Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Code division multiplexing properties of the odd-length minimum-TSC binarysignature sets

Karystinos Georgios, Pados D. A.

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/6521BBA0-A502-4B07-841F-B08B6DAE52D0
Έτος 2006
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά . G. N. Karystinos and D. A. Pados, “Code division multiplexing properties of the odd-length minimum-TSC binary signature sets,” in Proc. Conference on Information Sciences and Systems (CISS'06), pp. 1540-1545, doi: 10.1109/CISS.2006.286384 https://doi.org/10.1109/CISS.2006.286384
Εμφανίζεται στις Συλλογές

Περίληψη

Binary signature sets that exhibit minimum total-squared-correlation (TSC) were recently designed. In this article, we focus on such sets with signatures of odd length and we derive closed-form expressions for the signature cross-correlation matrix, its eigenvalues, and its inverse. Then, we derive analytic expressions for (i) the bit-error-rate (BER) upon decorrelating processing, (ii) the maximum achievable signal-to-interference-plus-noise (SINR) ratio upon minimum-mean-square-error (MMSE) filtering, and (iii) the total asymptotic efficiency of the system. We find that minimum-TSC binary sets with signature length of the form 4m+1, m=1,2,..., are in all respects superior to minimum-TSC binary sets with signature length of the form 4m-1 (the latter class includes the familiar Gold sets as a small proper subset). "4m+1" sets perform practically at the single-user-bound (SUB) after decorrelating or MMSE processing (not true for "4m-1" sets). The total asymptotic efficiency of "4m+1" sets is lower bounded by 2/e for any system user load. The corresponding lower bound for "4m-1" sets is zero.

Υπηρεσίες

Στατιστικά