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This paper introduces the Electric Vehicle Routing Problem with Drones (EVRPD), the first VRP combining
electric ground vehicles (EVs) with unmanned aerial vehicles (UAVs), also known as drones, in order to deliver
packages to customers. The problem’s objective is to minimize the total energy consumption, focusing on the
main non‐constant and controllable factor of energy consumption on a delivery vehicle, the payload weight.
The problem considers same‐sized packages, belonging to different weight classes. EVs serve as motherships,
from which drones are deployed to deliver the packages. Drones can carry multiple packages, up to a certain
weight limit and their range is depended on their payload weight. For solving the EVRPD, four algorithms of
the Ant Colony Optimization framework are implemented, two versions of the Ant Colony System and the
Min–Max Ant System. A Variable Neighborhood Descent algorithm is utilized in all variants as a local search
procedure. Instances for the EVRPD are created based on the two‐echelon VRP literature and are used to test
the proposed algorithms. Their computational results are compared and discussed. Practical, real‐life scenarios
of the EVRPD application are also presented and solved.
1. Introduction

There is currently a major force driving the developments in the
logistics industry, that is, the necessity for green transportation, mini-
mizing green house gas emissions. The proposed research addresses
this aspect of the current and forthcoming routing problems, combin-
ing two novel means of transportation, namely Electric Vehicles (EVs)
and Unmanned Aerial Vehicles (UAVs), with the objective of minimiz-
ing energy consumption.

According to the European Environment Agency, more than 70% of
greenhouse gas emissions come from road vehicles, obscuring the cli-
mate goals set by the European Union. The phase‐out of fossil fuel
vehicles is more imminent than ever. Sooner or later, logistics compa-
nies will be required to shift from traditional vehicles to electric ones.
New laws are constantly being put in place that prohibit either the sale
or even the use of some kinds of traditional vehicles. For companies to
stay competitive, the proper use of the EVs which will replace tradi-
tional vehicles is crucial.

Such circumstances necessitate the research and development in
the field of electric vehicle routing, to make the adoption of EVs as cost
efficient as possible. Great progressions on EV related technologies in
the last two decades, mainly battery technologies, make them more
appealing. Range remains their biggest shortcoming, and requires
proper handling. Prices have come decreased enough for transporta-
tion companies to deem buying EVs a cost‐effective decision, espe-
cially when governments subsidize part of the cost or provide tax
reliefs. EVs operate quietly, without any local emissions, making them
perfect for urban transportation. Light‐weight vans, electric versions of
which are commonplace in today’s market, can be utilized to transition
into an Eco‐friendly transportation scheme.

Another type of electric vehicles are the UAVs, also known as
drones, which share many of their technical aspects with the larger,
ground EVs. Drones have additional limitations, as the weight of bat-
teries today restrict their flight time to a fraction of their ground coun-
terparts. Another limitation related to weight is the maximum payload
they can transport. Despite their drawbacks drones can offer benefits,
leveraging on their small size and agile nature. They are much more
energy efficient for carrying lightweight packages, as they don’t
require moving a vehicle weighing multiple tons, only to deliver a
package weighing just a few kilos. Furthermore, as they are airborne,
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they are not affected by traffic congestion and they do not contribute
to its creation. This allows for faster transportation overall, not only
directly by drone usage, but also indirectly by lowering traffic for road
vehicles. Taking in consideration the benefits and limitations of
drones, an urban area is a perfect environment for incorporating them
in transportation operations. The combined utilization of these novel
vehicle types offers advantages beyond the capabilities of traditional
means of transportation. By utilizing a fleet of EVs, from which the
drones are deployed and retrieved, the effective range of their opera-
tion can be significantly increased.

The proposed Electric Vehicle Routing Problem with Drones
(EVRPD), combines EVs and drones to leverage on the strengths of
each vehicle type and to overcome their limitations. This novel prob-
lem considers joint EVs and drone operations, where EVs are utilized
to carry drones in pre‐designated launch and retrieval locations, in
order to perform the deliveries. The objective of the problem is to min-
imize the total energy consumption, while taking in consideration the
travel range limitations, quantity capacities and maximum payload
limits.

The EVRPD considers delivery packages belonging to different
weight classes, which is often the case in practical delivery operations.
Depending on the weight classes of the packages the drones carry,
their energy consumption rate can change significantly, affecting their
maximum travel distance and the total energy consumption. To model
energy consumption, the energy cost model based on load and distance
of Kara et al. (2007) is utilized, originally used for the Energy Minimiz-
ing Routing Problem.

For solving this novel and complex vehicle routing problem, four
Ant Colony Optimization (ACO) algorithms are implemented and
tested. Algorithms of the ACO family of algorithms, are well‐studied
and have been able to obtain quality solutions in many combinatorial
optimization problems, such as the VRP.

Two of the algorithms used in this paper, are the Ant Colony Sys-
tem (ACS) and the Min–Max Ant Colony System (MMAS). The two
other algorithms are the Hybrid Ant Colony System (HACS) and the
Hybrid Min Max Ant System (HMMAS). These hybrid variants are
based on successful implementations for the Cumulative Capacitated
Vehicle Routing problem (CCVRP) found in Kyriakakis et al. (2021),
combining the exploration abilities of swarm intelligence algorithms
with the exploitation capabilities of Variable Neighborhood Descent
(VND). Unlike the classical ACO algorithms, which generate a popula-
tion based on the ACO rules, these hybrid algorithms utilize neighbor-
hood operators in order to generate the ant population. Furthermore, a
Variable Neighborhood Descent algorithm is used as a local search
procedure to reinforce the exploitation properties of the hybrid algo-
rithms. This paper introduces eight neighborhood operators for the
EVRPD, which are used for generating the ant population and for
the VND procedure.

This paper introduces the first vehicle routing problem integrating
electric ground vehicles (EVs) and drones. Furthermore, the EVRPD
utilizes a cost formulation which considers the minimization of total
energy consumption. This objective is one of the main reasons for
adopting these new vehicle types in modern supply chains. The differ-
ent weight class packages considered, along with the energy, capacity
and weight limitations taken in account, make the EVRPD formulation
capable of closely modeling practical EV and drone delivery applica-
tions. The first results for the EVRPD are presented for abstract
instances created based on the two‐echelon VRP. Additionally, a prac-
tical case study is conducted on instances based on real‐life data for an
EVRPD application to a delivery operation in Chania, Greece. The
results, highlight the importance of optimizing both EV and drone
routes in conjunction, in order to minimize total energy consumption
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of operations. The EVRPD model minimizes total energy consumption
in joint EV and drone operations.

The main goals of the research can be summarized as follows:

• The introduction of a novel VRP which focuses on minimizing the
total energy consumption of delivery and combines state‐of‐the‐art
means of transportation, both in literature and practice.

• The theoretical contribution to the VRP literature of the EVRPD
mathematical formulation.

• The development of four hybrid ACO algorithms in order to address
the complexity of this novel problem.

• The suggestion of an effective approach for solving the EVRPD,
based on the results of the computational experiments.

• The application of the EVRPD to practical scenarios as a case study
in the city of Chania.

The rest of the paper is structured as follows. Section 2 includes a
thorough literature review of the most recent and important research
in the field of drone integration, VRP with drones (VRPD), and the
Electric VRP (EVRP). In Section 3, the EVRPD is described in detail
and its mathematical formulation is presented. Section 4 describes
the proposed Hybrid ACO approach for solving the EVRPD. Section 5
presents and discusses the experimental results. Lastly, Section 6 pre-
sents the conclusions of the research.

2. Related literature

2.1. Electric ground vehicle routing problems

Conrad and Figliozzi (2011) introduce a problem resembling EVRP.
It can be considered a predecessor for both EVRP and the Green VRP
(GVRP). The novelty of their research is in the use of a vehicle with
a limited range that requires refueling at customer locations but not
specifically EVs. The GVRP, introduced in Erdoğan and Miller‐Hooks
(2012), employs Alternative Fuel Vehicles in place of the traditional
vehicles. EVRP may be considered a variant of GVRP using EVs.
Schneider et al. (2014) present first a variant of EVRP with Time Win-
dows and Recharging Stations. Zhang et al. (2018) present an ant col-
ony metaheuristic to solve the EVRP with recharging stations, aiming
to minimize energy expenditure. Mao et al. (2020) augment the pro-
posed ACO algorithm with local search methods and solve an EVRP
with time windows and multiple charging options. To the best of the
authors’ knowledge, this is the only implementation providing the
option to either swap or recharge the EV. Zang et al. (2021) introduce
a Column Generation algorithm and focus on better battery handling.
Keskin et al. (2021) examine the effects that the a priori unknown
waiting time for charging may have when solving an EVRP with Time
Windows. Basso et al. (2021) present a machine learning approach to
determine the state of charge in an EVRP variant. They conduct two
types of experiments to show the quality of their model and the poten-
tial benefits. Lin et al. (2021) consider the grid in their EVRP. Electric-
ity prices fluctuate, and there is also the option for Vehicle to Grid
energy transfer. Napoli et al. (2021) propose the construction of a
Distribution Center equipped with renewable energy generation
infrastructure. They conduct a case study to evaluate the feasibility.
Schiffer et al. (2021) tackle a niche problem, mid‐haul logistics with
EVs. They study the feasibility and costs in the long term and carry
out a case study to verify their claims. Chakraborty et al. (2021) aim
to lower energy consumption which is shown to be an effective goal.
Furthermore, the characteristics of the charging stations affect the
solution quality. Another interesting scenario is the use of mixed fleets.
Al‐dalain and Celebi (2021) first determine the routes for urban deliv-
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eries and then allocate them to an electric or internal combustion
engine vehicle. Erdelić and Carić (2019) review all EV relative litera-
ture and highlight the underdeveloped infrastructure, fleet composi-
tion derived problems, and the economic impact to be among the
challenges faced when looking into freight EVs. Some of the biggest
impediments to an EV’s range are reported to be poor weather condi-
tions and range anxiety. Xiao et al. (2021) publish a recent review on
EVRP, present a realistic model and provide valuable insights related
to costs. They discuss charging strategies and energy consumption,
two critical aspects of the EVRP.

2.2. Routing problems with drones

In the context of supply chains, the VRP seeks to determine the best
customer visiting order for a vehicle fleet while minimizing one or
more objectives. The Traveling Salesman Problem (TSP) is a case of
VRP with only one vehicle. Murray and Chu (2015) first present a
Traveling Salesman Problem with a Flying Sidekick (FSTSP). It por-
trays the most simple possible drone integration scheme.
Kitjacharoenchai et al. (2019) extend the FSTSP formulation to solve
the multiple TSP with Drones. They also allow drones to return to
any vehicle. Jeong et al. (2019), apart from the payload, also consider
possible detours needed to avoid places where drones are not allowed
to operate. Murray and Raj (2020) solve the multiple FSTSP and deter-
mine that serving all customers with drones may not always be the
best case. Raj and Murray (2020) solve again the multiple FSTSP with
varying drone velocity, but conclude that dense delivery locations
diminish the positive effect. Nguyen et al. (2020) solve the TSPD using
a Monte‐Carlo Tree Search algorithm. Gonzalez‐R et al. (2020) intro-
duce a broader model and do not determine a priori the meeting points
of the truck and drones. Pina‐Pardo et al. (2021) employ drones to
resupply their vehicle while on the road and lower the total time by
up to a fifth and argue this implementation is more realistic for now.
Luo et al. (2021) present a model in which a drone may visit more than
one node per trip.

Wang and Sheu (2019) are the first to address the VRPD and pre-
sent a mixed‐integer problem formulation. They assume identical tra-
vel speeds for both types of vehicles, which undermines the drone’s
abilities. Coindreau et al. (2019) present a generalized approach, con-
sidering VRP with transportable resources, including drones. Schermer
et al. (2019) first route the trucks and then use a meta‐heuristic for the
drone operation, aiming to minimize the makespan. Sacramento et al.
(2019) present an Adaptive Large Neighborhood Search method for
the VRPD, and their purpose is to minimize the cost. They highlight
the strong relationship between the range of the drones and the poten-
tial savings. Chiang et al. (2019) equip the vehicles with a single drone
and use a GA to solve the VRP. Emissions and cost are their two con-
cerns. Hu et al. (2019) address separately the truck and drone path
planning and then proceed to jointly optimize them. Karak and
Abdelghany (2019) present a realistic formulation too. Drones trans-
ported by trucks (serving as depots and battery swapping stations)
can make multiple deliveries and are allowed to return to any station,
making many trips if necessary. Moshref‐Javadi et al. (2020) set to
lower the customer waiting time. They allocate multiple drones per
truck and conduct a case study. Deng et al. (2020) go beyond just
drones and tackle a movement synchronization VRP, applicable to
other means of transport too. In the study of Rossello and Garone
(2020), only drones make deliveries, while trucks transport them to
points dictated by the city’s governing body. Pugliese et al. (2020),
also, conclude that drone and ground vehicle integration in logistics
has monetary, environmental, and other benefits. Kitjacharoenchai
et al. (2020) and Li et al., 2020 take a two‐echelon approach in drone
integration. Both use the trucks as mobile depots, with the latter allow-
ing for direct drone deliveries from the depot, addressed separately.
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Tamke and Buscher (2021) introduce a branch and cut algorithm,
Euchi and Sadok (2021) introduce a hybrid sweep algorithm for the
VRPD. Liu et al. (2021) focus on drone scheduling and strive to mini-
mize their number. They develop a Genetic Algorithm and suggest that
with high customer density or a large delivery radius, more drones are
required. Shahzaad et al. (2021) introduce a drone delivery system clo-
ser to reality. They consider no‐fly zones and wind conditions and
assume that rooftops of city buildings may be charging points of deliv-
ery coordinates. Nguyen et al. (2021) route drones and trucks indepen-
dently. Drones make only a single delivery each time, and their main
handicap is determined to be battery capacity. They also improve upon
26 benchmark instances.

There are some other notable papers employing drones.
Thibbotuwawa et al. (2019) look into the effects weather may have
on drone deliveries and include collision avoidance. Liu (2019) solve
a dynamic VRP for food delivery application. Lemardelé et al.
(2021) research the effectiveness of autonomous vehicles for deliver-
ies. They conclude that drones are more suitable for low density or
large radius delivery areas, while ground vehicles would be a better
option for dense, city application, following experiments in European
capitals. Chauhan et al. (2019) tackle a maximum coverage problem
with drones. Gu et al. (2020) present a set‐covering problem for
instant deliveries and look for the best drone take‐off locations. They
minimize both the number of vehicles and the makespan. Macias
et al. (2020) intend to select the optimal hub for delivering essentials
in disaster relief scenarios to best serve those in need and present a
theoretical example. Ghelichi et al. (2021) introduce a new formula-
tion to serve medical supply demand with drones. Rashid et al.
(2020) set a goal of minimizing the cost of surveillance with drones.
Zhen et al. (2019) do not only consider the visiting sequence, but also
the height to save energy when possible. Cheng et al. (2020) give
emphasis on the energy consumption. They compare their non‐linear
function to a linear one and observe differences of almost 10% on aver-
age. The transported weight is, also, taken into account.

Numerous reviews on drone routing and related problems are
found in the literature. The most recent ones are presented below.
Vidal et al. (2020) refer to drone integrated routing problems as an
emerging branch of research. Macrina et al. (2020) focus their review
on routing problems with drones, reviewing the TSP and VRP, as well
as a drone‐only and a combination of the previous three.
Cheikhrouhou and Khoufi (2021) include in their review a comprehen-
sive list of the recent literature concerning drone integration in multi-
ple TSPs. A valuable review is presented by Moshref‐Javadi and
Winkenbach (2021), along with a taxonomy proposal. They discuss
practical applications and conduct an extensive review. Li et al.
(2021) review the drone integration problem from a two‐echelon per-
spective. They look into related issues and concentrate on modeling
perspectives. Besides the problem variants and solutions methods,
Chung et al. (2020) discuss the factors that impede the real‐world
applications and provide a glimpse into research gaps.

The majority of VRPs found in the literature assume certainty in
elements such as demand and fuel consumption. In practice, these val-
ues often are within an expected range and therefore they are uncer-
tain (Kondratenko et al., 2006). An effective way to deal with
uncertainty is through fuzzy approaches such as those suggested by
Werners and Kondratenko (2018) for the VRP with bunkering tankers
and Solesvik et al. (2021) which integrates a fuzzy decision support
system for marine practices. The research of Kondratenko et al.
(2021) combines fuzzy approaches and evolutionary algorithms to
address transportation problems under uncertainty.

The proposed EVRPD, does not consider uncertainty in any of its ele-
ments and therefore, a “worst‐case scenario” should be considered in its
practical application. Extending the state‐of‐the‐art in EV and drone
routing literature, this paper aims to address the weight contribution



Fig. 1. EVRPD route example.
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to the energy consumption, and minimize the latter, by proposing, for-
mulating and solving the EVRPD. It combines several aspects of the
above cited literature as it can be considered a two‐echelon VRP, in
which each drone’s routing is a multi‐trip VRP. Furthermore, the
energy consumption element, which is a common issue in EV and drone
routing applications, is considered both as objective and constraint.
3. The electric vehicle routing problem with drones

The EVRPD introduces a joint routing problem of EVs and drones,
with the objective of minimizing the overall energy consumption of
operations. Unlike the other approaches in the literature, it considers
an energy consumption function based on payload weights for both
types of vehicles. Moreover, it considers different types of packages
which introduce additional constraints related to both capacity and
energy limitations.

The problem considers the following scenario: A fleet of EVs, each
capable of carrying up to a certain number of drones, are utilized in
order to perform deliveries of packages to customers. The EVs begin
their routes from the depot carrying all the items to be delivered by
their assigned drones. The EVs visit pre‐designated launch/retrieval
locations, from which the drones begin their routes in order to make
the final deliveries to customers. The EVs wait at each launch/retrieval
position for their drones to complete all their routes starting from that
particular position. Once all of the drones have returned to an EV, the
EV continues its route to the other launch/retrieval positions. The
routing operation ends when all customers have been served and all
EVs have returned to the depot.

The packages to be delivered are of the same size and belong to
three different weight classes. Each vehicle type has a maximum num-
ber of packages and a maximum payload weight it can carry. Further-
more, each vehicle type has a maximum energy limitation which
imposes a constraint on the maximum distance it can travel. The
remaining distance (range) at each step of the route depends on the
payload weight the vehicle currently carries.

The goal of the EVRPD is to create EV and drone routes which min-
imize the energy consumption, while taking into consideration the dif-
ferent package types and the vehicles’ range limitations. In the
following subsections the package payload, energy and cost functions
of the EVRPD routes are explained in detail.
Table 1
Weight classes of packages.

Package Weight
Class

Weight Range (Weight
Units)

Weight Accounted (Weight
Units)

1 (0.0,1.0] 1.0
2 (1.0,2.0] 2.0
3 (2.0,3.0] 3.0

Table 2
Drone payload combinations.

Case Containers

1 PWC 1 – –

2 PWC 1 PWC 1 –

3 PWC 1 PWC 1 PWC 1
4 PWC 1 PWC 2 –

5 PWC 1 PWC 1 PWC 2
6 PWC 2 – –

7 PWC 2 PWC 2 –

8 PWC 3 – –

9 PWC 3 PWC 1 –

4

3.1. Payload weight

The problem considers same sized packages belonging to three
weight classes. Table 1 presents an example of these weigh classes
with their respective weight range, as well as, the weight considered
in the payload, energy and cost functions.

Each drone can carry combinations of these packages in containers
of standard dimensions. The number of containers used in this paper is
three, as it is realistic number of small packages a drone can carry in
real delivery applications. A single container corresponds to a single
customer. Although drones can carry up to three packages, depending
on the weight class of the item and the given payload weight limit of
the drone, this might not always be the case. For this application the
payload weight limit used is 4.0, which is a realistic value if the weight
classes presented previously consider weight ranges in kilograms. The
possible combinations of packages carried by a drone at any time are
described in Table 2.

Therefore, at each arc between two customers at positions i; j in a
drone route, the payload weight Wij of the drone depends on the
remaining customers to be visited after the customer at position j.
For example we consider the drone route in Fig. 1, with its correspond-
ing arc distances, in which all customers require one package of weight
class 1:

The arc payload weights Wij are calculated as follows:

W01 ¼ 1:0þ 1:0þ 1:0 ¼ 3
W12 ¼ 1:0þ 1:0þ 0:0 ¼ 2
W23 ¼ 1:0þ 0:0þ 0:0 ¼ 1
W30 ¼ 0:0þ 0:0þ 0:0 ¼ 0
3.2. Energy cost

Many elements are likely to influence the energy consumption. For
the ground vehicles, traffic conditions, driving characteristics and even
traffic lights alter the energy consumption rate. Weather conditions
such as temperature, wind and humidity, also play an important role
for the EVs, and particularly for drones, they influence their energy
consumption rate significantly. However, the most important energy
consumption factor for the drone, is the payload weight. Unlike
weather conditions which cannot be controlled, the payload weight,
and thus, the energy consumption of a drone can be controlled through
routing optimization.
Payload Quantity
(max: 3)

Payload Weight
(max: 4.0 Weight Units)

1 1.0
2 2.0
3 3.0
2 3.0
3 4.0
1 2.0
2 4.0
1 3.0
2 4.0
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The energy cost function used for the EVRPD is based on the route
cost function for the Energy Minimizing Routing Problem introduced
by Kara et al. (2007), which is an extension of the physical law of
Mechanical Work found in classical mechanics:

Work ¼ Force� Displacement ð1Þ

It is intuitive that the more payload weight a vehicle carries, the more
energy it consumes in order to traverse a fixed distance. Likewise, the
energy consumption in order to transport a fixed payload weight
increases relatively to the distance traveled. Based on the work formula
in Eq. 1, the energy required to traverse an arc i; jð Þ for the EVRPD is
given by the formulation in Eq. 2:

ArcEnergy ¼ ArcDistance� 1þ ArcPayloadð Þ ð2Þ

With the addition of an extra unit of payload weight, the formula cal-
culates the energy consumption when the arc payload is zero, such as
in the case where a drone is returning to the EV after completing all
deliveries.

Thus, for the EVRPD route example, illustrated in Fig. 1 and pre-
sented in the previous subsection, the energy eij required at each arc
i; jð Þ with distance dij is calculated below:

e01 ¼ d01 � 1þW01ð Þ ¼ 8� 4 ¼ 32
e12 ¼ d12 � 1þW12ð Þ ¼ 14� 3 ¼ 42
e23 ¼ d23 � 1þW23ð Þ ¼ 6� 2 ¼ 12
e30 ¼ d30 � 1þW31ð Þ ¼ 9� 1 ¼ 9

Since the objective of the EVRPD is to minimize energy consumption,
the route cost is given by the sum of arc energy consumption. There-
fore, the cost for the example route is calculated as:

C ¼ ∑
i;jð Þ∈ route

eij ¼ 95

An interesting observation on the cost structure of the EVRPD is that if
the order of the customers is reversed in the route, the cost changes. For
the example used, it would be calculated as:

Creversed ¼ 9� 4þ 6� 3þ 14� 2þ 8� 1 ¼ 90
3.3. Assumptions

As with all VRPs certain assumptions are made for the EVRPD and
are presented below:

• Deliveries are performed by drones, only.
• One package is demanded by each customer.
• The EVs may not revisit previous nodes.
• The deployment and retrieval location is the same.
• EVs wait at the deployment/retrieval locations.
• Drones may be re‐deployed if the range is sufficient.
• Multiple drones may be deployed from the same EV,
simultaneously.

• Drones fly at a high enough altitude for which the area of interest
can be considered flat. Drones achieve that altitude instantaneously
after launch.

• The provided EVs and Drones can fulfill the demand.
• The drone deployment and retrieval process is considered to be
instantaneous.

• No external forces affecting the vehicles are considered (i.e.
weather conditions).
5

Most of the assumptions made, contribute to the overall goal of mini-
mizing energy expenditure, such as the allowing only to drones to per-
form the deliveries to customers and keeping the EVs at the launch/
retrieval locations waiting.

Since one package is the expected number of packages to be
required by a customer in most practical drone delivery applications,
the single package assumption is considered. Nevertheless, more than
one packages can be taken in consideration, without changes in the
formulation, by having the same customer as a duplicate (same loca-
tion), demand another package.

3.4. Mathematical formulation of the EVRPD

In this subsection, the mathematical formulation for the EVRPD is
presented. This problem is similar to a two‐echelon formulation since
the EVs drive to specific locations, launch the drones, and wait for
them to return. When they return, they may move to the next stopping
point. Stopping points may be considered the equivalent of satellite
locations from the classic two‐echelon. Therefore, the first echelon
considers the EV routes between the depot and satellite positions,
while the second echelon considers the drone routes from the satellite
positions to the final customers.

