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"ATTayopeUeTal N avTiypagr], atrobrkeuon kai diavoun TN TTapoucag epyaaiag, €€
OAOKAAPOU 1 TUAMATOG QUTAG, YIa E€UTTOPIKO OKOTTO. Emrtpémerar n avariumwon,
a1ToBrKeuan Kal SIaVOMN yia Jn KEPOOOKOTTIKO OKOTIO, EKTTAIOEUTIKOU i EPEUVNTIKOU
XOPAKTAPA, JE TNV TTPOUTTO0E0N va ava@épeTal N TNy TTpoéAsuong. Epwtruara TTou
aQOPOUV TN XPnon mg epyaciog yia dAAn xpon Ba TTpétrel va armreubuvovTal TTpog TO
ouyypagéa. O1 ammoyelIg KAl To CUPTTEPACUATA TTOU TTEPIEXOVTAI OE QUTO TO £yypago
eKQPAlouv Tov ouyypagéa Kal Ogv TTPETTEI va EPUNVEUBET OTI AVTITTPOCWTTEUOUV TIG
etTionueg B€oeig Tou MoAuTtexveiou KpAtng".

“Coping, distributing and downloading the current work, in whole or parts of it, for
commercial purposes is strictly prohibited. Reprinting, downloading and distributing for
non-profit purposes is allowed, including educational of research purposes, given that
the source is cited. Questions referring to the use of this paper for other uses must be
directed to the author. All opinions and conclusions in this document expressed by the
author do not represent the official standing of the Technical University of Crete.”
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MepiAnyn

O oT16X0G6 QUTAG TNG EpyaTiag gival n dliEpeUvNOoN TNG CUVOUACUEVNG EQAPHUOYNG
atrAou Kriging kai aAyoplBuou AuToopyavweEVWY XapTwy oTnv udpoyswAoyia. To
atrAS Kriging xpnoiuotroiiénke yia tTnv TpoRAewn Tou udpauAikoU UWoug OTnV TTEPIoXN
MEAETNG. H xprion Twv AuToopyavwuevwy XapTwy £XEl 0av OKOTTO TNV ouadoTToinon
TWV TTAPATNPACEWY EVTOG TNG TTEPIOXNAS MEAETNG, TTAVW OTIC OTToiEG EPapUOlETal TO
Kriging. H trepioxn) peAETNG TTou e€eTAoTNnKE N peBodoAoyia givar o udpoPdpog Tou
Tuptrakiou otnv KpAtn. O udpo@odpog Tou TUMTTOKIOU E€ival YEVIKA TTopwdng
OMOIOYEVAG HE PEPIKEG BIOPOPOTTOINTEIG OTIG USPAUAIKEG TOU 1810TNTEG. H 0Uleugn Twv
aAyopiBpwy aglohoyeite Bdoel Twv akOAouBwV KpIThPiwy eTTIKUpwONG Mean Absolute
Error, Maximum Absolute Error, Root Mean Square Error kai Correlation Coefficient.
KaBe opada tTaparnprioccwyv ovoudletal cuotdda (cluster) kar éva oAOKANPo cUvoAo
ouoTadwyv ovopdadetal TottoAoyia. AlgpeuviOnkav  SIOQOPETIKEG  BIAUOPPUWOEIG
OUaTAdWY YIa TNV €TTIAOYN TNG TOTTOAOYIAG PE TNV KAAUTEPN atrddoaon. MNpokelyévou va
aflohoynBei n BeAtiwon TNG TTPORAEWNS XPNOCIMOTTOILWVTAG TOov aAyopiBuo Auto-
Opyavwpuevwy Xaptwyv, Tpayuarorroindnke n mpoBAswn amAou Kriging pe 1O
akOAouBa atroteAéopaTa: Mean Absolute Error 6.9 m, Maximum Absolute Error 56.5
m, Root Mean Square Error 11.7 m and Correlation Coefficient 92%. H totroAoyia e
TIG KOAUTEPEG €TMIOOC0EIGC aTToTEAOUVTAV OTTO 6 OuAdEG TTAPATNPACEWY, Ol OTTOIEG
dlagpopoTroindnkav pe Baon Tn 6€on kai TIG UBPAUAIKEG 1810TNTES TOUG. H ToTToAOYia pE
TIG KOAUTEPEG €MOOOEIC TTapriyaye Ta akdAouba elpn KpITnpiwv emKUpwons: Mean
Absolute Error 0.39-2 m, Maximum Absolute Error 1.7-33 m, Root Mean Square Error
0.7-8.7 m and Correlation Coefficient 81-93%, pe pia akpaia Tiur -14% T1Tou atrodideTal
O YPOAMMIKA Kal OxI oToxaoTikry TTPpoBAewn. EmimmAéov, n ouadotroinon Trapeixe
TTANPOPOPIEG OXETIKA WE TIG IBIOTNTEG TWV ETEPOYEVEIWV TNG MEAETNG TTepITTTWONG. H
TTpoTEIVOPEVN HeBODOAoYia aTTéEdWOoE BEATIWPEVA ATTOTEAEOUATA, OKOPN KAl OTIG
TTPWTES DIAPOPPUICEIS EVW N YEVIKA HopPn TNG HeBodoAoyiag, TNV KaBIoTd epapudaiun
Y10 GANEG TTEPIOXEG WEAETNG PE MIKPEG TPOTTOTTOINCEIG.
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Abstract

The main objective of this work is to investigate the pairing of Self-Organizing
Maps with Ordinary Kriging techniques as applied to hydrogeology. Ordinary Kriging
predicts the values of hydraulic head in a case study. The use of Self-Organizing Maps
aims to create groups of observations in the case study, to which Ordinary Kriging is
applied. The implementation of the proposed methodology was carried out on the case
study of the aquifer of Tympaki, Crete. The Tympaki aquifer is a generally homogenous
porous aquifer with local differences in hydraulic properties. The pairing is evaluated
using the following validation criteria: mean absolute error, maximum absolute error,
root mean square error and correlation coefficient. Each group of observations is called
a cluster and a whole set of clusters is called a topology. Different configurations of
clusters were investigated to select the best topology. In order to assess the
improvement of prediction using the Self-Organizing Map algorithm the Ordinary
Kriging prediction was performed with the following results: Mean Absolute Error 6.9
m, Maximum Absolute Error 56.5 m, Root Mean Square Error 11.7 m and Correlation
Coefficient 92%. The best performing topology consisted of 6 observation groups
divided by location and hydraulic properties by the Self-Organizing Map algorithm. The
best topology resulted in the following ranges of validation criteria: Mean absolute error
0.39-2 m, maximum absolute error 1.7-33 m, root mean square error 0.7-8.7 m and
correlation coefficient 81-93% with an outlier of -14% due to linear and non-stochastic
prediction. In addition, the grouping provided insight on the properties of the
heterogeneities of the case study. The proposed methodology yielded improved
results, even in the initial configurations and it applicable to other case studies with
very few modifications due to its generic structure.
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EuxapioTieg

Oa BeAa va suxapioTAow Tov KaBnynth Mewpyio Kapatld 1600 yia TNV TTIOTNUOVIKA
OUVEICQOPA TOU O€ AUTH TNV £pyacia 600 Kal yIa TNV EEAIPETIKI) CUVEPYATIQ TTOU EiXAUE
000 NPOoUV UEPOG TOU EPEUVNTIKOU epyacTnpiou Tou. ‘ETTeita Ba RBeAa va uxapioTw
Tov ETmtikoupo Kabnynti EppavounA Bapouxdkn, 1Tou pou €dwaoe Tnv 1I0€a yia TNV
TTapouoa gpyacia Kal onuavTikn BorBeia kad’ 6An Tnv ekmévnon TnG. AKOPa Ba rnBeAa
va euxapioTiow Tov KaBnynt NikoAao NikoAdidn 1Tou déxTnke va givalr PéAog Tng
TPIMEAOUG €TITPOTTAG MoU. TEAOG Ba ABeAa va suxapioTAcow Tov Avipéa lMauAidn kai
Tov Avtwvn Aupwvn, yia Tnv BoRBeId TOUg Pe TOV KWAIKA TOU JOVTEAOU.
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1 Introduction

1.1 Scope of Thesis

This thesis was conducted in the framework of the requirements of the
postgraduate master studies “Sustainable Engineering and Climate Change” with
specialization in sustainable water and wastewater management. The scope of this
thesis is to explore the pairing of standard geostatistical method with artificial
intelligence, in hydrogeological applications. The goal was to reduce the geostatistical
error by applying a given method in subgroups of observations, rather than the entire
dataset. The geostatistical method used was Ordinary Kriging, which was selected
after an extensive literature review. Self-Organizing Maps were used as the artificial
intelligence algorithm since they have been applied several times in the field of
environmental engineering. The proposed method was applied to the hydrogeological
basin of Tympaki, Crete. After the application of the proposed methodology multiple
maps are yielded predicting the hydraulic head value in subsections of a case study.
By performing Kriging in subsections of the study area elected by the Self-Organizing
Map, the performance metrics of Kriging are improved thus the error of prediction is
reduced. An added benefit of this methodology is that, compared to other models, such
as finite element models, the data required exclude the temporal aspect of the
phenomenon. As a consequence, the prediction yielded describe a mean state of the
groundwater in a case study. For case studies with dispersed and not consistent
recordings of hydraulic head values the proposed methodology facilitates accurate
predictions that could be the basis for groundwater resources management plans and
best practices in the agricultural sector.

1.2 Theoretical Background

1.2.1 Basic Concepts of Ordinary Kriging

Kriging has been synonymous with geostatistical interpolation since its inception
in the 1950’s by mining engineer D.G. Krige. Its main original and most important
application concerns reserve estimates, but over the decades it has found use in other
fields such as hydrogeology. The standard version of kriging is called Kriging and is
the predictive model used in this work.

Z(s)=u+¢e'(s) 1
s: the spatial location of a variable
Z(s): the probabilistic value of a variable
u: the global mean
€' (s): the spatially correlated stochastic part of variable

As it can be seen, the model consists of a probabilistic process that correlates
the values of a variable with its spatial distribution in a 2D, 3D or even 4D plane. From
this Kriging can be viewed as a refined inverse distance interpolation given the
following prediction equation.

n
Zox(s0) = ) wilse) - #(s0) = 25 -z 2
i=1

Ao: the vector of Kriging weight w;
z: the vector of n observations

From the above expression arises the question of the values that each weight
should have. Semivariance (y(h)) is introduced into the methodology as a means of
estimating the weights to reflect their spatial autocorrelation structure.
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1 2
y(W) =5 E |(2(s) = 2(si + )’ 3
z(s;): the value of a variable at a sample point
z(s; + h): the value of a neighbor at the distance s; + h

With n observations there are, n- (n — 1)/2 pairs for which the semivariance
can be calculated. Plotting all semivariences versus their distance yields a variogram
cloud. For a standard distance, the semivariences are averaged, these averages are
called lags, and when plotted against the mentioned distances the experimental
variogram is obtained. The typical image of a variogram is an increasing curve at small
distance, that stabilizing at a plateau at greater distance. The mathematical
interpretation of this image states that the values of a variable become more similar at
short distance, up to a certain point. This is known as the spatial auto-correlation effect,
which can describe the stochastic components of a system that can otherwise be
described by a deterministic function(Hengl et al., 2007; Zimmerman and Stein, 2010).

After an experimental variogram is calculated, it is fitted to a variogram model.
Typical models are linear, spherical, exponential, circular, etc. Fitting is usually done
by an iterative, reweighted least squares estimation. The weights are deterministic in
nature being estimated by the number of pairs in a lag squared divided by the distance
N2 /h. This means that higher weight values can be expected in small, crowded areas
of the record. The variable can be defined as stationary if multiple variograms are
similar to each other. If a sampled variogram is stationary, the target variable can be
called covariance stationary. In the Kriging method the main assumption is that the
variable is stationary. The three empirical parameters define the properties of a
variogram the nugget, sill and range. The nugget indicates the measurement error and
in ideal conditions should be zero, the sill indicates the sampled variance, and range
parameter is 10% defined by the spatial extent of the data. The range parameter must
be distinguished from the practical range or the range of spatial dependence (i.e., the
distance at which the semivariance is close to 95% of the sill). The sill parameter (C,)
is different from the sill variation (C; + C,), which includes the nugget. There can also
be variograms that show no spatial correlation and are defined only by the nugget
parameter. Finally, the unbound variograms indicate that the lags projected cannot
produce a sill, which in turn means that either more data are need in order to create
more lags or that all lags correlated strongly with each other. Either way the results
produced from those variograms are similar to those of an inverse distance
interpolation. All the topics discussed in this sections are graphically represented in
the figure below (Hengl et al., 2007; Zimmerman and Stein, 2010).
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Figure 1.1: Basic variogram consepts (Hengl et al., 2007)

After estimating the variogram, it is possible to create semivariances at all
locations and determine the corresponding Kriging weights. The Ordinary Kriging
(OK) weights are solved as follows:

A=C1cy;
C(lh| =0)=Cy+ C;
C: the covariance matrix derived from n x n observations
co: the vector of covariances at new locations
Ao the vector of Kriging weight

The relation between covariance and semivariance is as shown below:

C(h)y=Co+ ¢ —y(h)
C(h): the covariance function
y(h): the semivarience function

Another assumption of Ordinary Kriging is that the data do not follow a trend
(Zimmerman and Stein, 2010). In groundwater there is almost a trend indicating either
a general increase or decrease in hydraulic head temporally or spatially, or a seasonal
pattern (ZmupdtrouAog, 2021; Ztepylou, 2021). These trends can be described
deterministically as a polynomial or harmonic equation resulting from the analysis of
the recorded data. For a spatial analysis, as performed in this work, only spatial trends

can be determined. The first order polynomial trend surface model is as follows:

u(s; B) = Bo + B151 + B2s;
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s: the coordinates of the surface model
u: the mean value at s, and s, coordinates
B the unrestricted parameters

1.2.1.1 Semivariogram Models
A list of the most used theoretical semivariograms is presented below, including
the spherical, Gaussian, exponential, power law and linear functions.

Exponential: y,(r) = 0?2 [1 — exp (— ';—')] 7
ical: _ 218l e (1] ger
Spherical: y,(r) = o [ T 0.5 (s) ]9(5 [r]) 8
ifé—1Ir|<0,0=0,elseif E—|r|>00=1
Gaussian: y,(r) = o2 [1 — exp (— g—z)] 9

Power-law: y,(r) = c|r|?*! 0 <H < 1 10
c is the coefficient and H the Hurst exponent.

o?2: the variance

|r|: the Euclidean norm of the lag vector r

¢&: the characteristic length.(Goovaerts et al., 2005)

1.2.2 Basic Concepts of Self-Organizing Maps

Self-Organizing Maps or Kohonen maps were developed by Teuvo Kohonen as
an alternative architecture to more traditional artificial network architectures. The main
application related to this work is the spatial partitioning and organization of responses
into topologically related subsets (Kohonen, 1990). Self-organizing maps have a large
capacity for abstract classification, which can find application in hydrogeology due to
the high level of abstraction in such physical problems (Nourani et al., 2016). The basis
for the development of this type of networks is competitive learning. In this process, an
observed set (x(i)) and a randomly (or semi-randomly) generated simulated set (m(i))
are iteratively compared, with the end result of the process being the best fitting
simulated set that has the least distance from the observed set. A species proposed
for the optimal placement of a m(i) minimizes the expected ™ power of the
reconstruction error (Kohonen, 1990):

E= f||x—mcl|rp(x)dx 11

E: the expected r'" power of the reconstruction error

x: the vectorial input of observations

m,: the reference vector

p(x): the approximation to a continuous probability density function of x
dx: the volumetric distance

c: the index indicating the best fitting vector

1.2.3 Description of the Study Area

The study area includes the municipality of Tympaki, which is part of the
Prefecture of Heraklion in Crete, Greece. The boundaries of the case study aligned
with the boarders of the municipality, which has a permanent population of about
10.000 residents. The neighboring basin of Messara is one of the most agricultural
areas of Crete. In order to meet irrigation needs, the Faneromenis Dam was built in
2005 in the eastern part of the case study. To the west of the case study lies the Libyan
Sea, to the east the foot of Mt. Dikti,s to the north the mountain range of Psiloritis and
to the south the much smaller mountain range of Asterousia. Finally, the case study is
crossed by the rivers Koutsoylitis and Mageras.
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In the study area the agricultural sector is quite developed and the intensity of
production requires large amounts of irrigation water. Due to the geographical position
of the area, the cultivation of olives, grains, fruits and vegetables, and citrus fruits is
favorable. The cultivated area is about 4800 acres, most of which is dry cultivation of
olive trees, which do not require irrigation water, since the needs are met by
precipitation. The growing season of the crops begins around February and usually
ends in the fall. It can be assumed that there is a high demand for water during the
summer season. This demand is to a considerable extent by pumping groundwater
(Stathatou, 2011).
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Figure 1.2: General map of the case study

Figure 1.1 above contains all case study information directly relevant to this
work. The black dots represent all observation points (348 observations) used in this
work. The hydraulic head value for each well is the mean hydraulic head value derived
from two measurements, one during the wet season and one during the dry season of
the hydrological year. Within the study area there are three distinct hydrogeological
formations that comprise the hydrological basin. All formations within the study area
are porous with varying percentages of infiltration. In general, most of the observation
points are located near the coastal front of the study area where there is a plain with
agricultural activities. The remaining observation points are scattered throughout the
study area. They can be divided into smaller groups based on their location, which is
influenced by local hydrogeological characteristics. In the southern part, there are
subgroups influenced by the river discharge. In the northern part, the subgroups are
influenced by the different hydrogeological formations, with all three different groups
present. Additionally, the steep changes in altitude affect the hydraulic head values
since all aquifers are unconfined. Finally, the subgroups can be differentiated by the
location of the observation points in the study area. The exact definition of these
subgroups is done with the algorithm of Self-Organizing map.
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1.2.3.1 Geological Characteristics

The geology of Crete is characterized by the leptoid development of several
tectonic sections resulting from processes that reached their peak the Tertiary period
with the dipping of the African plate under the Eurasian plate. The lower geologic
section consists of an indigenous system that includes plates of semi-transformed
limestone slabs, underlying limestones, dolomites and shale intrusions. This is
followed by a section of Neogenic and Quaternary deposits and sediments
(Kpitowtdkng, 2009).
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Figure 1.3: Geologic Map of Tympaki, the dotted lines show Phestos ridge (Panagopoulos et al., 2017)

The wider area of the Messara Plain is characterized by very heterogeneous
alluvial formations with alternating horizontal and vertical silty and sandy cobblestones.
However, in the case study the alluvial formations are spatially limited along the flow
of Geropotamos River. In the lowlands of the area, a Pleistocene formation with
fluctuating water permeability predominates. The sea level was at a lower level than
today after the deposition of the Pleistocene formations, so new trenches were formed
bythe erosion of the Geropotamos watercourse. The maximum depth of these trenches
was found to be 75 m below the present sea level in the Moires area and the maximum
depth found in the wider area is 80 m in the Platy area (adjacent basin west of
Tympaki). The depth of the ditch is of the order of 100 m from the ground surface,
decreasing upstream and at the Phaistos ridge it is 60 m from the ground surface
(KpirowTtdkng, 2009). Below this system are several ditches that may cause variations,
in recorded water depth in nearby wells. The case study contains 10 trenches most of
which are located above some inland pumping wells, as shown below, which could
locally affect hydraulic head locally (Panagopoulos et al., 2017). TO the east is
Quaternary layer of plistogenic deposits mainly composed of marl with some
proportions of sand and cobble stones, characterized by high water conductivity.To
the north is a layer of myogenic deposits consisting of marl with low water conductivity.
Outside the boundaries of the case study, to the northeast there is an impermeable
flysch that belongs to the geological formation of the Pindos Mountains. In the
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northeast of the case study there are myogenic deposits of cobblestone while outside
the southern part there are myogenic deposits of marl.
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Figure 1.4: Map of the upper layer of neogenic deposits and trenches in Tympaki basin. (The legend
indicates absolute altitude in meters) (Panagopoulos et al., 2017)

1.2.3.2 Hydrogeological Characteristics

In the wider area of Messara a change in the consumption of water resources was
observed during the hydrological years 1973 to 2005, due to human intervention. The
water demand in the south of the area is largely met by pumping groundwater along
the watercourse that crosses the alluvial aquifer in the western part of Messara plain.
To the southwest of the area is the Moira aquifer, which is fed by the Geropotamos
and whose lower reaches feed the Pleistocene aquifer within the study area through
the Phaistos Strait. The Messara alluvial basin is not hydrologically connected to the
Tympaki basin in any other way. In addition, the formations outside the study area the
north and south further isolate the study area hydrogeologically (KpitowTtdkng, 2009).

The hydraulic profile height is well known from previous case study work. The
higher values of hydraulic head are measured in the northern part, near the permeable
formation which recharges the aquifers (Zmupdémoulog, 2021; Ztepyiou, 2021).
Specifically, the case study can be broadly divided into 2 major formations consisting
of alluvial material. At the seafront side the alluvial aquifer consists of broad material
that has higher values of water conductivity. In addition to the minor changes in ground
elevation, the hydraulic head appears to decrease slowly from west to east. The other
formation consists of fine-grained material, with low values of hydraulic conductivity.
As a result of this, the hydraulic head profile is steep the contours are closer to each
other, as shown below (Dokou et al., 2017).
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Figure 1.5: Hydraulic head contours the wet and dry period for the Tympaki aquifer (Dokou et al., 2017)

On the coastal front, salinization phenomena were observed due to agricultural
activities in the area that mainly includes the Pleistocenic aquifer (Kourgialas et al.,
2016). In another study the salinization front in the northern part was found to have
penetrated further into the aquifer (2-3 km from the seafront) than the larger body of
the intrusion zone (1 km from the seafront) (Vafidis et al., 2016). In the southern part,
on the other hand, the saltwater intrusion zone appears to converge toward the
seafront at the lower boundaries of the study area. This can be attributed to the semi-
constant recharge of the aquifer by the Geropotamos River (Lollino et al., 2015)
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aquifer (Kourgialas et al., 2016)
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Figure 1.7: Map of mass concentration of chlorides (contours represent concentration mg/L) (Lollino et
al., 2015)

