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Abstract: Employing the single item search algorithm of N dimensional database it is shown that:
First, the entanglement developed between two any-size parts of database space varies periodically
during the course of searching. The periodic entanglement of the associated reduced density matrix
quantified by several entanglement measures (linear entropy, von Neumann, Renyi), is found to
vanish with periodO(sqrt(N)). Second, functions of equal entanglement are shown to vary also with
equal period. Both those phenomena, based on size-independent database bi-partition, manifest a
general scale invariant property of entanglement in quantum search. Third, measuring the entangle-
ment periodicity via the number of searching steps between successive canceling out, determines N,
the database set cardinality, quadratically faster than ordinary counting. An operational setting that
includes an Entropy observable and its quantum circuits realization is also provided for implementing
fast counting. Rigging the marked item initial probability, either by initial advice or by guessing,
improves hyper-quadratically the performance of those phenomena.

Keywords: quantum search; quantum entanglement; grover; counting

PACS: 03.67.Lx

1. Introduction

Entanglement is believed to be a necessary resource for quantum computational
speedup. Especially to oracle based algorithms such as Grover’s algorithm (for the original
papers on the algorithm see [1–4] and for some later developments see e.g., [5–7]), the
question has been studied extensively see e.g., [8–12], and for general quantum algorithms
see the review [13].

This work reveals and studies analytically the periodic variation of the entanglement in
a generalized version of Grover’s search. In that general variant of the algorithm the initial
probability of its single marked item has been has rigged from probability 1

N to 0 ≤ p ≤ 1.
By rigging the initial probability of the marked item, (an act stemmed either by prior
information or by guess about the target item), a hyper-quadratic reduction of the classical
search complexity is achieved. The algorithm is mathematically formulated in terms of
the so called A f ≈ SU(2) “Oracle matrix algebra”, determined by a Boolean characteristic
function f : {1, 2, . . . ], N = 2n} → {0, 1}, c.f. [14–17]. The work proceeds by treating
a set S of cardinality N as a search-able database with no additional structure. Within
this formalism, search appears as a SU(2) periodic orbit, formed by a collection of qubits
encoding algorithm’s database, enumerated by S . Searching manifests itself by means of
quantum entanglement. This entanglement is developed between any two arbitrary parts
which may partitioned the database space. The interesting feature of this type of bi-partite
entanglement is its periodic variation in the course of searching. Indeed it is explicitly
shown that the entanglement, quantified by various measures, has a periodically vanishing
behaviour. The period of these vanishing moments is of order O( π

4
√

p ) for 0 < p� 1 and
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N � 1. Specifically for p = 1
N , i.e., in the case of standard search algorithm, the period is

O(π
4

√
N), i.e., it equals the order of search complexity of the algorithm (further analysis

below). This result motivates further the introduction of the fast counting problem. The
problem concerns the fast determination of the database cardinality N in less than N counts
of some sort to be determined (for a similar problem see [18]). The proposed solution shows
that by using the periodicity of entanglement the task of fast counting is accomplished
quadratically faster that N.

In outline this work, within the framework of the quantum search algorithm, deals
with the following three topics:

First, it demonstrates the periodic evolution of entanglement as a function of search
time (number of iterations) with period O(

√
N). This entanglement, quantified by mea-

sures such that Renyi, von Neumann and Wootters measures [19–21], refers to quantum
entanglement developed between any two parts comprising by r and n− r qubits of the
total n qubit database. The entanglement is found to be independent of the size r, a result
which implies a scale invariance (c.f. [22]) (Section 3).

Second, it proves generally that the periodic entanglement function of merit (e.g.,
Renyi entropy), takes all its possible values, at least one and at most four times within the
period interval of order O(

√
N); it also provides a specific example of this phenomenon

via a few qubit database (Section 4).
Third, it proposes a way to utilize the quadratic speedup in search time and the

consequential periodic variation of database entanglement in order to speedup the counting
of the dimension N of database in units of search trials. This proposal is complemented by
finding an operational way for simulating the measurements of entanglement by means
of an appropriate observable. This observable is identified as a generalized Y quantum
unitary channel for which a unitary dilation is determined, a Hamiltonian model of which
is also provided (Section 5).

Finally the work extends standard quantum search to the case of search with rigged
initial probability and explains some ensuing consequences on the entanglement periodicity
(Section 2).

2. Search with Rigged Marked Item Probability

(The reading of this section would require some knowledge of the algebraic framework
of “Oracle algebra” which is provided in Appendix A).

Define DM= {ρ ∈ MM(C); ρ† = ρ, ρ > 0, Trρ = 1}. Let {pj}N
j=1 be the initial distribu-

tion of items-vector in database Hilbert space. Mark a single item |x〉 with probability px ≡
p ∈ (0, 1), so that the initial vector |s̃〉 = ∑N

j=1
√pj|j〉 equals |s̃〉 = (cos α̃)|x〉+ (sin α̃)

∣∣x⊥〉,
where

∣∣x⊥〉 = 1√
1−p

∑j 6=x
√pj|j〉, and α̃ = cos−1(

√
p). Operating m times on the initial

state πN(ρ̃s) = |s̃〉〈s̃|, with search operator πN(ŨG) = exp(iθ̃πN(Σ2)), where θ̃ = π − 2α̃,
yields a state that projects on target item πN(ρ̃x) = |x〉〈x|, with probability

p̃(m) = Tr[πN(ρ̃(m))πN(ρ̃x)] = cos2(α̃−mθ̃). (1)

At m-th step the density matrix is

πN(ρ̃(m)) ≡ ŨG
m

πN(ρ̃s)ŨG
m†

(2)

=
1
2
(πN(Σ0) + s̃1(m)πN(Σ1) + s̃3(m)πN(Σ1)) (3)

with s̃1(m) ≡ 〈Σ1〉 = − sin(2mθ̃ − 2α̃), s̃3(m) ≡ 〈Σ3〉 = cos(2mθ̃ − 2α̃), where 〈Σ1,3〉 =
πS(ρ̃

(s)Σ1,3) the mean values of the algebra generators, abbreviated to s̃i ≡ 〈Σi〉. The first

time when p̃(m) = 1, equals m = m̃(p) = α̃
θ̃
=

cos−1(
√

p)

sin−1(2
√

p−p2)
. Initial and target states are

unitarilly related i.e., |s̃〉 = πN(R̃)|x〉 ≡ exp(−iα̃πN(Σ2))|x〉 [14–17].
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The evolved state
∣∣∣s̃(m)

〉
= πN(ŨG

m
)|s̃〉, projects on the target state with probability

p̃(m) = |
〈

x|s̃(m)
〉
|2, determined exclusively by the xx-matrix element of the combined

unitary operators πN(ŨG
m · R̃), explicitly p̃(m) = 〈x|[πN(ŨG

m · R̃) ◦ πN(ŨG
m · R̃)∗]|x〉,

i.e., by the xx-matrix element of its element-wise product with its complex conjugate. This
suggests that any unitary transformation on the initial vector |s̃〉 → V|s̃〉 that accepts the
marked vector as fixed point up to a phase i.e., V|x〉 = eiφ|x〉, gives an equal complexity
search algorithm; such transformations belong to U(1) ⊗ U(N − 1) group, hence the
algorithm’s search evolution orbit

∣∣∣s(m)
〉

belongs to the U(N)/U(1)⊗U(N − 1) = CPN−1

Grassmannian space ([20]; see also the hidden subgroup problem aspects of Grover’s
algorithm [23]).

The asymptotic limit when 0 < p � 1 and N → ∞, yields θ̃(p) = O(p
1
2 ) and

m̃(p) = O( π
4
√

p ). Some indicative choices of probability p would provide new possibilities
for search complexity and associated counting time (see related subsequent analysis). The
following cases of p are interesting for p̃(m̃(p)) = 1: (i) in general for 0 < p � 1, we
obtain m̃ ≈ O(1/

√
p); (ii) for p = 1/N and N � 1 we obtain the standard optimal result

m̃ ≈ O(π
4

√
N); (iii) for quadratically larger item probability p = 1/

√
N and N � 1, we

obtain a quadratic speed up of search complexity m̃ ≈ O(π
4 N1/4); (iv) slowing down

parameter m̃ below its classical value (with p = 1/N), is also possible: e.g., the choice
p = 1/N2 yields m̃ ≈ O(N), while if p = 1/N3 then m̃ ≈ O(N

√
N).

3. Reduced Subsystems of Database Qubits

Let N = 2n, k = 1 (one marked item, e.g., |1〉), and R = 2r, and let L = N/R. We
get the r-qubit reduced density matrix πR(ρ̃

(r)(m)) from the n-qubit one by tracing out
(n− r)-qubits (without including the marked item).

Next we adopt a unifying notation for describing the density matrix via index s, where
s = n for total qubits or s = r for r qubits and s = n− r for the rest of the qubits. Also
the corresponding dimension index S = 2s with values S = N = 2n or S = R = 2r and
S = L = 2n−r. Then we write

πS(ρ̃
(s)) = 1

2 (πS(Σ0) + (x(s) − (S− 1)w(s))πS(Σ3) + 2y(s)
√

S− 1πS(Σ1)). (4)

The following outline shows the parameters relevant to the two cases:

x(n), y(n), w(n) ↘
l ã(k, p), b̃(k, p) ←→ 〈Σ1,3〉

x(r), y(r), w(r) ↗
.

Given the relations x(n) = ã2, y(n) = ãb̃, w(n) = b̃2, the two sets of Bloch vector
components are related as

x(r) = x(n) + (L− 1)w(n),

y(r) =
√

x(n)w(n) + (L− 1)w(n),

w(r) = Lw(n),

where ã(m) = cos(α̃−mθ̃), and b̃(m) = 1√
N−1

sin(α̃−mθ̃). Also ã(m+ 2π
θ̃
) = ã(m) b̃(m+

2π
θ̃
) = b̃(m), which implies for the Bloch components that x(n)(m + π

θ̃
) = x(n)(m), y(n)(m +

π
θ̃
) = y(n)(m) and w(n)(m + π

θ̃
) = w(n)(m), which in turn implies the periodicity of the

Bloch vector components of the reduced density matrix x(r)(m + π
θ̃
) = x(r)(m), y(r)(m +

π
θ̃
) = y(r)(m) and w(r)(m + π

θ̃
) = w(r)(m), with exactly the same period T̃ = π

θ̃
=

π

sin−1(2
√

p−p2)
. Further we notice that due to special relation between reduced and un-

reduced density matrix Bloch vector components, the period of the later ones do not
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depend on the parameter r, for any (r, n− r) partition scheme of the set of database qubits;

e.g., for n− r = 5 and r = 3.

As a consequence of this property, any polynomial or analytic functional of the T̃-
periodic reduced density matrix will inherit its periodicity to the functional, which now is
also periodic with a new period depending on T̃. As a particular such functional we can
use e.g., the entropic measure of the entanglement developed between any two subsets
(r, n− r) of the total database. Such a function would also be periodic in the number of
search iterations. This is the origin of the entanglement periodicity between any two parts.

Explicitly for such a case the S dimensional density matrix would read

πS(ρ̃
(s)(m)) =


x(s) y(s) . . . ] y(s)

y(s) w(s) . . . ] w(s)

...
...

. . .
...

y(s) w(s) . . . ] w(s)

, (5)

where x(s) = 1
2 (1 + 〈Σ3〉), y(s) = 1√

S−1
〈Σ1〉, w(s) = 1

2(S−1) (1− 〈Σ3〉).

Remark 1. (1) By way of example consider the particular cases k = 1, 3 (one, three marked
items), with vectors |1〉, and {|2〉, |3〉, |4〉} respectively. The density matrix πN(ρ̃

(n)(m)) in its N
dimensional representation reads respectively,

πN(ρ̃
(n)(m)) =


F � � � � · · ·
� H H H H · · ·
� H H H H · · ·
� H H H H · · ·
...

...
...

...
...

. . .

, (6)

πN(ρ̃
(n)(m)) =



H � � � H · · ·
� F F F � · · ·
� F F F � · · ·
� F F F � · · ·
H � � � H · · ·
...

...
...

...
...

. . .


, (7)

where the elements of the matrices above have be given by means of the symbolsF, H,�, the explicit
values of which are as follows:

F =
1
2
+

1
2

s̃3(m) = cos2(α̃−mθ̃), (8)

H =
1

N − 1
(

1
2
− 1

2
s̃3(m)) =

1
N − 1

sin2(α̃−mθ̃), and (9)

� =
1√

N − 1
s̃1(m) = cos(α̃−mθ̃) sin(α̃−mθ̃). (10)

The structure of the matrix is a cross shape with the cross point filled with k× k stars and
crossing lines decorated with boxes while the rest of the sites are filled with triangles. While the
thickness and position of the crossing box varies depending on k, the shape of the cross is permanent
and characterizes the underline “Oracle algebra” structure of the algorithm.

(2) The matrices πN(ρ̃
(n)(m)), πR(ρ̃

(r)(m)) are homogeneous of degree 2 with respect to
their arguments ã, b̃.

(3) The success probability is periodic with respect to m, i.e., p̃(m + T̃) = p̃(m), with period
T̃ = π/θ̃. This implies that ã(m), b̃(m), are periodic functions with period 2T̃. Further any
homogeneous function of degree 2 with respect to ã(m), b̃(m), are also periodic with period T̃. E.g.,
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the components s̃1,3(m) and s̃(r)1,3 are periodic with period T̃. This property induces periodicity to
operator ρ̃(m) and to each of its matrix representations i.e., πS(ρ̃

(s)(m + T̃)) = πS(ρ̃
(s)(m)), for

S = N, R and s = n, r respectively.
(4) Analytic functions of ρ̃(m) (e.g., entanglement measures) are periodic with respect to m

with period equal to the period of the smallest non-zero degree monomial in ρ̃(m).
(5) If 0 < p < 1, e.g., p ≈ 1 then limp→1 m̃(p) = 1

2 , so practically the target item is reached
after a single step.

(6) In the uniform case of not rigged probability i.e., p = 1
N , the tilted parameters become

no-tilded i.e., angles α̃, θ̃ and parameters ã(m), b̃(m), become respectively α = arccos(
√

1/N),
θ = arcsin(2

√
N − 1/N), and a(m) = cos(α−mθ), b(m) = 1√

N−1
sin(α−mθ). For N � 1,

we have m̃→ O(
√

N).

Entanglement in quantum search: Next we investigate the periodicity of the variation
of quantum entanglement in the course of search. Firstly designate by m∗ and m∗∗, two
sequences of moments of projectivity of the density matrix, meaning steps m, when ρ(m)
becomes projective matrix, in which cases the entanglement is zero.

Entanglement measures: Next we specialize to some important cases of entanglement
measures, such as: Quantum Renyi (Ren), von Neumann entropy (vN), and Wooters
concurrence C(1,1) (W), with definitions

ERen(πR(ρ̃
(r)(m))) ≡ ERen(m) =

1
1− a

log2 Tr(πR(ρ̃
(r)(m))a), 0 < a 6= 1

EvN(πR(ρ̃
(r)(m))) ≡ EvN(m) = −Tr(πR(ρ̃

(r)(m)) ln πR(ρ̃
(r)(m)))

C(1,1)(πR(ρ̃
(r)(m))) ≡ C(1,1)(m) = max{0, λ1 − λ2 − λ3 − λ4} = 2

∣∣∣ãb̃− b̃2
∣∣∣,

respectively [19–21], for reduced density matrix πR(ρ̃
(r)(m)).

For Wooters concurrence, the λi’s are in decreasing order the square roots of the
eigenvalues of the matrix ρρ̃ where ρ = (σy ⊗ σy)ρ∗(σy ⊗ σy).

In any representation πS, the reduced matrix πS(ρ
(s)(m)) has the eigenvalues λ0(m) =

0, with algebraic multiplicity S − 2, and λ1,2 = 1
2 (1 ±

√
1 + 4(1− S)(wx− y2)) (c.f.

Appendix B, Proof of Lemma 2).
The quantum Renyi entropy (0 < a 6= 1) is

ERen(λ1,2) =
1

1− a
log2(λ

a
1 + λa

2), (11)

then recall that wx− y2 = (L− 1)(ã− b̃)2b̃2, where ã = cos(α̃−mθ̃), b̃ = 1√
N−1

sin(α̃−
mθ̃),

Let any functional measure F : DN → C, on the density matrix set DN , either of
polynomial or analytic type, such that the following is valid, F(ρ) = 0 iff ρ2 = ρ. Consider

the density matrix πR(ρ̃
(n)(m)) = ŨG

m|s̃〉〈s̃|ŨG
†m

, when it is reduced to a state of arbitrary
r qubits i.e., πR(ρ̃

(r)) = Trn−rπN(ρ̃
(n)).

Proposition 1. The following properties are. satisfied by ρ̃(r)(m):
(i) it is a periodic state wrt m, i.e., πR(ρ̃

(r)(m + T̃)) = πR(ρ̃
(r)(m)) in any representation

πR of the oracle algebra A f ;
(ii) during the course of search it becomes a projective state (pure state) for any r i.e.,(

πR(ρ
(r)(m̃)

)
)2 = πR(ρ

(r)(m̃)) at moments given by arithmetic progressions m̃∗ = {m̃ +

kT̃}∞
k=0 or m̃∗∗ = {m̃− 1

θ̃
arctan(

√
N − 1) + kT̃}∞

k=0. The asymptotic form of these sequences

for the case N � 1, and in general 0 < p � 1, are m̃∞
∗ = {(2k + 1)

⌊
π

4
√

p

⌋
}∞

k=0 or m̃∞
∗∗ =
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{k
⌊

π
2
√

p

⌋
}∞

k=0, and in particular in the uniform case, when p = 1
N , we have respectively that

m̃∞
∗ = {(2k + 1)

⌊
π
4

√
N
⌋
}∞

k=0, or m̃∞
∗∗ = {k

⌊
π
2

√
N
⌋
}∞

k=0;
(iii) the extremal points of Renyi functional ERen are: the sequences of minima are identified

as m̃∗ and m̃∗∗ so that m̃∗ > m̃∗∗, and the maxima m̃♦♦ = {m̃ − γ

2θ̃
− kT̃}∞

k=0 and m̃♦ =

{m̃♦♦(k) + T̃
2 }∞

k=0 so that m̃♦ > m̃♦♦.

Figures 1 and 2 display the three measures for p = 1/N (Figure 1), and Renyi entropy
for p = 1/N, 1/

√
N (Figure 2); details in figure captions.