The presented formulation borrows concepts from the works of
Perboli et al. (2011) that introduced two‐echelon problems in VRP,
of Karak and Abdelghany (2019) that solve a VRP combining drones
and trucks, of Lin et al. (2016) and Kancharla and Ramadurai
(2020), in both of which the transported freight affects the energy con-
sumption, and lastly of Jie et al. (2019), that proposed the two‐echelon
EVRP with battery swapping. Following the commodity flow type of
formulation, dummy variables are used to denote the return to the
depot and satellite locations.

VD and �VD denote the set of the depot node and its dummy, respec-
tively. The dummy depot set is used in the definition of set A1. VS is
the set of satellites, and �VS is again a dummy. Set VC includes the cus-
tomer nodes. To separate the echelons, A1 is the set of all the first ech-
elon elements, while A2 is the set of the second echelon ones. The
number of customers and satellites are defined in nc and ns, respec-
tively. KEV and KD are the sets of EVs and drones for their respective
echelon, while their numbers are kEV and kd, respectively. The maxi-
mum payload capacity is QEV and QD, and their maximum energy is
EEV and ED. dij represents the distance between nodes i and j and qi rep-
resents the demand of vertex i.

As for the decision variables, xijk describes whether or not the EV k
traversed the arc i; jð Þ. zijsk is the equivalent variable for drones with the
addition of satellite notation. ti connects the two echelons together, by
specifying the demand value of each satellite, while wik is responsible
for the payload delivered to satellite i by the EV k. f 1ijk and f 2ijsk are vari-
ables that determine the payload of each vehicle k that arrives from i to
j. Lastly, TDijsþ;TDijs� help connect the two types of vehicles. TDijsþ is
equal to one if EV i transported drone j from the depot to satellite s
and TDijs� is equal to one if EV i transported drone j from satellite s
back to the depot.

The mathematical formulation is the following:

min f ¼ ∑
i∈A1

∑
j∈A1

∑
k∈KEV

dij � 1þ f 1ijk
� �

� xijk

� �

þ ∑
i∈A2

∑
j∈A2

∑
k∈KD

∑
s∈VS

dij � 1þ f 2ijsk
� �

� zijsk
� � ð3Þ

Subject to:

∑
i;jð Þ∈A1

xijk ¼ ∑
i;jð Þ∈A1

xjik;8i∈VS; k∈KEV ð4Þ
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∑
i;jð Þ∈A2

zijsk ¼ ∑
i;jð Þ∈A2

zjisk;8i∈VC; s∈VS; k∈KD ð5Þ

∑
i;jð Þ∈A1

xijk ⩽ 1; 8i∈VS; k∈KEV ð6Þ

∑
k∈KD

∑
s∈VS

∑
i;jð Þ∈A2

zijsk ¼ 1;8i∈VC ð7Þ

wik ¼ ∑
i;jð Þ∈A1

f 1jik � ∑
i;jð Þ∈A1

f 1ijk; 8i∈VS; k∈KEV ð8Þ

∑
i∈VS

wik ⩽ QEV ;8k∈KEV ð9Þ

f 1ijk ⩽ QEV � xijk;8 i; jð Þ∈A1; k∈KEV ð10Þ

∑
i;jð Þ∈A2

f 2ijsk ¼ ∑
i;jð Þ∈A2

f 2jisk � qi; 8i∈VC; s∈VS; k∈KD ð11Þ

f 2ijsk ⩽ QD � zijsk; 8 i; jð Þ∈A2; s∈VS; k∈KD ð12Þ

∑
k∈KD

∑
i;jð Þ∈A2

qi � zijsk ¼ ∑
l∈KEV

wsl; 8s∈VS ð13Þ

∑
s∈VS

∑
k∈KD

∑
s;jð Þ∈A2

zsjsk ⩽ kd; ð14Þ

∑
i∈A1

∑
j∈A2

1þ f 1ijk
� �

� dij � xijk ⩽ EEV ;8k∈KEV ð15Þ

∑
i∈A2

∑
j∈A2

∑
s∈VS

1þ f 2ijsk
� �

� dij � zijsk ⩽ ED;8k∈KD ð16Þ

∑
�s∈ VS :�s–sf g

∑
s;jð Þ∈A2

zsj�sk þ ∑
i;�sð Þ∈A2

zi�s�sk

 !
¼ 0;8s∈Vs;�s∈ �VS; k∈KD ð17Þ

∑
k∈KD

∑
s∈VS

zs�sk ¼ 0 ð18Þ

TDijsþ ¼ TDijs�;8i∈KEV ; j∈KD; s∈VS ð19Þ

xijk ∈ 0;1f g;8 i; jð Þ∈A1; k∈KEV ð20Þ

TDijsþ;TDijs� ∈ 0;1f g;8i∈KEV ; j∈KD; s∈VS ð21Þ

zijsk ∈ 0;1f g;8 i; jð Þ∈A2; s∈VS; k∈KD ð22Þ

wik ⩾ 0;8i∈VS; k∈KEV ð23Þ

ti ⩾ 0;8i∈VS ð24Þ

f 1ijk ⩾ 0;8 i; jð Þ∈A1; k∈KEV ð25Þ

f 2ijsk ⩾ 0;8 i; jð Þ∈A2; s∈VS; k∈KD ð26Þ

Constraints 4 and 5 are responsible for controlling the amount of
inbound and outbound node traffic, ensuring each node has one incom-
ing and one outgoing arc for the EVs and drones, respectively. Next,
constraints 6 make sure that no node is visited more than once by
the same EV. Constraints 7 require all customers to be visited exactly
once by a drone. Constraints 8 help determine the amount of load trans-
ported by each EV to each satellite location, while constraints 9 make
sure no violations of EV payload capacity take place. Constraints 10
6

state that the payload at each node may not exceed the maximum EV
capacity. If arc i; jð Þ is not traversed, then the payload is 0.

As for the drones, constraints 11 update the transported payload at
each stop (delivery point). Constraints 12 prohibit the remaining pay-
load from exceeding the maximum drone capacity. If arc i; jð Þ is not tra-
versed, then the payload is 0. Constraints 13 make sure the payload
drones deliver from each satellite location is equal to the payload
transported there by the EVs. Constraint 14 is responsible for limiting
the number of available drones. Constraints 15 and 16 make sure there
are no energy violations concerning the vehicles. Constraints 19 help
identify and assign drones to EVs, to make sure that each drone is
transported by the same EV during the whole journey. Constraints
17 and 18 aim to deter unwanted connections made between satellite
locations or between satellites and their dummy counterparts. Lastly,
constraints 21 to 26 limit all variables to their designated range.
4. The proposed hybrid ant colony optimization approach

4.1. Ant colony optimization

Ant Colony Optimization algorithms are part of the swarm intelli-
gence optimization family with successful implementations in various
routing problems. They search the solution space mimicking the way
ants search for food in nature. Biological ants explore the surrounding
areas of the nest for food and lay pheromone on the ground, based on
the distance and quality of the food source. Paths with more phero-
mone are more likely to be chosen by other ants of the colony, while
pheromone trails with lower amounts, tend to progressively disappear
as a result of pheromone evaporation. After sufficient time, all ants
converge to the path with the most pheromone. This mechanism of
indirect communication by altering the environment is called
stigmergy.

Based on the biological ants, Dorigo et al. (1996) introduced the fist
ACO algorithm, the Ant System (AS). Since then, many ACO algo-
rithms have been proposed, two of the most successful of which are
the Ant Colony System (ACS) presented in Dorigo and Gambardella
(1997) and the Max–Min Ant System (MMAS), introduced in Stützle
and Hoos (2000). A great survey of different variants and applications
of the ACO framework can be found in Mohan and Baskaran (2012).

For solving the EVRPD, this paper implements and tests four ACO
algorithms. Two are adaptations of hybrid ACO‐VND variants used
in the Kyriakakis et al. (2021), originally designed to solve the Cumu-
lative Capacitated Routing Problem (CCVRP). In these hybrid ACO‐
VND variants, only one ant solution is generated based on the ACO
transition rules and the rest of the population is generated utilizing
neighborhood structures. This neighborhood‐generated population
method has shown to provide better quality solutions for the CCVRP,
requiring less computational time as it limits the search inside the fea-
sible solution space. In order to exploit good solutions, a Variable
Neighborhood Descent algorithm is included as a local search proce-
dure. Based on this framework two algorithms, a Hybrid Ant Colony
System (HACS) and a Hybrid Min–Max Ant System (HMMAS) are
implemented to address the EVRPD.

The other two ACO algorithms tested are the classical ACS and
MMAS, where the population is generated using the ACO transition
rules. To increase exploitation, these algorithms also incorporate a
VND procedure as local search. The VND utilized in the ACS and
MMAS is the same used for the hybrid versions HACS and HMMAS.

The outlines of the HACS and HMMAS are presented in Algorithm1
and Algorithm2, respectively. Their individual steps and components
are described in detail in the following subsections.



Algorithm1: Hybrid Ant Colony System

Algorithm2: Hybrid Min–Max Ant System
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4.1.1. ACS and MMAS solution construction
For the EVRPD, each ant represents a complete solution including

both EV and Drone routes. In both ACO variants, a single ant starts
its journey from the depot adding nodes (satellites or customers,
7

depending on route type) to the route until a further addition violates
one of the constraints. The ant then returns to the starting node (Depot
or EV) and a second journey starts with the same drone or a new one,
depending on the constraints in the case of a drone route, or with a
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new EV in the case of EV route. This process is repeated until all cus-
tomers have been serviced. For all implemented ACO variants, if the
generated solution is infeasible, it is discarded and a new one is
constructed.

In order to determine which node will be added next in the route,
the ACS and HACS utilize the parameter q0 to control greediness dur-
ing the solution construction process. Furthermore, parameter β is
used to moderate the relative importance of the heuristic information
η. Given Li, the set of customers not visited yet, in the case of drone
routes or satellites for EV routes, the following transition rules are
applied:

j ¼
argmax

l∈ Li
τil½ � ηil½ �β; ifq ⩽ q0

Z; otherwise

(
ð27Þ

where q∈ 0;1½ � is a uniformly generated random variable, Z is the node
selected according to probability distribution in Eq. (28).

pij ¼
τij½ � ηij½ �β

∑
l∈ Li

τil½ � ηil½ �β
; ifj∈ Li

0; otherwise

8><
>: ð28Þ

The MMAS and HMMAS use parameters α and β to moderate the rela-
tive importance of both pheromone and the heuristic information,
respectively. The probability of an ant moving from the node i to the
node j for both the MMAS and HMMAS is presented in Eq. (29).

pij ¼
τij½ �α ηij½ �β

∑
l∈ Li

τil½ �α ηil½ �β
; ifj∈ Li

0; otherwise

8><
>: ð29Þ
4.1.2. Pheromone update rules
The ACS variants employ two pheromone update rules, a local

update and a global update. In the construction phase, ants remove
pheromone from the trails they have followed in order to urge other
ants to follow other potentially unexplored paths. The levels are low-
ered according to the local update rule in Eq. (30):

τnewij ¼ 1� ρð Þτoldij þ ρτ0 ð30Þ

τ0 ¼ 1= n� CIS� � ð31Þ
τ0 is the initial pheromone amount on the trails, based on the initial
solution cost CIS and the number of nodes n.
Algorithm3: Variable Neighborhood Descent
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After all the ants construct a solution in the ACS variants, the best‐
so‐far (BSF) ant updates the pheromone levels based on its cost CBSF ,
using the global update rule in Eq. (32):

τnewij ¼ 1� ρð Þτoldij þ ΔτBSFij ð32Þ

ΔτBSFij ¼ 1=CBSF ð33Þ

where ρ is the pheromone evaporation factor.
The MMAS variants confine pheromone levels between τmin; τmax½ � in

order to avoid premature convergence. All pheromone trails are initial-
ized at the max values of τmax. τmin and τmax values are given by Eqs. (35)
and (34), respectively:

τmax ¼ 1=ρCIS ð34Þ

τmin ¼ τmax=Q0 ð35Þ
where Q0 is the parameter adjusting the τmin value.

For the MMAS variants, similarly to the ACS, only the BSF ant lays
pheromone on its trail, according to rule in Eq. (36):

τnewij ¼ 1� ρð Þτoldij þ ΔτBSFij ð36Þ

ΔτBSFij ¼ 1=CBSF ð37Þ

where ρ is the pheromone evaporation factor.

4.2. Variable neighborhood decent

A Variable Neighborhood Decent scheme is utilized as a local
search procedure to exploit the solutions generated by the ACO. It is
a deterministic variant of the Variable Neighborhood Search frame-
work originally proposed by Mladenović and Hansen (1997) and can
be implemented in various ways Mjirda et al. (2017). It is based on
the concept of systematically changing neighborhood structures within
the search process. For this implementation, a Pipe VND (P‐VND) is
used, where the search continues in the same neighborhood if it
improves the solution. When no further improvement can be made
in the particular neighborhood it proceeds in the next neighborhood.
This process is repeated until no further improvement can be made
by the last neighborhood.

Let N ¼ N1;N2; ::Nkmaxf gbe a set of operators that map a given solu-
tion to a neighborhood structure Nk Sð Þ. Algorithm 3 shows the VND
procedure.



Fig. 5. Intra-EV-Inter-Drone, 1–1 Inter-route Exchange.

Fig. 6. Intra-EV-Inter-Drone, 1–0 Inter-route Relocation.
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To complement the exploitation of solutions, the proposed VND
procedure comprises of intra‐route and inter‐route local search opera-
tions, applied to the drone routes and EV routes. Specifically, the fol-
lowing eight neighborhood operators are used:

• Intra‐EV‐Intra‐Drone Operators: 1–1 Intra‐route Swap: Two
customers of a single drone route, swap their positions. Example
in Fig. 2. 1–1 Inter‐route Exchange: Two customers, each from
a different route of the same drone, exchange their positions. Exam-
ple in Fig. 3. 1–0 Inter‐route Relocation: A customer is removed
from a drone route and is inserted in a different route of the same
drone. Example in Fig. 4.

• Intra‐EV‐Inter‐Drone Operators: 1–1 Inter‐route Exchange:
Two customers, each from routes of different drones, exchange
their positions. Example in Fig. 5. 1–0 Inter‐route Relocation:
A customer is removed from a drone route and is inserted in a route
of another drone. Example in Fig. 6.

• Inter‐EV‐Inter‐Drone Operators: 1–1 Inter‐route Exchange:
Same as the intra‐route variant, but for drones belonging to differ-
ent EVs. 1–0 Inter‐route Relocation: Same as the intra‐route
variant, but for drones belonging to different EVs.

• EV‐route Operator: 2‐Opt Intra‐route: The order of the cus-
tomers in the range of positions in the EV route are reversed. Exam-
ple in Fig. 7.
Fig. 7. EV-route, 2-Opt Intra-route.

Fig. 4. Intra-EV-Intra-Drone, 1–0 Inter-route Relocation.

Fig. 2. Intra-EV-Intra-Drone, 1–1 Intra-route Swap.

Fig. 3. Intra-EV-Intra-Drone, 1–1 Inter-route Exchange.
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5. Computational results

5.1. Problem instances

In order to test the algorithms, EVRPD instances were created
based on Instance set 2, presented in Perboli et al. (2011) for the
Two‐Echelon VRP (2E‐VRP). These instances consider scenarios rang-
ing from 21 to 50 customers, with one depot location and a number of
distribution centers, also called satellite positions.

In order to transform the 2E‐VRP instances into EVRPD instances,
for each instance, the demand range of its customers is partitioned
in three equal parts to correspond with the three‐item classes
described in SubSection 3.1, essentially forming demand values in
the set 1;2;3f g.

The locations of the depot, the satellite positions and the locations
of the customers are kept the same. For each instance the maximum
number of drones per EV, as well as the size of the available EV fleet
have been assigned based on the instance characteristics. Values range
from 2 to 4 drones per EV and 2 to 3 available EVs.

Further to the benchmark instances created, a practical application
is also considered. This case study is performed on 3 scenarios which
are based on real‐life locations in the city of Chania, Greece. In these
examples, quantitative measurements in metric units such as kWh
for energy, km for distance and kg for weight are used. The practical
case study is presented in detail in SubSection 5.5.

5.2. Parameter settings and sensitivity

The four implemented ACO algorithms have a number of parame-
ters that need to be determined before execution. Table 3 displays
the parameters, their description and the values tested.



Table 3
Parameter description and settings.

Parameter Description Values tested

ACS, HACS
ACOiters Number of iterations 10000

ρ Pheromone evaporation factor 0:1
q0 Controls exploitation during solution construction 0:85; 0:90;0:95f g
β Controls the importance of heuristic information 1:0; 2:0; 3:0f g

VNDiters Number of the local search iterations 50

MMAS, HMMAS
ACOiters the number of iterations 10000

Q0 Used to set the τmin value. 300
ρ Pheromone evaporation factor 0:02
α Controls the importance of pheromone trails 1:0
β Controls the importance of heuristic information 1:0; 2:0; 3:0;4:0; 5:0f g

VNDiters Number of the local search iterations 50
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The parameter values regarding the iterations, ACOiters and VNDi-
ters of the algorithms, were determined by testing different values to
find those for which the ants adequately converge on a solution. For
the parameters controlling pheromone evaporation and pheromone
ranges, the proposed values found in the ACO literature have been
used. For the most important parameters, which significantly change
the behavior of the algorithms, the recommended ranges in the litera-
ture have been used in a sensitivity test to determine the best values
for this particular implementation.

Parameters play an important role in the performance of meta-
heuristic and swarm intelligence algorithms. In the ACS variants, the
two most important parameters are β and q0. For MMAS variants,
the most important parameter is β. These parameters control the
exploratory and exploitative properties of the corresponding algo-
rithms, and thus, they significantly affect their convergence to the best
found solution.

In this subsection, the sensitivity of the four implemented algo-
rithms to the above mentioned parameters, is tested. The values
0:85;0:90;0:95f g and 1:0;2:0;3:0f g were tested for ACS parameters
β and q0, respectively. In the MMAS implementations the values
1:0;2:0;3:0; 4:0;5:0f g for of MMAS parameter β were tested.
Fig. 8 displays the mean Gap% from the best solution cost value

(BKV) for different values of q0 and β of ACS and HACS. Both algo-
rithms exhibit similar behaviors in relation to parameter β, which
independently of parameter q0, value β ¼ 1 is able to obtain the best
average gap. For parameter q0, values 0:85 and 0:90 seem to benefit
both algorithms for most values of parameter β. Thus, increased ran-
domness in solution construction is observed to have a positive impact
on the overall solution quality. The absolute range of gaps is 0:45 for
Fig. 8. GapAvg CostBestð Þ% for AC
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the ACS and 0:28 for the HACS, making the latter less sensitive to
parameters β and q0.

Fig. 9 displays the mean Gap% from the best solution cost for dif-
ferent values of β for the MMAS and HMMAS algorithms. In both vari-
ants, β ¼ 1 is able to obtain the best average results, with an absolute
percentage difference of 0:06 to the second best value, β ¼ 2. The
absolute range of gaps is 0:21 and 0:17 for the MMAS and HMMAS,
respectively. Thus, the HMMAS can be considered slightly less sensi-
tive to parameter β. The gap for all figures is calculated by the formula
in Eq. 38: (See Fig. 10)

Gap Valueð Þ ¼ 100� Value� BKVð Þ=BKV% ð38Þ
Fig. 8 displays the plots indicating the 95% confidence interval of

the Gap Costð Þ% found for each algorithm and parameter setting.
Observing the gaps of the obtained results, the sensitivity difference
between ACS and HACS is even more prominent, with the ACS having
more outlier values further away from the 95% interval. For the MMAS
and HMMAS, the differences are not so visible, which is justified since
their absolute range difference is small. In all plots, the parameter set-
tings are sorted from worse to best, thus, the best settings for ACS and
HACS are β ¼ 1 and q0 ¼ 0:85, while for the MMAS and HMMAS the
best parameter value for β is β ¼ 2.

5.3. Experimental results

The algorithms are coded in C++ and compiled with GCC 11.2.
The experiments are carried using a 2014 Intel®Core i7‐4770 CPU
(3.40 GHz) with 7.7 GB RAM on the Fedora Workstation 34 OS. Each
instance was solved by each algorithm 15 times.
S (left) and HACS (right).



Fig. 9. GapAvg CostBestð Þ% for MMAS (left) and HMMAS (right).

Fig. 10. Gap Costð Þ% to BKV for each algorithm per parameter setting.

N.A. Kyriakakis et al. Cleaner Logistics and Supply Chain 4 (2022) 100041
Table 4 presents the results obtained by each algorithm on the
EVRPD instances. Column 1 denotes the instance name, with the name
of the original 2E‐VRP instance name found Perboli et al. (2011) and
in parenthesis the number of satellite positions, the maximum number
per EV allowed and the maximum number of EVs available. Columns
2, 5, 8 and 11 present the best solution values found by each algo-
rithm. In Columns 3, 6, 9 and 12 are the best Gap% results compared
to the BKVs for each instance. Columns 4, 7, 10 and 13 indicate the
average solution cost obtained.

In terms of solution cost, the ACS and MMAS are observed to obtain
better results than their hybridized counterparts, HACS and HMMAS.
They are able to obtain more best known values (BKVs) and have sig-
nificant differences in the average Costbest found. In particular, the ACS
and HACS have a difference of 0:07% on average while the MMAS and
HMMAS results differ on average by 0:15%. The neighborhood popu-
11
lation generating process in HACS and HMMAS incorporates far less
randomness than the classical ACS and MMAS transition rules and
the population quality strongly depends on the neighborhood struc-
tures used. Therefore, a possible explanation for this underperfor-
mance, may lay on the limited size of the neighborhoods used for
this particular problem. This assumption is reinforced by the observa-
tion made in the parameter sensitivity section, where increased ran-
domness in solution construction seemed to translate in better results.

Overall, the MMAS was able to obtain 13 out of the 21 BKVs and is
arguably the best performing among the implemented algorithms. Its
average results also supports this observation.

The HMMAS, despite being the second best performing algorithm
on average, was able to obtain only two BKVs. The ACS, third on aver-
age results, was able to surpass the HMMAS in the number of obtained
BKVs, with 9 out of 21 instances. Therefore, an argument can be made



Table 4
Computational results for the EVRPD instances (BKV obtained in bold).

ACS HACS MMAS HMMAS

Instance (#S,#D,#EV) Costbest Gapbest% Costavg Costbest Gapbest% Costavg Costbest Gapbest% Costavg Costbest Gapbest% Costavg

n22-k4-s10-14 (2,3,2) 1144.28 0.00 1149.75 1145.37 0.10 1158.12 1144.28 0.00 1152.62 1145.37 0.10 1162.67
n22-k4-s11–12 (2,3,2) 1403.94 0.00 1438.99 1406.06 0.15 1418.46 1404.22 0.02 1438.10 1405.84 0.14 1422.19
n22-k4-s12-16 (2,3,2) 1243.38 0.20 1252.32 1244.10 0.25 1258.47 1241.16 0.02 1246.51 1240.95 0.00 1248.07
n22-k4-s6-17(2,3,2) 1627.76 1.06 1640.91 1627.93 1.07 1648.49 1610.70 0.00 1627.89 1614.12 0.21 1632.96
n22-k4-s8-14 (2,3,2) 1191.20 0.00 1199.01 1194.06 0.24 1207.12 1191.20 0.00 1218.75 1194.06 0.24 1227.59
n22-k4-s9-19 (2,3,2) 1878.84 0.25 1884.06 1874.20 0.00 1883.43 1874.20 0.00 1879.37 1876.74 0.14 1880.37
n33-k4-s1-9 (2,3,2) 3599.67 0.01 3604.23 3600.27 0.03 3606.09 3599.16 0.00 3601.95 3599.75 0.02 3604.30
n33-k4-s14-22 (2,3,2) 4035.51 0.06 4040.06 4035.65 0.06 4040.50 4033.19 0.00 4037.81 4034.78 0.04 4039.27
n33-k4-s2–13 (2,3,2) 3429.00 0.00 3433.03 3429.00 0.00 3435.44 3428.85 0.00 3432.84 3429.00 0.00 3435.03
n33-k4-s3-17 (2,3,2) 3440.19 4.02 3459.68 3443.84 4.13 3456.86 3307.26 0.00 3319.26 3313.89 0.20 3334.94
n33-k4-s4-5 (2,3,2) 3795.70 0.00 3799.08 3796.16 0.01 3799.74 3795.61 0.00 3800.70 3796.47 0.02 3802.41
n33-k4-s7-25 (2,3,2) 3819.82 0.01 3826.87 3821.10 0.04 3827.77 3819.62 0.00 3825.91 3819.62 0.00 3827.03
n51-k5-s11–19 (2,3,3) 3061.89 0.00 3086.29 3067.14 0.17 3094.27 3067.40 0.18 3117.85 3084.38 0.73 3147.20
n51-k5-s11–19-27-47 (4,3,3) 1916.57 0.00 1928.39 1920.91 0.23 1931.76 1917.73 0.06 1925.49 1921.28 0.25 1932.76
n51-k5-s2-17 (2,3,3) 2891.04 0.00 2921.97 2902.64 0.40 2928.88 2909.18 0.63 2936.29 2907.18 0.56 2946.38
n51-k5-s2-4–17-46 (4,3,3) 2895.94 0.00 2922.84 2902.34 0.22 2929.37 2897.17 0.04 2938.39 2916.73 0.72 2953.09
n51-k5-s27-47 (2,3,3) 1918.45 0.05 1928.85 1921.03 0.18 1931.61 1917.50 0.00 1925.20 1921.10 0.19 1930.25
n51-k5-s32-37 (2,4,3) 4918.59 0.00 4924.44 4920.40 0.04 4927.77 4921.56 0.06 4939.19 4925.68 0.14 4955.94
n51-k5-s4-46 (2,3,3) 4170.25 0.00 4181.72 4171.78 0.04 4184.86 4171.00 0.02 4179.80 4176.14 0.14 4187.83
n51-k5-s6-12 (2,3,3) 2545.84 0.19 2561.59 2543.61 0.11 2568.61 2540.91 0.00 2554.11 2546.96 0.24 2567.47
n51-k5-s6-12–32-37 (4,3,3) 2545.90 0.09 2561.04 2546.75 0.12 2568.80 2543.73 0.00 2554.55 2549.05 0.21 2570.68

Average 2736.84 0.28 2738.77 0.36 2730.26 0.05 2734.24 0.20
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for both algorithms as the second best performer. The worst perform-
ing algorithm in terms of solution cost values is the HACS which was
able to obtain only one BKV and has the worst average results by a sig-
nificant margin. Its average result difference from the MMAS is 0:31%.

Regarding the performance of the algorithms in relation to instance
characteristics, it is observed that the MMAS and HMMAS perform bet-
ter on the smaller n22 and n33 instances than both the ACS and HACS
implementations. On the larger n55 instances, the ACS is the best per-
forming algorithm among all with the MMAS second best. The HACS is
able to surpass the HMMAS for most n55 instances, and therefore, the
HMMAS is the weakest algorithm for these larger instances.

The ACS and MMAS have different approaches regarding intensifi-
cation and diversification during the search. The observed difference
in their effectiveness depending on instance size may be attributed
Table 5
Computational time for the EVRPD instances.

ACS

Instance (#S,#D,#EV) Tavg sð Þ

n22-k4-s10-14 (2,3,2) 24.39
n22-k4-s11–12 (2,3,2) 22.03
n22-k4-s12-16 (2,3,2) 23.82
n22-k4-s6-17(2,3,2) 23.68
n22-k4-s8-14 (2,3,2) 23.33
n22-k4-s9-19 (2,3,2) 23.48
n33-k4-s1-9 (2,3,2) 45.74
n33-k4-s14-22 (2,3,2) 41.04
n33-k4-s2–13 (2,3,2) 45.93
n33-k4-s3-17 (2,3,2) 87.59
n33-k4-s4-5 (2,3,2) 411.43
n33-k4-s7-25 (2,3,2) 42.95
n51-k5-s11–19 (2,3,3) 76.96
n51-k5-s11–19-27-47 (4,3,3) 57.51
n51-k5-s2-17 (2,3,3) 68.52
n51-k5-s2-4–17-46 (4,3,3) 69.62
n51-k5-s27-47 (2,3,3) 58.34
n51-k5-s32-37 (2,4,3) 2181.76
n51-k5-s4-46 (2,3,3) 85.50
n51-k5-s6-12 (2,3,3) 57.28
n51-k5-s6-12–32-37 (4,3,3) 56.99

Average 167.99
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to their respective approaches. The direct feedback by removing pher-
omone immediately after constructing a solution, of ACS may allow
the algorithm to overcome local minimums in larger instances. The
MMAS, with its minimum and maximum pheromone levels, has the
ability to keep many solution statistically possible, which helps the
algorithm to not prematurely converge in the smaller instances.

Table 5 presents the average computational time required for each
instance. The MMAS and HMMAS have similar average elapsed time,
with the MMAS being slightly faster between the two and also overall.
The HACS required more time than the HMMAS on average, but this
difference can be attributed mostly to instance n51‐k5‐s32‐37, in
which the algorithm was trapped in an infeasible region of the solution
space. This characteristic is even more prominent in the ACS which has
computational times as outliers in 3 instances, and thus, required on
HACS MMAS HMMAS

Tavg sð Þ Tavg sð Þ Tavg sð Þ

24.63 23.46 24.75
23.73 21.81 23.78
24.80 21.76 24.58
24.99 21.82 23.93
24.11 22.16 24.06
23.03 19.62 22.46
43.50 39.76 41.41
43.34 40.71 42.65
43.25 37.57 40.41
47.35 39.86 41.10
75.04 36.53 38.12
40.12 37.49 39.26
60.21 57.25 59.11
58.27 58.40 59.13
57.94 56.15 59.25
58.45 56.31 57.99
58.31 57.80 59.09

851.37 59.89 60.03
57.63 56.21 56.17
58.94 56.21 56.81
59.13 56.11 57.17

73.72 41.75 43.39
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average almost 4 times the running time of the MMAS
implementations.

Based on the presented results, the MMAS approach is recom-
mended for solving small to medium instances of the EVRPD. For
instances with more than 50 customers, ACS is able to obtain the most
BKVs with the MMAS very close second, therefore, a recommendation
for large instances cannot be made confidently.
5.4. Statistical comparison

In order to verify the observed results, the algorithms are statisti-
cally tested against each other in order to determine superiority.
Table 6 displays the results of a paired t‐test, where the null hypothesis
H0 assumes the given algorithms have equal means of results and the
alternative hypothesis H1 assumes statistically different means.

The t‐test is a parametric statistical test which assumes that the
data approximate the normal distribution and have homogeneous or
equal variance. Therefore, the non‐parametric Wilcoxon signed‐rank
test is also utilized to further statistically test the significance of perfor-
mance differences between the algorithms. Table 7 displays the results
of the Wilcoxon signed‐rank test.

Based on both the t‐test and Wilcoxon signed rank test results, we
can confidently state that the performances of ACS and MMAS are
superior to the HACS and HMMAS, respectively, confirming the obser-
vations made on the experimental results subsection. ACS and MMAS
are statistically equal, using a 95% confidence level, but the p‐value of
0:079 in the Wilcoxon singed rank test, indicates that the MMAS may
be considered superior for most cases. These statistical findings sup-
port the analysis in the results subsection, where the instance size fac-
tor on the performance of the algorithms was discussed. The statistical
indifference between ACS and HMMAS is in accordance with the
observation that although the ACS was able to obtain more BKVs,
the HMMAS had on average best results. The HACS and HMMAS being
statistically equally, indicates the split performance dominance,
between smaller and larger instances.

Overall, the MMAS is the best choice for solving the EVRPD, and
particularly in small instances, while the ACS might be able obtain bet-
ter results for larger instances. The performance of the hybridized vari-
ants are not competitive compared to their respective original
versions, but it should be noted that the HMMAS is both faster and bet-
ter on average results than the ACS.
Table 6
Paired t-test on the results of the four ACO implementations.

μA μB H0

2736.845714 2738.778095 μACS ¼¼ μHACS
2736.845714 2730.268095 μACS ¼¼ μMMAS

2736.845714 2734.242381 μACS ¼¼ μHMMAS

2738.778095 2730.268095 μHACS ¼¼ μMMAS

2738.778095 2734.242381 μHACS ¼¼ μHMMAS

2730.268095 2734.242381 μMMAS ¼¼ μHMMA

Table 7
Wilcoxon signed-rank test on the results of the four ACO implementations.

XA XB H0

2736.845714 2738.778095 XACS ¼¼ XHACS

2736.845714 2730.268095 XACS ¼¼ XMMAS

2736.845714 2734.242381 XACS ¼¼ XHMMA

2738.778095 2730.268095 XHACS ¼¼ XMMA

2738.778095 2734.242381 XHACS ¼¼ XHMM

2730.268095 2734.242381 XMMAS ¼¼ XHM
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5.5. Practical application case study

In this section the proposed EVRPD is applied in 3 practical scenar-
ios, which consider a delivery operation in the city of Chania, Greece.
Each scenario has 25 customers and 3 satellite locations. The maxi-
mum number of EVs which can be used are 2 and the maximum num-
ber of drones in each EV is 3.