In the case study, a fluctuation of precipitation is observed on an annual basis,
with high values in winter and low to none in summer. There are also fluctuations in
precipitation due to the topology of the study area. The northern part of the case study
has the highest values. High values are also recorded in the southern part compared
to precipitation in the valley, but lower than in the northern part. Both regions with high
values can be explained by the distinctive morphology of Psiloritis Mountain and
Phaistos Ridge (Paparrizos et al., 2016).
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Figure 1.8: Yearly cumilative rainfall for the Geropotamos basin (greater area of Tympaki region) for the
years 1981-2000 (Paparrizos et al., 2016)
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1.3 Literature Review

Self-organizing maps (SOMs) have shown promising results in clustering
observations using multi factor parameters. Such clustering has applications in
numerous environmental disciplines. For example classifying areas covered by a
particular vegetation using SOMs (Filippi and Jensen, 2006) or discriminating fish
communities based on spatial distributions, land cover, environmental gradients and
water quality (Kwon et al., 2012). From the cases presented above, it can be inferred
that SOMs are capable of successfully classifying seemingly complex environmental
datasets. With respect to hydrogeology, SOMs have found numerous applications in
predicting groundwater quantity and quality. In the hydrogeochemical evolution of an
aquifer, chemical concentration is strongly correlated with spatial distribution and
SOMs can produce maps with different ranges of possible concentrations (Yu et al.,
2018). SOMs can have inputs of spatial coordinates and concentrations, but can also
include other factors such as water flow, geologic and hydrogeologic background and
environmental stresses (Li et al., 2020; Zhu et al., 2020). Even more specific attributes
can be added as inputs ,such as well depth or corresponding groundwater level and
aquifer type (confined or unconfined) (Nakagawa et al., 2020).

Hydrogeologic applications of SOMs may include as inputs both quantitative data
from field measurements and qualitative data that help characterize and define the
system in question. For classification, quantitative inputs, such as ion concentration
can be related to water salinity. By creating three classes foe water salinity (freshwater,
moderate salinity and high salinity) the coastal aquifer case study was divided into
different sections, allowing for better water use practices with relatively few
observations (35 in total) (Belkhiri et al., 2018). In coastal aquifers, salinity
concentration varies throughout the hydrologic year, and SOMs provide accurate
concertation clustering for both wet and dry periods with no overlap between clusters
(Amiri and Nakagawa, 2021). The lack of overlap on a spatial and temporal basis can
result in clusters with well-defined characteristics and properties, even though they are
being part of a larger connected system, such as an aquifer. Compared to other forms
of clustering SOMs appear to outperform the more common k-means clustering and
have similar results to fuzzy c-means (Lee et al., 2019). High-precision clustering has
been used to pre-classify data inputs to other hydrologic and hydrogeologic models. In
SWAT (Soil and Water Assessment Tool), SOMs can be used in defining Hydrologic
Response Units (HRUSs), by providing finely classified data for soil properties (Rivas-
Tabares et al., 2020). In the DRASTIC models (Depth to water, net Recharge, Aquifer
media, Soil media, Topography, Impact of vadose zone, and hydraulic Conductivity),
SOMs clustering followed by Kriging extrapolation increased overall accuracy. Kriging
extrapolation was used as means to validate clustering through the variograms
generated, which ultimately defined the affection zone of each cluster(Rezaei et al.,
2017). SOMs can also be used as surrogate models for hydraulic conductivity
predictions that can be extrapolated to the entire case study by applying Kriging (Jiang
et al., 2021). In addition, preclassification using SOMs can improve groundwater level
predictions, when coupled with backpropagation network models for multiple sites in a
case study. It is also important to note that the required inputs are spatial coordinates
and groundwater level parameters that are easy to obtain (Chen et al., 2011). Methods
that combine Al with Kriging can be applied to simulations of groundwater level and
quality, not only in porous media but also in karstic springs(Canion et al., 2019).

SOMs can also explain the spatiotemporal relationship between surface and
groundwater, by classifying data of groundwater flow, surface water flow and rainfall,
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the generated maps describe the relationships among the above parameters (Chen et
al., 2018). In a combination of SOMs and Kriging for groundwater level prediction,
clustering was performed using the groundwater level observations from the well, then
Kriging was performed for each cluster, and finally the best-fitting cluster was selected
(Chang et al., 2016). The main difference between the aforementioned work and the
present project is that Kriging is performed for the entire case study area even though
the well data are clustered, while Kriging is performed separately for each cluster in
this work. Al is well suited for nonlinear problems such as groundwater simulations,
but in cases of contaminant concentrations with clear trends Kriging or deterministic
approaches are more appropriate (Chowdhury et al.,, 2010). In groundwater
contamination simulations, a multiple layer backpropagation network was used to
classify danger zones and was compared to a single Kriging variogram (Kavusi et al.,
2020). Artificial Neural Networks have also been used to compensate for the
uncertainty of the semivariogram in Kriging methods (Senoro et al., 2021).

Kriging can be a robust method for predicting and monitoring groundwater levels
or quality, from OK which is the most common technique to Co-Kriging which is the
multivariable equivalent of OK (Belkhiri et al., 2020). Spatiotemporal analysis with
Kriging is achieved by performing several different Kriging analysis at different
timeframes, the results of this technique create multiple maps that can show the
evolution of a phenomenon and as before multiple Kriging techniqgues when used
together can provide more accurate results (Rostami et al., 2020). While OK has many
applications for spatiotemporal analysis, it is also appropriate in regions with declining
trends in groundwater levels (Hasan et al., 2021). In addition, OK can be used to
monitor groundwater quality. In a case study, it was coupled with sequential Gaussian
simulation for smoothing purposes, an issue that OK faces (Aryafar et al., 2020). In
terms of quality, Indicator Kriging was applied, where a threshold for detection is set,
resulting in reliable neighbors (Kechiched et al., 2020). In another work, Ordinary and
Indicator Kriging were used to simulate arsenic contamination, with OK performing
better than IK despite sample heterogeneity (Liang et al., 2018). However, IK is not
applicable in modeling groundwater levels because there is no detection threshold and
even negative values contain important information about the heterogeneity of the
system under study. Finally, Empirical Bayesian Kriging is a technique that replicates
and partitions observed data and can compensate for uncertainty in semivariogram,
making it an ideal technique for modeling small data sets; sometimes it outperforms
OK (Bouhout et al., 2022; Senoro et al., 2021).

In summary, Al is a promising tool for improving Kriging methods. In particular
SOMs have shown promising results in several different methods, although most of
their applications are a stage of classification after performing Kriging. Moreover, pre-
classification of datasets enhances the performance of Kriging methods, but this rarely
happens when SOMs are used. In this work, pre-classification with SOMs aims to form
classes whose distinguishing features are spatial coordinates and groundwater level.
The intention behind this, is to create of possible neighborhoods where observations
are more correlated compared to the correlation between all observation points
throughout the case study area. Finally, regarding the Kriging techniques studied, OK
seems to be the most commonly used in the literature. Although it is the simplest, it
has reliably shown robust results commensurate with other more complex techniques.
Considering this and the fact that the proposed methodology combines the two tools
in a previously unexplored way, OK is considered the most appropriate technique for
the purposes of this work.
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2 Methodology
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Figure 2.1: Flowchart of the Proposed Methodology
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In this work the main data set consists of 341 observations containing X-Y
coordinates and hydraulic head value. The objective of this work is to define sub-
datasets that will improve the Ordinary Kriging results. The proposed methodology
proceeds as follows: Performing OK on the entire dataset, investigating different pre-
classification arrangements (topologies) and evaluating the performance of OK for
each topology. This rudimentary analysis of the methodology is explained in more
detail below.

