
Full System Architectural Simulation on
the HARP Integrated CPU-FPGA Platform

Konstantinos N. Kyriakidis

Academic year
2018 – 2019

Master thesis submitted under the supervision of
Professor Dr. Dionisios N. Pnevmatikatos

the co-supervision of
Professor Dr. Apostolos Dollas

Associate Professor Dr. Ioannis Papaefstathiou

in order to be awarded the Degree of
Master of Science in Electrical and Computer

Engineering
Major in Computer Hardware Architecture

text

This is done in order to skip the first half of the page

The author gives permission to make this Master’s dissertation available for consultation. For any
other use case, the copyright terms have to be respected, in particular with regards to the obliga-
tion to state explicitly the source when quoting results from this Master’s thesis. The copyrights of
the ModelSim logo [1], the Intel-FPGA logo [2], the CPU-FPGA logo [3], and the Technical Uni-
versity of Crete logo [4] used for the cover, belong to Google Images. The copyrights of the OPAE
logo used in the cover belong to [5] and the copyrights of the Quartus Prime logo used in the
cover belong to [6]. Every figure not cited, was created and is owned by Konstantinos Kyriakidis.
July/29/2019

Title: Full System Architectural Simulation on the HARP Integrated CPU-FPGA
Platform
Author: Konstantinos N. Kyriakidis
Master of Science in Electrical and Computer Engineering
Academic year: 2018 – 2019

Simulation is vital when developing novel software or hardware systems. Cycle accurate ar-
chitectural simulators are extremely important tools for verifying experimental hardware plat-
forms, system profiling, and advanced software development. Their main disadvantage is limited
throughput when simulating large systems with multiple processing units and peripherals.

This Master’s thesis describes the development process of a series of HW components for
Intel’s HARP CPU-FPGA hybrid platform, that will be used to synthesize a Trace-Driven FPGA-
Accelerated Full-System Architectural Simulator. Essential development steps and protocols, that
are required to incorporate accelerators on the HARP platform, are also highlighted. The devel-
oped modules, facilitate high-performance HW components that can accurately and efficiently
simulate a highly configurable L1 Cache and 3 highly configurable Branch Predictor HW struc-
tures.

Optimal performance for the proposed HW simulator can be achieved when executed in coor-
dination with a fast functional simulator running on SW. A state of the art API exports trace-data
from the functional simulation at run time, in order to load the HW modules. Using these data, the
HW modules can accurately and efficiently execute architectural simulation. Apart from simula-
tion results and timing statistics, the models can generate the system’s state at different timestamps,
depending on the executed traces. These architectural checkpoints can later be used to either vali-
date the functionality of the components, determine the overall system’s behavior using the sampling
technique, execute new architectural simulations, or to warm-up other full system simulations.

Keywords: Architectural Simulation, Trace-Driven, Sampling, Hybrid Platform, CCI-P, System-
States, OPAE, HARP, AFU, ASE, FIU, HW, SW, BPs, API

I

Acknowledgements
First of all, I would like to thank my parents N. Kyriakidis and A. Ariantzidou for supporting me
throughout my studies. I would also like to thank my colleagues G. Pekridis and V. Amourgianos
with whom we worked and studied together. Furthermore, I would like to thank the Intel Labs
for granting us access in order to develop and test on their environment (vLabs [7]). Finally, I
would like to thank the Foundation for Research and Technology - HELLAS (FORTH) [8], the
Pancretan Endowment Fund [9] and, of course, my supervisor Dionisios N. Pnevmatikatos for
entrusting me with this particular research assignment and for helping me receive 3 scholarships
and 2 grants:

1. Postgraduate Student-Researcher Scholarship, FORTH, 10-12/2017

2. Postgraduate Student-Researcher Scholarship, FORTH, 1-6/2018

3. FORTH Grant to attend the ACACES 2018 summer school in Fiuggi, Italy, 8-14.7.2018

4. Postgraduate Student-Researcher Scholarship, FORTH, 7-12/2018

5. Pancretan Endowment Fund Grant, Award of Excellence, 2/2019

II

Table of Contents
Abstract I

Acknowledgements II

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Approach, Goals and Contributions . 1

2 Related Work 4
2.1 Dinero IV . 4
2.2 SimpleScalar . 4
2.3 A Full System Simulator for dReDBox . 4
2.4 FireSim . 5
2.5 ProtoFlex . 5
2.6 Simics . 6
2.7 The gem5 Simulator . 7
2.8 Multi-ARM Architectural Simulation on HARP 7
2.9 COSSIM . 8

3 The HARP Platform 9
3.1 The CPU-FPGA Hybrid Chip . 9
3.2 The CCI-P . 9

4 The Tools 11
4.1 The OPAE . 11
4.2 Intel’s FPGA BBB . 11
4.3 Development Phase - The ASE simulation and ModelSim 11
4.4 Bitstream Generation - The Quartus Prime Pro 12

5 The Cache Model 14
5.1 Purpose and Functionality . 14
5.2 The Cache Model’s Architecture . 15

5.2.1 The Cache Write Request . 16
5.2.2 The Cache Read Request . 16

5.3 The Cache Memory: Size, Structure and Replacement Policies 17
5.4 The Cache Controller . 19
5.5 Generating Trace Files for Cache Simulations 21
5.6 Testing On ModelSim . 22
5.7 Hardware Verification Using the Dinero IV Cache Simulator 22

6 The Branch Prediction Models 24
6.1 Purpose and Functionality . 24
6.2 The Input Trace File . 25
6.3 The Branch Target Buffer . 26
6.4 The One-Level (n-bit or Bimod) Predictor . 26

6.4.1 Module Architecture . 27
6.5 The 2-Level Predictor . 29

III

6.5.1 Module Architecture . 30
6.6 The Tournament Predictor . 31

6.6.1 Module Architecture . 32
6.7 SimpleScalar . 34

6.7.1 Utilizing Key Features for Branch Prediction Development 34
6.7.2 Benchmarking on SimpleScalar . 35
6.7.3 Extracting a Trace-File . 36

6.8 The Hardware Model’s Verification . 37
6.8.1 Executing on ModelSim . 37
6.8.2 Comparing the Results . 37

7 Hardware Integration 40
7.1 Prerequisites and workflow . 40
7.2 Building the SW . 41
7.3 Building the HW - AFU . 44

7.3.1 DDR Read and Write Requests . 45
7.3.2 The Read FSMs . 47
7.3.3 The Feed FSMs . 49
7.3.4 The Write FSM . 51
7.3.5 The State FSM . 52

7.4 ASE Simulation . 59
7.5 Bitstream Generation and FPGA Execution . 60

8 Results and Data Analysis 62
8.1 The Branch Predictor (BP) Simulator Results 62
8.2 The Combined BR and Cache Simulator Results 64
8.3 The Full State Simulator Results . 66
8.4 Analysing the Data . 68

9 Conclusion and Future Work 73

Bibliography 76

Appendices 76

A ASE Simulation on vLabs 77

B RTL Synthesis and FPGA Execution on vLabs 78

C Glossary 79

D Related Poster 80

IV

Chapter 1

Introduction
1.1 Background and Motivation

Accurate architectural simulation is a critical step in model-driven engineering and highly impor-
tant for product certification. While prototypes can be very inefficient in terms of time and cost,
full system simulation appears as a very promising candidate. Its main objectives are to ensure
the reliability and safety of newly developed platforms or products and also to lower the time
to market by ensuring a short validation cycle.

HW-SW co-simulation is able to simulate hardware platforms at clock and gate level. It is
used to verify both the architecture and the software by simulating hardware behavior with respect
to the software. However, not all simulators are capable of simulating every hardware detail, or,
they do not do it intentionally. There are many possible simulation scenarios, depending on the
simulator engine:

1. Simulators like OVP/Imperas [10] and DineroIV [11] ’sacrifice’ accuracy for time, by exe-
cuting fast functional simulation and references respectively.

2. On the other hand, gem5 [12] and SimpleScalar [13] trade time for accuracy.

3. The gem5 simulator is a modular platform for computer-system architecture research, en-
compassing system-level architecture as well as processor micro-architecture. It can per-
form both fast simulations and heavy-duty detailed timing simulations.

4. Some engines also incorporate sampling. Timing simulation can be a very time consuming
process. The sampling technique arbitrarily selects and executes only a number of sec-
tions from an entire benchmark. The simulation results from each execution are combined
to create statistics for the entire simulated program, thus massively reducing the verifica-
tion/execution time.

Some key benefits of accurate HW-SW co-simulation are:

1. SW development can take place way before the actual hardware platform is ready.

2. Validation is less costly and faster because engineers can execute multiple simulations at the
same time rather than sharing a single or a few HW prototypes.

3. While correct HW module initialization and internal observation can be easily inspected
from a simulated environment, it is hardly done on an actual platform prototype.

4. Simulation results from multiple simulators can be combined to cross-check and validate a
novel platform design.

1.2 Approach, Goals and Contributions

The main disadvantages of current full system simulators is limited throughput when simulating
large systems with multiple processing units and/or peripherals. Cycle-accurate HW models writ-
ten in VHDL and SystemVerilog HDLs are much too slow for HW-SW co-validation and often

1

require a higher level of abstraction. However, the ideal scenario is to obtain 100% accuracy with
realistic simulation performance, meaning that simulations need to run in minutes or hours but not
days.

Trace driven simulation is a great candidate for this type of architectural simulation. It is a
process performed by looking at traces of program execution or system component access with
the purpose of performance prediction. Using the sampling technique, the performance of very
large applications can be accurately estimated based on the execution traces of much smaller
batches. Along this process, a system checkpoint can be exported for each batch. Data from these
checkpoints can be used for system verification, simulation and execution warm-ups and also
to restart long executions processes that were either paused or stopped.

It is hard to build a complete system from scratch due to the complexity of many components.
However, this Master’s Thesis describes the development of highly accurate HW modules capable
of accelerating architectural HW simulation procedures while also exporting a series of valuable
data, that can later be used on future simulations or to estimate the system’s performance. During
this research, this series of developed modules were combined to integrate 3 standalone sim-
ulators, that facilitate high-performance hardware components to simulate a system’s Cache and
Branch Prediction procedures accurately and efficiently.

Although simulator development usually takes into consideration the platform portability, a
HW system is much faster if it is designed specifically for a target hardware to maximize speed
and resource utilization. All 3 simulators were developed to run on Intel’s HARP CPU-FPGA
hybrid platform [14] [15] [16]. This platform was selected as it is an extremely promising piece
of hardware due to its 12-core Xeon processor and integrated Arria 10 GX1150 FPGA connected
with an QuickPath Interconnect (QPI) coherent link and 2 PCIe*8 links.

The 1st simulator, named ’BP Simulator’, is a combination of HW modules that can accu-
rately simulate a highly configurable One-Level, 2-Level Adaptive or Tournament Predictor. This
platform reads traces from an input trace file written in a predifined format, processes these traces
and exports simulation results regarding these models.

The 2nd simulator, named ’BP+Cache Simulator’, extends the functionality of the 1st sim-
ulator by including the feature of simulating a highly configurable L1 Cache Module. Once again,
the platform reads traces from 2 input trace files (one for the BPs and One for the Cache) written in
a predifined format, processes these traces and exports simulation results regarding these models.

Finally, the 3rd simulator, named Full State Simulator, is an extended BP+Cache Simula-
tor that is capable of:

• Exporting a system’s state containing data from each simulated memory module at a par-
ticular point in time. These data can later be used for future sampling simulations, as a
system warm-up or simply to verify the contents of each memory module at a particular
execution timestamp.

• Providing simulation statistics for each simulated component. This is a great way to mon-
itor each module independently for evaluation and verification of correct functionality.

• Exporting timing statistics for the whole or parts of a benchmarking process. Partial statis-
tics from different timestamps can be used to estimate the overall system performance (sam-
pling), thus massively reducing the total simulation time.

• High configurability of the simulated components using the Verilog Header source files.
The user can simulate many hardware configurations simply by altering the key parameters
of the cache and the branch predictor modules.

2

• Exporting Accurate and Verified Simulation Results. All 3 simulators were validated us-
ing verified ’golden-model’ simulators. This validation is thoroughly discussed in chapters
5 and 6.

3

Chapter 2

Related Work
2.1 Dinero IV

Dinero IV [17] [11] is a single-thread cache simulator for memory reference traces. It is neither
a timing simulator, as there is no notion of simulated time or cycles, nor it is not a functional
simulator, as data and instructions do not move in and out of the caches. The primary result of a
Dinero IV Simulation is hit and miss information.

The Dinero IV basic idea is to simulate memory hierarchy consisting of various caches con-
nected as one or more trees. The user can set the various parameters of each cache model, like
the architecture, policy, and associativity. During initialization, the configuration to be simulated
is built up, one cache at a time. For the requirements of this Master’s Thesis, the Dinero IV was
used to validate the custom Cache model for a large number of input traces. More details can be
found in section 5.7.

2.2 SimpleScalar

SimpleScalar [13] was created by Todd Austin [18] in 2004, while he was a Ph.D. student at the
University of Wisconsin in Madison. It is a system software infrastructure used to build mod-
eling applications for program performance analysis, detailed micro-architectural modeling, and
hardware-software co-verification for a range of modern processors and systems. This tool-set
includes sample simulators ranging from a fast functional simulator to a detailed processor model
that support non-blocking caches, speculative execution, and branch prediction.

The SimpleScalar tools are used widely in hardware research. As an example, in 2000 more
than one-third of all papers published in top computer architecture conferences used the Sim-
pleScalar tools to evaluate their designs. Some other key features are visualization tools, statistical
analysis resources, and debug and verification infrastructure.

SimpleScalar simulators can emulate the Alpha, PISA, ARM, and x86 instruction sets, while
the host interface module permits cross-endian emulation. It also builds on most 32-bit and 64-
bit versions of Linux-based and Windows-based operating systems. For the requirements of this
Master’s Thesis, SimpleScalar was used to validate the custom Branch Predictor models and also
to generate input trace files for the verification-testing phase. More details can be found in section
6.7.

2.3 A Full System Simulator for dReDBox

The Full System Simulator for Disaggregated Computing Platforms and Cloud Data Centers [19]
was developed in 2017 by the Micro-architecture and Hardware Laboratory of the Electrical and
Computer Engineering School at the Technical University of Crete in Greece, as part of the dReD-
Box [20] disaggregated data center architecture research program.

The focus was targeted at creating a full system simulator platform, in order to test and eval-
uate a dReDBox server tray card before prototyping. One of the key contributions of this work is
early development evaluation potential as a virtual platform model can be developed far quicker

4

and cheaper than any hardware prototype. Another important aspect is observability, and control-
lability, of internal modules, complemented with accessibility, as prototype hardware designs tend
to restrict the amount of testing that can be performed.

This particular work was presented at the ACACES [21] 2018 summer school poster session
and was published in the session’s booklet. The poster can be found in Appendix D.

2.4 FireSim

FireSim (2019) [22] is an open-source, cycle-accurate, FPGA-accelerated full-system hardware
simulator that runs on Amazon’s EC2 F1 [22] cloud FPGAs. It is actively under development
by the Berkeley Architecture Research Group [23] of Electrical Engineering and Computer Sci-
ences Department at the University of California, Berkeley. FireSim is open-source and can be
downloaded from: github.com/firesim/firesim.

FireSim can simulate arbitrary hardware designs written in Chisel [24] like custom RTL pro-
cessors, accelerators, etc. and run them at near-FPGA-prototype speeds, while obtaining cycle-
accurate performance results (10-100MHz). A developer can also integrate custom software mod-
els for non-RTL components.

FireSim was originally developed to simulate data-centers by combining open RTL for RISC-
V processors with a custom cycle-accurate network simulation. It cycle-accurately simulates
RISC-V RocketChip-based clusters, with peripherals like disks and network interface cards. Also,
it also provides a Linux distribution compatible with the RISC-V systems, something that auto-
mates the process of including new workloads. Simulations run fast enough to interact with Linux
on the simulated system at the command line, like on a real computer. Users can even SSH into
simulated systems in FireSim and access the Internet from within them.

2.5 ProtoFlex

ProtoFlex [25] is a simulation architecture that uses FPGAs to accelerate full-system multiproces-
sor simulation and to facilitate high-performance instrumentation. FPGA approaches are generally
complex or require significant effort to provide full-system support. On the other hand, ProtoFlex
virtualizes the execution of many logical processors onto a number of execution engines on the
FPGA, thus eliminating the scaling shortcoming of other simulator platforms. Another key feature
is called transplanting, a technique that allows the FPGA to implement only the frequently en-
countered behaviors, while a software simulator complements the simulation engine by executing
all remaining behaviors.

Figure 2.1 – ProtoFlex Logical Processor Virtualization and the Transplanting Technique. Image
owned by [26]

Under ProtoFlex, a functional full system FPGA-based simulator called BlueSPARC was de-
veloped, that utilizes both processor virtualization and transplanting. BlueSPARC models the ar-
chitectural behavior of a 16-CPU UltraSPARC III SMP symmetric multiprocessor server, hosted

5

https://github.com/firesim/firesim

on a single Xilinx [27] Virtex-II XCV2P70 FPGA. Alongside BlueSPARC, a PowerPC or Mi-
croblaze runs on the FPGA to simulate unimplemented SPARC instructions (~10-50usec). On the
host PC, the SIMICS full system simulator, simulates devices, memory-mapped I/O and DMAs
(~500-1000usec). The outline of this simulator is shown in figure 2.2.

Figure 2.2 – ProtoFlex BlueSPARC Simulator. Image owned by [26]

2.6 Simics

Wind River [28] Simics creates a shared platform for software development by simulating a full
target system. Simics can run unmodified target software from a physical target system, meaning
the same boot loader, BIOS, firmware, operating system, board support package (BSP), middle-
ware, and applications. It offers flexibility and customizability eliminating the restrictions of
physical hardware. It is stated that it can simulate any size or complexity of a single computer
or distributed system and even data and mobile networks.

Figure 2.3 – Simulating an entire target system using Simics. Image owned by [28]

The core of Simics is a fast instruction set simulator for the target processor. It also simulates
memories, peripheral devices, interconnects, disks, and networks that complete a system model
that is indistinguishable from a real target platform. The simulation can scale to simulate very
large systems using multi-core hosts and even clusters of hosts. Because virtual platforms can
be created and shipped way quicker than prototype hardware or silicon, vendors can use Simics
to create multiple virtual platform models and build software to demonstrate the system’s results
while also providing early feedback to the developers for features and implementation, allowing

6

changes to be incorporated into the final shipping product. An overview of a Simics full system
simulation is shown in figure 2.3.

2.7 The gem5 Simulator

The gem5 [12] simulator is a modular platform for computer-system architecture research, as well
as processor micro-architecture. It provides multiple interchangeable CPU models, a NoMali GPU
and a fully integrated GPU model. It features a detailed event-driven memory system including
caches, crossbars, snoop filters, and a fast and accurate DRAM controller model. It also facilitates
a trace based CPU for memory-system performance exploration. Its main disadvantage is that
despite being a very heavy-duty full system simulator it runs, almost entirely, single threaded.

Gem5 can simulate homogeneous and heterogeneous multi-core platforms for multiple ISAs:

• Alpha : DEC Tsunami system

• ARM : can boot unmodified Linux and Android

• SPARC : UltraSPARC T1

• x86 : standard PC platform

Multiple systems can be instantiated within a single simulation process, with the user being
able to extract power and energy consumption data from the detailed simulation execution. The
gem5 runs on most operating systems and platform and comes under a Berkeley-style open source
license (use anything but incorporate the copyrights). More information about this simulator can
be found here [12].

2.8 Multi-ARM Architectural Simulation on HARP

This work is currently under development by the Technical University of Crete’s Microprocessor
and Hardware Laboratory and it complements the work described in this dissertation. The idea is to
develop and integrate multiple ARM processors on the HARP hybrid platform. These processors
combined with this work’s BPs and Cache models will later be used to complete a hybrid full
system simulator.

When completed, this platform will be able to handle 2 simulation scenarios. First, a QEMU-
like simulator will execute fast functional simulation on the XEON CPU. For different timestamps
set by the user, a state of the art SW API will extract trace data from the functional simulator in
order to ’feed’ the HW modules. That way, heavy-duty full system simulation can be initiated in
order to export timing statistics and the system’s state. On the other hand, the second implementa-
tion will include a QEMU-like simulator running entirely on the FPGA (ARM-Cache-BPs-Cache
Model(L1-L2)) and only the complex instructions like I/O will be handled by the XEON via the
transplanting technique.

With the completion of this work and the work described in this Master’s Thesis, the final full
system simulator will be capable of handling both of the pre-mentioned scenarios. It will also
be able to provide different simulation data depending on the selected simulator implementation
and also help evaluate which is the better approach in a quest to determine the best method to
accelerate full system simulators using FPGAs or Hybrid Chips like HARP. The block diagram
describing the finished product of the hybrid full system simulator is depicted in figure 2.4.

7

Figure 2.4 – The Complete Full-System Simulator Block Diagram.

2.9 COSSIM

COSSIM [29] is a Cyber-Physical Systems (CPS) Simulator Framework. It is the first known
open-source, high-performance simulator that handles holistically system-of-systems including
processors, peripherals and networks. This approach helps HW and SW developers simulate
Cyber-Physical Systems (CPS) and Highly Parallel Systems (HPS).
COSSIM is built on top of several well-established simulators:

1. GEM5 [12], to simulate the digital components of each processing node.

2. OMNeT++ [30], to simulate the networking infrastructure.

3. McPAT [31], to provide energy and power consumption estimations of the processing nodes.

4. MiXiM (OMNeT++ addon), to estimate the energy consumption of the network.

To bind the whole framework together, COSSIM employs the HLA architecture through the
open-source CERTI package. Additionally, an Eclipse-based GUI, provides easy simulation set-
up, execution and results visualization. More information can be found on the COSSIM Tutorial
on YouTube.

8

https://www.youtube.com/watch?v=QZTwQv0xqhk
https://www.youtube.com/watch?v=QZTwQv0xqhk

Chapter 3

The HARP Platform
3.1 The CPU-FPGA Hybrid Chip

As mentioned before, the hardware device that will be hosting the simulator described in this
dissertation is Intel’s Xeon-FPGA Hybrid Chip. The new generation of these hybrid chips is
called Xeon Scalable Processors (SP) with integrated FPGA [15]. However, the work described
in this thesis was performed on a 12-core (24-thread) E5-2628L v4 Xeon CPU at 1.6-2.20GHz
with 75W TDP [32]. The FPGA is an Arria 10 GX 1150 [16] rated at 70W. With 427200 Adaptive
Logic Modules (ALUs), 1708800 Registers and approximately 6,3 MB of memory, it is an ideal
candidate for a custom full system simulator capable of accurately simulating large multicore
target hardware designs.

Figure 3.1 – Intel Xeon-FPGA Hybrid Chip. Image Owned by [32]

For the CPU-FPGA communication, the HARP hybrid chip utilizes a single QuickPath In-
terconnect (QPI) coherent link, as well as 2 PCIe 3.0 x8 links. The QPI is capable of 8 GT/s QPI
(4000 MHz), meaning a unidirectional throughput of 14.9 GiB/s (bi-directional ~30 GiB/sec),
with 64 Bytes/transfer. Using QPI, the CPU and the FPGA can be tightly coupled to each other
and share the main memory. For all intents and purposes they appear like as a single processor
as far as the operating system and applications are concerned. The Xeon Processor, also has two
more QPI (0 and 1) channels that are used to make a two-socket system. Access to this particular
platform has been granted to the Micro-architecture and Hardware Laboratory of the Technical
University of Crete via Intel’s vLabs [7].

3.2 The CCI-P

The CCI-P [33] is a host interface bus for the Accelerator Functional Unit (AFU) [34] with sep-
arate header and data wires. It is used to connect the AFU to the FPGA Interface Unit (FIU)
within the Arria 10 GX 1150 FPGA. Custom accelerators are loaded on the AFU section, which
is the FPGA’s Partially Re-configurable Region (PRR), whereas the FIU is a static integration on
the FPGA. Many AFU registers and wires are mandatory to design a CCI-P compliant AFU and
they are all described in [33].

9

https://www.nextplatform.com/2018/05/24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf

CCI-P implements to Main Memory (CPU Cache and DDR) and Memory Mapped I/O (MMIO)
address spaces. Requests from the AFU to the main memory are called upstream requests. The
I/O memory is implemented as CCI-P requests from the host to the AFU or the opposite, and its
implementation is up to the developer. The CCI-P defines the format of each memory request.
Requests to the MMIO are called downstream requests and an AFU’s MMIO address space is
fixed at 256 KB.

Figure 3.2 – Integrated FPGA Platform and Memory Hierarchy. Image owned by [33]

As regards to the CCI-P signals, there are 2 channels: Tx and Rx. From the AFU’s point of
view, Tx requests flow from the AFU to the FIU opposite to Rx that flow from the FIU to the AFU.
Each CCI-P signal must be synchronous to the platform’s pClk (400MHz), pClkDiv2 (200MHz)
or pClkDiv4 (100MHz). It is important to note that by configuring the request header, the AFU
can issue a read or write request for multiple cache-lines (512bits) using a single Rx/Tx request.
Also, each CCI-P request has its own validation/confirmation response signal so that the AFU
knows if this particular request has been successfully handled. Other important features like the
one mentioned before can be found in the full CCI-P guide [33]. However, the use of the CCI-P
requests are also described in section 7.3.1.

Figure 3.3 – CCI-P signals. Image owned by [33]

10

Chapter 4

The Tools
4.1 The OPAE

Open Programmable Acceleration Engine (OPAE) [35] is a software infrastructure that is used to
simplify the integration of programmable accelerators, such as FPGAs, into software applications
and environments. Its main goal is to accelerate FPGA adoption. It is a collection of drivers, user-
space libraries, and tools to manipulate and reconfigure (re)programmable accelerators. OPAE is
designed to support a layered, common programming model across different platforms and devices
and is the default software stack for the Intel’s Xeon-FPGA hybrid chip. It has 4 main parts:

• The OPAE Software Development Kit (OPAE SDK),

• The OPAE Linux driver for Intel’s Xeon-FPGA hybrid chip with the Arria 10 GX FPGA,

• The Basic Building Block (BBB) library for accelerating the AFU development phase.

• The AFU Simulation Environment (ASE) [34] for end-to-end simulation of the accelerator’s
RTL together with a software application or handshake program, using the OPAE C API.

4.2 Intel’s FPGA BBB

The best way to start developing on HARP is by using the Basic Building Blocks [36]. BBB is a
suite of application building blocks (sample AFUs and SW applications) and shims for developing
based on the CCI-P interface on Intel FPGAs. A Shim is a library that intercepts API calls and
changes the arguments passed, handles the operation or it can redirect the operation elsewhere.
The BBB repository tracks changes in the OPAE SDK and updates its blocks accordingly. Inside
the BBB directory, a developer can find multiple tutorials and reference source codes on CCI-P,
located inside the "samples" directory.

The BBB includes reference sample codes that developers can use or modify for their own
work. All current BBB are tested with supplied examples on an Ubuntu 14.04 64-bit OS machine
with an Integrated Xeon-FPGA. Also, every BBB is known to work with the OPAE AFU Sim-
ulation Environment (ASE). Several example AFUs are stored in the intel-fpga-bbb repository.
README files are also present, describing each example, listing the contained files and providing
instructions on how to build one. Furthermore, each example provides a script for setting up the
ASE simulator. Finally, some examples include instructions for Quartus synthesis 4.4.

4.3 Development Phase - The ASE simulation and ModelSim

ASE is a dual-process simulator. Process one is responsible for running the RTL simulation,
while the other, completes the AFU simulator by connecting the software with the RTL. This
unified simulation significantly reduces the AFU’s development time. As mentioned before, the
OPAE distribution includes the ASE. This kind of dual-process simulation is depicted in figure 4.1.
During the development phase, the developer utilizes C/C++ for the SW, Verilog/SystemVerilog

11

Figure 4.1 – ASE dual-process simulator overview. Image owned by [34]

for the RTL and an RTL simulator like Synopsys VCS-MX [37], ModelSim-SE [38] or QuestaSim
[39]. As regards to this dissertation, ModelSim was the RTL simulator of choice.

In detail, ASE provides 2 interfaces to deploy a custom IP on the Integrated FPGA Platform:

• Software: An OPAE API implemented in the C/C++.

• Hardware: The CCI-P specification and the AFU implemented in SystemVerilog.

The SW and the AFU RTL are developed in a single workflow. ASE also includes a behavioral
model of the FPGA Interface Manager (FIM) IP that provides immediate feedback on function-
ality during the development phase, that flags errors or warnings in the CCI-P protocol, memory
accesses or simply syntax errors.

Furthermore, the ASE presents a memory model to the AFU that tracks memory requested
as the accelerator’s workspace. The memory model can inform about illegal memory transactions
or requests to locations outside the memory spaces. However, it must be stated that a correct ASE
simulation does not guarantee a correct AFU synthesis. For more information about the ASE
functionality and capabilities, visit [34].

Regardless of the ASE, a developer can test custom IP cores before integrating them to the
AFU, simply by using the ModelSim GUI. As this type of simulations is bare-metal, it is essential
to state that before starting any ModelSim simulation, the user must first create and locate a cus-
tom testbench SystemVerilog file from the simulation’s ’work’ directory. This is done by selecting
’Design -> work -> <testbench_name>.sv’ from the ’Start Simulation’ prompt menu/window. Fur-
thermore, from the same menu, the user must include the altera_lnsim_ver library by selecting
’Libraries -> Search Libraries First -> Add -> altera_lnsim_ver’ 4.1.

4.4 Bitstream Generation - The Quartus Prime Pro

The Bitstream Generation phase follows the Development phase and requires the Quartus Prime
Pro [6], more specifically, version 16.0.0. Access to this Quartus, as well as the OPAE, was granted

12

to the Micro-architecture and Hardware Laboratory of the Technical University of Crete in Greece
by the Intel Labs or vLabs [7].

Figure 4.2 – ASE simulation and Quartus Synthesis overview. Image owned by [34]

Once AFU RTL and software are functionally correct, meaning that the simulation results
from ASE are correct, the user proceeds to Quartus synthesis. The OPAE provides utilities that
automate the synthesis procedure like the ’qsub-synth’ that starts the bitstream generation, place,
and route using the Quartus Prime Pro. One of the reasons that made working on vLabs very
efficient, was that their provided instance contained all the previously mentioned synthesis scripts
and utilities, as well as the all licenses required for the Quartus PRR bitstream synthesis, that
an AFU ’download’ requires.

A bitstream generation can take hours depending on the modules, complexity, area, and archi-
tecture of the AFU. After synthesis, many report/log files are exported. The developer can use
these files to correct problems regarding the AFU RTL or even the SW. If problems are detected,
the development phase should be restarted so that the model can be re-validated. If not, a timing
analysis is performed to check for setup and hold violations (slack) or clock closure (gated clocks)
using the timing report/log files. At last, and when the AFU is error-free, the generated (green)
bitstream can be downloaded. The HARP platform only allows configurations over its PRR, so
the developers only generate the so-called green bitstream or .gbs. The second half called the
blue bitstream is generated automatically or is already synthesized by the OPAE during the syn-
thesizing phase.

Quartus prime pro was also used to create the Arria 10 Altera Syncram Memories and the
Altera FIFOs used for the custom hybrid simulator described in this dissertation. As an exam-
ple, to generate the on-chip memory module, a set of simple steps should be followed on the
Quartus.v16.0.0 GUI. These steps are: ’IP Catalog -> Library -> Basic Functions -> On Chip
Memory -> RAM 1 port’ and finally, some parameter configurations like the target FPGA. In-
tel’s HARP hybrid platform uses the Arria 10 GX 1150 FPGA so the developer needs to locate
the model code: 10AX115U3F45E2SGE3 . Other module parameters like memory size(depth),
block format(cache-line length), or FIFO size were configured in such a way so that they could be
customized at compile time.

13

Chapter 5

The Cache Model
The cache model is a compilation of HW components that are combined in order to simulate the
cache behavior inside the Full State simulator presented in this Master’s Thesis. The model is
highly configurable as regards to the cache size, replacement policies, and cache structure. After
evaluating the most common L1 cache configurations, it was concluded that this model should be
able to simulate Direct mapped, 2-way, 4-way and 8-way structures, Write-Through (WRT) and
Write-Back (WRB) Policies, as well as Least-Recently-Used (LRU) and Most-Recently-Used
(MRU) Replacement Policies. This chapter contains all the information regarding this cache
model’s concept, architecture, functionality and verification for accurate cache simulations.

5.1 Purpose and Functionality

The Cache model was designed to meet the requirements of the future hybrid full-system simulator
discussed in this Master’s thesis, so, it only store tags without any data. It is capable of receiving
streaming address requests with interval 5 and determining cache hits and misses, just like the
actual HW. The address size of each request is a user-defined simulation parameter. The cache
controller is responsible for updating the cache memory, based on the user-defined cache structure
and replacement policies.

Figure 5.1 – Cache Model’s Block Diagram.

For a successful L1 Cache simulation, the SW API is responsible for reading a cache input
trace file and storing it on the DDR. The Cache model can then access these data via the AFU
in order to process a new line from the input trace file every 5CCs. After processing the input
data, the module exports simulation statistics about the simulated cache, as regards to the number
of read and write hits. The Cache model only processes address requests to export simulation
statistics, so it can be ’called’ multiple times for as many input trace files as the user desires.
When every input trace has been successfully processed, the Cache simulation is terminated.

14

5.2 The Cache Model’s Architecture

The cache model consists of a cache controller and a single port Arria 10 Altera syncram memory,
generated by the Quartus Prime Pro platform, specifically for the Arria 10 GX 1150 FPGA. These
two modules are connected via a Cache Simulator top-level module. All modules are developed
using Verilog HDL and SystemVerilog HDL. The cache model’s top level along with all input and
output signals is depicted in figure 5.2. The variable/signal names presented in this figure, are
the same names used in the SystemVerilog module files and will be used to described the system
throughout this chapter.

