TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Feature Reduction for FPGA Based
Implementation of Learning

Classifiers

Author: Thesis Committee:
Konstantinos VOGIATZIS Prof. Aposolos DOLLAS
Prof. Michail G. LAGOUDAKIS

Prof. loannis PAPAEFSTATHIOU

(AUTH)

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

February 12, 2024


https://www.tuc.gr/
http://example.com/
https://www.ece.tuc.gr/el/i-scholi/prosopiko/didaktiko-ereynitiko-prosopiko?tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List&tx_tuclabspersonnel_list%5Bperson%5D=289&cHash=547108d6236f10a36d1673e2194bf42c
http://www.intelligence.tuc.gr/~lagoudakis/index_gr.html
http://ee.auth.gr/en/school/faculty-staff/electronics-computers-department/ioannis-papaefstathiou/
http://ee.auth.gr/en/school/faculty-staff/electronics-computers-department/ioannis-papaefstathiou/
https://www.ece.tuc.gr/en/home




[ToAuteyvelo Kerjtnce

Awmiopatixd Egyooto

Metwon I'vwptoudtwy yio Thomolnon
og Avaolotaocouevo TAxd

Tacvountmy Mdinonc

Luyypapac: Enitpon) AlotplBrc:
Kwvotavtivoc Boylotlnc KoY. Andéotohoc Adhhac
Ko, Muyadh I'. Aoryouddnne
Kad). Iwdvvne [Momacuotodiou

(ATIO)

Aimhopotind epyaoto tou ToBANINXE Yior TNV EXTAYPWOT)
TWV ATUTHCEWY Yia TO dlmAwue Tou Hhextpordyou Mnyovixol xou

Mrnyovixol Troloyiotdv
ot

2yoh) Hihextpordywv Mnyovixov xow Mnyovixaoyv Trohoylotov

12 PePpouaplou 2024


https://www.tuc.gr/
http://example.com/
https://www.ece.tuc.gr/el/i-scholi/prosopiko/didaktiko-ereynitiko-prosopiko?tx_tuclabspersonnel_list%5Baction%5D=person&tx_tuclabspersonnel_list%5Bcontroller%5D=List&tx_tuclabspersonnel_list%5Bperson%5D=289&cHash=547108d6236f10a36d1673e2194bf42c
http://www.intelligence.tuc.gr/~lagoudakis/index_gr.html
http://ee.auth.gr/en/school/faculty-staff/electronics-computers-department/ioannis-papaefstathiou/
http://ee.auth.gr/en/school/faculty-staff/electronics-computers-department/ioannis-papaefstathiou/
https://www.ece.tuc.gr/




iii

TECHNICAL UNIVERSITY OF CRETE

School of Electrical and Computer Engineering

Abstract

Feature Reduction for FPGA Based Implementation of Learning
Classifiers

by Konstantinos VOGIATZIS

During recent years data sets have grown rapidly in size, mainly because
they are collectively gathered by numerous consumer information-sensing
internet of things (IoT) devices or services, such as mobile devices, software
logs, cameras, wireless sensor networks, etc. Heterogeneous hardware, such
as FPGAs, seem to be a promising alternative in terms of acceleration, even
from GPUs, in complex machine learning problems. They still suffer though
from low on-chip memory resources making scaling to high dimensional-
ity tasks difficult, as input/output (I/O) traffic may dominate the overall
latency. Due to such restrictions, FPGAs currently, are mostly used for the
inference task and not the training one, as it usually requires fewer mem-
ory resources. In this work, we propose a general dimensionality reduction
scheme for learning classifiers, operating both as training and inference ac-
celerators which could be applied in low resource hardware devices, such
as FPGAs. We achieve impressive improvements, with on-chip memory uti-
lization during training reduced by 10x to 32 x for online and batch learning,
with around 5% loss in accuracy. We implement a pipelined hardware archi-
tecture, using a learning classifier coupled with a dimensionality reduction
scheme implementing two different methods: Hash Kernel and Sparse Ran-

dom Projection.


HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/en/home




[TIOAYTEXNETO KPHTHX

Yyorf) Hiextpoldywy Mnyavixayv xow Mnyoavixwy Troloylotomy

[Teplindn

Melwon I'voplopdtwy yio Thonoinon oe Avadiataccdpevo Thxd Talvountodv

Méinong

Kwvotavtivoc Boylt{re

To tekevtaior ypovia Tor GUVOAA SedoUEvwy Eyouv auindel poydala o péyedoc,
xuplwe emedr) cLAREYovToL Lalxd amd TOAUGEIIUES GUOXEVES Yol TOUS XATAVOAG-
TEC OTO OLBIXTUO TV TEUAYUATWY 1) UTNEECLOY, OTWS XIVNTEG CUOKEUES, apyeia
XAy oprc AoylouxoU, xduepes, achpuata dixtua atcunTthpwy, x.At. Etepoye-
VEC LAXO, OTwe 1) avadlataccouevn hoyixy| (Field Programmable Gate Arrays -
FPGA) , poiveton var ebvor ot TOAAG UTOGY OUEVT] EVOANOXTIXT amtd dmom emTdyuv-
ong, oxouT xou ano6 encgepyac Ty ypapixwyv Graphics Processing Unit (GPU), ot
TolOTAoxa TEOBAAUoTo Unyovixiic udinone. ‘Oung e€axolouttoly va urtopépouy
amo YoUNAOUg TOEOUS UVIAUNG OTO OAOXANPMUEVO XUXAOUIL, XoG TOVTAS BUOXOAN
NV XAPExwoT o epyaoiec udniAc Sidotaong, xadoe to vrut/ovtrut (I/0) umo-
eel umopel var xuplapyel 6T cuvolixy| xaduoTépnor. Adyw TETOLWY TEQLOPLOUWY,
ot FPGAs eni tou mapdvTog yenotwonoolvtor xuplwe Yoo TNy eCoywyr) oUUTE-
PUOUATOY o Oyl Yoo TNV Btadxacta exmaideuone, xadwe cuvideng auth amoutel
MY OTEQOUC TOPOUG UVAUNG. XTNV Topoloo SimAwuatixy epyacio tpotelvouue eva
YeVXO oy Uelwong Blac TIoEWY Yo TaEVOUNTES EXUAINONG TOU AELTOURYOVY
ME OTAG POAO WC ETTUYLVTEC TOCO EXTUOEUONC OO0 X0l CUUTEQUOUATMY, oL
Yo umopoloaY Vo EQUEUOGTOUY GE GUOXEVES LALXOU Ue Alyoug mépoug, 6mwe ot
FPGAs. To amoteréopato Tng mopoloog SImAGUXTIXNG €QYUCTUC XUTADEXVIOUY
EVIUTIOOLOXES BEATIOOELS, PE TN YPN\ON) UVIAUNG OTO OAOXATEWUEVO XOXAWUO XAUTE
1 Budipxeta TS ExPdINoNg, Uetwuévn xatd 10X €wg 32X yiow Stodtxetuant| xon ol -
xh exudiinom, pe mepinov 5% anwhela oe axpiBeto. TAOTOOUUE Uil apyLTEXTOVIXY
UAxoU ue Bloyétevor pipelining yenowonowhviag évay Tadvountr| exudinong
OE GUYOLAOUO UE Eval Gy U UEWOTC BLaG TUCEWY TOU EQUOUOLEL HVO BLOPOPETIXES

HEVOBOUC: TUENVOL XATAXEQUATIOUOU Xot apanr) Tuyala TEOBOAY.


HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/




vii

Acknowledgements

I would like to pay my sincerest gratitude to Dr. Antonis Nikitakis for his
invaluable guidance and unwavering support during the early stages of my
research. Without his mentorship, the trajectory of this work would not have

unfolded with the same depth and precision.

My heartfelt thanks also go to Dr. Ioannis Papaeustathiou for his contribution
as my supervisor. I am truly appreciative of his mentorship, and it is through
his initial acceptance and introduction to Dr. Nikitakis, that brought this

academic pursuit to reality.

A special acknowledgment is reserved for Dr. Apostolos Dollas, my current
supervisor, whose continuous support and guidance over the past year have
been indispensable. His consistent encouragement, particularly during chal-
lenging moments, played a pivotal role in the successful completion of this
thesis.

Last but not least I would like to thank Dr Michail Lagoudakis for been a
valuable member of this committee and helping with his constructive feed-
back and corrections.

I am deeply grateful to my family and friends for their unwavering support
and encouragement throughout this long journey. There were many ups and
downs, as changes and life happens. Their love, understanding, and encour-
agement have been invaluable to me, especially the ones that believed in me,
as it was a long journey. From a friendly phone call of support in a bad mo-
ment, to extending a helping hand when I needed it most, I just have to say
a great thank you to all.

At last, I would like to say a special and big thank you to my partner, Abi, for
all her support these last few months and the patience she has shown. Also,
for her help with grammar and spell checking this work.






Contents

Abstract

Hepiindn

Acknowledgements

Contents

List of Figures

List of Tables

1 Introduction

2 Related work

21
2.2

2.3

24
2.5

2.6

Motivation . . . . . . . . . e
Feature Selection . . .. ... ... ... ... . ... ... ...
221 Decomposition Techniques . . ... ... ........
222 PFeatureHashing . .. ...................
223 Random Projections . .. .................
Learning Algorithm . . . . . . ... .. ... ... . ..o ...
2.3.1 Gradient-based methods . . . . . ... ... .......
23.2 Regularization (L1andL2) . ... ... .........
2.3.3 Online learning and conceptdrift . ... ... .. ...
FPGA . . . e e
Metrics . . . . . . o e e e e
251 ConfusionMatrix . . .. ... ... ... .........
252 Accuracy . . . ...
253 Precision . . .. ... ... . e
254 Recall. ... ... ... .. .. .
255 F-score . . . .. ...

ix

iii

vii

ix

xiii

XV

O O N 01 b= b= W W

11



3 Modelling and Algorithm 19
3.1 Navigating Challenges in Initial Experiments . . . . . ... .. 19
3.1.1 Decomposition Techniques . . . ... ... ....... 19

3.2 Prepossessingdata . ......... ... ... .0 .. 20
321 Datanature/type . . . ... ... ... .. L 21

322 Missingvalues . ............. ... .. ..., 21

3.2.3 Causationvs Correlation . .. .............. 22

3.24 Dataset Selection approach . . . ... ... ....... 23

3.2.5 Dataset exclusion criteria . . . . ... .......... 24

33 Testsetup . ........ ... .. ... ... 0. 25
331 Dataformatting . . . ... ... ... . ... . ... ... 26

332 Dataset . .. ... ... . ... e 26

333 Procedure . ... ... ... ... ... . 28

334 Testevaluation ... .................... 29

34 FeatureHashing . . ... ....... ... ... ... .... 29
341 Hashfunction ... ..................... 29

342 HashArguments . . .................... 30

343 Algorithm . ... ... ... . ... . ... . ... ... 31

3.5 Random projections. . .. .. ... ................ 33
3.5.1 Gaussian Random Projection . . . ... ... ... ... 33

3.5.2 Sparse Random Projection . . . . ... ... ....... 34

3.6 Predictionmodel . ... ....... ... ... ... .. ..., 34
3.7 Conclusion on Metric Selection . . . ... ... ... ...... 35
4 FPGA 37
4.1 Essential Aspectsof HLSCode . .. ... ... ... ...... 37
411 HLScode . ... ... ... . .. . ..., 37

412 FPGAchip. .. .. ... . .. . . o 37

413 Purpose ... ....... . ... o 38

414 Defaultmodule . . ... ... ... ............ 38

415 Inputdata . ........ ... . ... ..o L. 39

416 Toplevel . .. ... ... ... . o 39

42 LearnerUnit . . . . ... ... ... . .. . e 40
421 Fitfunction ... ...... ... .. .. ... ... ... 40

422 Prediction Function. . . ... ... ... ......... 41

43 Dim Reduction - Feature Hashing . . . . ... ... ... .... 42
431 Hashtrick . ... ... ... .. ... .. .. ... ..., 42

432 MurmurHash3. ... ... ... ... ... ....... 43



44 Dim Reduction - The Random Projection . .. ... ... ...
441 Gaussian Random Projection . . . ... ... ... ...
442 Sparse Random Projection . . . .. ... ... ......
443 LFSR - linear feedback shift register . . ... ... ...
444 LFSR-usecase . . ..............u...

5 Results
5.1 Resultsbreakdown . .. ... ... ... ... ... ... .

5.1.1 A brief of table column name explanation . . . . . ...
52 Farmads . . . . . . . . . e

53 Gisette . . . . .. e e
54 Dexter . . . . . . . e e e e
55 Realsim . ... . . . . . e

5.6 DiscuSsion . . . . . . . i e e e e e e e

6 Conclusion and Future work
6.1 Conclusion . . . . . . . . . .
6.2 Future Work . . . . . . . . . .

A Text data
A1 Anoverview of hashing fortext . . . ... ... .........
A1l Dimensions . . . . . .. ... i
A12 N-grammodels . . .. ... ... ..............
A.1.3 Outcome for textbaseddata. . . . ... .........

B Activation function
C Hyperparameters

References

xi

43
43
44
45
46

47
47
47
48
52
54
57
59

61
61
62

63
63
64
65
65

67

71

73






xiii

List of Figures

2.1 Common Bottlenecks in Al systems, Source: Intel MLOps course 17

3.1 Proposed system - block diagram . . . . ... .......... 28
4.1 Feature hash block diagram . . .. ... ............. 42
42 Random Projection - Block Diagram . . . ... ......... 44
5.1 Farm ads Dataset - Speedup comparison. . . . ... ... ... 49
5.2 Farm ads Dataset - Accuracy comparison . ... ... ... .. 49
5.3 Farm ads Dataset - Memory comparison . . . . ... ...... 51
5.4 Gisette Dataset - Speedup comparison . . . ... ... .. ... 53
5.5 Gisette Dataset - Accuracy comparison . . . . .. ... .. ... 53
5.6 Gisette Dataset - Memory comparison . . . ... ........ 54
5.7 Dexter Dataset - Speedup comparison . ... .......... 55
5.8 Dexter Dataset - Accuracy comparison . . . . . ... ... ... 56
5.9 Dexter Dataset - Memory comparison . . .. .......... 56
5.10 Real sim Dataset - Speedup comparison . . .. ... ... ... 58
5.11 Real sim Dataset - Accuracy comparison . . . . ... ... ... 58
5.12 Real sim Dataset - Memory comparison . . .. ......... 59
B.1 Activation Function: Sigmoid Graph . . . . ... ... ... .. 67
B.2 Activation Function: tanh Graph . . . .. ... ... ... ... 68

B.3 Activation Function: ReLuGraph . . . .. ... .. ... .... 69






XV

List of Tables

3.1

51
52
53
54
5.5
5.6
57
5.8
59

MurmurHash3 vs PythonHash . . . .. ... .......... 31
Rand projections - Farmads . . . ... ....... ... . ... 50
Farm ads - Resource usage random projections . . . . . .. .. 50
Feature Hashing - Farmadds . ... .. ... .......... 51
Farm ads - Resource usage feature hashing . . ... ... ... 51
Rand projection-Gisette . . . . . ... ... ... L0 52
Gisette - Resourceusage . . . ... ... ............. 54
Rand projection-Dexter . . . . ... ............... 55
Rand projection-Realsim . . .. ... ........... ... 57

Real sim - Resource Usage Random Projections . . . . . . . .. 57






XVii

List of Algorithms

1 FPGA, Fit Function Learn Unit . . . . ... ... ... ... .. 41
2 FPGA,Random Projection . . . .. ... ............. 45






Chapter 1

Introduction

High-dimensional datasets present many mathematical challenges, but also
many opportunities, as they usually ought to give rise to new theoretical de-
velopments. The main problem with high-dimensional datasets is that, not
all measured variables are important for understanding the underlying phe-
nomena of interest or, in other cases, only a small percentage of them is actu-
ally even present in each observation (sparse datasets). Most statistical learn-
ing methods though, assign memory space to feature variables (i.e. through
learning coefficients), even though they, most of the time, are not present
in the observations. As a result, not only the computation complexity but
also the memory footprint of such methods, could get out of control. In this
work, we deal with the machine learning problem for low memory resource
devices, such as FPGAs, in a more general context. The key motivation for
our scheme is to design general purpose, efficient streaming accelerators for
learning classifiers in a single architecture that reduces off-chip DRAM data
access. Although the adopted methods have originated from database and
big data retrieval/classification, we demonstrate that they could be adapted
to perform equally well on smaller general machine learning problems in
the context of FPGAs accelerators. The main idea in our proposed archi-
tecture is to maintain the learning problem in such low dimensionality in
order to allow for the learning parameters to lie on-chip at all times, both
during training and inference. As for the training data, since they cannot lie
on-chip, we iterate them through DRAM across the training epochs. As we
treat training data in batches, the I/O latency could be easily hidden using
double buffering; but more importantly, as training data after the first pass
through the accelerator are compressed by at least an order of magnitude,
the I/O overhead is almost zero even without any buffering technique. We
implement two different dimensionality reduction solutions: one utilizing

Sparse Random Projections and one utilizing Hash Kernels. We compared



2 Chapter 1. Introduction

the effectiveness of both solutions in various datasets, when pipelined with
an on-line learning classifier, forming a single unified learning scheme. The
proposed scheme is a modular, pipelined architecture that could be applied
in any gradient-based learning scheme. For our reference implementation,
we use a logistic regression classifier, trained using a mini-batch gradient de-
scent algorithm.

The contributions of this work are the following;:

* We propose a novel hardware architecture, transparently coupling an
on-chip trained classifier with a dimensionality reduction scheme.

* We implement two different dimensionality reduction schemes with
very low memory footprint, in order to target efficiently a broad range
of datasets.

* We achieve from 10x to 32x improvements in the on-chip memory uti-
lization during training, for both data streaming (online) and batch

learning problems.

* Forbatch learning problems, we further achieve from 10x to 20x speedup,
as we reuse the dimensionality reduction operations for the subsequent

training iterations.



Chapter 2

Related work

2.1 Motivation

Our motivation and idea came from [1] the task of predicting ad click-through
rates (CTR) which is a significant challenge at a large scale. It also plays a
crucial role in the multi-billion dollar online advertising sector. The data in
reference is sparse, making it useful to identify suitable methods for feature
selection that can reduce the number of features per data entry. Addition-
ally, the demand for solving such problems has increased significantly and
continues to grow with the expansion of the internet. In an industrial con-
text, it is common to make predictions on billions of events per day using a
large feature space and subsequently analyzing the resulting data. This leads
us the the idea of an online algorithm that after making a prediction it takes
feedback and retrains the model.

Although predicting click rates is a profitable task, it is important to keep the

energy cost per prediction low since the earnings per click are not very high.

Our goal is to develop an embedded system on an FPGA that can handle a
large scale Machine Learning problem with acceptable accuracy. To achieve
this, we need to look for algorithms that run without requiring large amounts

of memory.

This demand is divided in two categories. The first one has to do with the answer
to the question "How much memory will our algorithm use to reduce the size of
the initial sample?”. The second is related to the length of features for the reduced
data-set, as each feature will occupy a coefficient in our RAM.

In the next section, the pros and cons of the related work are outlined.



4 Chapter 2. Related work

2.2 Feature Selection

Feature selection can be categorized and characterized in various ways. One
approach is to consider whether the algorithms are lossless or not. Addition-
ally, some algorithms may have high memory requirements, while others are

more memory-efficient.

While the main purpose of feature selection is to choose relevant and infor-
mative features, it can also serve other objectives, including;:

General data reduction: This involves limiting storage requirements and im-
proving algorithm speed by reducing the overall amount of data.

Feature set reduction: By reducing the number of features, resources can be

conserved in subsequent rounds of data collection or during utilization.

Performance improvement: Feature selection can lead to enhanced predic-
tive accuracy by focusing on the most important features for the specific task
at hand.

Data understanding: Feature selection allows for gaining insights into the
underlying data generation process and can facilitate data visualization for
better comprehension.

In the following sections the focus will be on a few lossless algorithms that
have been examined in detail, and reasons will be outlined as to why they
can not be used. Additionally, alternative algorithms will be explored that,
while not lossless, present compelling advantages.

2.21 Decomposition Techniques

Some decomposition techniques algorithms were explored, like Singular Value
Decomposition (SVD) [2] and Truncated SVD [3] or other similar algorithms
like PCA [4]. Since it is lossless the accuracy was similar to the original

dataset.

Singular Value Decomposition (SVD) is a compelling technique for dimen-
sional reduction due to its ability to reveal the essential structure of a dataset
by decomposing it into its constituent singular values and vectors. By retain-
ing the most significant singular values, which capture the dominant pat-
terns and variability in the data, one can achieve a reduced-dimensional rep-

resentation that retains crucial information. SVD excels in capturing latent



2.2. Feature Selection 5

relationships and patterns within high-dimensional datasets, making it par-
ticularly useful for tasks such as noise reduction, feature extraction, and com-
pression. The resulting reduced-dimensional representation allows for more
efficient storage, computation, and analysis of complex datasets while pre-
serving the key characteristics that contribute to the overall understanding
of the underlying data structure. The versatility of SVD in capturing intrin-
sic patterns makes it a valuable tool for practitioners in various fields seeking
to manage the computational complexity of high-dimensional data without

sacrificing critical information.

Principal Component Analysis (PCA) is another powerful technique for di-
mensional reduction with distinct advantages and applications. PCA identi-
ties the principal components, which are linear combinations of the original

features that capture the maximum variance in the data.

PCA is particularly effective in decorrelating features, reducing redundancy,
and highlighting the dominant patterns within the data. This reduction in di-
mensionality not only facilitates more efficient storage and computation but
also aids in visualizing and interpreting complex datasets. Additionally, PCA
is widely employed in feature engineering, data preprocessing, and noise re-
duction, contributing to enhanced model performance in machine learning
applications.

2.2.2 Feature Hashing

Hash kernel methods have several usages, among them been the conversion
of non numeric data to numbers. In literature several innovative usages can
be found like protein sequence classification [5], although the most common
one is converting text data to numbers. Another usage is dimensional re-
duction. A very simplistic explanation about feature hashing would be the
following. Having a sample of 100 features we want to reduce it to 20, so
we randomly pick 5 of 100, we add them and create the 1st feature of a the
new featured sample. Repeating this 20 times with attention not to ever pick
the same feature of the initial sample we have a newly created sample with
20 features reducing the initial size 5 times. If the initial sample was sparse
meaning that many of the 100 features where zeros then addition does not af-
fect the result and in a way it was very similar to just remove these features.
Also if the numeric values are of the features are similar it will be a linear
addition without affecting the result. A simple example is that if the 100 fea-

tures where just liquids in liters and the volumes where always between 0-10



6 Chapter 2. Related work

then it will give better result than when one features is volumes in liter and

the other is micro-grams.

Even though our main motivation paper [1] mentions the technique saying
they did not got any significant improvement we thought that in our case
even this improvement could be something usable. Also mainly [6] but also
some others [7] [8] found this method useful.

While [7] talks about the importance of feature hashing focusing in text min-
ing studies, particularly in the context of big data. It presents the problem for
the scope of how it is used to reduce the size of feature vectors in text mining
tasks, resulting in faster data mining processes such as classification, cluster-
ing, and association. The paper categorizes feature hashing approaches into
two groups: those related to natural language processing algorithms that
aim to extract more meaningful hash results, and mathematical hashing al-
gorithms that focus solely on generating binary outputs without considering
the context or meaning of the input text.

Then [8] discusses the effectiveness of feature hashing as a dimensionality
reduction strategy and presents exponential tail bounds for feature hashing.
The study demonstrates that the interaction between random subspaces in
feature hashing is negligible with high probability. The paper also explores
the application of feature hashing in multitask learning, specifically in sce-
narios with a large number of tasks. The paper introduces specialized hash
functions with unbiased inner-products applicable to various kernel meth-
ods. Exponential tail bounds are provided to explain the strong empirical
results of hashed feature vectors. Additionally, the study shows that inde-
pendently hashed subspaces have negligible interference, making large-scale
multitask learning feasible in a compressed space. The paper also presents
collaborative email spam filtering as a novel application for hash representa-
tions and provides experimental results using real-world spam datasets. The
result here was eye-catchy with the global-hashed curve for the spam catch-
rate achieved by the global classifier following the utilization of the hashing
function. When m = 22¢ (=67.108.864), the global-hashed curve mirrors the
performance of the baseline classifier. The early convergence observed at
m = 222 (=4.194.304) indicates that hash collisions have negligible impact on
the classification error, indicating that the baseline classifier and the hashed
method yield comparable outcomes.



2.2. Feature Selection 7

A very commonly referred work is [6] introduces hashing as a means to en-
hance the efficiency of kernels. This approach extends prior research that em-
ployed sampling techniques, and presents a systematic method for comput-
ing the kernel matrix in scenarios involving data streams and sparse feature
spaces. Additionally, they provide deviation bounds compared to the exact
kernel matrix, offering practical applications for estimation tasks involving

strings and graphs.

In their study, the researchers tested the effectiveness of their approach by
applying hashing to various problems. First, they used it for classification on
the Reuters RCV1 dataset, which has a large number of features. Then, they
applied it to the DMOZ ontology of web page topics, which has a high num-
ber of topics. The third experiment focused on biochemistry and bio infor-
matics graph classification, where their hashing scheme was used to compare

graphs.

For the Reuters dataset, they used linear kernel SVM with stochastic gradient
descent (SGD) as the main algorithm. They applied their hash kernels and
random projection techniques to the SVM. They compared their approach to
Bottou’s SGD, Vowpal Wabbit, and random projections, and found that their

hash kernel method performed well in terms of run-time and error rate.

In the experiments with DMOZ, they compared their hash kernel method
with baseline methods such as uniform classifiers and majority voting. They
also compared it to K Nearest Neighbor (KNN) and K-means algorithms.
The hash kernel approach achieved lower misclassification rates and mem-

ory footprint compared to the baseline methods.

Overall, the results demonstrated the efficacy of the hashing approach for
structured data classification tasks, providing faster processing times and
competitive accuracy rates compared to other methods.

2.2.3 Random Projections

A more mathematical approach from feature hashing with better generic re-
sults is random projections. The Johnson-Lindenstrauss lemma is the math-
ematical basis for that. The Johnson-Lindenstrauss lemma states that if the
data points lie in a very high-dimensional space, then projecting such points
on simple random directions preserves their pairwise distances. Paraphras-
ing Achlioptas [9] a nice explanation of this technique is to imagine a 3D



8 Chapter 2. Related work

sculpture being in a 2D paper sketch. You lose some information but still

have an idea of what is represented.

The work of [9] the probabilistic method has played a crucial role in simplify-
ing and refining Johnson and Lindenstrauss’s original proof while introduc-
ing randomized algorithms for constructing embeddings. To address these
challenges, there is a need for non-adaptive alternatives to projection meth-
ods like [4]. Their main result, presents a novel approach that simplifies the
projection process while maintaining the quality of the embedding. This ap-
proach leverages simple probability distributions and can be efficiently im-
plemented using standard SQL primitives in a database environment. Their
main finding, as stated in a Theorem they provide, demonstrates that pro-
jections onto spherically random hyperplanes can be replaced with simpler
and faster operations. These operations can be efficiently implemented us-
ing standard SQL primitives in a database environment. Surprisingly, this

simplification does not compromise the quality of the embedding.

Upon closer examination of the embedding computation, we observe that
each row (vector) of A is projected onto k random vectors with indepen-
dent coordinates, characterized by random variables, having a mean of 0
and variance of 1. If these random variables were independent and nor-
mally distributed with a mean of 0 and variance of 1, the resulting vectors
would point uniformly in random directions in space. Projections onto such
vectors have been explored in various settings, including approximate near-
est neighbors, learning intersections of half-spaces, and learning mixture of
Gaussian models. Their proof reveals that the behavior of a fixed vector a
projected onto a random vector is determined by the even moments of the
random variable. The concept of randomization in JL-projections serves as a
means to mitigate issues such as distance disparities caused by single dimen-
sions. An initial random rotation applied to the original point set in Rd ef-
fectively corresponds to projecting onto a spherically random k-dimensional
hyperplane by selecting the first k coordinates. Therefore, randomization in
JL-projections acts as a precautionary measure against axis-alignment, akin

to employing a random permutation before running Quick-sort.

On work of [10] they conducted comprehensive experiments to demonstrate
the advantages of the learning of high-dimensional mixtures of Gaussians
which seems to benefit from projecting the data into a randomly chosen
low-dimensional subspace. Two main theoretical results regarding random

projection are noteworthy. Firstly, data from a mixture of k Gaussians can



2.3. Learning Algorithm 9

be projected into O(log(k)) dimensions while preserving cluster separation.
The projected dimension is independent of the number of data points and
their original dimension. Secondly, random projection can make highly ec-
centric clusters more spherical, which is crucial when dealing with raw high-
dimensional data that often exhibits eccentric clusters due to varying mea-
surement units. Eccentric clusters pose challenges in algorithms like EM,
which require restrictions to avoid singular or near-singular covariance ma-
trices. These benefits have made random projection a key ingredient in the
tirst polynomial-time, provably correct algorithm for learning mixtures of
Gaussians. Random projection can also be easily combined with EM. In
their experiments on synthetic data from Gaussian mixtures, EM with ran-
dom projection consistently produced comparable or better quality models
(log-likelihood on a test set) compared to regular EM, while significantly re-
ducing dimensionality and computation time. We also used random projec-
tion to construct a classifier for handwritten digits using the USPS dataset,
where each digit is represented as a 256-dimensional vector. By randomly
projecting the training data into a 40-dimensional space, we successfully fit
a mixture of fifty Gaussians (five per digit) without manual adjustments or
covariance restrictions. These experimental results validate their theoretical

findings.

2.3 Learning Algorithm

In the research of the algorithm we are going to use, it is essential to provide
an explanation of the rationale and methodology employed during the inves-
tigation. In order to simplify the problem, we reduced it to two dimensions
and converted it into a binary classification task. Additionally, we required
an algorithm capable of training on individual samples and functioning in

an online fashion.

2.3.1 Gradient-based methods

Gradient-based methods, including variants like stochastic gradient descent
(SGD), can be applied to train on one sample at a time. This approach is
known as online learning or online stochastic gradient descent.

Unlike batch learning algorithms that require all data to be available upfront
like Logistic Regression, online algorithms can update their models incre-

mentally as new data points arrive.



10 Chapter 2. Related work

We chose the online gradient descent family of algorithms because they scale
up well and it is possible with small changes to expand this to a neural net-
work, so it lets us expand our current work in future. An other very impor-
tant aspect while choosing and algorithm is to be able to fit on an FPGA, and

the design and debug to be feasible on the time we have.

An important work on these algorithms is shown in [11] were online learn-
ing is referred as a well-established and highly appealing learning paradigm
that has garnered attention in various research fields, including game theory,
information theory, and machine learning. It has also gained practical signif-
icance with the rise of large-scale applications such as online advertisement
placement and web ranking. In this survey, their objective is to provide a
contemporary overview of online learning, shedding light on intriguing con-
cepts and emphasizing the importance of convexity in developing efficient
online learning algorithms.

Another helpful research of [12] talks about cases where the functions are
smooth, gradient-based methods such as gradient descent are commonly
used for optimization. These methods typically require evaluating the gra-
dient, which can be obtained by computing the average of the gradients of
each function. However, computing the gradient becomes computationally
expensive as the number of functions N increases, making these methods

inefficient for large datasets in practical machine learning applications.

In traditional gradient-based methods, such as batch gradient descent, the
algorithm calculates the gradient of the entire dataset (the full gradient) to
determine the direction in which the parameters of the model should be up-
dated. This approach ensures a more accurate estimate of the gradient but

can be computationally expensive, especially with large datasets.

Instead of calculating the full gradient using the entire dataset, they use a
subset of the data (a mini-batch) to compute an approximation of the gra-
dient. These methods do not calculate the full gradient rf, but instead ap-
proximate it using a cheaper stochastic estimate rf. Typically, this estimate
is computed using a subset of functions fn. This approximation is known as
a "stochastic estimate" because it introduces randomness into the optimiza-
tion process. Due to their stochastic nature, these methods may converge at

a slower rate compared to deterministic methods.

They conduct a comparison between two classic gradient-based methods



2.3. Learning Algorithm 11

(one deterministic and one stochastic) and two modern semi-stochastic meth-
ods. They evaluate their performance in practical machine learning scenar-
ios through two sets of experiments. The first experiment involves logistic
regression on a synthetically generated dataset, while the second experiment
focuses on classification using softmax regression on the MNIST dataset,
which consists of handwritten digits.

2.3.2 Regularization (L1 and L2)

An important concept on Machine Learning field is the regularization. It is
a commonly used techniques in machine learning to prevent overfitting and
improve the generalization of models. Here it is going to be analysed the L1
and L2 Regularization as our algorithm uses it.

L1 regularization, also known as Lasso regularization, its primary objective is
to instill sparsity in the model, encouraging some of its parameters to assume
exact zero values. This has profound implications, particularly in feature se-
lection, as it automatically identifies and eliminates irrelevant or less signif-
icant features. Mathematically, L1 regularization introduces an extra term
to the loss function, calculated as the absolute sum of the model’s weights,
weighted by a regularization strength hyperparameter (more details in Ap-
pendix C) denoted as A. A higher A leads to a more pronounced regulariza-
tion effect, pushing more weights toward zero. L1 regularization simplifies
models by choosing a subset of features with substantial predictive power
while disregarding others, making it particularly advantageous when deal-
ing with high-dimensional data or when interpretability is a priority.

L2 Regularization, or Ridge regularization, serves as a powerful tool for avert-
ing over-fitting by penalizing the magnitudes of model parameters. Unlike
L1, it does not force any parameters to become exactly zero but instead pro-
motes the model’s weights to be small. The mathematics behind L2 regular-
ization involves augmenting the loss function with the squared sum of the
model’s weights, multiplied by a regularization strength hyperparameter, A.
While L2 discourages excessively large parameter values, it allows them to
remain non-zero. This regularization technique enhances model stability, re-
ducing the influence of extreme parameter values and contributing to better
generalization. It is extensively employed in regression and neural networks

to foster generalization without the need for explicit feature selection. Its



12 Chapter 2. Related work

applicability is particularly advantageous when there is no strong prior be-
lief that certain features should be precisely zero, ensuring models remain
adaptable and effective.

In practice, a combination of L1 and L2 regularization, referred to as Elastic
Net regularization, is often employed to leverage the unique advantages of
both techniques in achieving well-regularized models.

2.3.3 Online learning and concept drift

The reason and inspiration behind using online learning was not only the
fact that feeding lot’s of data on a chip will need a lot of memory. But the
main inspiration came from an article [13] with the fancy title "Why Do Ma-
chine Learning Models Die In Silence?". As the article states one of the critical
challenges faced by companies when integrating machine learning into their
business processes is the deterioration in model performance over time. That
is often referred to as "concept drift." This phenomenon occurs when the un-
derlying data distribution shifts, causing once-reliable models to lose their

predictive accuracy.

The [1] is a concept which will definitely suffer from something like that.
Concept drift arises from changes in the distribution of the training data over
time. It can cause data points once associated with one concept to be consid-
ered part of another concept. For instance, in fraud detection, the concept
of fraud is continually evolving, posing a significant risk of concept drift.
Such drift can go unnoticed, leading to a gradual decline in model perfor-
mance. Concept drift primarily occurs due to the evolving nature of data
in real-world applications. Changes in customer behavior, external factors,
or even the recommendations generated by the model can contribute to this
shift. While it may seem undesirable, frequent model updates can harness

valuable information from new data, improving prediction accuracy.

Monitoring, proactive retraining, and ensemble techniques are effective strate-
gies for addressing concept drift. It is not easy if it is not impossible to prove
that online learning will solve this problem for sure, although theoretically
this seems like a valid solution.



24. FPGA 13

24 FPGA

In this section, our focus was to examine whether individuals have success-
tully utilized FPGA technology and ascertain any potential advantages asso-

ciated with its implementation.

On [14] they have a study on the financial sector. Where seems that it has ex-
perienced significant growth in computer-based applications, driven by the
increasing volume of financial computations and network transactions. This
surge in financial data necessitates fast processing in energy-intensive data
centers. To address the dual requirements of low latency and power con-
sumption, specialized hardware accelerators, known as field-programmable

gate arrays (FPGAs), have emerged as promising solutions.

This paper focuses on demonstrating the energy-efficient acceleration of op-
tion pricing algorithms, specifically Monte Carlo approaches for European
options, using FPGA-based Application Specific Processors (ASPs). The de-
velopment of ASPs is expedited through the utilization of FloPoCo, a tool for
generating FPGA-optimized arithmetic cores.

To evaluate the effectiveness of the ASPs, they compare the execution time
and power dissipation of the Monte Carlo algorithm implemented on an
FPGA-based soft-core processor with that of the ASP. Additionally, they bench-
mark our design against a previous work that compared an FPGA-based ac-
celerator to a dual-core processor. The experimental results validate that the
ASP not only achieves significantly faster execution but also demonstrates
orders of magnitude lower energy consumption compared to alternative ap-
proaches.

On [15], the primary problem addressed is the exponential growth of new
malware, facilitated by easily accessible malware morphing engines. The
volume of unique malware samples is projected to reach over a million per
day within the next seven years, necessitating automatic methods for large-
scale malware triage. Triage involves two main steps: per-sample malware
analysis to extract features and pairwise comparison to determine similarity.
The challenge lies in the ever-advancing sophistication of malware and the
need for scalable techniques to handle the sheer volume. The text introduces
BitShred, a system for large-scale malware similarity analysis and cluster-
ing, which is agnostic to specific per-malware analysis routines. BitShred
employs feature hashing to efficiently represent malware features, enabling

dimensionality reduction for memory efficiency. The system addresses the



14 Chapter 2. Related work

central issues of efficiently representing, comparing, and correlating features
within large volumes of malware. Its main contribution is scalability to datasets
orders of magnitude larger than existing approaches, with theoretical analy-
sis and empirical evaluation demonstrating its effectiveness in terms of speed,

accuracy, and adaptability to various per-sample analyses.

The work of [16] discusses the compounded challenges arising from advance-
ments in FPGA technology and the growing scale and complexity of deep
learning algorithms. The problem being addressed is the inefficiency of general-
purpose processors for the implementation of Convolutional Neural Net-
works (CNNs) due to the specific computation pattern of CNNs. The unique
requirements of CNNSs, particularly in terms of computation and memory
utilization, pose challenges for conventional processors, making them un-
able to meet the performance demands. To overcome this, various accelera-
tors based on Field-Programmable Gate Arrays (FPGAs), Graphics Process-
ing Units (GPUs), and Application-Specific Integrated Circuits (ASICs) have
been proposed. On one hand, state-of-the-art FPGA platforms offer increased
logic resources and memory bandwidth, expanding the design space. Si-
multaneously, the application of various FPGA optimization techniques fur-
ther complicates the exploration process. The escalating complexity of deep
learning algorithms to meet modern application requirements exacerbates
the difficulty of finding the optimal solution within this expanded design

space.

Recognizing the urgency for an efficient exploration method, the text intro-
duces an analytical design scheme in this work, which surpasses previous ap-
proaches in two key aspects. Firstly, while previous studies focused mainly
on computation engine optimization, neglecting external memory operation,
or connecting accelerators directly to external memory, the proposed scheme
incorporates buffer management and bandwidth optimization for enhanced
FPGA resource utilization and performance. Secondly, compared to prior
studies that reduce external data access through delicate data reuse, their
method, which does not necessarily lead to the best overall performance,
and often requires FPGA reconfiguration for different layers, their accelera-
tor executes jobs seamlessly across different layers without FPGA reprogram-
ming. The primary contributions of this work include a quantitative analy-
sis of computing throughput and required memory bandwidth for potential
CNN design solutions on an FPGA platform, as well as the identification

and discussion of optimal solutions for each layer within the constraints of



2.5. Metrics 15

computation resource and memory bandwidth.

2.5 Metrics

Accuracy, precision, recall, and F-score (F1 or Fb) are common metrics used to
evaluate the performance of classification models. ROC (Receiver Operating
Characteristic) curves are graphical tools used to visualize and analyze the
performance of binary classification models. Also it works as a tool to help

enhance the algorithm performance.

2.5.1 Confusion Matrix

A confusion matrix is a table or matrix that is often used to evaluate the per-
formance of a machine learning classification model. It provides a detailed
breakdown of the model’s predictions and how they compare to the actual

ground truth. A confusion matrix typically consists of four values:

¢ True Positives (TP): These are cases where the model correctly predicted
the positive class. In binary classification, it means the model predicted
a positive outcome, and that outcome was indeed positive.

¢ True Negatives (TN): These are cases where the model correctly pre-
dicted the negative class. In binary classification, it means the model

predicted a negative outcome, and that outcome was indeed negative.

* False Positives (FP): Also known as Type I errors, these are cases where
the model incorrectly predicted the positive class when the actual class
was negative. In binary classification, it means the model made a posi-

tive prediction when it should have been negative.

* False Negatives (FN): Also known as Type II errors, these are cases
where the model incorrectly predicted the negative class when the ac-
tual class was positive. In binary classification, it means the model

made a negative prediction when it should have been positive.

2.5.2 Accuracy
Accuracy is a straightforward and intuitive metric.

TP+ TN True

= 21
TP+ TN +FP+FN  Sample @1

Accuracy =




16 Chapter 2. Related work

It calculates the percentage of correctly predicted instances out of all instances
in a dataset. It may not be the best choice when dealing with imbalanced
datasets. In cases where one class significantly outnumbers the other, a high
accuracy value can be misleading. For example, in a medical diagnosis sce-
nario where only a small percentage of patients have a rare disease, a model
that predicts "not having the disease" for all instances can still achieve a high
accuracy due to the imbalance. It’s essential to consider the class distribution
and the specific problem context when interpreting accuracy. In such cases,

other metrics like precision and recall become more informative.

2.5.3 Precision
Precision measures the accuracy of positive predictions made by a model.

" TP
Precision = TP+ FP (2.2)

It answers the question: "Of all the instances predicted as positive, how many
were actually positive?" It is particularly valuable when the cost of false pos-
itives is high. In applications like spam email detection, a false positive (clas-
sifying a non-spam email as spam) can be more disruptive than a false nega-
tive (missing an actual spam email). High precision indicates that the model
has a low rate of false positive errors, making it suitable for tasks where false

positives are costly or undesirable.

2.5.4 Recall

Recall, also known as sensitivity or true positive rate, quantifies a model’s

ability to identify all relevant instances of a particular class.

TP
Recall = TP—}——PN (23)

It answers the question: "Of all the actual positive instances, how many did
the model correctly identify?"

It’s important to note that there is often a trade-off between precision and recall.
As you optimize a model for higher precision, recall may decrease, and vice versa.
Finding the right balance between these two metrics depends on the specific goals

and requirements of your application.



2.6. Navigating Today’s Infrastructure Landscape 17

2.5.5 F-score

precision - recall

_ 2y .
Fg = (1+5%) (B? - precision) + recall’

(2.4)

F1 Score is The harmonic mean of precision and recall. It provides a balance
between precision and recall and is particularly useful when dealing with
imbalanced datasets.

- 2 % Precision * Recall - 2« TP
~ Precision + Recall ~ 2+ TP+ FP+ FN

(2.5)

2.6 Navigating Today’s Infrastructure Landscape

In this section we will navigate through some contemporary problems. To
highlight why this research is still relevant even the higher RAM FPGAs that

have been on the market the last few years.

According to the modern ML-Ops [17] here are some Performance Bottle-

necks in Al Systems:

¢ Computation Limitations: A frequent bottleneck in Al systems, partic-
ularly in tasks involving complex calculations, large-scale data process-
ing, or training deep learning models.

* Memory Constraints: Insufficient memory can restrict the system’s ca-
pacity to manage large datasets, store intermediate results, or train com-

plex models.

¢ I/0O Latency: Slow data transfer between storage devices, networks, or
external data sources can markedly affect the overall system’s speed

and responsiveness.

97%% Memory Utilization Inputs/Outputs are Bottlenecked

92% Thread Utilization 85% Thread Utilization

96% Thread Utilization 99% Thread Utilization O ...
o0 C >4 e
— & :

82% Thread Utilization 99% Thread Utilization

FIGURE 2.1: Common Bottlenecks in Al systems, Source: Intel
MLOps course



18 Chapter 2. Related work

As we can see from the above memory is still one of the core problems in

modern system design.

The reason been that even though the hardware continues to advance, the
challenges faced in the technological landscape become more complicated.
Also the demand for technology has expanded exponentially across diverse
sectors. Plus, there’s a growing need for technology in different areas like
small smart devices, not just in high-tech stuff. In these instances, the em-
phasis shifts from the cutting edge of technology to the fundamental need
for reliability and seamless functionality. We don’t always need the latest

and greatest tech, we just want things to work in a descent state.



19

Chapter 3

Modelling and Algorithm

In this chapter we are going to discuss the model setup, including what chal-

lenges initially appeared and how they were resolved.

3.1 Navigating Challenges in Initial Experiments

In our initial experiments there were several challenges like finding the right
dataset to experiment on. There are several data bases online like these
[18] [19] with free to use dataset categorised by the type of classification,
like in our case binary class that one could take and experiment. Our ini-
tial approach involved developing an algorithm and comparing results with
and without dimensional reduction. To figure out the consistency of our di-
mensional reduction we looked in different kind of data like medical, image
recognition, text, chemistry and others. That would help to identify the kind
of data our method is more appropriate. However, in this research we faced

some serious problems could have resulted in consistency issues.

We should note here that specific methodologies have been employed to
analyse the text data; it is considered as a separate discipline, using some
of the techniques that we examine but with a different approach. Some ex-

ample use cases of text data are referenced in Appendix A

3.1.1 Decomposition Techniques

We achieved remarkable results by reducing the number of attributes to 5-10
using decomposition techniques, as detailed in section 2.2.1. The primary
motivation for exploring these techniques was mainly because of the experi-
mental results. The accuracy levels where very close to the original dataset.



20 Chapter 3. Modelling and Algorithm

Since the process is lossless, the accuracy remained comparable to the origi-

nal.

Unfortunately, as it is later realized, these techniques require a substantial

amount of memory to generate the final set of 5 attributes.

The matrix A is constructed row by row from samples. Consequently, a sub-
stantial number of rows from a sample must be loaded to perform the de-

composition, expressed as:

A=U-S-VT

Here, U and V represent orthogonal matrices, while S is a diagonal matrix

containing the singular values of A.

The singular values are the square roots of the eigenvalues of AA~T (or A"TA)
and they provide information about the importance of each dimension of the

original matrix.

The matrix U contains the left singular vectors of A, and the matrix V con-
tains the right singular vectors of A. The columns of U and V are orthonor-

mal, meaning that the dot product of any two columns is zero.

All these matrixes should be stored in the FPGA which was impossible. The
constraints were such that storing coefficients for even a single row was un-
feasible or just enough, let alone accommodating multiple rows and two ad-

ditional matrices.

Conclusively, to apply PCA we need to process all of the data points before-
hand in order to compute the projection. This is too computationally costly if
the dataset is very large or not possible at all if the aim is to project a stream
of data in real time. For such cases we need a non-adaptive alternative to

PCA that chooses the projection before actually seeing the data.

3.2 Prepossessing data

The data preprocessing is a fundamental step in the data analysis pipeline
that involves cleaning, transforming, and organizing raw data into a format
suitable for machine learning or statistical analysis. It plays a crucial role
in ensuring the quality and reliability of the data used for decision-making
and model building. A whole thesis could be devoted to this topic alone or



3.2. Prepossessing data 21

to each of the sub steps needed to be taken. Each of the steps required will
not be examined in detail, but some crucial steps that have been essential
for this work will be covered here. It should be noted that the dimensional
reduction is considered as data preprocessing but here it is discussed as a

separate concept.

