Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Development of demand response energy management optimization at building and district levels using genetic algorithm and artificial neural network modelling power predictions

Kampelis Nikolaos, Tsekeri Elisavet, Kolokotsa Dionysia, Kalaitzakis Konstantinos, Isidori Daniela, Cristalli Cristina

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/D6D5C92C-F485-480A-8C2F-0E00CA5BABAA-
Αναγνωριστικόhttps://doi.org/10.3390/en11113012-
Αναγνωριστικόhttps://www.mdpi.com/1996-1073/11/11/3012-
Γλώσσαen-
Μέγεθος22 pagesen
ΤίτλοςDevelopment of demand response energy management optimization at building and district levels using genetic algorithm and artificial neural network modelling power predictionsen
ΔημιουργόςKampelis Nikolaosen
ΔημιουργόςΚαμπελης Νικολαοςel
ΔημιουργόςTsekeri Elisaveten
ΔημιουργόςΤσεκερη Ελισαβετel
ΔημιουργόςKolokotsa Dionysiaen
ΔημιουργόςΚολοκοτσα Διονυσιαel
ΔημιουργόςKalaitzakis Konstantinosen
ΔημιουργόςΚαλαϊτζακης Κωνσταντινοςel
ΔημιουργόςIsidori Danielaen
ΔημιουργόςCristalli Cristinaen
ΕκδότηςMDPIen
ΠερίληψηDemand Response (DR) is a fundamental aspect of the smart grid concept, as it refers to the necessary open and transparent market framework linking energy costs to the actual grid operations. DR allows consumers to directly or indirectly participate in the markets where energy is being exchanged. One of the main challenges for engaging in DR is associated with the initial assessment of the potential rewards and risks under a given pricing scheme. In this paper, a Genetic Algorithm (GA) optimisation model, using Artificial Neural Network (ANN) power predictions for day-ahead energy management at the building and district levels, is proposed. Individual building and building group analysis is conducted to evaluate ANN predictions and GA-generated solutions. ANN-based short term electric power forecasting is exploited in predicting day-ahead demand, and form a baseline scenario. GA optimisation is conducted to provide balanced load shifting and cost-of-energy solutions based on two alternate pricing schemes. Results demonstrate the effectiveness of this approach for assessing DR load shifting options based on a Time of Use pricing scheme. Through the analysis of the results, the practical benefits and limitations of the proposed approach are addressed.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2019-05-27-
Ημερομηνία Δημοσίευσης2018-
Θεματική ΚατηγορίαArtificial neural networken
Θεματική ΚατηγορίαDemand responseen
Θεματική ΚατηγορίαEnergy managementen
Θεματική ΚατηγορίαGenetic algorithmen
Θεματική ΚατηγορίαMicrogriden
Θεματική ΚατηγορίαOptimisationen
Θεματική ΚατηγορίαPower predictionsen
Θεματική ΚατηγορίαSmart griden
Βιβλιογραφική ΑναφοράN. Kampelis, E. Tsekeri, D. Kolokotsa, K. Kalaitzakis, D. Isidori and C. Cristalli "Development of demand response energy management optimization at building and district levels using genetic algorithm and artificial neural network modelling power predictions," Energies, vol. 11, no. 11, Nov. 2018. doi: 10.3390/en11113012en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά