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Abstract: Urban and building typologies have a serious impact on the urban climate and determine
at large the magnitude of the urban overheating and urban heat island intensity. The present study
aims to analyze the impact of various city typologies and urban planning characteristics on the
mitigation of the urban heat island. The effect of the building height, street width, aspect ratio, built
area ratio, orientation, and dimensions of open spaces on the distribution of the ambient and surface
temperature in open spaces is analyzed using the Sydney Metropolitan Area as a case study for
both unmitigated and mitigated scenarios. Fourteen precincts are developed and simulated using
ENVI-met the simulation tool. The ambient temperature, surface temperature, and wind speed are
extracted. The parameter ‘Gradient of the Temperature Decrease along the Precinct Axis’ (GTD) is
introduced to study the cooling potential of the various precincts. In the mitigated precincts, the GTD
ranges between 0.01 K/m to 0.004 K/m. In the non-mitigated precincts, the GTD ranges between
0.0093 K/m to 0.0024 K/m. A strong correlation is observed between the GTD of all the precincts,
with and without mitigation, and their corresponding average aspect ratio, (Height of buildings to
Width of streets). The higher the aspect ratio of the precinct, the lower the cooling potential. It is also
observed that the higher the Built Area Ratio of the precincts, the lower the cooling contribution of
the mitigation measures.

Keywords: urban climate; urban heat island; urban heat island mitigation; cool materials; urban green

1. Introduction

The heat island effect is the most documented phenomenon of climate change. The
phenomenon has been known for almost a century and is related to higher urban tempera-
tures compared to the adjacent suburban and rural areas. Higher urban temperatures are
due to the positive thermal balance of urban areas caused by several factors such as [1–5]:

• The release of anthropogenic heat;
• The excess storage of solar radiation by the city structures;
• The lack of green spaces and cool sinks;
• The non-circulation of air in urban canyons;
• The reduced ability of the emitted infrared radiation to escape in the atmosphere.

Summer urban heat islands with daytime average air temperatures 4 ◦C higher than
the surrounding rural areas are present in many cities around the world.
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Urban overheating has a serious impact on the energy consumption of buildings and
the peak electricity demand, while it increases the concentration of urban pollutants and
seriously affects the levels of heat-related mortality and morbidity, [6–9].

In Sydney, the phenomenon has been studied in depth [10–13] with a maximum
recorded gradient of peak temperature of 9 ◦C. Such a high magnitude of the urban heat
island is due to the existence of two synoptic meteorological systems affecting the local
climate. In particular, sea breeze contributes to lower ambient temperature in the eastern
coastal part of the city, while warm western winds from the desert heat the western part of
the city, [14,15].

To counterbalance the impact of urban overheating, important heat mitigation tech-
nologies and techniques have been developed [16–18]. Mitigation technologies aim to
decrease the maximum possible heat gains and maximize the heat losses in a city to de-
crease the magnitude of the urban overheating. The increase of the urban albedo as well as
the use of additional greenery (green roofs, walls, green parks, pocket parks, etc.) [19–21],
evaporative sources, blue infrastructure [22,23] low-temperatureperature heat sinks seems
to be among the most efficient ones [24–27].

Urban and building typologies have a serious impact on the urban climate and deter-
mine at large the magnitude of the urban overheating [13,28,29]. The urban density, height
of buildings, size of streets, aspect ratio, and size of open spaces affect the heat and solar
gain while determining the heat losses through radiation and convection [30,31]. While
numerous studies are available on the impact of the various mitigation technologies, i.e.,
an increase of urban albedo and greenery, evaporative sources, etc., on urban climate, very
little is known about the heat impact of the main landscape parameters as well as their
impact on the cooling potential of the main mitigation technologies [32,33]. Therefore,
although the impact of the various mitigation techniques on the urban heat island has been
studied, the role of the spatial distribution, typologies, and urban forms play a significant
role in the cooling potential of the various technologies. The present study aims study is to
analyze the impact of building height, street width, aspect ratio, built area ratio, orientation,
and dimensions of open spaces on ton distribution of the ambient and surface temperature
as well as on thermal comfort in open spaces. Moreover, the study analyses the impact
of cooling potential of the most commonly used urban heat island mitigation technolo-
gies. The overall study is based on real urban neighborhoods with significant overheating
problems.

The paper is structured in six more sections. Section 2 includes the methodology and
approach of the research while Section 3 includes the description of the urban context in
Sydney. The modeling procedures and simulation results are included in Sections 4 and 5 re-
spectively while the analysis of results and conclusions are incorporated in Sections 6 and 7.

2. Materials and Methods

The present study aims to analyze the impact of various city typologies and urban
planning characteristics on the mitigation of the urban heat island. For that purpose,
Syndey Metropolitan Area is selected as the case study area for the following reasons:

• The neighborhoods represent real case areas.
• There is a good representation of open and compact typologies defined officially by

the Australian Association of Planners.

There is a 100% representation of the specific urban area characteristics.
Sydney’s climatic conditions are humid subtropical (Köppen: Cfa) in Eastern Aus-

tralia [34]. In the Sydney Metropolitan Area (SMA), seven urban areas with diverse urban
fabric characteristics are selected (see Tables 1 and 2). The residential areas have been
categorized into 14 residential precincts to support microclimatic analysis. The Local
Climates Zones (LCZs) approach has been followed for selecting the typologies. The
LCZs is a standardized approach, widely implemented for the analysis of urban areas’
overheating [35].
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Table 1. Building Types.

Type Description Figure No of Storeys People per Hectare Location Amenities

T1:
Single Dwellings

Single dwellings areas include
houses, terrace houses, dual

occupancies, and
semi-detached dwellings.
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Table 1. Cont.

Type Description Figure No of Storeys People per Hectare Location Amenities

T6:
High Rise 1

High rise housing 1 comprises
standalone apartment buildings

and mixed-use buildings that
incorporate retail shops and/or

commercial uses on the
lower levels.
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Table 2. Cont.

Compact arrangements

Type
CT1:

Compact single
dwellings

CT2:
Compact Low rise

CT3:
Compact

Low/Medium Rise

CT4:
Compact Medium

rise

CT5:
Compact

Medium/high rise

CT6:
Compact High rise 1

CT7:
Compact High rise 2
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Seven residential building types (T1-T7, Table 1) have also been selected, representative
of the area under investigation in this study. The building types are categorized according
to height based on the typologies defined by the Department of Planning and Environment
in New South Wales (NSW).

The seven building types are arranged under two urban design scenarios includ-
ing one low density-open scenario (open represented by the letter ‘O’) and one high
density-compact scenario (compact represented by the letter ‘C’). Therefore 14 precincts are
investigated corresponding to OT1-OT7 and CT1-CT7.

Current climate and land use as well as future climate and land use in 2050 have been
simulated with mesoscale models. In addition, microscale climatic simulations for all the
climatic scenarios are performed with hourly climatic files [36].

Microscale simulations are performed to predict the distribution of ambient tempera-
ture, wind speed, surface temperature, and outdoor thermal comfort, in the 14 precincts.
The simulations are run for representative summer days based on the 2050 climate scenario.
Two scenarios are simulated: (a) Full mitigation scenario, including implementation of
greenery, evaporation, and cool materials in all precincts, and (b) Non-mitigation scenario
where no mitigation measures are implemented.

The simulation results of the peak daytime temperature conditions are analyzed for
assessing the distribution of the main climatic parameters and the outdoor thermal comfort.
Moreover, the urban typologies characteristics are analyzed versus their cooling potential

The methodological steps are the following:

1. The building typologies and urban precincts are selected to fully represent the urban
characteristics and neighborhoods.

2. The precincts are modeled using ENVI-met for the mitigated and unmitigated scenarios.
3. The ambient temperature, surface temperature, outdoor comfort indices, and wind flow

regimes for both mitigated and unmitigated scenarios are extracted and compared.
4. The cooling potential is then analyzed by introducing a specific parameter called

‘Gradient of the Temperature Decrease along the Precinct Axis’ (GTD).
5. The GTD is evaluated versus the flow through open areas, the aspect ration (H/W),

and the Built Area Ratio.

3. Buildings and Urban Context

Most urban precincts are not completely homogenous, and the different regions are
composed of buildings with varying heights arranged in distinct patterns and densities
thus providing various open spaces’ typologies. Accordingly, the seven building typolo-
gies (Table 1) are further categorized into two arrangement types (open and compact) as
mentioned in the previous section. The residential precincts are presented in Table 2. The
further separation is based on four basic characteristics (no. stories, building height, street
width, and building size).

4. Modeling Procedures

The simulations of the unmitigated and mitigated scenarios based on future climate
(2050) were performed with the software ENVI-met V4.4.2 [37,38]. This program is a
reliable tool for the simulation of the main climatic parameters’ distribution in the urban
environment. The program uses a three-dimensional microclimate model with a resolution
that allows for simulating the surface, plant, and air interactions in urban environments. It
supports microscale modeling with the following characteristics:

• A typical horizontal resolution from 0.5 to 5 m
• A typical time frame of 24 to 48 h
• A time step of 1 to 5 s.

ENVI-met solves the Reynolds-averaged non-hydrostatic Navier-Stokes equations for
each grid in space and for each time step.

The spatial resolution used in the simulations of the present study is 1.5 m horizontally.
The area has been represented with 150 × 150 × 30 (x − y − z) cells. Each cell size is
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dx = 1.5 m, dy = 1.5 m, and base dz = 0.5 m. The grid at the z-axis is telescopic with a
thicker cell near the ground, allowing a better accuracy for edge effects.

Future climate conditions for 2050 are predicted with mesoscale models using the
Weather Research and Forecasting (WRF) Model. The outputs of the mesoscale models are
used as inputs to the ENVI-met microscale models.

For the ENVI-met simulations, two approaches are used: full forcing and simple
forcing. Full forcing is used for the simulation of air temperature, relative humidity,
and solar radiation. This means that the diurnal variation of the atmospheric boundary
conditions and the incoming radiation is defined in each simulation step. The initial
conditions for wind speed and direction are:

1. Wind speed: 2.5 m/s;
2. Wind direction: 250◦;
3. The start time and date of simulation: 18:00 21/2/2050;
4. The end time and date of simulation: 00:00 23/2/2050 correspond to summer condi-

tions in Sydney.

The buildings’ characteristics are tabulated in Table 3 while the buildings’ materials
properties are tabulated in Tables 4 and 5. The vegetation types are included in Table 6 and
the ENV-met models in Table 7.

Table 3. The buildings’ construction characteristics.

Code Name
Construction

Outside Layer 1st Layer 2nd Layer

000000 Default wall-moderate insulation 0100PL (1cm) 0100IN (11 cm) 0100CO (6 cm)

0100Q2 CoolRoof-moderate insulation 0100Q1 (1 cm) 0100FE (11 cm) 0100F3 (6 cm)

Table 4. The building materials’ properties are used for all typologies.

Code Name Absorption Reflection Emissivity Specific Heat
(J/(kgK))

Thermal
Conductivity

(w/(mK)

Density
(kg/m3)

0100PL Default Plaster 0.50 0.50 0.90 850 0.60 1500

0100Q1 CoolPaint 0.30 0.70 0.90 830 0.84 1856

0100IN Default Insulation 0.50 0.50 0.90 1500 0.07 400

0100CO Default Concrete 0.50 0.50 0.90 850 1.60 2220

0100F3 Moderate insulation 0.42 0.45 0.90 1033 1.00 1687

Table 5. The urban surfaces albedo and emissivity.

Code Name Albedo Emissivity Used in OT Used in CT

0100ST Asphalt Road 0.2 0.9 2

0100PD Concrete Pavement Dark 0.20 0.90 1-6-7 1-3

0100PG Concrete Pavement Gray 0.50 0.90 1-3-4-5-6-7 1-2-3-7

0100PL Concrete Pavement Light 0.80 0.90 1-3-4-5-7 1-2-3-5-7

0100Q3 Cool Pavement 0.50 0.90 1-2-3-4-5-6-7 1-2-3-4-5-6-7

0100Q5 Cool Asphalt Road 0.55 0.90 1-2-3-4-5-6-7 1-2-3-4-5-6-7

0100KK Brick road (red stones) 0.3 0.9 2-7

0100GG Dark Granit Pavement 0.3 0.9 3

0100WW Deepwater (swimming pools) 0.00 0.96 1-4 1-
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Table 6. The vegetation characteristics.

Code Name OT CT

0100XX Grass 25 cm aver. Dense 1-2-3-4-5-6 1-2-3-4-5-6-7

0100H2 Hedge dense, 2 m 1-3-4-5-6 7

0100H4 Hedge dense, 4 m 1

01ALDM Conic, large trunk, dense, medium (15 m) 4

01ALDL Conic, large trunk, dense, large (25 m) 4

01ALDS Conic, large trunk, dense, small (5 m) 4

01CMSS Cylindric, medium trunk, sparse, small (5 m) 5

01CSSS Cylindric, small trunk, sparse, small (5 m) 5

01CLSS Cylindric, large trunk, sparse, small (5 m) 5

01CLDM Cylindric, large trunk, dense, medium (15 m) 1-3-4-5-6 1-2-3-5-6-7

01CLDS Cylindric, large trunk, dense, small (5 m) 1-3-4 1-2-3-5-6-7

01CSDS Cylindric, small trunk, dense, small (5 m) 3-4-6 1

01CLDL Cylindric, large trunk, dense, large (25 m) 3-4 1-2-3-7

01CSDM Cylindric, small trunk, dense, medium (15 m) 3-4-6 1

01CMDM Cylindric, medium trunk, dense, medium (15 m) 1-4-5-6

01CLDL Cylindric, large trunk, dense, large (25 m) 1-2-6 7

01HLDL Heart-shaped, large trunk, dense, large (25 m) 1 2

01PSDS Palm, small trunk, dense, small (5 m) 7

01CMDS Cylindric, medium trunk, dense, small (5 m) 1-4-5 7

01PSDS Palm, small trunk, dense, small (5 m) 1

01PLDS Palm, large trunk, dense, small (5 m) 2-4-6 3-7

01PLDM Palm, large trunk, dense, medium (15 m) 1-4 6-7

01PLDL Palm, large trunk, dense, large (25 m) 2 6

01OMDS Cylindric, medium trunk, dense, small (5 m) 6

01OLDM Cylindric, large trunk, dense, medium (15 m) 2-4 6

01CMDL Cylindric, medium trunk, dense, large (25 m) 1-3-4-6

01OLDS Cylindric, large trunk, dense, small (5 m) 2 6

01OLDL Cylindric, large trunk, dense, large (25 m) 2 6

01SLDS Spherical, large trunk, dense, small (5 m) 6

01SMSL Spherical, medium trunk, sparse, large (25 m) 6

01SMDS Spherical, medium trunk, dense, small (5 m) 6

01CLSM Cylindric, large trunk, sparse, medium (15 m) 6

01SMDM Spherical, medium trunk, dense, medium (15 m) 6
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Table 7. The models developed in ENVI-met for all typologies and the mitigated scenarios.
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OT1:

Open Single
Dwellings

OT2:
Open Low Rise

OT3:
Open Low/Medium

Rise

Envimet Model

Buildings 2022, 12, x FOR PEER REVIEW 10 of 29 
 

01PLDM Palm, large trunk, dense, medium (15 m) 1-4 6-7 
01PLDL Palm, large trunk, dense, large (25 m) 2 6 
01OMDS Cylindric, medium trunk, dense, small (5 m)  6 
01OLDM Cylindric, large trunk, dense, medium (15 m) 2-4 6 
01CMDL Cylindric, medium trunk, dense, large (25 m) 1-3-4-6  
01OLDS Cylindric, large trunk, dense, small (5 m) 2 6 
01OLDL Cylindric, large trunk, dense, large (25 m) 2 6 
01SLDS Spherical, large trunk, dense, small (5 m) 6  
01SMSL Spherical, medium trunk, sparse, large (25 m) 6  
01SMDS Spherical, medium trunk, dense, small (5 m) 6  
01CLSM Cylindric, large trunk, sparse, medium (15 m) 6  
01SMDM Spherical, medium trunk, dense, medium (15 m) 6  

Table 7. The models developed in ENVI-met for all typologies and the mitigated scenarios. 

Open Precincts 

Type 
OT1: 

Open Single Dwellings 
OT2: 

Open Low Rise 
OT3: 

Open Low/Medium Rise 
 

Envimet Model 

 

 

 
OT4: 

Open Medium rise 
OT5: 

Open Medium/high rise 
OT6: 

Open High rise 1 
OT7: 

Open High rise 2 

ENVI-met 
Model 

 
 

 
Compact precincts 

Type 
CT1: 

Compact single dwellings 
CT2: 

Compact Low rise 
CT3: 

Compact Low/Medium Rise 
CT4: 

Compact Medium rise 

ENVI-met 
Model 

   

 
CT5: 

Compact Medium/high 
rise 

CT6: 
Compact High rise 1 

CT7: 
Compact High rise 2 

 

ENVI-met 
Model 

 

 

 

OT4:
Open Medium rise

OT5:
Open

Medium/high rise

OT6:
Open High rise 1

OT7:
Open High rise 2

ENVI-met
Model

Buildings 2022, 12, x FOR PEER REVIEW 10 of 29 
 

01PLDM Palm, large trunk, dense, medium (15 m) 1-4 6-7 
01PLDL Palm, large trunk, dense, large (25 m) 2 6 
01OMDS Cylindric, medium trunk, dense, small (5 m)  6 
01OLDM Cylindric, large trunk, dense, medium (15 m) 2-4 6 
01CMDL Cylindric, medium trunk, dense, large (25 m) 1-3-4-6  
01OLDS Cylindric, large trunk, dense, small (5 m) 2 6 
01OLDL Cylindric, large trunk, dense, large (25 m) 2 6 
01SLDS Spherical, large trunk, dense, small (5 m) 6  
01SMSL Spherical, medium trunk, sparse, large (25 m) 6  
01SMDS Spherical, medium trunk, dense, small (5 m) 6  
01CLSM Cylindric, large trunk, sparse, medium (15 m) 6  
01SMDM Spherical, medium trunk, dense, medium (15 m) 6  

Table 7. The models developed in ENVI-met for all typologies and the mitigated scenarios. 

Open Precincts 

Type 
OT1: 

Open Single Dwellings 
OT2: 

Open Low Rise 
OT3: 

Open Low/Medium Rise 
 

Envimet Model 

 

 

 
OT4: 

Open Medium rise 
OT5: 

Open Medium/high rise 
OT6: 

Open High rise 1 
OT7: 

Open High rise 2 

ENVI-met 
Model 

 
 

 
Compact precincts 

Type 
CT1: 

Compact single dwellings 
CT2: 

Compact Low rise 
CT3: 

Compact Low/Medium Rise 
CT4: 

Compact Medium rise 

ENVI-met 
Model 

   

 
CT5: 

Compact Medium/high 
rise 

CT6: 
Compact High rise 1 

CT7: 
Compact High rise 2 

 

ENVI-met 
Model 

 

 

 

Compact precincts

Type
CT1:

Compact single
dwellings

CT2:
Compact Low rise

CT3:
Compact

Low/Medium Rise

CT4:
Compact Medium rise

ENVI-met
Model

Buildings 2022, 12, x FOR PEER REVIEW 10 of 29 
 

01PLDM Palm, large trunk, dense, medium (15 m) 1-4 6-7 
01PLDL Palm, large trunk, dense, large (25 m) 2 6 
01OMDS Cylindric, medium trunk, dense, small (5 m)  6 
01OLDM Cylindric, large trunk, dense, medium (15 m) 2-4 6 
01CMDL Cylindric, medium trunk, dense, large (25 m) 1-3-4-6  
01OLDS Cylindric, large trunk, dense, small (5 m) 2 6 
01OLDL Cylindric, large trunk, dense, large (25 m) 2 6 
01SLDS Spherical, large trunk, dense, small (5 m) 6  
01SMSL Spherical, medium trunk, sparse, large (25 m) 6  
01SMDS Spherical, medium trunk, dense, small (5 m) 6  
01CLSM Cylindric, large trunk, sparse, medium (15 m) 6  
01SMDM Spherical, medium trunk, dense, medium (15 m) 6  

Table 7. The models developed in ENVI-met for all typologies and the mitigated scenarios. 

Open Precincts 

Type 
OT1: 

Open Single Dwellings 
OT2: 

Open Low Rise 
OT3: 

Open Low/Medium Rise 
 

Envimet Model 

 

 

 
OT4: 

Open Medium rise 
OT5: 

Open Medium/high rise 
OT6: 

Open High rise 1 
OT7: 

Open High rise 2 

ENVI-met 
Model 

 
 

 
Compact precincts 

Type 
CT1: 

Compact single dwellings 
CT2: 

Compact Low rise 
CT3: 

Compact Low/Medium Rise 
CT4: 

Compact Medium rise 

ENVI-met 
Model 

   

 
CT5: 

Compact Medium/high 
rise 

CT6: 
Compact High rise 1 

CT7: 
Compact High rise 2 

 

ENVI-met 
Model 

 

 

 

CT5:
Compact

Medium/high rise

CT6:
Compact High rise

1

CT7:
Compact High rise 2

ENVI-met
Model

Buildings 2022, 12, x FOR PEER REVIEW 10 of 29 
 

01PLDM Palm, large trunk, dense, medium (15 m) 1-4 6-7 
01PLDL Palm, large trunk, dense, large (25 m) 2 6 
01OMDS Cylindric, medium trunk, dense, small (5 m)  6 
01OLDM Cylindric, large trunk, dense, medium (15 m) 2-4 6 
01CMDL Cylindric, medium trunk, dense, large (25 m) 1-3-4-6  
01OLDS Cylindric, large trunk, dense, small (5 m) 2 6 
01OLDL Cylindric, large trunk, dense, large (25 m) 2 6 
01SLDS Spherical, large trunk, dense, small (5 m) 6  
01SMSL Spherical, medium trunk, sparse, large (25 m) 6  
01SMDS Spherical, medium trunk, dense, small (5 m) 6  
01CLSM Cylindric, large trunk, sparse, medium (15 m) 6  
01SMDM Spherical, medium trunk, dense, medium (15 m) 6  

Table 7. The models developed in ENVI-met for all typologies and the mitigated scenarios. 

Open Precincts 

Type 
OT1: 

Open Single Dwellings 
OT2: 

Open Low Rise 
OT3: 

Open Low/Medium Rise 
 

Envimet Model 

 

 

 
OT4: 

Open Medium rise 
OT5: 

Open Medium/high rise 
OT6: 

Open High rise 1 
OT7: 

Open High rise 2 

ENVI-met 
Model 

 
 

 
Compact precincts 

Type 
CT1: 

Compact single dwellings 
CT2: 

Compact Low rise 
CT3: 

Compact Low/Medium Rise 
CT4: 

Compact Medium rise 

ENVI-met 
Model 

   

 
CT5: 

Compact Medium/high 
rise 

CT6: 
Compact High rise 1 

CT7: 
Compact High rise 2 

 

ENVI-met 
Model 

 

 

 

5. Simulation Results

Simulations are performed for both the unmitigated and mitigated cases. The basic
values of the urban configuration and mitigated scenarios are tabulated in Table 8. The
simulation results are included in the following subsections.
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Table 8. Basic Values of the urban configuration used for the base run and mitigation simulations.

Urban Canopy Parameters Base Run and Unmitigated Scenario Mitigated Scenario Values

Urban
Categories Cat Building

Height
Urban

Fraction Roof Albedo Road Albedo Roof Albedo Roof Albedo

Commercial
Business Dist. CBT 28 0.95 0.15 0.08 0.6 0.6

High Density HD 13 0.66 0.15 0.08 0.6 0.6

Medium Density MD 6 0.62 0.15 0.08 0.6 0.6

Low Density LD 4 0.55 0.15 0.08 0.6 0.6

Industrial IN 6 0.60 0.6 0.08 0.6 0.6

5.1. Simulation Results for the Unmitigated Cases

Simulations have been performed using an unmitigated weather file for the year
2050. Furthermore, the various ENVI-met model’s settings are set to the base case with no
mitigation techniques. The urban canopy settings for all unmitigated simulations are: Road
Albedo = 0.08, Roof Albedo = 0.15, a limited number of trees, and no water sprinklers in
the precincts for each precinct, the air temperature, surface temperature, wind speed, and
thermal comfort indices are extracted.

For all precincts, the ambient temperature ranges are tabulated in Table 9. For all CT
cases, the thermal comfort is mostly improved in the shaded areas while there is moderate
to strong heat stress. The wind speed is significantly reduced between the buildings.

Table 9. The results of the unmitigated cases for 14:00.

Precinct Air Temperature
Range (◦C)

Maximum Wind
Speed (m/s)

Surface Temperature
Range (◦C) UTCI Range (◦C)

CT1 31.9–35.3 2 26.6–57.8 35.0–43.6

CT2 31.8–34.9 2.8 25.8–55.9 34.6–43.2

CT3 31.7–35.3 2.3 27.4–57.0 34.5–43.7

CT4 32.2–35.6 3.2 27.7–57.0 34.5–43.8

CT5 32.0–35.0 4 26.1–56.3 33.8–43.4

CT6 31.0–34.6 3.4 24.4–55.6 31.9–41.5

CT7 31.5–34.4 5.1 24.5–55.4 30.9–41.5

OT1 32.1–34.7 1.8 25.5–56.2 35.2–43.4

OT2 31.9– 35.2 2.1 26.1–57.0 34.4–43.5

OT3 31.9–35.2 2.4 26.0–58.4 34.1–44.0

OT4 32.2–34.6 2.3 24.3–56.6 34.9–43.5

OT5 31.6–34.8 3.7 25.9–57.1 34.0–43.0

OT6 32.3–34.7 3.4 25.4–56.6 32.9–42.9

OT7 31.9–34.9 4.1 25.5–56.8 32.9–42.6

Indicatively the air temperature distribution for CT1 and OT7 are depicted in Figures 1
and 2 respectively. The air movement around buildings for CT5 is illustrated in Figure 3
and the surface temperature in Figure 4.
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5.2. Simulation Results for the Mitigated Cases

The mitigated scenario is based on the 2050 land use and climate. It assumes the
implementation of mitigation technologies in the whole Sydney area. The RCP4.5 Future
Scenario [39,40] dataset has been used for the Urban Plan simulation. It includes (a)
increased building density based on future projections (b) new Urban Growth Areas (c)
increased Anthropogenic Heat Flux (d) 2 million irrigated trees planted in the “Third City”
area and 3 million irrigated trees planted in the rest of Sydney (e) increased albedo (0.6) of
urban impervious surfaces and (f) Water in the landscape. The mitigated scenario values
are tabulated in Table 8.

Table 10 shows the statistical summary of the ambient temperature at 14:00. CT1 has
the maximum ambient temperature followed by CT4 and CT5. The minimum ambient
temperature is 27.5 ◦C in CT6. The lowest 25th percentile of temperature data is 29.7 ◦C,
observed in CT6 and OT6. The 95th percentile of data is 33.0 ◦C in CT4. The average
ambient temperature in CT layouts is higher than that in OT layouts.

Table 10. Statistical summary of the ambient temperature results at 14:00 for all precincts.

Ambient Temperature Statistical Results (◦C) Percentiles

Layout TMax 1 TMin 1 Mean Median Std. TMax 2 TMin 2 25 50 75 90 95

OT1 33 27.9 31 30.6 0.9 33 26.3 30.3 30.6 31.8 32.4 32.5

OT2 32.2 28.5 30.4 30.3 0.8 32.5 25.1 29.9 30.3 30.8 31.4 31.8

OT3 32.7 27.7 30.8 30.8 1 32.7 24.8 30 30.8 31.5 32.1 32.4

OT4 32.7 29.8 31.3 31.3 0.9 32.9 22.1 30.9 31.3 31.6 32.4 32.6

OT5 32.9 28.8 31.1 31 0.8 32.9 26.6 30.5 31 31.7 32.3 32.6

OT6 32.7 27.7 30.2 30.5 1.7 32.7 18.6 29.7 30.5 31.1 31.8 32

OT7 33 29.2 31.2 31.1 0.8 33.1 26.3 30.7 31.1 31.6 32.2 32.5

CT1 33.4 28.4 31.1 30.8 1 33.4 25.8 30.4 30.8 31.8 32.7 32.8

CT2 33 28 31.2 31.2 1 33 25.7 30.5 31.2 32.1 32.5 32.6

CT3 32.9 27.9 31 30.7 0.9 32.9 27.1 30.2 30.7 31.8 32.4 32.7

CT4 33.2 29.3 31.4 31.3 0.8 33.2 26.3 30.9 31.3 32 32.5 32.7

CT5 33.2 28.3 31.5 31.3 1 33.2 27.2 30.7 31.3 32.3 32.8 33

CT6 32.7 27.5 30.4 30.2 1 32.7 24.5 29.7 30.2 31.1 31.8 32

CT7 32.4 28.2 30.4 30.2 0.8 32.4 27.1 29.8 30.2 31 31.6 31.9
1: The minimum and maximum excluding outliers. 2: The absolute minimum and maximum temperature data.

The ambient temperature difference of the mitigated versus the unmitigated simula-
tions in each precinct is reported in Table 11. The average reduction of ambient temperature
ranges between 2.1 ◦C ± 0.4 and 3.3 ◦C ± 1.5◦C. The minimum reduction of ambient
temperature is observed in CT7 and the maximum in OT6.

Table 11. Ambient air temperature differences of the unmitigated versus the mitigated scenarios for
all precincts.

CT1 CT2 CT3 CT4 CT5 CT6 CT7 OT1 OT2 OT3 OT4 OT5 OT6 OT7

Mean 2.20 2.22 2.32 2.14 2.13 2.13 2.09 2.33 3.04 2.78 2.39 2.27 3.26 2.16

Std. 0.48 0.69 0.63 0.70 0.61 0.52 0.37 0.51 0.68 0.73 0.90 0.89 1.49 0.56

Minimum 1.42 1.41 1.64 1.10 1.57 1.37 1.54 1.48 1.88 1.62 1.21 0.93 1.69 0.81

Maximum 8.18 8.17 7.59 6.84 7.25 7.74 5.20 7.33 8.76 9.59 11.98 7.70 14.50 7.35
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The charts of the ambient temperature differences are depicted in Figure 5. The
maximum air temperature differences occur close to the water sprays and these high-
temperature differences extend beyond the point of water spray position depending on the
wind direction and the typology examined.
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The charts of the surface temperature differences are depicted in Figure 6. The areas
shaded by buildings and trees present lower surface temperatures.
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The ambient temperature, surface temperature, and thermal comfort results for the mit-
igated versus the unmitigated scenarios are similar to those extracted from other research
published and used the ENVI-met model [41–44].

6. Analysis of Results and Discussion

Based on the simulation results a more detailed analysis is performed. The cool-
ing potential of each of the 14 studied precincts is evaluated using the ‘Gradient of the
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Temperature Decrease along the Precinct Axis’ (GTD) parameter. The GTD parameter
measures the average temperature decrease along the axis of the canyon that is closer to
the wind direction.

In the present study, the angle of the wind speed direction (250◦) with the X-axis
is smaller than the angle with the Y-axis, thus the GTD parameter is calculated along
the X-axis.

The climatic parameters in each precinct are calculated for a 224 × 224 cells grid. For
each parameter, W, its average value is defined as W(Xi, Y1-224), corresponding to one X cell
and all the 224 Y cells of the same X value. For example, for the cell X = 3, the sum of the W
values corresponding to cells with X = 3 and Y = 1 to 224, is calculated and divided by 224.
In case cells do not include numerical values of the parameter W (if the area is covered by
buildings), then the corresponding cells are not considered.

The GTD for the average distribution of ambient temperature, and wind speed, is
calculated along the axis X. The GTD(x), is calculated as the average difference between the
initial and the final value of the ambient temperature along the X-axis:

GTD(x) =
T(average x=1) − T(average x=224)

224
(1)

GTD(x) counts for the temperature decrease along the X-axis per meter of length of
the precinct and expresses the potential of the precinct to mitigate the ambient overheating
along the axis closer to the wind direction. The procedure is followed for all precincts with
mitigation and without mitigation.