The important point about these displays is that all zeros of the entropic measures are
placed on the horizontal line of m’s and they belong to two inter-lasing sequences, m̃∗ and
m̃∗∗. This property is true for any of the three displayed measures i.e., R, vN and W. The
distance between every second zero equals the period T̃. This period is in fact related to
success probability p via the formula p = 1

2 (1± cos(π/T̃)), (see Appendix B).
Concerning the behaviour of the entropy vs. #steps in Figures 1 and 2: The plots of all

entropic measures have common intervals of monotonicity, common positions of maxima
and minima as well as that their common minima are vanishing points i.e., zeros.

Noticeable is the fact that the common intervals and minima, maxima, refer only to the
entropic measures between them and not between the measures and the curve of success
probability, c.f. the broken line vs. full lines in Figure 1.

Also this situation is independent from the relative size of the splitting r vs. n− r of
database qubits. Therefore we have a scale invariance of the position of the zeros for all
entropy measures and all database splitting schemes.

Figure 3, displays the equal entanglement configurations determined by investigating
their contours on the r, m plane where various quantum search algorithms are located.

Figure 1. Parameters N = 212, p = 1/N, Success probability: Blue dashed line, Entropies: von
Neumann: Red line r = 2; Orange line r = 3, Renyi: Blue line r = 2, a = 0.7; Purple line r = 3, a = 0.7,
Concurrency C1,1: Green line.
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Figure 2. Success prob.: Red line for p = 1/N; Blue line for p = 1/
√

N, Renyi entropy: Red dashed
line for p = 1/N, r = 2, a = 0.7, Renyi entropy: Blue dashed line for p = 1/

√
N, r = 2, a = 0.7.

Figure 3. For N = 212, a = 0.7, 2 ≤ r ≤ 11, 0 ≤ m ≤ 200, Renyi entropy (Contour Plot).

The following statements refer to the content of that figure:
(i) The equal Renyi entropy contours are organized in the contour curves wrt the

iterations m and the number of remaining qubits r after database splitting;
(ii) Tracing any contour provides all pairs (m, r) of fixed entanglement developed after

m iterations between the two splitting sets with r and n− r qubits respectively. Starting
from e.g., point (mmax, r), of maximal m (box), and by tracing counter-clockwise its contour
we encounter decreasing and increasing of values of m and r as it is indicated by up and
down arrows ↓, ↑ in the figure. Before returning to the initial point all equal entropy points
have been traced out with landmarks the points (md, rmax) (disk), (mmin, rd) (diamond)
and (md, rmin) (circle), where md, rd be the middle points. Operationally this indicates the
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various ways one can generate an equally entangled bi-partition of database by fiddling
around with interaction time m and splitting dimension R (R = 2r, N/R = 2n−r);

(iii) All m∗, m∗∗ periodic zero-entanglement instances correspond to straight vertical
parallel lines (dark in black-white or blue in color plot), which are independent from the
values of r; (c.f. a similar scaling invariance discussed in [22]).

To provide an analytic explanation of the situation on Figure 3 we study the quantum
Renyi entropy with respect to the variables m, r which is

ERen(πR(ρ̃
(r)(m))) ≡ ERen(m, r) =

1
1− a

log2(λ
a
1 + λa

2) (12)

where λ1,2 = 1
2 (1±

√
1 + 4(1− S)(wx− y2)).

By introducing the effective variables as

R̂(r) : =
2(N/R− 1)(1− S)

N − 1
(13)

M̂(m) : = (
√

N sin(2α̃− 2mθ̃ + ω)− 1)2 (14)

the entropy reads

ERen(m, r) =
1

1− a
log2

{
1
2a

(
1 +

√
1 + M̂(m)R̂(r)

)a
+

1
2a

(
1−

√
1 + M̂(m)R̂(r)

)a}
. (15)

This formula implies that ERen is constant with respect to the variation of M̂(m) and
R̂(r) iff their product M̂(m)R̂(r) remains constant when variables m and r are varying.

4. Equal Entanglement Pre-Images

Regarding the number of iterations of the algorithm m as a continuous variable for
the function ERen(m) and taking into account that ERen(m) is periodic with period T̃, a
reasonable question can be posed: given a certain amount of entanglement what are the
values of m associated with it, lying in the basic period interval [0, T̃]? Equivalently, what
are the pre-images of the entanglement function ERen(m) for fixed m ∈ [0, T̃]?

Lemma 1. The function ERen(m) takes all its possible resulting values, at least one and at most
four times in the basic period interval [0, T̃].

Proof. (A short technical part of the proof is deferred to Appendix B and its main part is
provided below).

Let the points A, B, B′, C, D, D′, E with abscissas in interval [0, T̃] as follows

A(mA, yA) ≡ A(m̃∗∗(0), ERen(m̃∗∗(0))) (16)

B(mB, yB) ≡ B(m̃♦♦(0), ERen(m̃♦♦(0))) (17)

B′(mB′ , yB′) ≡ B′(m̃♦♦(0), 0) (18)

C(mC, yC) ≡ C(m̃∗(0), ERen(m̃∗(0))) (19)

D(mD, yD) ≡ D(m̃♦(0), ERen(m̃♦(0))) (20)

D′(mD′ , yD′) ≡ D′(m̃♦(0), 0) (21)

E(mE, yE) ≡ E(m̃∗∗(1), ERen(m̃∗∗(1))) (22)

Moreover the function ERen(m) is strictly increasing in each one of the intervals
[mA, mB], [mC, mD] and strictly decreasing in each one of the intervals [mB, mC], [mD, mE],
since for all m ∈ [0, T̃] it holds that the sign of its first derivative on [0, T̃] is positive for
mA < m < mB , mC < m < mD and negative for mB < m < mC, mD < m < mE (c.f.
Figure 4).
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Remark 2. Remark: d
dm ERen(m) is continuous on [0, T̃] with respect to m and vanishes only at

points mB, mC, mD, mE . Therefore, it preserves its sign in each one of the open intervals.
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Figure 4. Plots of ERen(m) and tent map f (m) for a = 0.7, n = 12, r = 3, p = 1/N. Red dots stand for
the approximate points of equal entanglement.

Applying the Intermediate Value Theorem for ERen(m) and taking into account its
monotonicity, we obtain that:

(i) if c is a number between ERen(mA) and ERen(mB), then there are exactly four
points m1,2,3,4 s.t. ERen(mi) = c, i = 1, 2, 3, 4 and m1 ∈ (mA, mB′), m2 ∈ (mB′ , mC), m3 ∈
(mC, mD′) and f inally m4 ∈ (mD′ , mE).

