
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Development of a CAD tool and
Hardware Design in Order to Execute

Cellular Automata on a Reconfigurable
Platform by non-FPGA-Conversant Users

Author:
Emmanouil MYLONAKIS

Thesis Committee:
Prof. Apostolos DOLLAS

Assoc. Prof. Sotirios IOANNIDIS

Prof. Michael ZERVAKIS

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

February 23, 2024

https://www.tuc.gr/
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Development of a CAD tool and Hardware Design in Order to Execute
Cellular Automata on a Reconfigurable Platform by

non-FPGA-Conversant Users

by Emmanouil MYLONAKIS

Cellular Automata (CA) are Turing-Complete, discrete, computational mod-
els, invented by John Von Neumann and Stanislaw Ulam. It is a powerful
mathematical tool, finding application to numerous scientific fields. Field-
Programmable Gate Array (FPGA) Technology has been used for decades
to speed up CA computations. In previous work, Nikolaos Kyparissas de-
signed in his Technical University of Crete (TUC) M.Eng. Diploma Thesis a
customizable framework and an architecture to accelerate CA computations,
with neighborhoods as large as 29 × 29. In Kyparissas’ work the initialization
of the machine and the customization of the framework have to be manually
re-defined for every different CA model, and the design placed and routed
with the CAD tools of the FPGA vendor, Xilinx. In the present thesis we ex-
tend that work so that the user does not need to write code for the hardware
implementation or go through the Xilinx CAD tools for placement and rout-
ing. A re-programmable structure of the framework has been introduced,
while a new CAD tool, developed in the present thesis, drives the design
at the software level. Finally, a Graphical User Interface (GUI) environment
has also been developed to help the user define CA neighborhoods without
having to enter one-by-one the as-many-as 841 (29 × 29) weights.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Development of a CAD tool and Hardware Design in Order to Execute
Cellular Automata on a Reconfigurable Platform by

non-FPGA-Conversant Users

by Emmanouil MYLONAKIS

Τα κυψελωτά αυτόματα (cellular automata - CA) είναι μία δομή των διακριτών
μαθηματικών με σημαντικές υπολογιστικές ιδιότητες (Turing complete). Εφευ-
ρέθηκαν από τον John Von Neumann και τον Stanislaw Ulam και αποτελούν

ένα σημαντικό μαθηματικό εργαλείο για μοντελοποίηση πληθώρας προβλημάτων

σε πολλά και διαφορετικά επιστημονικά πεδία. Η τεχνολογία αναδιατασσόμενης

λογικής (Field Programmable Gate Array - FPGA) έχει χρησιμοποιηθεί επί δε-
καετίες για να επιταχύνει υπολογισμούς κυψελωτών αυτομάτων. Σε προγενέστερη

εργασία, ο Νικόλαος Κυπαρισσάς στην Διπλωματική του Εργασία στο Πολυτε-

χνείο Κρήτης δημιούργησε ένα παραμετροποιήσιμο πλαίσιο εργασίας και μία αρ-

χιτεκτονική για επιτάχυνση υπολογισμών CA με γειτονιές έως 29 × 29. Στην
εργασία αυτή η αρχικοποίηση και η παραμετροποίηση του επιταχυντή πρέπει να

οριστούν εκ νέου για κάθε διαφορετικό μοντέλο CA, και η σχεδίαση να περάσει
από τα εργαλεία CAD του κατασκευαστή Xilinx για τοποθέτηση και διασύνδεση
πόρων (Place and Route) της FPGA. Στην παρούσα διπλωματικη εργασία επε-
κτείνουμε τα παραπάνω αποτελέσματα ώστε ο χρήστης να μην χρειάζεται να γράψει

κώδικα ή να περάσει την σχεδίασή του μέσα από τα εργαλεία της εταιρίας Xilinx
για τοποθέτηση και διασύνδεση πόρων. Αυτό επιτυγχάνεται μέσω αλλαγών στην

υφιστάμενη αρχιτεκτονική που επιτρέπουν την χρήση της για διαφορετικά μοντέλα

του χρήστη, και μέσω ενός γραφικού περιβάλλοντος που αλληλεπιδρά με το υλικό

(hardware) του συστήματος για να φορτώνει νέες σχεδιάσεις. Μία επί πλέον
γραφική διεπαφή (Graphical User Interface - GUI) έχει δημιουργηθεί στα πλάι-
σια της παρούσας διπλωματικής, ώστε ο χρήστης να μην χρειάζεται να ορίζει τα

έως και 841 (29 × 29) βάρη στις γειτονιές ένα-ένα, αλλά με γραφικό τρόπο και
μάλιστα αυτόματο όπου υπάρχουν συμμετρίες.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

vii

Acknowledgements
First and foremost, I would like to express my deepest gratitude to my

supervisor professor, Apostolos Dollas. He showed me trust by proposing
the present subject to me in the first place. He was always by my side for
support, beyond his role as a professor. He was compassionate during a
difficult period of my life. Without him, I couldn’t have carried through the
present Thesis.

I would like to show my appreciation to my committee, Prof. Sotirios
Ioannidis and Prof. Michael Zervakis.

I wish to acknowledge the efforts of the Technical University of Crete,
which provides students with support, knowledge and numerous opportu-
nities all of these years.

My sincere thanks go to Nickolas Kyparissas for his assistance and advises
that he provided on technical issues.

My thanks are extend to all of my best buddies, in alphabetic order: Anto-
nis Maragoudakis, George Exarchakos, George Koutroumpas, Giannis Kout-
roumpas, Ilias Vamvakas, Konstantinos Zacharopoulos, Konstantinos Stav-
roulakis, Konstantinos Koulaouzidis and Mixalis Charalampakis. Truly thank
you fellas for all the support.

Heartfelt thanks to George Saltaris, my piano teacher and vocal coach.
He showed me an alternative way of decompression, while it is a pleasure
making conversations with him.

Special thanks to other friends and noteworthy persons, in alphabetic or-
der: Andreas Chourdakis, Danae Rafti, George Gavrilakis, Maria Babila,
Mary Tsourounaki, Mihalis Mylonakis, Niki Manioudaki, Paris Argyropou-
los, Petros Pantelakis and Stella Migadaki. Additionally, to my basketball
and bicycle teams.

Last but not least, all the words of the English dictionary are not enough, to
express my deepest gratitude to my mother Litsa and grandmother Chrysi.
Without the sacrifices that they made and the support that they offered, I
wouldn’t be able to make my dreams come true !

viii

ix

"The Nature is a book written in the language of mathematics."
∼ Galileo Galilei

xi

Contents

Abstract iii

Abstract v

Acknowledgements vii

Contents xi

List of Figures xv

List of Algorithms xvii

List of Abbreviations xix

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Contribution . 2
1.3 Thesis Outline . 2

2 Theoretical Background 5
2.1 Cellular Automaton Model . 5

2.1.1 Cellular Automata Classes 7
2.1.2 The Game of Life . 8

2.2 FPGA Technology . 10
2.2.1 FPGA vs. Other Devices 12

3 Related Word and Motivation 15
3.1 CAM Architecture (1984~2000) 15
3.2 CEPRA Architecture (1994~2000) 18
3.3 SPACE Architecture (1996) . 19
3.4 Kobori, Maruyama and Hoshino (2001) 22
3.5 Phepls’ and Islam’s Framework (2023) 23
3.6 Other Significant Approaches. 24

xii

3.7 Thesis Approach and Motivation 25

4 The Baseline Hardware Architecture 27
4.1 Top Level and System Specifications 27
4.2 Memory Controller and Grid Representation 30
4.3 System and Memory Initialization 32
4.4 Grid Lines Buffer . 33
4.5 CA Engine . 35
4.6 Frame Extraction . 36
4.7 The Remaining Modules . 37

4.7.1 Graphics Controller . 37
4.7.2 Graphics Feeder . 38
4.7.3 Write Back . 38
4.7.4 Memory Access Arbitrator 39

5 Design of the re-programmable Framework 41
5.1 Overview of Extended Architecture 41
5.2 Frame Extraction and Speed Control 42
5.3 CA Engine’s Adjustments . 43

5.3.1 Supporting Totalistic Rules 44
5.3.2 Expanding to Outer-Totalistic Rules 46

5.4 Protocol Buffers . 48
5.4.1 Deserializing Data . 49
5.4.2 Serializing Data . 51

5.5 Assembling the complete picture 52

6 The CAD Tool to Drive the FPGA-based Accelerator 55
6.1 Overview Of The Tool . 55
6.2 TCL Scripting . 56
6.3 CA Description Language (CDL) 58

6.3.1 Interpreting the CDL . 60
Totalistic Rules . 60
Outer-Totalistic Rules 61

6.4 Serializing/Deserializing Data 62
6.5 Image Conversion . 63

7 The Graphical User Interface CAD Tool to Describe the CA Model 65
7.1 The GUI Environment . 65
7.2 User Options . 66

xiii

7.3 Configuring Weights . 68
7.3.1 Neighborhood Types . 70
7.3.2 Mirror Mode . 73

7.4 The Remaining Configurations 74

8 System Verification, Examples of Use, Evaluation, and Results 77
8.1 Artificial Physics . 78
8.2 The Game Of Life . 80
8.3 The Hodgepodge Machine . 81

8.3.1 Experiments . 82
8.4 Discussion . 87

9 Conclusions and Future Work 89
9.1 Conclusions . 89
9.2 Future Work . 89

9.2.1 Application Examples 90
The Greenberg-Hastings 90
Anisotropic Rules . 91
Hardware Approach . 92

9.2.2 Globalizing Accessibility and Improve Experience . . . 94

References 97

xv

List of Figures

2.1 (a)-1D, (b)-2D, (c)-3D grid depiction. 6
2.2 Neighborhood types: (a) Non-weighted Moore, (b) Weighted

Moore, (c) Non-weighted von Neumann, (d) Weighted von
Neumann, (e) Non-weighted Custom, (f) Weighted Custom. . 7

2.3 Game of Life transition rules. 9
2.4 FPGA’s Hardware Architecture. The basic components. 10
2.5 Basic structure of Control Logic Blocks 11
2.6 n-MAC operation. CPU vs FPGA 13

3.1 CAM’s hardware architecture. Basic computational loop with
solid lines. Source [22] . 15

3.2 The form of the "gap" that should be filled by the transition
function. Phase and channel parameters are non-local argu-
ments. (see figure 3.1). Source [22] 16

3.3 CAM’s-8 hardware architecture. (a) A single module. (b) Each
module is connected to the nearest ones. Source [24] 17

3.4 CAM’s-8 programming environment alongside a sample of a
sound pulse. (Source: [24]) . 18

3.5 CEPRA’s-1X environment alongside the derivative hardware.
Source [28] . 19

3.6 One SPACE board. Source [30] 20
3.7 Top level view of a lattice gas automaton. Source [30] 21
3.8 Overview of hardware architecture. Case of 8× 16 (k × n) PEs.

k and n depend on the rule. Source [31]. 22
3.9 System overview. Source [31]. 23

4.1 Top Level View of the hardware architecture. Modules within
dashes were modified in this Thesis. 28

4.2 Supported Grid Types: (a) Rectangular, (b) Cylindrical, (c) Toroidal.
(Source: [12]) . 29

4.3 The Customizable Framework of the top level. Generic values
are inherited by the sub-modules. 30

xvi

4.4 Handshake Mechanism for accessing Memory Controller. . . . 31
4.5 Grid representation in memory and burst addressing. bl is the

number of bursts per line. Source: [12] 32
4.6 Initialization procedure of the machine. 32
4.7 The FSM of Memory Initializer module. 33
4.8 Grid Lines Buffer Inner Architecture 34
4.9 The Reader’s functionality. 34
4.10 Datapath of the CA Engine. Case of 3 × 3 neighborhood. . . . 35
4.11 Frame Extract ’s FSM functionality. 37
4.12 The embedded color palettes in Graphics Controller. Figure

designed by Kyparissas. 38

5.1 New top level View of the hardware architecture. Modules
within dashes were modified. Rounded modules are the new
ones. 42

5.2 Changes to FRAME EXTRACT ’s FSM along with the SPEED
CONTROLLER ’s circuity. 43

5.3 CA Engine’s re-programmable structure for totalistic rules. Reg-
isters of neighborhood, multipliers and the adder tree was al-
ready developed. 45

5.4 CA Engine’s final re-programmable structure for both totalis-
tic and outer-totalistic rules. 46

5.5 The FSM diagram of Deserializer Module. The MSB of each
byte concerns the continuation or stop bit. 49

5.6 Connectivity of Deserializer module in the design. 50
5.7 FSM of Serializer module. 51
5.8 Connectivity of Serializer in the design. 52
5.9 Implemented circuit on the device 53

6.1 Flowchart of the back-end functionality. 56
6.2 The Greenberg-Hastings Model described in CDL. 58
6.3 An example of BRAM, given the reference example. 61
6.4 An example of BRAM, given the reference example. Case of

cell size = 4bits . 61

7.1 The GUI environment . 66
7.2 Creating new project. 67
7.3 Configuring weights. (a) Widgets for shaping the neighbor-

hood, (b) 29 × 29 lattice of entries. 69

xvii

7.4 (a) Setting up a 13 × 13 neighborhood, (b) Adding weights. . . 69
7.5 Adding 2 to every cell excluding zeros, in a von Neumann re-

gion. 70
7.6 Drop-down menu of neighborhood types. 70
7.7 (a) Moore, (b) von Neumann. 71
7.8 (a) Circular, (b) L2/Euclidean. 72
7.9 (a) Checkboard, (b) Checkerboard’. 72
7.10 (a) Hash, (b) Cross. 72
7.11 (a) Saltire, (b) Star. 73
7.12 Mirror Mode: (a) The one fourth of a von Neumann neighbor-

hood, (b) Properly mirrored. 74
7.13 Mirror Mode with shifted center: (a) A small von Neumann

within the second quadrant neighborhood, (b) Properly mir-
rored. Four von Neumann sub-neighborhoods were shaped. . 74

7.14 Widgets for configuring the grid, inserting the transition rule
and setting up the simulation. 75

7.15 An example of the format of a .config file. 75

8.1 The user’s input inside the GUI. (a) Artificial Physics’ configu-
rations, (b) the neighborhood’s window. 79

8.2 The evolution of Artificial Physics. (a) Initial State, (b) 500 gen-
erations, and (c), 60, 000 generations along with a zoomed-in
frame. 79

8.3 The evolution of Game of Life. (a) Initial State, (b) 500 genera-
tions, and (c), 15, 000 generations along with a zoomed-in frame. 81

8.4 Game of Life in-GUI configuration. (a) Parameters/Transiton
Function (b) Neighborhood window. 81

8.5 (a) 15 × 15 and (b) 17 × 17 after the system has converged. . . 85
8.6 21 × 21 neighborhood: (a) Initial State, (b) 19 and (c) 200 gen-

erations. 86
8.7 25 × 25 neighborhood: (a) Initial State, (b) 22 and (c) 200 gen-

erations. 86
8.8 29 × 29 neighborhood: (a) Initial State, (b) 40 and (c) 200 gen-

erations. 87

9.1 CA Engine’s extended, re-programmable framework for sup-
porting more complex models. A potential solution (blue color)
attached to the already developed hardware (with black). . . . 92

xix

List of Abbreviations

ALU Arithmetic Logic Unit
ASCII American Standard Code for Information Interchange
ASIC Application Specific Integrated Circuits
BRAM Block Random Access Memory
CA Cellular Automat-on/-a
CAD Computer Aided Design
CPLD Complex PLD
CUDA Compute Unified Device Architecture
FPGA Field Programmable Gate Array
GUI Graphical User Interface
HIP Hybrid Integration Protocol
IP Integrated Protocol
LSB(s) Least Significant Bit(s)
MPI Message Passing Interface
MSB(s) Most Significant Bit(s)
OpenMP Open Multi-Processing
PLD Programmable Logic Device
RAM Random Access Memory
SPLD Simple PLD
TCL Tool Command Language
UART Universal Asynchronous Receiver Transmitter
VHDL VHSIC Hardware Discription Language
VHSIC Very High Speed Integrated Circuit

xxi

Heartily dedicated to the memory of Nikolaos
Tampakis, the greatest mathematician and friend I

ever had . . .

1

Chapter 1

Introduction

Cellular Automata (CA) are a Turing-complete mathematical structure in-
vented by John von Neumann and Stanislaw Ulam in the 1940s; they com-
prise a discrete, deterministic, computational model [1, 2]. Over the last
decades, the interest of many scientific communities ranging from physics
to neuroscience has been stimulated to use the CA as a powerful tool, since
complex physical phenomena can be simulated, observed, and verified by
means of elegant definitions of a simple mathematical model.

1.1 Motivation

Cellular Automata’s potential is limitless, seeing that they can model a
broad range of phenomena which pertain to almost every scientific field.
They can model physical processes, including molecular dynamics [3, 4], eco-
logical theory [5] and artificial brains [6]. Moreover, the whole universe can
fundamentally be described by digital information, hence, the evolution of
the cosmos is possible to be simulated using this model [7]. John von Neu-
mann created the first Cellular Automata, the Universal Constructor, in the
1940s. It is an abstract machine, that illustrates the conditions needed for self-
replication [8, 9]. As a result of this creation, scientists delved into further
research on the mathematical concept, and consequently, it was proven that
the properties of universality and reversibility are fundamentally essential
for numerous Cellular Automaton rules [10, 11], without reversibility having
to apply to all CA models.

As a high school student, mathematics was my favorite subject by far.
Nonetheless, the evolution of technology in combination with my interest in
programming, led me to opt for studying Electrical and Computer Engineer-
ing (ECE). Given that mathematics is the dominant tool to advance science,

2 Chapter 1. Introduction

it became clear that ECE would pave the way to what I was looking for. By
the time my supervisor proposed to me this Thesis subject, I responded posi-
tively without uncertainty. CA can fulfill someone’s curiosity since it engages
in myriads of scientific theories.

1.2 Thesis Contribution

In this Thesis, we have developed a CAD tool that aids non-FPGA con-
versant users to simulate CA rules in a convenient way. We use the term
"simulate CA" as it is used by that community - all references to "CA sim-
ulations" refer to runs of the models on actual FPGA-based hardware. The
hardware architecture has been designed by Nikolaos Kyparissas (presently
a Ph.D. Student at the University of Manchester) in his TUC ECE M.Eng.
Diploma Thesis [12], and published in [13, 14, 15]. Although Kyparissas’ de-
sign as of the early 2020’s is the largest (29 × 29 neighborhoods) and fastest
(up to 100 HD frames per second) reported in literature, and it placed twice at
the top tier in the AMD-Xilinx’s Open Hardware Competition (in 2015 and
2018), hardware engineering knowledge is required for someone to exploit
his machine. The key advantage of his design is that it is capable of simu-
lating large sizes of neighborhoods, up to 29 × 29, at up to 100 frames per
second and on various grids (cartesian, cylindrical or toroid) of 1920 × 1080.

In the present thesis a CAD tool has been developed to fully automate the
initialization process of the machine, and provide users with a convenient
simulation medium. Kyparissas’ architecture, through this thesis, has been
turned into a re-programmable framework with no need of the user to write
VHDL code. An easy-to-use Cellular Description Language (CDL) has been
developed to define the mathematical equations of models. Additionally, a
GUI environment allows the user to enter the up-to-841 (29 × 29) weights.
The combination of the above features allows for non-hardware-expert users
to use the CA simulator.

1.3 Thesis Outline

This Thesis consists of 9 chapters. Following Chapter 1, i.e., this Introduc-
tion:

• Chapter 2: Contains the CA theoretical background on both Cellular
Automata and FPGA technology.

1.3. Thesis Outline 3

• Chapter 3: Presents relevant work on significant hardware architec-
tures.

• Chapter 4: Explains Kyparissas’ design, which is essential to under-
stand the changes and improvements made in the present thesis.

• Chapter 5: Presents in detail the construction of the re-programmable
framework.

• Chapter 6: Analytically presents the back-end structure of the CAD
tool.

• Chapter 7: Has the GUI environment from a user’s and from a system’s
perspective.

• Chapter 8: Demonstrates applications, examples and experiments on
the Hodgepodge Machine model, which were used both for the verifica-
tion of the tools and architectures developed in this thesis, as well as to
explore chimera states, a physical phenomenon of interest to physicists
studying dynamical systems.

• Chapter 9: Has conclusions and future work.

5

Chapter 2

Theoretical Background

This section provides the reader with the theoretical background regard-
ing this Thesis. We introduce the discrete world of Cellular Automata which
is important for the reader in order to understand both the hardware design
and the CAD tool developed in this work. Secondly, we succinctly explain
the basic principles of the FPGA technology in order to show why FPGA
technology achieves such high performance vs. alternative technologies.

2.1 Cellular Automaton Model

Cellular Automaton is a discrete, dynamical system, characterized by the
properties of locality and uniformity. In its general form, a CA theoretically
consists of a multi-dimensional lattice (grid) of an infinite number of cells (see
Figure 2.1), where each cell has a finite number of different states, and, a set of
rules that determines the next state of a cell on the grid. Practically, however,
the size of the lattice is finite, given that the resources of a computational
machine are limited.

For this thesis, we focus on 2-D CA problems, and the process of calculat-
ing one is:

1. For every cell on the grid repeat the following steps.

2. Define a 2-D, relatively small region, called neighborhood,
where the desired cell is placed at the center.

3. Multiply each cell in the neighborhood with the corresponding weight
of a predetermined window of coefficients (weights).

4. Calculate the sum of all cells in the neighborhood, forming a dot prod-
uct.

5. Decide on the next state of the central cell according to a transition rule.

6 Chapter 2. Theoretical Background

FIGURE 2.1: (a)-1D, (b)-2D, (c)-3D grid depiction.

After the grid is fully processed, the calculation of one generation has been
completed. The simulation continues to the next generation and the user
decides when it terminates. The neighborhood of a CA problem is shaped
based on a radius and a type. The radius determines the region in which the
total sum is being calculated, while the type defines the arrangement and the
values of the weights. There are two mathematically defined neighborhood
types, named Moore and von Neumann. In the rest of the present work we
are going to refer to them as custom, as it is neither mathematically restricted
to only exploit the aforementioned types, nor architecturally restricted by the
CA accelerator (of Kyparissas and of this thesis).

The Moore neighborhood is a square-shaped region around the central
cell that covers an N × N area, where N is an odd number, whereas a von
Neumann neighborhood is (in its simplest form) the central cell in question
plus its north, south, east and west neighbors.

All types of neighborhoods can be either weighted or not, as shown in
Figure 2.2. Finally, it is important to note that the length of each dimension
of the neighborhood should be restricted to odd values, otherwise, a unique
central cell can not be determined.

To mathematically define a Moore or von Neumann region, let (x, y) ∈ Z

be the coordinates on XY axis, where the pair (x0, y0) corresponds to the cen-
tral cell, then, the set of cells that belongs in the Moore (NM

(x0,y0)
) or von Neu-

mann (NV
(x0,y0)

) neighborhood of radius r is defined by the following mathe-
matical expressions [16, 17]:

• NM
(x0,y0)

= {(x, y) : |x − x0| ≤ r, |y − y0| ≤ r}

• NV
(x0,y0)

= {(x, y) : |x − x0|+ |y − y0| ≤ r}

2.1. Cellular Automaton Model 7

FIGURE 2.2: Neighborhood types:
(a) Non-weighted Moore, (b) Weighted Moore,

(c) Non-weighted von Neumann, (d) Weighted von Neumann,
(e) Non-weighted Custom, (f) Weighted Custom.

2.1.1 Cellular Automata Classes

The CA problems are mainly categorized into two classes: totalistic and
outer totalistic. In a totalistic CA, the next state of a cell only depends on the
total sum of the neighbors of the central cell, while an outer totalistic rule
depends on both the total sum and the current state of the central cell [18].
Therefore, an outer totalistic CA rule is a superset of a totalistic one. To math-
ematically demonstrate a CA problem, let a finite set of possible cell-states be:
S = {s0, s1, ..., sn} ∈ Z0+. The total sum of each cell using predefined weights
is given by equation (1), while the transition rule is defined by equations (2)
or (3).

Sum =
r

∑
x=−r

r

∑
y=−r

w(x, y) ∗ ct(x, y) (1)

ct+1(x, y) =

s0 , if a0 ≤ Sum < b0

s1 , if a1 ≤ Sum < b1 (2)
...
sn , if an ≤ Sum ≤ bn

8 Chapter 2. Theoretical Background

ct+1(x, y) =

s0 , if a0 ≤ Sum < b0 and ct(x0, y0) ∈ [t0, t1)

s1 , if a1 ≤ Sum < b1 and ct(x0, y0) ∈ [t1, t2) (3)
...
sn , if an ≤ Sum ≤ bn and ct(x0, y0) ∈ [tn, tn+1]

The transition rules (2) and (3) correspond to totalistic and outer totalistic
CA problems respectively. This can be verified by the fact that the central cell
doesn’t affect the result of the former transition rule, while it does so in the
latter. It should be mentioned that the above equations display a generalized
picture of how a CA problem is defined, and of course, there are numerous
ways to formulate a transition rule. The constant variables (a, b, t) and the
values of weights are mainly determined by either the mathematics that de-
scribe the model (i.e. differential equations, polynomial functions, etc.), or,
after running multiple experiments and patiently observing the behavior of
the rule.

2.1.2 The Game of Life

The Game of Life is considered to be one of the most popular two-dimensional
CA problems. It was invented by the mathematician John Conway in 1970
[19]. It merely consists of two states (’0’ or ’1’, ’dead’ or ’alive’) and simple
four transition rules (see also Figure 2.3):

1. If a cell is alive and it has one or no neighbors, it dies because of soli-
tude.

2. If an alive cell has four or more neighbors, it dies due to overpopula-
tion.

3. If an alive cell has two or three neighbors, it survives.

4. If a dead cell has exactly three neighbors, it is resurrected.

The above transition rule can be represented similarly to the formulas de-
scribed in the previous section:

ct+1(x, y) =

1 , if 2 ≤ Sum ≤ 3 and ct(x0, y0) = 1,
1 , if Sum = 3 and ct(x0, y0) = 0, (3)
0 , otherwise

2.1. Cellular Automaton Model 9

FIGURE 2.3: Game of Life transition rules.

These rules define the next state (’0’ or ’1’) of a cell on the grid based
on both the total sum of neighbors and the state of the central cell. Con-
sequently, the Game of Life is an outer totalistic CA problem using a 3 × 3,
non-weighted, Moore neighborhood. Despite its simplicity, outstanding pat-
terns beyond human imagination can be observed during its simulation. To
name but a few: stable patterns that remain unchanged through time, re-
peated patterns that interchange between a finite number of states (think of
it like a closed loop), cells traveling through the grid while infinitely main-
taining their shape, oscillators, "spaceships", "glider guns", and even logic
gates, counters and Finite State Machines.

Theoretically speaking, a fully functional computer can be built inside this
Cellular Automaton by finding a proper initial state for the simulation, and
arguably, the Game of Life is a Turing-complete model [20, 21]. This approach
of computer design, of course, is totally inefficient and unacceptably slow.
Notwithstanding, all these fascinating patterns have stimulated the interest
of both afficionados and researchers worldwide, because several phenomena
can be recounted in the Game of Life. Such phenomena pertain to numerous
scientific fields such as mathematics, computer science, biology, economy,
and more.

10 Chapter 2. Theoretical Background

2.2 FPGA Technology

FIGURE 2.4: FPGA’s Hardware Architecture. The basic compo-
nents.

The term FPGA stands for Field Programmable Gate Array and it corre-
sponds to a semiconductor, programmable, logic circuit. The first device for
commercial purposes was first introduced to the public by Xilinx Corp. in
1985. Nowadays, Xilinx has merged with AMD under the brand of AMD-
Xilinx Corp. Today’s FPGAs are capable of calculating tasks, that demand
very large amounts of resources (in the billions of gate equivalents), very
fast (in the hundreds of MHz clock speed) and efficiently energy-wise. Thus,
they are widely used in industry. That is to say, significant real-life appli-
cations - in domains such as physics, biology, astronomy, more and more -
strongly rely on the performance of FPGAs, their main advantage being re-
programmability and the execution of algorithms directly on the hardware
fabric (vs. running on a predefined processor architecture). This happens
because FPGAs are mainly composed of fully programmable logic blocks
placed in an array-like arrangement, plus individually addressable local mem-
ories, digital signal processors (DSP), local clock synchronizers, memory con-
trollers and I/O interfaces, etc. An FPGA board is generally structured by
four basic components (see figure 2.4):

1. Programmable Interconnections.

2. Configurable Logic Blocks (CLBs).

3. Input and Output (I/O) Resources.

4. Digital Signal Processing (DSP) Units.

2.2. FPGA Technology 11

FIGURE 2.5: Basic structure of Control Logic Blocks

The CLBs are connected to each other with programmable interconnec-
tions according to the user’s design. A CLB comprises of three simple logic
elements: a Look-Up-Table (LUT), a Flip-Flop and Multiplexers, as shown in
Figure 2.5. In the LUT, a list of results for every possible input is stored so as
to be ready when needed. A Flip-flop connected with a Multiplexer provided
CLB with the flexibility to be either clocked, synchronous or combinational
logic circuits. The CLB units can be used to form logic components such as
adders, multipliers, dividers, counters, and registers, while a combination of
CLBs is capable of calculating complex tasks, including Central Processing
Units ("soft core" CPUs).

The I/O resources on an FPGA board are physical structures that allow
FPGAs to communicate with the outside world. These resources include
interfaces for protocols such as VGA, Ethernet, HDMI, etc., and, buttons,
switches and LEDs. Consequently, an FPGA is capable of exchanging infor-
mation with a wide range of devices and users, as long as the proper hard-
ware has been developed in it. Regarding the DSP units, these generally
consist of adders and multipliers in a MAC (multiply-accumulate) configu-
ration. Thus, DSP units are suitable for applications such as: image or video
processing, noise filtering, sonar or radar signal processing, wireless commu-
nication, and more.

FPGA technology offers a very high amount of internal aggregate band-
width, in the order of TBytes/sec. The internal FPGA structure allows for a
very high degree of parallelism, which can be exploited in many classes of
applications. As a result, FPGAs are very suitable to compute complicated

12 Chapter 2. Theoretical Background

mathematical models, and nowadays are widely utilized in many areas, in-
cluding Artificial Intelligence and Convolutional Neural Networks (CNN),
an application of great interest to the scientific community and of great social
impact.

2.2.1 FPGA vs. Other Devices

FPGAs are not the only logic programmable devices (PLDs) that exist. To
name but a few, there are SPLDs, CPLDs, Simple- and Complex-PLDs, cor-
respondingly. The SPLDs and CPLDs have substantially lower capacity vs.
FPGAs and they are not capable of computing complicated tasks. Notwith-
standing, there is practical use of these devices in applications such as encod-
ing/decoding, data display, and for example, they could be used alongside
an FPGA on a Printed Circuit Board (PCB) to execute system configurations
and allow for the FPGA resources to be used on the computationally heavy
work.

Aside of PLDs, CPU’s as well come in variants, beyond the processors
which are used in general-purpose computers. To illustrate, a Microcon-
troller is a "hybrid" device made up of both digital and analog components.
Its digital parts mainly consist of a pipeline that operates like a CPU, Random
Access Memory (RAM), Read-Only Memory (ROM) and I/O Ports for ex-
ternal communication. What truly distinguishes microcontrollers from con-
ventional CPUs are the onboard analog resources, which allow for it to op-
erate standalone. These include: Oscillators to provide clock to the circuit,
Pulse Width Modulators (PWM), Analog-to-Digital/Digital-to-Analog Con-
verters, watchdog timers, etc. All of these components allow for great versa-
tility of Microcontrollers, rendering them suitable for numerous applications
and they are embedded in other systems ranging from home devices such
as printers, smartphones and microwaves to airplanes, satellites, and space-
ships.

Another category of high-performance integrated circuits are the Graphics
Processing Units (GPUs), which are highly pipelined processors with high
performance, especially on floating point operations.

Application Specific Integrated Circuits (ASICs) constitute the best com-
petitor of FPGAs in terms of computing power and processing speed. In
contrast with FPGAs, ASICs can not be re-programmed. On the other hand,
FPGA’s hardware can be re-targeted over and over again towards specific

2.2. FPGA Technology 13

FIGURE 2.6: n-MAC operation. CPU vs FPGA

computations. Therefore, for a broad class of problems an FPGA will imple-
ment a targeted task faster than a CPU.

It should be noted that the clock frequency of a CPU or GPU is roughly
one order of magnitude higher than that of a typical FPGA design. Hence,
the speedup of FPGA-based designs vs. CPUs and GPUS comes from paral-
lelism, pipelining, and the very high internal bandwidth of FPGAs.

15

Chapter 3

Related Word and Motivation

In this section, we outline significant special-purpose machines to acceler-
ate CA problems. We are not aware of any CAD tools similar to the frame-
work presented in Kyparissas’ thesis or in the present one. Even so, the ac-
celerators presented here were available to users.

At the last part of this chapter, the approach of the Thesis is presented in
order to show the motivation for the newly-developed CAD tool, how it dif-
fers from existing methods methods, and how it complements the hardware
accelerator.

3.1 CAM Architecture (1984~2000)

FIGURE 3.1: CAM’s hardware architecture. Basic computa-
tional loop with solid lines. Source [22]

Tomasso Toffoli’s and Normam Margolus’ Cellular Automata Machine
(CAM) was the first special-purpose computer to simulate CA. Tomasso Tof-
foli, also known for inventing the universal reversible Toffoli gate, developed

16 Chapter 3. Related Word and Motivation

FIGURE 3.2: The form of the "gap" that should be filled by the
transition function. Phase and channel parameters are non-

local arguments. (see figure 3.1). Source [22]

a CA accelerator based on TTL logic, named CAM. The first version pub-
lished in 1984 [22].

CAM’s architecture was fully pipelined and was mainly consisted of: the
memory Planes, the Transition Function and the Display Function (see figure
3.1). One memory Plane stored a 256× 256 lattice of 1-bit depth, where up to
8-bit planes were supported. The memory Plane delivered a 3 × 3 neighbor-
hood to the Transition Function per clock cycle. The Transition Function was
entirely made up of SRAM Look-Up Tables and the simulation was evolved
at 60FPS.

The Non-Local Arguments, as figure 3.2 depicts, are user-defined compo-
nents, where their circuity depends on the transition rule. Additionally, the
CAM box consisted of a 10-slot card cage and the minimum setup required
for simulations, encompasses the following components:

1. One Interface Card: Providing user/monitor ports, system registers,
etc.

2. One Scanner Card: Containing timing and control logic.

3. One Plane Card: Including two planes.

4. One Table Card: Involving two separately addressable 4x1024-bit SRAM-
LUTs.

The user could plug and unplug those cards in different combinations,
adding extra features or removing the unnecessary ones. Either factory-made
or custom-made cards were supported, offering: additional memory planes,
more cell states, random number generators, multiple LUTs, and so on. The

3.1. CAM Architecture (1984~2000) 17

FIGURE 3.3: CAM’s-8 hardware architecture. (a) A single mod-
ule. (b) Each module is connected to the nearest ones. Source

[24]

CAM box was driven under a low-level software tool for defining CA mod-
els, designed by Normal Morgulus. Moreover, the CAM’s hardware could
be configured for other applications regarding parallel computing and im-
age processing, apart from CA models.

Norman Margolus was a Ph.D. student under Toffoli’s supervision and
both together collaborated to further develop the CAM. They published a
book about the CAM-6 version in 1986 which demonstrates the capabilities
of the machine on numerous applications [23]. As a new feature in CAM-6
version, the memory planes could literally be "glued" edge-to-edge, in con-
sequence, arbitrary large lattices, multiple dimensions and different types
of grids were supported. A technique called "scooping" was utilized, so,
the whole grid was stored in the host computer’s RAM and the 256 × 256
area was processed in the pipeline. Finally, a high level software was driven
CAM-6 written in Forth and the machine offered a plug-and-play experience.

Henceforth, Margolus continued developing the machine and he intro-
duced the CAM-8 version in 1993 [24]. This design consisted of multiple
mini-processors (Figure 3.3). Each processor contained one DRAM for stor-
ing a part of a grid, plus, a SRAM LUT for deciding the next state. The com-
putations relied on shift-based operations across sectors. Thus, CAM-8 could
support arbitrary large neighborhood windows and states per cell, as many
as the available mini-processors. It was capable of producing 190 generations

18 Chapter 3. Related Word and Motivation

FIGURE 3.4: CAM’s-8 programming environment alongside a
sample of a sound pulse. (Source: [24])

per second, although, less speedup were achieved as the radius grew.

For the CAM-8 version, a new software was developed on top of the pre-
ceding version as a higher layer, offering backwards compatibly. Still, the
models was determined through a programming environment (see figure3.4)
in assembly language, which was specifically targeted to the CAM’s hard-
ware.

Based on his ideas and experiences throughout CAM’s development, Mar-
golus exploited FPGA technology to put them into practice later on. Utilizing
fast and high-capacity DRAMs in combination with the internal bandwidth
of FPGAs, he proposed hardware architectures capable of performing sys-
tolic computations, DSP-like applications and spatial-lattice computations in
general, apart from CA rules [25, 26].

3.2 CEPRA Architecture (1994~2000)

CEPRA stands for Cellular Processing Architecture and it was an FPGA-
based architecture developed at the Technical University of Darmstadt, Ger-
many. CEPRA refers to a family of streaming architectures where several
prototypes were released. Instead of using LUTs - as CAM did - so as to com-
pute the transition rule of a Cellular Automaton, CEPRA utilized pipelined
arithmetic logic, capable of deciding the next state of a cell at one clock cycle.
In this way, CEPRA accomplished to simulate even more complex and prob-
abilistic CA problems, whereas CAM had to divide the rule into cascaded
LUTs.

3.3. SPACE Architecture (1996) 19

FIGURE 3.5: CEPRA’s-1X environment alongside the derivative
hardware. Source [28]

CEPRA-8L was the first version of the family and it was published in 1994
[27]. Eight, application-targeted, configurable FPGAs were working in uni-
son, each one having independent access to the 8 nearest neighbors. There-
fore, all of the cells of the neighborhood could be simultaneously updated
to their next state. CEPRA-8L supported a 3 × 3 neighborhood size on a
512 × 512 lattice of 8-bit cells or 256 states, displaying 22 FPS in real-time.

Three years later, the next version CEPRA-1X was completed and pub-
lished in 1998, while a Cellular Description Language (CDL) was also devel-
oped to aid user’s simulations [28, 29]. CEPRA-1X supported both 2D and
3D CA problems, still, 3 × 3 neighborhoods were supported. The evolution
could be displayed on a 1024 × 1024 grid of 16-bit cells, achieving a speedup
of 50× in comparison with a typical CPU of that era.

In this timeframe, the Cellular Automaton Desiscripton Language (CDL)
was firstly introduced. An example of the description of the Game of Life is
represented in figure 3.5 alongside the respective logic circuit, as the authors
demonstrated it. The addition of CDL offered real advantages in terms of
usability vs. the previous versions.

3.3 SPACE Architecture (1996)

Scalable Parallel Architecture for Concurency Experiments was an FPGA-
based architecture, developed by Paul Shaw, Paul Cockshott and Peter Barrie
at Strathclyde Univerity’s Computer Science department [30]. The SPACE
was designed to specifically target HPP models1 and one SPACE board con-
sisted of 4 × 4, array-like-arranged FPGAs, a Transputer 2 microprocessor

1The Hardy-Pomeau-Pazzis (HPP) model is a fundamental Lattice Gas Cellular Automa-
ton that simulates the physics of fluids or gases.

2Transputer was the first general-purpose microprocessor for parallel computing devel-
oped in the 80s.

20 Chapter 3. Related Word and Motivation

FIGURE 3.6: One SPACE board. Source [30]

and INMOS Links for converting serial to parallel and vice versa (Figure
3.6). One board could hold a 9 × 30 lattice gas automaton and the scalability
feature allowed to linearly expand the grid by connecting multiple boards
side-by-side via ribbon cables.

The FPGAs were designed with inter-programmable, collision, logic blocks
(Figure 3.7). While Look-Up tables are capable of merely updating one or a
few cells simultaneously, with this approach, each Processing Element (PE)
could hold every cell of the lattice separately, categorizing them into hori-
zontal and vertical sub-populations without mixing them. The data streams
or cells are being shifted from west to east, from north to south and vice
versa, and the PEs decide if the cell continues its travel to the next clock
cycle. Ultimately, one SPACE module with memory boards could approxi-
mately achieve a speedup of 10× over two, CAM-8 modules on simulating a
9 × 30 HPP model.

The simulation was driven under a program written in C. The source code
contained libraries of placement and wiring functions. The former allowed
to manipulate the basic hardware components of the design, while the lat-
ter produced the netlist files which describe the hardware. Furthermore, an

3.3. SPACE Architecture (1996) 21

FIGURE 3.7: Top level view of a lattice gas automaton. Source
[30]

optimized software tool was developed for placing and routing the logic el-
ements in the circuit.

22 Chapter 3. Related Word and Motivation

3.4 Kobori, Maruyama and Hoshino (2001)

FIGURE 3.8: Overview of hardware architecture.
Case of 8 × 16 (k × n) PEs. k and n depend on the rule. Source

[31].

Tomoyoshi Kobori, Tsutomu Maruyama and Tsutomu Hoshino from the
University of Tsukuba in Japan proposed an FPGA-based architecture for ac-
celerating Cellular Automata [31]. This design consisted of k × n Processing
Elements (k, n ∈ N), where the data was read from and stored to two, sepa-
rate, external memories (figure 3.8).

This hardware structure allows reading k cells at the same time, while
k × n cells are processed simultaneously. The k cells need n clock cycles to
traverse the whole pipeline. Given that the pipeline is filled with data, the
generations are growing with a time-step of +n every clock cycle. The key
issue was that, due to the limited memory bandwidth, the cells at the circum-
ference of the lattice couldn’t provide the information needed to properly up-
date the state of the central cell. To resolve this, the designers exploited the
FPGA’s distributed RAMs of very high bandwidth to temporarily hold such
cells and handle boundary conditions.

Overall, the system consisted of one FPGA and an PCI board, the simula-
tion was driven from the host computer (figure 3.9). The reading and writing

3.5. Phepls’ and Islam’s Framework (2023) 23

FIGURE 3.9: System overview. Source [31].

data was controlled by a DMA and traveled through the PCI bus. The Cel-
lular Automaton rule could be described in a programming environment,
which was a simplified extension of C code.

This design could achieve outstanding performances, capable of produc-
ing 400 generations per second on a 2048 × 1024 FHP Lattice Gas Cellular
Automaton. It accelerated the model by offering a 155× speedup over the
Intel Pentium-III running at 700MHz. Notwithstanding, it was a pseudo-
real-time visualization, since, most of the calculated generations were never
actually stored back in the external memory.

3.5 Phepls’ and Islam’s Framework (2023)

Chase Phelps and Tanzima Islam developed A Cellular Automata Com-
piler (ACAC) framework in 2023, capable of simulating CA models on het-
erogenous platforms [32]. As far as we are concerned, it is the latest attempt
regarding CA simulators, nonetheless, it is not an FPGA-based architecture.

Their software-level framework optimizes CA computations to run on
CPUs and GPUs. They utilized the respective tool-kits and APIs that the
manufacturers provide, such as: CUDA framework, HIP and OpenMP. Mul-
tiple units collaborate in a cluster, where they interchange messages with
MPI protocol. Several parallelization strategies were proposed by utiliz-
ing: both shared and distributed memory, double buffering and packing cell
states up into groups of eight.

The ACAC framework supports up to 29 × 29 neighborhood areas and 8-
bit cell sizes, while the model can evolve on either 2D or 3D grids. There
are four grid sizes available ranging from 2.36M to 236M cells (i.e., 1920 ×

24 Chapter 3. Related Word and Motivation

1080, 5120 × 2880, 10240 × 5760, and 20480 × 11520). The framework on the
following platforms:

• PHI: The Stampede2 cluster. Contains 68 Intel Xeon Phi 7250 @ 1.4 GHz
CPUs.

• GTX: The Maverick2 cluster. Includes 68 Intel Xeon E5-2629 @ 2.1GHz
CPUs, and 4 NVIDIA 1080-TI GPUs.

• M150: The Penguin On-Demand (POD) cluster. Embodies 48 AMD
EPYC CPU of 7001 series and 8 AMD Radeon Instinct M150 GPUs,
Vega20 architecture.

They managed to achieve 16× and 13× speed up on Artificial Physics (AP)
and Greenberg-Hastings (GH) models respectively, over our FPGA architec-
ture. Nevertheless, their framework supports a limited amount of determin-
istic CA applications, while Kyparissas’ architecture is considered a general-
purpose CA machine. Furthermore, our architecture has been developing on
a medium-sized FPGA, released in 2015. With a state-of-the-art FPGA board,
the performance of our architecture can further increase. Last and foremost,
the AP and GH models use 21 × 21 and 29 × 29 neighborhood sizes corre-
spondingly. Thus, the larger the neighborhood grows, the less speedup the
ACAC framework achieves, which is not the case in our FPGA implementa-
tion.

3.6 Other Significant Approaches.

All of the aforementioned architectures added their bit to evolve Cellular
Automata accelerators. Over the last decades, dozens of designs and ideas
have also contributed to the field. So, in the present section are succinctly
demonstrate the ones that decided to be noteworthy.

In 1991, Bouanna et al. exploited the ArMen Machine, designed for paral-
lel computation at Laboratoire d’Informatique de Brest, in order to accelarate
Cellular Automata simulations [33]. Interprogrammable FGPAs on a linear
ring arrangement, with an internal 32-bits data path, collaborated alongside
three parallel layers: communication system, sequential processor and syn-
thesize operator arrays. The user specified the rules via a C program and a
CCEL compiler was developed to translate it into hardware.

In 2001, G. Cappuccino and G. Cocorulla published a standalone, FPGA-
base computing machine, named CAREM [34]. It was a scalable architecture,

3.7. Thesis Approach and Motivation 25

meaning that as many as possible FPGAs could be added and increase per-
formance, where each FPGA consisted of PEs working in parallel. However,
it is not mentioned how the system was configured by the user, so, it is as-
sumed that the respective HDL should be re-written manually.

Between 2000 and 2010, Murtaza, Hoekstra and Sloot from the University
of Amsterdam developed a series of FPGA-based architectures for accelerat-
ing CA [35, 36, 37, 38]. Based on whether a specific CA rule needs to prioritize
memory or computational resources, they proposed a variety of topologies,
sizes and types of PEs working in parallel. Floating point arithmetic was
also supported and validated by running Boltzmann fluids on FPGA clus-
ters. To configure the desired problem, a software kit that supported a C or
C++ program was running on the host computer, including drivers, headers
and library files.

Last but not least, A.C. Lima and J.C.Ferreira from Porto University pub-
lished a re-configurable hardware circuit for simulating CA[39]. Likewise,
the FPGAs were structured with array-like arranged PEs, while, merely 3× 3
neighborhood sizes on an up to 72 × 72 lattice were available. Contrary to
already-discussed software tools, they developed a friendly GUI written in
Java, capable of executing the design flow and parameterizing the CA. Nev-
ertheless, the transition rule should be textually determined with Verilog
HDL.

3.7 Thesis Approach and Motivation

The aforementioned approaches used small to medium-sized neighbor-
hood windows, while the supported transition rules were limited. Further-
more, the majority of CAD tools developed, drove those machines by means
of a low or high level programming language. This feature tho, limits the po-
tential end-users given that they required specialized technical knowledge.

On the other hand, Kyparissas’ design utilizes large 29× 29 neighborhood
windows on a FHD lattice @60FPS and it is a general-purpose machine of CA
models. Although the initialization procedure has to be performed manually,
the generic framework must be reconfigured for every different model, and
thus writing the transition rules in VHDL is unavoidable.

To address the above limitations, the CAD tool developed in the present
thesis was developed. A re-programmable structure of the initial framework

26 Chapter 3. Related Word and Motivation

has been constructed, so that circuity of the hardware can be re-configured.
The CAD tool fully automates the initialization of the machine and the ex-
traction of snapshots. An easy-to-use Cellular Automata Description Lan-
guage (CDL) has also developed to define transition rules. A CDL compiler
translates user’s input into the appropriatebinary data that the hardware ex-
pects. Finally, a GUI environment enhances user’s experience, especially
when determining 29 × 29 = 841 coefficients.

27

Chapter 4

The Baseline Hardware
Architecture

Nikolaos Kyparissas has designed in his M. Eng. thesis a sophisticated
FPGA-based architecture to simulate CA problems in real-time [12]. This
high-performance system allows for large neighborhoods (up to 29 × 29),
on HD grids (1920 × 1080), with 4-bit weights and 8-bit states, running in
real-time at 60 updates per second, and with an incorporated graphics con-
troller for video output of the state (the hardware can process up to 100 fps
but it was synchronized with the display controller). The hardware design
has been described in detail, not only in Kyparissas’ thesis, but also in three
published papers [14, 13, 15].

One of the challenges of the present thesis was to understand Kyparissas’
design in order to expand it and develop the associated CAD tool. There-
fore, and for readability purposes, this section briefly describes Kyparissas’
architecture and hardware design without delving into the details. This is
the baseline hardware architecture upon which the present work was based,
and many subsystems of it remain unchanged.

4.1 Top Level and System Specifications

All modules of the architecture are represented on the figure 4.1, with ar-
rows showing data movement in the datapath. The yellow modules (Wiz-
ards, Memory Controller and FIFOs) come from Intellectual Property cores
(IPs) generated by the Xilinx Vivado CAD tool suite for the targeted FPGA,
while the rest are custom-made components designed in VHDL by Kyparis-
sas.

28 Chapter 4. The Baseline Hardware Architecture

FIGURE 4.1: Top Level View of the hardware architecture.
Modules within dashes were modified in this Thesis.

The Clocking Wizards are clock generators, and for deriving the desire
clock frequency, an external clock is provided to them as a reference (CLK100:
running at 100MHz). An embedded oscillator in the FPGA board generates
the external clock. This architecture uses five different clock domains in or-
der to optimize performance of various subsystems. The Memory Controller
requires two different clocks as input, the sys_clk and the clk_ref, for gener-
ating an interface clock and delaying the I/Os in the controller correspond-
ingly. Finally, the FIFO modules employ the First In, First out method of
managing the input and output data, while their primary purpose is to syn-
chronize two different clock domains. The graphics controller uses a third
clock domain.

The following clock domains are used:

1. UART Controller running at 100MHz.

2. Memory Controller running at 325Mhz and provides a user interface
clock at 81.25MHz (4:1 ratio).

3. CA Engine running at 200Mhz.

4. Graphics Controller running at 148.5Mhz.

5. The remaining modules running at 81.25MHz.

4.1. Top Level and System Specifications 29

FIGURE 4.2: Supported Grid Types: (a) Rectangular, (b) Cylin-
drical, (c) Toroidal. (Source: [12])

Note that the Grid Line Buffer and Frame Extract are placed between two
different clock domains, and they use both of the respective clock frequen-
cies.

The design is can display the evolution of the model on the 1920 × 1080
grid at 60 FPS in real time. While CA theoretically evolves within an infi-
nite space, practical constraints arise due to limited computational memory
resources. Three distinct grid types are supported by this design, as illus-
trated in Figure 4.2. The Rectangular type constitutes the simplest form to
be visualized, i.e. a Cartesian grid, surrounded by zero-padding so that the
boundary cells can shape a complete neighborhood. A Cylinder is formed by
connecting the vertical sides of a rectangular grid, allowing the left-most and
right-most cells to belong in the same neighborhood. Finally, a Torus is con-
structed by folding the horizontal edges of a cylindrical grid, eliminating the
need for boundary conditions and creating a "periodically infinite" lattice.

As discussed in Chapter 2, a cell can exhibit a number of different states.
For example, the Game of Life requires a mere 2 states per cell, ’dead’ or
’alive’ (’0’ or ’1’). Other models demand a higher number of cell states in
order to display the evolution of gradual phenomena, such as temperature
changes or chemical mixtures. Furthermore, the neighborhood area can grow
from small to large sizes, where, large sizes of neighborhoods can lead to a
higher accuracy and reveal patterns that couldn’t be emerged otherwise.

The system supports either 4-bit cells or 8-bit cells, enabling simulations
with up to 16 (24) or 256 (28) cell states respectively, and the neighborhood
size can reach up to a 29 × 29 area (radius = 14). The CA parameters (grid
type, neighborhood size, states per cell, etc.) can be set within the framework
(see figure 4.3), where every module inherits those settings from the top level.

30 Chapter 4. The Baseline Hardware Architecture

GENERIC (
 GRID_X : INTEGER := 1920; -- Number of cells per line
 GRID_Y : INTEGER := 1080; -- Number of total lines
 CELL_SIZE : INTEGER := 8; -- Cell size in bits. 4 or 8 bits.
 NEIGHBORHOOD_SIZE : INTEGER := 29; -- The NxN area of the window
 GRID_TYPE : STRING := "TOROIDAL"; -- To set the Grid Type
 BURST_SIZE: INTEGER := 128; -- Number of bits per burst
 NUMBER_OF_BURSTS_PER_LINE : INTEGER := GRID_X/(BURST_SIZE/CELL_SIZE); -- Burst per line calculated via formula
 PALETTE : STRING := "WINDOWS"; -- Color paletter for the display
 SPEED : INTEGER := 60; -- Simulations speed in FPS
 MEMORY_ADDR_WIDTH : INTEGER := 27 -- In bits
);

FIGURE 4.3: The Customizable Framework of the top level.
Generic values are inherited by the sub-modules.

Only the CA Engine requires user’s manual intervention for defining the
transition rule, and enlarging or shrinking its sub-components according to
the radius.

Adjusting even one parameter requires re-synthesizing and re-implementing
the hardware design inside the Xilinx’s Vivado CAD tool, a time-intensive
process that demands up to an hour based on rule’s complexity. This is where
the re-programmable structure of the present thesis and the development of
the associated CAD tool offer solutions to overcome this challenge.

4.2 Memory Controller and Grid Representation

The Memory Controller is a fully customizable IP, generated with the Mem-
ory Interface Generator (MIG) wizard tool and supports DDR, DRR2, and
DRR3 memory interfaces. In our case, a 128MB, DDR2 memory is utilized,
where the data are received and written in the form of bursts. The burst
and word size of the memory are 128 and 8 bit respectively, so, 16 words are
contained in a single burst.

The reading and writing operation in the memory is implemented via a
handshake mechanism, as figure 4.4 depicts. Appropriate signals indicate
whether a writing or reading operation occurs (command signal), the data to
be read or written, the access address, acknowledgment signals, and system-
reserved (DDR2 signals). The Memory Initializer and the Write Back are the
only modules that access the external memory for writing, and the Graphics
Feeder reads the data to be displayed. The same (current) frame is displayed
and processed simultaneously, while the other one is being updated.

4.2. Memory Controller and Grid Representation 31

FIGURE 4.4: Handshake Mechanism for accessing Memory
Controller.

The Memory Controller stores two consecutive frames of the simulation,
the currently being-updated frame and the previous state of the simulation.
The addressing for the two frames follows the same pattern and the access
between them is switched by flipping the most significant bit from zero to
one and vice versa. This technique is known as double buffering. Utilizing
this technique, the old frame is not overwritten by the new one, since the
whole image of the previous state is required for the calculation of the next
generation.

Figure 4.5 showcases the addressing on a 1920× 1080 grid.As stated above,
the burst size of memory is 128 bits and the word size is fixed to 8 bits. The
cell size can be either 4 bits or 8 bits, therefore, the 4-bit cells are concatenated
together in an 8-bit address. The grid is scanned horizontally by the system
- from left to right and top to bottom -, an addressing pattern known as sim-
ple horizontal scan. Overall, the Memory’s capacity is high enough to store
2 × 1920 × 1080 × 8bits ≈ 2MB in worst case scenario (2 frames), and the
number of bursts per line required is given by the following formula:

bursts_per_line =
Width_o f _Grid × cell_size

burst_size

To initialize the machine, the FPGA has to be programmed with the bit file
of the design, and an initial state of the Cellular Automaton must be provided
to trigger the evolution. The process that the user must follow is in figure

32 Chapter 4. The Baseline Hardware Architecture

FIGURE 4.5: Grid representation in memory and burst address-
ing. bl is the number of bursts per line. Source: [12]

4.6; this was a completely manual procedure in Kyparissas’ thesis, prior to
the development of the software CAD tool.

4.3 System and Memory Initialization

1
2

FIGURE 4.6: Initialization procedure of the machine.

The initial state of the machine (or model) is described by an image, which
can be created with a drawing tool like the Windows Paint application. The
image is converted to a text file by extracting the indices of its color palette
via a MATLAB script. The color palette is what associates certain integer val-
ues with a color. For example, for the Game Of Life, a two-colored palette is
required to associate the values ’0’ and ’1’ with two, different colors (mainly

4.4. Grid Lines Buffer 33

FIGURE 4.7: The FSM of Memory Initializer module.

Back-and White, but not restricted to be so). Then, the FPGA is programmed
with the already-generated bit file. Finally, by using an executable C pro-
gram, the UART communication is activated, and the values of the text file
are transmitted into the FPGA via a USB-A to USB-B Micro cable.

Upon the arrival of the incoming data, the Memory Initializer begins op-
erating, as an FSM (see figure 4.7), and initiates handshaking with Memory
Controller. First, the FSM delivers two identical bursts for each frame into
the external memory ("WRITING" states), followed by the write commands
("SEND COMMAND" states), if the Controller is ready to accept them. Once
the two frames have been successfully stored, Memory Initializer prompts
the simulation to start.

4.4 Grid Lines Buffer

The Grid Lines Buffer is the most significant module of the design, ren-
dering it capable of delivering high performance (see figure 4.8). The module
consists of n + 1 BRAMs (n is the diameter of the neighborhood), each one
storing a whole line of the grid. It receives a burst of data from the Memory
Controller and provides CA Engine with the complete neighborhood accord-
ing to the selected grid type. Thus, (n + 1)× c × line_width bits of BRAM re-
sources are required. The total number of BRAMs is automatically generated
by the framework, with respect to the neighborhood size and without user
intervention.

The Writer is made up as a LUT and the Reader is implemented as an
FSM. The re-circulation multiplexer synchronizer aids the communication

34 Chapter 4. The Baseline Hardware Architecture

FIGURE 4.8: Grid Lines Buffer Inner Architecture

between these two sub-components, in order for the writer to not start filling
a line that hasn’t been drained yet by the Reader. As soon as n BRAMs have
been filled, the Reader begins operating, as figure 4.9 suggests.

Preloading the neighborhood window to the CA engine before setting the
valid signal, it is the key feature of the Reader in addressing vertical bound-
ary conditions. Thus, the appropriate left-most part of the half neighborhood
is shaped regarding the grid type. In case of a Toroidal grid, further logic and
an extra amount of BRAM resources are utilized to store the upper-most and
bottom-most parts of the grid. Given that the n BRAM are filled with grid
lines, the neighborhood is provided to CA Engine column-by-column per
clock cycle.

FIGURE 4.9: The Reader’s functionality.

4.5. CA Engine 35

4.5 CA Engine

FIGURE 4.10: Datapath of the CA Engine. Case of 3 × 3 neigh-
borhood.

The CA Engine is a fully pipelined module running at 200MHz. It pro-
vides the next state of a cell at every clock cycle. This is possible due to its
internal structure and given that the pipeline is fully filled. The CA Engine’s
datapath is represented in Figure 4.10, where the following parts can be dis-
tinguished:

1. A lattice of Column Registers (REGXY).

2. A set of Multipliers (MULXY).

3. The Binary Adder Tree.

4. The Transition Rule sub-module.

First, the lattice of Column Registers shifts the neighborhood columns
received from Grid Lines Buffer. Second, each cell of the neighborhood is
multiplied by the respective coefficient that the rule determines. Then, the
multiplied values travel through the Binary Adder Tree, for calculating the
total sum of the neighborhood. Finally, the total sum alongside the central
cell is provided to the Transition Rule sub-component, which is realized as
a LUT, where the next state of the central cell is decided.

The overall depth of the pipeline strongly depends on both the neighbor-
hood size and the complexity of the rule. Given that the neighborhood is
equal to n (n = 2 × k + 1, where n ∈ [3, 29] & k ∈ N) a n × n window
of Column Registers is constructed, meaning that a column requires n clock
cycles to cross the registers. The Multipliers are generated by Vivado’s IP
generator wizard tool and they are fully pipelined with a depth of 3 stages.
The depth of the Binary Adder Tree also relies on the variable n and it is
equal to ⌈log2(n × n)⌉. Finally, the Transition Rule is expressed with branch

36 Chapter 4. The Baseline Hardware Architecture

command and requires 1 or 2 clock cycle to derive a result in terms of its
complexity.

The Central Cell and Valid Signal are also pipelined. The former must ar-
rive at the Transition Rule sub-compoent concurrently with the correspond-
ing total sum. The latter travels in the pipeline one or two more clock cycles
than the former, exactly as the Transition Rule demands, and enables the fol-
lowing FIFO for writing (see figure 4.1). The key characteristic is that, the
Valid Signal traverses the pipeline (n − 1)/2 lesser stages than the whole.
As aforementioned in section 4.4, the (n − 1)/2 cells are pre-loaded to shape
a complete neighborhood and the valid signal is still deasserted. So, the as-
serted valid signal arrives at the CA Engine, when half of the neighborhood
has already traveled in the pipeline. Thus, the CA Engine accepts whatever
lies on the Grid Lines Buffer’s output bus, and the valid signal is what indi-
cates the appropriateness of incoming (from the buffer) and outgoing (to the
FIFO) data.

To conclude, the CA Engine is the only module of the design that requires
manual intervention by the user, while the others are automatically updated
by the Framework. It is also written in VHDL and the user must adjust its
code according to the desired CA rule. The adjustments concern, setting the
appropriate number of Column Registers, parameterizing the weights, ex-
panding or shrinking the Binary Adder Tree, redefining the transition rule,
and so on. For this Thesis, the CA Engine has been redesigned to establish
the re-programmable structure of the machine, as detailed in the next chap-
ter.

4.6 Frame Extraction

The Frame Extract module extracts a snapshot of the simulation, as its
name implies. While observing the evolution of the model in real time, a
push button on the FPGA can be pressed to export the desired state. By the
time the button has been pressed, the simulation seemingly stops - meaning
that the same generation is being reproduced over and over again - and a sig-
nal indicates the Frame Extract to start operating, as the figure 4.11 suggests.

The Frame Extract operates as an FSM and accepts the data before they
are written back into the Memory Controller, avoiding handshaking with it
(see figure 4.1). The Write Back module keeps track of which line is currently
being written and informs the Frame Extract accordingly. After a small delay,

4.7. The Remaining Modules 37

FIGURE 4.11: Frame Extract ’s FSM functionality.

it stores all of the provided bursts of the current line into a small buffer, sends
the data to the UART controller byte per byte, and it stops functioning when
the whole state has been successfully transmitted. To convert the screenshot
of the simulation into an image, the same procedure described in section 4.3
is executed, but in reverse (see Figure 4.6).

4.7 The Remaining Modules

In this section, we are going to briefly present the remaining modules of
the design, that are yet to be introduced. This is due to the fact that, an
exhaustive comprehension of these modules was not essentially required for
the successful development of the CAD tool.

4.7.1 Graphics Controller

The Graphics Controller displays the evolution of the model in real-time,
on a 1920 × 1080 at 60Hz (FHD). It utilizes horizontal and vertical counters
to keep track of which pixel is currently being displayed. Furthermore, it
generates the synchronization pulses (Hs and Vs) alongside the RGB signals,
as the VGA protocol prescribes.

To generate the appropriate RGB values, three different color palettes are
stored in the controller (see Figure 4.12). A color palette can be realized as
an array of different colors, associated with an integer value. Therefore, the
integer number of the state of a cell is that that indicates which RGB values
to opt for display.

38 Chapter 4. The Baseline Hardware Architecture

FIGURE 4.12: The embedded color palettes in Graphics Con-
troller. Figure designed by Kyparissas.

The first color palette is the 16-color Microsoft Windows palette and it is
suitable for 4-bit Cellular Automata, where the cells exhibit distinctive states.
The second color palette is a 16-color, Black-and-White palette, appropriate
for rules with few states that display gradual phenomena. The last palette
concerns 8-bit Cellular Automata and it consists of 256 colors, which refer to
Black, Red, and White shades.

4.7.2 Graphics Feeder

The Graphics Feeder loads the new frame to the Graphics Controller. When
a new frame is requested by the Graphics Controller, the two memory seg-
ments are alternated by flipping the MSB of the address (double buffering, as
described in section 4.2). Since it is the only module of the design that hand-
shakes with the Memory Controller for requesting data, they are also loaded
into the Grid Lines Buffers for processing. Thus, the n-th frame is processed
and displayed at the same time, while concurrently, the (n + 1)-th frame is
being updated.

4.7.3 Write Back

The Write Back receives a burst from the FIFO and writes it back into
the Memory Controller. By the time a burst has arrived from the FIFO, it
handshakes with memory, given that its access has been granted to do so. It
is fully pipelined and capable of writing one burst per clock cycle, while it
counts the number of already-written bursts, in order to switch between the
two memory segments.

4.7. The Remaining Modules 39

4.7.4 Memory Access Arbitrator

The Memory Access Arbitrator regulates the access to the Memory Con-
troller between Graphics Feeder and Write Back modules. The Graphics
Feeder has priority over the Write Back in order to display the evolution
smoothly. The Graphics Feeder consumes the memory bus for 25% of the
time, while the rest 75% is enough to process and write a whole generation,
as Kyparissas has estimated.

41

Chapter 5

Design of the re-programmable
Framework

As discussed in the previous section, the user of Kyparissas’ CA accel-
erator had to go through the Xilinx’s CAD tool in order to re-configure the
customizable framework. This is done with VHDL code, in order to generate
the bit file of the design. Therefore, in this chapter, we demonstrate the new
structure of the re-programmable framework, developed in the present the-
sis. Additionally, the extraction of multiple snapshots has been automated at
circuit level given a time-step. Furthermore, by utilizing the Protocol Buffer’s,
we are able to distribute incoming data from software level to the appro-
priate hardware components. Finally, several images of the hardware (.bit
files) have been generated, ready to program the FPGA for all necessary CA
neighborhood sizes.

5.1 Overview of Extended Architecture

According to new top level view represented in figure 5.1, two new mod-
ules have been introduced, named Deserializer and Serializer. These mod-
ules concern the Protocol Buffers that developed for manipulating structured
data in form of bytes. The former delivers the software-level-defined data
into the correct hardware components, while the latter serializes the screen-
shot to be delivered to the outside world.

Additionally, the SPEED CONTROLLER was modified and implemented
as a separate module, altering the speed of circuit between 0 and 60 FPS
(max speed) given a time step, without relying on the push buttons of the

42 Chapter 5. Design of the re-programmable Framework

FIGURE 5.1: New top level View of the hardware architecture.
Modules within dashes were modified. Rounded modules are

the new ones.

FPGA. The SPEED CONTROLLER cooperates alongside the FRAME EX-
TRACT for extracting multiple screenshots indefinitely. Finally, the new re-
programmable structure of CA Engine currently accepts the definition of the
model from DESERIALIZER.

It is noted that, the data of model’s definition (neighborhood, transition
rule, etc.) and the time-step are determined and serialized from software
level. The CAD tool which is represented in the following chapters is that,
that generates these serialized data, according to user’s input, and transmit-
s/receives them to/from the architecture by means of the UART protocol.

5.2 Frame Extraction and Speed Control

Initially, the FRAME EXTRACT ’s FSM arrived at a sink state IDLE after
one successful extraction of a snapshot. So, the FPGA board had to be re-
programmed with the same bit file to extract further screenshots. Addition-
ally, the SPEED CONTROLLER accepted signals coming from the on-board
buttons, in order to alter the speed of the simulation between 1 and 60 FPS,
or pause it for extraction. This feature had to be abandoned, given that the
access to the accelerator may be from a remote site. Therefore, the changes

5.3. CA Engine’s Adjustments 43

FIGURE 5.2: Changes to FRAME EXTRACT ’s FSM along with
the SPEED CONTROLLER ’s circuity.

depicted in figure 5.2 were developed so that the simulation can pause and
continue automatically, given a provided time-step of generations.

Regarding the FRAME EXTRACT (FE), a starting IDLE state have been
added, waiting for the evolution to stop so that the start extracting phase
can commence. The rest of the functionality has remained intact, while upon
finishing an extraction, the FSM jumps back to the ’IDLE’ state. Concurrently,
a level signal ("transmits") is set or unset whether FE is operating or not.

Regarding the SPEED CONTROLLER (SC), it receives the total genera-
tions to be counted by the DESERIALIZER. Also, the WRITE BACK module
informs the SC the total number of generations that have been counted. So,
when the given time-step have been reached, the SC pauses the circuit and
triggers the FE . Upon conclusion of extraction, the "transmits" is de-asserted
and the SC signalizes the circuit to continue the simulation.

To conclude, the total number of snapshots to be extracted are determined
from software level. In this manner, the simulation evolves and results are ex-
tracted indefinitely. Nevertheless, in the future the machine will be uploaded
to the Amazon Web Services (AWS), as the next step of the present Thesis. Con-
sequently, the FPGA platform will be powered off, for example, by means of
a provided Software Development Kit (SDK) from software level.

5.3 CA Engine’s Adjustments

While the Grid Lines Buffers is the most important module of the design
to achieve high performance due to how it loads the data from the external

44 Chapter 5. Design of the re-programmable Framework

memory and delivers them to the CA Engine, the CA Engine’s structure is
what defines our machine as a general-purpose, Cellular Automata simula-
tor. To create a re-programmable framework, CA Engine has been recon-
figured in order to utilize its maximum capacity and to load the CA’s con-
figurations form software level. Thus, its most general form is available in
the design, and its hardware components on standby are updated with data
on-the-fly, according to model’s definition.

Therefore, the new structure of the CA Engine alongside the CAD tool
(which is discussed later on) has addressed the aforementioned issues, con-
tributing eventually to a more attractive and convenient CA simulator. The
CA Engine always accepts 29× 29 neighborhood sizes, where smaller neigh-
borhoods are wrapped-around with zeros. Additionally, a set of 29 × 29,
fully-pipelined multipliers is available for applying the weights to each cell
within the neighborhood. Finally, the Transition Rule component (see figure
4.10) has been replaced by a BRAM module featuring one clock cycle latency,
in which, potential states are pre-stored, which are poised to replace the cen-
tral cell with its next state.

As covered in the chapter 2, the CA problems are mainly categorized into
two classes, totalistic and outer-totalistic rules. In the former, only the total
sum decides the next state of the central cell, while in the latter case, both
the total sum and the central cell determine the next state. Likewise, we are
going to demonstrate the structure of the CA Engine step-by-step, exactly as
the development process was progressed.

Before proceeding to the new adjustments, a deep comprehension of this
module was essential. While studying the functionality of CA Engine and
verifying it alongside a software level script that developed to emulate its
behavior, a critical error was discovered. The neighborhood window was
being horizontally mirrored (over Y’Y axis) within the pipeline during its in-
troduction. Nonetheless, this issue didn’t afflict design’s correctness nor Ky-
parissas’ results, given the symmetrical arrangement of the already-utilized
coefficients within the window.

5.3.1 Supporting Totalistic Rules

Starting with totalistic CA rules, the figure 5.3 showcases the hardware de-
veloped for this scenario. The principle is that when the total sum of neigh-
borhood belongs in a certain interval, then, there is a corresponding potential

5.3. CA Engine’s Adjustments 45

x
x

PULSE TO
PULSE
SYNCH

x

x

29 x cNeighborhood
Column

Received From
Buffer

Weights Column

Valid Weights

29 x w

and

Received From
Deserializer

+

B
R
A
M

22

14
LSBs

Read
Address

8 MSBs

DOUT
MUX

OTHERS
REG

c

c Data
Out

cOtherwise
Case of

Transtion Rule
Received From

Deserializer
on-the-fly

c

- c = cell size (4 or 8 bits)

Registers for Pipelining
the Neighborhood

Registers for
Storing Weights

FIGURE 5.3: CA Engine’s re-programmable structure for to-
talistic rules. Registers of neighborhood, multipliers and the

adder tree was already developed.

next state. So, the limits the interval determine the addresses of the BRAM,
in which the corresponding state value is stored. For example, if the next
state of the cell is equal to 1, when the total sum belongs in [20, 132), then,
the BRAM addresses from 20 to 131 will contain the number 1. Thus, the
total sum per se can be used as a pointer to access in BRAM and decide for
the next state of the central cell.

Two versions of the CA Engine have been developed, one designed for 4-
bit CA problems (allowing for up to 16 states per cell) and another optimized
for 8-bit rules (enabling 256 states per cell top). Due to the limited amount of
resources of our medium-sized FPGA, in this manner, the former version can
support 8-bit coefficients, while the latter merely allows 4-bit weights. The
product is a 12-bit integer in both version, leading to a 22-bit total sum in the
worst case scenario (29 × 29 × 255 × 15 = 3, 216, 825). Therefore, the overall
BRAM resources required to cover the worst case are: 3, 216, 825 × 4 bits per
address ≈ 12.8 Mbits, and, 3, 216, 825 × 8 bits per address ≈ 102.9 Mbits, for
4-bits and 8-bits rules respectively, an unavailable amount to be utilized.

Instead, the total amount of BRAM resources used are: 214 addresses ×4
bits per address = 65, 536 bits, and, 214 addresses ×8 bits per address =

131, 072 bits, at each version. Hence, the 14 LSBs of the total sum are used
for accessing into the BRAM, while the rest 8 MSBs required for overflow

46 Chapter 5. Design of the re-programmable Framework

detection. The overflow signal alters the selection of a 2-to-1 multiplexer
(DOUT MUX). The two inputs of the multiplexer concern the data output of
the BRAM and a constant value that pertain to the "otherwise" case of the
transition function.

5.3.2 Expanding to Outer-Totalistic Rules

x
x

PULSE TO
PULSE
SYNCH

x

x

29 x cNeighborhood
Column

Received From
Buffer

Weights Column

Valid Weights

29 x w

and

Received From
Deserializer

+

B
R
A
M

22

14

Read
Address

8 MSBs

DOUT
MUX

OTHERS
REG

c

c Data
Out

c
Others

c

- c = cell size (4 or 8 bits)

Registers for Pipelining
the Neighborhood

Registers for
Storing Weights

RULE
TYPE
REG

Central Cell c

ADDR
MUX

&
14-c
LSBs

14
LSBs

14

8+c MSBs

OVF
MUX

14

0

0

0

1

1

1

Rule Type
0:Totalistic
1:Outer-Totalistic
Received From
Deserializer

FIGURE 5.4: CA Engine’s final re-programmable structure for
both totalistic and outer-totalistic rules.

Regarding the outer-totalistic rules (see figure 5.4), the reading address is
formed by concatenating the bits of the the central cell (current state) with the
total sum. Still, the overall bits of the reading address are 14, since the same
BRAM module was utilized. In case of a 4-bit CA problem, the 4 MSBs of
the address refer to the central cell, while the rest concern the 10 LSBs of the
total. The similar logic applies for 8-bit rules, but only the 6 LSBs appertain to
the total sum. In other words, it can be imagined as the BRAM is splitted up
into 16 or 256 sub-intervals according to required bits per cell. So, the central
cell points which sub-interval to access to, while the total sum indicated the
address within the specific sub-interval.

For example, let’s consider the following, dummy, transition function:

ct+1 =

2 , i f 0 ≤ sum ≤ 10 & ct = 0
4 , i f 0 ≤ sum ≤ 10 & ct = 1 (5.2)
0 , otherwise

5.3. CA Engine’s Adjustments 47

If the cell size is equal to 4 bits, then there are 16 sub-intervals within the
BRAM of range 1024, where each one uniquely corresponds to a cell state.
The 1st sub-interval corresponds to the cell state 0, the 2nd to 1, and so on.
Therefore, the addresses in range [0, 10] will contain the state 2, the addresses
from 1024 to 1034 will carry the state 4, while all other addresses and the 2nd
input of the DOUT MUX will hold the state 0 as the otherwise case claims.
Unfortunately, this approach restricts the range of sub-intervals to 1024 and
64 according to cell size, nonetheless, in an high-end FPGA, these intervals
can be increased by at least four orders of magnitude.

Moreover, two extra multiplexers can be distinguished in the figure 5.4,
named ADDR MUX and OVF MUX. Their select signals are either unset or
set for a totalistic or outer-totalistic rule respectively. Not only does the read-
ing address differ according to the CA class, but also, the overflow bits are
increased, since lesser bits of the total sum are utilized for addressing. Con-
sequently, different signals are selected with the help of these multiplexer on
a case-by-case basis.

The select signals of ADDR MUX and OVF MUX, the value of the "oth-
erwise" case, the BRAM values and the weights are externally delivered to
CA Engine from Deserializer, which is further discussed later in this chapter.
The Deserializer operates at 100 MHz, while CA Engine runs at 200 MHz.
In consequence, Clock Domain Crossing (CDC) techniques were utilized to
properly transfer the data and avoid metastability.

Therefore, the BRAM module operates in dual-port mode, where the writ-
ing and reading ports function at 100MHz and at 200MHz correspondingly.
As for the weights, we encounter numerous challenges in order to drive them
properly in the CA Engine. Due to the excessive utilization of resources of the
FPGA, many approaches led to timing constraint violations. Hence, The De-
serializer delivers the weights column-by-column (29 weights) alongside a
valid signal. The valid signal passed through a pulse-to-pulse synchronizer
and the incoming column is stored in the first column of weight registers,
while the rest are being shifted to the next one. By leveraging this technique,
we avoided creating long datapaths, as an already developed hardware (the
set of weight registers) was utilized, and the timing constraints of the design
were met. Finally, a simple standard cell synchronizer proved effective for
the remaining data.

48 Chapter 5. Design of the re-programmable Framework

5.4 Protocol Buffers

Before exploring how we managed to distribute the user’s configurations
in to the appropriate hardware components, it is essential for the reader to
be aware of how the Protocol Buffer (or Protobuf) works. The Protobuf is an
open-source, platform-neutral, data format used to serialize structured data,
developed by Google in early 2001 and published on July 7, 2008. Serial-
ization is a process, where the data are typically encoded into a sequence of
bytes or characters, while serializing structured data provides us with a more
convenient way to process, transmit, or store complex data more efficiently.

The Protobuf communication protocol utilizes TLV (Tag-Length-Value
encoding scheme for structuring the informational data. The Tag value indi-
cates the kind of receiving or transmitting data according to a predetermined
structure, the Length is pertinent to the number of bytes within the Value
field, and finally, Value contains the data of the message. Let’s define the
following structure:

message Example {
repeated uint32 msg = 1 ;

}

In the above example, a simple message has been created, called Example.
The message definition is separated into four fields: the field label (repeated),
the field type (uint32), the field name (msg), and the field number (1). The
field labels can be specified as "optional", "repeated", or "map", where, the
field can be, set or unset, repeated zero or more times, or, a pair of key-
value respectively. The field type, also referred as wire type, has a unique
ID, in our case, it is equal to 2. The Tag value is provided via the formula:
(f ield_number ≪ 3)|wire_type. Therefore, the Tag is calculated as follows:

T = ((1)10 ≪ 3)|(2)10 = ((1)2 ≪ 3)|(10)2 = (1000)2|(010)2 =⇒
T = (00001010)2 = (0a)16

So, the lower 3 bits of Tag hold the wire type and rest tell us the field
numbers. Let’s set msg equal to an array of values: [723, 234, 5], the following
steps are executed to encode a number:

1. (723)10 = (1011010011)2 # Decimal to Binary Conversion

2. 101 1010011 # Split into group of 7-bits.

3. 00000101 01010011 # Fill with zeros (Group of bytes).

4. 01010011 00000101 # Convert to little-endian.

5.4. Protocol Buffers 49

5. 11010011 00000101 # Add continuation bit.

6. D3 05 # Hexadecimal form

The same procedure is followed for the rest numbers in the array. The
MSB of each byte is called continuation bit and indicates whether to continue
or stop (’1’ or ’0) reading bytes of the present number. Consequently, this
message would be encoded as: [0A05 D305 EA01 05], where T=[0A], L=[05],
and V=[D305 EA01 05].

Consequently, with the use of Protobufs, the user’s configurations are or-
ganized, and the hardware is capable of distinguishing the kind of data it
receives, in order to assign them to the corresponding modules of the design.

5.4.1 Deserializing Data

DEMUX

MSB
= '0'

Tag
Received,
Repeated

Entry MSB = '1'LENGTHRESET

MSB = '1' REPEATED

Bytes Received

= Length

OPTIONAL

TAG

Tag
Received,
Optional

Entry

Bytes Received
< Length

MSB
= '0'

data_out

valid

data_kind

Init State
Init State Valid

Weight
Weight Valid

BRAM Values
BRAM Values Valid

Otherwise
Otherwise Valid

Rule Type
Rule Type Valid

GENERATE
A COLUMN

OF WEIGHTS

Weight's
Column

Valid
Column

FIGURE 5.5: The FSM diagram of Deserializer Module. The
MSB of each byte concerns the continuation or stop bit.

The Deserializer module, as its name encapsulates, deserializes the re-
ceived data and delivers them to the proper hardware components. It accepts
data from the UART controller byte by byte and operates as an FSM that Fig-
ure 5.5 depicts. It can be mainly realized as only having three states which
follow the T-L-V scheme that Protobuf utilizes. Nonetheless, to deserialize
the Value field, two separate states have been developed, named OPTIONAL
and REPEATED (figure 5.5). In view of an optional value, the sequence of
bytes concern one and only entry, where the stop bit indicates when to stop
reading, thus, the Length field is not included in this case.

Given that the very first byte to be received is the Tag value, this state op-
erates as an IDLE. When a Tag is being received, firstly, an internal register
is updated in order to signal the type of the currently received data. After-
wards, the FSM jumps to the LENGTH or the OPTIONAL state, whether
the entry is related to a repeated or an optional content. In the OPTIONAL

50 Chapter 5. Design of the re-programmable Framework

FIGURE 5.6: Connectivity of Deserializer module in the design.

state, the incoming bytes are being red as long as the continuation bit ap-
pears. When the stop bit is perceived, the FSM provides the data alongside
a valid to a demultiplexer, and jumps back to the TAG state, waiting for the
next data to arrive.

In case of having a repeated entry, the FSM jumps for the TAG to LENGTH
state, signalizing also the kind of data. The Length decodes the number of
entries that are about to arrive within the Value field. Consequently, the FSM
bounces to the REPEATED state, in which, it remains insofar as the length
field claimed. When one value of the repeated entry has been successfully
deserialized, the FSM outputs the data and the valid signal. Upon comple-
tion of the current entry, the FSM bounces back to TAG state, pending for
potential data.

In order to drive the data to the appropriate hardware components, a de-
multiplexer has been utilized. The FSM invariably outputs a data and a valid
signal. The demultiplexer is the one that separates and drives the data to the
corresponding modules with the assistance of the data_kind (see figure 5.5)
as its select signal.

The type of data that the Deserializer accepts and delivers are: the initial
state of the grid, the weights of the neighborhood, the transition rule, and
the time step for each screenshot. As figure 5.6 demonstrates, the time step
is driven to the SPEED CONTROLLER on-the-fly and it is stored into an
internal register. The weights are transferred to the CA Engine in groups of
29 column-by-column. The transition rule concerns: an array of cells to be
stored in BRAM, the value of the otherwise case, and type of class of the rule.

5.4. Protocol Buffers 51

Finally, the grid values are sent to the Memory Initializer through a FIFO.
Because the Memory Initializer triggers the simulation to start, the initial
state is invariably arrives last from software level.

5.4.2 Serializing Data

The Serializer executes the reverse procedure of Deserializer. In this case
however, only the state of the simulation has to be extracted to the outside
world, hence, the grid values are the only data relevant to this process.

The Serializer module is also an FSM and it is placed in the design, as
it is shown in Figures 5.7 and 5.8 respectively. The Serializer is connected
between the Frame Extract and the UART Controller. Initially, these two
modules were perfectly synchronized. The output valid data signal of Frame
Extract enables the Uart Controller to transmit data, while the busy signal
coming from UART stops the Frame Extract on sending data. Leveraging
this interaction, the Serializer embedded in the design accordingly.

The FSM employs four states overall, the Tag and the Length states as they
have already discussed, and two states for the Value field. The size of the grid
will always be 1920 × 1080, and in order to know the value of the Length
beforehand, 2 bytes per cell state are always transmitted. The worst-case sce-
nario is to transmit the cell value 255 which requires 2 bytes in Protobuf ’s
format. Cell values that are less than 127, their MSB in an 8-bit representa-
tion is ’0’, hence, they require 1 byte to be transmitted (in Protobuf ’s format).

RESET

TAG AND LENGTH
TRANSMITTED

data_valid_in = '1'

transmits = '1' TRANSMIT
FLAGS

TAG AND LENGTH
YET TO BE TRANSMITTED

WAIT
VALUES data_valid_in='0'

busy_in = '0' SEND 1ST
BYTE

busy_in = '1'

SEND 2ND
BYTEbusy_in = '1'

transmits = '0'

busy_in = '0'

busy_out = '1' busy_out = '1'
busy_out = '0'

IDLE

transmits = '0'

FIGURE 5.7: FSM of Serializer module.

52 Chapter 5. Design of the re-programmable Framework

SERIALIZER TX_busy

data_valid_in

data_in

transmits busy_in

data_valid_out

data_out

TX

RX

UART
CONTROLLER

8

TX_enable

data_in

busy_out

data_out

data_valid_out

transmits

busy_in

8

FRAME
EXTRACT

FIGURE 5.8: Connectivity of Serializer in the design.

Nevertheless, the latter ones are encoded into 2 bytes, by appending 7 ze-
ros and 1 continuation bit. For example, the number 3 will be serialized as:
[10000000 00000011], and if we decode it according to Protobuf, the number 3
will be retrieved. Otherwise, the Length should be transmitted last (since we
can not predict it beforehand), while the T-L-V scheme demands the order of
these fields to be preserved. Consequently, the Length value will always be
equal to 1920 × 1080 × 2 number of bytes.

To conclude, the Serializer module is also indicated by the Frame Extract
that the transmission has started ("transmits" signal). Then, the well-known
Tag and Length fields are immediately sent to the Uart Controller. Given
that the Frame Extract is being delayed before it actually starts transmitting
the cell values, there is a sufficient amount of time for the first two fields to
be transferred. Additionally, because the Serializer requires 2 clock cycles to
transfer one state, and Frame Extract transmits one state per clock cycle, a
busy signal is also output from Serializer to Frame Extract. Furthermore, the
busy signal from Uart to Frame Extract was preserved, inasmuch as the Uart
may be busy and Serializer may not. Finally, when the "transmits" signal is
unset, the FSM of Serializer returns back to the IDLE state, waiting for the
next state to be extracted.

5.5 Assembling the complete picture

By embedding the aforementioned developed modules all-together into
the initial hardware architecture, the re-programmable structure has been
consolidated, ready to be driven from software level. Overall, six images
of the hardware have been generated in the form of bit files. Given that 3
different bit files are required for each grid type (rectangular, cylindrical and
toroidal), in addition to two extra cases of either 4 bit or 8 bit rules, their
combinations resulted in a total of six distinct downloadable files.

5.5. Assembling the complete picture 53

The hardware architecture was developed using the Vivado 2019.2 tool by
AMD-Xilinx. The FPGA platform used to execute the simulation was Digi-
lent’s Nexys 4 DDR, a medium-sized board, based on the Artix-7 FPGA series
with part number XC7A100T-1CSG324C. The table 5.1 and figure 5.9 depicts
the resources utilization, in the case of a 8-bit, toroidal grid.

TABLE 5.1: FPGA’s resources utilization

Components Availability Consumed Percentage

Slices 15850 15563 98.20%
LUT 63400 42581 67.16%
FF 126800 69441 54.76%
LUTRAM 19000 1890 9.94%
BRAM (Tiles1) 135 125 92.59%
DSP 240 1 0.04%
IO 210 69 32.85%

FIGURE 5.9: Implemented circuit on the device .

1Each tile is equal to 18 Kbits.

55

Chapter 6

The CAD Tool to Drive the
FPGA-based Accelerator

In this chapter, we present the structure and the functionality of the tool,
developed to aid in simulating Cellular Automata models and to drive the
hardware design. While the user interacts with the tool by means of a GUI
environment, this chapter mainly focuses on its back-end operations.

6.1 Overview Of The Tool

Our tool is primarily constituted by Python, a high-level, general-purpose
programming language, alongside a minuscule, TCL script to run the Vivado
Design Suite in the background. The primary purpose is to fully automate
the initialization process of our machine, to load user’s configuration in the
hardware, and finally, to extract screenshots of the evolution given a specified
time step.

The user merely has to specify the initial state in the form of an image,
the parameters of the CA (weights, grid type, number of state, etc.), and the
transition rule via the GUI. Inasmuch as everything is prepared and the users
opts to start simulating, the following operations are executed by the tool:

• Image to array conversion and vice versa.

• Serialization and deserialization of data.

• Select one out of six bit files based on parameters

• Program the FPGA with the selected bit file.

• Transmission/Reception of data using UART protocol.

The main flow of back-end is depicted in the figure 6.1, showcasing the
exact order of execution of the aforementioned operations.

56 Chapter 6. The CAD Tool to Drive the FPGA-based Accelerator

START

Keeps GUI / Software
open and responsive

Main Program
Loop

TERMINATE

Apply Settings

YES NOExit

Check NO

YES

Image To Array

Serialize Data

Select Bit File

Program FPGA

Transmit Data

Open Port and
Wait to Receive

One Extraction
Has Been Receive

All
Received

Deserialize Data

Arrays to Images

NO

YES

FIGURE 6.1: Flowchart of the back-end functionality.

6.2 TCL Scripting

The TCL stands for Tool Command Language and it is a a high-level, in-
terpreted, programming language. The TCL is integrated in the Vivado De-
sign Suite environment and it offers the ability to control the IDE program-
matically. The Vivado can be launched using three different modes:

1. TCL Shell Mode: Enter individual TCL commands or run TCL scripts
in the Vivado Design Suite Shell, either inside or outside of the Vivado
IDE.

2. TCL Batch Mode: The Vivado Design Suite shell opens, executes the
specified TCL script, and then, exits when the script completes.

3. IDE Mode: Opens the GUI environment.

In our case, the TCL Shell Mode is used, since individual TCL commands
are sent into the Vivado shell, as the following example represents:

s e t argv [l i s t arg1 arg2 . . .]
s e t argc [l l e n g t h $argv]
source %path%/my_script . t c l

The arguments that the script accepts and their total number require two
individual commands, plus, one extra command to run the TCL script. A
sub-process spawns in the background which opens the Vivado shell and the
above commands are sent through a pipe. Our script file operates in two, dif-
ferent, independent modes: "compile" or "program". The former performs:
Compilation of the design sources, Logic Synthesis, Implementation, and

6.2. TCL Scripting 57

Bitstream Generation, while the latter Programs the FPGA with the specified
bit file. In this regard, the Vivado Suite is driven in the background.

The compilation style of the Vivado varies between Project Mode and
Non-Project Mode. In Project Mode, the Vivado tools automatically man-
age the design flow. All of the design data required by the tool (netlist files,
log files, reports of the design, etc.) are auto-organized in the hard drive disk,
in a specific, structured directory. On the other hand, Non-Project Mode per-
forms in-memory compilation, where the design sources can be stored in a
simple custom-made directory, and the files required by the Vivado are tem-
porarily generated in RAM. The Non-Project Mode is more suitable, when
someone desires to perform a simple compilation of the design and program
the FPGA on the background, as it is faster and requires less storage.

Although the TCL script operates in the two aforementioned modes, "com-
pile" and "program", the former was not incorporated in the tool. Initially, it
was thought to be a good practise to generate VHDL files and then compile
them to generate a new bit file, if the already developed hardware wouldn’t
support a user’s configuration. Eventually, it was proved to be out-of-scope
for this Thesis, while consuming time for developing this functionality could
lead us out of the main goal. To conclude, the TCL commands used by our
tool are illustrated in the table 6.1, below.

TABLE 6.1: The TCL commands that are used by our tool.

Command Description

set_part Specify the part number of the FPGA.
set_property Define any property of an object in the design.
read_vhdl Read VHDL files.
read_ip Read IP files.
generate_target Generate output products of an IP.
synth_ip Synthesize an IP.
synth_design Synthesize the design.
opt_design Perform high-level design optimization.
place_design Place the design.
synth_opt_design Perform physical logic optimization.
route_design Route the design.
write_bitstream Generate the bitstream file.
open_hw_manager Open hardware manager.
connect_hw_server Connect to the hardware server.
program_hw_devices Program the FPGA.

58 Chapter 6. The CAD Tool to Drive the FPGA-based Accelerator

6.3 CA Description Language (CDL)

FIGURE 6.2: The Greenberg-Hastings Model described in CDL.

The Cellular Automaton Description Language, or CDL, has been devel-
oped to help the user define the transition rule of a model. The CDL is de-
termined in the form of plain text, writing in a text editor embedded in the
GUI. It has been intentionally designed to be as simple as possible, especially
for individuals; unfamiliar with programming. In terms of coding, it is truly
convenient to create a language for this kind of problems, because, having
specific, predefined sets of syntax rules it can be interpreted to manageable
structures for a program. Therefore, the Lex and Yacc tools were used to
create a compiler for our CDL.

At this point, we have to explain the syntax rules of the CDL by using
the example in Figure 6.2. The example represents the transition rule of an
excitable model called Greenberg-Hastings. Our CDL is structured into two
subsections: the Definitions and the Function.

The Definitions is an optional field, depending on the definition of the
model. In this subsection, the user can entitle several states of a cell, using
its value alongside a desired characterization. The syntax is restricted to the
pattern "value1 - name1 | value2 - name2 ...", while the keyword others may
be used to refer to rest (also optional), non-defined states. Additionally, it is
possible to declare constant variables, if need be.

In the subsection Function, the mathematical equation that describes the
model is determined, according to the following pattern:

n e x t _ s t a t e = <expression1 > , i f <condit ion1 >;
n e x t _ s t a t e = <expression2 > , i f <condit ion2 >;
...
n e x t _ s t a t e = <expression > , otherwise ;

6.3. CA Description Language (CDL) 59

The initiation of each statement is restricted to the phrase "next_state =",
where the otherwise and an at-least one "non-otherwise" condition are manda-
tory. In order to shape an expression or condition, the following keywords
or symbols are allowed to be used:

• Arithmetic Operators: "+", "−", "∗", "/".

• Logical Operators: "AND", "OR", "NOT".

• Comparative Operators: "=", ">", ">=", "<", "<=".

• Keywords: "sum", "current_state" and "total_namex", where namex is a
entitled state in Definitions section.

• Constants or Numbers: Only the defined constants or numbers ∈ Z.

• Parenthesis: "(", ")", for prioritizing operations.

The keyword "sum" refers to the total sum of the weighted neighborhood,
the "current_state" to the state number of the central cell. The "total_namex"
counts the occurrences of certain state-value within the window. Further-
more, the user may use the expression, i.e. sum in [x,y), where x, y ∈ Z, to
define more conveniently the intervals, in which the total sum belongs to.