The memory module’s read enable (l1ren) is always a logic ’1’ in order to read a new cache-
line in each clock-cycle (CC) based on the cache address (l1addr) requested by the cache con-
troller. The cache address is based on the index of the address request and has as many bits as
the is index size (DIDX_W). For this cache model, the index size also determines the size of
the cache as regards to the number of cache-lines (memory depth). Based on a given cache
address, a new cache-line from the single port memory module is read by the cache controller.
This response is read via the l1cacheline registered input signal, which size varies depending on
the cache-line-lenght. Note that the l1store registered output signal, has the same length as the
l1cacheline and is used to update the cache’s memory module. To complete an update, the entire
cache-line is loaded, edited and then exported as a new cache-line.

For example, in a 4-way set associative cache model, the entire cache-line is loaded to the
cache controller. Then, the appropriate way is tested for hit or miss and the cache-line is up-
dated based on the replacement indexes and policy. Finally, the entire cache-line (all 4-ways and
complementing bits) are offloaded to the memory module to complete a cache update through the
l1store registered output along with a l1wen=’1’.

Figure 5.2 – Cache Model’s Top Level. The internal signals presented in this figure have the exact
same names as the ones in the Verilog and SystemVerilog files.

The cache controller determines whether the given address’ tag was a cache hit or miss
(cache_hit=’1’or’0’). This address consists of a tag plus and an index. Their sizes are user-
configurable using the DTAG_W and DIDX_W parameters. After determining a cache hit or
miss and selecting the correct way-to-change (explained in section 5.4), there is a series of possi-
ble steps that can be followed based on the cache’s configuration and type of the request that was
issued.

15

5.2.1 The Cache Write Request

In all possible cases of a Cache Write Request, the cache-line is updated with the new/given
address tag to the appropriate cache-way along with the valid bit set to ’1’, regardless of the
replacement policy or cache hit/miss. Also, the cache-line index that holds the least recently used
cache-way, is updated using a certain procedure inside the WRITE_CACHE state explained in
section 5.4. Finally, the cache line index that holds the most recently used cache-way, is updated
to indicate the way being updated.

1. Cache Write Hit in Write-Through Policy: In this case, the cache controller just has to
inform about a cache write hit using the dedicated cache_hit signal.

2. Cache Write Miss in Write-Through Policy: In this case, the cache controller informs
about a cache write miss and issues a Write Request to the DDR memory. This request
consists of a DDR write enable (dWEN=1), a DDR valid request signal (dvalid=1), and a
DDR address request (daddr), which is the same address (tag+index bits) requested from
the cache controller, that resulted in a cache write miss. Note that there is no use of the
cache’s dirty bit in the Write-Through Policy.

3. ’Dirty’ Cache Write Hit in Write-Back Policy: In this case, the cache controller informs
about a cache write hit and issues a Write Request to the DDR memory. Apart from the DDR
write enable (dWEN=1), and DDR valid (dvalid=1), the DDR address request (daddr)
consists of the cache-line’s tag that was replaced by the new one, concatenated with the
same index. The cache-line way’s dirty bit remains ’1’. Although there are no data, this
cache model emulates this functionality by, at least, updating the tag to the DDR.

4. ’Clean’ Cache Write Hit in Write-Back Policy: In this case, the cache controller informs
about a cache write hit and updates the cache-line way’s dirty bit to ’1’.

5. ’Dirty’ Cache Write Miss in Write-Back Policy: In this case, the cache controller informs
about a cache write miss and repeats the same DDR write request as in the ’Dirty’ Cache
Hit from case 3. Although there are no data in this cache model, this simulates that in case
of a dirty write miss, the cache controller needs to write-back the contents of the cache’s
way before updating it, otherwise, this information will be lost because it is not recorded on
the DDR.

6. ’Clean’ Cache Write Miss in Write-Back Policy: In this case, the cache controller informs
about a cache write miss and updates the cache-line way’s dirty bit to ’1’.

However, there is another case, that of a CACHE_READ_REQUEST.

5.2.2 The Cache Read Request

In all cases of a Cache Read Request, the cache-line index that holds the least recently used cache-
way is updated using a certain procedure inside the READ_CACHE state explained in section 5.4
and the index that holds the most recently used cache-way, is updated to indicate the way being
updated. The possible scenarios are:

1. Every Cache Hit: In this case, the cache controller just informs about a cache read hit.

2. Cache Read Miss in Write-Through Policy: In this case, the cache controller informs
about a cache read miss and issues a Read Request to the DDR memory. This request

16

consists of a DDR read enable (dREN=1), a DDR valid request signal (dvalid=1), and a
DDR address request (daddr), which is the same address (tag+index bits) requested from
the cache controller, that resulted in a cache read miss. Simulating a new cache-line received
from the DDR, the appropriate cache-line way is updated using the new tag and the way’s
valid bit is set to ’1’. Once again, there is no use of the cache’s dirty bit in the Write-Through
Policy.

3. ’Dirty’ Cache Read Miss in Write-Back Policy: In this case, the cache controller informs
about a cache read miss and issues a Write Request to the DDR memory. This request
consists of a DDR write enable (dWEN=1), a DDR valid request signal (dvalid=1), and a
DDR address request (daddr), which is the cache-line’s tag that was replaced by the new
one, concatenated with the same index. This simulates that in case of a dirty read miss,
the cache controller needs to write-back the contents of the cache’s way before updating it,
otherwise, this information will be lost because it is not recorded on the DDR. Simulating a
new cache-line received from the DDR, the appropriate cache-line way is updated using the
new tag, the way’s valid bit is set to ’1’ and the dirty bit is set to ’0’.

4. ’Clean’ Cache Read Miss in Write-Back Policy: In this case, the cache controller informs
about a cache read miss and issues a Read Request to the DDR memory. This request
consists of a DDR read enable (dREN=1), a DDR valid request signal (dvalid=1), and a
DDR address request (daddr), which is the same address (tag+index bits) requested from
the cache controller, that resulted in a cache read miss. Simulating a new cache-line received
from the DDR, the appropriate cache-line way is updated using the new tag, the way’s valid
bit is set to ’1’ and the dirty bit is set to ’0’.

After this step, either its a read or a write request, the cache controller is ready to receive a new
address request. This process can be repeated many times, in order to generate enough information
required for creating a system state for the cache memory.

5.3 The Cache Memory: Size, Structure and Replacement Policies

As mentioned previously, this cache model offers great flexibility in terms of simulation options
due to its customizability. The cache model described in this chapter, apart from the cache con-
troller and the memory module, is complemented by a Verilog Header file (cache_types _pack-
age.vh). At compile time the user can configure the cache model’s parameters that are stored in
this header file. These parameters are:

Parameters

1. MRU_OR_LRU: This parameter is used to select the desired Cache Replacement Policy.
The user can either select ’0’ for Most Recently Used (MRU) or ’1’ for Least Recently Used
(LRU). Despite the fact that almost all caches utilize the LRU Policy, MRU is provided for
a more complete set of simulation environment options.

2. WRB_OR_WRT: This parameter is used to select the desired Cache Update Policy. The
user can either select ’0’ for Write Back Policy (WRB) or ’1’ for Write Through (WRT).
Despite the fact that almost all caches are Write Back, Write Through is provided for a more
complete set of simulation environment options.

17

3. WAYS: This parameter is used to select the cache’s desired set-associativity. The user can
select between Direct Mapped (or 1-Way), 2-Way, 4-Way, and 8-Way set associative cache
configuration. These parameters along with the address request tag size and index size
are responsible for determining the cache’s memory size at compile time.

4. DTAG_W: This parameter determines the address request’s tag size in bits. This is an
essential piece of information as it is used not only to decode the 32-bit address request
format but also for defining the data structs that determine the cache’s overall size.

5. DIDX_W: This parameter determines the address request’s index size in bits. This is yet
another essential piece of information as it is used not only to decode the 32-bit address
request format but also for defining the data structs that determine the cache’s overall size.
Also, as mentioned before, it is used to determine the cache’s overall depth (in words)
as it is used as the cache address.

6. SIZE = (2**DIDX_W): This parameter depends on the predetermined DIDX_W and in-
dicates the number of words (memory depth) that can fit in this particular cache memory
model configuration. As mentioned before, the index is also the cache address, so the mem-
ory depth is equivalent to 2**DIDX_W words. For example, if the index size is 5 bits, the
cache controller can address 2**5=32 words or cache-lines. Double ’*’ is used for exponent
operations in SystemVerilog HDL.

7. ADDR_W = DTAG_W+DIDX_W: This parameter represents the size of an address request
in bits.

8. RPL_INX_SIZE = $clog2(WAYS): This extremely useful parameter represents the mini-
mum number of bits that all the replacement indexes require in this model. Based on this
parameter, all replacement indexes have exactly as many bits necessary in order to accu-
rately point to the cache’s way/set that is going to be updated in case of a cache read or
write request.

Typedef Logic and Structs

1. addr_t: This is a custom variable used to hold the number of bits that synthesize a cache
address request, meaning it consists of DIDX_W bits.

2. addr_size: This is a custom variable used to hold the number of bits that synthesize an
address request, meaning it consists of ADDR_W bits.

3. dcachef_t: This struct represents the components of an address request. For that matter,
it has DTAG_W + DIDX_W number of bits. The contents of this struct are shown in the
following colorbox:

typedef struct packed {
logic [DTAG_W - 1:0] tag;
logic [DIDX_W - 1:0] idx;
} dcachef_t;

4. dcache_entry: This very useful struct is used to represent all the components of a single
cache way/set. For that matter, it has 1 + 1 + DTAG_W + RPL_INX_SIZE number of

18

bits. Each way has its own valid bit, dirty bit, tag and replacement index that indicates
how recently this way has been accessed/updated. The contents of this struct are shown in
the following colorbox:

typedef struct packed {
logic v;
logic dirty;
logic [DTAG_W - 1:0] replacement_index;
logic [RPL_INX_SIZE-1:0] replacement_index;
} dcache_entry;

5. dcache_frame: This struct represents all the components of an entire cache-line. For that
matter, it has WAYS*($bits(dcache_entry)) + RPL_INX_SIZE + RPL_INX _SIZE num-
ber of bits. Each cache line contains WAYS number of ways, along with two replacement
indexes, one for storing the MRU way and another for storing the LRU way. The contents
of this struct are shown in the following colorbox:

typedef struct packed {
dcache_entry [WAYS - 1:0] set;
logic [RPL_INX_SIZE - 1:0] most;
logic [RPL_INX_SIZE - 1:0] least;
} dcache_frame;

All of the above features are ’responsible’ for this cache model’s customizability potential at com-
pile time. An entire cache-line format for N-WAY set associativity is shown in figure 5.3.

Figure 5.3 – A L1 cache-line format.

5.4 The Cache Controller

Determining if an address request is a cache hit or miss is essential for the correct functionality of
a cache model, as well as selecting the correct way to access and subsequently update. The cache
controller is a 7-state FSM that is responsible for receiving and decoding an address request,
fetching a cache-line from the cache memory module, checking for cache hits or misses, updating
the cache’s memory and issuing responses to "outside" modules.

19

Figure 5.4 – The Cache Controller FSM

In detail, these are the 7 states of this FSM:

• IDLE: After receiving a new cache read or write request, the cache controller is responsible
for fetching the appropriate cache-line based on the request’s index. This cache-line, of
course, will be available after 1CC. The cache controller is also responsible for storing this
address request, as it will be needed in the following FSM states. If either a dmemWEN
or a dmemREN signal is received (cache write or read request enables), the next state will
be the WAIT_C state. However, if a ’halt’ signal is received, the next state becomes the
HALT state, in which the FSM remains until a reset signal is issued to the AFU. If none of
the above happens, the FSM remains in the IDLE state.

• WAIT_C: Using this state, the FSM proceeds to state CHECK_HIT_DIRTY_MISS after
1CC, in order to provide time for the cache memory to respond with the correct cache-line,
based on the address requested from the previous state.

• CHECK_HIT_DIRTY_MISS: In this state, the cache controller stores the received cache-
line and starts a procedure to determine if this is a cache hit or miss. With the use of
’ifdef, at compile time, the cache controller’s FSM is preconfigured to support a certain
set associativity. That way, there is significant resource reduction due to the fact that the
cache model will not contain the HW to process unselected cache configurations. For better
understanding, assume that the user selected a 4-way set associative cache configuration.
At compile time, this cache model is configured to support only this 4-way set associative
memory configuration.

First, the cache controller checks all the tags of the cache-line, in order to determine if this
was a cache hit. In case of a hit, a set_to_change register is updated with the number of
the matched set in order to be accessed, updated and used in the following FSM states.

20

Also, the cache controller checks if this tag was a ’dirty’ tag. If there are no matches, the
cache controller proceeds to check each set, in order to find if there is an empty slot in this
cache-line. This is done simply by checking the set’s valid bit. If a set has valid = ’0’ the
set_to_change signal is updated to match this set’s number. If there are no empty slots, the
cache controller updates the the set_to_change register with the correct set number based
on the user-selected cache replacement policy. As mentioned earlier, this is very simple
because each cache line stores the most and least recently used sets. When all these steps
are completed, the FSM proceeds to state UPDATE.

• UPDATE: As mentioned in section 5.3, the replacement indexes are RPL_INX_SIZE-
bits-wide. After determining the correct set that is to be accessed/updated, this cache-line’s
replacement indexes need to be updated. There are 3 possible scenarios. First, if the set-
to-be-changed is the most recently used, the cache line indexes remains the same. Second,
if the set-to-be-changed is the least recently used, for every cache set different from the one
that was the LRU, the replacement index is reduced by ’1’. Then, the set-to-be-changed’s
index is set to the maximum value WAYS-1. Third, if the set-to-be-changed is neither the
MRU or LRU, the principle is the same as the second control step. However, it has the
additional control that the cache replacement index that is reduced by ’1’, must greater
than the previous replacement index of the set-to-be-changed. After all these checks,
depending on the dmemWEN (cache write request) or dmemREN (cache read request)
signal received in the IDLE state, the next state will either be the READ_CACHE or the
WRITE _CACHE.

• READ_CACHE and WRITE_CACHE: Read and Write requests have been thoroughly
described in subsections 5.2.1 and 5.2.2. The only thing to note is that on both states, the
accessed cache-line’s .least field is updated using the following method depending on the
cache-line’s valid bits and replacement indexes of each set. After the UPDATE state, the
cache-line to be written, already contains the new/updated replacement indexes for each set.
Going over all of these indexes, the cache controller finds the smallest one and updates the
cache-line’s .least field with the appropriate value/least-way.

• HALT: The FSM remains in this state until a reset (nRST) signal is issued.

After the READ_CACHE or WRITE_CACHE state is completed, the FSM returns to the IDLE
state where it is ready to receive a new address request, and the same process is repeated all over
again.

5.5 Generating Trace Files for Cache Simulations

To test this cache model, a creator.c program was developed that is capable of producing a random
input trace file. This file is used to determine if the cache model functions properly. The trace file
is nothing more than a series of address requests that this model should be able to handle in a
simulation environment. Apart from the tag and the index, each address’ most significant bit
(MSB), indicates if this is a read or write request. MSB==0 stands for a read and MSB==1 for
the write request.

After compiling the creator.c file using GCC, the user can execute it in order to generate two
trace files, a trace.bin and a trace.din. The .bin file is used for simulating the cache model using
the ModelSim simulation platform and the .din for testing on the Dinero IV Cache Simulator that
will be discussed in section 5.7. For simplicity and handling reasons for the Full State Simulator’s

21

development phase, each line from the trace.bin was converted to a single 32-bit integer, using
the int32_cache_trace_converter.c program developed as part of this research program. This
converter program is included in the Full State Simulator’s source files.

For this program’s execution, the user must provide the desired names for the .bin and .din
files as well as the desired trace size (number of addresses to generate), the tag size and the
index size. All these parameters can be viewed in the help menu developed for this application by
simply executing the < $./creator -help> command. As an example, in order to create a trace.bin
and a trace.din file containing 10000000 addresses for a cache model that has tag_size=22 and
index_size=5, the user should execute the following:

./creator -binfile trace.bin -hexfile trace.din -trace_size 10000000 -tag 22 -idx 5

5.6 Testing On ModelSim

ModelSim [38] is part of the Intel Quartus Prime Pro installation and was a great simulation envi-
ronment to test this cache model properly. A new project was created on ModelSim that utilizes the
generated the trace.bin file from section 5.5. This project consists of the cache model (cache con-
troller and cache memory module) and the cache model’s header file (cache_types _package.vh),
which contains all the cache model’s parameters.

For this model to be tested, a cache_testbench.sv testbench file was developed in order to
import and handle all the address requests from the trace.bin file one-by-one and issue them to
the cache model. After opening the trace.bin file using the <$fopen("trace.bin", "r")>, this
testbench reads traces from the input file line-by-line and stores them on a local integer variable.
The address is then split into to parts. The MSB, as mentioned before, is used to determine if
this is a read or write request. The following bits are the tag and the index, which are directly
forwarded to the cache controller. Depending on the MSB, a dmemREN or dmemWEN is issued
at the same clock cycle (CC).

