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Abstract

In an era of a thriving cryptocurrency market that disrupts the traditional economic

system, new opportunities for capitalization emerge, accompanied by elevated risks.

Managing these risks and optimizing investment decisions is imperative, underscoring

the need for dependable tools in cryptocurrency market forecasting. This thesis ex-

plores the forecasting capabilities of both the Auto-Regressive Integrated Moving Aver-

age (ARIMA) and composite Auto-Regressive Integrated Moving Average-Generalized

Auto-Regressive Conditional Heteroscedastic (ARIMA-GARCH) time series models for

the daily closing prices of the Bitcoin cryptocurrency. The pronounced presence of het-

eroscedasticity in the Bitcoin time series data renders the ARIMA models unsuitable

for accurate modeling and subsequent forecasting of the data. Conversely, the ARIMA-

GARCH(0,1) models effectively deal with heteroscedasticity and demonstrate adequacy

in capturing the patterns and structure of the time series. This study is conducted

using three distinct test time periods and experiments with various training-test splits

to evaluate several ARIMA-GARCH(0,1) models. Additionally, it compares their per-

formance to that of some Recurrent Neural Network (RNN) models available in the

literature. Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean

Absolute Percentage Error (MAPE) validation measures are employed for this purpose.

Using prominent stock market indices as exogenous variables of ARIMA-GARCH(0,1)

models leads to enhanced performance scores for many scenarios, suggesting a possible

impact of the stock market on Bitcoin prices. The top-performing candidates among the

proposed ARIMA-GARCH(0,1) and ARIMAX-GARCH(0,1) models exhibit similar, and

in some cases, superior forecasting performance when compared to the Long Short-Term

Memory (LSTM), Bidirectional-Long Short-Term Memory (Bi-LSTM), Gated Recur-

rent Unit (GRU), and Bidirectional-Gated Recurrent Unit (Bi-GRU) models employed

in other research studies.
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II

Περίληψη

Σε μια εποχή όπου η αγορά κρυπτονομισμάτων ακμάζει διαταράσσοντας το παραδοσι-

ακό οικονομικό σύστημα, νέες ευκαιρίες κεφαλαιοποίησης δημιουργούνται, συνοδευόμενες,

ωστόσο, από αυξημένους κινδύνους. Η διαχείριση αυτών των κινδύνων, αλλά και η βελτι-

στοποίηση των επενδυτικών αποφάσεων σε αυτό το νέο πεδίο είναι επιτακτική, υπογραμ-

μίζοντας την ανάγκη για αξιόπιστα εργαλεία πρόβλεψης της αγοράς κρυπτονομισμάτων. Η

παρούσα διπλωματική εργασία διερευνά τις δυνατότητες πρόβλεψης τόσο του ολοκληρωμέ-

νου αυτοπαλινδρούμενου μοντέλου κινούμενου μέσου (ARIMA) όσο και του σύνθετου

(ARIMA-GARCH) ολοκληρωμένου αυτοπαλινδρούμενου μοντέλου κινούμενου μέσου σε

συνδυασμό με μεταβλητότητα που ακολουθεί το μοντέλο γενικευμένης αυτοπαλινδρούμενης

δεσμευμένης ετεροσκεδαστικότητας για τις ημερήσιες τιμές κλεισίματος του κρυπτονομίσ-

ματος Bitcoin. Η έντονη παρουσία ετεροσκεδαστικότητας στα δεδομένα της χρονοσειράς

Bitcoin καθιστά τα μοντέλα ARIMA ακατάλληλα για ακριβή μοντελοποίηση και επακόλουθη

πρόβλεψη των δεδομένων. Από την άλλη, τα σύνθετα μοντέλα ARIMA-GARCH(0,1) αν-

τιμετωπίζουν αποτελεσματικά την ετεροσκεδαστικότητα και επιδεικνύουν επάρκεια στην

αποτύπωση των μοτίβων και της δομής της χρονοσειράς. Η μελέτη διεξάγεται χρησι-

μοποιώντας τρεις διακριτές χρονικές περιόδους δοκιμών και πειραματίζεται με διάφορες

αναλογίες δεδομένων εκπαίδευσης και δεδομένων επικύρωσης για την αξιολόγηση πολλών

διαφορετικών μοντέλων ARIMA-GARCH(0,1). Επιπλέον, συγκρίνει την απόδοσή τους με

εκείνη ορισμένων μοντέλων αναδρομικών νευρωνικών δικτύων (RNN) της βιβλιογραφίας.

Για το σκοπό αυτό χρησιμοποιούνται οι μέθοδοι μέτρησης του μέσου τετραγωνικού σφάλ-

ματος (MSE), της ρίζας του μέσου τετραγώνου σφάλματος (RMSE) και του μέσου από-

λυτου ποσοστού σφάλματος (MAPE). Η χρήση σημαντικών δεικτών της χρηματιστηριακής

αγοράς ως εξωγενών μεταβλητών σε μοντέλα ARIMA-GARCH(0,1) βελτιώνει την από-

δοση σε πολλά σενάρια, υποδηλώνοντας την πιθανή επίδραση της χρηματιστηριακής αγοράς

στις τιμές του Bitcoin. Ανάμεσα στα υπό εξέταση ARIMA-GARCH(0,1) και ARIMAX-

GARCH(0,1) μοντέλα, εκείνα με τις καλύτερες επιδόσεις παρουσιάζουν παρόμοια, και σε

ορισμένες περιπτώσεις, ανώτερη απόδοση πρόβλεψης σε σύγκριση με τα μοντέλα μακράς

βραχύχρονης μνήμης (LSTM), αμφίδρομης μακράς βραχύχρονης μνήμης (Bi-LSTM), ανα-

τροφοδοτούμενης μονάδας με πύλες ελέγχου (GRU) και αμφίδρομης ανατροφοδοτούμενης

μονάδας με πύλες ελέγχου (Bi-GRU) από άλλες ερευνητικές μελέτες.
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1. Introduction 1

Introduction

While not the first cryptocurrency, Bitcoin (BTC) is the oldest surviving one. Invented
in 2008 by an anonymous developer or group of developers using the pseudonym Satoshi
Nakamoto, the currency was introduced to the public in 2009 when its implementation
was released as open-source software. Cryptocurrencies were initially met with skepticism
and disapproval, but they have experienced a widespread market adoption over the years.
Today, the global cryptocurrency market capitalization is over $1 trillion, while the
number of different cryptocurrencies exceeds 20,000 according to the UK’s Financial
Conduct Authority. Bitcoin, with a dominance rate of about 50%, remains by far the
largest, most influential, and best-known cryptocurrency.

Figure 1.1: Bitcoin logo, made in 2010 by Satoshi Nakamoto, that portrays the
cryptocurrency as a golden token (Wikipedia).

Figure 1.2: Total market capitalization of Bitcoin compared to the total market
capitalization of all cryptocurrencies combined (CoinMarketCap).
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2 1. Introduction

Cryptocurrencies operate in a unique and decentralized ecosystem, which sets them
apart from traditional forms of currency and financial systems. Due to the absence of a
central governing authority, their global character, as well as the fact that cryptocurrency
markets are open 24/7, cryptocurrencies have a highly volatile nature. Their price is
influenced by a myriad of factors, including events and news from various time zones,
market sentiment, regulatory developments, macroeconomic trends, and technological
advancements.

With the cryptocurrency market skyrocketing in value and social media fueling its
popularity, Bitcoin has evolved into a store of value and a mainstream investment asset.
It attracts significant attention from a diverse range of stakeholders, including traders, in-
stitutional and individual investors, businesses that accept Bitcoin as a form of payment,
financial analysts, policymakers and regulatory bodies, academic researchers, as well as
individuals who perform Bitcoin transactions with the prospect of lucrative returns.
Their shared aspiration to manage risk and optimize investment decisions to capitalize
on emerging opportunities in the cryptocurrency market, with a specific emphasis on
Bitcoin, drives their need for reliable tools.

1.1 Motivation & objectives

In an attempt to shed light on the challenge of navigating the dynamic and uncertain
landscape of cryptocurrencies, this study focuses on predicting the daily closing price of
Bitcoin using the composite ARIMA-GARCH time series model. The daily closing price
in terms of Bitcoin cryptocurrency refers to the price at which Bitcoin closes at the end
of a specific day. As a case study, we chose to explore the efficiency of the ARIMA-
GARCH model in predicting the prices of the dominant currency, Bitcoin, in a way that
can be generalized for the rest of cryptocurrencies. Despite being a traditional approach
in financial forecasting, there have been limited contributions in the literature regarding
the forecast of cryptocurrency prices using the ARIMA time series model, as well as
the composite ARIMA-GARCH model. Therefore, this study aims to fill a gap in the
existing scientific literature, enhancing the knowledge base on the potential capabilities
and limitations of ARIMA and ARIMA-GARCH models in forecasting Bitcoin prices.
Additionally, it investigates whether incorporating information from prominent financial
market indices can enhance our ability to forecast cryptocurrency prices, examining the
potential influence of the stock market on the cryptocurrency market. Finally, the study
assesses the efficiency of these classical time series models by comparing their prediction
performance with Recurrent Neural Network (RNN) models based on results available
in the literature.

Panou Christina-Dionysia © Technical University of Crete



1. Introduction 3

1.2 Related work

Numerous research works have been done on cryptocurrency prediction. Below there
is a representative sample of the existing literature that helped us to define key elements
of the direction of our research. The first study is towards the price prediction of five
popular cryptocurrencies in an attempt of evaluating all the available categories of time
series forecasting models. It gave us an overview of the cryptocurrencies prediction
task using the one-step ahead forecasting method. The second one is concentrated on
Bitcoin price prediction using the ARIMA model examining both one-step and multi-
step ahead forecasting. Candidate ARIMA models performance was tested for short term
predictions in a horizon from 1 to 7 days ahead. It encouraged us in setting our research
target to be the next-day forecasting. The rest three papers were chosen indicatively as a
benchmark for the effectiveness of our method as they include both statistical (ARIMA)
and Deep Learning (DL) (Long Short-Term Memory (LSTM), Bidirectional-Long Short-
Term Memory (Bi-LSTM), Gated Recurrent Unit (GRU), Bidirectional Gated Recurrent
Unit (Bi-GRU)) methods for comparison.

Kate Murray et al. [1] provided a comparison of statistical, Machine Learning (ML),
Deep Learning, hybrid, and ensemble models for forecasting the daily prices of five pop-
ular cryptocurrencies, Bitcoin, Etherium (ETH), Litecoin (LTC), Monero (XMR) and
Ripple (XRP). The data were gathered from the trading platforms of Binance and Invest-
ing in the time frame from 01-06-2017 to 31-05-2022. After the typical pre-processing step
of data normalization, a temporal training-test split of 80:20 ratio was initially performed
on each dataset. Then they further partitioned the test set into twelve non-overlapping
monthly windows in order to implement an one-step ahead incremental monthly-based
strategy spanning over one year of data. Using this as their evaluation methodology they
compared the models in terms of accuracy and computational time. Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE)
and R2 were the metrics employed for the accuracy measurement. After the average per-
formance of each model computation across all cryptocurrencies, DL approaches found
to be the best. In particular, LSTM was the best-performing model, and its training was
less expensive than the other DL models. K-nearest neighbor (KNN) and ARIMA showed
a good trade-off between accuracy and computational expense. Finally, the individual
LSTM approach outperformed all the ensemble algorithms.

I. M. Wirawan et al. [2] deployed the ARIMA method for one to seven days ahead Bit-
coin price prediction. The dataset was obtained from Coingecko containing a history of
Bitcoin prices from 01-05-2013 to 07-06-2019. The p, d and q parameters of the ARIMA
model candidates were determined using a correlogram method analyzed through the
plot Auto-Correlation Function (ACF) and Partial Auto-Correlation Function (PACF).
Testing was conducted in three data scenarios for the final sixteen ARIMA model candi-
dates comparison. Scenario 1: training data from 01-05-2013 to 31-03-2019 and testing
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data from 01-04-2019 to 07-04-2019. Scenario 2: training data from 01-05-2013 to 30-
04-2019 and testing data from 01-05-2019 to 07-05-2019. Scenario 3: training data from
01-05-2013 to 31-05-2019 and testing data from 01-06-2019 to 07-06-2019. After the cal-
culation of MAPE for the next until seventh day prediction for each scenario, the results
were averaged. The ARIMA (4,1,4) model predicted the price of Bitcoin with the best
level of accuracy in the specific scenarios according to the MAPE metric that was 0.87
for the next day prediction and 5.98 for the seventh day prediction on average. The
conclusion was that the ARIMA method can perform Bitcoin price prediction for one
to seven days ahead with good results. The longer the prediction period, the lower the
level of accuracy.

Ferdiansyah et al. [3] used LSTM networks for providing daily predictions of Bitcoin
closing prices. Data for a 5-year period from 27-06-2014 to 27-06-2019 were collected from
Yahoo Finance and divided into training and test sets at a ratio of 80:20. Combining
the epoch (10, 100, 1000, 200, 400, 800, 2000, and 5000) with the model dropout (0, 0,1
and 0,5) to minimise the RMSE metric, they found 288.59866 to be the best score.

Ashish Singh et al. [4] implemented four different deep learning approaches, LSTM,
Bidirectional LSTM (Bi-LSTM), GRU, and Bidirectional GRU (Bi-GRU) to predict the
fluctuating closing price of Bitcoin. The dataset was also taken from Yahoo Finance
for the period from 01-03-2016 to 26-02-2021. Dataset samples were normalized using
a function that maps each feature into the range of 0 to 1 and then split into the ratio
of 80:20 for training and testing of the proposed system, respectively. The normalized
prediction values of Bitcoin closing price were transformed back to the original scale.
The performance of the models was then measured in terms of RMSE, MAE, and R2

score. The results showed that overall Bi-GRU outperforms the other three models with
RMSE equal to 981.18, MAE equal to 540.81 and R2 score equal to 0.9926.

Peter T. Yamak et al. [5] compared ARIMA, LSTM, and GRU in predicting Bit-
coin’s closing price. They used daily data from 28-11-2014 to 5-06-2019 gathered from
CryptoDataDownload and split into training and test sets, with a ratio of 70:30. They
transformed the data to fit within the range of 0 to 1 and then proceeded with applying
the three different time series forecasting methods. With forecast values inverted back
to their original scale, the ARIMA model gave the best accuracy in terms of the RMSE
and MAPE metrics with values 302.53 and 2.76 respectively. Also, ARIMA appeared to
be the fastest method.

1.3 Outline

The present thesis is structured as follows:

• Chapter 2 - Theoretical Background introduces and explains fundamental
theoretical concepts of time series analysis.
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• Chapter 3 - Forecasting Methodology provides the theoretical framework be-
hind the time series one-step ahead forecasting methodology applied in this work.

• Chapter 4 - Data Analysis & Results presents the application of the proposed
time series forecasting methodology in three different back-testing time-period sce-
narios. The obtained performance results are then compared with those of other
time series forecasting techniques found in the existing literature.

• Chapter 5 - Conclusion & Future Work gives concluding remarks based on
the results, along with suggestions for future research directions.
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Theoretical Background

2.1 Preliminary concepts

2.1.1 Time series & stochastic processes

A set of observations made sequentially through time is called a time series [6]. To
represent a time series, one proceeds as follows. The set of time points at which measure-
ments are made is called T . The observation made at time t is indicated by x(t). The set
of the observations {x(t), t ϵ T} is called a time series. In regard to the index set T , one
may be observing (i) a discrete time series x(t) or xt, in which case T is a finite set of
points written T = {1, 2, . . . , N}, or (ii) a continuous time series x(t), in which case T is
a finite interval written T = {t : 0 ≤ t ≤ L}. Time series can be further categorized into
univariate and multivariate. The former contains records of a single variable, while the
latter considers records of more than one variable. Also, a time series is characterized as
either linear or non-linear based on whether the current value of the series is a linear or
non-linear function of previous observations.

The basic idea of the statistical theory of analysis of a time series {x(t), t ϵ T} is
to interpret the time series as an observation made on a family of random variables
{X(t), t ϵ T}; that is, for each t in T , x(t) is an observed value of a random variable.
A family of random variables {X(t), t ϵ T} is called a stochastic process. An observed
time series {x(t), t ϵ T} is thus regarded as an observation (or, in different terminology,
a realization) of a stochastic process {X(t), t ϵ T}.

There are two broad categories of statistical problems: problems of stochastic model
construction for natural phenomena and problems related to statistical decision-making.
These two categories of problems are well illustrated in the analysis of economic time
series; some study time series in order to understand the mechanism of the economic
system while others study time series with the aim of being able to forecast, for example,
stock market prices. In general, it may be said that the objectives of time series analysis
are

1. to understand the mechanism generating the time series,

2. to forecast how the time series will behave in the future [7].

For the purposes of this work when we say a time series we will assume a univariate,
linear, discrete time series {xt, t ϵZ+}. Similarly, for a stochastic process.

© Technical University of Crete Panou Christina-Dionysia



8 2. Theoretical Background

2.1.2 Some characteristic time series

• White noise

A time series {wt, t ϵZ+} is said to be white noise with mean 0 and variance σ2w,
written

wt ∼WN(0, σ2w), (2.1)

if wt are independent and identically distributed with E[wt] = 0 and V ar(wt) = σ2w.

• Random walk

Suppose that {wt, t ϵZ+} is zero mean white noise with V ar(wt) = σ2w.
Define

x1 = w1

x2 = w1 + w2

...
xn = w1 + w2 + · · ·+ wn.

By this definition, note that we can write, for t > 1,

xt = xt−1 + wt, (2.2)

where E[wt] = 0 and V ar(wt) = σ2w. The time series xt is called a random walk. The
mean of xt is

µt = E[xt]

= E[w1 + w2 + · · ·+ wt]

= E[w1] + E[w2] + · · ·+ E[wt] = 0

(2.3)

That is, xt is a zero mean time series.
The variance of xt is

V ar(xt) = V ar(w1 + w2 + · · ·+ wt)

= V ar(w1) + V ar(w2) + dots+ V ar(wt) = tσ2w,
(2.4)

because V ar(w1) = V ar(w2) = · · · = V ar(wt) = σ2w and Cov(wt, ws) = 0 for all t ̸= s.

2.1.3 Decomposition of time series

Decomposition in time series analysis provides a systematic approach of understanding
the structure and dynamics of the data over time. It is valuable tool for modeling the
underlying components of a time series, which typically include:

1. Trend component, that represents the long-term tendency of the time series to
increase, decrease, or remain relatively stable over time. It does not have to be
linear.
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2. Seasonality component, i.e., the predictable patterns or variations that occur at
fixed and known intervals, such as days, weeks, or seasons.

3. Cyclical component, which describes the oscillations that are not tied to fixed cal-
endar intervals. Their magnitudes tend to be more variable than those of seasonal
patterns.

4. Remainder component, that is the residuals of the time series after all the other
components have been removed. It captures the random elements of the data.

Assuming an additive decomposition, the time series {xt} can be expressed as

xt = Tt + St + Ct +Rt, (2.5)

where Tt is the trend component, St is the seasonal component, Ct is the cyclical com-
ponent, and Rt is the remainder component, at time t. As another option, using the
multiplicative decomposition we have

xt = Tt × St × Ct ×Rt. (2.6)

An alternative to multiplicative decomposition is to initially transform the data until the
variation in the time series appears consistent over time, and then employ an additive
decomposition [8]. Using a log transformation is essentially equivalent to using multi-
plicative decomposition. Generally, an additive model is preferred when the seasonal
variation is relatively constant throughout the time series, whereas, if the seasonal vari-
ation is proportional to the level of the time series, a multiplicative model is considered
more suitable.

There are several approaches to time series decomposition. Below we detail the de-
composition method applied in this study, specifically, at the exploratory stage of the
examined time series.

• Singular spectrum analysis

The Singular Spectrum Analysis (SSA) algorithm according to Golyandina et al. [9]
consists of four steps. The first step, called the embedding step, transfers the one-
dimensional time series F = (f0, . . . , fN−1) of length N into a sequence of L-dimensional
vectors Xi = (fi−1, . . . , fi+L−2)

T , (i = 1, . . . ,K = N − L+ 1). The single parameter of
this delay procedure is the window length L, (1 < L < N). The K vectors Xi will form
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the columns of the (L×K) trajectory matrix

X =



f0 f1 f2 · · · fK−1

f1 f2 f3 · · · fK

f2 f3 f4 · · · fK+1

...
...

...
. . .

...
fL−1 fL fL+1 · · · fN−1


. (2.7)

The trajectory matrix X is a Hankel matrix with equal elements on the diagonals i+j =
constant.

The second step is the Singular Value Decomposition (SVD) of the trajectory matrix
into a sum of rank-one bi-orthogonal element matrices

X = X1 + · · ·+XL. (2.8)

The elementary matrices Xi are given by Xi = siU iV
T
i , where si is the ith singular

value of X (equivalent to the square root of the ith eigenvalue of matrix XXT ), U i is
the ith left singular vector of X (equivalent to the ith eigenvector of XTX), and V i is
the ith right singular vector of X. The collection (si,U i,V i) is called the ith eigentriple
of the SVD. These first two steps make up the decomposition stage of SSA and the next
two steps the reconstruction stage.

In the third step, the grouping step, the index set {1, . . . , L} is partitioned into m

disjoint subsets I1, . . . , Im, corresponding to splitting the elementary matrices into m

groups and summing the matrices within each group. Let I ={i1, . . . , ip}, then the
resultant matrix XI is defined as XI = Xi1 + · · · + Xip . The resultant matrices are
computed for I = I1, . . . , Im and by substituting in (2.8) one obtains the new expansion

X = XI1 + · · ·+XIm , (2.9)

where the trajectory matrix is represented as a sum of m resultant matrices. The pro-
cedure of choosing sets I1, . . . , Im is called eigentriple grouping.

The last step transforms each resultant matrix of the grouped decomposition (2.9) into
a new one-dimensional series of length N , and is called diagonal averaging. Let Y be a
(L×K) matrix with elements yij , 1 ≤ i ≤ L, 1 ≤ j ≤ K. Make L∗ = min(L,K),K∗ =

max(L,K) and N = L+K−1. Let y∗ij = yij if L < K and y∗ij = yji otherwise. Diagonal

Panou Christina-Dionysia © Technical University of Crete



2. Theoretical Background 11

averaging transfers matrix Y to a series g0, . . . , gN−1 by the formula:

gk =



1

k + 1

k+1∑
m=1

y∗m,k−m+2, 0 ≤ k < L∗ − 1

1

L∗

L∗∑
m=1

y∗m,k−m+2, L∗ − 1 ≤ k < K∗

1

N − k

N−k+1∑
m=k−K∗+2

y∗m,k−m+2, K∗ ≤ k < N.

(2.10)

Expression (2.10) corresponds to averaging the elements along diagonals i + j = k + 2.
This diagonal averaging, applied to a resultant matrix XIk , produces a N -length time
series Fk, and thus the initial series F is decomposed into the sum of m series:

F = F1 + · · ·+ Fm. (2.11)

For proper choices of L and of sets I1, . . . , Im, the components Fk can be associated with
the trend, oscillation or noise of the original time series F .

2.2 Stationarity

Stationarity is as a crucial concept in the analysis of time series, as the majority
of time series models demand the data to be stationary to make accurate and precise
predictions. Loosely speaking, a time series is stationary, if its statistical properties, i.e.,
mean, variance and autocovariance are time-shift invariant.

2.2.1 Stationarity types

The time series {xt, t ϵZ+} is said to be strictly stationary if the joint distribution of

xt1 , xt2 , . . . , xtk

is the same as that of
xt1−h, xt2−h, . . . , xtk−h

for all time points t1, t2, . . . , tk and for all time lags h. In other words, shifting the time
origin by an amount h has no effect on the joint distributions. The joint distributions of
all orders depend only on the intervals between time instantst1, t2, . . . , tk. If a process
is strictly stationary,

1. The mean function µt is constant throughout time; i.e., µt is free of t.

2. The covariance between any two observations is determined solely by the time lag
between them; i.e., the autocovariance function γt,t−h depends only on h and not
on t.
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12 2. Theoretical Background

In most applications, strict stationarity is a condition that is much too restrictive. More-
over, it is difficult to assess the validity of this assumption in practice. As a result, we
employ a less stringent form of stationarity that specifically addresses only the first two
moments.

The time series {xt, t ϵZ+} is said to be weakly stationary (or second-order stationary)
if

1. The mean function µt is constant throughout time; i.e., µt is free of t.

2. The covariance between any two observations is defined only by the time lag be-
tween them; i.e., the autocovariance function γt,t−h depends only on h and not on
t.

It is clear that strict stationarity implies weak stationarity. Τhe converse to statement
is not true, in general. However, if we append the additional assumption of univariate
normality then the two definitions do coincide.

weak stationarity + univariate normality ⇒ strict stationarity

In the course of this work, the term stationarity will specifically refer to weak stationarity,
facilitating a practical and widely applicable framework for time series analysis.

2.2.2 Augmented Dickey-Fuller test

The Augmented Dickey-Fuller (ADF) test is a unit root test that aims to determine
whether a time series is stationary or non-stationary [10], [11]. It involves estimating a
regression equation with specific hypotheses about the coefficients. The general form of
the ADF regression equation is:

xt = c+ δt+ φxt−1 +

p∑
j=1

βj∆xt−j + εt, (2.12)

where xt is the time series variable, p is the number of lagged difference terms so that the
error term εt is serially uncorrelated, c is the drift coefficient, and δ is the deterministic
trend coefficient. Also, the error term is assumed to be homoskedastic (see section
Homoscedasticity & heteroscedasticity). The null and alternative hypotheses for the
ADF test are as stated below:

• Null hypothesis (H0): the time series has a unit root, indicating non-stationarity.
Mathematically, this is expressed as H0 : φ = 1.

• Alternative hypothesis (H1): the time series does not have a unit root, indicating
stationarity. Mathematically, this is expressed as H1 : φ < 1.
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The ADF t-statistic for the φ coefficient is the key factor in the ADF test. It is based
on the least squares estimates of (2.12) and is given by

ADFt = tφ=1 =
φ̂− 1

SE(φ̂)
, (2.13)

where SE(φ̂) is the standard error of the estimated coefficient. The t-statistic calculates
the number of standard deviations by which the estimated coefficient differs from one.
If the absolute value of the t-statistic is sufficiently large, greater than a critical value, it
suggests that the null hypothesis should be rejected supporting the conclusion that the
time series is stationary.

An alternative formulation of the ADF test regression is

∆xt = c+ δt+ πxt−1 +

p∑
j=1

βj∆xt−j + εt, (2.14)

where π = φ − 1. Under the null hypothesis, ∆xt is non-stationary, which implies
that π = 0. The ADF t-statistic is then the usual t-statistic for testing π = 0. The
test regression (2.14) is often used in practice because the ADF t-statistic is the usual
t-statistic reported for testing the significance of the coefficient of xt−1.

2.2.3 Kwiatkowski-Phillips-Schmidt-Shin test

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test constitutes another statistical
test utilized to assess the stationarity of a time series [12]. Unlike the ADF test, which
tests for the presence of a unit root, the KPSS test focuses on detecting stationarity
around a deterministic trend. The KPSS test uses the structural model

xt = ct + δt+ ut

ct = ct−1 + εt,
(2.15)

where xt is the time series variable, δ is a the trend coefficient, ut is a stationary error
term that may be heteroskedastic and εt ∼ WN(0, σ2w). Notice that µt is a pure random
walk with innovation variance σ2w. The null and alternative hypotheses for the KPSS
test are as stated below:

• Null hypothesis (H0): σ2w = 0, which implies that ct is a constant, suggesting that
the time series is trend-stationary.

• Alternative hypothesis (H1): σ2w > 0, which introduces the unit root in the random
walk ct, suggesting that the time series is not stationary around a deterministic
trend.

The KPSS test is based on the calculation of the KPSS test statistic, which serves as the
Lagrange multiplier for testing σ2w = 0 against the alternative that σ2w > 0 and is defined
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as:

KPSS =

∑T
t=1 Ŝ

2
t

T 2λ̂2
, (2.16)

where T is the length of the time series, Ŝt =
∑t

j=1 ûj , ût is the residual of the regression
of xt on the estimated trend and λ̂2 is a consistent estimate of the long-run variance of ut
using ût. If the absolute value of the test statistic is significantly greater than a critical
value, the null hypothesis of stationarity around a deterministic trend is rejected.

The KPSS test is often applied in conjunction with the ADF test, as together they
ensure that the time series is truly stationary. Table 2.1 below shows the possible out-
comes of using the combination of ADF and KPSS tests. Note that for a trend-stationary

ADF test KPSS test Tests combined

Non-stationary Non-stationary Time series is non-stationary
Non-stationary Stationary Time series is trend-stationary
Stationary Non-stationary Time series is difference stationary
Stationary Stationary Time series is stationary

Table 2.1: Stationarity results from applying both ADF and KPSS tests in a time
series.

time series, it is necessary to eliminate the trend to achieve stationarity. Then, the de-
trended series needs to undergo a stationarity check. In the case of a difference stationary
time series, differencing is required for the time series data to be rendered stationary.
Subsequently, the differenced series should be subjected to a stationarity check.

2.2.4 Phillips–Perron test

The Phillips–Perron (PP) test is another unit root test [13] that differs from the ADF
test, primarily in its treatment of serial correlation and heteroskedasticity in the errors.
Particularly, while the ADF test utilizes a parametric autoregression to approximate the
structure of the errors in the test regression, the PP test disregards any serial correlation
in the test regression. The regression equation for the PP test is

xt = c+ δt+ φxt−1 + εt, (2.17)

where xt is the time series variable, c is the drift coefficient, δ is the deterministic trend
coefficient, and εt is a stationary error term that may be heteroskedastic. The null and
alternative hypotheses for the PP test are the same as those for the ADF test. The PP
test corrects for any serial correlation and heteroskedasticity in the errors εt of the test
regression by directly modifying the test statistic tπ=0. This modified statistic, denoted
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Zt, is given by

Zt =

(
σ̂2

λ̂2

)1/2

· tπ=0 −
1

2

(
λ̂2 − σ̂2

λ̂2

)
·
(
T · SE(π̂)

σ̂2

)
. (2.18)

The terms σ̂2 and λ̂2 are consistent estimates of parameters

σ2 = lim
T→∞

T−1
T∑
t=1

E[ε2t ], (2.19)

λ2 = lim
T→∞

T∑
t=1

E[T−1S2
T ], (2.20)

where ST =
∑T

t=1 εt.

2.3 Transformations

Before modeling the time series data, it is often necessary to preprocess them through
various transformations to ensure their suitability for the specific time series modeling.
The choice of transformations depends on the characteristics of the data and the require-
ments of the chosen modeling technique. Visual inspection of the data and statistical
tests guide the selection of appropriate transformations. Below, we present the linear
and non-linear transformations that we applied in combination on the Bitcoin time series
data.

2.3.1 Linear transformations

• Differencing

Differencing can be an effective technique for stabilizing the mean of a non-stationary
time series, facilitating its transformation into a stationary one.

Consider time series {xt, t ϵZ+}. The first-order difference is a time series {∆xt}
given by

∆xt = xt − xt−1, (2.21)

for t = 1, 2, . . . , n. In many situations, a nonstationary time series {xt} can be "trans-
formed" into a stationary one by taking first differences. For example, the random walk
xt = xt−1 + wt, where wt ∼ WN(0, σ2w), is not stationary. However, the first-order
difference ∆xt = xt − xt−1 = wt is zero mean white noise, which is stationary.
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In some cases, first differences might not be sufficient, and additional differencing may
be required. The second-order difference is a time series {∆2xt} given by

∆2xt = ∆(∆xt) = ∆xt −∆xt−1

= (xt − xt−1)− (xt−1 − xt−2)

= xt − 2xt−1 + xt−2,

(2.22)

for t = 1, 2, . . . , n. In general, the dth difference process {∆dxt} is defined as

∆dxt = ∆(∆d−1xt) = ∆d−1xt −∆d−1xt−1, (2.23)

for d = 1, 2, . . .. We take ∆0xt = xt by convention.
We should note that while differencing can be a powerful tool, it should be applied

judiciously, and the choice of the differencing order depends on the specific characteristics
of the data. Excessive differencing can introduce noise and lead to overfitting.

2.3.2 Non-linear transformations

• Logarithmic transformation

The logarithmic transformation is often employed as an effective way of stabilizing the
variance of a time series. Consider the time series {xt} and its logarithmic transformation
x′t = log(xt) with variances V ar(xt) = E[(xt − µ)2] and V ar(x′t) = E[(log(xt) − µ′)2]

respectively, where µ and µ′ are the means of xt and x′t. If xt has a large value, log(xt)
will be less affected by changes in xt compared to when xt has a small value. This
compression of larger values reduces the variability in the transformed series. Thus, the
variance of the log-transformed series tends to be more stable and less influenced by
extreme values compared to the variance of the original scale series.

• Box-Cox transformation

The Box-Cox transformation is a family of power transformations, including the log-
arithmic transformation, that is primarily used for stabilizing the variance. It can also
have the side effect of bringing the distribution of the data closer to normality. Given a
time series {xt}, the transformation is defined by

x
(λ)
t =


xλt − 1

λ
, λ ̸= 0

ln(xt), λ = 0,
(2.24)

where λ is called the transformation parameter. Some common values for λ, and their
implied transformations are included in table 2.2. The determination of the value of λ
occurs through the Maximum Likelihood Estimation (MLE) method, which aims to find
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the λ that maximizes the log-likelihood function for the transformed data or, equivalently,
stabilizes the variance as much as possible.

λ x
(λ)
t Description

−2.0 1/x2t Inverse square

−1.0 1/xt Reciprocal

−0.5 1/
√
xt Inverse square root

0.0 ln(xt) Logarithm

0.5
√
xt Square root

1.0 xt Identity (no transformation)

2.0 x2t Square

Table 2.2: Box-Cox transformation parameters λ and their associated transformations
for a time series {xt}.
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Forecasting Methodology

3.1 Conditional mean models

The conditional mean of a time series xt is the expected value of xt given a conditioning
set, Ωt. In the context of time series modeling, a conditional mean model specifies a
functional form for E[xt|Ωt]. A conditional mean model of a time series is characterized
as either static or dynamic based on how the expected value of the dependent variable
is modeled with respect to conditioning set. For a static conditional mean model, the
conditioning set is measured contemporaneously with the dependent variable xt. On
the other hand, a dynamic conditional mean model specifies the expected value of xt
as a function of historical information. Let Ht−1 denote the history of the time series
available at time t that includes

• Past observations, x1, x2, . . . , xt−1.

• Vectors of past exogenous variables, z1, z2, . . . , zt−1.

• Past innovations, ε1, ε2, . . . , εt−1.

A dynamic conditional mean model specifies the evolution of the conditional mean,
E[xt|Ht−1]. Specifically, according to Wold’s decomposition [14], we can write the con-
ditional mean of any stationary time series xt as

E[xt|Ht−1] = µ+
∞∑
i=1

ψiεt−1, (3.1)

where εt−1 are past observations of an uncorrelated innovation series with mean zero, and
coefficients ψi are absolutely summable. E[xt] = µ is the constant unconditional mean
of the stationary time series. Any model of the general linear form given by equation
(3.1) is a valid specification for the dynamic behavior of a stationary time series. Some
special cases of stationary time series models, namely, the AR, MA, ARMA, ARIMA,
and ARIMAX models, are presented in detail in the following sections.

3.1.1 Autoregressive model

Auto-Regressive (AR) models are based on the idea that the current value of the series,
xt can be expressed as a linear combination of p previous values, xt−1, xt−2, . . . , xt−p,
together with a random error in the same series, i.e., xt is obtained by a linear regression
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from xt−1, xt−2, . . . , xt−p, hence the name autoregressive. More specifically, an autore-
gressive model of order p, denoted as AR(p), is of the form

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + εt =

p∑
i=1

φixt−i + εt, (3.2)

where φ1, φ2, . . . , φp (φp ̸= 0) are the parameters of the model, and εt ∼WN(0, σ2w) are
the innovations or error terms or random shocks. The hyperparameter p indicates the
length of the "direct look back" in the series.

We introduce the backshift operator B, so that Bxt = xt−1, B
2xt = xt−2 and so on.

Then the AR(p) model can be equivalently rewritten using the backshift (or lag) operator
B as

xt =

p∑
i=1

φiB
ixt + εt (3.3)

so that, shifting the summation term to the left side and utilizing polynomial notation
polynomial notation, we have

φ(B)xt = εt, (3.4)

where φ(B) = 1−
∑p

j=1 φjB
j is the autoregressive operator.

The stationarity condition for an AR(p) model is that all the roots of the characteristic
polynomial φ(B) must lie outside the unit circle. Stationarity ensures that the autocor-
relation structure of the time series remains consistent over time, so that there is a unique
set of parameters {φ1, φ2, . . . , φp} that characterizes the autocorrelation structure [15].

3.1.2 Moving average model

A Moving Average (MA) model of order q, or MA(q), is defined to be

xt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q =

q∑
j=0

θjεt−j , (3.5)

where θ0, θ1, θ2, . . . , θq (θq ̸= 0) are the parameters of the model, we assume θ0 = 1, and
εt ∼WN(0, σ2w), as in the AR model, represent the innovations or error terms or random
shocks. Similarly to the autoregressive operator, we define the moving average operator
as θ(B) = 1+

∑q
j=1 θjB

j and therefore the moving average model of order q, abbreviated
MA(q), can be rewritten as

xt = θ(B)εt. (3.6)

Regarding stationarity, MA models are inherently stationary as a consequence of being
a linear combination of white noise error terms. However, they may not be unique. For
a model to be unique for a particular moving average structure an invertibility condition
must be imposed [15].
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3.1.3 Invertibility

We define a time series {xt} to be invertible if it can be expressed as a "mathe-
matically meaningful" autoregressive time series (possibly of infinite order). Stationary
autoregressive models are invertible by definition, whereas the MA(q) process

xt = θ(B)εt = (1 + θ1B + θ2B
2 + · · ·+ θqB

q)εt (3.7)

is invertible if and only if the roots of the MA(q) characteristic polynomial θ(z) =

1 + θ1z + θ2z
2 + · · ·+ θqz

q all fall outside the unit circle.

3.1.4 Autoregressive moving average model

The Auto-Regressive Moving Average (ARMA) model is the natural generalization of
the AR and MA models defined as

xt =

p∑
i=1

φixt−i +

q∑
j=0

θjεt−j , (3.8)

where εt ∼ WN(0, σ2w) and assuming θ0 = 1. Alternatively, the autoregressive moving
average process of orders p and q, written ARMA(p, q), can be expressed using the
backshift notation as

φ(B)xt = θ(B)εt, (3.9)

where
φ(B) = 1− φ1B − φ2B

2 − · · · − φpB
p, (3.10)

θ(B) = 1 + θ1B + θ2B
2 + · · ·+ θpB

q. (3.11)

• For the ARMA(p, q) model to be stationary we need the roots of the AR characteristic
polynomial φ(B) to all lie outside the unit circle.

• For the ARMA(p, q) model to be invertible we need the roots of the MA characteristic
polynomial θ(B) to all lie outside the unit circle [15].

3.1.5 Autoregressive moving average with exogenous variables model

When there are external variables that are believed to impact the time series of in-
terest, an Auto-Regressive Moving Average with eXogenous covariates (ARMAX) model
can account for these influences. ARMAX models are a class of time series models that
extend the ARMA models by incorporating exogenous variables. The general form of
the ARMAX(p, q) model that includes r covariates z1,t, . . . , zr,t is:

xt =

p∑
i=1

φixt−i +

r∑
k=1

βkzk,t +

q∑
j=0

θjεt−j , (3.12)
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where εt ∼ WN(0, σ2w), θ0 = 1 and β1, β2, . . . , βr (βr ̸= 0) are the coefficients of the
covariates. The condensed form of the model in lag operator notation is:

φ(B)xt = βz′t + θ(B)εt, (3.13)

where vector z′t holds the values of the r exogenous covariates at time t and β each of
their coefficients.

The requirements for stationarity and invertibility in ARMAX models are the same as
those for ARMA models. Note that before entering the model, the exogenous covariates
must be assessed in terms of stationarity. In case they are not stationary, we have to
apply the appropriate transformations.

3.1.6 Autoregressive integrated moving average model

In order to handle processes which are non-stationary we extend the class of ARMA
models to include differencing. Doing so, we introduce a far wider class of models, the
Auto-Regressive Integrated Moving Average (ARIMA) class.

A time series {xt} is said to follow an ARIMA model if the dth differences yt = ∆dxt

follow a stationary ARMA model. An ARIMA model is characterized by

• p, the order of the autoregressive component,

• d, the number of differences needed to arrive at a stationary ARMA(p, q) model, and,

• q, the order of the moving average component.

Specifically, we have the general relationship

xt is ARIMA(p, d, q) ⇒ yt = ∆dxt is ARMA(p, q).

We have seen that a stationary ARMA(p, q) can be represented as φ(B)xt = θ(B)εt

where εt ∼WN(0, σ2w). In the case of the ARIMA(p, d, q) class, for d = 1,

yt = ∆xt = xt − xt−1 = xt −Bxt = (1−B)xt (3.14)

follows an ARMA(p, q) model. Therefore, an ARIMA(p, 1, q) process can be written as

φ(B)(1−B)xt = θ(B)εt. (3.15)

Similarly, for d = 2,
yt = ∆2xt = xt − 2xt−1 + xt−2

= xt − 2Bxt +B2xt

= (1− 2B +B2)xt = (1−B)2xt

(3.16)

follows an ARMA(p, q) model. Therefore, an ARIMA(p, 2, q) can be written as

φ(B)(1−B)2xt = θ(B)εt. (3.17)
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In general, an ARIMA(p, d, q) process can be written as

φ(B)(1−B)dxt = θ(B)εt. (3.18)

3.1.7 Homoscedasticity & heteroscedasticity

In statistics, a sequence (or vector) of random variables is homoscedastic when each
of its random variables has the same finite variance. This property is alternatively re-
ferred to as homogeneity of variance. Conversely, the complementary concept is termed
heteroscedasticity, also recognized as heterogeneity of variance. Homoskedasticity is an
essential assumption in many statistical models, including the family of ARIMA models.
The violation of this assumption while using such models can lead to biased and incon-
sistent estimates of the model parameters, which can affect the accuracy and reliability
of the model predictions.

3.2 Conditional variance models

Conditional variance models are used to model the heteroscedasticity observed in
time series data. These models address the limitations of assuming constant variance,
allowing for a more realistic representation of the dynamics of volatility over time. More
specifically, consider the time series

xt = µ+ εt, (3.19)

where xt is the time series variable, µ is the unconditional mean of the time series, and
εt are the innovations modeled by

εt = σtzt (3.20)

assuming that σt is the standard deviation and zt ∼WN(0, σ2w). The dynamic evolution
of the innovation variance is specified by a conditional variance model

σ2t = V ar(εt|Ht−1), (3.21)

where Ht−1 is the history of the time series. The history includes:

• Past variances, σ21, σ22, . . . , σ2t−1.

• Past innovations, ε21, ε22, . . . , ε2t−1.

Conditional variance models are appropriate for time series that do not exhibit significant
autocorrelation, but are serially dependent. The innovation series εt is uncorrelated
because:

• E[εt] = 0, and
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• E[εtεt−h] = 0 for all t and h ̸= 0.

However, if σ2t depends on σ2t−1, for example, then εt depends on εt−1, even though
they are uncorrelated. This kind of dependence exhibits itself as autocorrelation in the
squared innovation series, ε2t .

3.2.1 Autoregressive conditional heteroskedasticity model

The Auto-Regressive Conditional Heteroscedastic (ARCH) model [16] is a conditional
variance model used to capture the heteroskedasticity in time series data. It models the
innovation variance at the current time point in a time series as a function of the actual
sizes of the previous time periods’ innovations. An ARCH(q) model of order q is modeled
as follows

εt = σtzt,

σ2t = α0 +

q∑
i=1

αiε
2
t−i, (3.22)

where εt denotes the innovations, zt ∼ WN(0, σ2w), and σt is the standard deviation
characterizing the typical size of the innovations. Also, we assume that α0 > 0, and
ai ≥ 0, i > 0. The ARCH model is appropriate when the innovation variance in a time
series follows an AR model.

3.2.2 Generalized autoregressive conditional heteroskedasticity model

The Generalized Auto-Regressive Conditional Heteroscedastic (GARCH) model [17] is
an extension of the ARCH model in case an ARMA model is assumed for the innovation
variance. A GARCH(p, q) model includes p GARCH coefficients associated with lagged
variances, determining the order of GARCH terms, and q ARCH coefficients associated
with lagged squared innovations, determining the order of ARCH terms. It is given by

εt = σtzt,

σ2t = κ+

p∑
i=1

γiσ
2
t−i +

q∑
j=1

αjε
2
t−i, (3.23)

where εt denotes the innovations, zt ∼ WN(0, σ2w), and σt is the standard deviation
characterizing the typical size of the innovations. For stationarity and positivity, the
GARCH model has the following constraints:

• κ > 0,

• γi ≥ 0, αj ≥ 0, and

•
p∑

i=1
γi +

q∑
j=1

αj < 1.
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3.2.3 Autoregressive conditional heteroscedastic test

A time series exhibiting conditional heteroscedasticity, or else, varying conditional
variance over time, is said to have ARCH effects. Consider the time series

xt = µ+ εt, (3.24)

where xt is the time series variable, µ is the unconditional mean of the time series, and
εt are the innovations modeled by

εt = σtzt (3.25)

assuming that σt is the standard deviation and zt ∼ WN(0, σ2w). Engle’s ARCH test
[16] is a Lagrange multiplier test used to assess the significance of ARCH effects in the
regression of squared innovations

ε2t = α0 +

q∑
i=1

αiε
2
t−i. (3.26)

The null and alternative hypotheses for the ARCH test are as stated below.

• Null hypothesis (H0): all the coefficients αi are equal to zero, indicating the absence
of ARCH effects.

• Alternative hypothesis (H1): at least one of the coefficients αi is not equal to zero,
indicating the presence of ARCH effects.

3.3 Conditional mean & conditional variance model

Composite conditional mean and conditional variance models are models that simul-
taneously model both the conditional mean and conditional variance of a time series,
enhancing the accuracy of representing the underlying patterns in time series data and,
thus, leading to more precise forecasts. Widely employed in time series analysis, partic-
ularly within financial econometrics, the ARMA-GARCH model is the most commonly
used composite conditional mean and conditional variance model. It is obtained by com-
bining an ARMA(p, q) model for the conditional mean with a GARCH(p′, q′) model for
the conditional variance and has the following form:

xt =

p∑
i=1

φixt−i +

q∑
j=0

θjεt−j ,

assuming θ0 = 1, and
εt = σtzt,

σ2t = κ+

p′∑
i=1

γiσ
2
t−i +

q′∑
j=1

αjε
2
t−i,
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where εt denotes the innovations, zt ∼ WN(0, σ2w′), and σt is the standard deviation
characterizing the typical size of the innovations.

3.4 Model selection criteria

In an attempt of comparing several time series models in this work we used the AIC
and BIC selection criteria as statistical measures for the most adequate model. First
of all, we present the method of MLE that was used to estimate the parameters of
the initially partially specified models by their fitting to the observed data. Then, we
demonstrate the two most commonly used information criteria, AIC and BIC, both
based on MLE, utilized for the final comparison of the fully specified models. Every
criterion seeks to strike a balance between the goodness of fit and the complexity of a
model, penalizing more complex models and encouraging those that are accurate, but also
parsimonious, preventing both underfitting and overfitting. In addition, we introduce the
Anderson-Darling test, which we employed after selecting the best candidate, to either
validate or reject the assumption made for the distribution of residuals in the competing
models.

• Underfitting refers to a situation where a model is too generic and fails to capture
the underlying patterns or relationships present in the data.

• Overfitting occurs when a model tries to fit the data too closely and ends up memo-
rizing the data patterns, as well as the noise, and becoming overly complex.

3.4.1 Maximum likelihood estimation

The most frequently employed technique for estimation of unknown parameters in
time series models is the method of maximum likelihood. The likelihood function L is
a function that describes the joint distribution of the observed data {x1, x2, . . . , xn}.
However, it is viewed as a function of the model parameters with the observed data
being fixed. Therefore, when we maximize the likelihood function with respect to the
model parameters, we are finding the values of the parameters, i.e., the estimates, that
are most consistent with the observed data.

To illustrate how maximum likelihood estimates are obtained, consider the AR(1)
model

xt = φxt−1 + εt,

where εt ∼ WN(0, σ2w). There are two parameters in this model, φ and σ2w. The
probability density function (pdf) of εt is

f(εt) =
1

σw
√
2π

exp
(
−ε2t /2σ2w

)
. (3.27)
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Because ε1, ε2, . . . , εn are all independent, the joint pdf of ε2, ε3, . . . , εn is given by

f(ε2, ε3, . . . , εn) =
n∏

t=2
f(εt) =

n∏
t=2

1

σw
√
2π

exp
(
−ε2t /2σ2W

)
= (2πσ2w)

−(n−1)/2 exp

(
− 1

2σ2w

n∑
t=2

ε2t

)
.

(3.28)

To write out the joint pdf of x = (x1, x2, . . . , xn), we can first perform a multivariate
transformation using

x2 = φx1 + ε2

x3 = φx2 + ε3
...

xn = φxn−1 + εn,

with x1 being fixed. This will give us the (conditional) joint distribution of x2, x3, . . . , xn
given x1. Applying the laws of conditioning, the joint pdf of x; i.e., the likelihood
function L ≡ L(φ, σ2w|x), is given by

L = L(φ, σ2w|x) = f(x2, x3, . . . , xn|x1)f(x1). (3.29)

where

f(x2, x3, . . . , xn|x1) = (2πσ2w)
−(n−1)/2 exp

{
− 1

2σ2w

n∑
t=2

(xt − φxt−1)
2

}
, (3.30)

f(x1) =

[
1

2πσ2w/(1− φ2)

]1/2
exp

[
− x21
2σ2w/(1− φ2)

]
. (3.31)

Multiplying these pdfs and simplifying, we get

L = L(φ, σ2w|x) = (2πσ2w)
−n/2(1− φ2)1/2 exp

[
−S(φ)

2σ2w

]
, (3.32)

where

S(φ) = (1− φ2)x21 +
n∑

t=2

(xt − φxt−1)
2. (3.33)

For this AR(1) model, the maximum likelihood estimators (MLEs) of φ and σ2w are the
values which maximize L(φ, σ2w|x).