Nonetheless, the current structure of the re-programmable framework does
not support all of the above functionalities of the CDL. For example, adding
multiple keywords "total_namex", the same amount of Binary Adder Trees
are required to be preinstalled in the CA Engine as well. Due to the lim-
ited amount of resources, it wasn’t feasible to further extend the hardware.
Notwithstanding, since the one of the main challenges of this Thesis was the
user’s input, the CDL were designated to its most general form. At present,
a basis core has been established for future development.

The most general form of the already supported CDL is provided to the
following example of transition rule:

n e x t _ s t a t e = X , i f sum in [Y , Z] and c u r r e n t _ s t a t e = W;
.
.
.
n e x t _ s t a t e = G, otherwise ;

The X, Y, Z, W and G belongs in Z, where the interval’s definition sup-
ports all possible combinations of brackets and parenthesis ([], [), (] or ()).
The above example concerns an outer-totalistic rule, where if the part "and
current_state = W;" is omitted, then a totalistic rule has been determined,

60 Chapter 6. The CAD Tool to Drive the FPGA-based Accelerator

where multiple cases of next_state are allowed, as long as the sum intervals
can fit in the BRAM.

It can be said the our CDL is expected to be truly convenient to the user be-
cause if we replace the "next_state", "sum" and the "current_state" keywords
with mathematical symbols, such as f (t + 1), ∑ and f (t), correspondingly,
our CDL follows an identical pattern to that of the mathematical equations
adhere to. Thus, it does not demand the slightest programming knowledge
whatsoever.

6.3.1 Interpreting the CDL

The Lex and Yacc tools have been utilized to built our domain-specific
compiler. These tools implemented within the PLY library to provide com-
patibility with Python. The compiler ensures the syntax correctness of the
user’s input and translates the CDL into a structure with a specific format.
Then, the tool reads this structure and generates the LUT to be stored into
the BRAM. Similarly, we going to distinguish two scenarios, for totalistic and
outer-totalistic rules, and explain the concept with the help of dummy exam-
ples.

Totalistic Rules

For this case, let’s consider the following paradigm:

n e x t _ s t a t e = 1 , i f sum in [0 , 1 0] ;
n e x t _ s t a t e = 2 , i f sum in (1 5 , 2 0] ;
n e x t _ s t a t e = 3 , i f sum in (2 3 , 7 8) ;
n e x t _ s t a t e = 0 , otherwise ;

Since the syntax is correct, the compiler will provide the ensuing output
in a text file:

LUT= 1 : [0 , 1 0] | 2 : (1 4 , 2 0] | 3 : (2 3 , 7 8) | 0 : o thers

According to the format, "S:[a, b]" or "S:others" (for otherwise), S is related
to the next state and a,b are the limits of the interval. The delimiters ":" and
"|" separate the state from the interval and each case respectively. An ar-
ray with 16384 addresses, matching the total number of BRAM addresses,
is filled with the next state-values in the corresponding addresses that sum
indicates, as the figure 6.3 showcases.

6.3. CA Description Language (CDL) 61

1 1 1
0 1 10Address

Value 0
11 16

2 0
21 24

3
77

3
78

0
16383

0

FIGURE 6.3: An example of BRAM, given the reference exam-
ple.

Outer-Totalistic Rules

As for an outer-totalistic rule, let’s examine the following example:

n e x t _ s t a t e =1 , i f sum in [0 , 10] and c u r r e n t _ s t a t e =1; (1)
n e x t _ s t a t e =2 , i f c u r r e n t _ s t a t e =1; (2)
n e x t _ s t a t e =3 , i f sum in [0 , 1 0] ; (3)
n e x t _ s t a t e =0 , otherwise ;

Similarly, the compiler will generate the subsequent string:

LUT=1:C1 : [0 , 1 0] | 2 : C1 | 3 : [0 , 1 0] | 0 : o thers

The only addition (in comparison to previous case) is the "CX" sub-string,
declaring that the current state is equal to X for the specific case. In the case
(1), both the sum and the current state exist in the condition, so, the LUT
string contains both the current state-value and the interval (1:C1:[0,10]). In
case 2, only the central cell appears in the condition, hence, the interval is
omitted (2:C1), while the case (3) has already been clarified.

In coding level, tracing an at least one character ’C’ in the LUT string, it
is certain that an outer-totalistic rule has been provided. It is reminded that,
the BRAM is divided into 16 or 256 sub-intervals for 4-bit or 8-bit rules cor-
respondingly. The current state indicates the sub-interval to access, whereas
the total sum points to a position within that specific sub-interval. So, ac-
cording to the above example, the figure 6.4 depicts how the array/BRAM
will be formed in case of cell size = 4 bits.

Given the figure 6.4, the addresses for 1024 to 1034 contain the value 1
owning to the condition (1). Alternatively, if the current state was equal to 9,

3 3 0
0 10Address

Value

11 1023

1 1
1035

00
1024 1034

2
2047

2
2048

3
2058

3
2059

current_state=0 current_state=1 current_state=2

FIGURE 6.4: An example of BRAM, given the reference exam-
ple. Case of cell size = 4bits

62 Chapter 6. The CAD Tool to Drive the FPGA-based Accelerator

then, 9× 1024 = 9, 216, so the number 1 would be stored from 9, 216 to 9, 226.
The remaining position within the second sub-interval store the value 2 be-
cause of the condition (2). Finally, all of the 11 first positions of the remaining
sub-intervals hold the value 3 due to the condition (3).

In the above example there exist overlaps of sub-intervals among the con-
ditions, where the condition (1) has priority over (2), the (2) over (3), and so
on. This does not happen due to how they were written, but due to how the
rule should be defined properly. The tool properly treats the priorities over
cases accordingly, without taking into account the written order, avoiding to
overwrite values of cases with higher priority.

Every address of the array is initialized with the value −1. The highest
priority case (1) overwrites every position, whether the −1 appears or not.
The limits of the sum intervals of case (1) are preserved in a list. So, it is
not allowed for the case (2) to overwrite the positions that exist in this list,
while it overwrites all the others. The lowest priority case (3) only updates
the array whenever a −1 exists in the respective positions. Finally, after the
completion of this process, the remaining non-updated values of the array
(still holding "-1") are being replaced with the state value of the otherwise
case.

The procedure, as described above, can be generalized into a mathematical
expression. If the next state = s ∈ Z, central cell = n ∈ Z and a, b ∈ Z are
the lower and upper bounds of the sum interval respectively, it is implied
that, c(t + 1) = s, when sum ∈ [n × L + a, n × L + b), where L is the length
of each sub-interval and it is equal to 1024 or 64 for cell size = 4 or 8 bits
correspondingly.

6.4 Serializing/Deserializing Data

While Protobuf’s serialization and deserialization process required to be
manually implemented on the hardware level, in software level this process
is much more simplified. Firstly, the structure of the message to be sent is
being described as plaintext; in a file with extension ".proto". Our message
structure is the following:

message DataStruct {
opt iona l uint32 t ime_step = 1 ;
repeated uint32 weights = 2 ;

6.5. Image Conversion 63

repeated uint32 bram_values = 3 ;
opt iona l uint32 others = 4 ;
opt iona l uint32 rule_type = 5 ;
repeated uint32 i n i t i a l _ s t a t e = 6 ;

}

Each variable in the above message corresponds to a different kind of data
to be transmitted, while their names encapsulate their content. As long as
our data are finally structured, ".proto" file is being compiled and the cor-
responding file descriptors are automatically generated. The file descriptors
outline the serialization and deserialization procedure. Using the appropri-
ate methods provided within the protobuf’s libraries, the data are converted
to a sequence of bytes. These bytes are transferred and received with the
UART protocol one-by-one.

6.5 Image Conversion

At first glance, a Bitmap image had to be converted to an ASCII file and
vice versa, by means of a Matlab script which was executed manually. In
order to embed this functionality in our tool, we utilized the Pillow (PIL)
library, a powerful image-processing library compatible with the Python in-
terpreter.

Bitmap images appear to be very handy for our application owing to their
uncompressed format. On the other hand, a compressed image format, like
JPEG or PNG, would require a decompression algorithm in order to fully
retrieve the correct integer color-values. So, the tool only supports Bitmap
images.

Using the PIL library, the information of an image can be extracted using
palette mode. This way, the indexes are separated from the color palette,
which are transmitted to the machine as its initial state. Conversely, when a
snapshot extracted and received from the machine, the color palette (of the
provided initial state) is applied to it, drawing the image of a future genera-
tion.

The user has to create the initial state properly and to include the correct
indices within the image file. The tool merely extracts the indices of the input
image, stores the color palette, and checks if the state-values comply with the

64 Chapter 6. The CAD Tool to Drive the FPGA-based Accelerator

definition of the model. A cell state can not be greater than n − 1, where n is
the overall states of the CA.

65

Chapter 7

The Graphical User Interface CAD
Tool to Describe the CA Model

The majority of the CA machines, as described in the Related Work (Chap-
ter 3), were configured via either a low or a high level programming lan-
guage, such as C or Assembly. This characteristic; though, limits the po-
tential number of users to mainly computer engineers, while the CA models
primarily concern physicists, biologists and mathematicians. Even though
CAM-8 and CEPRA-1X supported a CDL environment to enhance conve-
nience, it was somewhat complicated to utilize (see Figures 3.4, 3.5).

This was the case with Kyparissas’ baseline architecture: the user needed
to write VHDL code to represent the CA model rules (generally this was a
variation of some template which was already provided), subsequently the
design had to go through the Xilinx CAD tool suite, and the resulting file was
downloaded in the user’s FPGA for execution. Given that the purpose of
this thesis is to allow for remote access of non-FPGA conversant users, it was
deemed appropriate to develop a CAD tool in order to facilitate the model
description (e.g. selection of weights and transition rules). This CAD tool is
not associated with the target technology in terms of its use (but conforms
to the capabilities of the system, as described in previous chapters), and it
allows for easy CA model description.

In this chapter, the GUI environment of our tool is represented, showcas-
ing its capabilities and the convenience that provides to the end-user.

7.1 The GUI Environment

The Graphic User Interface (GUI) was developed by using the Tkinter
package, the standard Python API for interacting with the Tcl/Tk GUI toolkit,

66
Chapter 7. The Graphical User Interface CAD Tool to Describe the CA

Model

FIGURE 7.1: The GUI environment

which is available on both Unix-like platforms and Windows Systems. The
primary reason that led us to develop this environment is the large window
of the neighborhood. Inserting 29× 29 = 841 coefficients one by one is surely
painstaking. Without the GUI, the same scripts could generate different pat-
terns of, weighted or not, neighborhood windows. Still, the GUI offers more
capabilities, as shown later in this section

Figure 7.1 displays how the environment is organized. The following parts
of the GUI can be distinguished:

• Toolbar: Placed at the uppermost part of the window.

• Treeview: Placed at the rightmost section of the window.

• Image Viewer: At the middle of the window.

• Configurations: Beneath the Image Viewer.

• Neighborhood: 29 × 29 entries at the leftmost part of the window.

7.2 User Options

In the toolbar, only the "File" menu is available so far, that contains a sub-
menu where the user can Create, Close and Export a project, Import files
or Exit program. If there are no opened/created projects, all the widgets of
the GUI are disabled and the user can not interact with tool whatsoever. The
user has to create a new project, where the steps to do so are demonstrated
in Figure 7.2.

7.2. User Options 67

ERROR CHECKS

"File" Option Create New Project Updated
Tree View

FIGURE 7.2: Creating new project.

On creating a new project, a pop-up windows spawns on top of the main
window, in order for the user to type the desired project name. If no project
name has been provided or the inserted project name already exists, an corre-
sponding message is printed. When the project has been successfully created,
a default configuration file also imported, where the number of states per cell
is set to two, the transition rule is empty and a 29× 29, non-weighted, Moore
neighborhood is displayed.

Each project can contain only one configuration file and multiple images.
If there are available images in the selected project, they can be navigated via
the Image Viewer. The selected project is highlighted with blue background
and the tool automatically recognizes it. Therefore, the user doesn’t have to
specify which project is currently selected. There is always a selected project
highlighted in the tree view, and, if the user creates or closes a project, the
newly made or the first one in the Treeview is auto-selected respectively.

In this manner, the user can switch between open projects by merely click-
ing in the Tree View. On clicking to a different, non-selected project, the
tool, firstly, auto-saves the already inserted configurations, and secondly,
auto-imports the new ones. The former feature is truly important due to the
structure of how projects are managed with the tool. Otherwise, if the user
clicked back to an already configured project, the settings would have been
vanished, or, the tool should accordingly notify the users; every time they
tried to switch between projects. In the end, users’ settings are invariably
preserved, and they no need to fret on saving their work.

68
Chapter 7. The Graphical User Interface CAD Tool to Describe the CA

Model

During on importing files or exporting a project, the file explorer pops-up,
so as to navigate to the preferred directory. If the user aims to import a con-
figuration file, the tool notifies prior to proceeding that the already existed
one will be overwritten. In case of importing images, there is a possibility of
duplicate file names. So, the user is provided with the alternatives to either
overwrite or rename them. Last but not least, a zip file that contains the con-
figuration file and the images of the selected project can be exported via the
Export a Project option.

7.3 Configuring Weights

Given that up to 841 coefficients can be determine, the tool provides users
with several mechanisms to increase convenience. Figure 7.3 displays the
widgets that contribute to shape the neighborhood. The following function-
alities are available:

• Diameter Selection: Must me an odd number, otherwise the central
cell can not be determined.

• Neighborhood Type: A drop down menu where several patterns are
available to be drawn

• Add Weights: Adding coefficients greater than 1.

• Add to every cell: The constant value within the entry.

• Mirror Mode: Mirrors the entries in the second quadrant of the lattice.

In order to draw patterns, which will be further discussed in this later sec-
tion, all of the entries correspond to a unique, (x, y) coordinate, as if they
were placed on XY axis. Given that there are 29 × 29 available entries, the
uppermost, left entry correspond to coordinate (−14, 14), the lowest, right
entry to the coordinate (14,−14), and apparently, the central cell is coordi-
nated as (0, 0). Thus, using simple mathematical equation, numerous pattern
can be drawn.

When the user sets a new diameter of the neighborhood, all entries out-
isde the radius are disabled and set to 0. If the checkbox "Add Weights" is
checked, the values of the entries are set in analogy with their distance from
the central cell. The distance is simply given by the formula max(x, y), where
x, y are the coordinates of the respective entry. Figure 7.4 depicts these two
functionalities.

7.3. Configuring Weights 69

(a) (b)
FIGURE 7.3: Configuring weights. (a) Widgets for shaping the

neighborhood, (b) 29 × 29 lattice of entries.

(a)

(b)

FIGURE 7.4: (a) Setting up a 13 × 13 neighborhood, (b) Adding
weights.

70
Chapter 7. The Graphical User Interface CAD Tool to Describe the CA

Model

Non weighted von Neumann Adding 2 and excluding 0s von Neuman preserved

FIGURE 7.5: Adding 2 to every cell excluding zeros, in a von
Neumann region.

FIGURE 7.6: Drop-down menu of neighborhood types.

A constant value can be added to every entry (see the fourth dashed label
in figure 7.3). The "-" and "+" button decrease or increase the value within
the entry (entry with value "2") and the "Add" button; adds this value to the
weights. Two exception rules may be applied, where the non-zero or zero
values can be excluded from the "Add" operation. Using the latter excep-
tion rule, a neighborhood preserves its shape, for example, a von Neumann
neighborhood maintains its diamond-like form, if the user wishes to increase
or decrease the coefficients within the von Neumann region, as Figure 7.5
illustrates.

7.3.1 Neighborhood Types

The tool supports several neighborhood types, in other words, different
patterns that can be drawn within the determined radius. The user can select
the preferred type by clicking on a drop-down, where the supported ones
are included, as Figure 7.6 showcases. Let (x, y) be the coordinates of an
entry, with (x0, y0) representing the central point, and r denoting the radius:

7.3. Configuring Weights 71

∀x, y ∈ Z : −r ≤ x ≤ r & − r ≤ y ≤ r, the following expressions must be
true for drawing a:

• von Neumann: |x − x0|2 + |y − y0|2 ≤ r.

• Circular: |x − x0|2 + |y − y0|2 ≤ (r + 1)2.

• L2/Euclidean: |x − x0|2 + |y − y0|2 ≤ r2.

• Hash: x = x0 − 1 ∨ x = x0 + 1 ∨ y = y0 − 1 ∨ y = y0 + 1.

• Cross: x = x0 ∨ y = y0.

• Saltire: y = x + 2 × y0 ∨ y = −x.

• Star: y = x + 2 × y0 ∨ y = −x ∨ x = x0 ∨ y = y0.

The x0 and y0 change their value, because the user may shift the central
point (demonstrated in the next subsection), therefore, they are not invari-
ably equal to (0, 0) and must be encountered in the aforementioned expres-
sions. The "Moore" type is just a square-shaped region that merely includes
all the entries within the radius, so, there is no need to use a sophisticated ex-
pression. The "Checkerboard" is the complement of "Checkerboard’", where
a chessboard is simply drawn. If we perform a simple horizontal scan in the
r × r grid of entries, either the odd-positioned or the even-positioned ones
are set to ’0’. The following figures showcase all of these patterns, in case of
having a 11 × 11 area.

(a) (b)
FIGURE 7.7: (a) Moore, (b) von Neumann.

72
Chapter 7. The Graphical User Interface CAD Tool to Describe the CA

Model

(a) (b)
FIGURE 7.8: (a) Circular, (b) L2/Euclidean.

(a) (b)
FIGURE 7.9: (a) Checkboard, (b) Checkerboard’.

(a) (b)
FIGURE 7.10: (a) Hash, (b) Cross.

7.3. Configuring Weights 73

(a) (b)
FIGURE 7.11: (a) Saltire, (b) Star.

7.3.2 Mirror Mode

Mirror mode is evidently the most valuable functionality for designating
a neighborhood. When it is enabled, it restricts user’s activity within the sec-
ond quadrant. After the user has completed configuring these entries and
presses the ’Done’ button, they automatically get mirrored across the entire
grid. Thus, in the worst case scenario of having 841 coefficients overall, only
the uppermost, left, 15 × 15 (= 225) box has to be determined. Three distinct
types of mirroring occur, involving the weights located in second quadrant
with coordinates (x, y). These mirroring operations include: horizontal re-
flection to the first quadrant over X axe ((−x, y)), vertical reflection to the
third quadrant over Y ((x,−y)) and, central reflection to the fourth quadrant
over (0, 0) point ((−x,−y)) .

Mirror mode is also compatible with the rest of the operations which have
been already described. In simpler terms, the user can set weights, add a
constant to every cell and configure one quarter of the selected neighborhood
type. Additionally, the central point of the whole grid may be shifted to
the center of the second quadrant, if and only if, an odd-dimensional box
is shaped. Consequently, four sub-neighborhood can be included into the
whole, if someone desires to do so. The following figures demonstrate the
Mirror Mode’s capabilities in a 13 × 13 area, whenever or not the central
point has been shifted.

74
Chapter 7. The Graphical User Interface CAD Tool to Describe the CA

Model

(a) (b)

Mirror Mode Enabled Done

FIGURE 7.12: Mirror Mode: (a) The one fourth of a von Neu-
mann neighborhood, (b) Properly mirrored.