After 5 CCs, a cache_valid signal indicates that the cache_hit signal (cache controller output)
has the ’correct’ value for this particular address request. This signal is evaluated and depending
on its value, the appropriate read_hit and write_hit counters are updated. Then, the testbench
loads a new address from the trace file and repeats this process until the end-of-file is reached
(<$feof(input_file)>). Helpful simulation messages like ’Read Hit’, ’Read Miss’, ’Write Hit’,
’Write Miss’, ’Total Read Hits’ and ’Total Write Hits’ are present in order to help with evaluation
and debugging.

For reference, in a 4-way set associative LRU cache configuration with tag_size=22 and in-
dex_size=5, for a trace.bin file that consisted of 10000000 addresses, the simulated cache model
worked flawlessly and delivered a final result of 6 Read Hits and 5 Write Hits, exactly the same as
the result of the equivalent cache model simulated using the Dinero IV Cache Simulation platform
described in section 5.7. Needless to say that many possible cache model configurations were
tested to verify the correct functionality of this model.

5.7 Hardware Verification Using the Dinero IV Cache Simulator

Dinero IV [17] is a Trace-Driven Uniprocessor Cache Simulator. It is not a timing simulator.
There is no notion of simulated time or cycles, only references. It is mainly used to gain insights
into replacement policies and set-associativity of single or multi-level caches. Dinero IV is a

22

verified cache simulator, so it was used in association with ModelSim in order to cross-check the
simulation results.

The Dinero IV installation is a simple <$ gunzip d4-7.tar.gz.> unzip command. After this
step, the user can simulate any desired cache model configuration using the trace.din file generated
as described in section 5.5. Over 30 possible configurations were executed to validate the Cache
module in comparison to the ModelSim bare-metal results. For reference, in order to test all
10000000 traces from the generated trace.din file on a the 4-way set-associative L1 cache model
with size=4096 bytes and block-size=32 bits and print the output on a log.out file, the user should
simply execute:

$./dineroIV -l1-dsize 4096 -l1-dassoc 4 -l1-dbsize 32 -informat d <trace.din > log.out

This results in 6 Read Hits and 5 Write Hits, exactly the same as the ModelSim equivalent.
By comparing results from various cache model configurations tested on ModelSim with their
Dinero IV equivalents, it was verified that this cache model, build for the hybrid CPU(XEON)-
FPGA(ARIA10GX) platform, can accurately simulate each and every one of the supported cache
model configurations.

It is noted that the simulation results on the Dinero IV are available much faster than on
ModelSim. This is due to the fact that ModelSim simulates the entire custom Hardware and
because the developed ModelSim testbench is not ideal, with clock cycle delays and possibly
unnecessary log printing, whereas Dinero IV simulates only references.

23

Chapter 6

The Branch Prediction Models
Every modern processor uses branch prediction so it is essential in a full system simulator plat-
form. The Full State Simulator described in this Master’s thesis, can implement 3 branch predictor
models: One-Level 6.3 (n-bit or BIMOD), 2-Level Adaptive 6.5 (GAg, PAg, and PAp) and Tour-
nament 6.7 (Combination of N-bit and a 2-Level branch predictor). A Branch Target Buffer
(BTB) model is included in each predictor implementation. Every predictor model is highly con-
figurable as regards to its memory table sizes, predictor size, internal parameter configuration, and
functionality in order to simulate many architectures. The user may define parameters such as the
PC size, the opcode size, the predictor memory’s word-length and overall depth, the size of the
n-bit predictors and of course the length of a line from the input trace-file that enters the Branch
Predictor for simulation. All models are capable of accurately simulating actual hardware behav-
ior in order to deliver a solid internal system state and simulation statistics after an input trace is
processed.

6.1 Purpose and Functionality

The purpose of all branch prediction models is to accurately simulate the behavior of this system
as an actual hardware implementation. The versatility of these particular models resides on the
fact that there are a lot of user-defined parameters, meaning that many hardware configurations
can be implemented/simulated. All modules are developed using the SystemVerilog HDL. The
simulation’s end product is a branch predictor state that includes branch prediction statistics
(address and direction hits and misses) as well as all the memory instances, meaning the branch
target buffers, branch history tables, pattern history tables, and history shift registers. However,
this state’s extraction will be discussed in a different chapter. Address hits occur in case of a
correct prediction from the Branch Target Buffer, while direction(taken or not-taken) hits
occur when the model would have correctly predicted a taken or not taken branch. All this
information will be combined with other partial simulation output files in order to form an entire
system state for a particular number of instruction, also known as a checkpoint. Of course, as
mentioned earlier, many of these "partial" states can be exported throughout a single simulation.

Each model receives one line at a time from a .txt trace-file as input. Each trace-line con-
sists of information about a single branch instruction in the form of a 64-bit integer. With
this information, the branch predictor simulator, based on its hardware configuration, begins to
process this trace-line just as the actual branch prediction hardware would process a branch type
instruction. Apart from the branch’s PC, Opcode and Target address, these information must
specify if the branch was actually taken or not. After processing all the pieces of information
combined with the simulator’s Branch Target Buffer and Predictor’s state, the model determines
if this would have been a correct or incorrect address or direction prediction. It then updates the
model’s memories accordingly and moves to process the next trace-line. This procedure continues
until each line from the input trace file has been processed. After that, a branch predictor state can
be exported, containing all the information about this particular set of executed instructions. More
information about the input trace file is stated in section . All the user configured parameters for all
branch predictor models are specified in a header file called branch_header.vh, that complements

24

each branch predictor model.

Figure 6.1 – General Block Diagram showcasing the AFU, the SW API and all the BP models that
are available in the Full State Simulator

6.2 The Input Trace File

To run the branch predictor simulator, an input trace file is required. This is a binary file that
consists of multiple trace-lines. The size of the input file depends on the number of branch in-
structions required for a BP state, or are exported from a benchmark execution and it is yet an-
other user-defined value. Each trace-line contains information about a single branch instruction.
These pieces of information are the branch’s PC, Target PC, opcode, and the information about
whether this branch would have been "actually" taken or not taken. These parameters’ sizes are
all user-defined and determine the overall trace-line length such as this:

parameter TRACE_LINE_LENGTH = PC_SIZE + PC_SIZE + 1 + OP_SIZE

Starting from the left-hand side, the first PC_SIZE bits are the branch’s PC. The next PC_SIZE
bits are the branch’s target PC, that the program’s PC will jump to if this branch is a "taken" one.
The next bit displays whether this particular branch is actually taken or not taken. This informa-
tion comes after processing the branch parameters. Finally, the last OP_SIZE number of bits is
the branch’s opcode. This is a crucial piece of information that determines the functionality of any
branch predictor. For example, if the branch’s opcode suggests that this is a "jump" instruction,
the branch predictor would always correctly predict that this branch is taken and so, the internal
components should be updated accordingly. More information about the input trace files that were
used to test all the branch predictor models can be found in sections 6.7 and 6.8 explaining how
all models were verified using the SimpleScalar simulator platform.

25

6.3 The Branch Target Buffer

The Branch Target Buffer (BTB) behaves the same for all kinds of branch predictor models, so it
is best to describe it separately. The BTB memory consists of words containing information only
about a taken branch’s opcode and target address. The BTB memory size or number-of-words is
calculated using the number of memory addressing bits. The BTB word format and memory size
are shown below:

parameter BTB_SIZE = OP_SIZE + PC_SIZE;
parameter MEM_DEPTH = (2**IDX_SIZE);

OP_SIZE and PC_SIZE are user-defined parameters. The first OP_SIZE bits are the taken
branch’s opcode and the last PC_SIZE bits are the taken target PC. IDX_SIZE is also user-defined
and indicates how many bits are used to address the BTB and other memory modules. So, with
IDX_SIZE bits, (2**IDX_SIZE) number of words can be addressed. When a new input trace-line
enters the simulator, the branch predictor’s controller is responsible for reading the correct BTB
memory word in order to then evaluate if this would have been an address hit or miss. Addressing
the BTB memory module is done like this:

btb_address <= pc » 3;

This addressing method is the same as the one used in the predictor models of SimpleScalar,
described in section 6.7 and only uses the branch’s PC, right-shifted by 3 bits. The reason this
shift occurs is that the PC is increased by a factor of 4 in every clock cycle, so the 2 LSBs of the
PC are always the same (zeros).

A correct BTB address prediction happens on 3 occasions. First, a BTB hit occurs when the
branch is actually a jump instruction. In this case, the model always predicts correctly that the
branch is taken and the new PC will be the target that comes with the instruction. Second, if
the predictor correctly predicts a taken branch and the target address from the BTB matches the
trace-line’s target. Third, when the predictor correctly predicts a not-taken branch, the predicted
PC will have the correct value PC + 4. Every other case leads to BTB address miss.

In case of a BTB address hit or in case of a jump instruction, there is no need to update the
BTB memory. It is important to note that the BTB is updated only for a taken branch. So,
the only time the BTB is updated is when a taken branch was mispredicted. In that case, on the
same requested address, the BTB memory is updated with the new trace-line’s opcode and target
address. This update method matches the BTB update policy of the SimpleScalar described in
section 6.7.

6.4 The One-Level (n-bit or Bimod) Predictor

The One-Level, or n-bit branch predictor, consists of a Branch Target Buffer (BTB) and a Branch
History Table (BHT) memory module, managed by the n-bit predictor’s control module. First,
the user specifies the simulated hardware’s parameters inside the branch_header.vh. All the
parameters that the n-bit predictor needs to determine the BTB and BHT memory sizes, as well as
the addressing bits, data inputs and outputs, are shown in the colored box below. Each parameter’s
name is self-explanatory. However, a short description is added on their right-hand side, while
many of them have already been analyzed on previous sections. Of course, this header file alters
between the different types of predictors.

26

parameter PC_SIZE = 32; // PC length
parameter OP_SIZE = 5; // Opcode length
parameter IDX_SIZE = 10; // Number of bits used to address the BTB and BHT
parameter MEM_DEPTH = (2**IDX_SIZE); // number of words in BHT and BTB
parameter BTB_SIZE = OP_SIZE + PC_SIZE; // BTB memory line length
parameter TRACE_LINE_LENGTH = PC_SIZE + PC_SIZE + 1 + OP_SIZE; // sec:6.2
parameter N_BIT = 2; // size of the n-bit predictors in the BHT

The memory modules used to implement the BTB and BHT are both ARRIA 10 Altera syn-
crams, generated by the Quartus Prime Pro platform specifically for the desired target hardware.
Each of them is a single port syncram component. These memory modules along with their input
and output signals are depicted in figure 6.2. The BTB’s functionality has already been described
in section 6.3. As for the BHT memory, it contains MEM_DEPTH number of n-bit predictors.
By knowing the MSB of a BHT memory’s word, the controller decides whether to predict
taken (MSB == 1) or not taken (MSB == 0).

6.4.1 Module Architecture

The n-bit predictor’s controller is a 3-state FSM. The only time this FSM leaves the first state is
when the predictor model receives a new valid trace-line. This is possible via a valid-bit provided
by an outside component alongside a new input trace-line. When a new valid trace-line enters
the simulator, the n-bit predictor’s controller reads the corresponding words from the BTB and
BHT, using the trace-line instruction’s PC to address these two memory modules. The request
addresses are the following:

btb_address <= pc » 3; bht_address <= (pc » 19)&(pc » 3);

The addressing method of the BTB is described is section 6.3 along with the right-shifting of the
PC by 3 bits. As regards to the BHT’s addressing technique, the shifting principle remains the
same. However, the bitwise AND between the (pc»3) and the branch’s PC right-shifted by 19 is
the same used to address the BHT on the SimpleScalar predictor models. Meanwhile, the trace-
line’s pc, taken-not-taken, target address, and opcode information are stored for processing in the
next FSM state.

Figure 6.2 – The BTB and BHT ARRIA 10 Altera syncram memory modules

The 2nd state is a wait state for the memory responses. In the 3rd FSM state, the fetched BTB
and BHT words are evaluated along with the information from the trace-line in order to determine
if this would have been a correct or incorrect address or direction prediction. This state is also
responsible for updating the BHT and BTB tables, based on their previous state and predictor

27

outcome (hit/miss). The updating of the BTB as well as how the predictor model determines an
address hit or miss are already mentioned in section 6.3. So now, the focus is shifted on how the
model predicts taken or not-taken, whether this prediction was correct and how does it update the
BHT memory. There are 7 possible cases. In these cases, bht_data represents the updated word
that will be written to the BHT, whereas bht_q is the word that was read from the BHT using the
bht_address.

Figure 6.3 – The N-bit branch predictor model

1. Case 1 - Jump instruction: The branch’s jump-opcode is known to the predictor. If it
detects a jump instruction, the direction prediction is always correct because all jumps are
taken. In this case, the BHT is not updated.

2. Case 2 - BHT word is all-zeros and the branch is not taken: In this case, the n-bit
predictor would have predicted a not taken branch, so, the direction prediction is correct.
Because the BHT’s predictor bits are all zeros, there is no need to update the BHT as it is
already at a strong-not-taken state.

3. Case 3 - BHT’s word MSB==0 and the branch is not taken: Same as in case 2 with
the direction prediction being correct. Only now, the BHT’s n-bit predictor is updated by
subtracting 1 from its previous value such as this: bht_data <= bht_q - 1. This is done in
order to be moved closer to the strong-not-taken state.

4. Case 4 - BHT’s word MSB==0 and the branch is taken: Here, the n-bit predictor would
have predicted a not taken branch, meaning that the direction prediction is incorrect. In this
event, the BHT’s n-bit predictor is updated by adding 1 to its previous value such as this:
bht_data <= bht_q + 1. This is done in order to be moved closer to the strong-taken state.

5. Case 5 - BHT’s word is all-ones and the branch is taken: In this case, the n-bit predictor
would have predicted a taken branch, so, the direction prediction is correct. Because the
BHT’s predictor bits are all ones, there is no need to update the BHT as it is already at a
strong-taken state.

6. Case 6 - BHT’s word MSB==1 and the branch is taken: Same as in case 5 with the
direction prediction being correct. However, the BHT’s n-bit predictor is updated by adding
1 to its previous value in order to be moved closer to the strong-taken state.

28

7. Case 7 - BHT’s word MSB==1 and the branch is not taken: The final state where the
predictor incorrectly predicts a taken branch. The direction prediction is incorrect and the
BHT’s n-bit predictor is updated by subtracting 1 from its previous value, just like the BHT
update in case 3;

These steps conclude the workflow of the n-bit predictor’s FSM, that returns to its first state after
3 clock cycles (3CCs). There, it idles, until a new valid trace-line enters the branch predictor sim-
ulator. An overview of the N-bit predictor along with all of its major components, key parameters
and procedures are depicted in figure 6.3

6.5 The 2-Level Predictor

The 2-Level branch predictor consists of a Branch Target Buffer (BTB), a Shift Register (SR)
and a Pattern History Table (PHT) memory module, managed by the 2-Level predictor’s control
module. Just like in the n-bit, the user specifies the desired hardware’s parameters inside the
branch_header.vh. All the parameters that the 2-Level predictor needs to determine the BTB, SR
and BHT memory sizes, as well as all the addressing bits, data inputs and outputs, are shown in
the colored box below.

The parameter names are self-explanatory with a short description added on their right-hand
side. The first six parameters are the same as the ones in the n-bit predictor’s header file. Parameter
GAP is used to determine the type of predictor model that is going to be simulated. If the user
sets this parameter to ’1’ the predictor becomes a Global Adaptive predictor (GAg), meaning that
the SR memory will only have one history register of size SR_SIZE. The SR_IDX represents the
number of bits that will be used to address the SR memory. This parameter also determines the
number of words and thus the size of the SR memory which is the parameter N. If the size of
the SR memory equals that of the PHT’s, the predictor becomes a Per-Branch Adaptive predictor
(PAp). In any other case, it is just a general case 2-Level Adaptive predictor with N number of
global shift registers (PAg). The PHT is just like the Branch History Table (BHT). By knowing
the MSB of a PHT memory’s word, the controller decides whether to predict taken (MSB == 1)
or not taken (MSB == 0). However, it is called that way because it is not addressed directly by the
PC but the appropriate SR’s shift register. The PHT contains PHT_MEM_DEPTH words that
are k-bit predictors of size K_BIT.

parameter PC_SIZE = 32; // PC length
parameter OP_SIZE = 5; // Opcode length
parameter IDX_SIZE = 10; // Number of bits used to address the BTB
parameter MEM_DEPTH = (2**IDX_SIZE); // number of words in the BTB
parameter BTB_SIZE = OP_SIZE + PC_SIZE; // BTB memory line length
parameter TRACE_LINE_LENGTH = PC_SIZE + PC_SIZE + 1 + OP_SIZE; // sec:6.2
parameter GAP = 0; // ’1’ if the user wants a global shift register
parameter SR_SIZE = 10; // history register’s number of bits/SR memory line length
parameter SR_IDX = 2; // number of bits used to address the SR memory
parameter N = (2**SR_IDX); // number of shift registers/number of words in the SR memory
parameter PHT_MEM_DEPTH = (2**SR_SIZE); // number of words in the PHT
parameter K_BIT = 2; // size of the n-bit predictors in the PHT

The memory modules used to implement the BTB, SR and PHT memories are all ARRIA 10
Altera syncrams, generated by the Quartus Prime Pro platform specifically for the desired target

29

hardware. Each of them is a single port syncram component. The BTB syncram is shown in
figure 6.2, so, figure 6.4 depicts only the SR and PHT memory modules along with their input and
output signals.