The first step of the algorithm is to read and format the required data. The data
are organized in a table format to facilitate calculations in MATLAB. They are formatted
into coordinates and hydraulic head values, which are generally the inputs to both SOM
and OK.

The initial topology is set to 1x1 which is the baseline for evaluating all the
different topologies.

The SOM algorithm forms the pre-classification part of the methodology. The
inputs of the SOM model are the X-Y coordinates and the value of the hydraulic head.
The outputs are the same values but classified in clusters. This selection ensures that
the classification is based on the location of the observations in the field and the
various hydraulic properties or conditions that are correlated to the hydraulic head
value. In this use of SOM each observation is assigned to a single cluster, and OK is
applied to each cluster separately. There is a possibility of overlapping predictions from
OK, but only for small areas at the boundaries of each cluster (Amiri and Nakagawa,
2021). It is worth noting that a cluster that underperforms compared to the original
topology has no effect on a cluster that performs acceptably or better than the original
topology. Each different combination of clusters constitutes a topology, e.g., the first
topology for which Kriging is performed is 1x1, i.e., a single cluster, i.e., the entire
dataset; therefore, SOM is not required for this topology. Adding another cluster results
in two more possible topologies,1x2 and 2x1 since it is possible that the classification
results in a cluster with different observations in each cluster. Both of them are
investigated. In the 2x2 topology, this problem does not exist. In 2x3 and 3x2 the
process is the same as above, and again they are examined last. In more granulated
topologies it is not guaranteed that each cluster will contain a viable amount of
observations for OK to be performed. In summary the SOM algorithm either classifies
correlated observations among themselves or exclude uncorrelated observations and
overall refines the inputs from OK.

The preliminary studies refer to the hydraulic head values. The statistical
parameters determined are minimum value, maximum value, median value, mean
value, standard deviation, skewness and kurtosis. These tests are important to
determine if a subset of data follows the normal distribution, which is one of the main
assumptions of Kriging (Hengl et al., 2007). In this work, it is validated by plotting and
comparing the empirical and gaussian cumulative probability density functions.
Voronoi polygons are created as an indicator of the possible Kriging prediction.

Variography in Ordinary Kriging requires detrended data sets. In all clusters,
the only trend in the hydraulic head value was a linear decrease in correlation with
altitude, i.e., from inland to coastal front. Trend prediction is evaluated by the
Correlation Coefficient and Mean Absolute Error between the linear trend model and
the data. By removing the trend from the data set the hydraulic head values are
converted to variations in hydraulic head. Empirical isotropic variograms were created
for all clusters and then compared to 4 different theoretical variogram models. These
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were an exponential, a spherical, a gaussian and a power law, of which the power law
was generally considered the most appropriate. If a cluster could not produce a
variogram that matched one of the theoretical models and the relationship between all
clusters was not completely linear, the variogram from the 1x1 topology was used to
determine the input parameters for Kriging.

The Kriging technique was used in this work is Ordinary Kriging. OK requires
as input the X-Y coordinates, the derived values of the hydraulic head (fluctuations),
the range obtained from the variography, the theoretical model estimated from the
variography and the radius of the neighborhoods. Validation of the estimates is
performed by measuring the Mean Error, Mean Absolute Error, Root Mean Squared
Error and Correlation Coefficient between the estimated and derived values. Finally,
two maps are produced for each cluster containing the estimates at the validation
points and the standard deviation at the validation point.

The predictions are a result of an iterative process requiring multiple tests, in
order to secure that the assumptions taken by Kriging are satisfied. The results of those
test are presented in the Kriging Results chapter and are repeated for each topology.
In this section, the graphs yielded from each topology are briefly presented. The first
graph is the spatial distribution of observations in each cluster produced by the SOM
algorithm. The second graph contains a histogram with the all the hydraulic head
values in the cluster and the empirical cumulative probability curve. The third graph
utilizes the empirical cumulative probability curve to fit it to a gaussian theoretical
curve, this step is one the most important step in the process, since for the performance
of Kriging; the empirical and gaussian theoretical cumulative probability curves should
be approximate to each other. The following set of graphs describe the process of
detrending the subsets of data, starting from the fourth graph which is the Voronoi
polygons for each cluster. This graph is not required but is an added test to confirm
that the fifth graph which is the linear trend of hydraulic head values in each cluster is
correct. After the detrending, variography is performed as described above, in each
cluster. The sixth graph contains the variograms, in which the observations are fitted
to one of the theoretical models mentioned in the semivariogram models’ section. This
step requires trial and error to some extent, since there is no reliable technigue to
predetermine the best fitting model, in the results section the best fitting models are
presented. The seventh graph depicts the frequency of the values of cross validation
errors from the Kriging estimation. The eighth graph contains the Ordinary Kriging (OK)
estimation of hydraulic head values within the domain of each cluster. Finally, the ninth
graph contains the OK standard error deviation which is an additional visual metric for
the assessment of uncertainty of the prediction.
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2.1 Validation Criteria

2.1.1 Error

Error = Yl-ObS _ YiSlm

2.1.2 Mean Absolute Error (MEA)

|Yobs
MEA = Z

2.1.3 Root Mean Squared Error (RMSE)

RMSE = Z(‘

2.1.4 Correlation Coefficient (CC)
nzn= Yiobs . Yisim _ ?=1 YiObS . ?:1 Yisim

YSLTTLl

obs Ystm)z

CC =

v = gy pers V- s v = (2, v )]

Y°Ps: the observed value
Y im: the simulated value

3 Results
3.1 Self-Organizing Map Results
3.1.1 Topology 1x2

Hits

Figure 3.1: Distribution of observations in clusters 1-2
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Figure 3.3: Distribution of obsevrations in clusters 1-2
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Figure 3.5: Distribution of obsevrations in clusters 1-2, 3-4 (bottom to top)

oeA. 25




3.886

3.885

3.884

3.883

Weight 2
Cad
oo
3

3.879 1 s, s
2
E.ETE 1 1 1 1 1 1 1 1

566 567 568 569 57 671 572 573 574
Weight 1

Figure 3.6: Spatial distributions of observations and their related cluster
3.1.4 Topology 2x3
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Figure 3.7: Distribution of obsevrations in clusters 1-2, 3-4, 5-6 (bottom to top)
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3.1.5 Topology 3x2
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Figure 3.9: Distribution of obsevrations in clusters 1-2-3,4-5-6 (bottom to top)
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3.2 Kriging Results
3.2.1 Topology 1x1
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Figure 3.11: Spatial distribution of observation points in the whole case study
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Figure 3.14: Voronoi polygons for hydraulic head observation points in the whole case study
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Figure 3.15: Linear trend over the case study
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Figure 3.17: Cross Validation errors for all estimations of topology 1x1
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Figure 3.18: Ordinary Kriging estimation for the whole case study
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Figure 3.19: Kriging error standard deviation the whole case study
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3.2.2
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Figure 3.20: Spatial distribution of observation points for clusters 1-2
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Figure 3.21: Histogram and probability curve for clusters 1-2
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Figure 3.22: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2
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Figure 3.23: Voronoi polygons for hydraulic head observation points for clusters 1-2
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Figure 3.24: Linear trend for clusters 1-2
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Figure 3.26: Cross Validation errors for estimations of clusters 1-2
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Figure 3.28: Kriging error standard deviation for clusters 1-2
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3.2.3 Topology 2x1
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Figure 3.31: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2
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Figure 3.32: Voronoi polygons for hydraulic head observation points for clusters 1-2
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Figure 3.34: Variograms for clusters 1-2
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Figure 3.37: Kriging error standard deviation for clusters 1-2
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3.2.4 Topology 2x2
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Figure 3.38: Spatial distribution of observation points for cluster 1-2, 3-4
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Figure 3.40: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2, 3-4
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Figure 3.41: Voronoi polygons for hydraulic head observation points for clusters 1-2, 3-4
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Figure 3.43: Variograms for clusters 1-2, 3-4
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Figure 3.44: Cross Validation error for estimations of clusters 1-2, 3-4
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Figure 3.45: Ordinary Kriging estimation for clusters 1-2, 3-4
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Figure 3.46: Kriging error standard deviation for clusters 1-2, 3-4
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Figure 3.47: Spatial distribution of observation points for clusters 1-2, 3-4, 5-6
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Figure 3.49: Cumulative Probability curve empirical and theoretical gaussian for clusters 1-2, 3-4, 5-6
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Figure 3.50: Voronoi polygons for hydraulic head observation points for clusters 1-2, 3-4, 5-6
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Figure 3.51: Linear trend for clusters 1-2, 3-4, 5-6
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3.2.6 Topology 3x2
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3.3 Validation Criteria Results
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Figure 3.68: Root Mean Squared Error for Different Clusters/Topologies

4 Discussion

4.1 Topology 1x1

For the topology 1x1 the SOM algorithm was not used. In Figure 3.12 there can
be seen that the sample of observations has a range of values from 0 to 350 m. The
most common values for hydraulic head values are between 0 to 50 m. This range of
values follows the normal probability curve. The remaining observations in the sample
have a wider range of hydraulic head values, but the frequency of their occurrence is
much lower. According to Figure 3.13, the cumulative probability curve of the gaussian
variogram and the empirical variogram indicate that the observation sample as a whole
does not follow the normal probability distribution to its totality. As can be seen in
Figure 3.14, there is a clear distinction between the observations. They are separated
by an axis from northwest to southeast. Most of the observation points with values (0
to 50 m) seem to be located near the coastal front, while the remaining points are
scattered in the rest of the study area with different hydraulic head values. This is
confirmed by Figure 3.15, where the linear trend is from the northeast to southwest so
the differentiation shown above is valid. Examination of the variogram in Figure 3.16,
shows that the power law is the best-fitting theoretical model. As mentioned earlier,
the unbound variogram implies either a lack of sufficient observations or a strong
correlation between the lags. Of the two possible interpretations, the second seems to
be the more plausible. Since the case study is quite small and the hydrogeologic
system studied, is generally a homogeneous porous aquifer system despite its
discontinuities. The Kriging estimate, shown in Figure 3.18, is similar to the linear trend,
with changes following the morphology of the study area. The error standard deviation
maps (Figure 3.19) indicate a low error throughout the area, but this is also due to the
high density of observations, particularly on the coastal front. Figure 3.17 provides
additional insight: Aalthough, there is a high frequency of simple errors in the -10 to 10
m range, there are outliers that can reach as high as -60 m. The validation criteria
indicate reasonable performance of the OK technique, i.e., Mean Absolute Error 6.90
m, Root Mean Square Error 11.7 m, Maximum Absolute Error 56.5 m and Correlation
Coefficient 0.92% (Figures 3.65-68). The problem with this estimate is the high
Maximum Absolute Error value which indicates either extended generalization of the
prediction. This can be attributed to the fact that the areas with the highest density of
observations have similar hydraulic head values, while the less dense areas have a
wider range of values. In the following topology configurations, the creation of groups

oeA. 63




(clusters) of observations aims to create subsections of the study area where the
validation criteria may exceed to some extent those presented here.

4.2 Topology 1x2

The 1X2 topology resulted in 2 clusters, with the first cluster containing 69
observations and the second 279, as shown in Figure 3.1. As expected, the
observations were partitioned in the same way as described in the previous section.
This is a consequence of the structure of the input data. The X-Y coordinates
correspond to weight 1 and weight 2 in Figure 3.2 and appear to strongly influence the
classification for this topology. The hydraulic head value is the third weight and does
not significantly affect the clusters. This is the result of the correlation between
hydraulic head and altitude mentioned earlier. In general, the observation points were
grouped into a coastal front group with low hydraulic head values, and small distance
between them, all belonging to the same hydrogeological substructure. On the other
hand, the other group had a large variation in hydraulic head values and the
observation points were scattered in the rest of the area and belonged to all three
hydrogeological substructures.

The two resulting clusters are shown in Figure 3.20. For the first cluster, the
normal probability curve appears to approach the theoretical line, while for the second
cluster there appear to be some extreme values (Figure 3.21). For both clusters the
empirical cumulative probability curve approaches the gaussian curve similar to the
previous topology (Figure 3.22, Figure 3.13). The Voronoi polygons (Figure 3.23) for
both clusters show the same general trend as before. However, the linear trend plot
(Figure 3.24) there appears to be a skewing of the trend near the costal front. Both
variograms conform to the theoretical power law model and are unbound, further
indicating a strong correlation between the lags (Figure 3.25). An improvement in the
cross-validation error is shown in Figure 3.26, for both clusters. The Ok estimate is
more detailed and in Figure 3.27 the gradient in hydraulic head is particularly evident
in cluster 2. The Kriging error standard deviation map in Figure 3.28 shows high error
values for extrapolation outside the range of observation points. The validation criteria
of the OK procedure for cluster 1, i.e., Mean Absolute Error 0.69 m, Root Mean Square
Error 1.46 m, Maximum Absolute Error 12.5 m and Correlation Coefficient 0.98%,
represent an almost 10-fold improvement in the error criteria. This is in contrast to
cluster 2 which did not appear to improve as all error metrics appeared to increase with
the exception of maximum absolute error. Cluster 2 is formed by the coastal front
observations which means that further subgrouping is required.

4.3 Topology 2x1

The difference between the 1x2 and 2x1 topology according to Figure 3.3 is the
arrangement of the clusters and an observation is transferred from cluster 2 to cluster
1. In general, the spatial distribution of observations in each cluster follows the same
pattern as in the 1x2 topology (Figure 3.4). This also confirms the statements made in
the section on topology 1x2.

The clusters in this topology have the same behavior as the previous one as
shown in Figure 3.29. The same as from Figure 3.30 to Figure 3.37. However, it should
be noted that the change of an observation from one cluster to another gave some
unexpected results. Looking at Figures 3.65 to 3.68, it can be seen that no change
occurred in cluster 1, which had already improved compared to topology 1x1. Cluster
2 showed improvement in some validation criteria, i.e., Mean Absolute Error 6.84 m,
Root Mean Square Error 12.2 m, Maximum Absolute Error 64.5 m and Correlation
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Coefficient 0.91%. This difference between the two seemingly identical clusters
(cluster 2 from topologies 1x2 and 2x1) first confirms the hypothesis that all possible
topology configurations must be investigated to obtain an optimal result. In addition, it
is partially confirmed that the inclusion of all observation points strangulates the Kriging
estimation. This can be attributed to the high density of observation points in one area
compared to other areas in the case study. So does as the granularity of the grid
created for the Kriging estimation. In the dense observation areas, a grid square may
contain more than one observation, while in the less dense areas, several grid squares
maybe empty. Subdividing the study area increases the granularity of the grids without
requiring additional computational power. Although the margin of error may increase,
the validation criteria indicate an overall in the estimates.

4.4 Topology 2x2

The 2x2 topology vyields 4 clusters, cluster 1 contains 31 observations, cluster 2
contains 36, cluster 3 contains 67 and cluster 4 contains 214 (Figure 3.5). Cluster 1
contains observations in the northeastern part of the study area (Figure 3.38). They
are located over the area of the porous aquifer characterized by 25% infiltration of
25%. Cluster 2 contains observations in the northern part of the case study (Figure
3.38). They are located over the domain of all three aquifers, but the hydraulic heads
are similar. Cluster 3 contains observations located in the southern part of the coastal
front (Figure 3.38). Finally, cluster 4 contains the majority of observations located on
the coastal front (Figure 3.38). According to Figure 3.6, the four subclusters are
subdivided based on position and hydraulic head value. As mentioned earlier, cluster
1 and cluster 2 have different hydrologic characteristics despite their proximity to each
other. Cluster 3 and cluster 4 have similar hydrogeologic characteristics, but the river
that discharges in the southern part of the case study and the agricultural activity in
the northern part of the coastal front, create different hydrogeologic conditions.

Figure 3.39 shows that the classification of observations in each cluster follows
a normal distribution. This is also confirmed by Figure 3.40, in which all empirical
cumulative probability curves approximate the theoretical gaussian cumulative
probability curve. Figure 3.41 and Figure 3.42 continue to show the same decreasing
trend of hydraulic head toward the northeast with to southwest, with the exception of
cluster 1. The difference in the direction of the trend can be attributed to the different
hydrogeologic characteristics of the formation. The empirical variograms were fitted to
the theoretical power law mode, except for cluster 2. The variogram of cluster 2was
fitted to the spherical variogram which has a clear and well-defined range. This can be
attributed to the heterogeneity of hydraulic head values and hydrogeologic properties
of the formations in this cluster, which distinguishes cluster 2 from the other clusters.
Cross-validation errors appear to have greatly decreased as only cluster 1 has four
outliers and cluster 2 has only one (Figure 3.44). These two clusters \ have different
values of hydraulic head, as mentioned earlier, so this is an expected result. The
Kriging estimates show even greater granularity compared to previous results (Figure
3.45) and the piezometric lines appear to follow the patterns of the study area
morphology the (Figure 1.1). The Kriging error standard deviation maps show a
decrease in the range of error standard deviation, especially in cluster 4 the error
standard deviation is 1.3 m in the whole domain (Figure 3.46). The correlation
coefficient shows an improvement in clusters 2 and 3, but a steep decrease in clusters
1 and 4 (Figure 3.65). A Correlation coefficient that approaches zero indicates that the
deterministic part of the methodology prevails in the estimation, in this case the linear
trend. The Mean Absolute Error and Root Mean Square Error have been decreased
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significantly for clusters 2 and 3. For cluster 1 has MEA and RMSE are close to the
values for the 1x1 topology, while for cluster 4 there is a sharp increase in both errors
(Figures 3.66 and 3.68). For cluster 4, the linear part of the estimate is more dominant,
implying that outliers in the observation strongly influence the estimate, which can be
confirmed by Figure 3.67, which shows a twofold increase compared to topology 1x1.
This could be improved by further clustering to isolate the observations that show a
clear linear trend.

4.5 Topology 2x3

The 2x3 topology yielded 6 clusters, cluster 1 contained 19 observations, cluster
2 contained 32, cluster 3 contained 23, cluster 4 contained 92, cluster 5 contained 53
and cluster 129 (Figure 3.7). Cluster 1 contains the observations in the northwestern
part of the study area (Figure 3.8, Figure 3.47), all of which are on the porous aquifer
with 25% infiltration (Figure 1.1.). Cluster 2 contains the observations in the
southwestern part of the study area (Figure 3.8, Figure 3.47) on the porous aquifer
with 20% infiltration. Cluster 3 spans through the central portion of the study area and
contains observations from all three aquifers similar to cluster 3 in the previous
topology (Figure 3.8, Figure 3.47). Cluster 4 contains the northern portion of the dense
coastal front observations (Figure 3.8, Figure 3.47). The division of this area can be
attributed to the different values of hydraulic head due to the steep decrease in altitude.
Cluster 5 includes the rest of the observations in the remaining part of the northern
coastal front. Finally, cluster 6 contain observations in the southern part of the coastal
front (Figure 3.8, Figure 3.47).

In terms of observations conforming to the normal distribution, all clusters meet
the criteria adequately with only cluster 6 showing some outliers (Figure 3.48, Figure
49). Similarly, the downward trends show the same behavior as the previous
topologies, i.e., southward to the northern part and southwestward to the rest of the
study area (Figure 3.50, Figure 3.51). All variograms were fitted to the theoretical
power law | model, except for the variogram of cluster 1 (Figure 3.52). As prescribed
in the methodology the global variogram was used for Kriging estimation. Cross
validation showed an improvement in all clusters except cluster 1 (Figure 3.53). This
may be due to model truncation it this cluster, as seen in Figures 3.54 and 3.55, where
the maps produced overfit the observations. It is possible that by reconfiguring the
topology, the overfitted observations could be distributed to different clusters. In Figure
3.55, cluster 6 appears to contain the smallest error standard deviation. The correlation
coefficient for clusters 3 through 5 appears to be comparable to 1x1 topology. For
clusters 1 and 2, the correlation coefficient approach zero and for cluster 6 it decreases
but is still acceptable (Figure 3.65). As before, the low correlation coefficient of cluster
2 indicates strong linearity, while the results of cluster 1 are considered overfitting and
thus not worth evaluating them. Mean Absolute Error and Root Mean Square Error
show similar patterns in all clusters, with cluster 6 having the higher values for both
criteria (Figure 3.66, Figure 3.68). The high error values of cluster 6 must be attributed
to an outlier, which is confirmed by the high value of the Maximum Absolute Error
(Figure 3.67). Despite an overall improvement in most of the clusters the overfitting of
cluster 1 indicates that the proposed methodology for this case study has reached its
limits.