The approach to finding MLEs in any stationary ARMA(p, q) model is the same as
what we have just outlined in the special AR(1) case. The likelihood function L becomes
more complex in larger models. That is a matter of no concern, though, as we use the
Matlab software to do the estimation.
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3.4.2 Akaike information criterion

According to the Akaike Information Criterion (AIC) [18], [19], the most suitable
model for a time series {xt} is the one that minimizes

AIC = −2 lnL+ 2k, (3.34)

where lnL is the natural logarithm of the maximized likelihood function, computed under
a distributional assumption for {x1, x2, . . . , xn}, and k is the number of parameters in
the model.

• The −2 lnL term penalizes models that do not fit the data well. The likelihood function
L quantifies how well the model explains the observed data. The higher the likelihood,
the better the fit.

• The 2k term penalizes models with a larger number of parameters (adhering to the
Principle of Parsimony). The idea is to prevent overfitting by favoring simpler models.
The penalty increases with the number of parameters k.

3.4.3 Bayesian information criterion

According to Bayesian Information Criterion (BIC) [20], the most suitable model for
a time series {xt} is the one that minimizes

BIC = −2 lnL+ k lnn, (3.35)

where lnL is the natural logarithm of the maximized likelihood function, k and n repre-
sent the number of parameters in the model and the sample size, respectively.

• Compared to AIC, BIC similarly requires the maximization of a log likelihood function,
but additionally offers a harsher penalty for overparameterized models.

3.4.4 Anderson-Darling test

The Anderson-Darling goodness-of-fit test is commonly used to assess whether a data
sample comes from a hypothesized distribution [21]. Even if we do not fully specify
the distribution parameters, the test estimates any unknown parameters from the data
sample. The null and alternative hypotheses for the Anderson-Darling test are as stated
below:

• Null hypothesis (H0): The data follow a specified distribution.

• Alternative hypothesis (H1): The data do not follow the specified distribution.

The Anderson-Darling test is based on the calculation of the Anderson-Darling test
statistic, which belongs to the family of quadratic empirical distribution function statis-
tics, that measure the distance between the hypothesized distribution, F (x), and the
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Empirical Cumulative Distribution Function (ECDF), Fn(x), as

n

∫ ∞

−∞
(Fn(x)− F (x))2w(x) dF (x), (3.36)

where w(x) is a weight function and n is the number of data points in the sample. The
weight function for the Anderson-Darling test is given by

w(x) = [F (x)(1− F (x))]−1, (3.37)

which places greater weight on the observations in the tails of the distribution, thus
making the test more sensitive to outliers. The Anderson-Darling test statistic is defined
as

A2 = −n−
n∑

i=1

2i− 1

n
[ln(F (xi)) + ln(1− F (xn+1−i))] , (3.38)

where {x1 < · · · < xn} are the ordered sample data points and n is the number of
data points in the sample. If the absolute value of the Anderson-Darling test statistic is
greater than the critical value of the specified theoretical distribution, the null hypothesis
is rejected.

3.5 Time series forecasting

We begin with a sample of values up to time t, say {x1, x2, . . . , xt}. These are our
observed data. Forecasting is the practice of predicting future values of the time series,
i.e.,

xt+1, xt+2, xt+3, . . . .

Generally, xt+l is the value of the time series at time t + l, where l ≥ 1. We call t the
forecast origin and l the lead time. The value xt+l is "l-steps ahead" of the most recently
observed value xt.

It is essential to adopt a mathematical criterion for the computation of model forecasts.
The chosen criterion relies on the mean squared error of prediction [22]

MSEP = E{[xt+l − h(x1, x2, . . . , xt)]
2}. (3.39)

Supposing that we have a sample of observed data {x1, x2, . . . , xt} and that we would
like to predict xt+l, we choose the function h(x1, x2, . . . , xt) that minimizes MSEP. This
function will be our forecasted value of xt+l. The general solution to this minimization
problem is

h(x1, x2, . . . , xt) = E[xt+l|x1, x2, . . . , xt], (3.40)
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the conditional expectation of xt+l, given the observed data {x1, x2, . . . , xt}. Using stan-
dard notation, we write

x̂t(l) = E[xt+l|x1, x2, . . . , xt]. (3.41)

This is called the minimum mean squared error (MMSE) [23] forecast. That is, x̂t(l) is
the MMSE forecast of xt+l.

3.5.1 One-step ahead prediction

The present work focuses on one-step ahead forecasting. Below we estimate the MMSE
forecast when l = 1 for the special cases of AR(1) and MA(1) models, as well as for the
generalized ARMA(p, q) and ARIMA(p, d, q) models.

• AR(1)

Consider the AR(1) model
xt = φxt−1 + εt, (3.42)

where εt ∼WN(0, σ2w). The one-step ahead MMSE forecast of xt+1 is

x̂t(1) = E(xt+1|x1, x2, . . . , xt)
= E[φxt + εt+1|x1, x2, . . . , xt]
= E[φxt|x1, x2, . . . , xt] + E[εt+1|x1, x2, . . . , xt].

(3.43)

From the properties of conditional expectation:

• E[φxt|x1, x2, . . . , xt] = φxt, because φxt is a function of x1, x2, . . . , xt.

• E[εt+1|x1, x2, . . . , xt] = E[εt+1] = 0, because εt+1 is independent of x1, x2, . . . , xt.

Thus, the MMSE forecast of xt+1 is

x̂t(1) = φxt. (3.44)

• MA(1)

Consider the MA(1) model
xt = εt + θεt−1, (3.45)

where εt ∼WN(0, σ2w). The one-step ahead MMSE forecast of xt+1 is

x̂t(1) = E(xt+1|x1, x2, . . . , xt)
= E[εt+1 + θεt|x1, x2, . . . , xt]
= E[εt+1|x1, x2, . . . , xt]︸ ︷︷ ︸

=E[εt+1]=0

+E[θεt|x1, x2, . . . , xt]︸ ︷︷ ︸
=(∗)

.
(3.46)

Panou Christina-Dionysia © Technical University of Crete



3. Forecasting Methodology 31

To compute (∗) we rewrite the MA(1) model as

εt = xt − θεt−1. (3.47)

Then we write
εt = xt − θ(xt−1 − θεt−2) = xt − θxt−1 + θ2εt−2. (3.48)

Using repeated similar substitution, we take

εt = xt − θxt−1 + θ2xt−2 − θ3xt−3 + . . . , (3.49)

a weighted (theoretically infinite) linear combination of xt−j for j = 0, 1, 2, . . . . That is,
εt can be expressed as a function of x1, x2, . . . , xt and therefore

E[θεt|x1, x2, . . . , xt] = θεt. (3.50)

Hence,
x̂t(1) = θεt. (3.51)

• ARMA(p, q)

Consider the ARMA(p, q) model

xt =

p∑
i=1

φixt−i +

q∑
j=0

θjεt−j ,

where εt ∼ WN(0, σ2w) and assuming θ0 = 1. The one-step ahead MMSE forecast of
xt+1 is

x̂t(1) = E[xt+1|x1, x2, . . . , xt]
= E[

∑p
i=1 φixt+1−i +

∑q
j=0 θjεt+1−j |x1, x2, . . . , xt]

= φ1E[xt|x1, x2, . . . , xt] + · · ·+ φpE[xt+1−p|x1, x2, . . . , xt]
+ θ0E[εt+1|x1, x2, . . . , xt] + · · ·+ θqE[εt+1−q|x1, x2, . . . , xt],

(3.52)

where E[xt+1−i|x1, x2, . . . , xt] = xt+1−i for every 1 ≤ i ≤ p and every p ≥ 1 and

E[εt+1−k|x1, x2, . . . , xt] =

0, for 1− k > 0,

εt+1−k, for 1− k ≤ 0,
(3.53)

for k = 0, 1, . . . , q.

• ARMAX(p, q)
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Consider the ARMAX(p, q) model

xt =

p∑
i=1

φixt−i +
r∑

k=1

βkztk +

q∑
j=0

θjεt−j ,

where εt ∼ WN(0, σ2w) and θ0 = 1. Assuming that the exogenous variables z1,t, . . . , zr,t
are deterministic and known at each time t, the one-step ahead MMSE forecast of xt+1

is

x̂t(1) = E[xt+1|x1, x2, . . . , xt]
= E[

∑p
i=1 φixt+1−i +

∑r
k=1 βkzt,k +

∑q
j=0 θjεt+1−j |x1, x2, . . . , xt]

= φ1E[xt|x1, x2, . . . , xt] + · · ·+ φpE[xt+1−p|x1, x2, . . . , xt]
+β1E[zt,1|x1, x2, . . . , xt] + · · ·+ βrE[zt,r|x1, x2, . . . , xt]
+ θ0E[εt+1|x1, x2, . . . , xt] + · · ·+ θqE[εt+1−q|x1, x2, . . . , xt],

(3.54)

where E[xt+1−p|x1, x2, . . . , xt] = xt+1−p for every p, E[zt,r|x1, x2, . . . , xt] = zt,r for every
r and

E[εt+1−k|x1, x2, . . . , xt] =

0, for 1− k > 0,

εt+1−k, for 1− k ≤ 0,
(3.55)

for k = 0, 1, . . . , q.

• ARMA(p, q) - GARCH(p′, q′)

Consider the composite ARMA(p, q)-GARCH(p′, q′) model

xt =

p∑
i=1

φixt−i +

q∑
j=0

θjεt−j ,

where εt ∼WN(0, σ2w) and assuming θ0 = 1,

εt = σtzt,

σ2t = κ+

p′∑
i=1

γiσ
2
t−i +

q′∑
j=1

αjε
2
t−i,

where εt denotes the innovations, zt is a white noise process that follows either the
Gaussian or Student’s t distribution, and σt is the standard deviation characterizing the
typical size of the innovations. The one-step ahead MMSE forecast of xt+1 is

x̂t(1) = E[xt+1|x1, x2, . . . , xt]
= E[

∑p
i=1 φixt+1−i +

∑q
j=0 θjεt+1−j |x1, x2, . . . , xt]

= φ1E[xt|x1, x2, . . . , xt] + · · ·+ φpE[xt+1−p|x1, x2, . . . , xt]
+ θ0E[εt+1|x1, x2, . . . , xt] + · · ·+ θqE[εt+1−q|x1, x2, . . . , xt],

(3.56)
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where E[xt+1−p|x1, x2, . . . , xt] = xt+1−p for every p and

E[εt+1−k|x1, x2, . . . , xt] =

0, for 1− k > 0,

σt+1−kzt+1−k, for 1− k ≤ 0,
(3.57)

for k = 0, 1, . . . , q.

• ARIMA(p, d, q)

For invertible ARIMA(p, d, q) models with d ≥ 1, MMSE forecasts are computed using
the same approach as in the stationary case. To show why, suppose that d = 1, so we
have the following model

φ(B)(1−B)xt = θ(B)εt,

where (1−B)xt = ∆xt is the series of first differences. Given that

φ(B)(1−B) = (1− φ1B − φ2B
2 − · · · − φpB

p)(1−B) (3.58)

= (1− φ1B − φ2B
2 − · · · − φpB

p)− (B − φ1B
2 − φ2B

3 − · · · − φpB
p+1)

= 1− (1 + φ1)B − (φ2 − φ1)B
2 − · · · − (φp − φp−1)B

p + φpB
p+1︸ ︷︷ ︸

φ∗(B)

.

We can thus rewrite the ARIMA(p, 1, q) model as

φ∗(B)xt = θ(B)εt, (3.59)

a nonstationary ARMA(p + 1, q) model. We then estimate MMSE forecasts the same
way as in the stationary case.

3.5.2 Prediction intervals

A prediction interval for a future observation is a range of values that, with a certain
level of confidence, is expected to contain the true value of that observation. For a future
time series observation xt+l it can be expressed as

[x̂t+l − zc · SE, x̂t+l + zc · SE], (3.60)

where x̂t+l is the forecasted value, zc is the critical value, and SE, standing for standard
error, is the standard deviation of the forecast errors. The critical value zc represents
the number of standard deviations from the mean in the distribution of errors and cor-
responds to a certain confidence level for the prediction interval. SE accounts for the
uncertainty associated with the forecasted values, considering both the uncertainty in
estimating model parameters and the inherent randomness in the data.
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The width of a prediction interval is influenced by the variability of the data and the
desired level of confidence. Increased variability in the data or larger forecast errors leads
to wider intervals. Higher confidence levels also result in wider prediction intervals.

3.5.3 Evaluation metrics

To assess the performance and reliability of time series forecasting models various
evaluation metrics can be employed. Below we present those used in this work.

• MSE

The Mean Square Error (MSE) is a commonly used metric in time series analysis. It
measures the average of the squared differences between predicted values x̂t and actual
values xt. Given N observations, we have

MSE =
1

N

N∑
t=1

(xt − x̂t)
2 (3.61)

• RMSE

The Root Mean Squared Error (RMSE) is derived from the MSE and provides a
measure of the average magnitude of the errors between predicted values x̂t and actual
values xt. Given N observations, RMSE is calculated as follows

RMSE =
√
MSE =

√√√√ 1

N

N∑
t=1

(xt − x̂t)2 (3.62)

• MAPE

The Mean Absolute Percentage Error (MAPE) is another widely used metric that
measures the average percentage difference between predicted values x̂t and actual values
xt. Given N observations, it is computed as

MAPE =
1

N

N∑
t=1

(
|xt − x̂t|

|xt|

)
× 100% (3.63)
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Data Analysis & Results
In this chapter, we present in detail the steps that we followed for the next-day Bit-

coin closing price using the ARIMA-GARCH time series model. These steps include in
chronological order: 1. Data collection, 2. Data cleaning, 3. Exploratory data analysis,
4. Data splitting, 5. Data transformation, 6. Model estimation, 7. Model selection,
8. One-step ahead forecasting, and 9. Model evaluation. Along with the results of the
application of the proposed forecasting methodology shown in figure 4.1, we provide the
corresponding results of three other research works that employ the forecasting methods
of LSTM, Bi-LSTM, GRU, and Bi-GRU towards the same goal. Also, we investigate if
using the historical prices of popular stock market indices as exogenous variables of the
ARIMA-GARCH model can improve its forecasting performance.

Figure 4.1: Overview of the proposed forecasting methodology.

4.1 Data collection & cleaning

We begin with data collection, followed by data cleaning. Both are critical for ensuring
the reliability of the data. Well-collected and carefully prepared data form the basis for
the development of accurate predictive time series models.

Regarding data collection, firstly, we have to determine a time period for our data
analysis. This could be daily, monthly, quarterly, or any other relevant time interval
based on the nature of the data and our research objectives. Then, in order to obtain the
time series data, we must locate trustworthy sources and also make sure the data contain
all the variables that are essential for our study and the corresponding timestamps. For
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the purposes of this work we used the historical data of daily Bitcoin closing price, as well
as the historical daily closing prices of the NASDAQ Composite (COMP), Dow Jones
Industrial Average (DJIA) and S&P500 (SPX) indices.

The Bitcoin dataset was obtained from Kaggle in the form of a .csv file and contains
a total of 2651 samples. In figure 4.2 we can see a part of the initial dataset. Each
sample record has nine (9) fields/features displayed in columns labelled "unix", "date",
"symbol", "open", "high", "low", "close", "Volume BTC" and "Volume USD". The
data is from November 28, 2014, to March 1, 2022. The dataset features are defined as
follows:

1. Unix: Timestamp useful for conversion to the local timezone.

2. Date: The time the data were recorded in UTC timezone.

3. Symbol: The symbol to which the data refer.

4. Open: The the opening price of the date.

5. High: The highest price of the date.

6. Low: The lowest price of the date.

7. Close: The closing price of the data.

8. Volume BTC: The total trade volume on a specific date in BTC.

9. Volume USD: The total trade volume on a specific date in USD.

Figure 4.2: The Bitcoin dataset as obtained from Kaggle in CSV format.

The historical data of the S&P500 index were collected from MarketWatch in the form
of .csv files that we merged together into one .csv file such that it contains 1826 samples of
S&P500 data from 28-11-2014 to 01-03-2022. Each sample has five (5) features, "Date",
"Open", "High", "Low" and "Close" as shown in figure 4.3.

Regarding the NASDAQ index, its historical data were gathered from Nasdaq in the
form of a .csv file, and consists of 2537 samples for the period from 28-11-2014 until
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Figure 4.3: The S&P500 index dataset as obtained from MarketWatch in CSV format.

01-03-2022. A part of the initial dataset is shown in figure 4.4. Each sample has 5
columns consisting of "Date", "Close/Last", "Open", "High" and "Low", that have the
same interpretation as the respective features of Bitcoin.

Figure 4.4: The NASDAQ index dataset as obtained from Nasdaq in CSV format.

The historical data of the DJIA index were acquired from FRED in CSV format, and
has a total of 1894 samples from 28-11-2014 to 01-03-2022. The data in figure 4.4 are
part of the initial dataset. Each sample has 2 columns, "DATE" and "DJIA", with the
later representing the price of the index on the datetime of "DATE".

Data cleaning means, first of all, isolating the information in the data that is relevant
to our study and removing what is redundant. Here, we isolated the columns "date" and
"close" from the Bitcoin dataset, "Date" and "Close" from the S&P500 dataset, "Date"
and "Close/Last" from the NASDAQ dataset, as well as "DATE" and "DJIA" from the
DJIA dataset. Then, we parsed these columns from .csv files into variables and used
them to create the desired datasets to work with later on.

Another essential part of the data cleaning step is removing any duplicate data points,
as it is important to ensure that each timestamp corresponds to a unique and meaningful
data point. In our case, none of the datasets had any duplicate date values.

Moreover, data cleaning includes checking for and handling missing values. This
might involve interpolation, imputation, or removal of data points with missing values,
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Figure 4.5: The DJIA index dataset as obtained from FRED in CSV format.

depending on the nature of the missing values and their impact on the data analysis.
Interpolation is used to estimate the values between known data points, creating a con-
tinuous representation of the data. Some common interpolation methods include linear
interpolation, polynomial interpolation, nearest-neighbor interpolation and kriging. We
will not get further into the interpolation, as it has not been utilized in this study. Im-
putation, on the other hand, is a broader term that encompasses various techniques that
aim to replace missing values in a dataset with estimated values, ensuring completeness
for subsequent analysis. Here we used forward fill, which is basically filling missing values
with the most recent observed value. This imputation technique is often employed in
time series data where values tend to hold over time.

The Bitcoin dataset did not have any missing dates or closing price values, while the
NASDAQ, DJIA and S&P500 datasets had several missing dates with their corresponding
closing price values due to the closing of the stock market over the weekends and stock
market holidays. We had to identify missing dates and create entries with empty closing
price values. Then, we appended them to the original dataset and sorted the dataset
based on dates. We used forward fill to replace each empty closing price value with the
most recent one for the existing dates.

4.2 Exploratory data analysis

After data collection and effective data cleaning we proceed with Exploratory Data
Analysis (EDA). EDA is crucial for understanding the underlying patterns, trends, and
characteristics of a time series. It provides an initial glimpse of the time series data via
a combination of visualizations and statistical tests. These are essential for defining the
kind of preprocessing the data need to undergo before the subsequent ARIMA modeling.
Specifically, EDA includes:

• Time series decomposition that allows the understanding of the underlying structure.

• The ARCH test for heteroskedasticity.
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Figure 4.6: The Bitcoin time series.

• Employing the ACF and PACF plots to identify autocorrelation in the time series data.

• Stationarity assessment of the time series via the ADF, KPSS, and PP tests.

• Examining the correlation between the subject time series and other time series that
could potentially influence it.

So, we began with the decomposition of the Bitcoin time series, shown in figure 4.6, as
the first step of EDA. An additive decomposition resulted in a trend proportional to the
level of the time series, indicating that a multiplicative model would be more suitable.
So, we log-transformed the time series and then used the additive decomposition. From
the product property of the logarithm this was equivalent to assuming a multiplicative
decomposition of the time series. The components of the decomposition are shown in
figure 4.7. The trend component appears to be strong, whereas seasonality is negligible.
The ARCH test showed that the time series exhibits heteroskedasticity. The ACF and
PACF plots are shown in figure 4.8. A value of 1 in all lags of the ACF plot indicates a
strong correlation with previous time points. This suggests a high autocorrelation, which
is a typical characteristic of a time series with a trend. The outcomes of the ADF, KPSS,
and PP tests are shown in tables 4.1, 4.2 and 4.3, respectively, indicating non-stationarity.
Finally, the correlation coefficients between the Bitcoin time series and the COMP, DJIA,
and SPX indices time series were 0.91, 0.86, and 0.91, respectively, signifying a robust
positive linear relationship in all three cases. Despite the identified correlations, definitive
conclusions regarding the causal link between changes in the specific financial indices and
Bitcoin cannot be drawn. Various other factors may contribute, and a more in-depth
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analysis is required to establish causation, but we will not delve further into investigating
this causation.

Figure 4.7: Additive decomposition of Bitcoin time series.

Figure 4.8: ACF and PACF plots of Bitcoin time series.
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Reject H0 Test statistic Critical value

true 0.02999 −2.1571

Table 4.1: ADF test results for the Bitcoin time series.

Reject H0 Test statistic Critical value

true 34.641 0.146

Table 4.2: KPSS test results for the Bitcoin time series.

Reject H0 Test statistic Critical value

true −2.1571 −1.9416

Table 4.3: PP test results for the Bitcoin time series.
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4.3 Data splitting

Before any preprocessing, we first had to perform a two-part data split into training
and test sets. The training set is the largest subset of the data that is used for model
fitting. A common rule of thumb for the size of the training set is to use 60-80% of the
data. The training set should be a representative sample of the time series that we aim
to model and predict. The test set is the remaining smaller portion of the data that
we use to assess the final performance the chosen model or models. It consists of data
points unseen by the training process. The size of the test set is correspondingly 20-40%
of the data. The test set should reflect the real-world conditions and scenarios that the
model will face. Various methods can be utilized to divide data into training and test
sets. Here we applied the most fundamental and widely used splitting approach in time
series forecasting, time-based splitting, that separates the dataset into training and test
sets based on a specific point in time. This technique simulates a real-world scenario
where the model is trained on historical data and then tested on new future data, and
therefore it is crucial for assessing the generalization ability of a forecasting model.

To compare our methodology with each of research works [3], [4], and [5], we opted
for three distinct data splits for the Bitcoin dataset based on the intervals used as back-
testing periods in the specific pieces of literature. More precisely, the intervals 27 June
2018 - 27 June 2019, 26 February 2020 - 26 February 2021, and 5 February 2018 - 5
June 2019 constituted the back-testing periods for the three research works of interest,
respectively. These intervals consequently served as the test sets in the application of
our methodology. The remaining portion of the Bitcoin dataset in each application was
utilized as the maximum available training set. We conducted experiments with various
training set sizes. For the first partition, we used the intervals 28 November 2014 - 26 June
2018, 26 February 2016 - 26 June 2018, and 26 December 2016 - 26 June 2018 as training
sets, resulting in training and test set ratios of 80:20, 70:30, and 60:40, respectively. In
the second partition, the training sets comprised the intervals 25 February 2016 - 25
February 2020, 25 October 2017 - 25 February 2020, and 25 August 2018 - 25 February
2020, with corresponding training and test set ratios of 80:20, 70:30, and 60:40. For the
third partition, the training sets were based on the intervals the intervals 28 November
2014 - 4 February 2018 and 4 February 2016 - 4 February 2018, resulting in training and
test set ratios of 70:30 and 60:40, respectively.

4.4 Data transformation

In this step, our goal is to find a suitable transformation or combination of transfor-
mations for the training data in order to facilitate accurate ARIMA modeling. ARIMA
models rely on the stability of statistical properties over time. In case the time series data
are heteroscedastic, this assumption is violated. We then examine the effectiveness of the
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logarithmic and Box-Cox transformations in stabilizing the variance. If neither of them
results in homoscedastic data, we turn to the GARCH model to address non-constant
variance. In such situations, the logarithmic or Box-Cox transformation can be used to
stabilize the variance to some extent, and then the GARCH model to further capture
and model any remaining time-varying volatility. In case the data have unstable mean,
we apply differencing to stabilize it. While ARIMA internally uses differencing to handle
non-stationarity, determining the most appropriate order of differencing is crucial for
effective modeling. To evaluate homoscedasticity, we utilize the ARCH test. To assess
the stationarity of the mean, we employ the ADF, KPSS, and PP statistical tests.

Concerning the first partition of the Bitcoin dataset and the choice of 80:20 as the ratio
of the training data to the test data, an initial ARCH test suggested heteroscedasticity.
Also, ADF, KPSS and PP stationarity tests indicated non-stationarity, as shown in
tables 4.4, 4.5 and 4.6, respectively. PP and KPSS tests are robust to heteroscedacity,
unlike the ADF test, which might be affected by non-constant variance. Next, neither
the logarithmic nor the Box-Cox transformation (utilizing the optimal parameter λ =

−0.3589) proved effective in addressing the heteroscedasticity in the data according to
the ARCH test. These results implied that a GARCH model would be more suitable
for modeling the variance of the time series. Regarding the mean of the time series,
after combining the results of the ADF, KPSS, and PP stationarity tests for the first
differences of the logarithmic and Box-Cox transformations applied to the training data,
we concluded that differencing once is sufficient for achieving a stable mean.

