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TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

A Preliminary Accuracy Analysis of Simulated RISC-V Systems

by Evangelos KIOULOS

The RISC-V Instruction Set Architecture (ISA) maintains a surging interest
both in industry and academia due to its simplicity, extensibility, and open
license. The integration of RISC-V ISA in the widely used gem5 simulator
bridges the gap between RTL and ISA (Spike, QEMU) simulation, as it of-
fers a micro-architectural simulator to the RISC-V ecosystem. This, however,
raises uncertainty regarding the accuracy degree of the RISC-V related model
implementations in gem5. Especially if we consider that they are still prema-
ture due to their recent adoption. The modeling accuracy is crucial as it is
responsible for guiding properly research studies and pinpointing areas for
optimization on various architectural design spaces. In this thesis, we aim
to match the performance and energy costs of an ASIC RISC-V implemen-
tation, namely CVA6 (formerly known as Ariane), with a simulated RISC-V
system in gem5. We present our experimental setup where we use the gem5
simulator to obtain the performance statistics and McPAT to estimate power
and energy metrics. Afterwards, we proceed with an analysis plan to iden-
tify potential inaccuracies and flaws of the gem5 simulator. We then evaluate
the performance of our simulated system using benchmarks from the RISC-V
ecosystem and compare the results to published hardware implementations.
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TECHNICAL UNIVERSITY OF CRETE

Abstract
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Electrical and Computer Engineer

A Preliminary Accuracy Analysis of Simulated RISC-V Systems

by Evangelos KIOULOS

Η αρχιτεκτονική RISC − V προκαλεί αυξανόμενο ενδιαφέρον, τόσο στη βιομηχα-
νία όσο και στην ακαδημαϊκή κοινότητα, λόγω της επεκτασιμότητας της, του απλού

συνόλου εντολών που προσφέρει και του ανοιχτού της κώδικα. Η ενσωμάτωση της

αρχιτεκτονικής RISC − V στον ευρέως χρησιμοποιημένο προσομοιωτή gem5 γε-
φυρώνει το χάσμα μεταξύ της RTL προσομοίωσης και της προσομοίωσης επιπέδου
συνόλου εντολών (ISA, όπως τα Spike, QEMU), καθώς εισάγει στο οικοσύστημα
της αρχιτεκτονικής RISC − V την προσομοίωση επιπέδου μίκρο-αρχιτεκτονικής.
Ωστόσο, η εν λόγω εφαρμογή εγείρει ζητήματα ως προς τον βαθμό ακρίβειας της

υλοποίησης της αρχιτεκτονικής RISC − V στο gem5, ειδικά αν λάβουμε υπόψη
ότι βρίσκεται ακόμα σε πρώιμο στάδιο. Η ακρίβεια στην μοντελοποίηση έχει ιδια-

ίτερη αξία τόσο στην καθοδήγηση της σχετικής έρευνας, όσο και στην ανάδειξη

πεδίων βελτιστοποίησης των διαφόρων αρχιτεκτονικών. Σε αυτή τη διπλωματική

εργασία προσπαθούμε να παραγάγουμε την απόδοση και τα κόστη σε ισχύ και

ενέργεια μιας ASIC υλοποίησης ενός επεξεργαστή αρχιτεκτονικής RISC − V,
του CVA6 (παλαιότερα γνωστός και ως Ariane), σε ένα προσομοιωμένο σύστη-
μα στον προσομοιωτή gem5. Παρουσιάζουμε την πειραματική διαδικασία όπου
χρησιμοποιούμε τον προσομοιωτή gem5 για τον υπολογισμό της απόδοσης του
συστήματος και τον προσομοιωτή McPAT για τον υπολογισμό της ισχύος και
της ενέργειας. Στη συνέχεια, αξιολογούμε τα αποτελέσματά μας χρησιμοποιώντας

βενςημαρκς από το οικοσύστημα της αρχιτεκτονικής RISC − V και συγκρίνοντάς
τα με τα δημοσιευμένα.
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Chapter 1

Introduction

1.1 Motivation

With the demand for computer chips growing, the design and simulation
can become a complex, costly, and time-consuming process. There are dif-
ferent approaches when designing computer hardware. Designers, usually
use hardware description languages (HDL), such as VHDL or SystemVerilog,
to implement their architectures and simulate them using register-transfer
level (RTL) simulators. RTL simulators can simulate real hardware designs
in great detail and cycle accuracy and also provide accurate estimations on
power consumption and hardware area. However, implementing the de-
signs can be a complex process that limits design space exploration, and sim-
ulations can be very time-consuming, even taking up to days, when simulat-
ing real-world applications, depending on the complexity of the simulated
system. Another approach is to run their RTL designs on FPGAs. The simu-
lation times can be orders of magnitude faster compared with the RTL simu-
lators due to the execution taking place on real hardware. Nonetheless, im-
plementation of the designs and acquisition of performance statistics can be
a complex task, and investing in FPGA hardware can be costly. Furthermore,
in-depth testing demands tailored OS support with its associated software
development effort across the stack.

Micro-architectural simulators offer faster simulations, compared to RTL sim-
ulators, by modeling hardware modules at higher levels of abstraction. This,
allows designers to easily simulate and measure the performance of vari-
ous architectures at relatively fast simulation speeds, making them great for
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design space exploration. Also, most of these architectural simulators of-
fer complete OS support, thus their use eliminates software development-
related costs. Their capability to simulate both hardware and OS implemen-
tations and to measure their interaction, makes them suitable for software-
hardware co-design exploration, too. Notably, such simulators are widely
used as implementation and measurement tools by the research community.
However, high-level abstraction models can lead to a great loss of accuracy,
because they omit low-level details that can affect performance. The gem5
Simulator is a micro-architectural simulator that has gained popularity in
both academia and industry. gem5 offers a great variety of instruction set ar-
chitectures and highly configurable hardware models, an easy-to-use front-
end interface and the capability to simulate a full operating system. Further-
more, gem5’s open-source license makes it accessible to researchers, students
and the industry.

Despite gem5 being open source, most of the ISAs supported have propri-
etary licenses. A solution to this comes with the addition of the RISC-V ISA
to gem5. RISC-V offers an open and simple instruction set that can imple-
ment numerous architectures, from low-cost embedded to high-end proces-
sors, through its ISA extensions. The addition of RISC-V to gem5, offers an
alternative simulation framework for RISC-V, bridging the gap between RTL
simulation and ISA simulation with simulators such as Spike [1]. With the
growing popularity of RISC-V, the accuracy of gem5’s models in the context of RISC-
V becomes of great importance. Especially, if we consider that the RISC-V related
implementations in the gem5 simulator are still premature.

1.2 Objectives

This work focuses on the issue of micro-architectural simulator accuracy,
specifically for the recently added RISC-V framework of gem5. The main
objective of this thesis is to match the energy costs and performance of an
ASIC implementation of a RISC-V CPU, particularly Ariane, with a simu-
lated RISC-V system and point out weaknesses and possible accuracy loss
sources of the simulator.

First of all, the author developed configuration scripts on gem5’s front-end
that set up the simulated system and run the simulation, on gem5’s Full-
System and bare-metal modes. In addition, the author developed scripts
that model Ariane’s pipeline and main architectural modules, using gem5’s
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detailed CPU models, that can either be combined with the configuration
scripts developed by the author or gem5’s default configuration scripts with
minimal modifications, to simplify the configuration and calibration of the
system’s micro-architectural design parameters. Furthermore, in order to run
in Full-System mode, the author used a RISC-V built Linux kernel along with
a compatible disk image.

Since gem5 does not produce power and energy statistics, the author used
scripts that integrate gem5 with a power simulator, and in particular McPAT.
Specifically, the author used scripts that use gem5’s output files along with an
input template and produce an input file that can be used by McPAT. More-
over, the author modified the template XML file in order to match Ariane’s
specifications and enable it to be used with gem5’s latest version, specifically
in this study, version 21.2.1.

To evaluate the performance of the simulated system, the author created a
baseline configuration of the simulated system and simulated benchmarks
from the riscv-tests suit on the base configuration and on multiple configura-
tions of the base model with calibrated micro-architectural design parame-
ters. Particularly, the author selected several tests and benchmarks from the
suite that match the workload described in [2], modified the assembly tests
to run longer in order to obtain more meaningful power and performance
statistics and ported them in order to be used with the gem5 simulator, using
the cross-compilers of the RISC-V toolchain. Last but not least, the author
compared the results of the simulation to the published performance, power
and energy statistics and analyzed the possible causes of accuracy loss in the
gem5 simulator.

1.2.1 Contributions

This study offers an early-stage analysis of possible accuracy errors of the
gem5 simulator in the context of the recent RISC-V related implementations.
It provides a starting point for further research on the support of RISC-V in
gem5 pointing out weaknesses of the simulator.

Furthermore, this project provides an in-depth guide on development with
gem5’s RISC-V framework on bare-metal and Full-System simulation, show-
casing possible challenges during development. Specifically, it offers details
on the use and implementation of configuration scripts on gem5’s front-end,
that setup and the simulation of the target system, utilizing gem5’s detailed
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models. In addition, we present the utilization of the gem5-resources library
and the compatibility of the RISC-V toolchain with gem5. Moreover, we
demonstrate the integration of gem5 with external tools, in this case, McPAT,
along with the challenges that occur.

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: provides a theoretical basis on
the RISC-V instruction set architecture and the RISC-V software and
hardware ecosystem, the RISC-V core used in this study (CVA6 Ariane),
the benchmarks and the tools used, gem5 and McPAT.

• Chapter 3 - Related Work: explores related work on micro-architectural
simulation and accuracy evaluation using gem5 and McPAT. Specifi-
cally, it presents previous work on the accuracy evaluation of the gem5
simulator in the context of the ARM instruction set, the implementa-
tion, functional validation and accuracy evaluation of the RISC-V in-
struction set in gem5, the integration of gem5 with external tools and
McPAT and accuracy evaluation of the McPAT power simulation.

• Chapter 4 - Simulation Environment Setup and Implementation: de-
scribes the experimental environment setup and the simulation frame-
work, providing detail on the implementation of the configuration scripts,
the setup and the modifications on the benchmarks used, the imple-
mentation and the micro-architectural design parameter selection for
the baseline model.

• Chapter 5 - Results and Performance Analysis: describes the calibra-
tion of the micro-architectural design parameters of the baseline model
and the parameter selection for the calibrated configurations, the ex-
periments conducted in order to obtain the performance, power and
energy statistics and comparison between the results and the published
statistics.

• Chapter 6 - Conclusions and Related Work: draws conclusions and
gives directions for future work.
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Chapter 2

Theoretical Background

2.1 RISC-V Architecture and Simulation Environ-

ments

2.1.1 RISC-V Instruction Set Architecture

RISC-V is a freely licensed and open standard instruction set architecture,
introduced by the University of California, Berkeley in 2010. It offers a sim-
ple load-store instruction set with principals similar to other RISC architec-
tures. It has gained popularity both in industry and academia through its
simplicity and its improvements compared to other open ISAs [3]. RISC-V
provides both 32-bit and 64-bit instruction sets along with various extensions
(e.g. compressed instructions, vector operations, and more that are ongo-
ing work at the time of writing this thesis). The base instruction set is split
into user-level and privileged instructions, with the latter enabling additional
functionality required for running an operating system.

RISC-V Instruction set organization

The RISC-V ISA consists of three base instruction sets that support 32 and
64-bit registers and a variety of extensions that can be added to one of the
base instruction sets. This allows RISC-V to be implemented in a wide range
of applications from low-cost embedded processors to high-end processors
with sophisticated designs and multi-core configurations. A common form
of the base ISA with standardized extensions is RV64IMAFD, which imple-
ments the RV64I base integer ISA with the M extension for multiply/divide
support, A extension for atomic memory operations and F for single and D
for double precision IEEE floating point support. This is often abbreviated
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as RV64G, G meaning general purpose, with RV32G being the 32-bit sub-
set. Table 2.1 lists base instruction sets and standard extensions with their
descriptions.

TABLE 2.1: RISC-V base ISA and extensions.

Name Functionality
RV32I Base 32-bit integer instruction set, with 32 registers
RV32E Base 32-bit integer instruction set(embedded), with 16 registers
RV64I Base 64-bit integer instruction set
RV128I Base 128-bit integer instruction set
M Adds integer multiply and divide instructions
A Adds support for atomic instructions
F Adds single precision (32-bit) IEEE floating point
D Extends floating point to double precision
Q Further extends floating point to add support for quad precision
L Adds support for 64- and 128-bit decimal floating point for the IEEE standard
C Defines a 16-bit compressed version of the instruction set
B Standard extension for bit manipulation
J Adds support for Dynamically Translated Languages
T Adds support for Transactional Memory
P Adds Packed-SIMD instruction support
V Adds support for Vector operations
N Standard extension for user-level interrupts
H Standard extension for Hypervisor
S Standard extension for Supervisor-level instructions

RISC-V Registers, Data structures and Addressing modes

RV64G uses 32 64-bit general-purpose registers, x0, x1,...,x31, also known as
integer registers, with x0 being the zero register. The supported data types
for integer data are 8-bit bytes, 16-bit half-words, 32-bit words and 64-bit
for double-words. Half-words are included as they are commonly found in
languages like C and are popular in programs, such as operating systems.
Bytes, half-words and words are loaded to the general-purpose registers with
either zeros or the sign bit repeated to fill the 64 bits of the register.

The F and D extensions add 32 floating point registers, f0, f1,...,f31, that can
hold 32-bit single precision or 64-bit double precision values. When holding
single-precision values, the upper half of the register is unused. Operations
for single and double-precision floating-point are provided.

There are two data addressing modes, immediate and displacement, both
with 12-bit fields. Placing 0 in the 12-bit field enables register indirect mode,
while using the zero register as a base register enables limited absolute ad-
dressing. The RV64G memory is byte addressable with a 64-bit address and
uses little-endian byte numbering. RISC-V is a load-store architecture and
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FIGURE 2.1: RISC-V Instruction Formats, taken from [5].

all references between the memory and the general-purpose or floating point
registers are through load-stores. Memory accesses don’t have to be aligned,
however, unaligned accesses are extremely slow [4].

RISC-V Instruction Formats

There are four core instruction formats R, I, S and U, as shown in Figure 2.1,
all of which have a fixed length of 32-bits with a 7-bit opcode. All instruc-
tions must be aligned on a 4-byte boundary memory. A misaligned taken
branch or unconditional jump can generate an instruction address misaligned
exception if the target address is not 4-byte aligned.

The source (rs1 and rs2) and destination (rd) registers are in the same posi-
tions throughout all instruction formats except for the 5-bit immediate Con-
trol/Status Register (CSR) instructions. Immediate values are always sign
extended and the sign bit is always bit 32. The opcode specifies the instruc-
tion type while the funct specifies the specific operation. Several formats can
encode multiple types of operations, such as the I-format which can encode
both ALU immediate and load instructions and the S-format for stores and
conditional branches.

There are two additional formats, B and J, that are used based on the handling
of the immediate. The B format is a variant of the S format, written also as
SB, and it is used for conditional branches, and the J format is a variant of the
U format, written also as UJ, used for jump instructions. Figure 2.2 shows all
RISC-V instruction formats along with SB and UJ.

RISC-V Privilege modes

The privileged instruction set is independent from the user-level ISA and
it includes different levels of hardware support needed to run an operating
system.
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FIGURE 2.2: RISC-V Instruction Formats including SB and UJ,
taken from [5].

There are four currently available main privilege levels, user, supervisor, hy-
pervisor and machine. The privilege levels provide protection between com-
ponents in the software stack. Operations that are not permitted in a specific
privilege level can raise an exception, which is handled by a trap.

TABLE 2.2: RISC-V privilege levels.

Level Encoding Name Abbreviation

0 00 User/Application U
1 01 Supervisor S
2 10 Hypervisor H
3 11 Machine M

Machine level (M-mode) has the highest privileges and it is the only manda-
tory level required in an RISC-V machine. Code that runs in machine mode
is trusted and it has low-level access to the machine implementation. The
M-mode is used to manage secure execution environments in RISC-V sys-
tems. All implementations must provide M-mode, the simplest implementa-
tion can provide only M-mode, however, this implementation lacks protec-
tion.

User mode (U-mode) and supervisor mode (S-mode) are intended for con-
ventional applications and operating system usage respectively. Hypervisor
mode (H-mode) is intended for virtual machine monitors. S-mode provides
isolation between the operating system and the supervisor execution envi-
ronment and hardware abstraction layer code, while H-mode provides iso-
lation between the virtual machine monitor and hypervisor execution envi-
ronment and hardware abstraction layer running in machine mode.

A hardware thread runs in U-mode until a trap forces a switch to a trap han-
dler. The thread will execute the trap handler and resume at or after the
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original instruction that caused the trap in U-mode. Traps that increase the
privilege level are called vertical traps, while traps that remain at the same
level are called horizontal traps.

Implementations may include a debug mode (D-mode) that supports off-
chip debugging and manufacturing tests. D-mode gives even more access
than M-mode, thus, it can be considered an additional privilege mode. It
may reserve CSR addresses and portions of physical memory.

RISC-V Software Ecosystem

RISC-V software compilation is supported through GCC and LLVM, with the
RV32GC and RV64GC instruction set extensions being implemented and the
RV32E base ISA supported only on GCC. The GNU C library, Glibc, along
with the Newlibc, which is the C standard library implementation for em-
bedded systems, are supported. Furthermore, the GNU Binutils, which is a
collection of binary tools, is supported and debugging is provided via the
GDB (GNU Debugger). Although the base instruction sets and standard ex-
tensions have been implemented, they have not yet been fully optimized.

Emulation of RISC-V systems can be achieved using QEMU [6]. QEMU is a
free and open-source machine emulator and can support full-system emula-
tion for RISC-V systems. It supports both 32 and 64-bit base instruction sets
and standard extensions, along with privileged and unprivileged instruction
specifications. Furthermore, RISC-V systems can be simulated using Spike
[1]. Spike is the RISC-V ISA simulator and implements a functional model. It
supports the latest versions of privileged and unprivileged instruction spec-
ifications and all base RISC-V instruction sets along multiple standard and
non-standard extensions. This enables Spike to be used as a reference model.
Spike can simulate RISC-V systems with one or more hardware threads.

2.1.2 CVA6 (former Ariane)

CVA6 is an application-class 64-bit RISC-V CPU core, fabricated under Glob-
alFoundries 22nm FD-SOI technology [2]. The core runs at 1.7GHz and, as
they report [2], achieves an efficiency of up to 40Gop/sW. Ariane implements
the RV64GC ISA and has a 6-stage, single issue, in-order pipeline with full
hardware support for multiply/divide, atomic memory operations as well
as an IEEE-compliant floating point unit. It supports the compressed as well
as the full privileged instruction set extensions. The instructions are issued
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in-order and executed out-of-order. The core’s front-end consists of a PC gen-
eration stage and the instruction Fetch stage, while the back-end consists of
the Decode, instruction Issue, Execute and Commit stages. Figure 2.3 shows
Ariane’s 6-stage pipeline.

The PC generation stage is responsible for selecting the next PC. The next PC
can originate from a return from an environment call, an interrupt or excep-
tion, a branch prediction or a falsely predicted branch, a pipeline flush due to
CSR side effects, the debug interface, or a consecutive fetch. The Fetch stage
contains fetch and pre-decode logic, the instruction cache, and the branch
prediction units. It receives information from the PC stage, asks the MMU for
an address translation on the requested PC and controls the instruction cache.
The data coming from the instruction cache, are registered before being pre-
decoded. As a result, a cycle is lost, even on a correct control flow prediction,
as the next PC cannot be calculated in the same cycle that the data from the
instruction cache is received. They report that, due to the compressed in-
struction set extension, they fetch on average 1.5 instructions, thus, the lost
cycle does not cause a problem. The pipeline’s front-end is fully decoupled
from the back-end using the instruction queue, which is implemented as a
FIFO of configurable depth. The instruction queue stores the instructions in
compressed form.

The first stage of the core’s back-end is the Decode stage. The decode stage re-
aligns potentially unaligned instructions, decompresses them and decodes
them, The decoded instructions are then put in an issue queue. The Issue
stage houses the issue queue, the scoreboard and the Reorder Buffer (ROB).
When the operands are ready the instructions are issued in the execute stage.
The Execute stage contains all the functional units. Ariane has six functional
units, the ALU, a multiplier/divider, a CSR buffer, a Branch Unit, a Load-
/Store unit (LSU) and a floating point unit (FPU). Every functional unit is
handshaken and readiness is taken into account during the instruction issue.
The instructions can retire out-of-order from the functional units and write-
back conflicts are resolved through the ROB. Finally, the Commit stage reads
from the ROB and commits all instructions in program order and the register
file is updated. The commit stage can commit two instructions per cycle.

Ariane’s main units and key features:

• Branch Prediction: A Branch History Table (BHT) with 8 entries and
a 2-bit saturating counter, a Branch Target Buffer (BTB) with 8 entries
and a Return Address Stack (RAS).
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FIGURE 2.3: Ariane’s 6-stage Pipeline.

• Virtual Memory: Full hardware support for address translation via
the Memory Management Unit (MMU). The MMU contains data and
instruction TLBs with 16 entries each as well as a Page Table Walker
(PTW). Ariane implements a 39-bit, page-based virtual memory scheme,
SV39.

• Register Files: Two physically different register files for integer and
floating-point registers, containing 32 64-bit registers.

• Scoreboard/Re-order Buffer: Implemented as a circular buffer, con-
tains issued, decoded, in-flight instructions and speculative results writ-
ten back by various FUs.

• Caches: 16kB 4-way instruction cache with a latency of 1 cycle, 32kB
8-way data cache with a latency of 3 cycles. Both data and instruction
caches are virtually indexed and physically tagged and include an ad-
ditional pipeline stage on their outputs. The data cache is a write-back
cache and supports hit under miss functionality.

• Memory and Control Interfaces: Advanced eXtensible Interface (AXI)
5 master port and four interrupt sources, Machine External Interrupts,
Supervisor External Interrupts, Machine Timer Interrupts, Machine Soft-
ware Interrupts.
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• Functional Units:

– ALU: Covers most of the base RISC-V ISA, including branch target
calculations.

– Load/Store Unit (LSU): Integer and floating-point load/stores as
well as atomic memory operations.

– Floating-point Unit (FPU): IEEE compliant floating-point unit with
custom trans-precision extensions.

– Branch Unit: An extension to the ALU, handles branch-prediction
and branch-correction.

– CSR: RISC-V mandates atomic operations on its CSR, correspond-
ing write data is buffered in this unit and read again when the
instruction retires.

– Multiplier/Divider: Fully pipelined 2-stage multiplier and a bit-
serial divider with input preparation, takes 2-64 cycles depending
on the operands.

Ariane supports the privileged ISA specification and implements user, su-
pervisor and machine privilege levels as well as a RISC-V compliant Debug
interface. The debug interface requires one additional instruction, dret, to re-
turn from debug mode. The communication with the external debugger is
done through a debug module peripheral.

The core has been taped-out in GlobalFoundries 22 FDX technology node and
uses a shared System on Chip(SoC) for off-chip communication. Ariane can
communicate with the SoC via a full-duplex 64-bit AXI interconnect. The
SoC contains 520kB of on-chip scratchpad memory, HyperRAM, SPI, UART
and I2C. The core is separately clocked, supplied and powered and the logic
cells can be forward body biased to increase speed at the expense of leakage
power. The design has been signed-off at 902 MHz at 0.72 V, 125 C, SSG with
the final netlist containing 75.34% low voltage threshold and 24.66% super
low voltage threshold cells.

With this architecture, they report up to 1.65 DMIPS/MHz depending on the
branch-prediction configuration and load latency and an IPC of 0.82 on the
Dhrystone benchmark with a 128-entry BHT and 64-entry BTB configuration.
They report a total leakage of 1.08 mW and a total energy of 51.80 pJ for a
generalized matrix multiplication.
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A version of Ariane has also been fabricated with Ara [7] in GlobalFoundries
22 FDX technology. Ara is a 64-bit vector co-processor that implements RISC-
V’s vector extension. It runs at more than 1GHz and achieves a performance
of 33 DP-GFLOPS and energy efficiency of 41 DP-GFLOPS/W.

2.1.3 Alternative RISC-V Hardware

Since the RISC-V ISA was introduced, there have been multiple cores and
SoCs that implement the RISC-V architecture. [8] lists several RISC-V cores
and SoCs along with their status.

A notable platform widely used in research is the Rocket Chip generator [9],
developed at UC Berkeley. The Rocket Chip generator is an SoC generator,
written in Chisel HDL [10], that uses configurable chip-building libraries for
constructing RISC-V based SoCs. It provides a core generator, with optional
FPUs, configurable FU pipelines and branch predictors, cache and TLB gen-
erators with configurable size, associativity and replacement policies and a
generator for peripherals. The generator supports multicore configurations,
cache-coherence and heterogeneity through the tile generator and a Rocket
Custom Co-processor interface (RoCC) for application-specific co-processors.
It uses the Rocket Core by default and can also be configured to use the
BOOM out-of-order core.

The Rocket Core is a 5-stage in-order scalar core that implements the RV32G
and RV64G instruction sets, written in Chisel HDL. Rocket has a non-blocking
data cache and supports branch prediction through a BHT, a BTB and a RAS
in its instruction fetch stage. The core uses the Chisel floating-point imple-
mentations for its’ floating point units. Address translation is supported by
the MMU, with a page-based virtual memory, and supports the RISC-V ma-
chine, supervisor and user privilege levels. The Rocket core can also be used
as a component library, and many of Rocket’s modules can be used in differ-
ent designs. The Rocket Chip, and Rocket Core, have been taped out multiple
times and produced functional silicon chips capable of running Linux.

The Berkley Out-of-Order Machine (BOOM) [11] is an open-source synthesiz-
able and parametric out-of-order superscalar RISC-V core that implements
the RV64GC instruction set. The first version of BOOM was used for educa-
tional purposes, it was similar to the MIPS R10k core and featured a simple
pipeline with a unified register file. The second version, BOOM v2 [12], ex-
panded the front-end pipeline stages, modified the branch prediction units,
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separated the floating-point into an independent pipeline and split the issue
queue into separate queues for integer, memory and floating-point opera-
tions. BOOM v2 was fabricated in the BROOM chip [13], in 28 nm TSMC
technology. The third version of BOOM, SonicBOOM [14], improved upon
bottlenecks of the previous versions, modifying the instruction fetch unit, ex-
ecution back-end and load/store unit, and added a high performance TAGE
branch predictor. Furthermore, they added support for the RISC-V com-
pressed instruction set. BOOM was written in Chisel HDL and adopts com-
ponents from the in-order Rocket Core, such as the MMU, L1 caches and exe-
cution units.

2.2 Benchmarks

Benchmarks are computer programs used to measure, compare and evaluate
the relative performance of a computer system. There are different types of
benchmarks such as kernels, small programs that include key aspects of real-
world programs, or toy programs, however, they could be characterized into
two main categories: synthetic benchmarks and application ("real-world")
based. Synthetic benchmarks are fake programs, usually small in size, that
try to mimic the behavior of real-world applications, often used to measure or
debug specific features of a system. Application based benchmarks use soft-
ware from real applications and are used to measure the overall performance
of a system. Usually, they have large code and data storage requirements.

Collections of benchmark applications are called benchmark suites, and they
are a popular measure of the performance of processors with a variety of
applications. A key advantage of benchmark suites is that the weakness of
any benchmark is lessened by the presence of the others. [4] Popular bench-
marks and benchmark suites commonly used in academia and the industry
include the Standard Performance Evaluation Corporation (SPEC) suite, with its’
current version being the SPEC2017, the EEMBC CoreMark benchmark and
CoreMark Pro suite, the PARSEC suite and many more.

For this project, based on the reported workload used in [2], we used tests
from the riscv-tests suite and the Dhrystone benchmark, to match the reported
energy costs and performance of Ariane, respectively.
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2.2.1 RISCV-Tests suite

RISC-V tests is an extensive assembly test suite in the open-source RISC-V
toolchain. The test suite is designed to run on bare-metal machines without
any OS support and communicates to a host machine via a front-end server
(FESVR) to inform the results. It consists of ISA compliance tests and low-
level C tests. The tests are built on various Test Virtual Machines (TVM) and
can run on different target environments depending on the number of cores
and type of memory on the system.

TABLE 2.3: List of RISC-V defined TVMs.

TVM Name Description

rv32ui RV32 user-level, integer only
rv32si RV32 supervisor-level, integer only
rv64ui RV64 user-level, integer only
rv64uf RV64 user-level, integer and floating-point
rv64uv RV64 user-level, integer, floating-point, and vector
rv64si RV64 supervisor-level, integer only
rv64sv RV64 supervisor-level, integer and vector

Each test uses only features of a given TVM. Table 2.1 lists the TVMs cur-
rently defined for RISC-V, all of which only support a single hardware thread.
These features are defined as the set of registers and instructions that can be
used, the portions of memory that can be accessed, the way execution starts
and ends and the test data input and output. Each test is contained within a
single assembly file which is passed through the C pre-processor and should
include the riscv_test.h header file which defines macros used by the given
TVM. This header file differs depending on the target environment. Table 2.2
shows all available target environments. All assembly directives can be used
in the test file.

TABLE 2.4: List of available target environments.

Target Env. Description

p physical memory only, only core 0 boots up
pm physical memory only, all cores boot up
pt physical memory only, timer interrupt fires every 100 cycles
v virtual memory is enabled, only core 0 boots up

Each test program should include the appropriate TVM macro, which speci-
fies the TVM that the test is built on. The format of the macro that defines the
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possible TVMs is: RVTEST_RV[32/64]U(F/V) or RVTEST_RV[32/64]S. The 32
or 64 defines 32 or 64-bit instruction decoding, the U is for user space while
S is for supervisor. When using user space, F means that the floating point
unit is enabled and V is used to enable the vector unit. On supervisor, it is
assumed that floating point and vector units are enabled.

Execution begins when the RVTEST_CODE_BEGIN macro is reached and
continues until it reaches the RVTEST_PASS or RVTEST_CODE_END macros,
if the test succeeds, or RVTEST_FAIL if the test fails. The end macros signal
the appropriate execution code to the FESVR through the tohost register to
end the execution. The least significant bit of the tohost register indicates
whether the message sent to the FESVR is a system call that needs to be exe-
cuted if the value is 0, or program termination if the value is 1.

A test data section should be contained in each test, this section is contained
within the RVTEST_DATA_BEGIN and RVTEST_DATA_END. There is no
guaranteed alignment for the start and end of the data section, so regular
assembly alignment instructions can be used to ensure desirable alignment
of data values. The region of memory which holds the test data section, will
be captured at the end of each test to act as a signature from the test.

All test programs contain self-checking code to check the result of the instruc-
tion tested. However, this cannot be the only testing strategy since it relies on
the correct functioning of the processor instructions used to implement the
check.

A timeout facility should be included in any given target environment for
running the tests. Tests that do not complete their execution within a given
time threshold are classed as failing.

2.2.2 Dhrystone

Dhrystone [15], is a synthetic computing benchmark program created by Rein-
hold P. Weicker in 1984. The benchmark was first published in Ada in 1984
and later a C version was published by Rick Richardson. The C version of
Dhrystone is the most popular one used in industry to measure CPU per-
formance. Dhrystone only measures the performance of integer operations,
thus it was named as an integer counterpart of the then popular benchmark
Whetstone, which was used for floating point operations.
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To develop Dhrystone, Weicker gathered information from a wide range of
then-popular software and characterized them in terms of various common
constructs. It is designed to statistically mimic the processor usage of com-
mon sets of programs. Dhrystone’s code consists of simple integer arithmetic
and logic operations, string operations and memory accesses in order to re-
flect CPU activity in the most general-purpose computing applications.

Dhrystone produces a Dhrystones per Second result, which indicates how many
times the program’s main loop was executed within a second. A common
representation of the program is DMIPS, which is obtained by dividing the
Dhrystone score by 1757. The number 1757 is the score produced on VAX
11/780, which is nominally a 1 MIPS machine. To enable processor perfor-
mance comparison at different clock speeds, the DMIPS measure can be fur-
ther normalized into DMIPS/MHz by dividing the DMIPS value by the CPU’s
clock speed.

Dhrystone possesses features that have allowed it to gain popularity. These
features are The portability of its code, allowing it to be easily ported to a
large number of platforms and applications, small and easy-to-use and un-
derstand code, single easy-to-report score and a free license. Furthermore,
its integer code can make it useful as an 8 and 16-bit micro-controller bench-
mark.