(ii) if c = ERen(mB), then there are exactly three points m1,2,3 s.t. ERen(mi) = c,
i = 1, 2, 3 and m1 = mB, m2 ∈ (mC, mD′), m3 ∈ (mD′ , mD)

(iii) if c is a number between ERen(mB) and ERen(mD), then there are exactly two m1,2
s.t. ERen(m) = c, i = 1, 2 and m1 ∈ (mC, mD′), m2 ∈ (mD′ , mE).

(iv) if c = ERen(mD) (global maximum) then there is unique point m s.t. ERen(m) = c,
m = mD.

Although we have proved the existence of mi’s, the corresponding equations can not
be easily solved analytically but mi’s can be approximated. To this end we consider the
piece-wise linear function f (m) below which is a tent map for both the intervals [mA, mC],
[mC,mE], and reads

f (m) =


sAB(m−mA) + yA, mA ≤ m < mB
sBC(m−mB) + yB, mB ≤ m < mC
sCD(m−mC) + yC, mC ≤ m < mD
sDE(m−mD) + yD, mD ≤ m ≤ mE,

(23)

where sPQ equals the slope of the line determined by the points P, Q

SPQ =
yP − yQ

xP − xQ
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and then we solve the equations f (mi) = c instead of ERen(mi) = c.

Remark 3. Recall that the tent map with parameter µ is the real-valued (and continuous) function

fµ(x) = µ min{x, |1− x|} =
{

µx, 0 ≤ x < 1/2
µ(1− x), x ≥ 1/2

(24)

where µ is a positive real constant and fµ maps [0, 1] on to itself. Our function f (m) is an obvious
linear generalization of the tent map for both the intervals [mA, mC], [mC,mE].

Numerical Example: (c.f. Figure 4, red dots stand for the approximate points of equal
entanglement).

ERen(m) = 1
1−a log2

{
λa

1(m) + (1− λ1(m))a}, a = 0.7, n = 12, r = 3, p = 1/N,
(a) for c = 0.52, the four points are m1 = 14.0839, m2 = 35.6796, m3 = 63.6776,

m4 = 86.6127,
(b) for c = ERen(mB) = 0.91675, the three points are m1 = mB = 24.8817, m2 = 74.3453,

m3 = 74.9450,
(c) for c = ERen(mB)+ERen(mD)

2 = 0.933621, the two points are m1 = 74.7452, m2 = 75.5451,
(d) for c = ERen(mD) = 0.948567, the unique point is k = mD = 75.1452.

Remark 4. Since θ̃(p) = O(p
1
2 ) we have that T̃ = π

θ̃
= O(p−

1
2 ). E.g., For p = 1/N and

p = 1/
√

N we have that T̃ = O(
√

N) and T̃ = O( 4
√

N) respectively.

5. Fast Counting and the Entropy Observable

Counting the number of elements of a given finite set S , requires a number of counts
equal to the cardinality N of set S ; one count for each element, as common sense asserts.
Fast counting is a novel method that solves this problem in quantum setting, achieving
counting in quadratically less than N counts, by casting the counting problem in the
language of quantum algorithms. This is shown to be possible by employing Grover’s
fast quantum search algorithm, after it has been reformulated mathematically in terms of
the so called “Oracle matrix algebra”, by treating set S as a search-able database. Within
this formalism, search appears as a SU(2) periodic orbit, formed by a collection of qubits
encoding the database space of the algorithm. It has been previously shown that multi-
particle entanglement developed among the qubits of two parts of a bi-partition of the
database Hilbert space is periodic with respect to the number of queries which is of the
order of O(

√
N). Therefore measuring the entanglement by means of any of the measures

developed before would determines the cardinality N of S in only O(
√

N) measurements
or counts. Operationally the period finding amounts to determine the distance (expressed
as numbers of queries) between any two successive zeros for some chosen measure. In
effect the counting method proposed would lead to a quadratic reduction of the number
of necessary N counts. To emphasize the operational character of the counting method
an appropriate quantum observable, namely the Entropy observable, will be introduced
and be implemented by means of a specific quantum circuit. Measuring the search step
between successive zeros of that observable on a database reduced density matrix would
allow the determination of cardinality N quadratically faster than usual counting as was
mentioned.

Quantum measurement of Entropy observable: Next we provide a operational way
of obtaining the entropy SL of the reduced density of matrix of quantum search at the
m-th step. Since SL provides a measure of entanglement between database qubits, then a
quantum measurement like estimation to SL and its possible implementation would be an
indispensable aspect of the algorithm. The following lemma summarizes the operational
procedure.
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Lemma 2. The entropy SL(ρ) of the reduced evolved density matrix ρ ≡ ρ(m;r) equals

SL(ρ) = 1−
〈
E(ρ⊗2)(Σ3 ⊗ Σ3)

〉
,

where the the map

E(ρ⊗2) =
1
2

ρ⊗2 +
1
2
(Σ2 ⊗ Σ2)ρ

⊗2(Σ2 ⊗ Σ2)
†

identified as a generalized Y channel is unitarilly generated as

E(ρ⊗2) = TrauxV(ρaux ⊗ ρ⊗2)V†,

where a unitary dilation V = eiH is generated by the Hamiltonian

H = − arctan(
1√
2
)σ2 ⊗ (Σ2 ⊗ Σ2),

by means of an auxiliary qubit in state ρaux = |0〉〈0|.

Closing we note further that for employing other measures for the counting method,
e.g., the Renyi entropy etc we will need an extension of the previous Lemma. Indeed a
general measure in the form of Renyi entropy would require positive integer powers of the
reduced density (recall that the definition of Renyi entropy involves real powers of density
matrix in general), to be provided by means of an operational method. To address this
question we formulate the next Lemma 3.

Lemma 3. Let the S dimensional reduced density matrix πS(ρ̃
(s)(m)), its `-th power for all

N 3 ` ≥ S equals

πS(ρ̃
(s)(m))` = f`(t)πS(ρ̃

(s)(m))S−1 − h`(t)πS(ρ̃
(s)(m))S−2

where t ≡ λ1λ2 be the product of the non-zero eigenvalues λ1, λ2 of πS(ρ̃
(s)(m)), and h`+1(t) =

t f`(t), where f`(t) is related to Chebyshev polynomials of the second kind U`(t), via relation
b`(t) = U`−1(

t
2 ), with

f`+S(t) = −
1
2

{
(2t− 1)

√
t
`−1

b`(1/
√

t)
}
+ 2−`−1

(
(1−

√
1− 4t)` + (1 +

√
1− 4t)`

)
,

with initial conditions fS(t) = 1 and fS+1(t) = 1− t.

6. Discussion and Conclusions

While addressing the question of the resource responsible for the computation advan-
tage of a given quantum algorithm or some other quantum technological task, the quantum
entanglement has been considered as the main factor. However there are some important
obstructions for such a claim: first an ambiguous measure of quantum advantage should
be chosen and its causal relation with a measure for entanglement should be demonstrated.
While there are examples where such a claim is corroborated, other cases are known
where this is not evident [24]. As alternatives to such counterexamples other resources
beyond quantum entanglement have been considered e.g., coherence, distinguish-ability,
contextuality, interference etc (see [25] and references therein).

The paper in fact relates its content with the problem of resources of the quantum
advantage exhibiting by quantum algorithms though it does not addresses it directly. This
assertion is based on the fact that the fast counting problem that is investigated aims at
determining the size(cardinality) N of a given set S has two solutions. A classical solution
(the convention element counting procedure) with complexity(counting cost) N, and a
quantum solution, suggested in the paper, with complexity(counting cost)O(sqrt(N)). The
source of quadratic speed in counting is by construction due to the quantum entanglement
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developed among elements of the set S, following the formalism of quantum search
algorithm or some of its variants.

Measuring the number of iterations of the algorithm intervening among two successive
canceling out (of any measure) of entanglement, determines the period O(sqrt(N)), from
which the integral part N is obtained. It is in fact the entanglement among database parts
via its quadratic-ally fast periodic zeroing that promotes entanglement to be a resource of
the computational (counting) advantage.

Several questions can be put forward for future investigations: is the studied phe-
nomenon of the entanglement periodicity robust under e.g., tri-partition or even successive
partitions of database total state vector space; how is the periodic oscillation of entangle-
ment could be re-configured in the case of collective quantum search [16], where multiple
searchers are combining their algorithms by merging and/or concatenating their oracle alge-
bra representations to achieve additional search complexity reductions? Can the accelerated
period of entanglement is valid for other measures of correlation like the ones mentioned
previously? How the fast counting procedure is modified in the case of open, dissipative
extensions of quantum search as those analysed in [25] and the more complicated ones as
in [15,17] as well?
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Appendix A. Oracle Algebra

In the following the definition of the oracle algebra and its representations are pre-
sented.

Definition A1. Let a Boolean function f : ZN → Z2, and the orthogonal vectors |x〉 = 1√
ν ∑N

i=1

f (i)|i〉 and
∣∣x⊥〉 = 1√

ν
⊥ ∑N

i=1 (1− f (i))|i〉, with ν = ∑N
i=1 f (i), and ν

⊥
= ∑N

i=1(1 − f (i)),

which generate the space H2 ≡ Vx = span{|x〉,
∣∣x⊥〉}≈ C2, and the unit element Σ0 =

|x〉〈x|+
∣∣x⊥〉〈x⊥

∣∣. The oracle algebra is defined as the vector space A f = {M ∈ CN×N ;
MΣ0M† = Σ0}, generated by the elements

Σ1 = |x〉
〈

x⊥
∣∣∣+∣∣∣x⊥〉〈x|Σ2 = −i|x〉

〈
x⊥
∣∣∣+ i

∣∣∣x⊥〉〈x|Σ3

= |x〉〈x| −
∣∣∣x⊥〉〈x⊥

∣∣∣,
with u(2) algebra commutation relations [Σα, Σb] = 2iΣc (cyclically), and [Σ0,everything] =
0, i.e., A f ≈ u(2), oracle algebra is isomorphic to u(2) matrix algebra. There are two basic
matrix representations of A f provided by the algebra homomorphisms π2 and πN as follows: the
two dimensional π2 : A f → Lin(H2), and the N dimensional πN : A f → Lin(HN), where
HN = span{|i〉}N

i=1. Explicitly any element A ∈ A f is represented in A f , by a 2-dim matrix
π2(A) = π2(Σ0)Aπ2(Σ

†
0), or by a N-dim matrix πN(A) = πN (Σ0)AπN (Σ

†
0) respectively.
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Example A1. Let A = (Aij) ∈ A f , and if Px = |x〉〈x|, Px⊥ =
∣∣x⊥〉〈x⊥

∣∣, i.e., Σ0 = Px + Px⊥ ,

then the projection of A in Vx space via π2(A) = π2(Σ0)Aπ2(Σ
†
0) = (Px + Px⊥)A(Px + Px⊥),

leads to the matrix π2(A) =

(
α β
γ δ

)
, where the matrix elements are

〈x|A|x〉 =
N

∑
i,j=1

χiχj Aij =
k

∑
i=1

k

∑
j=1

Aij = α,

〈x|A
∣∣∣x⊥〉 =

N

∑
i,j=1

χi(1− χj)Aij =
k

∑
i=1

N

∑
j=k+1

Aij = β

〈
x⊥
∣∣∣A|x〉 = N

∑
i,j=1

(1− χi)χj Aij =
N

∑
i=k+1

k

∑
j=1

Aij = γ

〈
x⊥
∣∣∣A∣∣∣x⊥〉 =

N

∑
i,j=1

(1− χi)(1− χj)Aij

=
N

∑
i=k+1

N

∑
j=k+1

Aij = δ

As to the N-dim representation we can compute that πN(A) ≡ πN (αΣ0 + βΣ1 + γΣ2 +
δΣ3), where α = Tr(πN(A)πN(Σ0)), δ = Tr(πN(A)πN(Σ3)), γ = Tr(πN(A)πN(Σ1)) and
δ = Tr(πN(A)πN(Σ2)), which provides the matrix

πN (A) =

 (α + δ) 1
k 1̂k×k (β− iγ) 1√

k(N−k)
1̂k×(N−k)

(β + iγ) 1√
k(N−k)

1̂(N−k)×k (α− δ) 1
N−k 1̂(N−k)×(N−k)

,

where (1̂st)ij = 1, 1 ≤ i ≤ s, 1 ≤ j ≤ t.
Additionally regarding the representations of the generic element

A = α|x〉〈x|+ β|x〉
〈

x⊥
∣∣∣+ γ

∣∣∣x⊥〉〈x|+ δ
∣∣∣x⊥〉〈x⊥

∣∣∣,
treated above we can show that

π2(An) = (π2(A))n =

(
α β
γ δ

)n

,

as manifestation of the homomorphic property of π2. Indeed by means of the operators Pab = |a〉〈b|,
where a, b = {x, x⊥}, that satisfy the relations PabPa′b′ = Pab′δba′ , and their corresponding N-
dim matrix representations 1√

ij
1̃i,j, where i, j ∈ {k, N − k}, which satisfy the respective relations

1√
ij

1̃i,j
1√
i′ j′

1̃i′ ,j′ =
1√
ij′

1̃i,j′δji′ , we can verify that by direct calculation that the matrix form of A

in space Vx satisfies the mentioned property.
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Numerical examples: For N = 4, k = 1, with f (1) = 1 and zero elsewhere, we obtain

π4(Σ−) =
1√
3


0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

, π4(Σ+) =
1√
3


0 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

,

π4(Σ1)=
1√
3


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

, π4(Σ2)=
i√
3


0 1 1 1
−1 0 0 0
−1 0 0 0
−1 0 0 0

,

π4(Σ3)=


1 0 0 0
0 − 1

3 − 1
3 − 1

3
0 − 1

3 − 1
3 − 1

3
0 − 1

3 − 1
3 − 1

3

, π4(Σ0) =


1 0 0 0
0 1

3
1
3

1
3

0 1
3

1
3

1
3

0 1
3

1
3

1
3

.

Appendix B. Proofs

Proof of Lemma 1. The statement of lemma follows immediately from the Intermediate
Value Theorem, which states that if g is a real single valued continuous function on a
closed interval [a, b] and c is any number between g(a) and g(b) inclusive, then there is at
least one number k in the closed interval such that g(k) = c. Moreover, if g(a) 6= g(b) then
k ∈ (a, b).

Proof of Lemma 2. Consider the trace inner product 〈A, B〉CR×R = 1
R TrAB†, for A, B ∈

M(CR). For oracle algebra generators A f = span{Σi}3
i=0, we obtain

〈
Σi, Σj

〉
CR×R = δij,

so the density matrix ρ(m;r) = 1
2 (Σ0 + s(m;r)

1 Σ1 + s(m;r)
3 Σ3), is expressed as ρ(m;r) = 1

2 (Σ0 +

〈Σ1〉Σ1 + 〈Σ3〉Σ3), where s(m;r)
i =

〈
Σi, ρ(m;r)

〉
CR×R

, is abbreviated to s(m;r)
i ≡ 〈Σi〉. For

powers of Bloch vector components e.g., (s(m;r)
i )2 ≡ 〈Σi〉2, via property Tr(AB)× Tr(CD) =

Tr(A⊗ B)(C⊗ D), we write (ρ ≡ ρ(m;r)),

(Tr(ρΣi))
2 = Tr((ρΣi)⊗ (ρΣi)) = Tr((ρ⊗ ρ)(Σi ⊗ Σi)),

which after the identification Tr((ρ⊗ ρ)(Σi ⊗ Σi)) ≡ 〈Σi ⊗ Σi〉, with 〈Σi ⊗ Σi〉 the expecta-
tion value of observable Σi ⊗ Σi in state ρ⊗2, one obtains 〈Σi〉2 = 〈Σi ⊗ Σi〉. Applying this
same idea to e.g., the linear entropy function for state ρ(m;r) defined as

SL(ρ
(m;r)) = 1− Trρ(m;r)2 = 1− [(s(m;r)

1 )2 + (s(m;r)
3 )2],

it is obvious that we need to devise an operational way to obtain the value of entropy
in the course of search/counting i.e., the SL vs. m. To this end we express the linear
entropy in terms of the expectation value of observable Σ3 ⊗ Σ3 + Σ1 ⊗ Σ1, of a doubled
version of the initial quantum system being in state ρ⊗ ρ, as follows SL(ρ

(m;r)) = 1−
〈Σ3 ⊗ Σ3 + Σ1 ⊗ Σ1〉. Utilizing the identity, Σ1 = e

iπ
2 Σ2 Σ3e−

iπ
2 Σ2 , we write

Σ1 ⊗ Σ1 + Σ3 ⊗ Σ3 = Σ3 ⊗ Σ3 + e
iπ
2 (Σ2⊗1+1⊗Σ2)Σ3

⊗ Σ3e−
iπ
2 (Σ2⊗1+1⊗Σ2)

≡ E∗(Σ3 ⊗ Σ3),

where unitary CP map Σ3 ⊗ Σ3 → E∗(Σ3 ⊗ Σ3), has been introduced, with generators
E∗ ≡ {1,e

iπ
2 (Σ2⊗1+1⊗Σ2)}. The mean value in question is cast in the form

〈Σ1 ⊗ Σ1 + Σ3 ⊗ Σ3〉 = 〈E∗(Σ3 ⊗ Σ3)〉 = 〈E(ρ⊗ρ)(Σ3 ⊗ Σ3)〉,
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where the dual CP map

ρ⊗2 → E(ρ⊗2) = 1
2 ρ⊗2 + 1

2 e−
iπ
2 (Σ2⊗1+1⊗Σ2)ρ⊗2e

iπ
2 (Σ2⊗1+1⊗Σ2)

has been introduced.
Next we provide a unitary dilation to the map E which eventually determines a

Hamiltonian for the measurement of entropy. Let an auxiliary quantum system with two
states Haux = span{|0〉, |1〉}, described by density matrix ρaux = |0〉〈0|, and the unitary
operator V onHaux ⊗Hsys ⊗Hsys

V =
1√
2

(
1R ⊗ 1R −e

iπ
2 (Σ2⊗1+1⊗Σ2)

e−
iπ
2 (Σ2⊗1+1⊗Σ2) 1R ⊗ 1R

)

=
1√
2

(
1R ⊗ 1R Σ2 ⊗ Σ2
−Σ2 ⊗ Σ2 1R ⊗ 1R

)
.

If the total system is described initially by ρaux ⊗ ρ⊗2 and evolves as ρaux ⊗ ρ⊗2 →
V(ρaux ⊗ ρ⊗2)V†, and if the interaction is terminated by decoupling auxiliary system from
the main system via Traux, the partial trace over the auxiliary system), then this leads to
map E i.e., E(ρ⊗2) = TrauxV(ρaux ⊗ ρ⊗2)V†.

Due to relation e±
iπ
2 (Σ2⊗1+1⊗Σ2) = e±

iπ
2 Σ2 ⊗ e±

iπ
2 Σ2 = ±iΣ2 ⊗±iΣ2 = −Σ2 ⊗ Σ2, the

map becomes E(ρ⊗2) = 1
2 ρ⊗2 + 1

2 (Σ2⊗Σ2)ρ
⊗2(Σ2⊗Σ2)

†. In this form E is identified with
a collective Y unitary channel of two systemHsys⊗Hsys with generators E ≡ { 1√

2
1, 1√

2
Σ2⊗

Σ2}, and a unitary dilation V as in the rhs of the last equation above.

Proof of Lemma 3. The following items are valid (abbreviations: x, y, w stand for x(s), y(s),
w(s) respectively, and ρ for πS(ρ̃

(s)(m))):
(i) The characteristic equation and the eigenvalues of rank 2 matrix ρ are respec-

tively λS−2(λ2 − λ− (S− 1)y2) = 0 and λ0 = 0 of multiplicity S− 2, and λ1,2 = 1
2 (1±√

1− 4(wx− y2)(S− 1)) with multiplicity 1.
(ii) Due to Cayley-Hamilton theorem it holds that ρS−2(ρ2 − ρ− (S− 1)y21S) = 0S,

namely ρS−2(ρ2− ρ + t1S) = 0S, where equality t = −(S− 1)y2 = λ1λ2 arises from Vieta’s
formula ∑i 6=j xixj =

an−2
an

, valid for any n degree polynomial P(x) = anxn + · · ·+ a1x + a0
with roots xi, i = 1, 2, . . . ], n.

(iii) We have that ρS = ρS−1 − tρS−2 and for all N 3 ` ≥ S we assume (c.f. [26]),

ρ` = f`(t)ρS−1 − h`(t)ρS−2,

from which we obtain hS(t) = t, fS(t) = 1 and fS+1(t) = 1 − t. Further ρ`+1 =
f`(t)ρS − h`(t)ρS−1 = f`(t)(ρS−1 − tρS−2) − h`(t)ρS−1, so f`+1(t) = f`(t) − h`(t), and
h`+1(t) = t f`(t), and thus

f`+1(t) = f`(t)− t f`−1(t).

This recurrence relation reminds the Chebyshev polynomials relation viz. b`+1(t) =
tb`(t)− b`−1(t), where the variable term t however appears in the “wrong” side. Motivated
by this feature we proceed as follows: we solve our recurrence relation and compare the
solution the the Chebyshev polynomial solution. Anticipating the final result we say that
the association between our polynomial system and Chebyshev polynomials is in terms of
a in-homogeneous relation with variable coefficients and different argument between the
two types of polynomials c.f. the stated relation in Lemma 3.

To proceed with the solution of our recurrence relation we consider the shifted
sequence f`+S(t), ` = 0, 1, 2, . . . ], which is identified with the intermediate sequence
a`(t) as f`+S(t) = a`(t). Solving the recurrence relation obeyed by a` viz. a`(t) =
a`−1(t) − ta`−2(t), a0(t) = 1, a1(t) = 1 − t, and compare them with the solution of
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Chebyshev polynomials of the second kind U`(t), via another intermediate sequence
b`(t) = U`−1(

t
2 ), we obtain the solution

f`+S(t) = −
1
2
[(2t− 1)

√
t
`−1

b`(1/
√

t)]+

2−`−1
(
(1−

√
1− 4t)` + (1 +

√
1− 4t)`

)
satisfying the initial conditions fS(t) = 1 and fS+1(t) = 1− t.

Proof. (Proposition): (i) C.f. Remarks: 3; (ii) To show the projectivity of the reduced matrix
recall the definition πR(ρ

(r)(m̃))2 = πR(ρ
(r)(m̃))

Verifying this relation we obtain that

x2 + (R− 1)y2 = x

xy + (R− 1)yw = y

y2 + (R− 1)w2 = w

Recall that the definition of x, y, w and the additional relation from the main text
(indices have been drop)

x = a2 + (L− 1)b2

y = ab + (L− 1)b2

w = Lb2

a2 + (N − 1)b2 = 1

We discern the following cases:
(I) If y = 0, then

x2 = x

(R− 1)w2 = w

ab + (L− 1)b2 = 0

(Ia) If b = 0 then a2 + (N − 1)b2 = 1 becomes a2 = 1, equivalently m = m̃ = ã
θ̃
.

Due to the periodicity of πR(ρ
(r)(m)), we obtain the arithmetic progression m = m̃∗ =

{m̃ + kT̃}∞
k=0. Ib) If b 6= 0 then, from Equation (10) we verify that no new solution exist for

m. II) If y 6= 0 then following a similar procedure we find a second arithmetic progression
for m viz. m = m̃∗∗ = {m̃− 1

θ̃
arctan(

√
N − 1) + kT̃}∞

k=0. The asymptotic forms m̃∞
∗ , m̃∞

∗∗
follow directly from the above formulas.

Proof. (Statements): Root finding of entropy functions Next we prove the following state-
ments:
(i) the measures of entropy of entanglement (von Neumann), quantum Renyi entropy and
linear entropy mentioned in the main text, vanish simultaneously during search at step
m iff m = m̃∗ or m̃∗∗. The is direct verification and we only need to recall the eigenvalues
reported above in the proof of Lemma 2 and the expression of the entropies in terms of
the non zero eigenvalues viz. ERen = 1

1−a log2
(
λa

1 + λa
2
)
, ENeum = −λ1 ln λ1 − λ2 ln λ2 and

ELin = 1− λ2
1 − λ2

2; (ii) the distance between every second zero of the entropies is related
to probability p via formula p = 1

2 (1± cos(π/T̃)) . Indeed, this distance equals the period
T̃ = π/θ̃, so 4(p− p2) = sin2(π/T̃) and the result follows.
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