4.6 Topology 3x2

The clustering in this topology is quite different from the previous topology
(Figure 3.9). Cluster 1 contains 17 observations, cluster 2 contains 23, cluster 3
contains 31, cluster 4 contains 53, cluster 5 contains130 and cluster 6 contains 94. All
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clusters span the same sub-areas as described in the previous section, but because
of the different topology configuration, the observations have been assigned to
different clusters and the cluster numbering is different (Figure 3.56). As shown
previously for the 1x2 and 2x1 topologies, assigning fewer observations between
clusters can greatly improve the final results of the model. Cluster 1 is located in the
northern part of the study area as described previously. Cluster 2 is located in the cross
section of the 3 porous formations in the middle of the case study. Cluster 3 is the bulk
of the observed dense portion of the coastal front. Cluster 4 extend over the southern
portion of the coastal front affected by the river discharge and a small portion of the
inland affected by the river discharge. Cluster 5 extends across the southeastern
portion of the case study at the intersection of two formations at relatively high altitude.
Cluster 6 is located in the northern portion of the coastal front. From Figures 3.57 and
3.58, all clusters appear to conform to the normal distribution, with some outliers in
clusters 3,5 and 6. The Voronoi diagrams (Figure 3.59) for each cluster showed that
the ranges of hydraulic head values are significantly restricted. The linear trends in all
clusters are as previous described, except for cluster 6 (Figure 3.60). The area that
makes up cluster 6 is associated with an aquifer with higher infiltration which increases
water flux compared to the water flux in the rest of the coastal front. Higher values of
hydraulic head are expected in this location especially when altitude change is
considered change. All variograms were fitted to the theoretical power law model with
moderate success (Figure 3.61). Cross-validation errors show the same outliers in
clusters 1 and 2, but given the variability in hydraulic head values at these locations
this is acceptable (Figure 3.62). Figure 3.63 shows that kriging estimates appear to be
possible except for a small area in cluster 4, but this irregularity can also be attributed
to water fluxes from the river. In Figure 3.64, the standard deviation shows variation in
most maps. The standard error deviation of clusterl, despite its apparent affectedness,
is a reasonable approximation considering that the said cluster has a range of values
from 50 m to more than 300 m. On the other hand, clusters 3 and 5 seem to be
overfitted but the validation criteria argue against. The correlation coefficient is above
80% for all clusters except for cluster 1 with a value of -14% suggesting a strong
deterministic linearity. Mean Absolute Error and Root Mean Squared Error behave
similarly with errors in clusters 2 to 6 not exceeding 2 m and 3 m respectively. Cluster
1 does not perform as well as the other clusters but shows improvement over the 1x1
topology in all cases, even in Maximum Absolute Error which is almost halved (Figure
3.67).

oel. 67




5 Conclusions

As general remarks, it could be stated that the assumption that the Ordinary
Kriging technique is able to describe the conditions of groundwater is verified, since all
mathematical assumptions have been satisfied. In all cases of differing topologies, the
results were adequate, with varying success. In addition, both from the literature and
the results of this work, it has been verified that subdividing the sample of observations
to smaller groups greatly improves the OK estimations. Given the different
configurations of clusters, it could be stated that subgrouping arbitrarily could yield
some results but in more complex systems than the current case study, this practice
will be detrimental to the results. SOM is a promising algorithm for performing
clustering by utilizing additional information such as hydraulic head value to spatial
coordinates. Clustering as a technique of reducing the error of prediction has its
restrictions. An upper bound to this technique is the data driven nature of Kriging
methodologies. There is no definable number of observations within a cluster because
of the specific hydrogeological conditions of each domain. Elaborating further, a small
cluster area with high heterogeneity might require more observation for the
performance of Kriging compared to a large homogenous area. The mechanistic
clustering, as proposed from the methodology, should be applied within the context of
the physical problem, i.e., geological, hydrogeological background and water
extraction. In this case study, six clusters were elected with a higher configuration not
yielding any results due to lack of observations within the clusters. In conclusion, the
coupling of OK with SOM yields more accurate results compared to simple use of OK
but is a data intensive process that in this point requires semi-manual optimization due
to multiple tests that are required to be performed.

Regarding the model results, Topology’s 1x1 performance was considered
adequate, although it had a high error rate. OK can describe the hydrogeologic
conditions of the case study, but by classifying the observations, OK can provide more
accurate results. The use of SOMs can greatly improve predictions even for simple
topologies such as 1x2 and 2x1. Small differences can greatly affect the results of
Kriging as can be seen when comparing the two topologies. This means that the
configuration of the topology is important and related to the physical problem at hand.
Topologies 1x2 and 2x1 divided the study area into two groups based on the location
of the observations and the change in the linear trend of the hydraulic head. In topology
2x2 the subgroups were subdivided in even greater detail, taking into account the
hydrogeologic characteristics of each group. In topologies 2x3 and 3x2 the groups
were subdivided in more detail, and this subdivision led to different results. In topology
2x3 the model was strangulated and did not provide acceptable results for a cluster,
while topology 3x2 provided the most accurate and best results compared to topology
1x1. Topology 3x2 was selected as the best fit for this case study based in all metrics.
In cluster 1 of mentioned topology, the correlation coefficient approached zero, but this
indicates that the cluster can only be described by the deterministic linear trend.
However, the low correlation coefficient score though does not affect the robustness
of the prediction since all other error values outperform the original topology. For the
optimal description of the hydrogeological conditions of the case study, 6 groups were
defined. The first group is located in the northwestern part of the study area, on the
porous aquifer with 25% infiltration. The second group is located in the cross section
of the 3 porous formations in the middle of the case study. The third group consists of
the coastal front with the most intensive agricultural activity. The fourth group is located
in the northern part of the case study influenced by the river discharge. The fifth group
is located on the mainland in a cross-sectional area of high-altitude aquifers. The last
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group is located on the coastal front but differs from the other coastal groups due to its
different morphology. Clustering performed with SOM provided detailed granularity in
grouping with what appeared to be reductive inputs. Coordinate inputs had the greatest
influence on grouping in the 1x2 and 2x1 topologies. In other topologies where there
was more room for diversification, the hydraulic head value strongly influenced the
grouping results. There are two explanations for this: First as a numerical input, the
SOM algorithm grouped observations that were in close proximity to each other and
had similar hydraulic head values. Second, the hydraulic head value is strongly
correlated with secondary parameters such as hydraulic conductivity or altitude.
Altitude is easily extracted as information, but measurements of hydraulic conductivity
are rare and subject to uncertainty. Thus, hydraulic head an input contains secondary
information that the SOM algorithm can use for improved grouping. In conclusion, the
pairing of SOM-enhanced OK can provide highly defined and accurate results
compared to a simple OK technique. The proposed method is generic meaning that it
can be applied to different case studies by simply changing the inputs as described
above and testing different topology configurations. This work provides spatial
predictions, future development of the proposed methodology aims to include the
temporal aspect of hydrogeologic conditions in a case study.
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Appendix | (Validation Criteria)

Topology | Cluster MAE RMSE Rho MaxAE
1X1 1 6.8919 | 11.6996 | 0.9207 | 56.4664
1X2 1 0.6943 | 1.4599 | 0.9845 12.466
1X2 2 10.539 | 14.9232 | 0.7093 | 41.9752
2X1 1 0.6943 | 1.4599 | 0.9845 12.466
2X1 2 6.8428 | 12.2325 | 0.9148 | 64.5159
2X2 1 6.1563 | 8.6636 | -0.1405 | 33.844
2X2 2 1.8896 | 5.9893 | 0.9665 | 73.2067
2X2 3 0.5932 | 1.1743 | 0.9698 9.3454
2X2 4 18.9308 | 33.9562 | -0.3423 | 115.3863
2X3 1 6.0106 | 7.8618 | 0.3614 | 20.1747
2X3 2 4.6657 | 6.0692 0.269 13.4004
2X3 3 0.9879 | 1.966 0.9433 | 13.4916
2X3 4 0.977 | 1.5051 | 0.9059 5.681
2X3 5 0.341 | 0.5069 | 0.9758 1.7339
2X3 6 10.539 | 14.9232 | 0.7093 | 41.9752
3X2 1 6.1563 | 8.6636 | -0.1405 | 33.844
3X2 2 0.4346 | 0.7138 | 0.9191 2.9375
3X2 3 0.8383 | 1.374 0.8751 5.0426
3X2 4 0.3874 | 0.5819 | 0.9381 1.7296
3X2 5 1.9819 | 3.0933 0.815 15.316
3X2 6 1.9263 | 3.0267 | 0.8312 | 15.5042
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