For this case study, the Volkswagen ABT e‐Transporter is consid-
ered as the EV model and the Amazon Prime Air UAV is used as the
drone model. For the VW ABT e‐Transporter technical specifications
can be found online Volkswagen‐vans.co.uk (2022). For the Amazon
Prime Air UAV, the specifications used are found in Jung and Kim
(2017). Table 8 describes the specifications considered for each vehi-
cle in this case study.

Since for both vehicles there is no formula to determine the exact
consumption rate based on the weight of the payload, the values pre-
sented in the last column of Table 8 are based on the data available in
the specifications with a pessimistic bias. Thus, instead of considering
the nominal range of the drones at 16 km at 2.3 kg payload weight,
calculations where based on a 10 km range with the same payload
weight.

For the EVs, distances between the depots and satellite locations
are based on the road distance estimates given by Google maps, while
for the drones, the harvesine distance formula is used on the longitude
and latitude coordinates.

Table 9 presents the energy consumption (EC) in Wh of the best
solution found by each algorithm for each scenario. Columns 2, 4, 6
and 8 display the total EC while columns 3, 5, 7 and 9 denotes the
EC of the drones alone. It is observed for Scenario 1 and Scenario 3,
the EC of the EVs accounts for 40% to 46% of the total EC. For Scenario
2, this range is from 56% to 70%. This observation highlights, first of
all, the positive environmental impact drones can have when incorpo-
rated in supply chains. Although, their per kg energy consumption rate
is higher, their light weight makes them more efficient than EVs in
delivering small packages to end customers. The results also indicate
the importance of optimizing both EV and drone routes in conjunction.
Since the two vehicle types are closely coupled, changing a single
drone route can have a great impact, positive or negative, to the total
energy consumption of the operation. The EVRPD model is able to
optimize both, EVs and drones, with respect to their energy consump-
tion, and thus, contributes to cleaner logistics.
t-value p-value Result (a ¼ 0:05)

−2.713728 0.013370 Rejected
1.019388 0.320192 Not Rejected
0.405119 0.689690 Not Rejected
1.315665 0.203169 Not Rejected
0.707664 0.487319 Not Rejected

S −3.457735 0.002487 Rejected

w-value p-value Result (a ¼ 0:05)

29.0 0.004550 Rejected
74.0 0.398063 Not Rejected

S 58.0 0.079322 Not Rejected

S 27.0 0.003592 Rejected

AS 63.0 0.327144 Not Rejected

MAS 10.0 0.000390 Rejected



Table 8
Weight classes of packages.

Model Weight
(kg)

Battery
(kWh)

Nominal Range
(km)

max Payload
(kg)

Approx. Energy
Consumption
(Wh/km/kg)

VW ABT e-Transoporter 6.1 2204.0 37.3 132 (at 15% max payload) 996.0 0.12007
Amazon Drone 5.5 0.37 16 (at 2.3 kg payload) 14.0 4.743589

Table 9
Case study results.

ACS HACS MMAS HMMAS
Total E.C. Drone E.C. Total E.C. Drone E.C. Total E.C. Drone E.C. Total E.C. Drone E.C.

Instance (Wh) (Wh) (Wh) (Wh) (Wh) (Wh) (Wh) (Wh)

Scenario 1 2103.254 1253.062 2087.092 1236.9 1841.373 991.181 1841.373 991.181
Scenario 2 2292.075 990.967 2183.1901 682.4351 2159.331 658.576 2291.095 989.988
Scenario 3 2487.434 1423.725 2369.989 1306.28 2561.616 1497.907 2505.2425 1441.8455
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In terms of per algorithm results, the MMAS was able to obtain the
best results in 2 out of the 3 scenarios, while HMMAS and HACS
obtained the best solution for 1 scenario. This agrees with the overall
performance of the algorithms in small instances, where MMAS was
able to obtain the majority of best solutions.

Fig. 11 displays the best solutions found for Scenario 1, Scenario 2
and Scenario 3, respectively. Routs drawn with thicker line represent
the EV routes while thin lines are the drone routes. All routes belong-
ing to the same drone have the same color.
6. Conclusions

In this paper, the first problem in literature combining electric
ground vehicles and UAVs was presented, namely the Electric Vehicle
Routing Problem with Drones. This novel problem utilizes these two
vehicle types in order to serve customer demand, with the goal of min-
imizing the energy consumption of operations. This objective not only
is in line with the overall green and eco‐friendly nature of the vehicles
used, but it also allows them to service more customers given their lim-
ited range. Electric vehicles will become more common in logistics and
in combination with UAVs can provide significant benefits to the sup-
ply chain. The EVRPD considers a scenario in which EVs carry drones
along with packages from the depot to pre‐designated launch/retrieval
positions, from where the drones perform the deliveries to customers.
Different package weights are considered in order to calculate the
drones’ payloads, which are then used to calculate the energy con-
sumption of their routes. The same energy consumption principle is
also applied to the EVs’ routes.

The EVRPD extends the state‐of‐the‐art VRP literature, combining
elements from the EVRP, the VRPD and two‐echelon VRPs. The EVRPD
focuses on the main contributing factor of energy consumption which
can be controlled by optimizing the routing of the vehicle, that is, the
payload weight.

The scenario considered in the EVRPD with its payload and energy
cost elements were described in detail, along with its assumptions. The
main contribution of the research to the VRP literature, from a theoret-
ical perspective, is the mathematical formulation of the problem pre-
sented, with the detailed explanation of its variables, objective
function and constraints.

In order to tackle the complexity of the EVRPD, four Ant Colony
Optimization algorithms were developed and tested. The classical
ACS and MMAS utilizing a VND local search procedure and two hybrid
variants of those, namely the HACS and the HMMAS, based on the
ACO‐VND framework of Kyriakakis et al. (2021) originally proposed
for the Cumulative Capacitated Vehicle Routing Problem. These algo-
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rithms follow a neighborhood‐generated ant population scheme in
order to effectively explore the solution space during solution con-
struction. Additionally, a variable neighborhood descent algorithm is
utilized to exploit the generated solutions and further improve the
effectiveness of the search. In order to test the implemented ACO algo-
rithms, a set of benchmark instances was created based on the two‐
echelon data set found in the literature. The instances were altered
according to the needs of the EVRPD and its required problem
parameters.

The instances were solved by the ACO implementations and their
results were compared. The hybrid variants’ performance did not meet
the expectations and the success the framework had in the CCVRP.
This might be attributed to the neighborhood structures utilized not
being large enough to effectively search the solution space. The ACS
and MMAS, having more randomness in their ant population generat-
ing process were able to obtain better solutions than their hybridized
counterparts.

Overall, MMAS can be considered the best performing among
them, having obtained 13 out of 21 best known values and having
the best average results. ACS was second with 9 out of 21 BKVs. For
larger instances the ACS was able to obtain more BKVs than MMAS,
although it was not as competitive in terms of computational time.
Both ACS and HACS had instances in which the algorithms were
trapped in the infeasible region, requiring significantly more time to
run. The HMMAS, although it was able to reach only 2 out of 21 BKVs,
it had better average results than ACS and required on average a quar-
ter of the computational time.

The EVRPD was also applied in 3 practical scenarios which consid-
ered a delivery operation in Chania, Greece using the Volkswagen ABT
e‐Transporter and the Amazon Prime Air UAV. The solutions obtained,
with the energy consumption calculated in Wh indicated the impor-
tance of optimizing both vehicle types in conjunction, as well as, the
significant impact they can have in minimizing the total energy con-
sumption of operations. The EVRPD model, by combining EVs and
drones in a two‐echelon approach, with the goal of minimizing the
total energy consumption, can contribute to cleaner logistics.

Future work on the EVRPD, includes variants which incorporate
battery swaps for the drones and recharging for the EVs. Although,
at the time of writing, recharging times are quite high to be considered
during urban delivery operations, as battery technology progresses,
problems including fast‐charging should be considered for research.
Another interesting future work, considers the dynamic version of
the EVRPD, in which, due to unpredictable circumstances and condi-
tions, batteries are depleted of energy faster than expected, and thus
the routing operation must dynamically respond to these changes.



Fig. 11. Case study of Chania. Best solutions found for Scenario 1 (top), Scenario 2 (middle) and Scenario 3 (bottom).
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