(a) (b)

Mirror Mode Enabled Done

FIGURE 7.13: Mirror Mode with shifted center: (a) A small von
Neumann within the second quadrant neighborhood, (b) Prop-
erly mirrored. Four von Neumann sub-neighborhoods were

shaped.

7.4 The Remaining Configurations

The widgets represented in Figure 7.14 are placed beneath the Image Viewer.
Through the GRID PARAMETERS section, the user can determine the num-
ber of states per cell, and the type of grid in which the CA evolves. As already
said, the number of states supported are in range [2, 255] and the available

7.4. The Remaining Configurations 75

FIGURE 7.14: Widgets for configuring the grid, inserting the
transition rule and setting up the simulation.

 *** PLEASE DO NOT EDIT. This file is auto-generated by the tool. ***
 States:2
 Grid_Type:RECTANGULAR
 # Transition Rule
 Definitions:Empty
 Function:
 next_state = 0, if sum in [0, 19];
 next_state = 1, if sum in (19, 23];
 next_state = 0, if sum in [24, 58];
 next_state = 1, if sum in [59, 100];
 next_state = 0, otherwise;
 END
 NEIGHBORHOOD:3
 0 2 0
 2 1 2
 0 2 0

FIGURE 7.15: An example of the format of a .config file.

grid types are: "Rectangular, "Cylindrical" and "Toroidal", meeting the hard-
ware requirements. The grid size is always fix to 1920 × 1080, and the user
can not modify it. It is displayed merely for clarification.

On the right hand-side, the initial state the simulation, the total amount of
extractions, and a time step are specified. In the example of the figure 7.14,
the simulation will run for 2000 generation in total, where 10 screenshots ev-
ery 200 generation will be extracted. The lowest part is an embedded text
editor, where the Transition Rule can be typed in, written in the CDL de-
scirbed in the previous chapter.

In section 7.2, we frequently referred to configuration file. In this file are

76
Chapter 7. The Graphical User Interface CAD Tool to Describe the CA

Model

stored the number of state, the grid type, the transition rule, the neighbor-
hood and its diameter. Figure 7.15 showcases the form of this file according
to the present example (figure 7.14). Generally, this file should not be edited
outside the tool, unless, the user is well-aware of how to preserve the format.
It is a simple text file with only a different extension (.config), quite easy for
someone to comprehend its structure.

Before running the simulation, the user should hit the "apply" button. If
all of the user settings are valid and the hardware requirements are met, then,
the simulation can get underway.

77

Chapter 8

System Verification, Examples of
Use, Evaluation, and Results

Discovering a Cellular Automaton rule that meets a real-life application is
a truly challenging task. Not only does it require a deep theoretical insight,
but also many experiments have to be executed countless times with different
configurations. These configurations may concern a combination of: param-
eterizing the transition rule, testing different neighborhood arrangements, or
triggering the simulation with a variant of noisy initial states, comprised of
statistical distributions. If the simulation manages to converge to a stable
pattern, the goal has been reached.

As will be shown in this chapter, our framework works and it can drive the
FPGA at the back end; the GUI also works and it has been used. Thus, the
concept of creating a re-programmable framework has been proven, while
a robust foundation has been established for future work. In this chapter,
we will show how the The Artificial Physics and the Game of Life models,
covering both cases of a totalistc and outer-totalistic rule are run in the system
developed in the present thesis.

However, there exist limitations of our system as well, largely due to the
constraint for non-conversant users to be able to use the system. The reason
is that in Kyparissas’ original work, the portion of the VHDL code that the
user provides corresponds to a datapath which the Xilinx CAD tools create
on a case-by-case basis. Hence, the limitations are only due to the FPGA
resources. In our system, the user requirements (transition rules, weigths,
etc.) have to be mapped to an already developed architecture. The constraint
to not use the Xilinx tools but use the already provided bit files restricts the
range of applications vs. the original architecture. Even so, the applications
which our system supports are by no means trivial.

78 Chapter 8. System Verification, Examples of Use, Evaluation, and Results

Of the handful of models which were tested in Kyparissas’ work, only
the Artificial Physics and the Game of Life are fully supported in this first
generation of our environment, as will be described in subsequent sections.
These capabilities, however, are not at all trivial and a broad class of totalistic
and outer totalistic CA can be modeled by our system.

In addition to the verification of our system, we conducted and will in-
clude in this chapter experiments of the Hodgepodge Machine, even though
it is not supported by the CAD tool. This is a new research result, which gets
into depth on some initial observations from Kyparissas’ work. These obser-
vations were then called vortices. Physicists who study dynamical systems
indicated that these are chimera states, which had not been observed before,
as they require large CA neighborhoods. These results will be presented as
well in the present chapter.

8.1 Artificial Physics

The Artificial Physics model is a totalistic CA rule, employing 2 states per
cell and a weighted, 21 × 21, large neighborhood, where each cell of the grid
can be either "dead" or "alive". The neighborhood of the model resembles
concentric circles, while the initial state is consisted of randomly distributed
alive cells in a ration of 1 to 7. The figure 8.1 depicts the neighborhood’s win-
dow that was determined, while the transition rules of the model is defined
as:

St(i, j) =
i+r

∑
x=i−r

j+r

∑
y=j−r

w(x − i, y − j)× ct(x, y)

ct+1(i, j) =

0, if St(i, j) ∈ [0, 19]
1, if St(i, j) ∈ (19, 23]
0, if St(i, j) ∈ (23, 58]
1, if St(i, j) ∈ (59, 100]
0, otherwise

Applying the above configuration, the simulation derives the results, de-
picted in the figure 8.2. As the simulation evolves, atoms are shaped in the
automaton’s universe. Those in close proximity bond together in a attempt to
form molecules. Atoms cease to exist after a significant amount of runtime.

8.1. Artificial Physics 79

These results match those of thebaseline architecture, but it should be noted
that these are new runs, on the revised architecture, and with the use of all
tools that were developed in the present thesis.

(a) (b)
FIGURE 8.1: The user’s input inside the GUI. (a) Artificial

Physics’ configurations, (b) the neighborhood’s window.

(a) (b)

(c)
FIGURE 8.2: The evolution of Artificial Physics. (a) Initial State,
(b) 500 generations, and (c), 60, 000 generations along with a

zoomed-in frame.

80 Chapter 8. System Verification, Examples of Use, Evaluation, and Results

8.2 The Game Of Life

The Game Of Life was meticulously demonstrated in the Chapter 2. At
the present section, we are going to represented screenshots extracted by the
CAD tool. This models consists of an outer-totalistic rule and covers the
second case of the supported models of the tool. The central state affect the
condition of the transition, and as reminder, it is the case where the BRAM is
divided into sub-internals. The figure 8.3 and 8.4 depicts, the derived results
and the configuration withing the tool’s environment respectively, while the
initial state is the same to that of Artificial Psysics’ example.

There are several well-known patterns which can be distinguished in the
results, the most two popular ones are categorized as: Still lifes and Oscilla-
tors. The former refers to patterns that remain unchanged as the simulation
evolving, while the latter to those that return to their initial state, after a finite
number of generations. To name but a few, the Block and Beehive are involved
in the first category, while the Blinker in the second one. For example, the
Block resembles a 2 by 2 box of alive cells, hence each cell within the block
has exactly 3 neighbors and thus its shape is preserved. On the other hand,
the Blinker forms a straight line of three alive cells. The central cell has exactly
two neighbors and remains alive throughout time, while the others "die" due
to under-population. Furthermore, the two cells on either side of the central
cell resurrect, given the they have three neighbors. So the line is being rotated
by 90◦ generation by generation, composing an oscillation with period of 2.

Both of the above examples were used to verify our system in every re-
spect: a new architecture that works (with all that it entails in terms of being
"shrink-wrapped" and not re-compiled for each model, driven by the back
end tool, and with rules and neighborhoods developed by the new tools).
We do not report performance, as the present architecture matches that of
the original, and (like the original) it is the same regardless of rule and neigh-
borhood complexity. Hence, the system verification entailed a replication of
known results (as testbenches) rather than performance evaluation.

8.3. The Hodgepodge Machine 81

(a) (b)

(c)

FIGURE 8.3: The evolution of Game of Life. (a) Initial State,
(b) 500 generations, and (c), 15, 000 generations along with a

zoomed-in frame.

(a) (b)

FIGURE 8.4: Game of Life in-GUI configuration. (a) Parameter-
s/Transiton Function (b) Neighborhood window.

8.3 The Hodgepodge Machine

The Hodgepodge Machine isn’t yet compatible with the re-programmable
framework, and by extension, it is not yet supported by the CAD tool. Even
so, many experiments were conducted using the initial design, because the
"vortices" which wer observed in Kyparissas’ work were what physicists call
"chimera states" and these are observed for the first time in the specific model.
In the next chapter, we suggest a potential re-programmable architecture to

82 Chapter 8. System Verification, Examples of Use, Evaluation, and Results

support this model. In this section, the experiments and the conclusions that
was performed and inferred follow.

8.3.1 Experiments

The Hodgepodge Machine was created by Martin Gerhardt and Heike
Schuster of the University of Bielefeld in West Germany. This CA problem
which models a special case of the Belouzov-Zhabotinsy reaction is defined
according to the following cell state transition function:

ct+1(i, j) =

Kt(i,j)+It(i,j)

k , i f ct(i, j) = 0
0 , i f ct(i, j) = q
sum of all neighbors

It(i,j)
+ g , otherwise

Before proceeding to the presentation of our new results, we should point
out the reason why the framework does not support this model at present. As
can be seen in the transition function, above, the state is not only a function of
the inner product of the window and the weights, but it requires more com-
plex operations, plus divisions. The present "shrink wrapped" architecture
(in all of its six versions for grid type and weight/state size) does not have
the ability to do generalized arithmetic, whereas code written in VHDL can
model such complex operations because the associated datapath is created
by the Xilinx Vivado CAD tools.

Resuming with the model under study and its transition function, if the
number of states are q + 1, then the values of each cell are in range [0, q].
The state given by the value 0 is called "healthy", the state q is said to be
"ill" and all other values in range [1, q − 1] describe a degree of infection, the
higher the value, the more infected the cell is. The variables Kt(i, j) and It(i, j)
correspond to the number of "ill" and "infected" neighbors respectively. An
infected cell should gradually approach the ill state. The constant variable
g determines the growth rate of infection, while the constant k is called the
"weighting" parameter for healthy cells and determines the intensity of the
infection process. [40, 41]

The parameters of Hodgepodge Machine used are: k = 5, g = 105 and
q = 255, using a 1920 × 1080 toroidal grid. The initial state of the machine
is set to noisy images that were generated with a random number generator,
by using a specific seed as an indicator to the produced streams. Two ran-
dom sequences were derived of total length 1920 × 1080 each, where the one

8.3. The Hodgepodge Machine 83

corresponds to Bernoulli’s random variable - employing a probability p of
zeros and 1 − p of ones - while the other accounts for a uniform distribution
in range [1, 255]. Thus, the input image of the machine is constituted by the
former sequence, in which the ones have been replaced by the respective cell
values of the latter. In other words, an initial state contains p percent number
of zeros and 1− p percent, uniformly, distributed values in range [1, 255]. The
results of our machine - which utilizes the aforementioned configurations -
are represented in the following figures at the end of this section.

Figure 8.5 shows mid-sized neighborhoods. The images (a) and (b) ac-
count for neighborhood sizes of 15 × 15 and 17 × 17 correspondingly. In the
15× 15 neighborhood, the Bernoulli variable is p = 47%, while for the 17× 17
it is p = 50%. Consequently, it is observed that equal or larger than 17 × 17
neighborhood sizes are needed in order for the chimera states to occur, where
the neighborhood of size 17 × 17 is the starting point.

The remaining figures follow a similar pattern. Initially, they feature dif-
ferent sizes of large neighborhoods such as: 21 × 21, 25 × 25 and 29 × 29
(Fig.8.6, Fig.8.7 and Fig.8.8 respectively). The first image (a) shows the ini-
tial state of the machine, the second one (b) shows the first appearance of
an at least one chimera state, and the third (c) illustrates a converged state
of the machine after 200 generations, alongside a zoomed-in-picture on a
chimera state. Regarding the Bernoulli variable p from which the initial state
is formed, p = 51%, p = 54% and p = 57% correspond to neighborhood
sizes of 21 × 21, 25 × 25 and 27 × 27.

The Bernoulli p value not only plays a major role in terms of convergence,
but also, its range of generating a valid initial state is extended as the neigh-
borhood is increasing. This means that the larger the neighborhood size is,
the wider is the range of chimera state observation as the p value grows.
Table 8.1 shows the ranges of valid Bernoulli p values and the associated
neighborhood sizes. These values of p refer to initial states, with which the
Hodgepodge Machine CA managed properly converged and chimera states
appeared. It should be noted that based on p the Hodgepodge machine may
or may not converge, and our study shows clearly that larger CA neighbor-
hoods have a direct impact to the increase of p values that lead to conver-
gence and chimera states, whereas smaller neighborhoods may lead to con-
vergence but without chimera states (e.g. up to 15 × 15 neighborhoods do
not lead to chimera states even after 200 iterations).

84 Chapter 8. System Verification, Examples of Use, Evaluation, and Results

Neighborhood Size Range of p Total Length of range

19 × 19 [49, 53] 5
21 × 21 [49, 53] 5
23 × 23 [50, 54] 5
25 × 25 [52, 58] 7
27 × 27 [49, 59] 11
29 × 29 [51, 62] 12

TABLE 8.1: Valid values of p in relation to neighborhood size.

It should be mentioned that, the experiments were conducted by using
up to twenty different initial states or seeds for each value of p in the range
[48%, 63%] ∈ Z, hence, the ranges in the table 8.1 might be wider as well, if
the experiment is conducted with even more seeds. Nevertheless, the above
statement regarding the connection between the range of p and the neigh-
borhood size is not invalidated, because it is important to have inputs which
lead to the observation of the desired phenomena after fewer iterations of
the system. Furthermore, the ranges are shift towards larger values of p as
the neighborhood size increases. A possible explanation to this phenomenon
could be that given that the parameters of the machine remain identical for
every single execution of the CA, and so does the initial state, then, the total
sum in a larger area of the grid will be equal to or greater than the total sum
in a smaller one. Thus, in order for the CA to maintain a similar behaviour
as the neighborhood size is growing, a higher number of zeros needs to be
initially placed in the grid. Last but not least, for the mean values of p in
the valid ranges, the machine converges faster and more accurately, and the
opposite behaviour is observed towards the ends of the window. Therefore,
the ideal input appears to be at the central value of the range, as far as noisy
initial states are concerned.

To conclude with this experiment, we note that the large neighborhood
CA can reveal complexities which smaller neighborhoods cannot show, de-
spite both being Turing complete. The reason is that in order for the smaller
models to reach such results, the amount of compute time that would be
needed is inordinate, much like a Turing machine cannot effectively (from a
performance point of view) model a weather prediction model.

8.3. The Hodgepodge Machine 85

(A)

(B)

FIGURE 8.5: (a) 15 × 15 and (b) 17 × 17 after the system has
converged.

86 Chapter 8. System Verification, Examples of Use, Evaluation, and Results

(A) (B)

(C)

FIGURE 8.6: 21 × 21 neighborhood: (a) Initial State, (b) 19 and
(c) 200 generations.

(A) (B)

(C)

FIGURE 8.7: 25 × 25 neighborhood: (a) Initial State, (b) 22 and
(c) 200 generations.

8.4. Discussion 87

(A) (B)

(C)

FIGURE 8.8: 29 × 29 neighborhood: (a) Initial State, (b) 40 and
(c) 200 generations.

8.4 Discussion

In this Chapter we have shown that all goals of the present thesis were
met: the baseline architecture was changed, so that all of the previously sup-
ported grids and weight/state size options are supported. The new archi-
tecture is accessible through the new CAD tool and GUI, and as long as the
transition rule is a map of the dot product (and the present state, if the CA
is outer totalistic) to the next state subject to any arbitrary range (i.e. the
next state can be, e.g. 0 for all odd values of the dot product and 1 for the
even values). The new system was tested and it operates reliably (as best
we can tell), and it is suitable to be ported to teh Amazon AWS FPGA cloud
services. Limitations of the present system stemming from complex rules re-
quiring custom datapath are not yet supported, but will be discussed in the
following chapter.

89

Chapter 9

Conclusions and Future Work

In this last chapter, we are going to summarize the current work and
present potential directions for further development.

9.1 Conclusions

In this thesis we managed convert the initial framework of the hardware
architecture into an as-was, re-programmable system. The system’s initial-
ization process is now fully automated, almost providing a plug-an-play ex-
perience to the end-user. Our machine is not anymore limited to hardware
engineers exclusively, while, no valuable time is being wasted, waiting for
the circuit to be generated. The GUI environment further increases conve-
nience for configuring CA models, adjusting large neighborhood windows,
organizing user’s work and extracting results. The CDL, that have been de-
veloped, appears to be useful and practical for inserting transition rules,
while its compiler interprets the user’s input into a processable data struc-
ture. With the use of Protocol Buffers, the inserted parameters are serialized
into a specifically formatted structure, rendering their allocation possible to
the appropriate hardware components. Consequently, a basic core has been
established for constructing a unified, general-purpose, Cellular Automata
accelerator.

9.2 Future Work

At present, our CAD tool only support a limited amount of CA models.
According to the most general form of the supported transition rule (see
chapter 6, section 6.3), it can be said that, merely static, outer-totalistic rules
can be modeled in our machine. To clarify term "static", the conditions and

90 Chapter 9. Conclusions and Future Work

the next state of the transition rules are decided by constant numbers, while
other Automata reveal a more dynamic behavior. In our case, only the total
sum exhibits such behavior, given that it varies for neighborhood windows.

There is a handful of applications that Kyparissas tested and verified the
hardware architecture and it would be of great use to model these as well in
the re-programmable framework.

9.2.1 Application Examples

In this particular subsection, we aim to demonstrate several well-known
applications, that Kyparissas successfully simulated, and it is a dire neces-
sity to be embedded in the re-programmable architecture. Moreover, we are
going to propose one possible approach for these applications. Addition-
ally, the Hodgepodge Machine is also included, even if it is not represented in
the upcoming examples, since it was analytically described in the previous
chapter.

The Greenberg-Hastings

The Greenberg-Hasting models is an non-linear, dynamical system, also
characterized as an excitable media [42]. Originally, it was consisted of 3 × 3
von Neumann neighborhood and 3 states per cell: "quiescent", "excited" and
"refractory", and it was further enlarged to support more cell state and larger
neighborhood windows afterwards [43, 44]. Kyparissas expanded this model
to simulate it, using a 29× 29, von Neumann neighborhood and 16 states per
cell. A cell can be "quiescent" (state 0), "excited" (state 1) or in a sequence of
"refractory" (state 2 to 15), where the next state is determined according to
the following transition rule:

ct+1(i, j) =

1, if ct(i, j) = 0 & the total excited neighbors > T,

where T is a threshold value
ct(i, j) + 1, if ct(i, j) > 0
ct(i, j), otherwise

The next state of a cell is decided dynamically as a function of the central
one, while instead of calculating the total sum of the neighborhood, it is only
required to count the occurrences of excited cells within the window. The
above transition rule could be expressed in our CDL as:

9.2. Future Work 91

D e f i n i t i o n s :
S t a t e s : 0− quiescent | 1− e x c i t e d | others − r e f r a c t i o n ;
T : 4 ;
Function :
n e x t _ s t a t e = 1 , i f c e n t r a l _ c e l l =0 and t o t a l _ e x c i t e d >T ;
n e x t _ s t a t e = c u r r e n t _ s t a t e +1 , i f c e n t r a l _ c e l l >0 ;
n e x t _ s t a t e = c u r r e n t _ s t a t e , otherwise ;

Anisotropic Rules

In Physics, anisotropy is observed when a physical property of an object
alters its behavior in a directionally dependent manner. A good and simple
example appears to be a ruler. It feels stronger (as a structure) when a force
is exerted from its edge towards the center, while significantly weaker, when
the same magnitude of force is applied vertically to its surface. In a Cellular
Automaton’s world, this property of non-uniformity can emerge, should we
define the proper transition rule.

