Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Recognition of nevi on human body in internet images

Syrigos Dimitrios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/1C6ED1F4-7A8D-4C3C-8F0A-5BA2AB8D9BAF
Έτος 2021
Τύπος Διπλωματική Εργασία
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Δημήτριος Συρίγος, "Αναγνώριση σπίλων ανθρωπίνου σώματος σε εικόνες από το διαδίκτυο", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2021 https://doi.org/10.26233/heallink.tuc.88433
Εμφανίζεται στις Συλλογές

Περίληψη

Ο καρκίνος του δέρματος είναι μία από τις πιο θανατηφόρες μορφές καρκίνου. Αφού μετασταθεί από το σημείο προέλευσής του σε άλλους ιστούς, το ποσοστό απόκρισης στη θεραπεία μειώνεται στο 5%, και το 10ετές ποσοστό επιβίωσής είναι μόνο περίπου 10%. Μετά τη μετάσταση, δεν υπάρχει διαθέσιμη επιλογή θεραπείας με χειρουργική αφαίρεση. Ωστόσο, η έγκαιρη διάγνωση και η αφαίρεση με χειρουργική επέμβαση, αυξάνουν σημαντικά την πιθανότητα επιβίωσης. Η δερματοσκόπηση είναι μια μη επεμβατική τεχνική απεικόνισης υψηλής ανάλυσης που βοηθά τους γιατρούς να κάνουν πιο ακριβείς διαγνώσεις καρκίνων του δέρματος.Επομένως, αυτή η διατριβή προτείνει εξαιρετικά ακριβείς μεθόδους, από τρεις διαφορετικές προσεγγίσεις, σχετικά με την κατάτμηση της δερματικής βλάβης (δηλαδή, απομόνωση της βλάβης από την υπόλοιπη εικόνα) και ταξινόμηση των σπίλων και των κακοηθών δερματικών βλαβών. Το σκεπτικό είναι να φτιάξουμε ένα σύστημα που θα είναι σε θέση να εντοπίσει δυνητικά επικίνδυνες περιπτώσεις.Εξερευνήσαμε μέσω σχετικών συνόλων δεδομένων, την αποτελεσματικότητα τόσο των προ-εκπαιδευμένων όσο και του δημιουργημένου εξ αρχής μοντέλων με και χωρίς τμηματοποιημένες εικόνες, όπου η περιοχή της βλάβης του δέρματος έχει απομονωθεί, καθώς και με και χωρίς μεθόδους cross validation.Στο τέλος, συγκρίνονται επίσης τα αποτελέσματα από όλους τους ταξινομητές και τις διαφορετικές προσεγγίσεις.Η μελέτη έδειξε ότι η εφαρμογή τεχνικών βαθιάς μάθησης στον τομέα των καρκινικών παθήσεων μπορεί να είναι ο καταλληλότερος τρόπος για την ταξινόμηση και την αναγνώριση των εικόνων για τον καρκίνο του δέρματος, οι οποίες μπορεί να είναι πολύ ωφέλιμες στον τομέα της ιατρικής για έγκαιρη διάγνωση και να βελτιώσουν το ακριβές αποτέλεσμα της διάγνωσης. Η συγκεκριμένη εργασία κατάφερε να φτάσει σε αποτέλεσμα εξόδου 91% ακρίβειας.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά