Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Κατανεμημένη εκπαίδευση αναδρομικών νευρωνικών δικτύων με την χρήση γεωμετρικής μεθόδου

Balampanis Ilias

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/E93A906F-856D-4D07-8B71-93114448146E-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.86833-
Γλώσσαen-
Μέγεθος62 pagesen
ΤίτλοςDistributed training of recurrent neural networks by FGM protocolen
ΤίτλοςΚατανεμημένη εκπαίδευση αναδρομικών νευρωνικών δικτύων με την χρήση γεωμετρικής μεθόδουel
ΔημιουργόςBalampanis Iliasen
ΔημιουργόςΜπαλαμπανης Ηλιαςel
Συντελεστής [Επιβλέπων Καθηγητής]Samoladas Vasilisen
Συντελεστής [Επιβλέπων Καθηγητής]Σαμολαδας Βασιληςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Deligiannakis Antoniosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Δεληγιαννακης Αντωνιοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Lagoudakis Michailen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Λαγουδακης Μιχαηλel
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Electrical and Computer Engineeringen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
ΠερίληψηArtificial Neural Networks are appealing because they learn by example and are strongly supported by statistical and optimization theories. The usage of recurrent neural networks as identifiers and predictors in nonlinear dynamic systems has increased significantly. They can present a wide range of dynamics, due to feedback and are also flexible nonlinear maps. Based on this, there is a need for distributed training on these networks, because of the enormous datasets. One of the most known protocols for distributed training is the Geometric Monitoring protocol. Our conviction is that this is a very expensive protocol regarding the communication of nodes. Recently, the Functional Geometric Protocol has tested training on Convolutional Neural Networks and has had encouraging results. The goal of this work is to test and compare these two protocols on Recurrent Neural Networks.en
ΠερίληψηΤα Νευρωνικά Δίκτυα είναι ελκυστικά επειδή μαθαίνουν από τα δεδομένα και υποστηρίζονται έντονα από τις θεωρίες στατιστικής και βελτιστοποίησης. Η χρήση των Αναδρομικών Νευρωνικών Δικτύων για την πρόγνωση σε μη γραμμικά δυναμικά συστήματα έχει αυξηθεί σημαντικά. Αυτά έχουν την δυνατότητα να παρουσιάσουν ένα ευρύ φάσμα δυναμικής, λόγω της ανατροφοδότησης στην αρχιτεκτονικής τους. Βασιζόμενοι σε αυτό, προκύπτει η ανάγκη για κατανεμημένη εκπαίδευση σε αυτά τα δίκτυα, λόγω των τεράστιων δεδομένων. Ένα από τα πιο γνωστά πρωτόκολλα για κατανεμημένη εκπαίδευση είναι το πρωτόκολλο Γεωμετρικής Παρακολούθησης. Η πεποίθησή μας είναι ότι αυτό είναι ένα πολύ ακριβό πρωτόκολλο όσον αφορά την επικοινωνία των κόμβων, όταν το δίκτυο γίνεται όλο και μεγαλύτερο. Πρόσφατα, το Functional Geometric Monitoring πρωτόκολλο έχει δοκιμαστεί στην εκπαίδευση των Συνελικτικών Νευρωνικών Δικτύων και είχε ενθαρρυντικά αποτελέσματα. Ο στόχος αυτής της εργασίας είναι να δοκιμάσει και να συγκρίνει αυτά τα δύο πρωτόκολλα στα Αναδρομικά Νευρωνικά Δίκτυα.el
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by-sa/4.0/en
Ημερομηνία2020-10-02-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαRecurrent neural networksen
Θεματική ΚατηγορίαFunctional geometric monitoringen
Θεματική ΚατηγορίαDistributed training of neural networks en
Βιβλιογραφική ΑναφοράIlias Balampanis, "Distributed training of recurrent neural networks by FGM protocol", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2020en
Βιβλιογραφική ΑναφοράΗλίας Μπαλαμπάνης, "Κατανεμημένη εκπαίδευση αναδρομικών νευρωνικών δικτύων με την χρήση γεωμετρικής μεθόδου", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2020el

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά