UI to

the user’s designated microcontroller. By observing the output of the slave microcontroller,

the successful programing process was confirmed. As illustrated in Figure 5.10 the expected

Figure 5.10 - Blink File LEDs OFF

66

output is for the two middle LEDs to be off. After, a few milliseconds the expected output is

for all the LEDs to turn on as illustrated below in Figure 5.11.

 This initial test ensured that the system's basic programming functionality along with the

file conversion above was working as expected.

Subsequently, interactive files that required user input, such as pressing buttons in the

user interface and observing the output on the slave microcontroller, were uploaded (Figure

5.12). This test aimed to verify that the intergraded software buttons work properly and users

could successfully send commands to the slave microcontroller without encountering any

issues.

Figure 5.11 - Blink File LEDs ON

Figure 5.12 - Buttons Test File

67

Pressing the SW1 in the control panel is expected to turn off the upper LED, as can be

observed in Figure 5.13. Similarly, pressing the SW2 from the initial state (Figure 5.12) the

expected output is for the lower LED to turn OFF. (Figure 5.14)

The final file upload tests involved larger files, that exceed the master microcontroller

buffer capacity by multiple times. These tests allowed the optimization of the USART and SPI

configurations to handle programming with large files without overwhelming the master

microcontroller.

Figure 5.13 - Buttons File Button1 Pressed

Figure 5.14 - Buttons File Button2 Pressed

68

5.1.5 Real-Time Camera Access Testing

The real-time camera access testing aimed to ensure that every user could access the

camera stream, observe the LEDs status, and interact with the system without encountering

significant delays. The system was connected to both the university network and a local

network to compare performance under different network conditions. Throughout the

testing, latency measurements were taken in various scenarios to evaluate the system's

responsiveness.

To assess the latency when receiving frames from the ESP32-CAM, two factors were

observed. Firstly, the time between uploading a program or sending a command and

observing the change in the end user’s UI was measured. Secondly, the minimal delay required

for LED status changes to be noticeable by the end user.

For the first factor, the “Buttons” program was used, as it initially sets the microcontroller

LEDs to a static stage, that allows changes to be observed. Further, it supports button pressing,

allowing measurement of the time between an action in the UI (e.g., pressing a button) and

the change in the video stream. For the second factor, the “MemoryRead” program was

suitable, as it consistently changes the LEDs every 0.5 seconds. While the actual minimal delay

cannot be measured precisely due to network intricacies. It should be more than 15ms since

that is the frame interval used by the ESP32-CAM, and by observing the output of the

“MemoryRead” program it does not require more than 0.5 seconds. Also, the results of the

tests that were contacted on both the university network and a local network showed lower

latency and support for better quality in the local network.

Moreover, the smooth frame delivery was assessed while multiple users connected to the

system or log out. The test confirmed that the stream for other users remains stable and

unaffected, maintaining a consistent user experience. Despite the increased latency and lower

quality, the experience remains identical in both network conditions. With minimal frame

losses and the UI remain responsive even when occasional frame losses occurred.

69

5.1.6 Multi-Microcontroller Integration Testing

To ensure the success of multi-microcontroller integration, testing focused on verifying

whether each user could upload different programs to their assigned microcontroller and

interact with it. Additionally, it was essential to assess whether running all the

microcontrollers simultaneously would create any stability issues and affect the system's

overall responsiveness.

For the initial test, all users were logged in and each user uploaded the same file in

succession. All users initially uploaded the same file to ensure that every microcontroller

performs the same.

After validating the microcontroller's correct operation, users proceeded to upload

different codes to their corresponding slave microcontroller individually, in pairs, and finally,

all together (Figure 5.15). This test validated that the system can handle multiple users trying

to program their slave microcontroller also, that each slave microcontroller can be programed

and controlled individually.

Figure 5.15 - All Users Upload Different Files

70

5.2 System Evaluation

The system was evaluated through a series of tests designed to utilize all available

resources. These tests included writing several programs, as well as testing the system's ability

to reset and erase each microprocessor.

In a home network environment, the system demonstrated promising results. With only

a minor delay associated with the ESP32-CAM video stream, being noticed. The upload time

for large files, which was a concern, proved to be a non-issue. Even when multiple users

attempted simultaneous uploads, the delay was not significant enough to cause problems.

Connecting the system to the university's network, to access the system remotely users

need to connect via VPN or be connected to the university's network. The tests included both

cases and revealed a noticeable increase in the stream delay. The delay was measured

manually between a button press and visual feedback using a digital timer and it was around

2 seconds. Adjustments were made to the stream quality and frame buffer settings to reduce

this delay, resulting in minor improvements. While the stream delay can be noticeable, it does

not affect the other functionalities of the system.

During testing, some inconsistencies were detected regarding expiration times. These

irregularities occur when a user logs in right before the reservation expiration time. In this

case, the user is occasionally logged out automatically, instead of being prompted to the user

interface. In such cases, a second attempt after a brief delay would solve the issue. Similarly,

if the system resets, the first attempt to program a microcontroller afterward may not be

successful. In this case, a consecutive attempt was found to be successful.

 Additionally, regarding the functionality of the platform, the slave microcontroller only

gets erased without users input when an active user session is ongoing and the reservation

expires. If the user is not logged in during the expiration the microcontroller will be erased

when the microcontroller is assigned to another user. Further, the application when packeted

into an executable has issues due to the utilization of the “CustomTkinter” package.

71

The most significant reliability concern is the streaming quality, which could be improved

with better hardware or adding an external antenna to the camera module to boost the

connection with the university's network. This could enhance the streaming quality and

overall user experience with the system.

72

Chapter 6 Conclusion and Future Work

6.1 Conclusion

This thesis aimed to address the challenge of multi-user access within an educational

system, and it focused on enhancing an existing system to support multiple users. Thereby it

provided students with a more hands-on experience that would otherwise be limited by the

availability of hardware and the requirement of their physical presence. The study

successfully implemented a user-friendly UI that supports login functionality and a

reservation system which allocates microcontrollers based on availability. Furthermore,

camera streaming was integrated successfully to enhance the user experience by providing

real-time visual feedback.

 Within experimentation, tests deemed the overall operation of the system successful,

including the log-in and reservation slot feature of the user interface. Further, a successful

upload of .bin files was observed, with a simultaneous real-time video feed from the webcam.

Some instabilities were detected within the log-in and reservation phase of the system, with

unsuccessful login and undesired termination of the application within the user system.

However, most minor inconsistencies were found to be due to DATETIME configuration

errors, which only necessitate alterations within the setup code and therefore do not

countervail the overall feasibility of the embedded system.

Consequently, the insights gained from this paper displayed the potential of this

configuration within the embedded-system realm. It demonstrates adequate flexibility and

scalability, fulfilling basic prerequisites entailed within any educational medium. Further, its

user-centric design, accompanied with future developments within the field can revolutionize

the way students engage with educational platforms whilst also acquiring practical familiarity

with embedded systems.

73

6.2 Future work

This research is a stepping stone towards an inclusive education regarding embedded

systems. Various future works could enhance the capabilities of this system, whilst

simultaneously diminishing its limitations and vulnerabilities. Initially, some additional tests

are required to further assess the feasibility of the system. This includes tests regarding

microcontroller functionalities, such as analog-read and write, and pulse-width-modulation.

To accommodate those functionalities, it is important that a communicative medium

between the microcontroller and the user interface to be developed. Therefore, it is

suggested that a virtual terminal is added to the user interface, returning data from the

microcontroller.

Further, future research could focus on eliminating the requirement for an additional

computer to run the server and host the database. This could be achieved by using a

Raspberry Pi, which offers better camera and Wi-Fi capabilities than the ESP32 and even

supports an Ethernet connection that could improve performance and streaming quality. A

display for printing messages would also be a welcome addition, either physically or within

the UI.

 Finally, additional modules can be added to the platform in the future to accommodate

the specific needs of different faculties. An effective feature could also be the automatic

detection of the slave-microcontroller model which will allow the removal and addition of

microcontrollers from the system without the need for system changes. It should be noted,

that alterations are also required within the setup stage for the system to enable the handling

of additional users and microcontrollers. Additionally, the server must also be changed to

allocate the users evenly along all available systems, and the database needs to withhold

more information to differentiate the systems (e.g., IP addresses for each system and the

number of available microcontrollers). Parallelly, the development of a separate admin panel

could improve the overall management of the platform allowing the monitoring of different

systems, the moderation of users, and the testing of new modules before deploying them.

74

Appendix

7.1 Hardware Schematics

Figure 0.1 - Hardware Schematics

75

7.2 Example Applications

The following examples were used to test and validate the correct operation of the

system. The hex file of each program is provided within the app to allow users to check if their

microprocessor is operating as expected.

The Blink program sets PortC (Pins 0-3) as outputs and then turns on and off the two LEDs

in the middle every 1 sec. It is a small and simple program to test that everything works before

using the microcontroller.

Figure 0.3 - Buttons

Figure 0.2 - Blink

76

The “Buttons” program (Figure 0.3) is designed to validate the functionality of the

software buttons that are connected to Port D (pins 2-3). The program sets these pins as

inputs and continuously checks their state in a loop. When a button is pressed, the

corresponding LED on Port C (either pin 0 or 1) is turned on. If the button is not pressed, the

LED remains in its default stage. This program is also used to inform the users on how to

detect button presses.

The “LedCounterLoop” program is a simple LED chaser. It sequentially turns on and off

four LEDs connected to pins PC0-3 of the microcontroller.

The “Counter” program operates as a binary counter using four LEDs connected to the

microcontroller and is designed to test that loops are used correctly. It continuously counts

from 0 to 15 and displays each count in binary form using LEDs. Each number displayed for

half a second before moving to the next number.

The “MemoryRead” program is designed to test the microcontroller's ability to access

program memory. It uses a memory array to create a pattern and show it utilizing the LED

lights. The program sets PortC (pins 0-3) as outputs then it cycles through each element in the

array. Each element represents a different pattern of on and off states for the LEDs. The

program reads the pattern from program memory, applies it to the LEDs, waits for half a

second, and then moves on to the next pattern. This process repeats indefinitely, creating a

looping light show on the LEDs.

The “Morse Code” program is designed to check whether a larger program that has

multiple functions and is memory-based can be uploaded without any problems. The program

translates the phrase "HELLO WORLD" into Morse code and displays it using LEDs. It

continuously loops through each character in the phrase, converts it to Morse code, and

represents the Morse code as a series of short and long blinks on the LEDs. After displaying

the entire phrase, it repeats the process.

77

The “LightShow” program is the larger program that was tested and is designed to test

the microcontroller's watchdog timer functionality and its ability to handle interrupts. It uses

the LEDs to display a random patterns creating that way a light show. The watchdog timer is

set to trigger an interrupt every 250ms. When the interrupt is triggered, a counter is

incremented. Once the counter reaches 4 (which equates to 1 second), a new random pattern

is generated and the counter is reset. The LEDs are then updated to reflect the new pattern.

This process repeats indefinitely, creating a continuously changing light show on the LEDs.

78

7.3 Parts List

1 x STK500 equipped with an ATMEGA32A

2 x ATMEGA328P

2 x ATMEGA168P

1 x ESP-12E Wi-Fi Module not used in the final iteration

1 x ESP32-S Wi-Fi Module Replaced ESP12-E

1x 11MHz Quartz Crystal Oscillator

4 x 16MHz Quartz Crystal Oscillators

8 x 22uf capacitors

16 x Red LEDs

16 x 330 Ωmh Resistors

12 x 10 kΩmh Resistors

1 x Ai Thinker ESP32-CAM Camera Module

2 x MB102 Breadboard Power Supply Module 3.3V / 5V

79

References

[1] L. Emmanouil, Design and Implementation of an Integrated System for Logic Design

exercises, 2020.

[2] R. H. a. J. Riddley, "FPGA e-Lab, a technique to remote access a laboratory to design

and test," in 2007 IEEE International Conference on Microelectronic Systems

Education (MSE’07), 2007.

[3] A. A. e. al., "Wireless ATMEL AVR In-Circuit Serial Programmer based on Wi-Fi and

ZigBee," in 2020 16th International Computer Engineering Conference (ICENCO),

2020.

[4] P. A. e. al., "Development and Application of Remote Laboratory for Embedded

Systems Design," in Proceedings of 2015 12th International Conference on Remote

Engineering and Virtual Instrumentation (REV), 2015.

[5] T. Michalec, M. Wojczuk, R. Brzoza-Woch and T. Szydło, "Remote Programming and

Reconfiguration System for Embedded Devices," in Proceedings of the 2019 Federated

Conference on Computer Science and Information Systems (FedCSIS), Leipzig,

Germany, 1–4 September 2019.

[6] N. Abekiri, A. Rachdy, M. Ajaamoum, B. Nassiri, L. Elmahni and Y. Oubail, "Platform

for hands-on remote labs based on the ESP32 and NOD-red," Science Africa, vol. 19,

no. e01502, 2023.

[7] D. L.-d.-i. a. P. O. J. García-zubía, "Evolving towards better architectures for remote

laboratories: a practical case," International Journal of Online Engineering, vol. 1, no.

2, 2005.

[8] A. Kalliontzis, Design and Implementation of an Embedded System for Remote Access

of Microcontroller of University Laboratory Exercises, Under review.

[9] "AVR910: In-System Programming," 2016.

[10] "CustomTkinter UI-Library".

[11] "ESP-12E WiFi Module," 2015.

[12] "ESP32-CAM Camera Module," 2017.

[13] "AVR STK 500," 2003.

[14] "Install pip on windows".

	ABSTRACT
	ABSTRACT
	Table of Contents
	Table of Figures
	List of Tables
	List of Abbreviations
	Chapter 1 Introduction
	1.1 Problem Statement
	1.2 Objectives
	1.3 Scope of the Thesis
	1.4 Thesis Outline

	Chapter 2 Related Work
	2.1 Integrated System for Logic Design exercises
	2.2 FPGA e-Lab
	2.3 ATMEL AVR ICSP based on Wi-Fi and ZigBee
	2.4 Development and Application of Remote Laboratory for Embedded Systems Design
	2.5 Web-based User interface with RPDs interaction
	2.6 Remote labs based on the ESP32 and NOD-red
	2.7 CAD Tools
	2.8 WebLab-PLD
	2.9 An Embedded System for Remote Access of Microcontroller for University Laboratory Exercises

	Chapter 3 Methodology
	3.1 Goal and Objectives
	3.1.1 User login and reservation slots
	3.1.2 File Transmission
	3.1.3 Real-Time visual feedback
	3.1.4 Multiple users
	3.1.5 Flexible
	3.1.6 Expansion Possibilities
	3.1.7 Scalable

	3.2 Apparatus
	3.2.1 Platforms Connection layout
	3.2.2 Hardware Components
	3.2.2.1 Selection Criteria
	3.2.2.2 ATMEGA328P & ATMEGA128P – Slave Microcontroller
	3.2.2.3 ATmega32A - Master Microcontroller
	3.2.2.4 ESP32-S - Wi-Fi Module
	3.2.2.5 ESP32-CAM - Camera

	3.2.3 Software Components
	3.2.3.1 Programming Languages
	3.2.3.2 User Interface Design
	3.2.3.3 Backend Development
	3.2.3.4 Considerations and Decision for File Transmission and Programming

	3.3 Assumptions and Limitations

	Chapter 4 User and Institution System Perspective
	4.1 User Perspective
	4.1.1 Installation instructions for Ubuntu/Windows
	4.1.2 Using the application
	4.1.3 Writing programs

	4.2 Engineer’s Perspective
	4.2.1 setupdb.py
	4.2.2 addUser.py
	4.2.3 removeUser.py
	4.2.4 serverv2.py
	4.2.5 CameraStreamWebSockets.ino
	4.2.6 WebSocketServer.ino
	4.2.7 Atmega32Av2.atsln
	4.2.7.1 Usart file
	4.2.7.2 SPI file
	4.2.7.3 myAVR910 file
	4.2.7.4 Main file

	4.2.8 Main.py

	Chapter 5 System Verification and Evaluation
	5.1 Testing and validation procedures
	5.1.1 Initial Development and Component Testing
	5.1.2 Login System and Database Testing
	5.1.3 File Transmission Testing
	5.1.4 Microcontroller Programming Testing
	5.1.5 Real-Time Camera Access Testing
	5.1.6 Multi-Microcontroller Integration Testing

	5.2 System Evaluation

	Chapter 6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future work

	Appendix
	Chapter 7
	7.1 Hardware Schematics
	7.2 Example Applications
	7.3 Parts List

	References