However, Dhrystone has a lot of notable weaknesses [16], [17]. Its’ small code
can fit into a modern processor’s L1 cache memory, minimizing or eliminat-
ing the stress on the memory system. Furthermore, compiler optimizations
can greatly affect its performance with optimizations such as inline code and
dead code removal. A large portion of the benchmark consists of string oper-
ations using standard C library functions such as strcpy() and strcmp() which
are highly optimized in common compilers. As a result, Dhrystone’s per-
formance and results can vary depending on the compiler used. To address
some of these issues an improved version of Dhrystrone [18] was released
by Weicker and Richardson in 1988 (Version 2.1). Although this version im-
proves upon compiler optimization dependencies of the benchmark, it does
not eliminate them completely. Version 2.1 is the latest version of the bench-
mark released to date.

In addition, due to its focus on integer operations, it cannot test and demon-
strate the capabilities of modern CPUs. It confines itself in the micro-architectural
level and does not take into account features commonly used by modern
systems such as RISC architectures, sophisticated floating point and vector
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units, super-scalar RISC designs, VLIW processors, real-time operating sys-
tems with sophisticated APIs and graphical user interfaces, failing to repre-
sent real-life applications.

Despite its shortcomings, Dhrystone remains quite popular to this day, how-
ever, it should not be the only benchmark used when measuring the perfor-
mance of a system.

2.3 The gem5 Simulator

The gem5 Simulator [19, 20] is a modular discrete event-driven computer
system simulator platform, created by merging the best aspects of M5 [21]
and GEMS [22] simulators. It offers a flexible, modular and highly config-
urable design, allowing it to simulate a wide range of systems, that cover a
wide range of speed/accuracy trade-offs. gem5 provides a variety of ISA-
independent components, such as CPUs, memory models and peripheral
devices, and two execution modes with the capability to simulate a full op-
erating system. gem5 supports most commercial ISAs, including ARM, x86,
MIPS, ALPHA, Power, SPARC and RISC-V.

2.3.1 Key Features and Capabilities

gem5 is mostly written in C++ and provides a Python interface. All ma-
jor simulation objects are SimObjects, including models of hardware compo-
nents, such as processor core, caches, buses and peripheral devices, as well as
more abstract entities such as workload. Every SimObject is represented by
two classes, one in C++ and one in Python. The C++ class defines the SimOb-
ject’s implementation, state and behavior, while the Python class is used for
instantiation, naming and setting the object’s parameter values. The simu-
lated system is built using a Python configuration script which provides ini-
tialization, configuration and simulation control. All simulated components
are defined and configured in the Python script. The standard main() func-
tion, along with all command-line processing and start-up code is written in
Python. When the simulation begins, the Python script is executed almost
immediately in start-up.

gem5 supports two simulation modes, System-call Emulation (SE) and Full-
System (FS) mode. In SE mode, gem5 executes user-level binaries without
executing the kernel-mode system calls of a real operating system. When
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FIGURE 2.4: Simplest system that can be simulated in SE mode,
adapted from gem5.org.

the program executes a system call, gem5 traps it and emulates it by passing
it to the host operating system. Only Linux system calls are supported in
SE mode, and as a result, supports only user-level code. SE mode requires
a Python configuration script and a workload binary to run. The simplest
system that can be simulated in SE mode is a CPU and a memory system
connected with a memory bus, as shown in Figure 2.4. SE mode provides
higher simulation speeds and is much simpler to configure since it doesn’t
simulate all the devices in a system and focuses on the CPU and memory
system, however, it is not as accurate as FS mode.

Full-System mode simulates an entire system that is capable of running an
unmodified operating system. Along with the CPU and the memory system,
FS mode simulates interrupts, privilege levels, I/O devices and exceptions.
Full-System mode requires a Python configuration script, an operating sys-
tem kernel binary, a disk image that contains the file system and a workload
binary. The workload binary has to be mounted in the disk image in order
to be able to be executed in the simulation. To communicate with the oper-
ating system, gem5 provides a serial terminal, called m5term, that connects
to the system via the system’s UART. The FS mode provides higher accu-
racy compared to SE mode, however, the simulation is much slower due to
the complexity of the system simulated. Configuration scripts for FS mode
can be more difficult to implement compared to the SE mode since they re-
quire the definition and configuration of additional components and periph-
eral devices. However, gem5 provides a variety of example configuration
scripts, for both SE and FS mode, that are highly configurable. Full-System
simulation is not supported through all ISAs, due to the complexity of its
implementation.
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Both SE and FS modes can simulate single-core and multi-core configura-
tions. Furthermore, gem5 supports the simulation of multiple systems by
creating another set of objects. These systems can be connected by the user
using gem5’s network interfaces.

When the simulation finishes, gem5 generates files containing useful infor-
mation about the simulation along with a diagram of the simulated system.
File stats.txt includes all measured statistics from the simulation. Files con-
fig.ini and config.json contain all components and parameter values of the
simulated system.

Furthermore, gem5 offers advanced simulation features such as fast-forwarding
and a checkpoint system. Executed code can be sped up using a simpler CPU
model until it reaches a checkpoint, where the execution can continue with
a more detailed model. The simulation can be restored at any checkpoint
without simulating the previous code. Users can speed up their simulation
by inserting checkpoints to important parts of their simulation and restoring
them with a more detailed CPU model. Last but not least, gem5 provides
debug flags for tracing/debugging of the simulation. Debug flags can be
defined at the command line.

2.3.2 CPU and Memory models

There are four CPU models supported by gem5: AtomicSimpleCPU, TimingSim-
pleCPU, MinorCPU and O3CPU.

• AtomicSimpleCPU: is a non-pipelined CPU that attempts to fetch, de-
code, execute and commit an instruction within a single cycle. It is a
minimal single IPC CPU that completes all memory accesses immedi-
ately. It provides high-speed simulations at the expense of accuracy
and can be used for simulation fast-forwarding.

• TimingSimpleCPU: is a variation of the Atomic CPU that uses the tim-
ing memory accesses. It only allows one outstanding memory request
at a time and models the timing of the memory accesses.

• MinorCPU: is the detailed pipelined in-order CPU model. Its’ standard
pipeline consists of two fetch stages, a decode stage and an execute
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stage which also writes back retired instructions, and it can be config-
ured to simulate CPUs with more stages. The MinorCPU is highly con-
figurable and it is intended to be used to model processors with strict
in-order behavior.

• O3CPU: is the detailed pipelined out-of-order CPU model loosely based
on the Alpha 21264. Its pipeline consists of fetch, decode, rename, issue,
execute, write-back and commit stages. It is highly configurable and
can model a wide variety of out-of-order CPUs with different pipeline
stages and components such as functional units, load/store queues and
re-order buffer.

gem5 offers a kernel-based virtual machine (KVM) CPU model that bypasses
the simulation and allows binaries running in gem5 to run locally in the host
machine if the host ISA is the same as the simulated one in gem5. This model
is based on the KVM API in Linux and uses hardware virtualization sup-
port available in many modern processors. The KVM CPU can execute at
native speed, however, it does not model the timing of execution or memory
requests.

The detailed CPU models offer much higher accuracy than the simple CPUs,
however, the simulation is slower. Both detailed models follow an execute-
in-execute model, meaning that an instruction is executed in the execute stage
after all dependencies are resolved. Furthermore, visualization of the instruc-
tion’s position in the pipeline is supported in both detailed models through
the O3 Pipeline Viewer and the Minor Viewer respectively.

gem5 offers two different memory system modes, the Classic (adapted from
M5) and Ruby (adapted from GEMS). The Classic memory system provides
a fast, easy and flexible configurable memory system that uses a bus or a
crossbar to connect the caches and memories to the system. The Ruby sys-
tem provides a flexible framework for accurately simulating a large variety of
cache-coherent memory systems. The Ruby system offers two network mod-
els, Simple and Garnet. The Simple network models link and router latency
as well as link bandwidth, without modeling router resource contention and
control flow. The Garnet network models the router micro-architecture in de-
tail, including all relevant router resource contention and flow control timing.
To implement a wide variety of cache coherence protocols, gem5 provides a
domain-specific language(DSL), named SLICC (inherited from GEMS).
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FIGURE 2.5: Speed vs. Accuracy trade-offs, adapted from [19]

Figure 2.5 shows speed vs. accuracy trade-offs between gem5’s models and
execution modes.

2.3.3 ISA Independence

All gem5 CPU models are ISA agnostic to enable the use of each model with
every supported ISA. To achieve ISA independence, all CPU models use a
common C++ base class to describe instructions. To specify instruction sets,
gem5 uses a domain-specific language (DSL), inherited from M5, which uni-
fies the decoding of of binary instructions and the specification of their se-
mantics.

An ISA description file is divided into two sections, the declaration section
and the decode section. The declaration section defines the global informa-
tion required to support the decoder, while the decode section specifies the
structure of the decoder and the instructions returned. The decode section
includes a set of nested decode blocks that specify a field of a machine in-
struction to decode and the result to be provided for particular values of that
field. Decode blocks are similar to a C switch statement both in syntax and
semantics. Each decode block generates a switch statement in the resulting
decode function.

In compilation, the description file is parsed and generates C++ code, de-
pending on the instruction format, that implements the behavior of each de-
fined instruction. The generated code overrides functions of the base classes,
such as the execute() function, to implement each instruction.
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2.3.4 RISC-V ISA support

With the growing popularity of the RISC-V ISA, a main feature of gem5’s
version 20.0 [20], is the added support of the ISA. gem5 supports single and
multi-core configurations both on SE and FS mode for the RISC-V ISA.

The base instruction set and extensions were ported from the existing MIPS
and Alpha implementations in gem5, beginning from the 32-bit integer in-
struction set, RV32I, and then porting the 64-bit RV64 version along with the
M extension for multiply/divide instruction support.

The A extension for atomic memory operations includes Load-Reserved/Store-
Conditional (LR/SC) instructions and read-modify-write for complex and
simple atomic memory operations, respectively. These instructions were im-
plemented as micro-ops that acted like an LR/SC pair. Furthermore, support
for single and double-precision floating-point operations was added, imple-
menting the F and D extensions respectively. However, the round-away-from-
zero rounding mode was not implemented because it is not supported by
C++.

The C non-standard extension for 16-bit compressed instructions was imple-
mented because it is used by many RISC-V software toolchains, such as GCC.
They implemented the extension by adding a state machine in the instruction
decoder to detect whether the instruction is compressed or not.

Full-System simulation is supported for RISC-V. Support for SV39 paging
scheme with a 39-bit virtual address, a Page Table Wacker (PTW), based on the
x86 implementation, and Translation Lookaside Buffers (TLB) was added.

2.4 Power and Area simulation with McPAT

McPAT [23] is an integrated power, area and timing simulation framework.
It supports multi-core and many-core configurations and CMOS technolo-
gies ranging from 90nm to 22nm. It is designed to work with a variety of
architectural and performance simulators and allows the user to define low-
level configuration details and also provides default values when the user
specifies only high-level details.

To be able to work with other simulators, McPAT offers an XML-based in-
terface. Users can specify micro-architectural design parameters, such as the
number of cores, pipeline width, renaming scheme, cache hierarchy, etc. and
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FIGURE 2.6: Block diagram of the McPAT framework, adapted
from [23]

performance statistics provided by a performance simulator. The interface
allows the definition of circuit implementation and technology details. The
XML interface allows McPAT to work independently and only read needed
statistics and parameters from other simulators, such as gem5. Furthermore,
McPAT output can be used by other simulators, such as ArchFP for proto-
typing pre-RTL floorplans of VoltSpot and HotSpot for voltage and thermal
simulations respectively.

The key components of McPAT are Hierarchical power, area and timing mod-
els, an optimizer for determining circuit-level implementations and the in-
ternal chip representation that drives the analysis of power, area and timing.
Parameters for the internal chip representation are given as input by the user.
Figure 2.6 shows a diagram of McPAT’s framework, including the workflow
of key components.

McPAT has a hierarchical structure that allows low-level architectural mod-
eling, using only high-level details defined by the user. High-level details are
used by McPAT’s optimizer to determine the low-level details for the internal
chip representation, focusing on two major structures, interconnects and ar-
rays. The optimizer produces the final chip representation, on which power,
area and timing are calculated.

McPAT’s workflow has two main phases, the initialization phase and the
computation phase. In the initialization phase, the final chip representation
is created using the specified input parameters. For each component, the
optimizer performs local greedy optimizations on circuit structures in order
to satisfy the timing constraints set by the user. If the resulting area or power
does not satisfy the constraints the design is discarded. Configurations that
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satisfy the constraints are used to create the final design. This chip model is
later used to compute the final area, timing and peak power results. The peak
power of individual components along with the corresponding utilization
statistics is then used to calculate the final runtime power dissipation.

2.4.1 Power, Area and Timing Models

McPAT models dynamic, short circuit and leakage power. Dynamic power
is dissipated when circuits charge and discharge capacitive loads to change
stages. It is proportional to the total load capacitance, the supply voltage,
the voltage swing and the activity factor. The activity factor is determined by
the input statistics along with circuit properties, while the load capacitance is
calculated by using analytic models for each circuit block of a module. Short-
circuit power is calculated using analytical equations. McPAT calculates both
subthreshold and gate leakage by determining the leakage current using data
from the ITRS and Intel.

To model basic logic gates and regular structures, such as regular logic, mem-
ory arrays and interconnects, McPAT uses analytical methodologies from
CACTI. For complex structures with custom layouts, McPAT uses an em-
pirical modeling approach that uses published information from existing de-
signs and scales them depending on the target technology.

The timing model uses resistance and capacitance to compute RC delays with
methodologies similar to CACTI. Using the delays of components on the crit-
ical path McPAT can determine the achievable clock frequency.

2.4.2 Accuracy Errors and Calibration

Despite being quite influential, McPAT lacks support for advanced technol-
ogy nodes and has known inaccuracies as reported in [24]. Specifically, accu-
racy error can be high due to:

• Model Abstraction errors, meaning that a model for a structure is in-
complete or missing, or the implementation of the model is too high-
level and misses low-level details.

• Modeling Assumption errors, when the implementation of a micro-
architectural structure differs from that of McPAT.

• Input Errors, arising from unknown or incorrectly specified input pa-
rameters.
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• Coding Errors, generated from programming mistakes or bugs in the
tool. However, most coding errors have been resolved in the latest ver-
sion of McPAT.

To reduce the impact of said errors, there are many available frameworks
that calibrate McPAT’s output results using machine learning models, such
as PowerTrain [25] and McPAT-Calib [26]. To extend on the supported tech-
nology nodes, McPAT-PVT [27] and McPAT-7nm [28], add support for up to
22nm and 7nm FinFET technology nodes respectively. Furthermore, McPAT-
Monolithic [29] adds support for 3-D Hybrid Monolithic multi-core architec-
tures.
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Chapter 3

Related Work

3.1 gem5 Simulations of ARM and x86 Processors

The gem5 simulator is an open-source computer architecture simulator sys-
tem. gem5 offers support for a wide range of instruction set architectures and
highly configurable models along with a straightforward front-end interface.
This, combined with fast simulation times and cycle-level accurate simula-
tions, makes gem5 a popular option for architectural and micro-architectural
system simulation and exploration. This section showcases notable works
regarding the accuracy and use of the gem5 simulator.

In [30], Butko et. al. simulated a Cortex-A9 CPU using gem5, focusing on the
accuracy of execution time on selected benchmarks. They simulated a dual-
core ARM Cortex-A9 running at 1 GHz, with private L1 data and instruction
caches and a shared L2 cache, based on and validated against the configura-
tion of Snowball SKY-S9500-ULP-C01 hardware development kit. The authors
run various benchmarks from SPLASH-2, ALPBench and STREAM suites on
gem5’s Full-System mode and on the Snowball SDK, disabling its’ DVFS fea-
ture to ensure that the system runs at a constant 1GHz. They report a mis-
match in execution time, meaning the time it takes the simulated system to
finish execution, between 1.39% and 17.94% between the real device and the
simulated system. Furthermore, to demonstrate gem5’s architectural explo-
ration capability, they modeled hypothetical multi-core systems made of up
to 8 cores, resulting in speedups ranging from 3.51 to 7.03.

In [31] Endo et. al. focused on in-order and out-of-order simulation, by
matching the performance of two ARM CPU cores, Cortex-A8 and Cortex-
A9, using gem5’s CPU models. At the time this work was published, gem5
did not provide a functional in-order CPU model for ARM. As a result, the
authors use gem5’s O3CPU model for both cores, modifying it to simulate an
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in-order pipeline in the case of Cortex-A8. The parameters used to configure
their CPU models were based on the development kits Snowball SKY-S9500-
ULP-CXX for the Cortex-A9 core and BeagleBoard-xM for the Cortex-A8 core.