Figure 6.4 – The SR and PHT ARRIA 10 Altera syncram memory modules

The BTB’s functionality has already been described in section 6.3. As for the SR memory,
it holds N number of history shift registers that are used to address the PHT. After each new
branch, unless it is a jump, the appropriate shift register is left shifted by one bit and its
LSB is replaced with ’1’ if the new branch instruction was taken or ’0’ if it was not taken.
Hence, it gets the name history register because it actually represents the pattern that a branch in-
struction was either taken or not-taken throughout a benchmark simulation or number of executed
instructions in general.

6.5.1 Module Architecture

The 2-Level predictor’s controller is a 5-state FSM. The 2nd and 4th state are just ’wait-states’.
The only time this FSM leaves the first state is when the predictor model receives a new valid
trace-line just like the one described in the previous section. When a new valid trace-line enters the
simulator, the 2-Level predictor’s controller reads the corresponding word from the SR memory,
using the instruction’s PC for addressing. The requested address is the following:

IF parameter GAP = ’1’ : sr_address <=0; ELSE sr_address <= (pc » 3);

The addressing method for the SR is the same as the one used for the BTB. Although the BTB
read request can happen in this state, it is done in the 3rd for simplicity, because the predictor still
needs to get the appropriate history register from the SR memory in order to address the PHT.
Thus, the BTB word would be of no use in the second FSM state. Meanwhile, the trace-line’s pc,
taken-not-taken, target address, and opcode information are stored for processing in the next FSM
states.

In the 3rd state, the fetched history register is ready for use on the sr_q registered input. Only
when the instruction is not a jump, the fetched shift register is left shifted by one bit and its LSB
is replaced with ’1’ if the new branch instruction was taken or ’0’ if it was not taken. That is
because a jump is always taken and has no significance to a pattern history register. Then the
SR memory is updated using the sr_data output signal on the same sr_address used in the first
FSM state. After 1 CC, the 2-Level predictor’s controller reads the corresponding words from the
BTB and PHT, using the trace-line instruction’s PC and fetched sr_q to address these two memory
modules. As regards to the PHT’s addressing technique, it is the same used to address the PHT on
the SimpleScalar predictor models. The request addresses are the following:

btb_address <= pc » 3; pht_address <= (sr_q | ((pc » 3) « SR_SIZE));

30

In the 5th and final FSM state, the fetched BTB and PHT words are evaluated along with the
information from the trace-line in order to determine if this would have been a correct or incorrect
address or direction prediction. This state is also responsible for updating the PHT and BTB tables,
based on their previous state and predictor outcome (hit/miss). The updating of the BTB as well
as how the predictor model determines an address hit or miss are already mentioned in section
6.3. Furthermore, the 2-Level predictor model predicts taken or not-taken and updates the PHT
exactly the same way as the N-bit predictor handles information and updates the BHT. The same
7 possible cases described in subsection 6.4.1 for a correct prediction, misprediction and BHT
update, apply for the PHT and the 2-Level predictor in general. The only things that differ are the
different input and output signal names and case names. pht_data represents the updated word
that will be written to the PHT memory, whereas pht_q is the word that was read from the PHT
memory using the pht_address. For this reason, there is no need to rewrite all 7 cases, but only to
inspect the 7 cases of subsection 6.4.1 simply by replacing the <bht> letters with <pht>. After all,
the PHT is a BHT that is addressed in a different way.

These steps conclude the workflow of the 2-Level predictor’s FSM, that returns to its first
state after 5 clock cycles (5CCs). There, it idles, until a new valid trace-line enters the branch
predictor simulator. An overview of the 2-Level predictor along with all of its major components,
key parameters and procedures are depicted in figure 6.5

Figure 6.5 – The 2-Level branch predictor model

6.6 The Tournament Predictor

The Tournament branch predictor combines the two previously described predictor models. A
One-Level (n-bit) and a 2-Level branch predictor work independently side by side, in order to pro-
vide two separate predictions. A second One-Level-type predictor called the Meta-Predictor
(SEL memory) decides which of these two predictions will be chosen as the final Tournament
prediction. The BTB as mentioned in section 6.3 works separately to provide an address pre-
diction. The Tournament predictor consists of a Branch Target Buffer (BTB), a Branch History
Table (BHT), a Shift Register (SR), a Pattern History Table (PHT) and a Selector (SEL) memory
module, managed by the Tournament predictor’s control module.

31

Just like in the other predictor models, the user specifies the desired hardware’s parameters
inside the branch_header.vh. All the parameters that the n-bit predictor, the 2-Level predictor, and
the Meta-Predictor need to determine the SEL, PHT, BTB, SR and BHT memory sizes, as well as
all the addressing bits, data inputs and outputs, are shown in the colored box below:

parameter PC_SIZE = 32; // PC length
parameter OP_SIZE = 5; // Opcode length
parameter IDX_SIZE = 10; // Number of bits used to address the BTB memory
parameter MEM_DEPTH = (2**IDX_SIZE); // number of words in the BTB memory
parameter BTB_SIZE = OP_SIZE + PC_SIZE; // BTB memory line length
parameter TRACE_LINE_LENGTH = PC_SIZE + PC_SIZE + 1 + OP_SIZE; // sec:6.2
parameter N_BIT = 2; // size of the n-bit predictors in the BHT memory
parameter GAP = 0; // ’1’ if the user wants a global shift register
parameter SR_SIZE = 10; // history register’s number of bits/SR memory line length
parameter SR_IDX = 2; // number of bits used to address the SR memory
parameter N = (2**SR_IDX); // number of shift registers/number of words in the SR memory
parameter PHT_MEM_DEPTH = (2**SR_SIZE); // number of words in the PHT memory
parameter K_BIT = 2; // size of the n-bit predictors in the PHT memory
parameter S_BIT = 2; // size of the n-bit predictors in the SEL memory

All the parameters have already been described in the previous sections and have a short de-
scription added on their right-hand side. The only new parameter is the S_BIT that determines the
size of the s-bit predictors in the SEL memory used by the Meta-Predictor. The size of the SEL
memory has been chosen as equal to the one of the BTB so it has no separate parameter.

The memory modules used to implement the BTB, BHT, SEL, SR and PHT memories are
all ARRIA 10 Altera syncrams, generated by the Quartus Prime Pro platform specifically for the
desired target hardware. Each of them is a single port syncram component. All memory models
have been explained in the previous sections and displayed in figures 6.2, and 6.4, except for the
Selector memory module that is displayed along with its input and output signals in figure 6.6.
The SEL memory is nothing but a BHT for the Meta-Predictor and performs exactly the
same. The only difference is that its predictors decide between predictor zero (One-Level) or
predictor one (2-Level) rather than taken or not-taken.

Figure 6.6 – The Selector (SEL) ARRIA 10 Altera syncram memory modules

6.6.1 Module Architecture

The Tournament predictor is actually 3 separate predictors working side-by-side. The mod-
els used are the 2-Level predictor(section 6.5) and 2 n-bit predictors (section6.4) without the

32

implementation of the BTB inside them. As in any other predictor so far, the BTB works inde-
pendently and delivers a prediction based on the Tournament prediction and BTB memory data.
One of the n-bit predictors serves as the Meta-Predictor that selects between the other 2 predictors,
to determine which will deliver the Tournament prediction.

Both the N-bit and the 2-Level predictors work and update their memories independently, de-
pending only on their own correct or incorrect predictions. The Tournament predictor’s controller
is only responsible for fetching the correct s-bit predictor from the SEL memory and with the
use of a multiplexer determine which of these two separate predictions to chose as the final one.
The SEL memory works just like the BHT so the controller only needs to know the MSB of the
fetched SEL word. Arbitrarily, if MSB==0, the Tournament prediction comes from the n-bit
predictor. Otherwise (MSB==1), the prediction comes from the 2-Level.

The n-bit prediction is ’ready’ in 3 CCs. However, because the 2-Level predictor needs 5 CCs
to deliver its prediction, the Tournament predictor’s control was created as a 5-state FSM. Due to
the Tournament Predictor model’s architectural, the the N-bit’s prediction will be available
at the 4th CC and the 2-Level’s at the 5th CC.

In the first state, just as in both previous predictor models, the controller waits for a valid input
trace line to enter the simulator. When it does, it proceeds to the 2nd state just to wait for 1 CC.
Meanwhile, the N-bit and 2-Level have also ’started’ their individual jobs. Requests to the BTB
and the SEL memory are not necessary for this state as their words will be useful in the 5th FSM
state.

On the 3rd state, a request to the BTB memory is done on the same address just like on both
previously described predictors. The Meta-Predictor’s SEL memory is accessed using the PC
exactly like the BHT on the N-bit predictor:

sel_address <= (pc » 19)&(pc » 3);

In the 4th state, the N-bit prediction is received and stored on a register to be processed in the
5th FSM state.

On the final FSM state, the prediction from the 2-Level is also ready and the Meta-Predictor’s
prediction is stored in the registered input sel_q. After determining whether this prediction was
correct based on the taken-not-taken information that came with the input trace-line, the FSM
returns to its 1st state after 5CCs, where it idles until a new valid trace-line appears.

As mentioned before, both the n-bit and the 2-Level predictors work and update independently
based on their own correct or incorrect predictions. However, the Meta-Predictor depends on the
n-bit, 2-Level and Tournament predictions to update the SEL memory. The SEL memory is
updated only if the prediction from n-bit is different from the 2-Level’s prediction. If this is
the case, there are only 2 kinds of possible SEL memory updates:

1. Case 1 - The 2-Level predictor is correct: In this case, if the SEL memory’s s-bit predictor
is not already ’all ones’, it is updated by adding 1 to its previous value such as this: sel_data
<= sel_q + 1. That way, the predictor moves closer to ’all ones’ where it strongly selects the
2-Level predictor.

2. Case 2 - The N-bit predictor is correct: In this case, if the SEL memory’s s-bit predictor
is not already ’all zeros’, it is updated by subtracting 1 from its previous value such as this:
sel_data <= sel_q - 1. That way, the predictor moves closer to ’all zeros’ where it strongly
selects the N-bit predictor.

This update concludes the workflow of the Tournament predictor and happens on the 5th FSM
state. An overview of the Tournament predictor along with all of its major components and proce-
dures are depicted in figure 6.7

33

Figure 6.7 – The Tournament branch predictor model

6.7 SimpleScalar

The SimpleScalar tool set [40] is a system software infrastructure used for program performance
analysis, detailed micro-architectural modeling, and hardware-software co-verification. Users can
simulate real programs running on a variety of processor and platform configurations. Further-
more, core architectural modules can be simulated individually to showcase their behavior through
detailed simulation statistics and output log files. The simulators in this tool set range from a
fast functional simulator to a detailed processor model that supports non-blocking caches
and state-of-the-art branch prediction. Since 2000, a plethora of papers published in top com-
puter architecture conferences used the SimpleScalar tools to evaluate their designs. That is why
SimpleScalar was used as a "Golden-Model" in order to test and verify all of the Branch Predictors
mentioned in the previous sections. More importantly, the SimpleScalar tools are available free-
of-charge to academic and non-commercial users. Documentation, Tools, Benchmarks, Guides
and Installation Tutorials can be found in the official SimpleScalar web-page [13].

6.7.1 Utilizing Key Features for Branch Prediction Development

As mentioned, SimpleScalar has many simulation capabilities. However, only Branch Prediction
Simulation is going to be utilized to help validate all the previously described Branch Predictor
models. SimpleScalar Branch Prediction is performed by using -sim-bpred, that can simulate
2 static and 3 dynamic predictors: Always Taken, Always Not-Taken, Bimodal (n-bit), 2-Level
adaptive (GAg, PAg, and PAp) and finally the Combined (or Tournament).

Throughout its execution, -sim-bpred uses many functions from the SimpleScalar’s .c and .h
source files. The most interesting is the bpred.c that contains all the necessary procedures that
create this simulator model including memory searches, memory updates and all the data cross-
checking that deliver the branch predictor statistics. By analyzing the key features of the bpred.c
source file along with the theoretical study of branch prediction, helped determine the memory
addressing techniques and update policies that were used on the all branch predictor hardware
models. These key features are:

34

• Addressing the BTB memory: btb_address <= pc » 3;

• Addressing the BHT memory: bht_address <= (pc » 19)&(pc » 3);

• Addressing the SR memory in case of a PAp or PAg predictor: sr_address <= (pc » 3);

• Addressing the PHT memory using the appropriate history shift register:
pht_address <= (sr_q | ((pc » 3) « SR_SIZE));

• Addressing the Meta-Predictor’s SEl memory: sel_address <= (pc » 19)&(pc » 3);

• BTB update policy: The BTB memory is updated only for taken branches in case of an
address miss. These taken branched do not include jumps.

• BHT and PHT update policy: BHT and PHT memories do not get updated in case of
jump instructions because their predictions would always be correct and not part of an actual
prediction process.

• SR update policy: The SR memory does not get updated in case of jump instructions
because they are always taken and are not part of a history pattern.

• SEL update policy: The Meta-Predictor’s SEL memory gets updated only when the pre-
dictions from N-bit and 2-Level are different, for otherwise there are both right or wrong.

6.7.2 Benchmarking on SimpleScalar

To verify the hardware models, the SPEC95 benchmarks (little endian) namely compress95, ana-
gram, go, cc1 and perl were used. Compress95 and go were used the most, because of their
execution time and output trace-file sizes. Detailed documentation about running the benchmarks
can be found here [41].

In order to run these benchmarks on the SimpleScalar and more specifically -sim-bpred, the
simulator needs to be configured. This configuration is possible through the simulator’s execution
command. These configurations are:

• -bpred X, where X represents the type of predictor that is going to be simulated, namely
bimod, 2lev or comb.

• -bpred:ras Y, where Y represents the return address stack size (0 for no return stack)

• -bpred:btb Z A, where Z represents the number of words in the BTB memory and A the
BTB memory associativity.

• -bpred:bimod B, where B represents the number of predictors in the BHT memory.

• -bpred:2lev N M W X. N stands for the number of history registers in the SR memory.
M the number of predictors in the PHT memory. W is the size of the history registers. X
(yes-1/no-0) shows whether to XOR the history and branch’s PC as the PHT address.

• -bpred:comb S, where S represents the number of predictors in the Meta-Predictor’s SEL
memory.

In all predictors, the Return Address Stack (RAS) and BTB parameters must be specified. The
BHT, PHT and SEL memories contain only 2-bit predictors. Also, in order to fully configure the
Tournament predictor, both the Bimod (n-bit) and the 2-Level must be configured as well. As an

35

example, in order to run the compress95 benchmark to simulate a Tournament predictor, the user
should execute:

$./sim-bpred -bpred comb -bpred:comb 1024 -bpred:bimod 1024 -bpred:2lev 4 1024
10 0 -bpred:btb 1024 1 -bpred:ras 0 BenchMarks_Little/Programs/compress95.ss < Bench-
Marks_Little/Input/compress95.in 2> BenchMarks_Little/Results/compress95.trace > Bench-
Marks_Little/Results/compress95.out

Here the model has no RAS and the Bimod’s BHT size 1024 words. The BTB contains
1024 words with associativity=1. The 2-Level is a PAg with 4 shift registers of size 10bits each.
The PHT contains 2**10=1024 words and XOR with the PC is disabled. Finally, the Combined
predictor has a Meta-Predictor containing 1024 words. Simulation statistics about each run are
exported on .log and .trace files.

6.7.3 Extracting a Trace-File

The SimpleScalar’s installation includes compiling all the source files contained in its downloaded
directory, in order to create the executables that will become the various simulator instances like
for example, the sim-bpred. As mentioned in section 6.2, the Branch Predictor Models need an
input trace file to operate. In order to create one, before the SimpleScalar’s installation, the sim-
bpred.c source file has been modified.

For a successful sim-bpred simulation, the sim-bpred.c source file contains all the controls
that detect a branch instruction and utilize the functions from the bpred.c to search the memories,
determine address and direction hits or misses and also update the memory tables. The sim-
bpred’s functionality has been extended with a feature that stores information about each
detected branch instruction, regarding the branch’s PC, Target Address, Opcode and in-
formation about whether it is actually taken or not-taken. Then, by issuing a simple fprintf,
as the one shown below, all these information are concatenated to composed a single trace-line
of a newly created input trace-file. For simplicity and handling reasons for the Full State Simu-
lator’s development phase, each trace line is then converted to a single 64-bit integer, using the
int64_bp_trace_converter.c program developed as part of this research program. This converter
program is included in the Full State Simulator’s source files. The number of trace-lines equals
to the number of branches detected in a single benchmark run or a simulation in general.

...
fprintf(<bp_trace_file_name>,"%s%s%d%s\n",badd,btr,taken_not_taken,opcode);

...