3.2.1 Data nature/type

How to prepare the data when a dataset has numeric and non numeric val-
ues? Unfortunately we do not always know the kind of data we use, some-
times we just have a dataset with numbers while others we have mixed types.
In Wiley’s book (Applied logistic regression) an example is presented where
an independent variable can be coded in 3 different strings. Then the ap-
propriate design is to use two dummy variables (a variable with True/False
values only) for coding it, than coding it with a variable taking the values
0,1,2.

A very nice explanation on that could be the signal modulations 4PAM (4-
level Pulse Amplitude Modulation) vs 4QAM (4-level Quadrature Ampli-
tude Modulation) where is it very easy to prove [20] that the 4QAM works
as 2 dummy variables (boolean variables) plotted in an axis while 4PAM in a

single dimension variable

The advantage of 4QAM becomes apparent when considering noise resilience.
Due to its two-dimensional nature, 4QAM modulation tends to suffer less
from the impact of noise, contributing to improved performance in signal
transmission. This observation holds relevance not only for 4PAM and 4QAM
but can be extended to more complex modulation types and various scenar-
ios, demonstrating a generalized principle of enhanced noise resilience and

performance in multi-dimensional signal modulations.

An ideal dataset for an algorithm to perform well would be a dataset full of
boolean variables. Unfortunately, we do not deal with such case most of the
time and even complicated types usually matters. As we explain later feature
hashing does not have any issues with the type of data, although sometimes
that leads to other problems.

3.2.2 Missing values

One main problem was the missing values in datasets; some datasets contain

missing values. In some cases the missing data can just be ignored, in others



22 Chapter 3. Modelling and Algorithm

artificially replaced with several methods or we can even drop this sample
completely. In this [21] article there are 13 ways to handle this, which can be

sorted in four main groups:
1. Deletion: Removing entire rows or columns with missing values.
2. Imputation:

* Replacing missing values with the mean or median of the available
data for that variable.

¢ Imputing missing categorical values with the mode (most frequent

category) of the available data for that variable.

¢ Predicting missing values using regression models based on other
variables in the dataset.

* Generating multiple probable values for missing data to account

for uncertainty.

3. Indicator Variable: Creating an additional binary variable ("indicator")
to flag whether a value is missing or not. This allows the missing data

to be treated as a separate category in analyses.

4. Domain-specific Knowledge: Using some domain knowledge or ex-
pert judgment to estimate the values based on the context and under-
standing of the data.

3.2.3 Causation vs Correlation

Here comes the need to explain the difference between these two concepts
and the reason why manually selecting attributes may cause significant prob-
lems for someone without specialisation (Domain-specific knowledge) in a
field. Hence the reason it is avoided in this thesis and should be avoided
without the opinion of an expert in the field, which still does not guarantee

that they are not mistaken.

Causation refers to the relationship between cause and effect. It suggests
that one event or variable directly influences or brings about another event
or outcome. In other words, it is the idea that one thing causes another thing
to happen.

Example of Causation: A simple example is the relationship between smok-

ing and lung cancer. Research has shown that smoking is a direct cause of an



3.2. Prepossessing data 23

increased risk of developing lung cancer. When someone smokes, it increases

the likelihood of developing this specific type of cancer.

Correlation refers to a statistical relationship between two variables, where a
change in one variable is associated with a change in another variable. How-

ever, correlation does not necessarily imply causation.

Example of Correlation: Let’s take the example of crime. Ice cream sales and
crime could be very closely correlated, but one of course does not cause the
other. There is another variable that could underlay this: warmer weather.
However, even in this example, we cannot say that the warmer weather is
causing crime. There are many other factors at play, such as poverty, up-

bringing, substance abuse etc.

In summary, causation focuses on the direct cause-and-effect relationship be-
tween two events, while correlation examines how changes in one variable
are associated with changes in another variable. It's important to note that
correlation does not imply causation, as there may be other factors or vari-

ables at play influencing the observed relationship between two variables.

3.2.4 Dataset Selection approach

In the process of determining an appropriate dataset for our analysis, all the

above sections were carefully evaluated.

The chosen dataset was specifically selected with preprocessing considera-
tions in mind. By opting for a dataset with well-organized and cleanly for-
matted information, we were able to to streamline the preprocessing phase,
enabling a more efficient and focused exploration of the core research ques-

tions.

The nature and type of data play an important role in the effectiveness of any
analysis. In selecting a dataset, we prioritized those with a clear and well-
defined structure, ensuring that the inherent characteristics of the data are
conducive to meaningful insights. This careful consideration helps mitigate
potential challenges associated with ambiguous or unstructured data.

Addressing missing values can be a time-consuming aspect of data analysis.
In light of this, the selected dataset was scrutinized for completeness, aiming
to minimize the prevalence of missing values. This approach enables a more
straightforward and reliable analysis, as it reduces the need for complex im-
putation strategies. Given the intricacies and potential challenges associated



24 Chapter 3. Modelling and Algorithm

with deciphering causation and correlation in datasets, the selected dataset

was chosen with a focus on minimizing these complexities.

In essence, the dataset selection process involved a thoughtful balance be-
tween the aforementioned considerations. By prioritizing datasets that align
with our preprocessing preferences, possess a favorable data nature, exhibit
minimal missing values, and present manageable causation relationships, we
ensure that our analytical efforts are directed towards addressing the core re-
search questions effectively. This strategic approach not only enhances the
efficiency of the analysis but also contributes to the robustness and reliability

of the results.

3.2.5 Dataset exclusion criteria

The decision to exclude certain datasets is an important aspect of our research
process, warranting explicit mention for the benefit of future researchers.
Given the considerable time invested in scrutinizing and rejecting datasets,
it seems valuable to dedicate a section that serves as a guide for subsequent
researchers. This section will elaborate on the reasons behind dataset rejec-
tions and outline the methods used in this discernment process. By sharing
insights into the dos and don’ts of dataset selection, we aim to provide a

helpful resource for future endeavors in this domain.
Bellow a list of reasons (dos and don’ts):
1. Inappropriate Output Format:

* Problem: The dataset did not align with our binary output re-
quirements. Although that seems very obvious as a point it is one
of the main things one should pay attention to.

* Do not: Do not consider using datasets that have no mention of

binary outputs in their description.

* Do: Check to see whether the datasets contains binary outputs
before proceeding.

2. Inadequate Sample Size:

* Problem: Many datasets have less than 100 samples which is not
something we would look for a big data problem. A limited sam-
ple size not only introduces bias but also poses challenges for ro-
bust algorithmic performance.



3.3. Test set up 25

* Do not: Do not use techniques to expand the data.
* Do: Use dataset with a sufficient amount of data.
3. Insufficient Attributes: That is not a problem in general but in our case
specifically.
4. Excessive Size:
e Problem: Although a very small dataset can be a problem, a huge
one could also be. As a student / researcher someone may not
have access to a machine that has enough memory to handle a
huge dataset. Even if such an access is given, downloading and

running experiments with a 100G dataset can be very time con-

suming for such a work, introducing practical challenges.
* Do not: Do not overestimate the hardware resources.

* Do: Define clear specifications on what the available equipment
can handle.

5. Missing Values: Analysed in 3.2.2 section
6. Class Imbalance:

e Problem: Class imbalance can affect the performance of machine
learning models, and our selection process took this into account
to ensure robust and fair evaluations. Even with a high number of

samples rectifying a class imbalance can cause data biases.

* Do not: Avoid under or over sampling data as it may cause extra
bias by not adding edge cases.

* Do: Select balanced datasets, unless the algorithm is immune or

the specifc task requires you to have an imbalance.

7. Limited Usage Dataset: While not exactly problematic, it is generally
advisable to choose datasets with broader usage. This ensures the avail-
ability of benchmarks and facilitates comparisons with existing research.

3.3 Testsetup

Here we elaborate some on some information about the test set up, including
how it is set.



26 Chapter 3. Modelling and Algorithm

3.3.1 Data formatting

In python simulations we used sparse methods because they are more effi-
cient than dense methods in certain scenarios due to the nature of data struc-

tures and computations involved.

Dense methods refer to algorithms and representations that consider and
store all elements in a dataset, including zero values. They are straightfor-
ward to implement and are well-suited for scenarios where the data is dense

and small to moderately sized.

Compare this with sparse methods, where only non-zero elements are explic-
itly represented, resulting in more efficient storage and computations when

dealing with datasets where a significant number of entries are zero.

Sparse matrices are particularly useful when dealing with large datasets where
the majority of elements are zero. Instead of explicitly storing zero entries,

sparse matrices only store the non-zero elements along with their indices.

3.3.2 Dataset

Presented below are the details of the last four datasets, identified with widely
recognized names on the internet. It’s noteworthy that this selection followed
a thorough examination of approximately 50 datasets, after using the tech-
niques discussed earlier and then applying the selection criteria mentioned
in the previous paragraph. Emphasizing the meticulous process lead to the

inclusion of these final four.
All the datasets were primarily obtained from two main sources [18] and [19].
1. Farm Ads

This data was collected from text ads found on twelve websites that
deal with various farm animal related topics. Information from the ad
creative and the ad landing page is included. The binary labels are

based on whether or not the content owner approves of the ad.
Exported Dataset Information:

* Total samples: 4143

¢ (lass balance: 53.31% (0) 1933 - (1) 2210

¢ Total attributes: 54877

¢ Density: 0,00358



3.3. Test set up 27

2. GISETTE Is a handwritten digit recognition problem. The problem is
to separate the highly confusible digits 4" and '9’. This dataset is one of
five datasets of the NIPS 2003 feature selection challenge.

Exported Dataset Information:
* Total samples: 6000
* Class balance: 50%
* Total attributes: 5000
* Density: 0,1297

3. Dexter The original data were formatted by Thorsten Joachims in the
“bag-of-words” representation. There were 9947 features (of which
2562 are always zeros for all the examples) representing frequencies
of occurrence of word stems in text. The task is to learn which Reuters
articles are about ‘corporate acquisitions’. We added a number of dis-
tractor feature called ‘probes” having no predictive power. The order of

the features and patterns were randomized.

This dataset is one of five datasets used in the NIPS 2003 feature selec-

tion challenge.
Exported Dataset Information:
* Total samples: 600
¢ Class balance: 50%
¢ Total attributes: 20000 - Real: 9947 Probes: 10053
* Density: 0,004703

4. Real sim SRAA: Simulated /Real/Aviation/Auto UseNet data [docu-
ment classification] 73,218 UseNet articles from four discussion groups,
for simulated auto racing, simulated aviation, real autos, real aviation.

This data was gathered by Andrew McCallum while at Just Research.
Exported Dataset Information:

* Total samples: 20958

¢ (Class balance: 69.27% (1) 22238, (-1) 50071

* Total attributes: 72309

* Density: 0.002449



28 Chapter 3. Modelling and Algorithm

(wb features)

Dataset st s - InternaIState/
i aS? - 1 Training Epoch ! C Com ple><|ty? On-chip Learning
offchle_ - S~ weights

[ : o -~ = /o

Features: X°, Labels:y
Dim

Features: X’ ) L ; On-line Predictions: P(x) E
. Reduction S oo i
(Compressed Features) 3 | Module : Classifier
N ' ‘/ \ |
) Pipelined: M We.lg.hts
N Training Epochs ? 7 : training
h \ 1
Training Epoch ,/
On-chip

FIGURE 3.1: Proposed system - block diagram

3.3.3 Procedure

In the high-level architecture, we adopt an online learning classifier to de-
couple FPGA memory resources from the dataset size, specifically in terms
of training examples. As the training will be performed in small batches (e.g
using a gradient descent solver) the limiting factor upon scaling this setup
will be only the dimensionality of the dataset as it explicitly determines the
learning parameters we need to estimate. The scalability bottleneck primar-
ily stems from the dataset’s dimensionality, as it explicitly dictates the learn-
ing parameters we must estimate. In the proposed high-level architecture,
we consider the learning classifier to run in an on-line setting in order to de-
couple the memory resources of an FPGA from the dataset size (in terms of
training examples). In this work we don’t examine other parameter reduc-
tion techniques such as weight sharing etc. as those techniques can be com-
plementary to the proposing scheme. By coupling with the learning classifier
the Dim Reduction Module we are able to reduce the dimensionality of the
dataset in a transparent way and hence the on-chip learning parameters used

by the classifier.

As illustrated below, the training dataset is always stored off chip or could
be streamed on-the-fly. The Dim Reduction Module reduces the features di-
mension from D to K and directly feeds data to the Learning module at the
desired batch size. The novel idea behind the Dim Reduction module is that
it generates the projection matrix on-the-fly, column by column without stor-
ing any of the coefficients. At the same time, it performs the dot product



3.4. Feature Hashing 29

with the feature input in a single pipelined process. During the 1st training
Epoch the Dim Reduction module, also performs a write back step and sends
to the off-chip memory (wb features) each training batch with Compressed
Features (X’) in order for the next training epoch to use the lower dimension-
ality features directly, saving in this way computations and I/O latency. In
this regard, the added latency of the Dim Reduction module it affects only
the very first iteration of the data out of usually hundreds or even thousands
of iterations. In this case the proposed scheme is a win-win scenario which
improves both speed and memory footprint, if only at a very slight cost in
classification accuracy. More details are going to be given in the Evaluation

Section.

3.3.4 Test evaluation

The evaluation strategy employed was to use both train-test split and Strati-
tied K-Fold cross-validation techniques. As denoted in [22]: StratifiedKFold
is a variation of k-fold which returns stratified folds: each set contains ap-
proximately the same percentage of samples of each target class as the com-
plete set. The train-test split initially gauged the model’s performance on
unseen data by dividing the dataset into training and testing sets. The choice
made here was to divide the dataset into five parts, so 80% train and 20%
test. Additionally, Stratified K-Fold cross-validation ensured a more robust
evaluation by maintaining class distribution proportions across folds. This
approach allowed for a thorough assessment of the model’s generalization
across different subsets of the data, providing reliable insights into its overall

performance.

3.4 Feature Hashing

Feature hashing is also referred as the hast trick and it is a domain of hash
kernel methods. Hash kernel methods have several uses as we show in the
previous section. In this work we are going to use them to reduce the di-
mensions of our dataset. I use the term feature hashing because it is more

describable for what we do, we hash the features.

3.4.1 Hash function

To implement the this method we firstly need a hash algorithm. We found
that there are ways and some relevant work on how to chose an algorithm



30 Chapter 3. Modelling and Algorithm

according to criteria like [23] and also we conducted a few experiments which

trialled several algorithms.

Our requirement was a fast function, easily implemented in hardware that
can hash text and will spread the data as much as evenly as possible. There
was no need of using a complex cryptography function that it is not re-
versible or any other feature that a hash function may offer. Python offers
a hash function which met our expectations results wise but after some re-
search and experiments as shown on table 3.1 we found out that any hash

function was actually doing the job.

The function used is called MurmurHash3, the selection criteria were met
and we found several people using this. Also there was an implemented

python version which was very helpful.

We should note here, before ending this section, that there were actually
some results variations and it seemed like some functions given actually a
better accuracy score in the end, but these results were only around 1% dif-

ferent so there were considered random and not taken as usable.

Below is an array with some experimental numbers verifying the above claim.
The comparison is between [24] MurmurHash3 version 2.3 and the build in
hash function [25] of python.

The Seed column refers to the value of the seed fed to the random number
generator build in python which can help us reproduce the result as it initial-

izes deterministically the random number generation.

The D value refers to the number we used to modulo the result that each

function returns.

3.4.2 Hash Arguments

In this section we are going to discuss what exactly were the arguments we
gave to the function and why. The obvious way was to just hash the value of
each feature, but this did not work well experimentally and that is normal.
The reason behind that is if we just hash the value, and more than one fea-
tures have the same value they will collide in the same feature in our new row
we create. The solution was to hash also the index of the value. But for code
readability reasons and to make it a little more random, a new string format
was created which was feat_<index>_<value>. For example the example[20]
= "frogs" is hashed as feat_20_frogs.



3.4. Feature Hashing 31

D =256 D =1024
Seed | Murmur | Py Hash | Murmur | Py Hash
0 0,55 0,84 0,92 0,83
1 0,54 0,79 0,85 0,79
2 0,80 0,42 0,64 0,55
3 0,78 0,58 0,79 0,83
+ 0,54 0,69 0,86 0,90
5 0,71 0,83 0,70 0,91
6 0,65 0,45 0,84 0,84
7 0,70 0,58 0,91 0,90
8 0,74 0,59 0,85 0,78
9 0,58 0,85 0,74 0,84
Mean 0,66 0,66 0,81 0,82

TABLE 3.1: MurmurHash3 vs Python Hash

Here we realised that this algorithm will probably struggle a lot with float
numeric data. The reason being that the value 1.12345 and 1.12346 are ac-
tually very close and they should be considered as the same value but our
aforementioned algorithm does consider them as two totally different values
and only by randomness they will be considered as similar. One solution on
that would be to preprocess the data and add them in big buckets or elimi-
nate some digits depending the variance of the sample. So if the variance is
0.05 we can consider buckets of 0.05 ranges or consider the important digits
to be only 2.

We ended up not looking that on detail but it was something that came up

during the research.

3.4.3 Algorithm

The Feature hashing is mainly based on collision counting. The fundamental
concept involves applying a hash function to the data points in a way that
maximizes the likelihood of collisions occurring between objects that are in
close proximity, compared to those that are distant. It uses a hash function in
order to find the index of our new reduced array where the indexed position

is incremented by one.

Except the previously used algorithm where everything is hashed, we pro-
pose an edition where only the non-zero attributes are hashed, so we call the

hash function less times, making our implementation faster.

The algorithm consists of the following parts:



32 Chapter 3. Modelling and Algorithm

* Input: The input raw we are about to process and the value D where is

the dimension of the output array.
e Hash Function: A function that hashes the words we create.
* Output: Is the D size array where the new data are exported

Bellow is an example code in python

LISTING 3.1: Feature Hasing

for e, value in enumerate(InputData):
if (value!=0):
word = f"feat_{e}_{value}"
index = abs( mmh3.hash(word) ) % D
OutputData[index] += 1

This is not the final code but a more readable version, as the optimised for
speed version uses notation which will be very hard to be understood from

people not familiar with python notation.

It takes as argument the value and the index (e) of the attribute. It hashes the
word "feat_ E_VALUE". It returns an integer which we apply the modulo op-
erator to bring it in range of D. Then the OutputData array is being increased
at the index position by 1. So we actually count the collisions made from a
A-sized array to a D-sized array from our hash function. Our new array of
attributes is the D-sized array.

The initial motivation of this work was to squeeze big datasets in smaller
ones, with focus on sparse datasets. Theoretically zero value attributes should
not be considered as useful and they should be skipped. Like in this work [1]
where zero means no data, the user did not interact so we do not care about
that attribute. Although it is not mentioned in bibliography that zero values
could be skipped that was an improvement made in this work. After making
that the accuracy and the performance of the algorithm raised.

Some further explanations of the algorithm:

The reason for using the e (index of row/position) to create the word we
hash is that in case of having the same value in many attributes it does not
distinguish in which place is that value. Where by adding the index it does.



3.5. Random projections 33

3.5 Random projections

Another similar but more mathematical way for dimensional reduction is the

random projections.

Despite the term "projection" being used, the random selection of vectors re-
sults in transformed points that are not precisely true projections but closely
approximate them from a mathematical standpoint. They offer a clever ap-
proach to reducing the dimensionality of high-dimensional data while pre-
serving essential properties. This technique finds applications in various
fields, including data mining, signal processing, and pattern recognition. The
concept behind Random Projections is similar to Principal Component Anal-
ysis (PCA) at its core. However, in PCA, the computation of the projection
matrix relies on eigenvectors, which can become computationally demand-
ing when dealing with large matrices. Random projections leverage the idea
that a random linear transformation can preserve pairwise distances between
data points with high probability. Unlike deterministic methods, random
projections offer a computationally efficient means of reducing dimension-
ality without the need for intricate calculations. A matrix R < ft,D >
is projected to the original matrix X < n,ft > so the result is a matrix
X_r < n,D >. Where ft = original feature size, D = the desired feature size,
n = the number of samples. We examine two main methods for this pro-
cedure. The Gaussian and the sparse method, which is an alternative more
time and size efficient method. Though we studied these methods they do
not make any assumption for the data structure and nature so we try some

different numbers for sparsity and size of the projection array.

3.5.1 Gaussian Random Projection

Gaussian Random Projection involves generating random Gaussian (normal)
vectors. We could construct a Gaussian LUT by choosing elements randomly
from a Gaussian distribution with mean zero. The randomness in the Gaus-
sian vectors allows for a diverse set of projections, and it has been shown
that such projections can preserve pairwise distances reasonably well. It is
commonly used when the data is not sparse, and the goal is to reduce di-

mensionality while preserving certain structural properties.



34 Chapter 3. Modelling and Algorithm

3.5.2 Sparse Random Projection

Unlike Gaussian Random Projection, sparse vectors have many zero elements.
Sparse projections are generated by randomly choosing a small number of

non-zero elements in the vectors In sparse version there is a work from [9]

Achliopta’s where s is the variable that determines the scarcity, for example

if s = 3 only the 1/3 of data is to be processed. This is a comparatively sim-

pler method, where each vector component is a value from the set —k, 0, +k,

where k is a constant. In our experiments especially in sparse datasets we

were able to raise that value to even higher values like 10 or 20 and still get a

very useful compression result. Python has an implementation in [26] that it

is been use for the experiments and results later.

3.6 Prediction model

Our model algorithm is Stochastic Gradient Descent (SGD) is an optimization
algorithm widely used in machine learning and deep learning. It is particu-
larly suited for large datasets and complex models. This algorithm is what
used for the python simulation. Another algorithm called FTRL-Proximal
(Follow the Regularized Leader - Proximal) uses the logistic regression model
with some improvements proposed at [1] with two regularization parameters
and a different learning rate "n" rule. The algorithm is very similar to SGD
(Stochastic Gradient Descent) but they use different approach for the symbol
h. The optimal value for learning rate can be exported experimentally but we
used some of the proposed ones without seen any notable positive difference
when changing them a little. FTRL is used in our FPGA implementation and
some further details about the design will be analysed there. Although in
this section we are going throw some more theoretical details and the reason
behind the decision to use these to algorithms.

Some characteristics that lead to chose this algorithms:
e Parallelization:

It can be parallelized to improve training speed on multi-core proces-

sors, distributed computing environments or in our case FPGAs.
¢ Model Flexibility:

It can be used with a wide range of machine learning models, includ-

ing linear models and deep neural networks. That gives this work the



3.7. Conclusion on Metric Selection 35

opportunity to be used in future without the need to change the basic

structure but use it as base for next steps.
e Efficiency:

It is designed to be computationally efficient, making them suitable for
online learning and real-time applications. They process data points se-
quentially and require minimal memory compared to batch optimiza-

tion methods.
* Regularization:

In SGD, the regularization terms like L1 or L2 can be added to the loss
function. In FIRL the L1 and L2 regularization are included in its up-
date rules to encourage sparse and stable models.

3.7 Conclusion on Metric Selection

While precision, recall, and F-score are widely recognized and essential met-
rics, there are scenarios where simplicity and practicality outweigh the nu-
anced insights they provide. In the context of our current work, the decision
to primarily rely on accuracy stems from a thoughtful consideration of vari-

ous factors.

Precision, recall, and F-score are particularly valuable in tasks where the con-
sequences of false positives and false negatives are markedly distinct, such as
in medical diagnoses or fraud detection. However, the intricacies introduced
by these metrics also bring challenges and complexities. The desire for a
straightforward evaluation process led to the strategic decision to prioritize

accuracy.

Accuracy, while a more straightforward metric, aligns with the specific needs
of the current work. In situations where the costs of false positives and false
negatives are comparable, and the emphasis is on overall model correctness,

accuracy provides a clear and easily interpretable measure of performance.

In conclusion, after considering various aspects discussed above, the only

metric that will be utilized for this assessments is accuracy.






37

Chapter 4

FPGA

In this chapter, the implementation of our algorithm is analyzed using the
HLS approach. We have a top level function and two classes to implement,
the dimensional reduction and the Learner function. Our top level calls the
module with a row-sample of A attributes at a time and it gets back a reduced
array in size of D«A attributes. We implement 2 different functions of dimen-
sional reduction the Feature hashing and the Random projection (Gaussian,
Bernoulli). The next call of our top level is the learner module with a given
argument the D-sized array and returns the result of the prediction or,and
tits the sample to the learner.

4.1 Essential Aspects of HLS Code

41.1 HLS code

All the code written for the FPGA is written on vivado HLS and the sim-
ulations run with that software. Although it should be mentioned that all
the code is been tested in python 3.6 before it is implemented in C. In cases
that a python library used but we present an HSL implementation the code
is been written in pure python (without any library usage) and translated /
re-written in C for the HLS. That means that the code in C is been used only
for sizing and timing reasons while the python gave us all the accuracy and
reliability result presented. Also except the cases that it is clearly stated the a

python library is used, all other codes where implemented from scratch.

4.1.2 FPGA chip

In further details about the simulation as target device we used a Artix 7
FPGA chip. More specificly the xc7a100t family the model csg324-1.



38 Chapter 4. FPGA

This is a mid range chip with the following available resources:
¢ BRAM_18K: 150
e DSP48E: 120
* FF: 65200
e LUT:32600

Because technology changes constantly new editions are available with sim-
ilar characteristics. Similar chips and information about the pins, voltages
and data-sheets can be found in the official page [27].

We did not own this chip and we run only the simulations with that as a

target device for reference.

4.1.3 Purpose

It should be noted that this implementation does not have as purpose to pro-
duce an optimal result. Tuning a model is a very difficult work and it relates
to many factors. In the FPGA-HLS implementation our purpose is to find
the sizing and the design. It was not worth spending time on finding the
best learning rate for each dataset or plotting the ROC curve via data-points
where the HSL simulations gave us. Although it is very important to select
the correct types and variables so we can have a precise timing and sizing
estimation, from the simulation process. For example our seed for the ran-
dom function generator we create analyse later needs to be an integer, but
it is pointless to have a big integer as any small one does the work, even if
someone would like to use more than one seeds to experiment. So having
that as an 8-bit int give us 256 which is giving as a lot of options. For other
values like the coefficients we need very precise floating point variables, or

else we may lose accuracy due to arithmetic losses.

41.4 Default module

For comparison reasons a default design is provided. This is actually very
similar with a few variations that will be explained. The first variation is that
there is no module for dimensional reduction. So the data are obtained as an
input and the only processing it happens is to go through the learner function
in the fit and predict stages. The second variation is the size of the array that



4.1. Essential Aspects of HLS Code 39

holds the coefficients in learning function. This is a floating point array with
the size of input as each feature has its own coefficient.

One of our main work targets was to make this array as smaller as it could be, since
the input and output is for all three implementations the same. It is been tried to
hold less coefficients as the RAM on those chips is a luxury.

We compare the sizing for implementations that would be impossible due to
the aforementioned array.

4.1.5 Inputdata

While a considerable amount of this work is dedicated to preprocessing in-
put data, it’s essential to understand that, at the High-Level Synthesis (HLS)
level, we make an assumption that the input data is already in a valid and
processable format. That means that we are not dealing with any other pro-
cess like cleaning the data or format conversion at the HLS stage. This de-
cision is intentional, as it helps us avoid the creation of entirely unrelated

modules that wouldn’t have a direct impact on the current work.

It's worth noting that data cleaning is typically a necessary step in the devel-
opment of any algorithm, as it ensures the quality and integrity of the data.
Although as it is shown the feature hashing algorithm would totally skip this
part, while this might appear to streamline the process, it can result in less ro-
bust outcomes. Therefore, it’s essential to keep a balance between optimizing
the algorithm and maintaining data quality throughout the pipeline.

4.1.6 Top level

The top level module has a function to execute our whole functionality. It
consists of some control signals and the input data. It gets a reset signal
which just resets all the stored weights (coefficients), it is calling the learner.reset()
function. An operation control signal which decides if we are in a predict or

a fit process. A sample code is the following;:

int top_lvl_execute (int reset,
int reduct_mth,
int operation,
float data_x[DatasetSize][SizeOfAttribute],
int data_y[DatasetSize],
int preds[DatasetSize],
float compr_data_x[DatasetSize ][D],



40 Chapter 4. FPGA

In this module it is also being hold the w variable which is the weights. An-
other universal file that is needed for all the operations is the general defini-
tions header file (gen_def.h) In here except the global definitions, some other

variables are been defined, the names are self explanatory for most of them.

#define DatasetSize 1

#define SizeOfAttribute 54877

#define D 5487 // Number of weights to use

#define SEED 10 // seed to be used for random numbers

4.2 Learner Unit

The learner unit is where the learning algorithm lives in. This unit consists
of three basic functions, the reset, fit and predict. Every unit will be analysed
turther in the following subsections, with the exception of reset, given its
straightforward functionality. The reset function is running a simple for loop
to initialise a variable that holds the coefficients. Although the functionality
is so simple it is also very important for the initialisation and the reset in cases
something goes wrong or in situations where issues arise or users observe
diverging predictions

Also this unit has a header file which is the following one.

#define lrn_rate 0.01

class My_learner

{
public:
My_learner(/+ init =/);
int predict(float data[SizeOfAttribute], float =w);
void fit(float data_x[SizeOfAttribute],int data_y, float =*w);

void reset(float* w);

4.2.1 Fit function

In this section it is going to be analysed the functionality for the fit in fpga.
Fit also usually refereed to the bibliography as train, although because the
convention in python is calling these types of functions as fit  used this term.
The fit function is the one that changes the w array where the coefficients are



4.2. Learner Unit 41

held. As it is shown above a very important variable also held here is the
learning rate of the algorithm which is set to 0.01. Common learning rate
values are around 0.01 to 0.05 for these types of algorithms. That number,
is a crucial hyperparameter that determines the step size at which a model

adjusts its parameters during training.

The functionality of the fit function consists of 3 main stages and the pseudo-
code is presented in Algorithm 1.

Firstly around lines 1 to 2 we calculate the dot product of weights and sample

values.

The second part lines 3 and 8 is to go through and activation function (details
about that can be found on the B ) Here I chose to have a sigmoid activation
function with cut off at 5 or minus 5. This is done because in after 5 the value
is already close to 1 or 0 so we can use less power from calculating the exp

which is an expensive function.

The final step lines 9 and 12 on this function is to then edit the coefficients.
As it can be seen in case the x equals to zero there is no point making the

calculations after it

Algorithm 1 FPGA, Fit Function Learn Unit

1: fori=0,...,D—1do
2: dot_prod+ = data_x|i] x wlil;
if dot_p > 5 then

p=1
else if dot_p < —5 then

p=20
else

p=1/(1+exp(—p)) > Sigmoid Activation Function
fori=0,...,D—1do
1 if data_x[i] # 0 then
11: ¢ = (p —data_y) x data_x|i]
12: wli] = —Ilrn_rate X ¢

e

4.2.2 Prediction Function

The predictive mechanism plays an important role in generating forecasts us-
ing the trained model. Once the model parameters have been learned during

the training phase, the prediction function is applied to new, unseen data to



42 Chapter 4. FPGA

generate predictions or classifications. The prediction function involves com-
puting a weighted sum (dot product) of the input features, with each feature
multiplied by its corresponding learned coefficient.
fori=0,...,D—1do
dot_prod+ = data_x[i] x wlil;

The result of this computation is often passed through an activation function,
depending on the specific problem at hand. In our case this step was not
necessary not only because of the time and extra energy cost, but because a
simple solution with an if case selecting as positive class (or 1) the sum is

greater than 0.5 else the negative class (or 0).