To evaluate the accuracy of their models, they simulated a number of bench-
marks from the PARSEC 3.0 suite on a single-core configuration with a L2
cache for the in-order model and a dual-core configuration with a shared L2
cache, both on a Full-System configuration on gem5. Comparing the simu-
lation results with the results produced by their reference models, Snowball
SDK for the out-of-order model and with the BeagleBoard-xM SDK for the in-
order model, they achieved an execution time absolute error of 7.4%, ranging
from 1 to 17%, for the Cortex-A9 model and 8%, ranging from 2 to 16%, for the
Cortex-A8 model. To showcase the design space exploration capabilities of
gem5, they simulated a dual Cortex-A8 configuration with a shared L2 cache,
resulting in an almost perfect average speedup of 1.77 over its single-core
version.

Expanding on their work, Endo et. al. in [32] simulated CPUs of a big.LITTLE
system consisting of ARM Cortex-A cores, and presented performance, power
and area metrics using gem5 and McPAT. They simulated a big.LITTLE sys-
tem with two clusters of four cores each, one with Cortex-A7 and the other
with Cortex-A15, configuring the models of their previous work described in
[31]. The configuration of the simulated system was based on the ODROID-
XU3 board which embeds an Exynos 5244 Application Processor.

Running the Dhrystone benchmark and a number of benchmarks from the
PARSEC 3.0 suite, they achieved a 3.6% error on the area estimations for the
A15 and exactly matched the area of the A7. In the cluster estimations, they
had a -13 and -1.4% mismatch for the A7 and A15 clusters respectively. For
energy and performance, they simulated only one active core for each clus-
ter running single-threaded benchmarks. In the Dhrystone benchmark they
achieved a speedup of 1.84 for the A15 and 3.69 times less energy consump-
tion for the A7 core, which is very close to the results published by ARM.
For the PARSEC benchmarks they achieved, on average, a speedup of 1.5 for
the A15, which differs from the reported speedups of 2-3x, and 4.1 times less
energy consumption for the A7.

Butko et. al., in [33], also focused on the evaluation of performance and
power models of the ARM big.LITTLE architecture implemented in gem5
and McPAT simulation frameworks. They simulated a system with two CPU
clusters of four cores each with private L1 data and instruction caches and
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shared L2 cache in each cluster, based on the Exynos 5 Octa (5422) SoC, which
consists of Cortex-A7 and Cortex-A15 cores. For their implementation, they
used gem5’s in-order and out-of-order models, fine-tuning their parameters,
to match the specifications of the Cortex-A7 and the Cortex-A15 cores respec-
tively. In contrast to the work reported in [32], the authors in [33] focus on the
multi-core evaluation of the big.LITTLE system, performing modifications on
gem5 and the Linux kernel to be able to simulate both CPU clusters and boot
all 8 cores simultaneously in FS mode.

Their models were validated against the ODROID-XU3 board which is built
around the Exynos 5 Octa (5422), on various benchmarks from the Rodinia and
Lmbench suites. They report that the tests run on three different sets of static
frequency on both clusters, with the DVFS features disabled, both on gem5
and real hardware. They report an average absolute error on performance
of 18.8% for the LITTLE cluster, 20.1% for the big cluster and 22.9% for the
big.LITTLE system. On the total power consumption, they report a mismatch
of 12.7%, 11.7% and 10.8% for the LITTLE cluster, big cluster and big.LITTLE
system respectively. Last but not least, the reported average absolute error
for energy-to-solution is 21.9%, 27.9% and 22.1% for the LITTLE cluster, big
cluster and big.LITTLE system respectively.

To evaluate the performance of ARM and Intel x86 architectures in gem5,
Abudaqa et. al. conducted a comparative study in [34], simulating bench-
marks on multiple configurations on both architectures. The authors simu-
lated two in-order and two out-of-order single-core configurations with L1
data and instruction caches and a L2 cache on both architectures using gem5
in-order and out-of-order CPU models respectively. They simulated a num-
ber of benchmarks from the Mibench suite on SE mode, comparing the two
architectures on average CPI, L2 cache miss rate, total energy and through-
put. They report that ARM outperforms x86 in most cases, however, the
difference between architectures is minimal when the CPU model is out-of-
order. Regarding the L2 cache miss rate metrics, they report that the miss rate
becomes higher as the size of the caches is doubled, which is not reasonable.
They justify this result as their simulation focuses on gem5 SE mode, which
produces less accurate results.
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3.2 gem5 applications and implementation on the

RISC-V ISA

RISC-V is an open-source instruction set architecture, which has gained pop-
ularity from both academia and the industry by improving upon mistakes of
other open-source RISC architectures [3]. Its accessibility, due to being open-
source, makes RISC-V a great addition to the gem5 simulator since many of
the instruction sets already supported are proprietary and require licenses
that can be costly and difficult to work with. In this section, we summarise
important works regarding the use of gem5 and its’ accuracy in the context
of RISC-V.

In [35], Roelke and Stan introduce RISC5, an implementation of RISC-V for
gem5, which supports the standard instruction set with the common exten-
sions as well as the compressed instruction set for single-core simulation in
system call emulation (SE) mode. To implement the instruction set, the au-
thors adapted most the code gem5 uses to implement MIPS, implemented
atomic operations and floating point instructions. They report that instruc-
tion eret is not implemented since SE mode does not support privilege lev-
els. To showcase gem5’s compatibility with external tools, they create a tool
flow where they execute two RISC-V cores, Rocket and BOOM. Simulating
one million instructions of the libquantum benchmark, the authors report that
Rocket is much larger than BOOM due to its significantly larger L2 cache,
however, BOOM consumes more power and achieves significantly higher
temperatures due to being out-of-order and having higher associativity.

To validate their implementation, they simulated a number of benchmarks
from the SPEC CPU2006 suite on gem5, a Chisel-generated C++ simulator
and on a RISC-V softcore on an FPGA. They report that gem5 is accurate in
the number of retired instructions, number of memory operations and num-
ber of executed branch instructions, and less accurate in the total number of
cycles for each benchmark and the number of instructions fetched. Further-
more, it is reported that the FPGA took about 26.5 times less time than gem5,
on average, to execute the benchmarks, while the Chisel simulator took, on
average, 32 times more. Notice that the authors, refer to simulation time,
meaning the time it took the simulator to finish execution, comparing the
performance of the simulators.

To expand on the previously mentioned work, Ta et al. in [36] implement
support for multi-core simulation of RISC-V systems in gem5 for SE mode.
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To implement multi-core support, the authors modified gem5 to support
thread-related system calls and RISC-V synchronization instructions. Since
the implementation of system calls in SE mode is mostly ISA-independent,
hence, already implemented in gem5 for RISC-V by default, they report that
the only system calls implemented are: clone, which spawns a new thread,
futex, used for OS-level thread synchronization, and exit, which terminates a
thread’s execution. Furthermore, they implemented atomic memory opera-
tions and load-reserved/store conditional instructions.

To validate their implementation, they used a number of assembly and low-
level C benchmarks from the RISC-V tests suite to test the single-threaded im-
plementation and for the multi-threaded implementation, they developed a
number of assembly unit tests. They developed an assembly micro-benchmark
that tests the multiplier’s performance in gem5’s in-order CPU and validated
it against the multiplier performance of Rocket Chip. To evaluate the perfor-
mance of their implementation, they run a number of benchmarks from the
Ligra suite on a configuration of Rocket Chip in gem5 and compare the results
against a Chisel C++ RTL simulator. They report that the RTL simulator sim-
ulated slightly more instructions than gem5 and it was more than an order of
magnitude slower compared to gem5. Finally, they run several benchmarks
using the OpenMP run-time on systems with different numbers of in-order
cores. They report that gem5’s performance scales well with the number of
simulated CPU cores.

The next step to fully support RISC-V in gem5 is implementing Full Sys-
tem simulation. Yuen, Liao et. al. present a Full System implementation for
RISC-V in gem5 in [37]. They added a platform class, called HiFive, which is
based on SiFive’s HiFive series of boards with memory map conventions and
peripheral addresses based on the SiFive U54MC SoC dataset. Furthermore,
they added a Core Level Interrupt Controller (CLINT) component, which han-
dles software and timer interrupts, and a Platform Level Interrupt Controller
(PLIC), that handles the routing for external interrupts, as well as a Physi-
cal Memory Attribute (PMA) checking mechanism for checking attributes of
memory addresses. They report that the VirtIOMMIO is ported from the
ARM configuration while the UART module is already built-in in gem5. To
complete the implementation, they also added a number of fixes in Privileged
Instructions and interrupt handling logic as well as a Device Tree Blob (DTB)
file generation feature. Finally, they report that the checkpointing function-
ality is verified and working on all CPU models of gem5.
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The authors ran several experiments to verify their implementation. They
simulated a system with four CPU cores using the Berkeley Bootloader with
Linux kernel v5.10 along with the file system of the BusyBox disk image. They
report that the system was able to successfully boot up Linux and execute
commands using the terminal. Furthermore, they run a number of bench-
marks from the PARSEC suite, with 1, 2 and 4 threads on a configuration
with four out-of-order CPU cores and 1024M of DRAM. They report 39ms
execution time for the Blackholes benchmark using 1 thread and 10.1ms us-
ing 4 threads, resulting in a speed-up that is close to 4. To conclude, they
simulated a system with one CPU core and one hardware thread, where they
run Linux as a guest OS of Diosix Hypervisor. They report that the simulated
run-time is increased as they increase the number of threads used to run the
benchmark.

In [38], Chatzopoulos et. al. used gem5’s SE mode to simulate a model of
the RSD RISC-V processor and compared it to an RTL simulation baseline, in
order to point out the accuracy of the simulators, the challenges and possible
sources of error. The authors simulated an out-of-order configuration of the
RSD processor, using gem5’s O3CPU model with a L1 instruction and data
cache of 4kB each and a gshare branch predictor, which they implemented
from scratch. Since the RSD model is built upon the RV32I base instruction
set and gem5 runs the RV64I instruction set, they used only programs that
use 32-bit sizes for both the RSD model and gem5’s SE mode, compiled with
the RISC-V GCC cross-compiler without optimizations.

The authors used a set of custom benchmarks along with three benchmarks
from the MiBench suite, that tackle specific parts of the processor to evalu-
ate the simulation accuracy of both models and to retrieve important micro-
architectural parameters of the reference model. Using gem5’s detailed out-
of-order model, they report a simulation time speedup of 5x up to 20x com-
pared to the fast behavioral simulation of the RTL model. To measure run-
time accuracy, the authors used a pipeline visualizer and compared the in-
struction pipeline of both models. They report that gem5 reports 36% more
clock cycles in the BubblesortC benchmark and 35% less in the StringSearchS-
mall benchmark, compared to the RTL model, while the rest of the bench-
marks show little differences between the two models. Furthermore, they
report that the number of committed instructions of both models is virtually
the same in most cases. The authors conclude that the memory system and
the branch predictor are the most significant factors that affect the accuracy
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of the micro-architectural model.

3.3 Power modeling using McPAT

Power is an essential factor when designing architectural systems, especially
on embedded and mobile systems. As a result, there is a great demand for
architectural power modeling tools that offer fast simulations and accurate
models to estimate power consumption on a wide range of systems. McPAT
is a power modeling tool that offers power, area and timing estimations and
combined with a straightforward interface has gained popularity among re-
searchers. Therefore, the accuracy of McPAT’s models is of great significance.

In [24], Xi et al. performed the first highly detailed analysis of the cause
of potential errors on McPAT’s power and area estimations. They created
and simulated three models of IBM’s POWER7 CPU in McPAT, using perfor-
mance statistics generated from an IBM performance simulator for POWER
chips. To evaluate their models, they used several benchmarks from the
SPEC2000 and SPEC2006 suite, comparing the results between McPAT and
an IBM power modeling tool. They report that the main sources of error in
McPAT occur from abstraction errors in McPAT’s models, modeling assump-
tion errors and input errors.

To improve upon McPAT’s accuracy, Lee et al. [25] introduce PowerTrain,
a learning-based calibration framework on McPAT’s models. To validate
their framework, they use the Cortex-A15 as their baseline processor and the
ODROID-XU3 board with only one Cortex-A15 core enabled for power mea-
surement. They executed benchmarks from MiBench and SD-VBS suites on
the real hardware and they used the execution statistics as input on four dif-
ferent baseline models for McPAT. After the calibration, they report 2.41%
mean percentage error and 4.37% mean percentage absolute error between
the calibrated and the measured power.

Zhai et al. [28] introduce McPAT-7nm, a modified version of McPAT that sup-
ports FinFET technologies up to 7nm, along with McPAT-Calib, a framework
that uses advanced machine learning methods to calibrate McPAT-7nm, to
obtain more accurate modeling results. They evaluated their model using
80 benchmarks from various suites along with 15 different configurations of
the RISC-V BOOM core. The authors used 7nm ASAP7 PDK and commer-
cial gate-level power analysis flow to obtain the power ground truth. They
report a mean absolute percentage error of 4.47% on leakage power using
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Poly_SVR, 7.40% on dynamic power using XGBR with the total amount of
features and 6.23% using XGBR with dynamically selected features.

To integrate McPAT along with gem5, Tashiro and Oyamada [39] introduce
VIPEX (Virtual Platform Exploration), an environment that integrates both
simulators and improves their accessibility by incorporating a simple graph-
ical interface. The authors present a case study of an exploration of a design
space with 17496 architectures with various single-core and multi-core con-
figurations, based on gem5’s detailed ARM CPU model, with a workload
of a matrix multiplication. They were able to determine the best and worst
architectures regarding area, power, execution time and energy and analyze
the trade-offs between configurations. However, their environment uses an
exhaustive method, as it is under development, and as a result, it is too slow.

3.4 Thesis Approach and Motivation

In most of the projects mentioned above, the authors focus on coarse-grain
performance comparisons, such as bulk execution time, without reporting on
the causes of irregularities in their results. In this project, we will compare the
performance and energy costs between real and simulated RISC-V systems,
focusing on instructions per cycle (IPC), and attempt to define the sources
that cause the deviations from the real system. We chose Ariane, as we have
available information on its performance and design parameters.

We will compare Ariane’s reported performance with configurations of gem5,
using gem5’s detailed models on Full-System mode. Then, we compare Ari-
ane’s reported leakage power and energy with our configurations using Mc-
PAT.
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Simulation Environment Setup and
Implementation

This chapter presents the implementation for modeling and simulating the
target system. It describes tool workflow along with the tool use and setup
and the functionality of the models used.

4.1 Concept and Tool Work-Flow

As we mentioned above, the goal of this thesis is to compare the energy costs
and the performance between a simulated environment and an actual ASIC
implementation of RISC-V cores to provide a preliminary fault analysis of the
former. Towards this objective we create a simulation model that matches, as
far as possible, the ASIC implementation of CVA6 (former Ariane) [2]. gem5
[19, 20, 40] offers a fast simulation and a large number of highly configurable
micro-architectural models. This makes it suitable for providing the micro-
architectural simulation and useful event statistics of the target system. For
this project, we use version 21.2.1 of gem5, built for the RISC-V ISA. To obtain
analytical power and area statistics, we use a modified version of McPAT [23]
called cMcPAT [41]. cMcPAT is a modified version of McPAT employed in
the COSSIM simulator framework [42] that can also be used independently
as a stand-alone package. It incorporates changes integrated into McPAT v1.3
that address the issues reported in [24] improving the accuracy.

In [2], it is reported that a number of assembly-level tests were developed to
exercise particular architectural elements and provide classification for dif-
ferent instruction groups and hardware modules commonly found in RISC-
V architectures. The authors provide a list of energy and leakage power re-
sults produced by these particular tests. Furthermore, the authors report IPC
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results for the Dhrystone benchmark. For the purposes of this project, we de-
cided to use the RISCV-Tests suite which offers a large number of assembly-
level compliance tests and low-level C benchmarks, including Dhrystone.

4.1.1 Tool Work-Flow

We begin the flow by writing a gem5 configuration file that includes all the
provided micro-architectural design parameters. These configuration files
are part of the simulator’s front-end environment that is written in Python
which is responsible for instantiating and orchestrating the models in the
back-end which are written in C++. After running each benchmark under
this configuration, gem5 produces a large number of event and performance
statistics. Given gem5’s output files along with a template of McPAT’s input
XML file to cMcPAT’s integrated GEM5toMcPAT.py script, we are able to pro-
duce an input XML file that can be passed to McPAT to produce power and
area estimates. Using McPAT’s power results alongside the total run-time
from gem5, we obtain both energy estimations and performance results for
the target system. In Figure 4.1, we present the flow described above.

FIGURE 4.1: Tool work-flow.
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4.2 Benchmarks

In [2], they report that they developed a number of assembly-level tests that
test particular architectural elements. Specifically, they test: ALU instructions
for arithmetic and logic operations, Multiplications, Divisions, Load and Stores
with and without virtual memory and a Mixed Workload using a generalized
matrix-matrix multiplication. They also report IPC and DMIPS/MHz pro-
duced by the Dhrystone benchmark.

To be able to measure the performance and required energy of our model
and compare it to the results listed in [2], we selected a number of tests
and benchmarks from RISCV-Tests suite. RISCV-Tests provide a number of
assembly-level tests and low-level C tests built for bare-metal systems that
match the description of the workload used to measure the performance in
[2]. In particular, we chose: rv64ui-p-add for ALU instructions, rv64um-p-mul
for multiplications, rv64um-p-div for divisions, rv64ui-p-sw for Load/Stores
with virtual memory disabled and rv64ui-v-sw for Load/Stores with virtual
memory enabled, from the ISA tests of the suite. For the mixed workload, we
chose the matrix multiplication benchmark included in the riscv-tests suite.
Last but not least, to obtain the IPC of our CPU, we used the Dhrystone v2.2
benchmark included in the riscv-tests suite, in our bare-metal configuration.
Unfortunately, we could not obtain the Dhrystone score in DMIPS/MHz, as
gem5’s bare-metal setup does not support the serial terminal. To solve this,
we used Dhrystone v2.1 in Full-System simulation. Versions 2.1 and 2.2 of
the Dhrystone benchmark are functionally identical.

4.2.1 Setting up the tests

The assembly tests from the suite are designed for ISA compliance testing
and functional validation of architectural components. These tests do not
produce meaningful performance and energy statistics since their code is
short. To solve this, we modified the main section of the tests to run in a
loop of 200 iterations using a simple branch loop.

To compile the tests, the riscv-gnu-toolchain package, which contains the GNU
GCC cross-compiler for RISC-V, has to be installed. After setting up the RISC-
V toolchain, before compiling the test suite, the Linux RISC-V environmental
variable, $RISCV, has to be set to the RISC-V tools install path and the variable
has to be added to the Linux path variable, $PATH. The test suite is then built
using riscv64-unknown-elf-gcc cross-compiler. After compilation, the test and
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benchmark binaries are generated in the suites directory. More information
about setting up the RISC-V toolchain and compiling the risv-tests suite is
provided in Appendix A.

To set up Dhrystone for the Full-System configuration, we compiled Dhrys-
tone v2.1 with riscv64-linux-gnu-gcc for 10 million iterations, with the same
compilation flags as in the bare-metal version. The -O2 optimization flag was
enabled in both setups. We tested that Dhrystone exits with a "measured time
too small" message and does not produce a score when compiled for less than
10 million iterations.

4.3 Implementing the core model for simulation

in gem5

From [2], we obtain the basic architectural design parameters listed in Table
4.1. Notably, we state here that the original study [2] does not describe all
the parameters in detail. To sidestep this we set default values for parame-
ters that are omitted by the authors. For transparency, we annotate which of
them are known and which of them are set to default. For sanity check, we
also measure the impact of the default parameters to the overall analysis, by
slightly tweaking their values.

To be able to pass the given design parameters and hardware modules into
our simulation model, we have to create a Python configuration file that con-
tains all the necessary classes (SimObjects) for the simulation.

File ariane.py was created and contains the following modules:

• Class for configuring CPU

• Classes for configuring instruction and data Cache

• Branch Prediction Unit configuration class

• Classes for ALU, LSU, FPU and Mult/Div configuration

• Functional Unit Pool class
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TABLE 4.1: Architectural design parameters reported in [2].

Parameter Chosen

BHT 8
BTB 8
ROB Entries 8
Fetch latency 1
L1 I-cache 16kB, 4-way
L1 D-cache 32kB, 8-way
L1 D-cache latency 3
Integer ALU latency 1
Register File 31x64 flip-flops
I-TLB Entries 16
D-TLB Entries 16
Clock 1.7GHz

In subsequent subsections, we analyze the aforementioned configurations in
further detail.

4.3.1 CPU Configuration

Ariane has a 6-stage, in-order, single-issue pipeline. Its front-end consists
of a PC generation stage and an instruction fetch stage. Instructions are is-
sued and committed in-order, however, they can retire out-of-order. For that
reason, we decided to use gem5’s out-of-order CPU model, DerivO3CPU.
gem5’s in-order CPU model, MinorCPU, does not contain modules that af-
fect Ariane’s performance, such as the Reorder Buffer, and cannot execute
instructions out-of-order. Thus, we assume that MinorCPU is not suitable
for our case.

We create class ARIANE(), which inherits from gem5’s O3CPU class. This al-
lows us to configure gem5’s DerivO3CPU with our CPU’s micro-architectural
design parameters. We are able to configure the pipeline’s width and depth,
the number and size of Reorder Buffer (ROB), Instruction queue and Load/-
Store queue size, branch predictor type and functional units.
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FIGURE 4.2: CPU class inheritance diagram.

4.3.2 Instruction/Data Caches

For Ariane’s instruction and data cache, we create classes ARIANE_ICACHE()
and ARIANE_DCACHE(). These classes inherit from gem5’s Cache class and
allow us to configure the size, associativity and latency for each cache mem-
ory. Although the Ruby model is more accurate, we chose the classic Cache
model, since the Ruby model is used mainly for cache coherency protocols
and complex cache hierarchies. In our case, we only have L1 data and in-
struction cache, thus the Ruby model is unnecessary.

FIGURE 4.3: Cache class inheritance diagram.

4.3.3 Branch Prediction Unit

Ariane employs a Branch History Table, Branch Target Buffer and a Return
Address Stack. To configure the branch prediction unit, class ARIANE_BR()
was created and it inherits from gem5’s LocalBP class, which allows us to
configure BHT, BTB and RAS parameters.
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FIGURE 4.4: Branch Prediction class inheritance diagram.

4.3.4 Functional Units

In [2] it is reported that Ariane has a total of 6 functional units:

• ALU: handles most of the integer base RISC-V ISA

• LSU: manages integer and floating-point load/stores

• FPU: handles floating-point operations.

• Multiplier/Divider

• Branch unit: handles branch prediction and branch correction, and

• CSR: handles CSR operations

To configure the functional units, gem5 offers the FUDesc class. This class has
2 fields, Count and OpList. Parameter count defines the number of functional
units of the same type and OpList is a list of OpDesc objects. OpDesc defines
the type of operations a functional unit handles via the OpClass parameter
and the latency of this type of operations by OpLat parameter.

To model and to be able to configure the ALU, LSU, FPU and Mult/Div,
classes Ariane_ALU, Ariane_LSU, Ariane_FPU and Ariane_MultDiv were cre-
ated respectively.

FIGURE 4.5: Functional Units class inheritance diagram.
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FIGURE 4.6: Class inheritance diagram of objects in ariane.py.

gem5 does not have a dedicated OpClass that handles branch prediction. It
offers an OpClass named SimdPredAlu that handles SIMD branch prediction,
however, since Ariane does not have a SIMD unit we decided not to use it.
Furthermore, CSR instructions belong to gem5’s No_OpClass. As a result, the
Branch and CSR unit could not be modeled.

To be able to pass the functional units to the CPU model, gem5, offers class
FUPool, that stores all functional units needed for the simulation in a list.
Ariane_FUP class was created and it inherits all the attributes of class FUPool.
Our FUPool contains the ALU, the Floating-Point Unit, the Load/Store Unit
and the Multiplier/Divider, as shown in Figure 4.7.

FIGURE 4.7: CPU configuration for simulation in gem5.
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Figure 4.7 shows a diagram of the CPU with the modules created in the
file ariane.py. The blue blocks are the new objects created in ariane.py while
the gray blocks are their parent classes. The instruction and data caches are
connected to the CPU’s cpu.icache_port and cpu.dcache_port respectively. The
branch prediction unit is set to the parameter branchPred and the Functional
Unit Pool is set to the parameter fuPool. This script is used to initialize the
CPU and the caches of our system, by instantiating the respective objects in
the Full-System configuration file described in later sections. Buses, periph-
eral devices and memory are also defined and instantiated in the Full-System
configuration file.

4.3.5 Choosing Parameter Values For The Base Model

In this section, we indicate the selected values for the architectural design
parameters of the base configuration.

To begin with, in [2], they report that the ALU handles most of the base RISC-
V ISA and it has a fixed latency of 1 cycle. For that reason, we chose the IntAlu
operation class and we left the default latency of 1 cycle.

TABLE 4.2: Chosen Functional Unit parameters.

Functional Unit OpClass Latency Pipelined
ALU IntAlu 1 -
Mult/Div IntMult 2 True

IntDiv 2,16,32,64 False
LSU MemRead 2 -

MemWrite 2 -
FloatMemRead 2 -
FloatMemWrite 2 -

FPU FloatAdd 2 -
FloatCmp 2 -
FloatCvt 2 -

FloatMult 4 -
FloatMultAcc 5 -

FloatMisc 3 -
FloatDiv 14 False
FloatSqrt 24 False

We selected IntMult and IntDiv operation classes for the Mult/Div unit of
our simulated system, since the Multiplier/Divider of Ariane handles inte-
ger multiplications and divisions. They report that the multiplier is fully
pipelined and has 2 stages, thus, we assign a latency of 2 cycles and enable



44 Chapter 4. Simulation Environment Setup and Implementation

the Pipelined parameter. The divider is not pipelined, and as they report divi-
sions can take from 2 to 64 cycles depending on the operand values. Since we
cannot apply a range in the latency parameter, we will simulate our bench-
marks for four different cases. With 2 and 64 cycles for the best and worst
cases respectively, and with a latency of 16 and 32 cycles for two middle
cases.

They report that the Load/Store Unit manages integer and floating point
loads and stores. Therefore, we selected the appropriate integer and float-
ing point operation classes. Furthermore, we chose all the corresponding
operation classes for floating-point operations for the Floating-Point Unit, as
shown in Table 4.2. The authors of [2] do not provide any additional informa-
tion on the latency of the FPU and the LSU, consequently, we left the default
values of gem5, as they seem reasonable for the respective operations. Ta-
ble 4.2, indicates the selected parameter values of the functional units of our
simulated system.

TABLE 4.3: Chosen Branch Prediction Unit parameters.

Parameter Config A Config B

localPredictorSize 8 128
localPredictorBits 2 2
BTBEntries 8 64
RASSize 2 2

Ariane supports branch prediction via a Branch History Table with a 2-bit
saturating counter, a Branch Target Buffer and a Return Address Stack. In
[2], the authors report that the ASIC implementation of Ariane has a BHT
and a BTB of 8 entries each. However, they cite an alternative configuration
of a 128-entry BHT and a 64-entry BTB with which they report an IPC of 0.82.
As a result, we will run our experiments on both configurations and measure
their impact on performance. The selected values of both configurations are
shown in Table 4.3. The value of RAS was set at 2 entries based on Ariane’s
source code.

Based on [2], the instruction cache is 16kB in size with an associativity of 4
and the data cache has a size of 32kB, an associativity of 8 and a latency of
3. We set the corresponding values as shown in Table 4.4. We set the latency
of the instruction cache at 1 cycle because they report a fetch latency of 1
cycle. Since Ariane does not support MSHRs, we set their corresponding
parameters at the lowest possible value, which is 1.
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TABLE 4.4: Chosen Cache parameters.

Parameter I-Cache D-Cache

size 16 kB 32 kB
assoc 4 8
tag_latency 1 3
data_latency 1 3
responce_latency 1 3
mshrs 1 1
tgts_per_mshr 1 1

gem5’s out-of-order model has a 7-stage pipeline. However, by changing the
delay parameter values, it can simulate pipelines with different numbers of
stages. In order to simulate the pipeline of Ariane, the ideal solution would
be to assign a delay value of 0 to one of O3CPU’s stages, specifically to the
Rename stage since CVA6 does not have a dedicated renaming stage. Un-
fortunately, after testing such configurations, the simulation would stall and
crash. As e result, we set the delay parameter values to the lowest possible
value of 1.

Based on Ariane’s source code, we noticed that Ariane fetches 2 instructions
in one cycle when the instructions are compressed and 1 if not. Further-
more, in [2], they report a fetch width of 32 bits and that CVA6 fetches 1.5
instructions on average, due to a large percentage of the instructions being
compressed. Based on the above, we decided to set a fetch width of 2 in-
structions in the base model. CVA6 is a single-issue processor, thus the issue
width was set to 1. The commit width value was set to 2 as reported in [2].
The rest width parameter values for the base model were assigned as shown
in Table 4.5.

TABLE 4.5: Chosen Pipeline Width values.

Parameter Value

fetchWidth 2
decodeWidth 1
renameWidth 1
dispatchWidth 1
issueWidth 1
wbWidth 1
commitWidth 2
squashWidth 4

Since they report a fetch width of 32 bits, we assigned a 4-byte fetch buffer
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and a fetch queue of 4 entries based on the source code. It is also known
from [2] that the Reorder Buffer has 8 entries. However, information on the
Load/Store queues, as well as the instruction queue was not provided in [2].
Therefore, judging by the fact that Ariane has a small circuit, we selected
2 entries for the Load/Store queue and 8 entries for the instruction queue.
Table 4.6 lists the selected CPU parameter values for the base configuration.

TABLE 4.6: Chosen CPU parameter values.

Parameter Value

fetchBufferSize 4(Bytes)
fetchQueueSize 4(Entries)
LQEntries 2
SQEntries 2
numIQEntries 8
numROBEntries 8
numPhysIntRegs 40, 44
numPhysFloatRegs 40, 44
I-TLB 16
D-TLB 16

We selected 16 entries for instruction and data TLB each, as reported in [2].

4.4 Configuration files setup

Tests from the riscv-tests suite are built for bare-metal systems and run in ma-
chine mode (M-mode). Systemcall Emulation (SE) mode supports binaries
running in user mode (U-mode), thus, running the tests in SE mode returns
an Illegal Instruction error. As a result, SE mode is not suitable for our case.

To simulate binaries that run in M-mode in gem5 we need a bare-metal setup,
which can be accessed through Full-System (FS) simulation. FS mode has the
following requirements:

• An FS configuration script.

• A Linux Kernel Binary.

• A disk image containing the file system.

The configuration script instantiates and initializes our system and runs the
simulation. By using RiscvBareMetal() as the system’s workload and giving
the test binary in the bootloader parameter of workload, the simulation runs
on bare-metal mode. Unfortunately, the bare-metal setup does not support
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the serial terminal and as a result, we cannot obtain the score produced by
Dhrystone. For this reason, we have to configure our script to be able to run
both the bare-metal setup and regular Full-System simulation, by letting the
user choose between the RiscvBareMetal() workload, for the bare-metal setup,
and the RiscvLinux() workload, for regular FS simulation, from the command
line terminal. We developed a configuration file that supports both bare-
metal setup and FS mode with full OS support, based on gem5’s fs_linux.py
script. The details of our configuration file are described in later sections. We
run Dhrystone both on bare-metal setup, to obtain the IPC, and regular FS
mode, to obtain the Dhrystone score in DMIPS/MHz.

When running the FS configuration, we use a pre-built Linux kernel binary
[43] (riscv-bootloader-vmlinux-5.10) alongside a simple RISC-V disk image
based on BusyBox [44], obtained from gem5-resources repository [45].

4.4.1 System object and configuration script setup

First of all, file ariane_fs.py is created and it defines the system object used in
the configuration. Class ArianeSystem is created and it inherits from gem5’s
System class. This class contains all of the necessary modules for the FS mode.
To initialize the system, the class constructor needs to be defined. The con-
structor creates all the modules needed for the simulation and initializes the
system. It takes four parameters:

• kernel: kernel binary path.

• disk: disk image path.

• num_cpus: Number of CPUs.

• bare_metal: Run simulation in bare-metal mode.

These can be passed and configured from the command line options. We
provide both the flow and commands in Appendix A.

The constructor function defines the system’s clock as well as the system’s
memory range, which is the size of our physical memory. The system bus is
also created in the constructor method. For the system bus, gem5’s MemBus
module was used. This module uses the SystemXBar with a Bad address re-
sponder added. The Bad address responder is a fake device that returns a bad
address error on any access. The system port is then set to this bus and the
Hifive() platform is set as the system’s platform.
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Next, if the bare_metal option is true, the system’s workload is set as RiscvBareMetal()
and the bootloader parameter is set as the kernel option parameter. This way
the simulation runs on a bare-metal setup, thus without OS support.

If the bare_metal option is false, the system’s workload is set as RiscvLinux
and the obj_file parameter is set as the kernel option parameter and the sim-
ulation proceeds to run a regular Full System simulation. In this mode, the
required Device Tree (DTB) file is created and set using method generateDtb()
from gem5’s fs_linux.py and the kernel parameters are set in the kernel_cmd
parameter.

The rest of the constructor function calls a number of helper functions that
initialize the system’s modules. Specifically:

• createCPU(num_cpus): This method, takes the number of CPUs from
the command line options and sets the system’s CPU parameter as
module Ariane(), which is created in file ariane.py. The memory mode
parameter is set in ’timing’ mode and gem5’s method createThreads() is
called to create hardware threads for the system.

• createCacheHierarchy(): In this method, modules Ariane_icache() and
Ariane_dcache() from file ariane.py are used to set the systems instruction
and data cache respectively and connect them to the CPU and the mem-
ory bus. Furthermore, the CPU’s MMU is set using gem5’s RiscvMMU()
module and the instruction and data TLB sizes are defined. The MMU’s
walker ports are set to the memory bus cpu_side_ports.

• createInterrupts(): This method creates the systems interrupts by call-
ing gem5’s createInterruptController() method.

• createMemoryController(): The memory controller is set in this method.
gem5’s DDR3_1600_8x8 module with the memory range defined above
is used in the dram parameter and the memory bus side ports in the port
parameter.

• createDevices(disk): This method sets up all the peripheral devices
used in the system. It defines the system’s I/O bus using IOXBar()
and real-time clock using RiscvRTC() and connects the I/O bus and the
memory bus to the system’s bridge. Moreover, a disk image object is
created using the disk image given in the command line options param-
eter. Core-local (CLINT) and Platform-level (PLIC) interrupt controllers
are set and on-chip and off-chip I/O are connected to the memory and
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I/O buses. Finally, the MMU’s physical memory address checker is set
using gem5’s PMAChecker() module.

Running the configuration file ariane_fs.py will create and simulate the sys-
tem shown in Figure 4.8.

4.4.2 Creating a run script

To be able to run a Full System simulation for the above System object, we
create the script ariane_fs_run.py. The system mentioned above is imported
from ariane_fs.py.

The script reads the command line options, using the argparse library, and
passes them as arguments to the simulated system. Using gem5’s Options
library the script supports all of gem5’s common FS mode command line
options.

After defining the root object the script runs the simulation using the run()
method from gem5’s Simulation library.

4.4.3 Running the simulation

To run the Full System simulation, we need to run gem5.opt binary and call
the configuration file. To run file ariane_fs_run.py, the kernel, the disk im-
age with the file system and the number of cores have to be defined in the
command line options. To run on bare-metal mode, option –bare-metal has to
be added and the benchmark binary has to be defined in the command line
options instead of the kernel.

When running the simulation in FS mode, standard output is not automat-
ically redirected to the console. In order to communicate with the system,
gem5 offers a serial terminal named m5term. After building m5term, to con-
nect to the system we have to run the m5term binary, in a separate command
line window while the gem5 simulation is running, and connect to port 3456
as a localhost.

After connecting to the system we can see Linux booting in the m5term. In-
serting username and password root, we enter as a user in the command
prompt where we can run Linux commands and execute benchmarks mounted
on the disk image.
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FIGURE 4.8: System configuration for Full System simulation
in gem5.
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In the case of bare-metal mode, the simulation keeps running after the bench-
mark has finished its execution. Since m5term is not supported in bare-metal
mode, debug flag Exec is used, starting from the beginning of the simulation.
This debug flag turns on instruction tracing in gem5 and it makes the simula-
tion print a disassembled version of each instruction along with other useful
information after the execution is finished. File trace.out is defined and used
to store the information printed from the debug flag.

Using file trace.out we notice that after the benchmark finishes the execution
the simulation jumps in an infinite loop to signal its termination. Tests from
the riscv-tests are built for bare-metal systems and communicate with a host
machine to inform the result. The test, after the execution, expects an address
from the host machine. gem5 is unaware of such address, thus the simulation
execution never stops.

A possible solution to this problem would be to use function m5_exit() from
the m5ops after the execution of the test. When this operation is called, it
triggers the simulation to stop in nanoseconds specified by the user. How-
ever, tests from riscv-tests suite run in machine mode where m5ops are not
supported.

To fix this issue, gem5’s max instruction count was used. Using the trace file
trace.out, after running the tests once, we can find the instruction where the
test finishes its essential execution and starts the endless loop. We can use
this threshold as the max instruction count, after which the simulation will
exit.

4.5 Setting up McPAT for power and energy mod-

eling

To recreate power and energy performance metrics, a modified version of
McPAT, called cMcPAT, was used. To run McPAT, we have to pass an input
xml file that contains micro-architectural design parameters and event statis-
tics. Example xml input files are provided with McPAT. cMcPAT comes with
helper scripts and a template xml file in order to produce energy metrics and
create an input file for McPAT using gem5’s output files.
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4.5.1 Creating the input file for McPAT

First of all, we have to enter all known micro-architectural design parameters
to the template xml input file. Script GEM5ToMcPAT.py parses files stats.txt
and config.ini from gem5’s output and inserts all useful design parameters
and event statistics needed for McPAT, to the template xml. After running
the script and passing the files: stats.txt, config.ini and the template xml, a
new xml input file is produced that we can then use to run McPAT.

4.5.2 Running McPAT

Using the input xml file mentioned above, we run McPAT’s binary passing
the input file in the command line options. To get the most detailed output
from McPAT, variable -print_level has to be set at level 5, which is the maxi-
mum detail level, and defined in the command line options. McPAT’s output
is then redirected into an output text file, from where we can examine its
outcomes.
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Chapter 5

Results and Performance Analysis

In this chapter, we describe the experimental procedure of matching the per-
formance and energy costs of the silicon implementation of CVA6 (Ariane),
to the gem5 configurations described in the previous chapters. We present
the results on performance, leakage and dynamic power and energy, and
provide a preliminary error analysis of the gem5 simulator, by comparing
our results to the ones reported in [2].

5.1 Performance Experiments and Results

We use the configuration described in the previous chapter as our base model
and attempt to match the performance of the silicon implementation of Ar-
iane by tweaking the unknown parameters of the base implementation and
keeping all the known parameters unmodified.

We create four models of the base configuration, config0-config3, with config0
being the base configuration described in Chapter 4 and the rest being ver-
sions of the base configuration with modified parameters. In each model,
we modify the values of fetchQueueSize, the load and the store queue size,
LQEntries and SQEntries, and instruction queue size, numIQentries. For each
model, we provide a secondary configuration, configNb, with N the number of
the model, with an alternative branch prediction unit setup, since the authors
of [2] report an alternative configuration of a BHT of 128 entries and a BTB of
64 entries. We provide the parameters of each model in the following table.
We kept the rest of the unknown parameters unmodified, with the values de-
scribed in the previous chapter. Table 5.1 indicates the parameter values of
each configuration.
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TABLE 5.1: Parameter values of all configurations tested.

Parameters config. 0 config. 1 config. 2 config. 3

BP config. a b a b a b a b

fetchBufferSize(bytes) 4 4 4 4 4 4 4 4
fetchQueueSize(entries) 4 4 4 4 8 8 16 16
LQEntries 2 2 4 4 8 8 16 16
SQEntries 2 2 4 4 8 8 16 16
numIQEntries 8 8 8 8 8 8 16 16
numROBEntries 8 8 8 8 8 8 8 8

localPredictorSize 8 128 8 128 8 128 8 128
localPredictorBits 2 2 2 2 2 2 2 2
BTBEntries 8 64 8 64 8 64 8 64
RASSize 2 2 2 2 2 2 2 2

In [2], the authors report an IPC of 0.82 and 1.65 DMIPS/MHz produced by
the Dhrystone benchmark, using the secondary branch prediction unit con-
figuration of a 128-entry BHT and a 64-entry BTB, however, they do not pro-
vide any additional information on how the benchmark was executed or if
the configuration that produced that number has further differences than the
branch prediction unit. To obtain the IPC of our configurations, we decided
to run the Dhrystone benchmark, for each configuration described above
in bare-metal setup for 200k instructions, since we assume that bare-metal
mode will produce a more representative IPC result. After a test run of Dhry-
stone, we noticed that the exit environment call is executed nearly at 200k in-
structions, therefore we chose an instruction limit of 200k instructions. Since
gem5 does not support the serial terminal in bare-metal mode, we executed
the Dhrystone benchmark in Full-System mode, to obtain the Dhrystones per
second score in order to calculate the DMIPS/MHz score.

Since the division unit does not have a fixed latency in Ariane, we execute the
benchmark for different division latency values in each configuration shown
in Table 5.1, to see if and how it affects performance. We simulate each con-
figuration four times, with 2 and 64-cycle latency, for best and worst cases,
and for 16 and 32-cycle latency for middle cases.

5.1.1 IPC Results from the Dhrystone Benchmark

Running the Dhrystone benchmark through all configurations indicated in
Table 5.1, and all the selected division latency values in bare-metal mode for
200k instructions, produces the IPC results shown in the following table. We
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obtain the IPC of each configuration the gem5’s stats.txt output file. Instruc-
tions per cycle is indicated by the system.cpu.totalIPC statistic.

TABLE 5.2: IPC results from the Dhrystone benchmark in bare-
metal simulation.

Div (cycles) 2 16 32 64

Configuration IPC
0a 0.439027 0.437082 0.429139 0.41473
0b 0.470416 0.463891 0.454975 0.439043
1a 0.576997 0.572789 0.560634 0.535748
1b 0.648076 0.63551 0.618887 0.590159
2a 0.616624 0.61187 0.596495 0.569718
2b 0.701728 0.686034 0.667607 0.633484
3a 0.62172 0.617351 0.602237 0.574094
3b 0.704613 0.691017 0.672168 0.63773

Running the Dhrystone benchmark on same configurations as before, for all
chosen division latency values, but in Full-System mode this time produces
the following results (Table 5.3). For the FS mode runs we chose to run Dhry-
stone for 10 million runs, since, through test runs, we discovered that it did
not produce the Dhrystones per second score for less than that. The Dhrystone
benchmark, at the end of its execution, produces a score named Dhrystones
per second. To calculate DMIPS/MHz from the Dhrystone score we use the
formulas written below. After running the benchmark, we notice that for
each configuration, each run with different division latency does not affect
Dhrystone’s score, thus the result stays the same with each run. Therefore,
in Table 5.3 the result of each configuration was produced on all individual
runs with different division latency values.

DMIPS =
Dhrystones per second

1757
,

DMIPS/MHz =
DMIPS

clock speed(MHz)

To calculate DMIPS we divide the Dhrystones per second by 1757. The number
1757 is the Dhrystone score produced by VAX 11/780 which is nominally an
1 MIPS machine. Dividing DMIPS with the clock speed in MHz, normalizes
DMIPS into DMIPS/MHz, enabling us to compare processor performance at
different clock speeds.
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TABLE 5.3: Dhrystones per second and DMIPS/MHz score
from the Dhrystone benchmark in Full-System simulation.

Configuration Dhrystones/second DMIPS DMIPS/MHz

0a 3333333 1897.17 1.115
0b 3333333 1897.17 1.115

1a 5000000 2845.76 1.67
1b 5000000 2845.76 1.67

2a 5000000 2845.76 1.67
2b 5000000 2845.76 1.67

3a 5000000 2845.76 1.67
3b 5000000 2845.76 1.67

The IPC results are presented in the following figure (fig. 5.1). In Figure
5.1, each group in the horizontal axis corresponds to each configuration. The
"bars" correspond to the IPC result for each run with a different division la-
tency. IPC value is indicated by the vertical axis.

FIGURE 5.1: IPC and DMIPS/MHz results graph for all the con-
figurations.

With a first glance at the results, we notice that the IPC is increased between
each configuration and comes closer to the published result, as we increase
the sizes of the load and store queues, the fetch queue and the instruction
queue. Furthermore, as we increase the latency of the divisions, we notice
that the performance drops. We can see that the increase of division latency
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in cycles has a more significant effect on configurations 2 and 3 than on con-
figurations 0 and 1. Considering the FS simulation, we notice that configu-
ration 0 produces 1.116 DMIPS/MHz while the rest configurations produce
almost the double performance with 1.67 DMIPS/MHz, which matches al-
most perfectly the reported 1.65 DMIPS/MHz.

5.1.2 Performance comparison between configurations

To illustrate the impact on the performance of each configuration we present
the following figures (fig. 5.2 and 5.3). Both figures present the resulting IPC
of each configuration for each run, Figure 5.2 presents the performance of
configurations with the original BPU setup while Figure 5.3 with the alterna-
tive BPU setup. In both figures, each group in the horizontal axis presents
the division latency value in cycles, each "bar" indicates the performance of
the corresponding configuration and the vertical axis the IPC value.

FIGURE 5.2: Performance comparison between configurations
with the original Branch Prediction Unit Setup.

From both figures, we notice that configuration 1 has a more significant im-
provement compared to configuration 0, with the only difference between
configurations being the load and store queue sizes. In addition, from con-
figuration 2 we notice that increasing the load/store queue sizes along with
the fetch queue size, further increases performance, however at a lower rate
compared to configurations 0 and 1. Furthermore, we notice that despite
configuration 3 having double the sizes of fetch, instruction and load/store
queues, compared to configuration 2, it produces slightly increased but al-
most identical performance results.
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FIGURE 5.3: Performance comparison between configurations
with the original Branch Prediction Unit Setup.

In the following figures (fig. 5.4 to 5.7), we present the results of each con-
figuration respectively, in order to better illustrate the impact of the Branch
Prediction setup, for each configuration. In each figure, the groups in the
horizontal axis indicate the division latency value in cycles, the "bars" corre-
spond to the BPU setup and indicate the performance in IPC with the corre-
sponding value from the vertical axis.

FIGURE 5.4: Performance results from all runs for Configura-
tion 0, illustrating the impact of Branch Prediction Unit setup.

From figures 5.4-5.7, we notice that changing the BPU configuration single-
handedly offers a significant increase in the CPU’s performance. For ex-
ample, if we look at configuration 2 (fig. 5.6), configuration 2a produces a
performance of 0.61 IPC when running with a division latency of 2 cycles.
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Changing to the alternative BPU setup, in configuration 2b, the performance
increases from 0.61 IPC to 0.70. We notice a similar increase in performance
to the rest configurations respectively (fig. 5.4, 5.5 and 5.7)

FIGURE 5.5: Performance results from all runs for Configura-
tion 1, illustrating the impact of Branch Prediction Unit setup.

FIGURE 5.6: Performance results from all runs for Configura-
tion 2, illustrating the impact of Branch Prediction Unit setup.
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FIGURE 5.7: Performance results from all runs for Configura-
tion 3, illustrating the impact of Branch Prediction Unit setup.

We also provide the following figures (Fig. 5.8 to 5.11), in order to make
a clearer presentation of the impact of each configuration on performance.
Each figure presents the performance of all configurations for a specific divi-
sion latency value in cycles. The groups in the horizontal axis present each
configuration and the "bars" indicate the change in branch prediction setup.
The vertical axis indicates performance in IPC.

FIGURE 5.8: Performance comparison between all configura-
tions for a division latency of 2 cycles.
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FIGURE 5.9: Performance comparison between all configura-
tions for a division latency of 16 cycles.

FIGURE 5.10: Performance comparison between all configura-
tions for a division latency of 32 cycles.

FIGURE 5.11: Performance comparison between all configura-
tions for a division latency of 64 cycles.
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Through all the figures above (fig. 5.8-5.11), we notice that each configuration
has improved in performance from the previous one, however, configura-
tion 3 produces almost identical performance to configuration 2, despite the
former having double the size of fetch, instruction and load/store queues.
Moreover, throughout all configurations, the alternative branch prediction
configuration offers a substantial increase in performance.

5.1.3 Matching the reported performance

From the results reported above (Tab. 5.2), we notice that configuration 2 and
configuration 3 produce almost identical performance, despite the latter hav-
ing double the size of fetch, instruction and load/store queues. If we further
increase the values of these design parameters (e.g. 32, 64-entry queues), the
simulation will produce a similar performance to configurations 2 and 3. A
possible cause for this could be that the system becomes bottlenecked from
the lower values of the known design parameters. After fine-tuning the pa-
rameters of configuration 3b, the performance of which comes closer to the
reported, we notice that increasing the size of the Reorder Buffer from 8 to
12 entries, produces a performance of 0.81 IPC, for a division latency of 2 cy-
cles, matching almost perfectly the published 0.82 IPC of Ariane. Figure 5.12,
presents the comparison of the new configuration, 3c, with configurations 2
and 3. Although this configuration matches the performance of Ariane, it is
not justifiable, since it does not match the specifications of Ariane’s circuit.