Regarding the choices of 70:30, 60:40 as ratios of the training data to the test data
in the same dataset partition, as well as each case of the chosen ratios in the second
and third dataset partitions, we obtained similar data transformation results to the
above case. The Box-Cox transformation, aimed at stabilizing the variance, and the
application of first-order differences, intended for mean stabilization, were the selected
transformation candidates for subsequent ARIMA-GARCH modeling.
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Figure 4.9: The training dataset from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

false 0.12496 −1.5017

Table 4.4: ADF test results for the training data from 28 November 2014 to 26 June
2018.

Reject H0 Test statistic Critical value

true 17.874 0.146

Table 4.5: KPSS test results for the training data from 28 November 2014 to 26 June
2018.

Reject H0 Test statistic Critical value

false −1.5017 −1.9416

Table 4.6: PP test results for the training data from 28 November 2014 to 26 June
2018.
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Figure 4.10: Logarithmic transformation of the training data from 28 November 2014
to 26 June 2018.

Reject H0 Test statistic Critical value

true 0.034626 −2.0985

Table 4.7: ADF test results for the logarithmic transformation of the training data
from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

true 21.712 0.146

Table 4.8: KPSS test results for the logarithmic transformation of the training data
from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

true −2.0985 −1.9416

Table 4.9: PP test results for the logarithmic transformation of the training data
from 28 November 2014 to 26 June 2018.
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Figure 4.11: First differences of the logarithmic transformation of the training data
from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

true 0.001 −36.486

Table 4.10: ADF test results for the the first differences of the logarithmic transfor-
mation of the training data from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

false 0.14422 0.146

Table 4.11: KPSS test results for the the first differences of the logarithmic transfor-
mation of the training data from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

true −36.486 −1.9416

Table 4.12: PP test results for the the first differences of the logarithmic transforma-
tion of the training data from 28 November 2014 to 26 June 2018.

Panou Christina-Dionysia © Technical University of Crete



4. Data Analysis & Results 47

Figure 4.12: Box-Cox transformation of the training data.

Reject H0 Test statistic Critical value

false 0.092613 −1.6552

Table 4.13: ADF test results for the Box-Cox transformation of the training data
from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

true 11.579 0.146

Table 4.14: KPSS test results for the the Box-Cox transformation of the training data
from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

false −1.6552 −1.9416

Table 4.15: PP test results for the the Box-Cox transformation of the training data
from 28 November 2014 to 26 June 2018.
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Figure 4.13: First differences of the Box-Cox transformation of the training data from
28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

true 0.001 −37.657

Table 4.16: ADF test results for the first differences of the Box-Cox transformation
of the training data from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

false 0.11862 0.146

Table 4.17: KPSS test results for the first differences of the Box-Cox transformation
of the training data from 28 November 2014 to 26 June 2018.

Reject H0 Test statistic Critical value

true −37.657 −1.9416

Table 4.18: PP test results for the first differences of the Box-Cox transformation of
the training data from 28 November 2014 to 26 June 2018.
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4.5 Model estimation & selection

Here, we proceed on examining the ACF and PACF plots that can be useful to de-
termine an ARIMA model or models suitable for the transformed training data. In
table 4.19 is a handy cheat sheet for ACF and PACF plots interpretation [24]. Inspect-
ing the ACF and PACF plots is a valuable starting point for identifying potential orders
of an ARIMA model, but it is not always sufficient to guarantee the best modeling choice.

ACF ρ(k) PACF φk,k

AR(p) Damped exponential
and/or sine functions

φk,k = 0 for k > p

MA(q) ρ(k) = 0 for k > p Dominated by damped
exponential and/or sine
functions

ARMA(p, q) Damped exponential
and/or sine functions
after lag q − p

Dominated by damped
exponential and/or sine
functions after lag p− q

Table 4.19: Characteristics for the autocorrelation functions.

Assuming that ACF and PACF plot inspection does not indicate a certain model
suitable for the examined time series, we have to employ other methods towards effective
modeling. We start with creating a number of different ARIMA models combining the
orders of p, d, and q, while also making an assumption about a specific distribution
for the residuals. We choose p and q to take values according to ACF and PACF plot
inspection, while the possible effective orders of differencing, d, are defined by the findings
in the previous step. If the time series exhibits heteroscedasticity, we use GARCH(p′, q′)
models by combining the orders p′ and q′ to model the non-constant variance of the time
series. Additionally, by incorporating the values of COMP, DJIA, and SPX indices as
exogenous variables into the partly specified ARIMA or ARIMA-GARCH model, we can
fit an ARIMAX or ARIMAX-GARCH model to the transformed training data. Note
that the exogenous variables must align in scale with the endogenous one.

Subsequently, we estimate the parameters of every partly specified model using MLE
and proceed on comparing the fully specified models, aiming to find the most appropriate
ARIMA or ARIMA-GARCH model for the time series. AIC and BIC criteria, followed
by residual diagnostics for confirmation, finally determine the best candidate. Note that,
sometimes, the model indicated as the best by model selection criteria does not exhibit
residuals that align with the desired behavior and the assumed distribution. So, we have
to repeat the procedure as many times as needed to finally conclude to the best model.
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Concerning the first partition of the Bitcoin dataset and the choice of 80:20 as the
ratio of the training data to the test data, the ACF and PACF plots of the first dif-
ferences of the Box-Cox transformation of the training data from the previous step are
shown in figure 4.14. The values of the ACF at lags 2 and 18 clearly slightly exceed the
level of statistical significance, suggesting potential autocorrelation at these lags, while
the value at lag 12 is marginal and can more easily be considered negligible. In all three
cases, the proximity to the significance threshold indicates that the evidence for potential
autocorrelation is relatively weak and could be influenced by noise. Upon examination
of the PACF, a comparable pattern emerges. Subtle but distinctive departures from the
significance level are evident at lags 2 and 18, indicating potential autocorrelation. How-
ever, the value at lag 38 hovers around the margin and could be more easily considered
insignificant. Similarly to the ACF interpretation, this consistency in findings empha-
sizes the cautious interpretation of potential autocorrelation, considering the proximity
to the significance threshold. Any of these ACF and PACF values might be attributable
to noise rather than indicating a specific strong association. Thus, examining the ACF
and PACF plots suggested the presence of potential autocorrelation, but it did not offer
clear guidance on determining the specific orders of an ARIMA model for effectively
modeling the mean of the transformed training data.

Figure 4.14: ACF and PACF plots of the first differences of the Box-Cox transfor-
mation of the training data.

We proceeded with creating 100 different ARIMA(p, q) models with p and q taking
values from 1 to 10, and d equal to 1. To model the time-varying variance, we started
by using the ARCH(1) or GARCH(0,1) model. We assumed that the residuals follow
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a t-distribution. If necessary, we could then explore the effectiveness of more complex
models. Subsequently, we fitted each composite ARIMA(p, d, q)-ARCH(1) model to the
transformed training data, aiming to choose the best candidate based on the AIC and BIC
information criteria. Both criteria led to the selection of the ARIMA(3,1,1)-ARCH(1) as
the optimal model.

In figure 4.15, the ACF and PACF plots of the residuals reveal an absence of cor-
relation. Along with a zero mean, the residuals resemble white noise, suggesting that
the ARIMA(3,1,1)-ARCH(1) model has effectively captured the underlying patterns and
structure in the data. Regarding the adequacy of the ARCH(1) model in addressing
heteroscedasticity, the standardized residuals were found to have a zero mean, identi-
fied as homoscedastic through the ARCH test, as well as uncorrelated based on their
ACF and PACF plots. To verify whether the residuals align with our initial assump-
tion of a t-distribution, we fitted a t-distribution to the residuals and then conducted
an Anderson-Darling test, which provided evidence that the residuals indeed follow a
t-distribution. Additionally, comparing their distribution with a fitted t-distribution, as
shown in figure 4.16, indicated a good fit. Therefore, the presented evidence collectively
suggested the suitability of the ARIMA(3,1,1)-ARCH(1) model for modeling the Bitcoin
time series in the first partition of the Bitcoin dataset with an 80:20 ratio of training
data to test data.

Similarly, using 70:30 and 60:40 as ratios of the training data to the test data in
the same dataset partition, we identified ARIMA(8,1,8)-ARCH(1) and ARIMA(5,1,5)-
ARCH(1) as the best candidate models. In the second partition, also with training
and test set ratios of 80:20, 70:30, and 60:40, ARIMA(1,1,7)-ARCH(1), ARIMA(9,1,9)-
ARCH(1), and ARIMA(9,1,10)-ARCH(1) appeared to be the optimal choices for mod-
eling the Bitcoin time series. Ιn the third partition, using training and test set ratios
of 70:30 and 60:40, ARIMA(7,1,7)-ARCH(1) and ARIMA(7,1,2)-ARCH(1) emerged as
the most suitable models, respectively. Finally, taking into account the values of COMP,
DJIA, and SPX indices as exogenous variables, we also selected the most suitable can-
didate ARIMAX-ARCH(1) models, which will be discussed in the next section. In each
scenario, the ARCH(1) model effectively addressed the remaining heteroscedasticity, ren-
dering more complex ARCH models unnecessary.
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Figure 4.15: ACF and PACF plots of the residuals.

Figure 4.16: Histogram and fitted t-distribution of the residuals.

Panou Christina-Dionysia © Technical University of Crete



4. Data Analysis & Results 53

4.6 One-step ahead forecasting results

Eventually, after selecting the model or models that best fit the transformed training
set of the time series data, we can generate prediction values for each day of the test set.
In this process, we provide not only point predictions but also 95% prediction intervals,
offering a range within which the true values are likely to fall. Specifically, we employ
one-step ahead forecasting, meaning we forecast the value at each subsequent time point
using information available up to the current time point. In the context of daily data, one-
step ahead forecasting is equivalent to predicting the value for the next day. As outlined
in the corresponding theoretical section, for each one-step ahead prediction using the
ARIMA(p, d, q) model, we require at least the p previous values of the time series. Note
that as predictions are made using a model fitted to transformed data, the prediction
intervals are also computed in the transformed scale. To ensure interpretability in terms
of the original data, we back-transform them to the original scale. The final evaluation
of the forecasting performance of each model is conducted using metrics MSE, RMSE
and MAPE, based on the values predicted by the model and their corresponding actual
values in the test set.

In figures 4.17, 4.18 and 4.19, we present the one-step ahead forecasting outcomes us-
ing the models ARIMA(3,1,1)-ARCH(1), ARIMA(1,1,7)-ARCH(1), and ARIMA(7,1,7)-
ARCH(1). The specific models were selected based on distinct training to test set ratios
for predicting the Bitcoin prices in the time intervals spanning from 27 June 2018 to
27 June 2019, 26 February 2020 to 26 February 2021, and 5 February 2018 to 5 June
2019, respectively. Tables 4.20, 4.21, and 4.22 display the MSE, RMSE, and MAPE
scores for each tested model in our study, along with the coverage probability (CP) of
the 95% prediction intervals, considering the forecasting time interval and the training
to test data ratio. The best performing models for predicting the Bitcoin prices in each
scenario are highlighted in yellow. Furthermore, we include the corresponding results
for the same intervals obtained from literature works [3], [4], and [5] for comparison.
ARIMAX1, ARIMAX2, and ARIMAX3 represent ARIMA models with SPX, DJIA, and
COMP indices, respectively, as exogenous variables.

Referring to the data presented in table 4.20, the ARIMA(3,1,1)-ARCH(1) model,
given an 80:20 training to test set ratio, yielded the best MSE, RMSE, and MAPE
scores for the forecasting time interval spanning from 27 June 2018 to 27 June 2019.
Additionally, it slightly outperformed the optimal LSTM model in terms of MSE and
RMSE metrics, as reported in research study [3]. Notably, the 80:20 split consistently
outperformed the 70:30 and 60:40 splits. The coverage probability of 100%, exceeding the
expected 95%, signifies that the constructed prediction intervals consistently encompass
the actual future observations. This deviation is attributed to employing a t-distribution
with a small number of degrees of freedom and the discrete nature of the sample size,
leading to wider intervals than anticipated.
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In table 4.21, the ARIMAX3(1,1,7)-ARCH(1) model, with an 80:20 training to test
set ratio, achieved the lowest MSE, RMSE, and MAPE scores. Although its MSE and
RMSE values slightly outperformed those of Bi-LSTM, they appeared worse compared
to those of the LSTM, GRU, and Bi-GRU models presented in study [4]. Similar to the
first forecasting period, the 80:20 split consistently produced better scores than the 70:30
and 60:40 splits, while the coverage probability of 99.72% exceeded the expected 95% for
the same reasons mentioned above.