With this modification present in the source code of the sim-bpred.c, the SimpleScalar is re-
compiled/re-installed and is ready for testing, verification and trace-file generation. After running
several benchmarks from SPEC95, for different predictor configurations on SimpleScalar using
sim-bpred, multiple simulation statistics and input trace-files have been accumulated. All these
were used in order to verify the Branch Predictor Models’ functionality. The verification process
is shown in section 6.8.

36

6.8 The Hardware Model’s Verification

6.8.1 Executing on ModelSim

After collecting simulation statistics from the SimpleScalar, it is time to cross-check those results
with the ones exported from the hardware branch predictor models. To create these statistics, all
models need to be tested using the input trace-files described in subsection 6.7.3. This testing has
been performed by using the ModelSim multi-language HDL simulation environment [38].

After loading a BP’s source Verilog, SystemVerilog, and Verilog Header files on ModelSim,
the user creates a new project. For this project, a testbench.v file that is capable of providing
the branch predictor simulator with instructions (lines) from the trace-file needs to be developed.
It is responsible for providing and receiving data to and from the BP’s controller at the correct
moment. For example, in the case of an n-bit predictor, a new trace-line can be processed every 3
CCs. If lines from the trace file come at a different rate, the predictor model will either waits for a
new one or will miss some. Furthermore, the testbench needs to read the BP’s output data only at
the 3rd CC, otherwise, the simulation data will be invalid. This can also be performed by reading
the ’valid_output’ signal, exported from the BP. In the cases of the 2-Level and the Tournament
predictor, the same things apply but for 5 CCs.

The Verilog testbench consists of a file-open and a while-loop. After opening the trace-file,
the loop continues until it reaches the end-of-file. Depending on the predictor model, every 3 or
5 CCs a new line is read. This line of size TRACE_LINE_LENGTH is then split into 4 parts:
pc, target, taken-not-taken and the branch opcode. In this stage, the testbench also informs the
predictor controller about a valid trace-line. After 3 or 5 CCs, the testbench reads the simulator’s
outputs and updates its counters that store information about total branches processed, branch
address hits and direction hits.

6.8.2 Comparing the Results

After collecting all the simulation results and statistics from both SimpleScalar and ModelSim,
the only thing left is to compare them. A side-by-side comparison of the ModelSim data and the
SimpleScalar simulation results for each BP model, using the SPEC95’s compress95 benchmark,
is displayed in figure 6.8. The trace-file that ’feeds’ the BP models on ModelSim, is the one
exported when running the same benchmark on SimpleScalar.

Figure 6.8 – Output and Statistics comparison of all branch predictor models from ModelSim and
the SimpleScalar, using the SPEC95’s compress95 benchmark.

37

The BPs tested on the SimpleScalar have the same configuration parameters as the ones tested
on ModelSim. For the SPEC95’s compress95 benchmark comparison shown in figure 6.8, these
parameters are:

• Parameter Definitions:

– RAS: 0=no and 1=yes for a return address stack,

– BTB_ASSOC: BTB memory associativity,

– BTB_SIZE: Number of words in the BTB memory,

– N_BIT: Size of the predictors in the BHT memory,

– BHT_SIZE: Number of words in the BHT memory,

– K_BIT: Size of the predictors in the PHT memory,

– M: Number of words in the PHT memory,

– N: Number of history shift registers (number of words in the SR memory),

– W: Bit-width of the history shift registers,

– XOR: 0=no and 1=yes to enable ’XOR’ between history register and branch pc to
target the PHT memory,

– SEL_SIZE: Number of words in the Meta-Predictor’s SEL memory,

– S_BIT: Size of the predictors in the SEL memory.

• One-Level (n-bit or Bimod) predictor:

– RAS = 0,

– BTB_ASSOC = 1,

– BTB_SIZE = 1024,

– N_BIT = 2,

– BHT_SIZE = 1024.

• 2-Level PAg predictor: PAg was chosen as it is the more generic implementation out of all
3, GAg, PAg and PAp predictors.

– RAS = 0,

– BTB_ASSOC = 1,

– BTB_SIZE = 1024,

– K_BIT = 2,

– M = 1024,

– N = 4,

– W = 10,

– XOR = 0.

• Tournament (Combined) predictor:

– RAS = 0,

– BTB_ASSOC = 1,

– BTB_SIZE = 1024,

38

– N_BIT = 2,

– BHT_SIZE = 1024.

– K_BIT = 2,

– M = 1024,

– N = 4,

– W = 10,

– XOR = 0.

– SEL_SIZE: = 1024,

– S_BIT: = 2.

It is clear that the results from SimpleScalar and ModelSim between the same type of pre-
dictors are almost identical. The slight variation between the two platform results is caused by
differences in addressing and update policies for some of the memory modules. However, for
every simulated benchmark execution and BP configuration, this difference always appears
to be between 0.0004% - 0.002%, which is way below the acceptable margin of error. That
indistinguishable pattern continued throughout all the benchmarks results that were performed
for various system configurations and for different benchmarks of the SPEC95 suite. Figure 6.8
is chosen as a general representation of the verified and correct functionality of all BP models
developed for this Master’s Thesis.

39

Chapter 7

Hardware Integration
7.1 Prerequisites and workflow

The majority of the prerequisites for developing a platform for Intel’s HARP hybrid chip have
already been mentioned, mostly on chapter 4. OPAE, ModelSim and Quartus Prime pro ver.16.0.0
should be pre-installed on the developers host platform. The first step is to create a SW API able
to communicate with the AFU. The SW is responsible for the correct communication between
the FPGA and the ’outside world’, meaning it should be able to provide information like memory
address spaces, location of buffers that the FPGA will utilize and of course, handle requests from
the FPGA. The second step is creating an AFU that must adhere to the CCI-P limitations and rules.
The AFU is the top-level of the custom accelerator that ports all of the accelerator’s sub-modules
and is the link to the FIU that connects the AFU to the the SW API.

Figure 7.1 – Workflow for ASE Simulation, Quartus Synthesis and FPGA configuration. Image
owned by [34]

The development phase is completed by the ASE simulation. ASE is part of the OPAE and
helps for the HW-SW co-simulation. It is the main tool for verifying the correct functionality
of both the AFU and the SW API. When the simulation results are correct the next step is the
Bitstream Generation. Using the Quartus Prime Pro, a green bitstream is produced. This, along
with the Intel’s blue bitstream will be used to program the FPGA unless an error such as the ones
described in section 4.4 exists. The final step is to run the SW and test if the FPGA works correctly.
Note that incorrect functionality can either mean a SW error, a HW error, or both.

By using the OPAE and Intel’s Basic Building Blocks (BBBs), apart from the ASE simulator,
sample source codes and general guidelines, the developer gains access to scripts that automate the
simulation and synthesis procedures. However, executing these scripts requires an appropriate
structure of the working directory. The correct structure of a project that can utilize the OPAE

40

scripts for ASE simulation and Quartus synthesis is shown in the following colorbox.

<project_folder_name>
| - - hw : Hardware must be staged here
| | - - rtl : RTL files
| | - - sim : Simulation files list
| - - sw : SW codes or header files

A crucial component for any HARP accelerator developed using the OPAE and BBB is the
.json file, required by both HW and SW components. Located in the <project_name>/hw/rtl
directory, the .json file is required both for simulation and synthesis. Many .json templates are
available inside the BBB directories. The following colorbox depicts the .json file used for the full
state simulator described in this dissertation. All key features are highlighted in red.

{ "version": 1,
"platform-name" : "HARP",
"afu-image":
"magic-no": 488605312,
"interface-uuid":
"00000000-0000-0000-0000-000000000000",
"clock-frequency-low": "auto",
"clock-frequency-high": "auto",
"power": 0,
"afu-top-interface":
{ "class": "ccip_std_afu",
"module-ports" :
[{ "class": "cci-p",
"params":
"clock": "pClkDiv2"
}] },
"accelerator-clusters":
[{ "name": "cci_hello",
"total-contexts": 1,
"accelerator-type-uuid": "4634522f-0d1f-4fd3-983f-8fb7c50b552d" }]
}

The magic-no parameter is a default value provided in all of the BBB templates. The accelerator-
type-uuid parameter is a unique ID that will be used to connect to the accelerator of choice and to
issue SW API functions described in section 7.2. Finally, the clock is arguably the most important
parameter of the .json file. By setting it to pClk, pClkDiv2 or pClkDiv4 the developer can set the
desired RTL clock speed to 400MHz, 200MHz or 100MHz respectively.

7.2 Building the SW

After installing the latest version of the OPAE and downloading the BBBs, the developer has a
plethora of simple accelerators and software interfacing examples to start with. Addressing the
HW and reading its responses is possible through the SW API by utilizing the MMIO address
space, specialized OPAE function libraries, and the DDR. Of course, this communication follows

41

the CCI-P interface protocol. The OPAE provides a great number of header files, containing all
the necessary functions that can be used to interface the AFU. The most useful header files reside
in the opae-sdk/common/include/opae/, with the most useful being:

• fpgaOpen(fpga_token token, fpga_handle *accel_handle, int flags): The accel_handle
variable should have a unique value based on the unique accelerator ID called AFU _AC-
CEL_UUID. This will allow the SW API to connect to an accelerator of choice. Located in
the access.h header file, fpgaOpen() is responsible for assigning/returning the correct value
to the accel_handle variable.

• fpgaPrepareBuffer(fpga_handle accel_handle, uint64_t size, void **buf_addr, uint64_t
*wsid, int flags): Located in the buffer.h, this function allocates space for a buffer (in DDR)
for shared access between an accelerator and the SW API process. It stores the starting ad-
dress to the buf_addr pointer and updates the wsid variable that will later be used to free
this buffer. Once again, the handle variable is the unique accelerator ID. The size variable
holds the buffer size in Bytes.

• fpgaWriteMMIO64(fpga_handle accel_handle, uint32_t mmio_num, uint64_t offset,
uint64_t value) : Located in the mmio.h, this function is used to transmit a 512-bit value to
the FPGA while also informing a CSR register in the MMIO space at a specific offset.
This function is very useful because it is a great way to inform the AFU about the location of
shared buffers and address spaces in the DDR. The mmio_num is fixed-set to 0 for the main
MMIO address space. For the Full State Simulator platform, the fpgaWriteMMIO64()
function was used to inform about the address of the input trace buffer, the result buffer, the
overall trace size and a ’start’ and ’write_start’ signal to initiate the accelerator. There are 2
key features that a developer needs to know about this function:

1. There is a discrete way of addressing the MMIO space. Starting from offset == 0,
adding ’+1’ to the offset means increasing the address by 32 bits. Therefore, to tra-
verse an MMIO with 64-bit registers, it is intuitive that the offset needs to be escalated
by +2 for each different request to avoid conflicts (i.e. 0, 2, 4, 8 etc.). In case of a SW
request, this translates to a byte-offset. Therefore, to use fpgaWriteMMIO64()
correctly, the offset should be incremented by ’+8’ at a time (0, 8, 16, 24 etc.).

2. The ’value’, given to the fpgaWriteMMIO64() is either the address of a buffer or a
512-bit value in DDR. To handle an address efficiently, the physical address should
be divided by the size of a cache-line request (512bits). That way, the AFU can
request 512 bits of a buffer simply by adding ’+1’ to the start address. For the 1st 512
bits, the address is [value/512 + 0]. For the 3rd 512 bits, the address is [value/512 + 2]
and so on.

• fpgaReadMMIO64(fpga_handle accel_handle, uint32_t mmio_num, uint64_t offset,
uint64_t *value); : Located in the mmio.h, this function is used to read a 64-bit value
from a CSR MMIO register at a specified offset and placing it on the ’value’ 64-bit vari-
able. This function was used to read output signals from the AFU, like the ’finished’ signal
informing that the accelerator has finished its work.

• fpgaReleaseBuffer(fpga_handle accel_handle, uint64_t wsid) and fpgaClose(accel _han-
dle): Located in the buffer.h, these functions are used at the end of the application to release
the buffers provided the correct wsid and also to close the FPGA.

42

https://github.com/OPAE/opae-sdk/tree/master/common/include/opae

The SW API for the Full State Simulator requires 3 buffers, two for the input traces and one
for the results from the AFU. Depending on the simulator platform’s configuration, more buffers
may be needed especially when 2 or more Full System Simulators may run simultaneously on the
HARP FPGA. The size of the input buffers is chosen experimentally and will be discussed
in the following chapter. Allocating buffer sizes as well as informing the AFU about the buffer
addresses and sizes is performed by using the functions mentioned earlier.

Figure 7.2 – The Full State Simulator’s SW API and AFU (Macroscopic View)

Because the size of the input trace file may be larger than the input buffer, the input trace files
can be read in whole or in batches. However, this implementation is developed only for the BP
trace file. The Cache Trace File is read in whole. This was intentional in order to determine if
the size of the input buffer can affect the system’s performance. The results of this experiment are
highlighted in the Results Chapter.

For each batch from the BP trace-file, the input buffer is loaded and the AFU is initiated. A
’start’ signal to the AFU is given by an MMIO CSR register using fpgaWriteMMIO64(). The
SW API is capable of waiting for the AFU to finish its work, using the fpgaReadMMIO64(), by
waiting for a ’finished’ signal. When this happens, the input buffer is refilled with new trace data
and the process is repeated. Once all traces from all input trace files have been processed, the AFU

43

is notified using the ’write_start’ signal, to update the result buffer. These results are read by the
SW and log files are exported, containing all these simulation and state data. After everything is
finished, the buffers are freed and the FPGA is closed.

7.3 Building the HW - AFU

The AFU for the Branch Predictor Simulator, the Cache simulator and the Full State Simulator is
based upon the AFU templates provided by the BBB for Intel FPGAs and has 6 main FSM’s as
its core. The AFU works as the top-level for the Branch Predictors and the Cache model. It com-
municates with the SW API, consecutively reads trace lines from the DDR, stores them in FIFOs
(unless they are full), ’feeds’ the models with new input trace lines and exports simulation results
depending on the model outputs. It is also responsible for reading the ’start’ and ’write_start’ sig-
nals from SW and creating the ’finished’ and ’write_finished’ signals to start and stop the FPGA
and this simulator platform in general.

After configuring the .json file described in section 7.1 the clock and reset signal configuration
is loaded like this:

logic clk;
logic reset;

assign clk = ‘PLATFORM_PARAM_CCI_P_CLOCK;
assign reset = ‘PLATFORM_PARAM_CCI_P_RESET;

The AFU module has a standard set of inputs and outputs to comply with the requirements of
the CCI-P. Apart from the clock and the reset, 2 signals stand out:

• input t_if_ccip_Rx pck_cp2af_sRx: This is the AFU read channel or Rx Port. For sim-
plicity, it was assigned to an sRx signal. This port also has a sRx.c0.rspValid signal that
informs about a completed read request.

• output t_if_ccip_Tx pck_af2cp_sTx: This is the AFU transmit/write channel or Tx Port.
For simplicity, it was assigned to an sTx signal. This port also has a sRx.c1.rspValid signal
that informs about a completed write request.

The accelerator’s unique ID that was set in the .json file, is passed through the AFU_ACCEL_UUID
parameter like so:

logic [127:0] afu_id = ‘AFU_ACCEL_UUID;

Handling MMIO requests from the SW API is crucial for the correct functionality of this
platform. The sRx.c0.mmioRdValid and sRx.c0.mmioWrValid signals check if there is a CSR
read or write request active this cycle and are assigned to the is_csr_read and is_csr_write signals
for simplicity. By utilizing the mmio_req_hdr.address signal, the AFU can read or write from/at
specific offsets in the MMIO address space.

t_ccip_c0_ReqMmioHdr mmio_req_hdr;
assign mmio_req_hdr = t_ccip_c0_ReqMmioHdr’(sRx.c0.hdr);

There are 2 synchronous processes that handle CSR/MMIO read and write requests:

1. The first process handles read requests to the MMIO. A read request to the MMIO
(is_csr_read==1) translates to a CSR register write at a certain offset from the AFU’s per-
spective. The sTx.c2.mmioRdValid signal is set to ’1’ and depending on the offset of the

44

MMIO read request, sTx.c2.data is updated with the appropriate value. For example, it is
mentioned that the SW API waits for a ’finished’ signal from the AFU. To view this, the SW
issues multiple MMIO read requests to offset 40 using the fpgaReadMMIO64() function.
This translates to offset 40/4=10 from the AFU side. To handle this case, the process looks
like this:

always_ff @(posedge clk)
begin
if (reset) begin
sTx.c2.mmioRdValid <= 1’b0;
end else begin
sTx.c2.mmioRdValid <= is_csr_read;
...
case (mmio_req_hdr.address)
...
10: sTx.c2.data <= t_ccip_mmioData’(finished);
...
default: sTx.c2.data <= t_ccip_mmioData’(0);
endcase
end

2. The second process handles the write requests to the MMIO. A write request from the
SW API (is_csr_write==1), translates to an MMIO and data read from the AFU’s perspec-
tive. Whenever an MMIO write request reaches the AFU, 512-bits of data can be read
from the sRx.c0.data signal. Depending on the request’s offset, the AFU knows which kind
of data complement this particular request and updates its registers accordingly. For exam-
ple, the SW API informs the AFU about the start-address of the input file buffer at offset
80 using the fpgaWriteMMIO64() function. The AFU is capable of receiving this address
by checking for the is_csr_write==1 signal and an mmio_req_hdr.address=80/4=20. The
process that handles this kind of write requests looks like this:

always_ff @(posedge clk)
begin
...
if (is_csr_write) begin
case (mmio_req_hdr.address)
...
20: mem_addr_trace[511:0] <= t_ccip_clAddr’(sRx.c0.data);
...
endcase
end

7.3.1 DDR Read and Write Requests

Now that the AFU has all the necessary features to communicate with the SW API, another thing
to explain the communication with the DDR. Read and write requests are issued from the AFU
by configuring the read and write headers as well as the valid request signals of Channel 0

45

and 1 respectively. For a read request, performed using the sRx Port on Channel 0, here are all
the necessary signals:

• t_ccip_c0_ReqMemHdr rd_hdr : Define a read request header.