Indicative results are shown for CT1 and OT3 in Figures 7 and 8 respectively while all
results are tabulated in Table 12. For the mitigated scenarios the GTD varies between 0.01
K/m to 0.004 K/m. In the unmitigated scenarios, the GTD varies between 0.0093 K/m to
0.0024 K/m. The maximum expected temperature difference between precincts of about
40,000 m2 with different layouts, building typologies, and open spaces types, where the
same mitigation measures are implemented, may be close to 0.9 K, for a reference ambient
temperature of 32 ◦C and a wind speed of about 2 m/s. Moreover, the maximum expected
temperature difference between precincts of about 40,000 m2, without mitigation, is close
to 1.5 K, for reference ambient temperature of 33 ◦C, and wind speed of about 2 m/s.
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Table 12. The Gradient Temperature Decrease at the wind flow direction for all precincts.

Mitigated GTD across the Precincts (K/100 m)

1.1 0.95 0.90 0.87 0.84 0.84 0.83

CT1 OT6 OT1 OT3 CT6 OT2 CT2

0.80 0.77 0.70 0.68 0.58 0.42 0.4

OT4 CT3 OT5 CT4 CT5 CT7 OT7

Unmitigated GTD across the Precincts (K/100 m)

0.93 0.82 0.79 0.75 0.73 0.73 0.70

CT1 OT3 CT2 CT6 CT3 OT1 OT6

0.69 0.66 0.60 0.53 0.50 0.30 0.24

OT2 CT4 OT4 OT5 CT5 CT7 OT7

The wind flow regimes of each precinct are depicted in Figure 9. For each precinct, the
areas are divided into different zones that are either parallel or perpendicular to the wind
speed. In Figure 9 the GTD is also included.

For CT1 the ambient temperature is strongly related to the wind speed. As the
advection heat increases with higher wind speeds, the ambient temperature increases
too. The sections of zone 1, in both CT2 and CT3, provide low advection and good solar
protection thus highly contributing to increasing the cooling gradient. Zones 2 and 3 of
CT2 are parallel to the wind direction; they present however a significant cooling rate that
is attributed to the intensive planting mitigation. The CT3 zone 2 and CT4 zone 2 sections,
despite being perpendicular to the wind direction, present a low average wind speed and a
substantial cooling rate because of the intensive planting considered. In CT4 the sections of
zone 1, specifically canyon 1a and 1c, provide high advection air flows, contributing highly
to ambient temperature increase. CT5 precinct is densely built with high-rise buildings. In
Zone 1 of CT5, the high advection air flows contribute highly to increasing the ambient
temperature, while the impact of zone 2 is negligible. Similarly, in canyon 2a in zone 2 of
CT6 as well as in CT7 high advection flows are observed that result in increased ambient
temperature. In all precincts, except CT5, the combination of mitigation measures, namely
cool pavements, cool roofs, and vegetation, results in a substantially ambient temperature
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decrease. Especially significant is the mitigation impact of tree shading. In CT5, due to its
density, fewer trees are used, and the high-rise buildings minimize the cool roof impact.
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In the OT1 precinct, the zone 1 sections provide high advection air flows and contribute
highly to increasing the temperature in the precinct. In OT2 the building arrangement
provides wind shading resulting in lower wind speeds and lower heat advection. Similar
conditions are observed in OT3 zones 2 and 3. In both OT2 and OT3, solar shading is not
optimized resulting in high surface temperatures in the non-shaded zones. The combination
of cool pavements, cool roofs, and vegetation results in a substantial decrease in the ambient
temperature. Especially significant is the mitigation impact of tree shading. No wind or
solar shading is present in theOT4 and OT7 configurations. In these two precincts, the
mitigation measures contribute to the ambient temperature decrease along the canyon
axis. Zone 3 in OT5 configuration, s is well protected from the wind. As a result, the wind
speed and ambient temperature are reduced. Solar shading, however, is not optimized,
and the temperature decrease along the canyon axis is owed to the mitigation measures.
The OT6 configuration partly benefits from wind shading, while trees offer insignificant
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solar shading. In this case, too, the mitigation measures result in a temperature decrease
along the precinct axis.

Analysis of the results shows that advection heat transfer is prominent in the precincts.
The heat flux is strongly related to the wind and the GTD values.

The advected heat is a function of the open spaces across the precinct where wind can
flow and of the corresponding wind speed.

Given that the analyzed precincts are of square form, an average cross-section, Saverage,
is calculated as:

Saverage = [(1 − BAR) · A]0.5 (2)

where: BAR is the Built Area Ratio of each precinct and A is the total area of the precinct.
The average wind speed is calculated for the whole area of the precinct, Vaverage.
The average advected heat, (Qaverage), for each precinct can be approximated with the

following equation:
Qaverage = Saverage · Vaverage (3)

The GTD value of each precinct is observed to have a strong correlation with the
corresponding Qaverage for both the mitigated and non-mitigated precincts (Figure 10).
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The correlation has the form:

GTD(i) = a · Qaverage
b, (4)

The a, b values are extracted from Figure 10. The corresponding R2 values for both the
mitigation and non-mitigation scenarios are close to 0.9 (see Figure 10).

The correlation clearly shows that when the heat advection in the precinct is lower,
the GTD is higher, meaning that the protection against overheating is higher.

A strong correlation is also found between the ratio of the average wind speed in the
precinct Vaverage, and the incident wind speed in the limits of the precinct, Vinc with the
average aspect ratio of the precinct, H/W.

Where: H is the average height of the buildings and W is the average width of the
streets

The correlation is expressed with the equation:

Vaverage

Vinc
= a1 + b1 · H/W (5)
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The parameters a1 and b1 can be taken from Figure 11.
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A comparison of the GTD values for the mitigated and non-mitigated scenarios, shows
clearly that the mitigation measures, (vegetation, evaporation, and cool materials), increase
significantly the GTD of the precincts as well as their cooling capacity.

In the mitigated scenarios, the total GTD(total, mit) can be attributed to (a) The mitigation
measures and (b) The layout of the precinct. In this case, it can be written that:

GTDtotal, mit = GTDmitigation + GTDlayout (6)

For a given advection rate Qaverage, the GTDlayout can be calculated from the corre-
sponding expression of Equation (4), and the specific contribution of the mitigation can be
calculated from Equation (6).

Based on the analysis of the role of Qaverage, it can be concluded that the cooling
potential of the precincts based on their layout is increased when advection is low and
decreases as advection is rising.

Moreover, a quite strong correlation is observed between the GTDmitigation and the
Built Area Ratio, (Figure 12). As the Built Area Ratio increases, the contribution of the
mitigation measures to the cooling rate of the precincts decreases, since less space is
available for implementing the mitigation measures.
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Figure 12. Cooling Efficiency of Mitigation Measures as a function of the Built Area Ratio.

A clear and strong correlation is found between the GTD of all the precincts with and
without mitigation, and their corresponding average aspect ratio, (H/W), (Figure 13). The
relation is:

GTD(i) = a2 + b2 HW (7)

where a2 and b2 are coefficients provided in Figure 13.
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As shown in Figure 13, the higher the aspect ratio of a precinct the lower the cooling
potential and GTD. This is expected, as (a) the application of cool roofs in high-rise buildings
has a lower mitigation impact and (b) in canyons of high aspect ratios the wind speed is
high and results in a much higher advection rate.

Both prediction methods proposed to calculate the GTD of the mitigated and non-
mitigated precincts are of sufficient accuracy. Figures 14 and 15 compare the predicted GTD
values, calculated with the two methods, against the original data for the mitigated and
the non-mitigated precincts. The average relative prediction error of both methods for the
mitigated precincts is close to 10%. For the non-mitigated precincts, the average prediction
error of the method based on the aspect ratio is close to 17%, while the corresponding error
of the method based on the estimation of the advection rate is close to 12%.
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The advection rate in the precincts is highly dependent on the canyon orientation
and aspect ratio. The wind speed in canyons with an axis vertical or oblique to the wind
direction presents a lower wind speed is lower compared to wind speed in canyons with a
parallel axis to the wind direction. This depends highly on the aspect ratio, (H/W), of the
canyons, as derived by Oke [45]. For canyons vertical or oblique to the wind direction, a
high H/W value > 0.8 signifies that the flow is under a skimming regime and corresponds
to a local vortex inside the canyon, and a bypass of the flowing air above the height of
the buildings. For H/W values between 0.8 and 0.3, the flow is the wake interface, and for
lower values is isolated roughness [45].

For all canyons of the precincts that have their axis vertical or slightly oblique to the
wind direction, a strong correlation between the average wind speed in the canyon, Vaverage,
and the aspect ratio (H/W, is found (Figure 16). The relation has the form:

Vaverage = 0.2046 ·
(

H
W

)−1.745
(8)
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Figure 16. Average Wind Speed in Canyon with Flow vertical or slightly oblique to the canyon axis.

For all canyons that have their axis parallel to the wind direction, a strong correlation
is observed between the length of the canyon and the product of the entry wind speed and
width of the canyon as well as with the product of the exit wind speed with the width of
the canyon (Figure 17).
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7. Conclusions

Urban overheating causes energy, environmental, and health problems while also
impacting the overall economic and cultural life of cities. The implementation of a se-
ries of mitigation measures can compensate for the negative impact of the high urban
temperatures.

The mitigation measures considered in this study include the increase of greenery
in the various areas, the introduction of water sprays, and the change of urban materials’
albedo. The change of ambient temperature and surface temperature of the mitigated
versus the unmitigated areas is significantly higher close to water sprays. The cooling
potential is then studied using the GTD values along the precinct and is strongly influenced
by the wind speed and direction as well as the urban form

The effect of building height, street width, aspect ratio, built area ratio, orientation,
and dimensions of open spaces on the distribution of the ambient and surface temperature
is further analyzed. The cooling potential of different district arrangements and building
typologies is analyzed using the parameter ‘Gradient of the Temperature Decrease along
the Precinct Axis’, GTD. The GTD measures the average temperature decrease along
the X or the Y-axis of the canyon. In the mitigated precincts the GTD ranges between
0.01 K/m to 0.004 K/m. In precincts without mitigation, GTD ranges between 0.0093 K/m
to 0.0024 K/m. Considering the layout of the precincts only, the cooling potential decreases
when mitigation measures are implemented, compared to the cooling potential of the same
precinct without mitigation.

Moreover, the main heat transfer mechanism in the precincts is advection and there
is a strong relationship between the wind-caused heat flux and the GTD values. There is
also a strong correlation between the GTD of all the precincts, with and without mitigation,
and their corresponding average aspect ratio, (Height of buildings to Width of streets). The
higher the aspect ratio of the precinct the lower the cooling potential. Finally, it is worth
mentioning that a high Built Area Ratio means that less space is available for the installation
of mitigation measures. Therefore, the cooling contribution of mitigation measures is lower
in precincts with a higher Built Area Ratio.
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