FIGURE 5.12: Performance comparison between configuration
3c and configurations 2 and 3.
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5.1.4 Discussion

From the results presented above, first of all, we notice that the division la-
tency shows a greater impact in configurations 2 and 3 than in 0 and 1. In
configurations 2 and 3, the sizes of the CPU’s subsystems are large enough
not to affect performance, thus, performance is more dependent on the di-
vider unit. Contrariwise, in configurations 0 and 1, the performance is lim-
ited by the small subsystems of the CPU making the divider unit affect the
performance in a lesser scale.

Furthermore, in each configuration, we notice that the branch prediction
unit configuration can greatly increase performance. In addition, we no-
tice a great increase in performance from configuration 0 to configuration
1, where we increase the size of the load/store queue, i.e. when we modify
components that affect the memory system. However, we cannot draw clear
conclusions, since we do not have access to further information and base
performance statistics regarding the memory system of Ariane. Moreover, a
memory-intensive benchmark would be better suited to further examine the
impact of gem5’s memory system on performance, compared to the Dhrys-
tone benchmark, since Dhrystone is a compute-intensive benchmark.

Unfortunately, we were not able to match the reported performance with the
base configurations we presented at the beginning of this chapter. From con-
figurations 2 and 3, we notice that while doubling the size of key modules of
the CPU, the performance remained almost the same. Increasing further the
values of the unknown parameters of our configurations, the performance
would reach a ceiling. We can argue that in this case the system is bottle-
necked by the small values of the known design parameters, and the per-
formance could not be further increased only by modifying the unknown
parameters. By slightly increasing the Reorder Buffer entries in config3b, the
performance of which is the closest to the reported, we produce a perfor-
mance of 0.81 IPC matching almost perfectly the reported performance of
0.82 IPC. However, this configuration is greatly differentiated from the sili-
con implementation of Ariane.

5.2 Power and Energy Experiments and Results

To obtain the power and energy costs of our simulated system, we used the
McPAT power simulator and specifically a modified version of it called cMc-
PAT which improves upon accuracy issues of the standard version of McPAT
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reported in [24] and offers scripts that integrate gem5 with McPAT. To match
the workload used to produce the energy costs and leakage power in [2], we
selected the following tests and benchmarks from the riscv-tests suite:

• ALU instructions: rv64ui-p-add

• Multiplications: rv64um-p-mul

• Divisions: rv64um-p-div

• Load and Stores without virtual memory enabled: rv64ui-p-sw

• Load and Stores with virtual memory enabled: rv64ui-v-sw

• Mixed workload: Matrix multiplication benchmark, mm.riscv

The assembly, ISA, tests from the suite, are not designed to measure perfor-
mance and power since their code is too short. Therefore, we modified their
source code to loop the main testing code for 200 iterations. We will simulate
the selected benchmarks, on the configurations described above, on gem5’s
bare-metal mode to obtain performance statistics. Then, we will use McPAT
to obtain the leakage and dynamic power of each run. Finally, using leakage
and dynamic power from McPAT and total runtime from gem5 we will cal-
culate the energy cost of each configuration using the formula written below.

Energy = (Total Leakage + TotalDynamic) ∗ runtime

From the selected benchmarks, division latency only affects rv64um-p-div and
mm.riscv. The rest of the benchmarks are not affected since no div instruction
is executed. Therefore, we will execute rv64um-p-div and mm.riscv for multi-
ple runs, on each configuration, changing the division latency value in cycles,
in each run. For each configuration, we will simulate these benchmarks for a
division latency of 2, 16, 32 and 64 cycles.

5.2.1 Leakage Power Results

After executing all the selected benchmarks on both gem5 and McPAT, we
obtain the Subthreshold Leakge and Gate Leakage power of each configuration.
Subthreshold Leakage Power is the leakage power produced when the transis-
tor is in the subthreshold region, meaning when the transistor is "off". Leak-
age power is affected by the transistor technology, temperature and circuit
area. Table 5.4 presents the subthreshold, gate and total leakage power of
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each configuration obtained by McPAT, with total leakage being the sum of
subthreshold and gate leakage.

TABLE 5.4: Leakage Power of each configuration on every
benchmark in W.

Configuration Sub. Leakage (W) Gate Leakage (W) Tot. Leakage (W)

0a 0,000145167 0,000226412 0,000371579
0b 0,000145241 0,000226505 0,000371746

1a 0,000145167 0,000226412 0,000371579
1b 0,000145241 0,000226505 0,000371746

2a 0,000145167 0,000226412 0,000371579
2b 0,000145241 0,000226505 0,000371746

3a 0,000145301 0,000226591 0,000371892
3b 0,000145375 0,000226684 0,000372059

Each configuration produces the same leakage power on every benchmark
simulated since the transistor technology remains the same and the system is
simulated for a constant temperature. From Table 5.4, we notice that configu-
rations 0a to 2a and 0b to 2b all produce the same leakage power respectively,
while configurations 3a and 3b produce a similar, though slightly increased
leakage power. We assume that the changes in the circuit area of configu-
rations 0 through 2 are not significant enough for McPAT, to affect leakage
power, thus producing the same value. Moreover, increasing the size of the
Branch Prediction Unit slightly increases total leakage power consumption.
Furthermore, we notice that the total leakage power produced is significantly
lower, less than half, than the reported leakage power of 1.08 mW.

5.2.2 Dynamic Power and Energy Results

The Dynamic Power of each configuration for every benchmark run is pre-
sented below in Table 5.5. Dynamic Power is produced by capacitive power
when charging or discharging transistors, at transitions from 0 to 1 and from
1 to 0, and by short-circuit power produced due to brief short-circuit current
during transitions.
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TABLE 5.5: Dynamic Power of each configuration on every
benchmark in W.

Configuration rv64iu-p-add rv64um-p-mul rv64um-p-div rv64ui-p-sw rv64ui-v-sw mm.riscv

0a 0,03827 0,038175 0,043177 0,055576 0,0508388 0,06434
0b 0,037965 0,037879 0,043207 0,055092 0,0512379 0,064576

1a 0,041649 0,041793 0,048124 0,059014 0,053945 0,093622
1b 0,04128 0,041431 0,048158 0,058463 0,0543945 0,094095

2a 0,041658 0,041802 0,048072 0,059024 0,0543054 0,11608
2b 0,041289 0,041441 0,048106 0,058473 0,0547604 0,117058

3a 0,041744 0,041893 0,048336 0,059295 0,0547688 0,118281
3b 0,041373 0,041531 0,04837 0,058742 0,0552274 0,119184

FIGURE 5.13: Dynamic Power results of each configuration on
every benchmark.

Figure 5.13 illustrates the dynamic power consumption of each workload in
each configuration. The groups in the horizontal axis correspond to each
configuration while the bars in each group correspond to each benchmark.
The vertical axis indicates dynamic power in W. We notice that each con-
figuration consumes slightly more power than the previous one, however,
the differences in power consumption between configurations remain min-
imal, with the exception of the mm.riscv benchmark, where the power con-
sumption significantly increased when increasing the fetch, load/store and
instruction queues. Furthermore, comparing configurations with the original
BPU setup and the alternative BPU setup, we notice that increasing the size of
the branch prediction unit slightly decreases dynamic power consumption,
however it raises leakage.
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FIGURE 5.14: Dynamic Power results of each configuration on
every benchmark, grouping the benchmarks.

Figure 5.14, presents the dynamic power consumption of each workload in
each configuration, comparing the different workloads. The groups in the
horizontal axis correspond to each workload while the bars in each group
correspond to each configuration. The vertical axis indicates dynamic power
in W. We notice that mm.riscv is the most demanding in dynamic power,
where the impact of each configuration difference is noticeable, due to be-
ing the most complex, utilizing multiple resources of the CPU.

Multiplying the total power, obtained by adding the total leakage and dy-
namic power produced by McPAT, with the total runtime for each benchmark
from gem5, we obtain the energy of each configuration for each benchmark
as shown bellow, in Table 5.6.

TABLE 5.6: Energy of each configuration on every benchmark
in J.

Configuration rv64iu-p-add rv64um-p-mul rv64um-p-div rv64ui-p-sw rv64ui-v-sw mm.riscv

0a 3,13E-06 3,35E-06 5,23E-07 4,48E-06 5,06E-06 2,12E-05
0b 3,14E-06 3,37E-06 5,23E-07 4,49E-06 5,05E-06 2,12E-05

1a 3,11E-06 3,33E-06 5,33E-07 4,51E-06 5,10E-06 2,11E-05
1b 3,12E-06 3,34E-06 5,34E-07 4,53E-06 5,09E-06 2,12E-05

2a 3,11E-06 3,33E-06 5,33E-07 4,51E-06 5,08E-06 2,11E-05
2b 3,12E-06 3,35E-06 5,33E-07 4,53E-06 5,07E-06 2,11E-05

3a 3,12E-06 3,34E-06 5,36E-07 4,53E-06 5,12E-06 2,11E-05
3b 3,13E-06 3,35E-06 5,36E-07 4,49E-06 5,11E-06 2,12E-05
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Figure 5.15, presents the energy costs of each workload in each configuration.
The groups in the horizontal axis correspond to each configuration while the
bars in each group correspond to each benchmark. The vertical axis indicates
energy in J. Throughout each configuration, we notice that the energy cost for
each benchmark is similar.

We notice that the energy cost of mm.riscv is the highest since it was the most
power demanding and its runtime was the longest among the rest bench-
marks. Furthermore, the rv64um-p-div benchmark, although demanding in
power, compared to the rest of assembly tests, costs the least in energy, since
its runtime was the smallest.

FIGURE 5.15: Energy costs of each configuration on every
benchmark.

The energy costs between each workload are presented in Figure 5.16. The
groups in the horizontal axis correspond to each workload while the bars
in each group correspond to each configuration. The vertical axis indicates
energy in J.
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FIGURE 5.16: Dynamic Power results of each configuration on
every benchmark, comparing the benchmarks.

Comparing our energy results to Ariane’s published energy costs, we notice
that the mismatch is unjustifiably immense. The energy costs produced by
our simulated system are not justified, especially for a small CPU, such as
Ariane’s.

TABLE 5.7: Dynamic Power results of the rv64um-p-div test for
different division latency values.

Division latency in Cycles

Configuration 2 16 32 64

0a 0,043177 0,022603 0,01332 0,007537
0b 0,043207 0,022618 0,013329 0,007542
1a 0,048124 0,023843 0,013719 0,00765
1b 0,048158 0,02386 0,013728 0,007655
2a 0,048072 0,023837 0,01372 0,00765
2b 0,048106 0,023853 0,013729 0,007658
3a 0,048336 0,023925 0,01376 0,007671
3b 0,04837 0,023942 0,01377 0,007676

Since the latency of Ariane’s Divider unit is not fixed, we simulated the
rv64um-p-div and mm.riscv benchmarks for different division latency values.
Table 5.7 presents the dynamic power results of each run, with different divi-
sion latency values, of each configuration, produced by the rv64um-p-div test.
The dynamic power results of the rv64um-p-div test, are better illustrated in
Figure 5.17. The groups in the horizontal axis correspond to each configu-
ration while the bars in each group correspond to each run with different
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division latency. The vertical axis indicates the dynamic power result of each
run in W.

FIGURE 5.17: Dynamic Power results chart of the rv64um-p-
div test for different division latency values.

Looking at Figure 5.17, first of all, we notice that the total dynamic power is
increased in each subsequent configuration, i.e. as we increase the size of the
fetch, load/store and instruction queue. Furthermore, the dynamic power of
each configuration is almost halved as the division latency is increased.

TABLE 5.8: Energy results of the rv64um-p-div test for different
division latency values.

Division latency in Cycles

Configuration 2 16 32 64

0a 5,23E-07 5,28E-07 5,48E-07 5,77E-07
0b 5,23E-07 5,29E-07 5,48E-07 5,78E-07
1a 5,33E-07 5,33E-07 5,35E-07 5,78E-07
1b 5,34E-07 5,33E-07 5,36E-07 5,78E-07
2a 5,33E-07 5,33E-07 5,35E-07 5,78E-07
2b 5,33E-07 5,33E-07 5,36E-07 5,78E-07
3a 5,36E-07 5,35E-07 5,37E-07 5,79E-07
3b 5,36E-07 5,35E-07 5,37E-07 5,79E-07

Table 5.8 presents the energy results of each individual run, with different
division latency values, of each configuration, produced by the rv64um-p-div
test. Respectively, the energy results are displayed in Figure 5.18. The groups
in the horizontal axis correspond to each configuration while the bars in each
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group correspond to each run with different division latency. The vertical
axis indicates the energy result of each run in J.

FIGURE 5.18: Energy results chart of the rv64um-p-div test for
different division latency values.

In Figure 5.18, we notice that in each consecutive configuration, the energy is
slightly increased. However, in contrast to the dynamic power, increasing the
division latency, increases the energy consumption, since the total runtime is
increased.

TABLE 5.9: Dynamic Power results of the mm.riscv benchmark
for different division latency values.

Division latency in Cycles

Configuration 2 16 32 64

0a 0,06434 0,064294 0,064237 0,064149
0b 0,064576 0,064571 0,064511 0,06439
1a 0,093622 0,093533 0,093401 0,093139
1b 0,094095 0,094017 0,093873 0,093672
2a 0,11608 0,115938 0,11573 0,115315
2b 0,117058 0,116912 0,1167 0,116278
3a 0,118281 0,118139 0,117936 0,117512
3b 0,119184 0,119008 0,118819 0,118562

Respectively, the dynamic power of each configuration produced by the mm.riscv
benchmark is presented in Table 5.9 and Figure 5.19. In Figure 5.19, the
groups in the horizontal axis correspond to each configuration while the bars
in each group correspond to each run with different division latency. The
vertical axis indicates the dynamic power result of each run in W.
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FIGURE 5.19: Dynamic Power results chart of the mm.riscv
benchmark for different division latency values.

In each subsequent configuration, the dynamic power is increased, however,
increasing the division latency, decreases the total power only by a little, since
the mm.riscv benchmark uses multiple subsystems of the CPU and it is inde-
pendent of the divider unit.

TABLE 5.10: Energy results of the mm.riscv benchmark for dif-
ferent division latency values.

Division latency in Cycles

Configuration 2 16 32 64

0a 2,12E-05 2,13E-05 2,13E-05 2,12E-05
0b 2,12E-05 2,12E-05 2,13E-05 2,12E-05
1a 2,11E-05 2,11E-05 2,11E-05 2,11E-05
1b 2,12E-05 2,11E-05 2,11E-05 2,12E-05
2a 2,11E-05 2,11E-05 2,11E-05 2,11E-05
2b 2,11E-05 2,11E-05 2,11E-05 2,11E-05
3a 2,11E-05 2,11E-05 2,12E-05 2,12E-05
3b 2,12E-05 2,11E-05 2,12E-05 2,12E-05

In addition, Table 5.10 and Figure 5.20, present the energy of each configu-
ration produced by the mm.riscv benchmark. The groups in the horizontal
axis, of Figure 5.20, correspond to each configuration while the bars in each
group correspond to each run with different division latency. The vertical
axis indicates the energy of each run in J.
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FIGURE 5.20: Energy results chart of the mm.riscv benchmark
for different division latency values.

5.2.3 Discussion

First of all, we notice that the total leakage power produced, ≈ 0.37 mW, is
significantly lower, less than half, than the reported leakage power of 1.08
mW. A possible cause for this mismatch could be that McPAT models and
simulates CMOS technologies, while Ariane is implemented in 22nm FD-SOI
transistor technology. In addition, McPAT has limited support for smaller
CPUs, which causes the optimizer to crash or produce errors. Furthermore,
since we do not have available information on Ariane’s thermals, we run Mc-
PAT using a constant temperature of 340 K. Since leakage power is affected
by the CPU’s temperature, the absence of a more detailed approach regard-
ing the thermals of our simulated system may lead to a higher mismatch in
the produced total leakage power.

Furthermore, from the dynamic power results, we notice that in each sub-
sequent configuration, the dynamic power is slightly increased in all bench-
marks, with the exception of mm.riscv. In this case, the differences between
configurations are clear, since the mm.riscv has a more complex workload,
compared to the rest of the selected benchmarks, that utilizes multiple com-
ponents of the CPU. In addition, comparing rv64ui-p-sw and rv64ui-v-sw, we
notice that the former, i.e. the test that does not use virtual memory, con-
sumes more power than the latter, which uses virtual memory. In this case,
we would expect the test that uses virtual memory, to consume more power
since it utilizes more components of the MMU and virtual address transla-
tion. Moreover, in rv64um-p-div, we notice that increasing the latency of the
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divider unit decreases the power consumption. Having a faster divider unit
adds complexity to the circuit which increases power consumption. In gen-
eral, we notice that the power consumption of our simulated system is much
higher than expected. As a result, the total energy costs are also higher than
expected, orders of magnitude higher compared to the reported, which is
unacceptable for the scale and the simplicity of Ariane’s circuit.