• rd_hdr = t_ccip_c0_ReqMemHdr’(0) : Initialize the read request header.

• rd_hdr.mdata = t_ccip_mdata’(16-bit_value) : The mdata is a very useful 16-bit value
that the AFU can issue with a read request to monitor its progress. When the AFU re-
ceives an sRx.c0.rspValid==1 it knows that a read request is completed. However, valid
responses and read requests are received out-of-order. So, the mdata that complement a
valid signal, guarantee that this response matches a particular request, otherwise this valid
signal may originate from a different read request.

• rd_hdr.address = t_ccip_clAddr’(buffer_address + index) : This sets the DDR address
that the AFU will read from. The buffer_address marks the starting address of a buffer
in DDR. By adding an index, the AFU traverses this buffer. As mentioned in section 7.1,
incrementing the address by +1, translates to a 512-bit shift.

• rd_hdr.cl_len = t_ccip_clLen’(2-bit_value) : By setting the 2-bit_value to 01, 10 or 11,
the AFU can request 1 (512 bits), 2 (1024 bits) or 4 (2048 bits) cache-lines from the DDR
with a single read request. Once again, it is noted that the cache-lines may come out-of-order
so the use of mdata is mandatory, unless the order of data is insignificant.

• sTx.c0.valid : By setting this to ’1’ the AFU initiates a new read request to the DDR with
all the necessary read request header configurations mentioned above.

• sRx.c0.rspValid : When this signal equals to ’1’, it means that a read request has been
successfully processed.

For a write request, performed using the sTx Port on Channel 1, here are all the necessary signals:

• t_ccip_c1_ReqMemHdr wr_hdr : Define a write request header.

• wr_hdr = t_ccip_c1_ReqMemHdr’(0) : Initialize the write request header.

• wr_hdr.address = write_buffer_address + index : This sets the DDR address that the AFU
will write to. The write_buffer_address marks the starting address of a buffer in DDR. By
adding an index, the AFU traverses this buffer. As mentioned in section 7.1, incrementing
the address by +1, translates to a 512-bit shift.

• sTx.c1.valid : By setting this to ’1’ the AFU initiates a new write request to the DDR with
all the necessary write request header configurations mentioned above.

• sRx.c1.rspValid : When this signal equals to ’1’, it means that a write request has been
successfully processed. However, this valid signal is received a few CCs before the actual
write of the data in DDR so the developers need to take note of this behavior.

For more information about the CCI-P refer to [33].

46

7.3.2 The Read FSMs

There are 2 identical FSMs for reading traces from the DDR and feeding them into FIFOs for
the BPs and the Cache model by issuing quadruple CL read requests. Arbitrarily, the FSM
that feeds the BPs has priority over the one that feeds the Cache model, in case they both are
about to issue a read request at the same CC. The reason for using 2 FSMs instead of one is
that the input trace file and the trace-lines for the BPs are different from the ones used to simulate
the Cache. As the FSMs are identical, only the FSM that feeds the BPs is going to be described.

The Read FSM is responsible for issuing read requests to the DDR, reading the DDR re-
sponses, validating the received data, loading the input FIFO and informing the SW API that
the AFU has finished its work when all the trace-lines from the DDR have been successfully
processed. Both Input FIFOs used in this simulator are modules that contain an entire
cache-line, meaning 8 trace lines (512/64=8) from the BP input trace file and 16 trace lines
(512/32=16) from the Cache input trace file.

This FSM has 10 states:

1. IDLE: This is the FSM’s initial state. When the AFU receives the ’start’ signal, the FSM
jumps from this state to the READ_REQUEST state, otherwise, it remains on the same
state.

2. READ_REQUEST: In this state the FSM checks if Channel 0 is busy by using the sRx.
c0TxAlmFull signal. If it is, it repeats the check until it is not. If it is not busy, it issues a
4-cache-line (4CLs == 4*512 bits) request to the DDR and proceeds to state WAIT_AND
_STORE.

3. WAIT_AND_STORE: After issuing a read request, the AFU has to wait for all 4 CLs to
be received. As mentioned previously, the CLs may come out-of-order. So, with the use of
4 helper variables/registers, the AFU tracks the reception of each of the 4 read valid signals.
As soon as CL reaches the AFU, it is stored on a temporary register. The FSM remains
in this state until all CLs are read and are successfully loaded on 4 temporary registers. Then
it proceeds to state INITIAL_CHECK.

4. INITIAL_CHECK: After the WAIT_AND_STORE state, 4 CLs are reserved in 4 tem-
porary registers. In this state, the AFU checks if the CLs received are valid. Especially in
the later stages of the simulation, the input trace buffer may have been zero-padded so if
every CL equals to zero, there is no need to feed them to the simulator modules and the
FSM jumps straight to state CHECK_FIFO_FULL. If there is even a single CL that is not
all-zeros, the FSM proceeds to state WRITE_FIFO_0.

5. WRITE_FIFO_0: Because the order of traces that are fed to the simulator modules has to
be precise, in this state the AFU writes the 1st CL to the FIFO. The 1st CL means the 1st
of the 4CL-batch, not the 1st one received. After this FIFO write, the FSM proceeds to
state WRITE_FIFO_1.

6. WRITE_FIFO_1: Similar to state WRITE_FIFO_0, in this state the AFU writes the 2nd
CL to the FIFO. After this FIFO write, the FSM proceeds to state WRITE_FIFO_2.

7. WRITE_FIFO_2: Similar to state WRITE_FIFO_1, in this state the AFU writes the 3rd
CL to the FIFO. After this FIFO write, the FSM proceeds to state WRITE_FIFO_3.

8. WRITE_FIFO_3: In this state, the AFU writes the 4th and final CL to the FIFO. After this
FIFO write, the FSM proceeds to state CHECK_FIFO_FULL.

47

Figure 7.3 – The AFU’s Branch Predictor Read FSM

9. CHECK_FIFO_FULL: This state has multiple controls. First, it checks whether the FIFO
is almost full. Because the AFU only issues quadruple (4CL) read requests, the FIFO should
have at least 4 empty slots. If this is not the case, the FSM remains in this state. Second,
if there are 4 or more empty slots, the AFU checks whether every cache-line from the input
buffer has already been read and if the FIFO is empty. Note that the input buffer is built
in such a way so that it is a complete multiple of 32, thus guaranteeing that every 4CL
read request has valid cache-lines. If all lines are processed and the FIFO is empty, the
FSM proceeds to state CLOSE. However, if the FIFO is not-empty, the FSM remains in
this state until every FIFO-line is successfully processed. Finally, if there are 4-or-more
free FIFO slots and there are still unprocessed traces, the read address index is incremented
by ’4’ (4*512 == The next 4 CLs) and the FSM returns to state READ_REQUEST.

10. CLOSE: This is the final state where the AFU informs the SW API, via the ’finished’ signal,
that it has completed its work. However, because the trace file might be larger than the input
trace buffer, the AFU should be capable of restarting and executing its procedures for a
new input trace buffer. This is why the FSM Idles in this state until a new ’start’ signal is
received from the SW API. When it does, it proceeds to state READ_REQUEST.

48

7.3.3 The Feed FSMs

There are 2 identical FSMs for ’feeding’ traces to the BPs and the Cache model. The reason for
using 2 FSMs instead of one is that the number of traces included inside a line from the BP FIFO
is different from the one in the Cache FIFO. A line from the BP FIFO contains 8 trace lines from
the BP’s input trace file, meaning that the BP’s Feed FSM can ’feed’ all-three BP models for 8
consecutive times before issuing a new FIFO read request. On the other hand, a line from the
Cache FIFO contains 16 trace lines from the Cache’s input trace file, meaning that the Cache’s
Feed FSM can ’feed’ the Cache model for 16 consecutive times before issuing a new FIFO read
request.

Both FSMs have 3 states for waiting the AFU start signal and issuing read requests to
their respective FIFOs. However, the BP Feed FSM has 16 Feed-Check (19 total states) and
the Cache Feed FSM has 32 Feed-Check (35 total states) because they feed 64-bits and 32-
bits respectively. As the FSMs are practically identical, only the FSM that feeds the BPs is going
to be described:

1. WAITING: In this state, the Feed FSM waits for the ’start’ signal from the SW API.
When it comes, it jumps to state READ_FROM_FIFO, otherwise, it remains in WAIT-
ING. While in this case, the Feed FSM is in ’idle’ mode.

2. READ_FROM_FIFO: In this case, the Feed FSM issues a read request to the BP FIFO and
proceeds to state WAIT_FIFO. However, if the BP FIFO is empty, the Feed FSM remains
in this state.

3. WAIT_FIFO: The FSM waits for 1CC for the BP FIFO response and proceeds to state
FEED _1.

4. FEED_1: In this state, the FSM reads the response from the BP FIFO and stores the entire
CL into a 512-bit register for processing. First, it checks the trace-line’s [63:0] bits. If they
are all zeros, the trace is not useful so the FSM returns to state READ_FROM_FIFO. This
is done because zero traces appear only when the input trace buffer is zero-padded at
its end, meaning that all the following traces are also all-zeros. If not, it loads this trace
to the Branch Predictors (or [31:0] for the Cache Model) and proceeds to state CHECK_1.

5. CHECK_1: Now, the FSM has to wait for each simulated module (BPs or Cache) to finish
its work with the trace provided in FEED_1. When a module has completed its work, it ex-
ports a ’valid_output’ signal that the FSM reads and proceeds to state FEED_2, otherwise,
the state remains the same.

6. FEED_2: Here, the FSM checks the trace-line’s [127:64] bits. If they are all zeros, the trace
is not useful so it moves straight to state READ_FROM_FIFO. If not, it loads this trace to
the BPs (or [61:32] for the Cache Model) and proceeds to state CHECK_2.

7. CHECK_2: Once again, the FSM has to wait for each simulated module to finish its work
with the trace provided in FEED_2. When every module has completed its work, the FSM
proceeds to state FEED_3, otherwise, the state remains the same.

8. FEED_3: Here, the FSM checks the trace-line’s [191:128] bits. If they are all zeros, the
trace is not useful so it moves straight to state READ_FROM_FIFO. If not, it loads this
trace to the BPs and proceeds to state CHECK_3.

49

Figure 7.4 – The AFU’s Branch Predictor Feed FSM

9. CHECK_3: Once again, the FSM waits for each simulated module to finish its work with
the trace provided in FEED_3. Only then it proceeds to state FEED_4, otherwise, the state
remains the same.

10. FEED_4: Same as in every other FEED_x state, only in this case it checks the trace-line’s
[255:192] bits.

11. CHECK_4: Same as in every other CHECK_x state.

12. FEED_5: Same as in every other FEED_x state, only in this case it checks the trace-line’s
[319:256] bits.

13. CHECK_5: Same as in every other CHECK_x state.

14. FEED_6: Same as in every other FEED_x state, only in this case it checks the trace-line’s
[383:320] bits.

15. CHECK_6: Same as in every other CHECK_x state.

50

16. FEED_7: Same as in every other FEED_x state, only in this case it checks the trace-line’s
[447:384] bits.

17. CHECK_7: Same as in every other CHECK_x state.

18. FEED_8: Same as in every other FEED_x state, only in this case it checks the trace-line’s
[511:448] bits.

19. CHECK_8: Same as in every other CHECK_x state. Only this time the FSM returns to
state READ_FROM_FIFO.

20. NOTE: The Cache Feed FSM has states from CACHE_FEED_1 to CACHE_CHECK_16

7.3.4 The Write FSM

After the SW API is informed that the AFU has finished its work processing the input trace
files, the next step is to export the simulation statistics. The ’write_start’ signal informs the
AFU about exporting the simulation results. Throughout the simulation process, the AFU
has separate processes that detect valid output signals from each individual BP and the
Cache Model. When these valid signals become ’1’, the AFU updates the simulation statis-
tics for the appropriate simulated model that has triggered this valid bit. For example, if
the AFU detects a valid signal from the 2-Level Predictor, this triggers an update to the val-
ues of the lev_total_number _of_branches, the lev_total_number _of_address_hits, and the
lev_total_number _of_direction_hits 64-bit registers, which are used to store the simulation re-
sults for this particular predictor model.

The SW API allocates space for a Result Buffer and informs the AFU about its address on the
DDR. Using this address and an appropriate write_address_index, the AFU will issue single or
multiple write requests in order to export the simulation statistics. The Write FSM has 6 states:

Figure 7.5 – The AFU’s Write FSM

51

1. WAIT: In this state, the Write FSM waits for the ’write_start’ signal from the SW API.
When this signal comes, it moves to state WRITE_1, otherwise, it remains in WAIT.

2. WRITE_1: At this point, the Write FSM issues a write request to the DDR in the lo-
cation of the Result Buffer. After the DDR write request, the FSM advances to state
WAIT_FOR_WRITE_1. A single DDR write request has 512-bits of data and requires:

• Assigning the sTx.c1.hdr.address to the result_buffer_address.

• Asserting the sTx.c1.valid bit to ’1’;

• Loading the 512-bits of sTx.c1.data with the simulation results. In this FSM state,
the DDR write request contains simulation results about the AFU total clock-
cycles (CCs), the One-level (n-bit) predictor and the 2-level predictor.

3. WAIT_FOR_WRITE_1: Now the FSM has to wait for the sRx.c1.rspValid==1 signal that
will mark a completed write request. Note that the sRx.c1.rspValid==1 signal may come
multiple (arbitrary value) CCs before the actual DDR write so the developers have to
be cautious when issuing DDR write requests. Only when this signal arrives the FSM can
proceed to state WRITE_2.

4. WRITE_2: At this point, the Write FSM issues a 2nd write request to the DDR in the
location of the Result Buffer + 1 (the next 512-bits). After the DDR write request, the
FSM advances to state WAIT_FOR_WRITE_2. This write request contains simulation
results about the Tournament predictor and the Cache model.

5. WAIT_FOR_WRITE_2: Now the FSM has to wait for the sRx.c1.rspValid==1 signal for
the 2nd write request. Only then the FSM can proceed to state END.

6. END: Finally, the Write FSM informs the SW API that it has finished writing the simulation
statistics to the DDR with a dedicated ’write_finished’ CSR register of the MMIO address
space at offset 16 (or 16*4=64).

7. NOTE: The Write FSM is only used in the BP and BP+Cache Simulators. For the Full State
Simulator, the Write Cache is replaced by the State FSM.

7.3.5 The State FSM

The State FSM is a replacement of to the Write FSM and is present only in the Full System Sim-
ulator. Once again, it is used to print the simulation results that are exported from the simulator
modules, however, it is also responsible for printing the system’s state. Both the simulation results
and the system’s state are exported in the form of a log file. This FSM stores the state data, with a
specific format, inside the results buffer, created by the SW API. The format of the state-data will
be discussed along with the analysis of each FSM state. It should be noted that in order for the
simulator to print the correct data to the log file, all memory sizes need to be provided to the SW
API at execution time. All 7 SW API parameters are depicted in figure 7.6.

In order to print a system state, during the processing of the traces by the HW simulator
modules, the internal memories are copied to ’mirror-memory-modules’. These modules are exact
copies of the internal memory modules and are used to print the system state with ease. The
processes that are responsible for handling the data exported from the BPs and the Cache Model
are responsible for updating these memory modules whenever a new output is prompted. The
State FSM is only responsible for reading these data in order to print them with a certain format

52

Figure 7.6 – SW API execution parameters.

inside the final simulation log file. All the data included inside the log file as well as the format
of the state data will be analysed in this section and in section 8.3.

In the upcoming enumerated bullets, all 35 states of the State FSM are going to be thoroughly
described state-by-state. A key feature of this FSM and the CCI-P in general, is that the DDR
Write Request are streaming requests, so there is no additional delay in order to wait for a write-
valid response from channel 1. However, the SW API is responsible for allowing the AFU to
write all the data to the DDR, by providing a sufficient delay between the completion of the
State FSM (write_finished=1 AFU signal to the API) and the actual printing of the final log
file.

Because each batch of data being written with a write request is 512 bits, a printing index
state_index_for_the_ddr_writes is used to increment the write header’s address, in order to store
the data inside the result buffer at the desired place and to avoid overlapping data.

1. STATE_WAIT: This is the initial and reset state of the State FSM. Here, the FSM idles
until a ’write-start’ signal is issued from the SW API. Only then, the FSM proceeds to state
STATE_WRITE_1.