4.3 Dim Reduction - Feature Hashing

Feature Hashing module consist of two main functions and does not need
any special variables to hold on, like weights etc. That makes is an excep-
tional selection algorithm for cases that process power is not an issue but
memory it is. That concern is not only in cases we do not have sufficient
RAM but for problems that keeping a variable alive is difficult. The main
functionality is the one that creates collisions, while the other generates a
number from a hash word. The output is a collision array that is then fed
into the ML module.

A diagram of how it works is presented below.

4.3.1 Hash trick

The Feature Hashing algorithm also known as the hash trick, has a very sim-
ilar implementation with the one described in python section were the mod-
eling happened. In more details we firstly initialise the output array with D

Hash Trick Module

Hash L Collision

Dataset MxD function counter

. . to ML Module
Collision array

FIGURE 4.1: Feature hash block diagram



4.4. Dim Reduction - The Random Projection 43

length. Then we loop through the sample skipping the zeros, for implemen-
tation reasons to take latency in simulations there are provided two versions.
One version is the one which just skips the zeros with just a conditional if but
loops thought the whole sample. The other is for simulation reasons only that
loops only to an average number of non zeros. After that stage we send the
word in MurmurHash dividing the result we get with D. The output array is

increment by one in that position.

4.3.2 Murmur Hash 3

The Murmur Hash utilized in our implementation is not a proprietary cre-
ation; instead, an existing public domain implementation [28] is been used.
Specifically, MurmurHash3_x86_32 was chosen based on considerations of
throughput and latency. This variant is acknowledged for having the lowest
throughput, but it also boasts the advantage of the lowest latency, making it
particularly suitable for certain use cases. According to the documentation,
"If you're making a hash table that usually has small keys, this is probably
the one you want to use on 32-bit machines. It has a 32-bit output." This
aligns well with our requirements, given that our keys are characterized by

their compact size, making this variant an ideal fit for our application.

4.4 Dim Reduction - The Random Projection

The random projection as a process one could say that has some similarities
with the concept of convolution. There are two studied implementations in
this work in theoretical level. Only one is implemented for reasons that is
been said and explained in details.

A diagram of how it works is presented below.

4.4.1 Gaussian Random Projection

We are not going to give an FPGA implementation for this method and below
we will see what are the reasons. One option is to construct a Gaussian LUT,
either save it on memory which is and it contradicts the purpose of this thesis
to use as little RAM and ROM as possible. The other option is to construct on
on the fly as we do with random numbers which is a difficult process out of
the boarders of this thesis as [29] and [30] could saw, because the challenges

are a lot to guarantee a result that will not cause extra problems. The final



44 Chapter 4. FPGA

Random Matrix Module

Binary
Random seed Initial Seed

===

Coeff. LUT |N(0,1), Li, Aclioptas etc.

LFSR

LFSR Iterations

Density

(DxK Sparse vectors)

K times
(Feat. Iteration)

000(xk)...0 )
(k) PN to ML Module
'\_j_/\‘ 172 M3 L2

Dataset Input vector 1xD

MxD M times

3. D Dot product

Dot Product Module

FIGURE 4.2: Random Projection - Block Diagram

reason is the sparse version is proven to work and would work with non
perfect Gaussian numbers as soon as they have a mean value of zero. So
there is apparently no reason to implement this since the following method

can cover this case.

4.4.2 Sparse Random Projection

The implementation of this module is as it follows. Firstly we need a an
LFSR, the implementation of which is given below with an example of usage.
Secondly we need to move with the actual process of the projection. Due to
implementation complexity these two operations are not separated in func-
tions but run in one. Mainly it would require to pass a need updated seed in
every round or the return of the whole table. Although the second scenario
is memory expensive and the first could be feasible it requires a generator in
python where the prototyping happened and a more complex function in C.
Which considered as odd in our study.

As the algorithm shows below in line 1 we have calculated how many cells
are we taking from the row for each sum. Then in line 2 we loop D times
as the size of the output array. Since we are creating a distribution we need
half of the elements to be positive and half of them negative. That is being
implemented in lines 5 and 8 were in case of odd number we add the element

to the sum or else we subtract.



4.4. Dim Reduction - The Random Projection 45

Algorithm 2 FPGA, Random Projection

1: cellsProcessed = SizeO f Attribute * density
2: fori=0,...,D—1do

3: forj=1,...,cellsProcessed do

4: rndNum > Here we generate the Random Number
5: if rndNum > 0 then

6: output|il+ = input[rndNuml|

7: else

8: outputlil— = input[rndNuml|

4.4.3 LFSR -linear feedback shift register

In hardware we use a LFSR [31] function which periodical gives us random
numbers depending on the “feedback polynomial function” we use. The ran-
dom numbers are generated on the fly by an LFSR function, which periodical
gives us random numbers depending on the “feedback polynomial function”
we use. If our feature size is A=500 and we the willing reduction is D=50, we
use the taps[9,5] and the function x"9+x"5+1 (can be written as X x> +1)
with a range of 512, to take D different numbers. (NOTE the symbol * is the
XOR operator [32] according to this table) The term "taps" in a LFSR refer to
the positions in the shift register that are used to calculate the next bit in the
sequence. These positions are connected to the XOR gates, and their values
are XORed to produce the feedback that influences the shift register. In the
context of an LFSR, taps are represented by the bit positions that contribute
to the feedback mechanism.

In case we take numbers bigger than the D we just skip the number so we
avoid overflow. The reason we skip the values and we do not subtract or
taking the mod(D) is because this may cause collisions and extra noise to the
algorithm. Experimental results show that the numbers generated by LFSR
are uniformly distributed in range of the polynomial function we use. Here
we faced a problem because every polynomial function has a range based on
power of 2. The datasets attribute size is definitely not a power of 2 size but
if it is close we just skip some numbers. But may not be very close to it and
we may need to skip many values in every sample causing us a huge latency
for no reason. The solution is simply to approach the size of attribute using
more LFSR functions.



46 Chapter 4. FPGA

4.4.4 LFSR - use case

Let’s take an example of how we solve it in a dataset of 10.000 attributes. The
purpose is to produce random numbers ranged up to 10.000 and use them to

obtain random features of the input array (the sample with the features).

The closest power of 2 giving a bigger number of 10.000 is 14, resulting a ran-
dom number generator in range of pow(2,14)=16.384. So now let us assume
that we will have a D of 1000, so the reduction will be from 10.000 to 1.000.
The average random numbers the lfsr will produce (for us to keep 1000) are
about to 1600 and we must skip a mean of 600 numbers every time. Be-
cause our sample is 10.000 any number bigger than that should be skipped,
like 10.001 because there is not such an attribute in this position. That could
cause a big latency problem making us to skip lots of unused cycles every

time.

So instead of that we will use a combinations of 2 Ifsr one with power of 13 so
pow(2,13)= 8.192 and one in power of 11 so pow(2,11)= 2.048. We will have
a range of 10.240 and the mean of numbers we have to skip is about 20 every
time. The trick here is that we do not add the numbers each lfsr will generate
because that may cause collisions as many combinations can give us the same
number and it’s risky. The best solution is to use the Ifsr13 to generate 800
numbers (covering the 8192 values and taking 800 random sample from this
area) and the lfsr11 to generate other 200. Adding 8.192 to every index we
generate from the second lfsr and skipping every value is bigger than (10000-
8192=) 1808. So the Ifsr11 is responsible to sample indexes from 8192-10000
while the 1fsr13 is responsible to sample indexes from 0-8192.



47

Chapter 5

Results

On this section are presented the results obtained from the software and

hardware implementations.

5.1 Results breakdown

As mentioned in previous chapters, the software is used to give us the algo-
rithmic predictions accuracy and the actual size (as per features) dimensional
reductions. While hardware is exclusively employed for design purposes
and chip sizing. We only made the port synthesis simulation which is con-
sidered as enough to validate that the resources needed.

The machine learning algorithm used is the one described in section 3.5.2

The presentation of results is structured as follows: our baseline is the "gain
0" scenario, where the algorithm predicts without any external influence on
the data. The other cases, denoted as gain x, showcase our contributions. In
certain graphs, the "gain 0" is referred to as the benchmark case, depicted by

a horizontal line.

5.1.1 A brief of table column name explanation

This index is the same for all tables presented below. As an example a 1K

(1.000) size of array is refereed.

¢ Gain It refers to the number we divided the initial feature size to take
the final size. So in 1.000 features with gain 10 we have 100. This ratio
can be seen as the on-chip memory compression gain. Gain 0 is the

default case without any reduction.



48 Chapter 5. Results

* Feats - Features: Gives us the exact number of features we kept (here
100)

* NZ - Average non-zero elements in features: How many features were
non zero on the final sample. (If in 1000 we have 900 zeros and 100 non

zero this column has value 100)

* D Red - Dimensional Reduction (latency): The latency for dimensional

reduction unit in cycles.
* Pred - Prediction Module: The latency for prediction unit in cycles.
¢ Fit Mod - Fit Module (latency) The latency for fit unit in cycles.

* Total lat (DR+Fit) - Total latency (Dim Red+Fit) The total latency for a
sample to get a size reduction and pass through the fit stage. Note here

that since fit and predict times usually are very similar.

* RAM - BRAM_18K How many as an absolute number, BRAM_18K

units are been used.

* Acc - Accuracy The average accuracy of a cross validation with 5 fold
sets.

Note that lots of columns are referred to average values, as the simulations
were conducted with a cross-validation of 5 folds.

5.2 Farm ads

More details about this dataset can be found section 3.3.2 item 1.

In this dataset both reduction methods work and offer 24x memory reduction
with only about 2-4% loss in accuracy. Hash kernel though offers a significant
throughput improvement as well with 11.4x speedup from the first iteration
and 20.7x after the first iteration.

As we can observe in the tables in random projection method from using the
85% of chip BRAM we end up using only 2%. While the other resource went
up only by 3-5% without significant accuracy loss. Is is important to note that
the Non-zeros kept around the same absolute value from 197 features falling
down to around 170.

The feature hashing algorithm achieved similar results to RP as presented
above. Although the usage of DSPs raised by 20%, the memory usage though



5.2. Farm ads 49

FarmAds dataset Speedup. vs. Gain (log2)

1000

11}_.[, (,-‘—/-—*"_“—H »s == ==sBenchmark

g' ——#— Hash Kernel 1st. [ter
k SRP After 1st. Iter
E- 10 — 44— Hash Kernel After 1st Iter.
' ’ “ e — @ SRP lstiter.
0,1
10 16 24 32 40 48 56 64
Memory Compression Gain
FIGURE 5.1: Farm ads Dataset - Speedup comparison
FarmAds dataset Acc. vs. Gain

g

Bo%

BE%

BT
] 86% . . Benchmark
E 85% ———— Ha sh Kernel
E Ba% e SRP

B3%

B2%

B1%

B0

10 1e 24 32 40 48 56 &4
Memory Compression Gain

FIGURE 5.2: Farm ads Dataset - Accuracy comparison



50 Chapter 5. Results
. Dim Red | Pred | FitMod | Total lat
Gain | Feats | NZ (cycles) | (cycles) | (cycles) | (DR+Fit) BRAM | Acc

0| 54.877 | 197 - | 548.770 | 552.776 552.776 128 | 88,91%

10 | 5.487 | 200 510.291 54.870 59.136 569.427 32 | 87,47%

16 | 3.429 | 183 | 504.063 | 34.290 38.199 | 542.262 16 | 87,09%

24 | 2286 | 197 | 562.356 | 22.860 27.063 | 589.419 16 | 86,99%

32| 1.714 | 172 | 498.774 | 17.140 20.818 | 519.592 8 | 87,20%

40 | 1.371 | 177 | 534.690 | 13.710 17.493 | 552.183 8 | 85,73%

48 1143 | 163 | 507.492 | 11.430 14919 | 522411 8 | 85,43%

56 979 | 173 | 575.652 9.790 13.489 | 589.141 4 | 85,35%

64 857 | 169 | 588.759 8.570 12.185 | 600.944 4 | 84,52%

TABLE 5.1: Rand projections - Farm ads
BRAM 18K DSP48E FF LUT

Available 150 Available 120 Available 65200 | Available 32600
Gain | # Used | % Used | # Used | % Used | # Used | % Used | # Used | % Used
0 128 85% 50 41% 7759 11% | 12474 38%
10 32 21% 53 44% 8769 13% | 14274 43%
16 16 10% 53 44% 8765 13% | 14268 43%
24 16 10% 53 44% 8765 13% | 14267 43%
32 8 5% 53 44% 8761 13% | 14258 43%
40 8 5% 53 44% 8761 13% | 14258 43%
48 8 5% 53 44% 8761 13% | 14258 43%
56 4 2% 53 44% 8749 13% | 14242 43%
64 4 2% 53 44% 8749 13% | 14242 43%

TABLE 5.2: Farm ads - Resource usage random projections

felt down by 82% from 85% to only 3%. The positive aspect of that method

was the time it took to run, as with the reduction it took only 83K cycles

versus the 552K cycles it take a prediction (or to fit) for a normal sample.




5.2. Farm ads

51

0%
80%%
0%
B0%

FarmAds dataset Bram Util. vs. Gain

m Benchmark

§ 50%
= a0% m SRP
g m Hash Kernel
m 30%
20%
10%
o 10 16 24 31. L 48 56 B4
Memory Com pression Gain
FIGURE 5.3: Farm ads Dataset - Memory comparison
. Dim Red | Pred | FitMod | Total lat
Gain | Feats | NZ (cycles) | (cycles) | (cycles) | (DR+Fit) BRAM | Acc
0 | 54.877 | 197 - | 548.770 | 552.776 552.718 128 | 88,91%
10 | 5.487 | 191 24.795 | 54.870 58.947 83.742 33 | 89,39%
16 | 3.429 | 187 22.737 | 34.290 38.283 61.020 16 | 87,46%
24 | 2.286 | 182 21.594 | 22.860 26.748 48.342 16 | 87,71%
32| 1714 | 177 21.022 | 17.140 20.923 41.945 8 | 86,26%
40 | 1.371 | 173 20.679 | 13.710 17.409 38.088 8 | 85,54%
48 | 1.143 | 170 20.451 11.430 15.066 35.517 8 | 85,54%
56 979 | 166 20.287 9.790 13.342 33.629 4 | 86,98%
64 857 | 163 20.165 8.570 12.059 32.224 4 | 84,57%
TABLE 5.3: Feature Hashing - Farm adds
BRAM 18K DSP48E FF LUT
Available 150 Available 120 Available 65200 | Available 32600
Gain | # Used | % Used | # Used | % Used | # Used | % Used | # Used | % Used
0 128 85% 50 41% 7759 11% | 12474 38%
10 17 11% 74 61% 8719 13% | 14147 43%
16 17 11% 74 61% 8719 13% | 14147 43%
24 9 6% 74 61% 8712 13% | 14131 43%
32 9 6% 74 61% 8712 13% | 14131 43%
40 9 6% 74 61% 8712 13% | 14131 43%
48 5 3% 74 61% 8705 13% | 14118 43%
56 5 3% 74 61% 8705 13% | 14118 43%
64 4 2% 74 61% 8749 13% | 14242 43%

TABLE 5.4: Farm ads - Resource usage feature hashing




52 Chapter 5. Results

5.3 Gisette

More details about this dataset can be found section 3.3.2 item 2.

The Feature Hashing method, unfortunately, performed poorly when ap-
plied to our dataset, resulting in a significant drop in accuracy from 93%
to 65%. This loss questions the perceived memory benefits of the Feature
Hashing technique. Understanding such limitations is crucial in evaluating
the trade-offs between computational efficiency and maintaining high pre-

diction accuracy in our specific dataset.

While the random projections brought about a notable 10-15% reduction in
accuracy, the memory footprint show an 8x decrease, and the speed increased
approximately 6x after the first iteration. These outcomes, though showing
improvements in memory and speed, underscore the challenges encountered
when applying random projections to this dataset.

: Dim Red | Pred | FitMod | Total lat
Gain | Feats | NZ (cycles) | (cycles) | (cycles) | (DR+Fit) BRAM | Acc
0 | 5000 | 649 - | 50.000 | 63.695 63.695 16 | 92,80%
10 | 500 | 498 | 226.500 5.000 | 15.524 | 242.024 2 1 91,00%
16 | 312|311 | 141.336 3.120 9.717 | 151.053 2 | 90,00%
24| 208 | 208 | 187.824 2.080 6.514 | 194.338 2 | 85,00%
32| 156 | 156 | 140.868 1.560 4902 | 145.770 2 | 84,60%
40 125 | 125 169.125 1.250 3.941 173.066 2 | 83,60%
48 104 | 104 140.712 1.040 3.290 144.002 2 | 80,00%
56 89 | 89| 160.467 890 2.825 | 163.292 2 | 77,00%
64 78 | 78| 140.634 780 2484 | 143.118 2 | 77,00%

TABLE 5.5: Rand projection - Gisette

The results for this dataset where not impressive, one of the main reasons we
present them is to show that this methods did not work well with high dense
data. The density of this set is 0,1297 which means around 1 of 10 values is
non zero. In the column NZ we see that in the reductions almost no feature
left as zero and we still got only 1-2% accuracy loss. This minimal loss makes
the results highly usable, achieving an 8x reduction in total memory usage.
Important to note here is that the other resource usage was not changed more
than 3% in total making the implementation feasible.



5.3. Gisette 53

Gisette dataset Speedup. vs. Gain (log2)

1000
10,0
g. sxw = »==Benchmark
2 SRP After 1st. Iter
-3 ——ip———5RP lstiter.
m 11} L B B B B B R - L B B B B B R R - -
01
10 1 24 32 40 48 56 64
Memaory Com pression Gain
FIGURE 5.4: Gisette Dataset - Speedup comparison
Gisette dataset Acc. vs. Gain
95%
S0%
B85%
o
B BOo% Benchmark
=
E ——5 P
75%
T0%
B5%

10 16 24 32 40 48 56 &4
Memory Com pression Gain

FIGURE 5.5: Gisette Dataset - Accuracy comparison



54 Chapter 5. Results
Gisette dataset Bram Util. vs. Gain
12%
10%
. B%
§ £ m Benchmark
E m SRP
B 4%
%
o A |
10 16 24 32 40 48 56 64
Memory Compression Gain
FIGURE 5.6: Gisette Dataset - Memory comparison
BRAM 18K DSP48E FF LUT
Available 150 Available 120 Available 65200 | Available 32600
Gain | #Used | % Used | # Used | % Used | # Used | % Used | # Used | % Used
0 16 10% 50 41% 7755 11% 12453 38%
10 2 1% 53 44% 8753 13% 14233 43%
16 2 1% 53 44% 8749 13% 14230 43%
24 2 1% 53 44% 8745 13% 14224 43%
32 2 1% 53 44% 8742 13% 14220 43%
40 2 1% 53 44% 8739 13% 14218 43%
48 2 1% 53 44% 8737 13% 14215 43%
56 2 1% 53 44% 8735 13% 14212 43%
64 2 1% 53 44% 8732 13% 14210 43%
TABLE 5.6: Gisette - Resource usage
5.4 Dexter

More details about this dataset can be found section 3.3.2 item 3.

For the Dexter dataset we get even an increase in accuracy compared to the

reference implementation. The reason for this is that the projection can re-

move redundant features and thus reduce over-fitting which is caused by

multi-collinearity [33]. Our 1st iteration is slower than the reference imple-

mentation but we could trade-off this if the we had a big data streaming

setting by reducing the density of the random matrix (and thus the complex-

ity of the projection). Increasing the sparsity in the random projection matrix

can save computations during the first iteration but may have an additional

cost in the classification accuracy if pushed too much.




5.4. Dexter 55

Dexter dataset Speedup. vs. Gain (log2)

100.0
00,0

10,0
§- Benchmark
T SRP After 1st. Iter
E- ——@——5SRP 1stiter.

0 16 24 32 40 48 56 64

Memory Compression Gain

FIGURE 5.7: Dexter Dataset - Speedup comparison

The Hash kernel method does not seem to work very well although the prob-
lem is text classification; a possible reason may be that the features are ex-

pressed as continuous variables and not as categorical ones (binary features).

For more details on resource usage one can refer to table 5.9 as these two

dataset had similar size these two tables were identical.

. Dim Red | Pred | FitMod | Total lat
Gain | Feats | NZ (cycles) | (cycles) | (cycles) | (DR+Fit) BRAM | Acc

0 | 20.000 | 95 -1 200.000 | 202.061 | 202.061 64 | 74,66%
10 | 2.000 | 181 | 366.000 | 20.000 | 23.867 | 389.867 8 | 79,66%
16 | 1.250 | 216 | 453.750 | 12.500 17.102 | 470.852 8 | 81,00%
24 833 | 205 | 452.319 8.330 11.567 | 463.886 4 | 75,66%
32 625 | 151 | 339.375 6.250 9.487 | 348.862 2 | 81,66%
40 500 | 157 | 361.500 5.000 8.363 | 369.863 2 | 74,66%
48 416 | 156 | 375.648 4.160 7.502 | 383.150 2 | 76,60%
56 357 | 152 | 386.631 3.570 6.828 | 393.459 2 | 78,30%
64 312 | 146 | 394.056 3.120 6.252 | 400.308 2 | 76,00%

TABLE 5.7: Rand projection - Dexter




56 Chapter 5. Results

Dexter dataset Acc. vs. Gain

B B OEE EEE EE B8 BESEEE BE SEEEES S8 SESSEE B8 BE

82%
B0%
78% 7]
£ ssssss == BENChmark
76% E ——@——5RP
T4%
7%
70%
10 16 24 32 40 48 5k B4
Memory Compression Gain
FIGURE 5.8: Dexter Dataset - Accuracy comparison
Dexter dataset Bram Util. vs. Gain
45%
40%
35%
. 30%
‘Jﬁ- 5% m Benchmark
E 20% m SRP
m 15%
10%
5%
0%
10 16 24 32 40 48 5e &4

Memory Compression Gain

FIGURE 5.9: Dexter Dataset - Memory comparison



5.5. Real sim 57

5.5 Real sim

More details about this dataset can be found section 3.3.2 item 4.

In this dataset, we observe only a 6% loss in accuracy, accompanied by a
substantial reduction in total RAM (64x) and BRAM usage (32x) with the
use of random projections. It’s crucial to emphasize that despite employing
dimension reduction and fitting, the total latency remained consistent with
the case of fitting the full set. These observations highlight the trade-offs and
considerations involved in choosing dimensionality reduction techniques for
this particular dataset. The application of feature hashing resulted in notably

poor accuracy.

. Dim Red | Pred | FitMod | Total lat
Gain | Feats | NZ (cycles) | (cycles) | (cycles) | (DR+Fit) BRAM | Acc
0| 20958 | 52 -1 209.580 | 210.738 | 210.738 64 | 83,00%
10 | 2095 | 21 194.835 20.950 21.457 216.292 16 | 76,64%
16 | 1309 | 19| 215985 | 13.090 13.555 | 229.540 8| 77,16%
24 873 | 21 199.044 8.730 9.237 208.281 4 | 78,82%
32 654 | 19| 207.972 6.540 7.005 | 214.977 4| 77,52%
40 523 | 28 | 194.556 5.230 5.351 | 199.907 4 | 77,28%
48 436 | 19 | 205.356 4.360 4.825 | 210.181 2 | 76,65%
56 374 | 22| 196.350 3.740 4268 | 200.618 21 77,25%
64 327 | 21 204.048 3.270 3.777 207.825 2| 77,15%
TABLE 5.8: Rand projection - Real sim
BRAM 18K DSP48E FF LUT
Available 150 Available 120 Available 65200 | Available 32600
Gain | # Used | % Used | # Used | % Used | # Used | % Used | # Used | % Used
0 64 42% 50 41% 7743 11% | 12459 38%
10 16 10% 53 44% 8771 13% 14275 43%
16 8 5% 53 44% 8757 13% 14254 43%
24 4 2% 53 44% 8755 13% | 14250 43%
32 4 2% 53 44% 8751 13% | 14245 43%
40 4 2% 53 44% 8747 13% | 14238 43%
48 2 1% 53 44% 8745 13% | 14233 43%
56 2 1% 53 44% 8738 13% 14227 43%
64 2 1% 53 44% 8732 13% 14220 43%

TABLE 5.9: Real sim - Resource Usage Random Projections




Chapter 5. Results

58
Realsim dataset Speedup. vs. Gain (log2)
100,0
10,0
% =sxs »x = Benchmark
E SRP After 1st. Iter
- 10 s - - ——@——5RP lstiter.
01
10 16 24 32 40 48 56 54
Memory Compression Gain
FIGURE 5.10: Real sim Dataset - Speedup comparison
Realsim dataset Acc. vs. Gain
S0%
B5%
)
E BO% « «+ « «+ Benchmark
75%
T0%

10 16 24 32 40 48 56 &4

Memory Com pression Gain

FIGURE 5.11: Real sim Dataset - Accuracy comparison



5.6. Discussion 59

Realsim dataset Bram Util. vs. Gain

455

40%
35%
30%
25%
W Benchmark

208 m SRP
15%
10%

52

10 16 24 32 40 48 56 64

Memory Compression Gain

Bram LHil .
s oW F & FE 2 =

Ed

FIGURE 5.12: Real sim Dataset - Memory comparison

5.6 Discussion

Asitis observed we managed to significantly reduce the memory usage with-
out consuming lots of others to achieve that. Even the cycles needed to run
a reduction process and the a prediction was usually identical to only a pre-
diction with the total number of dataset features. We observed cases that the
memory usage did not fall more than 4x which is not considered as impres-
sive as the 64x with only 4% accuracy penalty, although some problems went
from been unsolvable to feasible to implement.

In summarizing our findings, it becomes evident that the results have pro-
vided us with an advantage, whether in terms of time efficiency or memory
utilization. Impressively, these benefits were achieved with only a relatively
minor trade-off, highlighting the effectiveness and practicality of the imple-
mented approaches. This delicate balance between improved performance
and minimal compromise underscores the significance of our results in en-
hancing the overall efficiency of the system.






61

Chapter 6

Conclusion and Future work

6.1 Conclusion

In this study we made some experimental measurements in sparse and very
sparse datasets and we proved that due to low entropy of the samples we
could use fewer features to take a satisfying result. Also in some cases worked
with efficiency by removing bias and giving better results. We analyzed the
proposed dimensional reduction algorithms, we presented the module dia-
grams and we provide the array numbers of the experiments in some com-

mon dataset.

Our result is considered to be important not only for the cost or the speed but also
for the opportunity to solve problems that could not fit on chip without a reduction
in their feature dimension.

Another important aspect is that these techniques could be applied without
any knowledge of the data nature like mean value or variance and it does not
being affect the outcome, contrariwise, we sometime got a better accuracy.
We also conducted an analysis of potential risks arising from the manipula-
tion of data in the absence of adequate domain knowledge. Our contribu-
tions in algorithm field is that the proposed technic for Random projections
and Feature Hashing run without consuming any memory like other mathe-
matical the implementations so far (PCA family algorithms), with a trade off
some computational power though which would arise in any similar algo-

rithm.



62 Chapter 6. Conclusion and Future work

6.2 Future Work

As future work, it would worth making a more detailed design in hardware
level adding edge cases and designing and getting some results from a chip

to demonstrate that what is simulated in Python works on chip as well.

This would not only enrich and expand the existing design but also involve
the practical implementation of the proposed enhancements directly on the
hardware level, by actually loading on chip the implementation.

A nice extension would be, a simple video game or a smart toy that learns
from the player’s actions and adapts accordingly. In many games, we're used
to having opponents that are not too smart, making it easier for us to win.
However, imagine a game where the characters learn and get better as you
play.

The challenge becomes more personalized and interesting because the game
is adapting to your skills. It’s like having a virtual opponent that grows with
you, providing a unique and dynamic gaming experience. In this scenario,
the technology is applied not just for the sake of being cutting-edge but to
enhance the user’s enjoyment and engagement by creating a more respon-
sive and challenging environment. This intentional "dumbing down” due to
lower accuracy of the algorithm, allows players to experience both the thrill

of overcoming challenges and the satisfaction of winning.



63

Appendix A

Text data

When a problem nature is known to us and we have the raw data we can
handle better the dimensional reduction and propose ways for doing so. We
can use some intelligent techniques that developed and estimate how much

this will cost us depending our target.

A.1 An overview of hashing for text

Hashing is a very popular technique in solving text based problems by ran-
domly representing words by numbers. For example if the word “book” is
the number 1543 and from now the algorithm recognises the number 1543
and not a word. This is just because computers do not understand words

and it is a way of representation.

Now one way to work for a specific text is every time we find the word book
to increase the attribute R[1543]. The technique is called TF-IDF [34] (Term
Frequency - Inverse Document Frequency) and it is approach we use to solve
our representation problem. There are others as well but this is probably the
most popular and the one it is going to be used and so we are not analysing
any other techniques further. With hashing the words into numeric values
we create a dictionary, also mentioned as a vocabulary in bibliography. In
most common programming languages this is represented with a structure
called also map or dictionary having the form of sting as a key and integer as
value. In this way we use less estimators compared to the total words of the
text since many words are repeated and we just keep the repetition count. An
other common technique use to clean up the data is removing the stop words
[35]. With that term we mean the words that not give any extra meaning to
the text.



64 Appendix A. Text data

An example could be the following: in the phrases "This is a nice book" and
"This is a bad book", the words "This", "is", "a" do not give us any context
about what we speak of while the words "nice" and "bad" can give us the
sentiment of the phrase if it is negative or positive and the word "book" can
give us the context of what this sentence is concern of. So we can easily elim-
inate the three words "This", "is", "a" and not lose a lot of the meaning. Note
here that the above technique is not actually lose less as it seems and in more
complex text analysis algorithms with RNN [36] every piece of a text is valu-
able, meaning not only the actual words but the order. A good example here
would be the phrase "This is not a bad book", which actually means that this
book is a good or at least not a bad one. In the TF-IDF analysis the algorithm
will find the words "bad" and "not" so it will most possibly assume a negative
sentiment. Although we will successfully in both techniques figure out that
the topic is the books we are completely mistaken in the sentiment analysis.

That is a risk which is acceptable in some approaches and problems since the
benefits of not using a neural network due to the complexity and the demand
on resources of neural network could make such an implementation impos-
sible. It is also worth mentioning that although losses like the one described
here can sometimes be critical and affect the outcome, this has only to do
with the nature of the problem hence there are cases that this do not affect

our performance at all.

A.1.1 Dimensions

The above process of TF-IDF creates something that we called a maps con-
taining only a few words which is called bag-of-words a very common prob-
lem one can notice here is that a new word may come that we have never
seen again. That should create a new entry in our vocabulary but this causes
a problem because our model which we analyse in the next section, is not
trained in this word. So we have to pause the process retrain the model and
then continue. To avoid this there are two ways. One is to use a preset dic-
tionary containing as much words as possible, but this will end up in a very
big and sparse matrix where lots of values will be zero (0) since many words
are not used. Image that a common English dictionary has around 100.000
word while an easy is usually limited by word count which can be around

4000 words with many duplicates.



A.1. An overview of hashing for text 65

A.1.2 N-gram models

Another thing is worth mentioning are the n-gram models. The above de-
scribed way to work is considering each word as an entity. There is an ap-
proach to use more than one words as an entity. That could solve some prob-
lems as the "not bad" is now a new word that does not have a negative senti-
ment and the algorithm could distinguish. It creates some other though like
the low frequency of appearance for such terms and the extremely higher di-
mension of features for any text problem. Of course if we go with this option
we are not considering all the English dictionary but we make the extraction
form the training text.