McPAT, has a number of well-known issues that affect the accuracy of its
simulation, as reported in [24]. To decrease the mismatch of our results, we
attempted to modify McPAT’s models, unfortunately without any success
since we did not fully discover the source of the error. Furthermore, there
are available frameworks that calibrate McPAT’s output to reduce accuracy
errors, such as McPAT-Calib [28], [26], regarding the RISC-V architecture. Un-
fortunately, we were not able to use said frameworks as we lacked the data
sets needed to train the framework’s models.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In conclusion, in this thesis, we attempted to match the performance and
energy costs of a silicon implementation of a RISC-V core, CVA6, to a sim-
ulated RISC-V system. We used the relatively new RISC-V framework of
the gem5 simulator to implement our simulated system and produce perfor-
mance statistics. We then integrate gem5 with a power simulator, McPAT, to
obtain power and energy costs.

By fine-tuning the micro-architectural design parameter values of different
configurations of our simulated system, we notice that the load/store queue
and Re-order Buffer can have a significant impact on the system’s total per-
formance. We noticed that without modifying the known parameters the
performance would reach a saturation point and further increase in the val-
ues of the unknown parameters would not produce the wanted performance.
The configuration that matches the performance of Ariane has a much big-
ger load/store queue and Re-order Buffer. Therefore, we can conclude that
the load/store queue and ROB can greatly affect the system’s performance
leading to accuracy loss.

Unfortunately, we did not manage to obtain meaningful power and energy
results. McPAT’s limited support on the RISC-V ISA and smaller cores causes
a notable loss of accuracy. In addition, due to limited published design pa-
rameters and performance statistics, we were unable to use frameworks that
calibrate McPAT, in order to decrease accuracy loss, such as McPAT-Calib
[26]. We can conclude that McPAT was not capable of producing meaningful
results without manually modifying its models.
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6.2 Future Work

There is still a lot of work that can be done regarding the accuracy of the gem5
simulator in the context of RISC-V, especially when considering our conclu-
sions. Hence, we provide the following suggestions for further research.

First of all, we encountered challenges in the modeling and evaluation stages
of our system. Specifically, we could not obtain all the micro-architectural
design parameters of Ariane and more importantly, we did not have any
information on how the published performance and energy statistics were
produced. This can lead to specification errors in the accuracy of our system
since omitting important design parameters can affect performance and run-
ning the benchmarks under different circumstances (e.g different runtime,
different compilation flags, bare-metal or on full OS) may lead to meaning-
less comparisons between our results and the published statistics. For fu-
ture research, we suggest that Ariane should be implemented in an FPGA.
This will allow us to manually execute benchmarks both on Ariane and the
simulated system. This way, we can obtain more fine-grained performance
statistics and we can isolate components of the CPU and identify causes of
accuracy loss. Moreover, we suggest that we further investigate the Load/S-
tore queue and Re-order Buffer to verify their impact on simulation accuracy.

Since we could not obtain meaningful power and energy results, we suggest
further research on McPAT’s support for RISC-V cores. In particular, we sug-
gest further research on McPAT’s back-end, to fully identify modeling errors
from McPAT’s models and adapt them to the target system. Moreover, using
a CPU with more available performance statistics can enable the utilization of
frameworks that calibrate McPAT, such as McPAT-Calib or Powertrain, which
unfortunately we could not use in this study. Last, gem5 offers a premature
power model, currently supported only for the ARM instruction set. Port-
ing gem5’s power model from ARM to RISC-V could be a great addition to
gem5’s RISC-V support and could simplify the process of power modeling
using the gem5 simulator.
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Environment Setup and Running
the Scripts

In this section, we provide a brief guide on how to set up the environment,
run the scripts and reproduce the results. We assume that gem5 and git are
already built, if not, the following link in [46] provides a guide on building
gem5 and gem5’s prerequisites including git. In this project, we use gem5
version 21.2.1.

A.1 Building the RISC-V GNU compiler toolchain

The RISC-V GNU compiler toolchain is provided in the following GitHub
repository [47]. It includes the RISC-V C and C++ cross-compiler and sup-
ports a generic ELF/Newlib toolchain and a more sophisticated Linux-ELF/glibc
toolchain.

First of all, make sure to install all the prerequisites listed in the repository’s
README section, depending on your operating system.

To obtain the source code clone the repository from the provided link [47].
Next, using a terminal, move to the toolchain’s directory. To build type:

$ ./configure --prefix=/opt/riscv --enable-multilib

$ make Linux

Make sure that you include the --enable-multilib flag. If you want to build
the toolchain for a different environment or a more custom build, additional
information is provided repository’s README section.
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A.2 Building the RISC-V tests

The RISC-V tests suite can be obtained from the following GitHub repository
[48]. Before building the tests, make sure that the RISCV environment vari-
able is set the RISC-V tools install path. To obtain and build the tests, type in
any working directory:

$ git clone https://github.com/riscv/riscv-tests

$ cd riscv-tests

$ git submodule update --init --recursive

$ autoconf

$ ./configure --prefix=\$RISCV/target

$ make

$ make install

After building, benchmark and test binaries will be generated in the bench-
marks and isa directories respectively.

A.3 Obtaining the kernel binary and disk image

from gem5-resources

First of all, gem5-resources can be obtained from the following GitHub repos-
itory [49]. To obtain the resources, type in any working repository:

$ git clone https://github.com/gem5/gem5-resources

Further information about the gem5-resources is provided in [45] and [49].

In this project, resources riscv-disk-img, which contains a simple pre-built
RISC-V disk image based on busybox, and riscv-bootloader-vmlinux-5.10, that
contains a pre-built RISC-V bootloader and Linux kernel v. 5.10, were used.

The resources can either be obtained from the links provided in the resources.json
file contained in the gem5-resources directory, specifically [43] for the kernel
and [44] for the disk image, or from the gem5 Resources website [50].

If you want to manually build the kernel and disk image, or use a different
one, further information is provided in the following link [51]. A tutorial on
creating disk images and mounting binaries in the disk image is provided in
[52].
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A.4 Running the Scripts

First of all, move the provided folder inside gem5’s directory. The file struc-
ture should look like the one shown in Figure A.1.

FIGURE A.1: File structure of the experimental environment.

Copy and move file ariane.py from the directory gem5/gem5-ariane/configs/cores

to the directory gem5/configs/common/cores/riscv. Next, copy and move
files ariane_fs.py and ariane_fs_run.py from directory gem5/gem5-ariane/configs

to directory gem5/configs/example/riscv.

To run the scripts, use the following command format, in the command line
terminal. Make sure that you are inside gem5’s directory.

/gem5$ ./build/RISCV/gem5.opt -d [gem5 output file path] [debug flags]

[config script path] [kernel binary path] [disk image path] [number of cores]

[optional bare metal flag] -I [max instruction number]

Running in Bare-Metal mode

To run in bare metal mode, include the --bare-metal flag and specify the
benchmark binary in the "kernel binary" field. In bare metal mode, it is help-
ful to enable the Exec debug flag that enables instruction tracing and saves
all executed instructions in a trace file. To enable the Exec debug flag, add
--debug-start=0 --debug-flag=Exec --debug-file=trace.out in the "de-
bug flags" field.

For example, to run the Dhrystone benchmark in bare metal mode, with one
core, for 200000 instructions, run the command:

/gem5$ ./build/RISCV/gem5.opt -d results/benchmarks/Dhrystone/test

--debug-start=0 --debug-flags=Exec --debug-file=trace.out

configs/example/riscv/ariane_fs_run.py gem5-ariane/benchmarks/dhrystone.riscv

’gem5-ariane/disk image/riscv_disk.img’

1 --bare-metal -I 200000
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After running the command, gem5 produces the following output in the
command line terminal.

FIGURE A.2: gem5’s command line output when running the
bare-metal simulation.

The first section of the terminal output, shown in the figure above, contains
information about gem5 along with the executed command. The second sec-
tion indicates that the simulation has started and contains information about
the simulation such as the global simulation frequency, listening ports and
the start of execution. The last line shows the exit cause of the simulation
along with the final simulation tick.

After the simulation has finished execution, gem5’s output files will be inside
the directory that the user has defined. If the user does not define an output
directory, the output files will be stored in the folder m5out. In this example,
output files will be inside the directory results/benchmarks/Dhrystone/test,
as shown below.

FIGURE A.3: gem5’s output files.

Running in Full-System mode

For the Full-System simulation, we need the configuration script, the kernel
binary, and the disk image. The command format for running the simulation
is shown below.

/gem5$ ./build/RISCV/gem5.opt -d [gem5 output file path] [debug flags]

[config script path] [kernel binary path] [disk image path]

[number of cores]
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For example, to run Full-System mode using the kernel binary and disk im-
age mentioned in section A.3, with one core, use the following command.

/gem5$ ./build/RISCV/gem5.opt configs/example/riscv/ariane_fs_run.py

’binaries/bootloader-vmlinux-5.10’ ’disk_images/riscv_disk.img’ 1

After executing the command, the simulation starts and produces a similar
output in the command line terminal with the one shown in A.2. The FS
mode terminal output, contains further information about the simulation,
such as the DTB file location and the kernel binary used, as shown below.
The system’s DTB file is autogenerated by the configuration script.

FIGURE A.4: gem5’s command line output when running FS
simulation.

To communicate with the simulated system, gem5 offers a serial terminal,
named m5term. To build the terminal move to gem5/util/term directory and
simply run make and then make install, as shown below.

/gem5$ cd util/term

/gem5/util/term$ make

/gem5/util/term$ make install

To run m5term use ./m5term [host] [port]. The default port that gem5 uses
for the terminal is ’3456’. If this port is used, gem5 will use a higher port. The
port for the terminal is indicated in the terminal when the simulation starts,
as shown below. The default host is localhost.

FIGURE A.5: Port indication for the serial terminal.
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To use m5term in the simulation, run gem5 on FS mode with the command
shown above. Then, while gem5 is running, open a new terminal window,
move to directory gem5/util/term and run ./m5term localhost 3456. In
the terminal where gem5 is running you should see a message indicating
that Terminal 0 is connected.

FIGURE A.6: Serial Terminal attached prompt.

After a while, the system starts to boot and start-up information will show in
the m5term’s terminal window. Note that this process can take a lot of time
depending on the host machine.

FIGURE A.7: A part of the simulated system’s start-up informa-
tion in m5term.

When the system boots up, a login screen will appear in m5term’s terminal
window, use username root and password root to log in to the system. From
there you can use standard Linux commands. The m5term uses ’~’ as an
escape character. Pressing ’.’ after pressing the escape character will exit
m5term and terminate the command line.



A.5. Changing Parameter Values 83

FIGURE A.8: Log-in screen and command line of the simulated
system.

A.5 Changing Parameter Values

You can change the basic parameters of the CPU by changing their values
in the corresponding classes in script ariane.py.In this script, you can change
the number and operation of functional units, cache parameters, branch pre-
diction units and parameters and parameters about the CPU pipeline and
pipeline components.

For example, you can change the number of ROB entries by changing the
values of the respective parameters in class Ariane() as shown below.

1 class Ariane(DerivO3CPU):
2 ...
3
4 numIQEntries = 16
5 numROBEntries = 8
6
7 ...

To change the latency of the integer divisions, change the value of opLat

parameter in class ArianeMultDiv() as shown below.

1 class ArianeMultDiv(FUDesc):
2 opList = [ OpDesc(opClass=’IntMult ’, opLat=2, pipelined=

True),
3 OpDesc(opClass=’IntDiv ’, opLat=2, pipelined=False) ]
4 count = 1
5
6 ...
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A.6 Running McPAT

McPAT along with the helper scripts for the XML file creation used in this
project can be obtained from the following link [41]. To obtain and build
McPAT, type in any working directory:

$ git clone https://github.com/H2020-COSSIM/cMcPAT

$ cd cmcpat/mcpat

$ make

To create an XML input file for McPAT using gem5’s output files, open a
terminal inside the cmcpat/Scripts directory and run:

$ ./GEM5ToMcPAT.py [options] <gem5 stats file> <gem5 config file (json)>

<mcpat template xml file> -o <output xml file>

You have to enter the paths of the stats.txt and config.json files that gem5 pro-
duces from a simulation, along with the path of the provided template, in the
corresponding fields. In the output xml file enter the path where the final XML
file will be stored. After the XML file is created, it is advised that you copy
and move it to the ProcessorDescriptionFiles folder inside the /cmcpat/mcpat

directory.

To run McPAT, open a terminal inside the /cmcpat/mcpat directory and then
run:

$ ./mcpat -infile ProcessorDescriptionFiles/<your XML file> -print_level 5

Then McPAT will print the results in the command line terminal. Option
-print_level defines the detail of the results that McPAT will print. The
maximum detail level is 5 and the lowest is 1. To save the results you can
redirect the terminal’s output to a file. For example:

$ ./mcpat -infile ProcessorDescriptionFiles/test.xml -print_level 5

> test_out.txt

Folder ProcessorDescriptionFiles contains a number of example XML files for
different configurations.
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Appendix B

Common Errors during setup and
development with gem5 and
possible solutions

When working with gem5 and the RISC-V toolchain many errors may occur
during setup and development. In this appendix, we present common errors
that may occur along with a possible solution.

B.1 Errors on compilation

1. When building gem5, make sure that you have all the prerequisite pack-
ages already installed before setup. If the installation still fails after ob-
taining all the required packages try a clean build by using scons --clean

and then rebuild gem5 (or delete the build directory in gem5’s main di-
rectory and rebuild gem5).

2. When building m5ops for the RISC-V ISA, make sure that the RISC-V
toolchain is installed and the --enable-multilib flag is enabled when
building the toolchain. If not, rebuild the toolchain with the multilib
flag. Appendix A provides information on the configuration of the
RISC-V compiler toolchain.

3. When building the riscv-tests suite or any binary using the cross-compilers
from RISC-V toolchain, make sure that the RISC-V Linux variable, $RISCV
is set and then add it to $PATH. Every time you use a new terminal you
have to set the variable and add it to the path. More information is
provided in Appendix A.
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and possible solutions

4. If using m5ops in your code, first of all, make sure that you have already
built the library libm5.a and that you have added gem5/include to the
compiler include path and gem5/util/m5/build/RISCV/out to the linker
path. Library gem5/m5ops.h needs to be included in the source file. More
information on m5ops is provided in [53].

B.2 Errors during development with gem5’s Full-

System mode

1. If an illegal instruction error occurs during the simulation, it is probably
caused because the simulated binary runs on a privileged level not sup-
ported by the simulation mode. Syscall emulation mode only supports
user-level binaries, try switching between FS and bare-metal mode.

2. If the simulation crashes due to memory and I/O addresses overlap-
ping, set the bad_addr responder parameter, or use the MemBus() bus in-
stead of the SystemXBar bus.

3. The simulation often produces a warning stating that the main memory
size must be over 8GB. It does not really affect the simulation, however,
you can set a memory size of 8GB to fix it.

4. When running in FS mode with the serial terminal connected, make
sure that you connect the terminal to the correct port. The serial termi-
nal port number is indicated in gem5’s terminal output when the sim-
ulation begins. During the simulation, when the terminal is connected,
gem5 produces a warning stating that an address is outside of physical
memory. It is a silent warning and doesn’t seem to affect the simulation.

5. In bare-metal mode, when running tests from the riscv-tests suite make
sure to set the instruction limit, otherwise the simulation will never
stop executing. To use the instruction limit, make sure that you use the
Run() method instead of m5.simulate() in your configuration script.

6. When running Full-System simulation, with your own scripts, the sim-
ulation may crash after the OS boots up with a snoop filter error. To fix
the issue we set the mmucache module in the configuration script.
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B.3 Errors when using McPAT

1. If the script that converts gem5’s output to McPAT’s input produces an
error stating that stat or param is missing, check gem5’s output files and
make sure that the name of the statistic or parameter is the same with
the one on the template.

2. McPAT may produce a no valid data array organization. This is prob-
ably caused since McPAT cannot create a possible circuit model for
the given configuration, it is especially common when working with
smaller cores. In our case, increasing the size of the reorder buffer
seems to fix the issue.
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