Lastly, turning attention to table 4.22, the ARIMAX2(3,1,2)-ARCH(1) model, also
given an 70:30 training to test set ratio, demonstrated superior performance, achiev-
ing the best MSE, RMSE, and MAPE scores between the compared models, and also
surpassing those of the ARIMA(1,1,0), LSTM, and GRU models proposed in [5]. The
models performed equally well with both the 70:30 and 60:40 splits, achieving optimal
scores an equal number of times, while coverage probability also exceeded the expected
95%, reaching 100% and 99.79%, respectively.

The findings from the first forecasting period illustrate that the inclusion of any of the
specified exogenous variables (SPX, DJIA, and COMP indices) in the ARIMA models
did not result in improved outcomes. However, incorporating them in the second and
third forecasting periods, led to enhanced prediction results compared to ARIMA models
without these variables as exogenous factors. This suggests that information from the
SPX, DJIA, and COMP stock market indices can be beneficial in modeling the Bitcoin
time series, contributing to more accurate predictions. That is an indication that the
stock market could potentially play a role in influencing the Bitcoin price. Yet, further
analysis is required to explore the nature and extent of this relationship.

In the second testing period, we observe an abrupt increase in prices, with corre-
sponding RMSE scores for the various ARIMA-ARCH and ARIMAX-ARCH models
significantly higher compared to those in the first and third forecasting periods, where
fluctuations are milder. Notably, the static nature of the proposed ARIMA-ARCH model,
which assumes a constant underlying structure of the data over time, becomes a weak-
ness when there are sudden, significant alterations in the values of the data or changes
in the pattern or characteristics of the data. In such cases, the model may struggle to
adapt quickly, leading to less accurate forecasts.

Panou Christina-Dionysia © Technical University of Crete



4. Data Analysis & Results 55

Figure 4.17: One-step ahead forecast of Bitcoin daily closing prices from 27 June
2018 to 27 June 2019 using the ARIMA(3,1,1)-ARCH(1) model with an 80:20 ratio of

training to test data split.

Ratio Model MSE RMSE MAPE CP

80/20 ARIMA(3,1,1)-ARCH(1) 54, 766.40 234.02 2.32 100

70/30 ARIMA(8,1,8)-ARCH(1) 57, 924.25 240.67 2.37 100

60/40 ARIMA(5,1,5)-ARCH(1) 59, 111.35 243.12 2.59 100

80/20 ARIMAX1(3,1,1)-ARCH(1) 54, 904.06 234.31 2.33 100

70/30 ARIMAX1(8,1,8)-ARCH(1) 61, 294.71 247.57 2.48 100

60/40 ARIMAX1(9,1,9)-ARCH(1) 63, 219.01 251.43 2.82 100

80/20 ARIMAX2(3,1,1)-ARCH(1) 54, 984.46 234.48 2.33 100

70/30 ARIMAX2(8,1,8)-ARCH(1) 61, 541.61 248.07 2.48 100

60/40 ARIMAX2(9,1,9)-ARCH(1) 63, 279.05 251.55 2.81 100

80/20 ARIMAX3(3,1,1)-ARCH(1) 54, 911.61 234.33 2.33 100

70/30 ARIMAX3(8,1,8)-ARCH(1) 62, 248.27 249.49 2.50 100

60/40 ARIMAX3(9,1,9)-ARCH(1) 62, 824.54 250.64 2.79 100

80/20 LSTM 83, 284.18 288.59 − −

Table 4.20: MSE, RMSE, MAPE, and coverage probability results of one-step ahead
forecast of Bitcoin daily closing prices from 27 June 2018 to 27 June 2019.
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Figure 4.18: One-step ahead forecast of Bitcoin daily closing prices from 26 February
2020 to 26 February 2021 using the ARIMA(1,1,7)-ARCH(1) model with an 80:20 ratio

of training to test data split.

Ratio Model MSE RMSE MAPE CP

80/20 ARIMA(1,1,7)-ARCH(1) 922, 434.37 960.43 2.75 99.72

70/30 ARIMA(9,1,9)-ARCH(1) 970, 246.17 985.01 2.94 99.72

60/40 ARIMA(9,1,10)-ARCH(1) 923, 102.65 960.78 2.82 99.72

80/20 ARIMAX1(1,1,7)-ARCH(1) 918, 473.05 958.37 2.74 99.72

70/30 ARIMAX1(9,1,9)-ARCH(1) 1, 024, 872.76 1, 012.36 3.08 99.72

60/40 ARIMAX1(9,1,10)-ARCH(1) 920, 525.11 959.44 2.81 99.72

80/20 ARIMAX2(10,1,10)-ARCH(1) 992, 853.78 996.42 2.85 99.72

70/30 ARIMAX2(10,1,10)-ARCH(1) 1, 138, 363.10 1, 066.94 3.11 99.72

60/40 ARIMAX2(9,1,10)-ARCH(1) 920, 768.43 959.56 2.81 99.72

80/20 ARIMAX3(1,1,7)-ARCH(1) 917, 492.91 957.85 2.73 99.72

70/30 ARIMAX3(9,1,9)-ARCH(1) 1019, 866.70 1, 009.88 3.07 99.72

60/40 ARIMAX3(9,1,10)-ARCH(1) 919, 286.40 958.79 2.8 99.72

80/20 LSTM 578, 497.14 760.59 − −
80/20 Bi-LSTM 962, 714.19 981.18 − −
80/20 GRU 593, 608.61 770.46 − −
80/20 Bi-GRU 183, 055.62 427.85 − −

Table 4.21: MSE, RMSE, MAPE, and coverage probability results of one-step ahead
forecast of Bitcoin daily closing prices from 26 February 2020 to 26 February 2021.
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Figure 4.19: One-step ahead forecast of Bitcoin daily closing prices from 5 February
2018 to 5 June 2019 using the ARIMA(7,1,7)-ARCH(1) model with an 70:30 ratio of

training to test data split.

Ratio Model MSE RMSE MAPE CP

70/30 ARIMA(7,1,7)-ARCH(1) 94, 463.66 307.34 2.96 100

60/40 ARIMA(7,1,2)-ARCH(1) 77, 035.15 277.55 2.67 100

70/30 ARIMAX1(7,1,7)-ARCH(1) 108, 516.12 329.41 3.18 99.79

60/40 ARIMAX1(7,1,2)-ARCH(1) 77, 007.06 277.50 2.68 100

70/30 ARIMAX2(3,1,2)-ARCH(1) 75, 483.48 274.74 2.65 100

60/40 ARIMAX2(7,1,2)-ARCH(1) 76, 974.74 277.44 2.68 100

70/30 ARIMAX3(3,1,2)-ARCH(1) 75, 569.11 274.89 2.65 100

60/40 ARIMAX3(7,1,2)-ARCH(1) 77, 011.88 277.51 2.68 100

70/30 ARIMA(1,1,0) 91, 524.40 302.53 2.76 −
70/30 LSTM 364, 429.54 603.68 6.80 −
70/30 GRU 145, 420.19 381.34 3.97 −

Table 4.22: MSE, RMSE, MAPE, and coverage probability results of one-step ahead
forecast of Bitcoin daily closing prices from 5 February 2018 to 5 June 2019.
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Conclusion & Future Work
In this thesis we explored the modeling efficiency and forecasting capabilities of the

ARIMA and ARIMA-GARCH models for the prediction of the Bitcoin daily closing
price. The training data used involve daily closing prices over a number of months.
The significant presence of heteroscedasticity in the Bitcoin time series data rendered
the ARIMA models unsuitable. On the other hand, the composite ARIMA-ARCH(1)
models, effectively addressing heteroscedasticity, proved to be successful in capturing
the patterns of variability and the correlation structure of the Bitcoin time series. To
evaluate predictive performance, we conducted comparisons of one-day-ahead forecasts
for three forecasting scenarios which involve different time periods. For each scenario,
we experimented with various training-to-test ratios. The comparisons involved several
ARIMA-ARCH(1) models with different AR(p) and MA(q) orders, as well as ARIMAX-
ARCH(1) models that incorporate the SPX, DJIA, and COMP stock market indices
as exogenous variables. After identifying the optimal ARIMA-ARCH(1) models (using
model selection methods), we compared their predictive performance with that of the
advanced LSTM, Bi-LSTM, GRU, and Bi-GRU RNN models proposed in other research
works.

More specifically, for the scenario involving the test period from 27 June 2018 to 27
June 2019, we found that the ARIMA(3,1,1)-ARCH(1) model, given an 80:20 training-
test split, exhibited superior predictive accuracy (MSE, RMSE, MAPE) compared to
LSTM (using the same training-test split). For the scenario which involves the test period
from 26 February 2020 to 26 February 2021, we determined that the ARIMAX3(1,1,7)-
ARCH(1) model, employing an 80:20 training-test split, slightly outperformed Bi-LSTM.
However, it fell short in comparison to the accuracy achieved by LSTM, GRU, and Bi-
GRU (using the same training-test split). For the scenario involving the test period
spanning from 5 February 2018 to 5 June 2019, given a 70:30 training-test split, the
ARIMAX2(3,1,2)-ARCH(1) model exhibited enhanced predictive capabilities, surpassing
the poor performance of ARIMA(1,1,0), as expected, as well as the performance of LSTM
and GRU implementations.

The results collectively emphasize that the optimal ARIMA-GARCH and ARIMAX-
GARCH models depend on the specific time periods and the training-test split. Addi-
tionally, our results demonstrate that ARIMA-GARCH and ARIMAX-GARCH models
can achieve comparable, and in some cases, superior forecasting performance compared
to RNN models. Last but not least, the performance scores of the employed ARIMAX-
ARCH(1) model reveals potential influence of the stock market on the price of Bitcoin
and, generally, on the cryptocurrency market.
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It is crucial to acknowledge that ARIMA models provide a transparent and inter-
pretable framework for time series forecasting. Conversely, both of the RNN variants,
LSTM and GRU, characterized by intricate architectures, exhibit escalated complexity
and diminished interpretability. Thus, in cases where our primary focus is on under-
standing the factors that influence predictions, the preference leans towards ARIMA
models over the intricate "black box" nature inherent in RNNs. Moreover, ARIMA
models come with a straightforward method for estimating uncertainty by constructing
prediction intervals based on the distribution of residuals. In contrast, RNNs require
more sophisticated techniques to quantify uncertainty and establish prediction intervals.

Future studies could delve more deeply into the relationship between Bitcoin price
and traditional financial markets. In addition, one can explore other auxiliary factors
capable of enhancing the predictive power of ARIMA-GARCH models, including the
price of gold, the popularity of Bitcoin derived from social media or news, or the price
of competing cryptocurrencies. Beyond this, varying the forecasting horizon could offer
valuable insights into how ARIMA-GARCH models can be strategically employed for
different investment goals, from short-term trading to long-term wealth accumulation.
It is worth noting that the proposed methodology can be used for the prediction of
not only the daily closing prices, but also the daily opening, lowest, and highest prices
of Bitcoin. Moreover, its applicability extends to other cryptocurrencies, enabling the
prediction of their respective daily opening, closing, lowest, and highest prices as well.

In this work we used a fixed ARIMA-GARCH model to generate forecasts for future
time steps. This means that the model parameters were not updated during the forecast-
ing process. An alternative approach worth exploring is a recursive forecasting strategy.
In this strategy, after each forecast, the actual observation at the current time step is in-
cluded in the sample set, and the model is re-estimated using this new information. The
model update can be estimated using either a fixed-size window of historical data or all
available data up to the current point. Another possibility is a hybrid update strategy in
which the model is re-estimated after a certain number of steps. This strategy strikes a
balance between a fully static approach—where the model is never updated—and a fully
recursive approach—where the model is updated at every step. It allows the model to
adapt to changes in the data but does so at less frequent intervals, providing a compro-
mise between model stability and responsiveness to evolving patterns. Finally, averaging
ARIMA-GARCH forecasts with those of an RNN incorporating attention mechanisms
could also be an intriguing avenue for future research. An RNN with attention mecha-
nisms can excel at capturing complex, non-linear relationships, as well as be more robust
to irregularities and outliers in the data. Combining the strengths of both models might
result in a more versatile and generalized ensemble model with improved forecasting
accuracy and robustness.

In conclusion, we have contributed valuable insights regarding the capabilities and lim-
itations of static ARIMA and ARIMA-GARCH models in predicting the next-day price

Panou Christina-Dionysia © Technical University of Crete



5. Conclusion & Future Work 61

of the Bitcoin cryptocurrency. The findings presented herein open new directions for
future research that can deepen our comprehension of the intricate dynamics governing
the cryptocurrency market. Further legalization, along with clearer regulatory frame-
works, have the potential to reduce uncertainty in the cryptocurrency market. This
increased transparency can attract more participants and contribute to a more stable
and mature market environment. Nevertheless, it is crucial to acknowledge that fore-
casting financial markets, particularly cryptocurrencies, inherently entails uncertainty as
unforeseen events and market sentiment are influential factors shaping price movements.
Consequently, a cautious approach and an awareness of inherent risks should always
accompany cryptocurrency forecasts.
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