A.1.3 Outcome for text based data

In cases where the raw data are available as we analysed here there are ways
to preprocess the data and lower the dimensions. So for a text based model
we could have a sparse array of 100.000 features to a dense array of 1000
features in case of choosing 1 word model (1-gram). In cases with N-gram
with N>2 this feature count is not easily predictable but it will for sure be

Very sparse.






67

Appendix B

Activation function

One of the things that came up while developing the algorithm and writing
the code is the need of an activation function. First of all we need to define
what an activation function is. In the literature, the activation function is
often referred to as a mathematical "gate" positioned between the input re-
ceived and its output. We are not going to analyse all the available functions
but only three of them that are the most commonly used and those who we

made some experiments.
These are the:

¢ Sigmoid function (also known as the Logistic function): It is one of the
most widely used activation function. It maps the input to a value be-

tween 0 and 1, which is useful for binary classification problems.

It is defined as:

1

0(x) = 5o

Some characteristics are the typical S-shaped curve. Its output is cen-
tered at 0.5 and ranges from 0 to 1. This function is differentiable, allow-
ing us to calculate the slope of the sigmoid curve at any given points.

Sigmoid activation function Derivative

10 10
08 08
06 06
04 04
02 02

00 00

-0.2 T T T -0.2

FIGURE B.1: Activation Function: Sigmoid Graph



68

Appendix B. Activation function

Tanh activation function Derivative

ZZ /T Z /\

0.0 0.0

-05 -05

-4 -2 0 2 4 -4 -2 0 2 4

FIGURE B.2: Activation Function: tanh Graph

Although the function itself is monotonic, its derivative is not.

Tanh (Hyperbolic Tangent): Similar to the sigmoid function, exhibits a
typical S-shaped curve. However, the key distinction is that the output
of the tanh function is zero-centered, spanning from -1 to 1, unlike the
sigmoid function that ranges from 0 to 1

It is defined as:

X

tanh(x) = £75

e ¥
It is differentiable, allowing us to find the slope of the curve at any given
points. Additionally, both functions are monotonic, meaning they al-
ways increase or always decrease, but their derivatives are not mono-
tonic. An essential aspect worth noting is that Tanh has a tendency
to center output around 0, which can significantly accelerate the con-
vergence of the learning process. This feature proves to be beneficial
in various neural network architectures, aiding in more efficient opti-

mization during training.

A very negative thing which in case our experiments show any benefits
from using that function is the it has an exponential operation. With an
FGPA implementation this could be a huge speed up in a computetional

problem.

ReLU (Rectified Linear Unit): It sets all negative values to zero and

leaves positive values unchanged, making it computationally efficient.

0 x<0

x x>0

The graphs and some details for the above are been referenced in [37]



Appendix B. Activation function

69

. RelLU activation function " Derivative
4 4
3 3
2 2
1 1
0 0
= 2 0 2 H 4 2 0 2

FIGURE B.3: Activation Function: ReLu Graph






71

Appendix C

Hyperparameters

In machine learning, hyperparameters are external configuration settings that
are not learned from the data but are set before the training process begins.
In statistics and statistical learning a hyperparameter is defined simply as the
fixed parameter to your prior probability function.

These parameters influence the overall behavior of a model, affecting its
learning process and performance. Unlike model parameters, which are learned

from the training data, hyperparameters are set manual.
Examples of hyperparameters include:
* Learning Rate
¢ Number of Epochs
¢ Number of Hidden Layers and Neurons in a Neural Network
* Number of Trees, Depth and branches on Decision Tree algorithms

¢ Batch Size: The batch size represents the number of training samples
used in each iteration.

¢ Activation Function
* C (Cost) and sigma in Support Vector Machines (SVM):

The regularization parameter C controls the trade-off between achiev-
ing a low training error and a low testing error. The o parameter is

associated with the choice of the kernel function in SVM
¢ Epsilon in Support Vector Machines (SVM):

Epsilon is a hyperparameter that determines the margin of error ac-

cepted in the optimization process.



72 Appendix C. Hyperparameters

e Number of clusters in a clustering algorithm: Example the k in k-nearest

neighbors

Tuning hyperparameters is a crucial step in the machine learning workflow,
as it can significantly impact the model’s performance and generalization

ability.



73

References

[1]

[8]

[10]

[11]

H. Brendan McMahan, Gary Holt, and Google Inc. “Ad click predic-
tion a view from the trenches”. In: KDD ’13: Proceedings of the 19th
ACM SIGKDD international conference on Knowledge discovery and data
mining 62 (Aug. 2013), pp. 1222-1230. URL: https : //doi . org/10.
1145/2487575.2488200.

Mitra P. Caragea C Silvescu A. “Protein sequence classification using
teature hashing”. In: Proteome Sci (June 2012). DOI: https://doi.org/
10.1186/1477-5956-10-51-514.

Qinfeng Shi et al. “Hash Kernels for Structured Data”. In: Journal of
Machine Learning Research (Oct. 2009), pp. 2615-2637. URL: https://
www. jmlr.org/papers/volumel0/shi09a/shi09a. pdf.

Seker Sadi and Mert Cihan. “A Novel Feature Hashing for Text Min-
ing”. In: Journal of Technical Science and Technologies 2 (June 2013), pp. 37—
40. URL: https://www.researchgate.net/publication/257652600_A_
Novel_Feature_Hashing_for_Text_Mining.

Kilian Weinberger et al. “Feature Hashing for Large Scale Multitask
Learning”. In: ICML "09: Proceedings of the 26th Annual International Con-
ference on Machine Learning (June 2009), pp. 1113-1120. URL: https://
dl.acm.org/doi/10.1145/1553374.1553516.

Dimitris Achlioptas. “Database-friendly random projections: Johnson-
Lindenstrauss with binary coins”. In: Journal of Computer and System
Sciences 66 (2003) 671-687 66 (July 2002), pp. 671-687. URL: http: //
www.elsevier.com/locate/jcss.

Sanjoy Dasgupta. “Experiments with Random Projection”. In: UAI "00:
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence
(Jan. 2013). URL: https://doi.org/10.48550/arXiv.1301.3849.

Shai Shalev-Shwartz. “Online Learning and Online Convex Optimiza-
tion”. In: Foundations and Trends® in Machine Learning 4.2 (2012), pp. 107-
194. 1SSN: 1935-8237. DOI: 10.1561/2200000018. URL: http://dx.doi.
org/10.1561/2200000018.


https://doi.org/10.1145/2487575.2488200
https://doi.org/10.1145/2487575.2488200
https://doi.org/https://doi.org/10.1186/1477-5956-10-S1-S14
https://doi.org/https://doi.org/10.1186/1477-5956-10-S1-S14
https://www.jmlr.org/papers/volume10/shi09a/shi09a.pdf
https://www.jmlr.org/papers/volume10/shi09a/shi09a.pdf
https://www.researchgate.net/publication/257652600_A_Novel_Feature_Hashing_for_Text_Mining
https://www.researchgate.net/publication/257652600_A_Novel_Feature_Hashing_for_Text_Mining
https://dl.acm.org/doi/10.1145/1553374.1553516
https://dl.acm.org/doi/10.1145/1553374.1553516
http://www.elsevier.com/locate/jcss
http://www.elsevier.com/locate/jcss
https://doi.org/10.48550/arXiv.1301.3849
https://doi.org/10.1561/2200000018
http://dx.doi.org/10.1561/2200000018
http://dx.doi.org/10.1561/2200000018

74 References

[12] George Papamakarios. “Comparison of Modern Stochastic Optimiza-
tion Algorithms”. In: (2014).

[14] Jonas Stenbeaek Hegner, Joakim Sindholt, and Alberto Nannarelli. “De-
sign of power efficient FPGA based hardware accelerators for financial
applications”. In: (2012), pp. 1-4. DOI: 10.1109/NORCHP.2012.6403096.

[23] Mahima Singh and Deepak Garg. “Choosing Best Hashing Strategies
and Hash Functions”. In: 2009 IEEE International Advance Computing
Conference (2009), pp. 50-55. DOI: 10.1109/IADCC.2009.4808979.

[33] Roy E. Welsch David A. Belsley Edwin Kuh. “Regression Diagnostics:
Identifying Influential Data and Sources of Collinearity”. In: (1980).
DOI: 10.1002/0471725153.


https://doi.org/10.1109/NORCHP.2012.6403096
https://doi.org/10.1109/IADCC.2009.4808979
https://doi.org/10.1002/0471725153

75

External Links

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

“numpy.linalg.svd”. In: (). URL: https : / /numpy . org/doc/stable/
reference/generated/numpy.linalg.svd.html.
“sklearn.decomposition.TruncatedSVD”. In: (). URL: https://scikit-
learn . org/stable/modules/generated/sklearn . decomposition .
TruncatedSVD.html.

“sklearn.decomposition.PCA”. In: (). URL: https : //scikit - learn.
org/stable/modules/generated/sklearn.decomposition.PCA.html.
“Why Do Machine Learning Models Die In Silence?” In: (). URL: https:
/ /www . kdnuggets . com/2022/01/machine - learning - models-die-
silence.html.

“MLOps Professional”. In: (). URL: https : //learning. intel . com/
Developer/pages/133/mlops-professional.

“LIBSVM Data: Classification (Binary Class)”. In: (). URL: https://
www.csie.ntu.edu.tw/"cjlin/libsvmtools/datasets/binary.html.
“UC Irvine Machine Learning Repository”. In: (). URL: http://archive.
ics.uci.edu/datasets.

“Communication Performance of PAM vs. QAM Handout”. In: (). URL:
https://users.ece.utexas.edu/ bevans/courses/rtdsp/handouts/
PAMvsQAMHandout . pdf.

“Methods for handling missing values”. In: (). URL: https://gallery.
azure.ai/Experiment/Methods-for-handling-missing-values-1.
“Cross-validation, stratified-k-fold”. In: (). URL: https://scikit-1learn.
org/stable/modules/cross_validation.html#stratified-k-fold.
“Python extension for MurmurHash (MurmurHash3), a set of fast and
robust hash functions.” In: (). URL: https://pypi.org/project/mmh3/.
“Built-in Functions Hash”. In: (). URL: https://docs.python.org/3/
library/functions.html#hash.

“Random Projections Sparse sklearn”. In: (). URL: https://scikit -
learn.org/stable/modules/generated/sklearn.random_projection.

SparseRandomProjection.html.


https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://www.kdnuggets.com/2022/01/machine-learning-models-die-silence.html
https://www.kdnuggets.com/2022/01/machine-learning-models-die-silence.html
https://www.kdnuggets.com/2022/01/machine-learning-models-die-silence.html
https://learning.intel.com/Developer/pages/133/mlops-professional
https://learning.intel.com/Developer/pages/133/mlops-professional
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
http://archive.ics.uci.edu/datasets
http://archive.ics.uci.edu/datasets
https://users.ece.utexas.edu/~bevans/courses/rtdsp/handouts/PAMvsQAMHandout.pdf
https://users.ece.utexas.edu/~bevans/courses/rtdsp/handouts/PAMvsQAMHandout.pdf
https://gallery.azure.ai/Experiment/Methods-for-handling-missing-values-1
https://gallery.azure.ai/Experiment/Methods-for-handling-missing-values-1
https://scikit-learn.org/stable/modules/cross_validation.html#stratified-k-fold
https://scikit-learn.org/stable/modules/cross_validation.html#stratified-k-fold
https://pypi.org/project/mmh3/
https://docs.python.org/3/library/functions.html#hash
https://docs.python.org/3/library/functions.html#hash
https://scikit-learn.org/stable/modules/generated/sklearn.random_projection.SparseRandomProjection.html
https://scikit-learn.org/stable/modules/generated/sklearn.random_projection.SparseRandomProjection.html
https://scikit-learn.org/stable/modules/generated/sklearn.random_projection.SparseRandomProjection.html

76 External Links

[27] “XC7A100T-1CSG324C”. In: (). URL: https://www.xilinx-adm. com/
XC7A100T-1CSG324C. htm7gad_source=1.

[28] “Cportof Murmur3 hash”. In: (). URL: https://github.com/PeterScott/
murmura3.

[31] “lfsr Documentation”. In: (). URL: https://media.readthedocs.org/
pdf/pylfsr/latest/pylfsr.pdf.

[32] “Linear Feedback Shift Registers in Virtex Devices”. In: (). URL: https:
//docs.xilinx.com/v/u/en-US/xapp210.

[34] “Understanding TF-IDF for Machine Learning”. In: (). URL: https://
www . capitalone . com/tech/machine-learning/understanding-tf -
idf/.

[35] “Dropping common terms: stop words”. In: (). URL: https://nlp.
stanford . edu/ IR - book / html / htmledition / dropping - common -
terms-stop-words-1.html.

[36] “What are recurrent neural networks?” In: (). URL: https://www.ibm.
com/topics/recurrent-neural-networks.

[37] “7 popular activation functions”. In: (). URL: https://towardsdatascience.
com/7-popular-activation-functions-you-should-know-in-deep-

learning-and-how-to-use-them-with-keras-and-27b4d838dfe6.


https://www.xilinx-adm.com/XC7A100T-1CSG324C.htm?gad_source=1
https://www.xilinx-adm.com/XC7A100T-1CSG324C.htm?gad_source=1
https://github.com/PeterScott/murmur3
https://github.com/PeterScott/murmur3
https://media.readthedocs.org/pdf/pylfsr/latest/pylfsr.pdf
https://media.readthedocs.org/pdf/pylfsr/latest/pylfsr.pdf
https://docs.xilinx.com/v/u/en-US/xapp210
https://docs.xilinx.com/v/u/en-US/xapp210
https://www.capitalone.com/tech/machine-learning/understanding-tf-idf/
https://www.capitalone.com/tech/machine-learning/understanding-tf-idf/
https://www.capitalone.com/tech/machine-learning/understanding-tf-idf/
https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/dropping-common-terms-stop-words-1.html
https://www.ibm.com/topics/recurrent-neural-networks
https://www.ibm.com/topics/recurrent-neural-networks
https://towardsdatascience.com/7-popular-activation-functions-you-should-know-in-deep-learning-and-how-to-use-them-with-keras-and-27b4d838dfe6
https://towardsdatascience.com/7-popular-activation-functions-you-should-know-in-deep-learning-and-how-to-use-them-with-keras-and-27b4d838dfe6
https://towardsdatascience.com/7-popular-activation-functions-you-should-know-in-deep-learning-and-how-to-use-them-with-keras-and-27b4d838dfe6

	Abstract
	Περίληψη
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Related work
	Motivation
	Feature Selection
	Decomposition Techniques
	Feature Hashing
	Random Projections

	Learning Algorithm
	Gradient-based methods
	Regularization (L1 and L2)
	Online learning and concept drift

	FPGA
	Metrics
	Confusion Matrix
	Accuracy
	Precision
	Recall
	F-score

	Navigating Today's Infrastructure Landscape

	Modelling and Algorithm
	Navigating Challenges in Initial Experiments
	Decomposition Techniques

	Prepossessing data
	Data nature/type
	Missing values
	Causation vs Correlation
	Dataset Selection approach
	Dataset exclusion criteria

	Test set up
	Data formatting
	Dataset
	Procedure
	Test evaluation

	Feature Hashing
	Hash function
	Hash Arguments
	Algorithm

	Random projections
	Gaussian Random Projection
	Sparse Random Projection

	Prediction model
	Conclusion on Metric Selection

	FPGA
	Essential Aspects of HLS Code
	HLS code
	FPGA chip
	Purpose
	Default module
	Input data
	Top level

	Learner Unit
	Fit function
	Prediction Function

	Dim Reduction - Feature Hashing
	Hash trick
	Murmur Hash 3

	Dim Reduction - The Random Projection
	Gaussian Random Projection
	Sparse Random Projection
	LFSR - linear feedback shift register
	LFSR - use case


	Results
	Results breakdown
	A brief of table column name explanation

	Farm ads
	Gisette
	Dexter
	Real sim
	Discussion

	Conclusion and Future work
	Conclusion
	Future Work

	Text data
	An overview of hashing for text
	Dimensions
	N-gram models
	Outcome for text based data


	Activation function
	Hyperparameters
	References