In this example, the anisotropic rules utilizes a weighted, 29 × 29, Moore
neighborhood and 256 states per cell. The central weight is equal to 15, and
the weights are gradually being reduced by 1, towards the edges of the neigh-
borhood window. The transition rule is defined as follows:

St(i, j) =
i+r

∑
x=i−r

j+r

∑
y=j−r

w(x − i, y − j)× ct(x, y)

ct+1(i, j) =

ct(i, j)− 1, if St(i, j) = 0 > threshold
ct(i, j) + 1, if St(i, j) = 0 < threshold
ct(i, j), otherwise

Using our CDL, it could be written as:

D e f i n i t i o n s :
T : 1 2 8 ;
Function :
n e x t _ s t a t e = c u r r e n t _ s t a t e −1 , i f sum > T ;
n e x t _ s t a t e = c u r r e n t _ s t a t e +1 , i f sum < T ;
n e x t _ s t a t e = c u r r e n t _ s t a t e , otherwise ;

92 Chapter 9. Conclusions and Future Work

Neighborhood
29x29xc

Weighted
Neighborhood

MASK 1

MASK n

Masked
Neighborhood 1

Masked
Neighborhood n

Adder
Tree 0

Adder
Tree 1

Adder
Tree n

Central Cell
c

AAdd T0

AAdd Tn

ADDR
MUX

&

BRAM

x MSBs

x-c MSBs
OVF
MUX

c
CONTROLLER
> +

Program Signals
From Software

Level

DOUT
MUX

OTHERS

SEL
DOUT

DATA
OUT

Central Cell

FIGURE 9.1: CA Engine’s extended, re-programmable frame-
work for supporting more complex models. A potential solu-
tion (blue color) attached to the already developed hardware

(with black).

Hardware Approach

To expand the re-programmable framework in order to support the above
models, further logic and arithmetic capability needs to be built-in. Figure
9.1 showcases a possible scenario of the potential architecture, including ad-
ditional components which it calls for. The more components that will be
available within the circuit, the broader the range of supported models will
be.

Explaining the extended, proposed, re-programmable framework from
left to right, firstly, the neighborhood is being mask according to the desired
cell state to be counted. Many models require to count the occurrences of a
certain cell state. So, the masked neighborhood will be comprised of ones
and zeros only, where the ones have replaced the desired cell state, and all
other become zero. Thus, feeding the masked neighborhood into a binary
adder tree component, the total number of a specific cell state is calculated.
The total sum is calculated as usually, while, the more binary adder trees are
placed in the design, the greater the number of cell state occurrences can be
computed.

Additionally, the central cell is driven to adders, where the threshold val-
ues are applied. The increased or decreased current cell states are connected

9.2. Future Work 93

to the data out multiplexer. In this manner, the design is capable of gener-
ating the next state as a function of the central cell. To even further enhance
the capabilities of the design, multipliers and dividers can be placed along-
side the adders, creating a general "OPERATOR" module, in order to apply
this operations to the central cell. This demands extra wires coming from the
controller, so as to select an operation properly. Although, it is not depicted
in the schematic to maintain it as readable as possible.

As for the Controller, it accepts the results provided from the binary adder
trees and an amount of program signals from software level. The Controller
will execute a series of logical and arithmetic operations, like an ALU, while
the program signals will implement the appropriate wiring in it. This module
is identical to the condition of a mathematical branch function, it computes it
and generates the select signals of the multiplexers accordingly. These series
of operations may be applied to the results provided from the adder trees, to
the central cell, or, in different combinations among them. Consequently, the
CA Engine could be capable of calculating even more complex conditions of
transition functions.

Regarding the multiplexing logic, the ADDR MUX and the OVF MUX
would operate in a similar way as already have been developed. The addi-
tion of the SEL DOUT multiplexer is truly significant at this point. Let’s as-
sume that, a hypothetical rule has two cases, where, the one only depends on
the total sum of the neighborhood, so the corresponding next state is stored
in the BRAM, and, the other relies on a conditional, apart from the total sum,
where the next state is decided by an operation with the central cell. If the
total sum overflows, the current design will provide as output the otherwise
value, which is incorrect. Instead, the Controller would generate the appropri-
ate "select data out" signal. This signal will be driven to the select of DOUT
MUX and the OVF signal produced would be omitted, via the the SEL DOUT
multiplexer.

Ultimately, should this approach is eventually followed, the CAD tool has
to be extended as well. The compiler of CDL will be further expanded to
support even more complex transition rules as input. In addition, a rather
sophisticated algorithm will be required to approximate transition functions
and generate the proper values for the BRAM. Finally, a scrupulous premed-
itation is necessitated for inventing a dexterous format of program signals.
Putting them all together, it can pave the way for producing implausible sim-
ulations in the universe of Cellular Automata.

94 Chapter 9. Conclusions and Future Work

9.2.2 Globalizing Accessibility and Improve Experience

The next step of the present CAD tool is to be utilized by multiple scien-
tists all-around the globe. With today’s technology, this is easily feasible by
means of cloud services. More specifically, Amazon corporations provides ac-
cessibility on FPGA platforms remotely, addressing to both developers and
clients. At this particular moment, the Technical University of Crete has access
to Amazon’s services, meaning that we are on the verge of fulfilling it.

The Amazon cloud offers access to state-of-the-art FPGAs, namely, the Ama-
zon EC2 F1 instance is equipped with a Virtex UltraScale+ VU9P FPGA board
of TSMC’s 16nm FinFET. In comparison to our FPGA platform, VU9P reaches
a number of 2, 586, 150 system logic cells, where our board only has 101, 440.
This enormous difference of capacity unleashes our flexibility in order to
achieve tremendous performances. All of the aforementioned applications
could be indubitably fit in such scale, and furthermore, the range of sup-
ported weights, the number of cell size, the grid size and the neighborhood
window could also be broadened.

By the time the simulator is online, the experience of the end-user can also
be improved in several ways. Firstly, instead of exporting images one by one,
the simulation could be displayed as a live stream in real time. A PCIe fabric
allows the FPGA to share its memory space at up to 12 gigabytes per second
bidirectionally. At a frame rate of 60FPS for a 1920× 1080 resolution, we need
to transfer 1920× 1080× 60× 8 bits = 995, 328 Mbits per second, where with
the given bandwidth is doable.

Additionally, the Graphics Controller and the UART Controller will be
removed, reseasing even more resources. The Graphics Controller is not re-
quired any more. On the cloud environment, the values inside the memory
will be received generation per generation, and the video will be produced
frame by frame. Moreover, UART is a sluggish protocol. While the design
produces 60 generations in one second, the tool demands for at least 10 sec-
onds to capture them, owing to the slow rate of transmitting and receiving
data during both initialization and extractions processes.

Furthermore, given that the live streaming function has been embedded,
the Speed Controller could alter the speed of simulation (as it was) or pause it
for manual extraction. By using, for example, the polling technique, interrupt
signals of the keyboard could be captured by the tool and transmitted to
FPGA. In this regard, the user could control the speed of the FPGA remotely.

9.2. Future Work 95

Last but not least, an image generator and an embedded drawing tool are
also consist of a useful addition, where statistical distributions, such as Nor-
mal, Binomial, Poisson, Gaussian, etc, could be utilized for deriving initial
states.

97

References

[1] Stanislaw Ulam. “Random Processes and Transformations”. In: Inter-
national Congress of Mathematicians. Cambridge, 1950.

[2] John von Neumann. “The General and Logical Theory of Automata”.
In: Cerebral Mechanisms in Behavior: The Hixon Symposium, John Wiley &
Sons (1951).

[3] James B. Salem and Stephen Wolfram. “Thermodynamics and Hydro-
dynamics with Cellular Automata”. In: Theory and Applications of Cellu-
lar Automata, World Scientific (1986), p. 5.

[4] Daniel H. Rothman and Stephane Zaleski. Lattice-Gas Cellular Automata:
Simple Models of Complex Hydrodynamics. Cambridge University Press,
2004.

[5] Paulien Hogeweg. “Cellular Automata as a Paradigm for Ecological
Modeling”. In: Applied Mathematics and Computation 27.1 (1988), pp. 81–
100.

[6] Felix A. Gers, Hugo de Garis, and Michael Korkin. “CoDi-1Bit : A Sim-
plified Cellular Automata Based Neuron Model”. In: Lecture Notes in
Computer Science 1363 (1998), pp. 315–333.

[7] Konrad Zuse. Calculating Space. MIT Technical Translation AZT-70-164-
GEMIT, Massachusetts Institute of Technology (Project MAC), 1970.

[8] John von Neumann and Arthur W. Burks. Theory of Self-Reproducing
Automata. University of Illinois Press, 1966.

[9] Arthur W. Burks. Essays on Cellular Automata. University of Illinois Press,
1971.

[10] Tommaso Toffoli. “Computation and Construction Universality of Re-
versible Cellular Automata”. In: Journal of Computer and System Sciences
15.2 (1977), pp. 213–231.

[11] Melanie Mitchell. “Computation in Cellular Automata: a Selected Re-
view”. In: Non-Standard Computation, Wiley-VCH Verlag in Weinheim (1998),
pp. 95–140.

98 References

[13] Nikolaos Kyparissas and Apostolos Dollas. “An FPGA-Based Archi-
tecture to Simulate Cellular Automata with Large Neighborhoods in
Real Time”. In: 14.1 (2020), pp. 1–32. DOI: 10.1145/3423185.

[14] Nikolaos Kyparissas and Apostolos Dollas. “An FPGA-Based Architec-
ture to Simulate Cellular Automata with Large Neighborhoods in Real
Time”. In: 2019 29th International Conference on Field Programmable Logic
and Applications (FPL). 2019, pp. 95–99. DOI: 10.1109/FPL.2019.00024.

[15] Nikolaos Kyparissas and Apostolos Dollas. “Field Programmable Gate
Array Technology as an Enabling Tool Towards Large-Neighborhood
Cellular Automata on Cells with Many States”. In: 2019 International
Conference on High Performance Computing & Simulation (HPCS). 2019,
pp. 940–947. DOI: 10.1109/HPCS48598.2019.9188084.

[18] Andrew Ilachinski. Cellular Automata: a Discrete Universe. World Scien-
tific, 2001.

[19] Martin Gardner. “Mathematical Games - The Fantastic Combinations
of John Conway’s New Solitaire Game “Life””. In: Scientific American
223.4 (1970).

[20] Paul W. Rendell. “A Universal Turing Machine in Conway’s Game of
Life”. In: 2011 International Conference on High Performance Computing
and Simulation. Istanbul, Turkey, 2011, pp. 764–772.

[21] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning
Ways for Your Mathematical Plays. 2nd ed. A K Peters Ltd., 2001.

[22] Tommaso Toffoli. “CAM: A High-Performance Cellular-Automaton Ma-
chine”. In: Physica D: Nonlinear Phenomena 10.1-2 (1984).

[23] Tommaso Toffoli and Norman H. Margolus. Cellular Automata Machines
- A New Environment for Modeling. MIT Press, 1987.

[24] Norman H. Margolus. “CAM-8: A Computer Architecture Based on
Cellular Automata”. In: Pattern Formation and Lattice-Gas Automata, AMS
(1993).

[25] Norman H. Margolus. “An FPGA Architecture for DRAM-Based Sys-
tolic Computations”. In: 5th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines. Napa Valley, CA, USA, 1997, pp. 2–11.

[26] Norman H. Margolus. “An Embedded DRAM Architecture for Large-
Scale Spatial-Lattice Computations”. In: 27th Annual International Sym-
posium on Computer Architecture. Vancouver, Canada, 2000, pp. 149–160.

[27] Rolf Hoffmann, Klaus-Peter Völkmann, and Mark Sobolewski. “The
Cellular Processing Machine CEPRA-8L”. In: Mathematical Research 81
(1994), pp. 179–188.

https://doi.org/10.1145/3423185
https://doi.org/10.1109/FPL.2019.00024
https://doi.org/10.1109/HPCS48598.2019.9188084

References 99

[28] Christian Hochberger et al. “The CEPRA-1X Cellular Processor”. In:
Reconfigurable Architectures: High Performance by Configware, IT Press,
Bruchsal (1997).

[29] Christian Hochberger et al. “The Cellular Processor Architecture CEPRA-
1X and its Configuration by CDL”. In: IPDPS 2000. Lecture Notes in
Computer Science, vol 1800. 2000, pp. 898–905.

[30] Paul Shaw, Paul Cockshott, and Peter Barrie. “Implementation of Lat-
tice Gases Using FPGAs”. In: Physica D: Nonlinear Phenomena 12.1 (1996),
pp. 51–66.

[31] Tomoyoshi Kobori, Tsutomu Maruyama, and Tsutomu Hoshino. “A
Cellular Automata System with FPGA”. In: 9th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines. Rohnert Park,
CA, USA, 2001, pp. 120–129.

[32] Chase Phelps and Tanzima Islam. “Automatic Parallelization of Cel-
lular Automata for Heterogeneous Platforms”. In: 2023 IEEE 47th An-
nual Computers, Software, and Applications Conference (COMPSAC). 2023,
pp. 352–361. DOI: 10.1109/COMPSAC57700.2023.00055.

[33] K. Bouazza et al. “Implementing Cellular Automata on the ArMen Ma-
chine”. In: 2nd International Workshop on Algorithms and Parallel VLSI
Architectures. Gers, France, 1992, pp. 317–322.

[34] Gregorio Cappuccino and Giuseppe Cocorullo. “Custom Reconfigurable
Computing Machine for High Performance Cellular Automata Pro-
cessing”. In: Electronic Engineering Times (www.eetimes.com, TechOnLine
Publication) (2001).

[35] Shakeeb Murtaza, Alfons G. Hoekstra, and Peter M. A. Sloot. “Perfor-
mance Modeling of 2D Cellular Automata on FPGA”. In: 2007 Interna-
tional Conference on Field Programmable Logic and Applications. Amster-
dam, The Netherlands, 2007, pp. 74–78.

[36] Shakeeb Murtaza, Alfons G. Hoekstra, and Peter M. A. Sloot. “Float-
ing Point Based Cellular Automata Simulations Using a Dual FPGA-
Enabled System”. In: Austin, TX, USA, 2008, pp. 1–8.

[37] Shakeeb Murtaza, Alfons G. Hoekstra, and Peter M. A. Sloot. “Com-
pute Bound and I/O Bound Cellular Automata Simulations on FPGA
Logic”. In: ACM Transactions on Reconfigurable Technology and Systems
1.4 (2009), p. 23.

[38] Shakeeb Murtaza, Alfons G. Hoekstra, and Peter M. A. Sloot. “Cellular
Automata Simulations on a FPGA Cluster”. In: International Journal of

https://doi.org/10.1109/COMPSAC57700.2023.00055

100 References

High Performance Computing Applications, SAGE 25.2 (2010), pp. 193–
204.

[39] André C. Lima and João Canas Ferreira. “Automatic Generation of Cel-
lular Automata on FPGA”. In: 9th Portuguese Meeting on Reconfigurable
Systems. Coimbra, Portugal, 2013, pp. 51–58.

[40] Alexander K. Dewdney. “Computer Recreations: The Hodgepodge Ma-
chine Makes Waves”. In: Scientific American 259.2 (1988).

[41] Martin Gerhardt and Heike Schuster. “A Cellular Automaton Describ-
ing the Formation of Spatially Ordered Structures in Chemical Sys-
tems”. In: Physica D: Nonlinear Phenomena 36.3 (1989).

[42] James M. Greenberg and Stuart P. Hastings. “Spatial Patterns for Dis-
crete Models of Diffusion in Excitable Media”. In: SIAM Journal on Ap-
plied Mathematics 54 (1978), pp. 515–523.

[43] Robert Fisch, Janko Gravner, and David Griffeath. “Threshold-Range
Scaling of Excitable Cellular Automata”. In: Statistics and Computing 1
(1991), pp. 23–39.

[44] Richard Durrett and David Griffeath. “Asymptotic Behavior of Excitable
Cellular Automata”. In: Experimental Mathematics 2.3 (1993), pp. 183–
208.

101

External Links

[16] “Moore Neighborhood”. In: (). URL: https://mathworld.wolfram.
com/MooreNeighborhood.html.

[17] “von Neumann Neighborhood”. In: (). URL: https://mathworld.wolfram.
com/vonNeumannNeighborhood.html.

https://mathworld.wolfram.com/MooreNeighborhood.html
https://mathworld.wolfram.com/MooreNeighborhood.html
https://mathworld.wolfram.com/vonNeumannNeighborhood.html
https://mathworld.wolfram.com/vonNeumannNeighborhood.html

	Abstract
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Thesis Contribution
	Thesis Outline

	Theoretical Background
	Cellular Automaton Model
	Cellular Automata Classes
	The Game of Life

	FPGA Technology
	FPGA vs. Other Devices

	Related Word and Motivation
	CAM Architecture (1984~2000)
	CEPRA Architecture (1994~2000)
	SPACE Architecture (1996)
	Kobori, Maruyama and Hoshino (2001)
	Phepls' and Islam's Framework (2023)
	Other Significant Approaches.
	Thesis Approach and Motivation

	The Baseline Hardware Architecture
	Top Level and System Specifications
	Memory Controller and Grid Representation
	System and Memory Initialization
	Grid Lines Buffer
	CA Engine
	Frame Extraction
	The Remaining Modules
	Graphics Controller
	Graphics Feeder
	Write Back
	Memory Access Arbitrator

	Design of the re-programmable Framework
	Overview of Extended Architecture
	Frame Extraction and Speed Control
	CA Engine's Adjustments
	Supporting Totalistic Rules
	Expanding to Outer-Totalistic Rules

	Protocol Buffers
	Deserializing Data
	Serializing Data

	Assembling the complete picture

	The CAD Tool to Drive the FPGA-based Accelerator
	Overview Of The Tool
	TCL Scripting
	CA Description Language (CDL)
	Interpreting the CDL
	Totalistic Rules
	Outer-Totalistic Rules

	Serializing/Deserializing Data
	Image Conversion

	The Graphical User Interface CAD Tool to Describe the CA Model
	The GUI Environment
	User Options
	Configuring Weights
	Neighborhood Types
	Mirror Mode

	The Remaining Configurations

	System Verification, Examples of Use, Evaluation, and Results
	Artificial Physics
	The Game Of Life
	The Hodgepodge Machine
	Experiments

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work
	Application Examples
	The Greenberg-Hastings
	Anisotropic Rules
	Hardware Approach

	Globalizing Accessibility and Improve Experience

	References