2. STATE_WRITE_1: Compared to the Write FSM, in this state the FSM prints all the sim-
ulation data as 32 bit integers. These simulation data are the number of CCs after reset,
the total number of branches, address hits and direction hits for the One-Level, 2-Level and
Tournament predictors, the number of times the 2-Level was the predictor of choice by the
Tournament’s Meta Predictor, the number of traces processed by the Cache model, the num-
ber of Cache Hits and finally the number of Cache Misses. The write header is set to point
at the start of the results buffer and all these data are included inside a single 512-bit CL.
The printing index state_index_for_the_ddr_writes is incremented by ’1’ and the FSM
proceeds to state STATE_L1_READ.

3. STATE_L1_READ: Using a dedicated address index l1_state_mem_address, created to
traverse the cache mirror memory module, the FSM issues a read request to fetch a single
cache-line from the cache’s mirror memory. It then proceeds to state STATE_L1_WAIT.

4. STATE_L1_WAIT: The data requested in state STATE_L1_READ will be available after
1CC, so, using this state the FSM just waits for 1CC before moving to state STATE_L1
_PROCESS.

5. STATE_L1_PROCESS: In this state, the FSM receives the data requested in state STATE

53

_L1 _READ. Using a helper 512-bit register state_line_to_write the FSM formats a 512-
bit value to be written to the result buffer. Because the Cache model supports up to an
8-way memory configuration, an entire line from the cache memory can be stored in these
512-bits. Each way is contained using 31 bits of a 32-bit integer and the replacement in-
dexes of the cache line are stored in a different 32-bit integer. Depending on the number
of ways, the state_line_to_write has more or less useful data with all unused ways being
replaced with 32-zero-bits. After formatting the state_line_to_write, the FSM proceeds to
state STATE_L1_WRITE. The format of a state_line_to_write, that is part of the Cache
Model’s state data, is depicted in figure 7.7.

Figure 7.7 – The format of a state_line_to_write containing Cache Model’s state data.

6. STATE_L1_WRITE: At this point, the state_line_to_write is ready, so, the FSM issues a
DDR write request for these 512-bits to the result buffer and the printing index state_index
_for_the_ddr_writes is incremented by ’1’. Now, the FSM has to check if it has traversed
the entire mirror cache memory. If this is the case, the l1_state_mem_address address
index is set to zero and the FSM proceeds to state STATE_NBIT_READ. Otherwise, the
l1_state_mem_address address index is incremented by ’1’ and the process is repeated by
returning to state STATE _L1 _READ.

7. STATE_NBIT_READ: The next step is to export a state for the One-Level Branch Pre-
dictor. Both the One-Level’s BTB and the BHT have the same MEM_DEPTH number of
words, so, using a single dedicated address index nbit_state_btb_and_bht_address, the
FSM can traverse the BHT and BTB mirror memory modules. In this state, the FSM issues
a read request to fetch a single line from the BHT and the BTB mirror memories and then
moves to state STATE_NBIT_WAIT.

8. STATE_NBIT_WAIT: The data requested in state STATE_NBIT_READ will be avail-
able after 1CC, so, using this state the FSM just waits for 1CC before moving to state
STATE_NBIT_PROCESS.

9. STATE_NBIT_PROCESS: In this state the lines from the One-Level’s BTB and BHT
mirror memories are received and these data are used to synthesize the 512-bits of the
state_line_to_write register. Once again the data are stored as 32-bit integers inside the
512-bit register in order to be exported to the DDR. These data are the branch’s target PC
and opcode from the BTB as well as the n-bit predictor from the BHT. After formatting the
state_line_to_write, the FSM proceeds to state STATE_NBIT_WRITE. The format of a
state_line_to_write is depicted in figure 7.8.

54

Figure 7.8 – The format of a state_line_to_write containing One-Level Predictor’s state data.

10. STATE_NBIT_WRITE: In this state, the FSM issues a DDR write request to write the
state_line_to_write register’s 512-bits to the result buffer and the printing index state _in-
dex _for_the_ddr_writes is incremented by ’1’. Now, the FSM has to check if it has
traversed the entire One-Level’s mirror BTB and BHT memories (MEM_DEPTH # of
words). If this is the case, the nbit _state _btb_and_bht_address address index is set to
zero and the FSM proceeds to state STATE_2LEV_READ_SR. Otherwise, the nbit_state
_btb_and_bht_address address index is incremented by ’1’ and the process is repeated by
returning to state STATE_NBIT _READ.

11. STATE_2LEV_READ_SR: The next step is to export a state for the 2-Level Branch Pre-
dictor. First, the FSM has to read the 2-Level’s SR mirror memory using a dedicated
twolev_state_sr _address address index. In this state, the FSM issues a read request to
the SR mirror memory and advances to state STATE_2LEV_WAIT_SR.

12. STATE_2LEV_WAIT_SR: The data requested in state STATE_2LEV_READ_SR will be
available after 1CC, so, using this state the FSM just waits for 1CC before moving to state
STATE_2LEV_PROCESS_SR.

13. STATE_2LEV_PROCESS_SR: In this state the data from the 2-Level’s SR mirror memory
are received and are used to synthesize the 512-bits of the state_line_to_write register.
Each line from the SR represents a single history register whose data are exported using a
single 32 bit integer. After formatting the state_line_to_write, the FSM proceeds to state
STATE_2LEV_WRITE_SR. The format of a state_line_to_write is depicted in figure 7.9.

Figure 7.9 – The format of a state_line_to_write containing a history register for the 2-Level
Predictor’s state data.

14. STATE_2LEV_WRITE_SR: In this state, the FSM issues a DDR write request to write
the state_line_to_write register’s 512-bits to the result buffer and the printing index state
_index _for_the_ddr_writes is incremented by ’1’. Now, the FSM has to check if it has
traversed the entire 2-Level’s mirror SR mirror memory (N # of words). If this is the case,
the twolev_state_sr _address address index is set to zero and the FSM proceeds to state
STATE_2LEV_READ_BTB. Otherwise, the twolev_state_sr _address address index is
incremented by ’1’ and the process is repeated by returning to state STATE_2LEV_READ
_SR.

55

15. STATE_2LEV_READ_BTB: The second step is to read the 2-Level’s BTB mirror memory
using a dedicated twolev_state_btb_address address index. In this state, the FSM issues a
read request to the BTB mirror memory and advances to state STATE_2LEV_WAIT_BTB.

16. STATE_2LEV_WAIT_BTB: The data requested in state STATE_2LEV_READ_BTB will
be available after 1CC, so, using this state the FSM just waits for 1CC before moving to state
STATE_2LEV_PROCESS_BTB.

17. STATE_2LEV_PROCESS_BTB: In this state the data from the 2-Level’s BTB mirror
memory are received and are used to synthesize the 512-bits of the state_line_to_write reg-
ister. The branch’s opcode and the target PC contained inside a single line from the BTB mir-
ror memory are exported using two 32 bit integers. After formatting the state_line_to_write,
the FSM proceeds to state STATE_2LEV_WRITE_BTB. The format of a state_line_to
_write is depicted in figure 7.10.

Figure 7.10 – The format of a state_line_to_write containing the BTB’s branch opcode and the
target PC for the 2-Level Predictor’s state data.

18. STATE_2LEV_WRITE_BTB: In this state, the FSM issues a DDR write request to write
the state_line_to_write register’s 512-bits to the result buffer and the printing index state
_index _for_the_ddr_writes is incremented by ’1’. Now, the FSM has to check if it has tra-
versed the entire 2-Level’s mirror BTB mirror memory (MEM_DEPTH # of words). If this
is the case, the twolev_state_btb_address address index is set to zero and the FSM proceeds
to state STATE_2LEV_READ_PHT. Otherwise, the twolev_state_btb_address address
index is incremented by ’1’ and the process is repeated by returning to state STATE_2LEV
_READ_BTB.

19. STATE_2LEV_READ_PHT: The third and final step is to read the 2-Level’s PHT mir-
ror memory using a dedicated twolev_state_pht_address address index. In this state, the
FSM issues a read request to the PHT mirror memory and advances to state STATE_2LEV
_WAIT_PHT.

20. STATE_2LEV_WAIT_PHT: The data requested in state STATE_2LEV_READ_PHT
will be available after 1CC, so, using this state the FSM just waits for 1CC before mov-
ing to state STATE_2LEV_PROCESS_PHT.

21. STATE_2LEV_PROCESS_PHT: In this state the data from the 2-Level’s PHT mirror
memory are received and are used to synthesize the 512-bits of the state_line_to_write
register. The k-bit predictor contained inside a single line from the PHT mirror memory is
exported using a single 32 bit integer. After formatting the state_line_to_write, the FSM
proceeds to state STATE_2LEV_WRITE_PHT. The format of a state_line_to _write is
depicted in figure 7.11.

56

Figure 7.11 – The format of a state_line_to_write containing the PHT’s k-bit predictor for the
2-Level Predictor’s state data.

22. STATE_2LEV_WRITE_PHT: In this state, the FSM issues a DDR write request to write
the state_line_to_write register’s 512-bits to the result buffer and the printing index state
_index _for_the_ddr_writes is incremented by ’1’. Now, the FSM has to check if it
has traversed the entire 2-Level’s mirror PHT mirror memory (PHT_MEM_DEPTH # of
words). If this is the case, the twolev_state_pht_address address index is set to zero and the
FSM proceeds to state STATE_TOUR_READ_NBIT_AND_BTB_AND_META. Other-
wise, the twolev_state_pht_address address index is incremented by ’1’ and the process is
repeated by returning to state STATE_2LEV _READ_PHT.

23. STATE_TOUR_READ_NBIT_AND_BTB_AND_META: The final job of the state FSM
is to export a state for the Tournament Branch Predictor. All three of the Tournament’s BTB,
SEL and BHT mirror memories have the same MEM_DEPTH number of words, so, by us-
ing a single dedicated address index tournament_state_btb_bht_ and_meta_address, the
FSM can traverse the BHT, SEL and BTB mirror memory modules. In this state, the FSM
issues a read request to the SR mirror memory and advances to state STATE_TOUR_WAIT
_NBIT_AND_BTB_AND_META.

24. STATE_TOUR _WAIT_NBIT_AND _BTB_AND_META: The data requested in state
STATE _TOUR_READ _NBIT_AND_BTB_AND_META will be available after 1CC,
so, using this state the FSM just waits for 1CC before moving to state STATE_TOUR
_PROCESS _NBIT _AND_BTB_AND_META.

25. STATE_TOUR_PROCESS_NBIT_AND_BTB_AND_META: In this state the data from
the Tournament’s BTB, BHT and SEL mirror memories are received and are used to syn-
thesize the 512-bits of the state_line_to_write register. These data are the s-bit predic-
tor from the SEL memory, the n-bit predictor from the BHT memory and the branch op-
code and target PC from the BTB, are exported as four 32-bit integers. After formatting
the state_line_to_write, the FSM proceeds to state STATE_TOUR_WRITE_NBIT_AND
_BTB_AND_META. The format of a state_line_to_write is depicted in figure 7.12.

Figure 7.12 – The format of a state_line_to_write containing the Tournament Predictor’s BTB,
BHT and SEL memory state data.

26. STATE_TOUR_WRITE_NBIT_AND_BTB_AND_META: In this state, the FSM issues
a DDR write request to write the state_line_to_write register’s 512-bits to the result buffer

57

and the printing index state _index _for_the_ddr_writes is incremented by ’1’. Now, the
FSM has to check if it has traversed the entire Tournament Predictor’s mirror BTB, BHT
and SEL mirror memories (MEM_DEPTH # of words). If this is the case, the tourna-
ment_state_btb_bht_ and_meta_address address index is set to zero and the FSM pro-
ceeds to state STATE_TOUR_READ_SR. Otherwise, the tournament_state_btb_bht_
and_meta_address address index is incremented by ’1’ and the process is repeated by re-
turning to state STATE_TOUR_READ_NBIT_AND_BTB_AND_META.

27. STATE_TOUR_READ_SR: The 2nd step is to export a state for the Tournament Predic-
tor’s SR mirror memory. In this state, the State FSM issues a read request to the Tour-
nament’s SR mirror memory, using a dedicated tournament_state_sr_address index and
advances to state STATE_TOUR_WAIT_SR.

28. STATE_TOUR_WAIT_SR: The data requested in state STATE_TOUR_READ_SR will
be available after 1CC, so, using this state the FSM just waits for 1CC before moving to
state STATE_TOUR_PROCESS_SR.

29. STATE_TOUR_PROCESS_SR: In this state the data from the Tournament Predictor’s SR
mirror memory are received and are used to synthesize the 512-bits of the state_line_to_write
register. Each line from the SR represents a single history register whose data are exported
using a single 32 bit integer. After formatting the state_line_to_write, the FSM proceeds
to state STATE_TOUR_WRITE_SR. The format of a state_line_to_write is depicted in
figure 7.13.

Figure 7.13 – The format of a state_line_to_write containing a history register for the Tournament
Predictor’s state data.

30. STATE_TOUR_WRITE_SR: In this state, the FSM issues a DDR write request to write
the state_line_to_write register’s 512-bits to the result buffer and the printing index state
_index _for_the_ddr_writes is incremented by ’1’. Now, the FSM has to check if it has
traversed the entire Tournament’s mirror SR mirror memory (N # of words). If this is the
case, the tournament_state_sr_address address index is set to zero and the FSM proceeds
to state STATE_TOUR _READ_PHT. Otherwise, the tournament_state_sr_address ad-
dress index is incremented by ’1’ and the process is repeated by returning to state STATE
_TOUR_READ_SR.

31. STATE_TOUR_READ_PHT: The third and final step is to read the Tournament Predic-
tor’s PHT mirror memory using a dedicated tournament_state_pht_address address index.
In this state, the FSM issues a read request to the PHT mirror memory and advances to state
STATE_TOUR _WAIT_PHT.

32. STATE_TOUR_WAIT_PHT: The data requested in state STATE_TOUR_READ_PHT
will be available after 1CC, so, using this state the FSM just waits for 1CC before moving
to state STATE_TOUR_PROCESS_PHT.

58

33. STATE_TOUR_PROCESS_PHT: In this state the data from the Tournament’s PHT mirror
memory are received and are used to synthesize the 512-bits of the state_line_to_write
register. The k-bit predictor contained inside a single line from the PHT mirror memory is
exported using a single 32 bit integer. After formatting the state_line_to_write, the FSM
proceeds to state STATE_TOUR_WRITE_PHT. The format of a state_line_to _write is
depicted in figure 7.14.

Figure 7.14 – The format of a state_line_to_write containing the PHT’s k-bit predictor for the
Tournament Predictor’s state data.

34. STATE_TOUR_WRITE_PHT: In this state, the FSM issues a DDR write request to write
the state_line_to_write register’s 512-bits to the result buffer and the printing index state
_index _for_the_ddr_writes is incremented by ’1’. Now, the FSM has to check if it has
traversed the entire Tournament’s mirror PHT mirror memory (PHT_MEM_DEPTH # of
words). If this is the case, the tournament_state_pht_address address index is set to zero
and the FSM proceeds to state STATE_END. Otherwise, the tournament_state_pht_address
address index is incremented by ’1’ and the process is repeated by returning to state STATE
_TOUR_READ_PHT.

35. STATE_END: This is the final state of the State FSM that concludes the state export by
informing the SW API that the AFU is finished via the ’write_finished’ signal. The FSM
will remain in this state unless a new ’write_start’ signal or reset is received.

Figure 7.15 – The State FSM Exporting Procedure.

7.4 ASE Simulation

The ASE simulation has already been mentioned in section 4.3, however, all the details will be
discussed in this section. With the project’s working directory set up as described in section 7.1,
the ASE simulation is possible with a few discrete steps.

59

The first step is to configure a build environment. If the OPAE is installed on a private
directory, set the environment variable OPAE_ INSTALL_PATH to point to the OPAE installa-
tion directory, otherwise do nothing. Also, the developer selects the FPGA class out of 4 classes
described in [42]. The FPGA class-of-interest is the fpga-bdx-opae which is the one used for
simulating the Broadwell Xeon CPUs (E5-2600v4) with an integrated in-package Arria 10
GX1150 FPGA (10AX115U3F45E2SGE3). This configuration is done by issuing:

$ source /export/fpga/bin/setup-fpga-env fpga-bdx-opae

Afterward, the developer issues the qsub-sim which is used to start an interactive session on
generic batch machines. When inside qsub-sim, navigate to the project’s hw directory. OPAE has
a dedicated script to initiate the creation of a simulation build directory (build_sim). This is done
by executing:

$ afu_sim_setup -s rtl/sources.txt build_sim

As mentioned already, ASE simulation requires 2 processes. Inside qsub-sim, the use of
tmux is essential in order to split the terminal into 2 discreet screens, one for SW and one
for the RTL. For more information about tmux visit [43]. For the RTL process navigate into the
build_sim directory and issue:

$ make && make sim

This will initiate the ’RTL environment’. While this process is running, switch to the SW
pane, navigate to the sw directory and prepare the SW simulation. First, issue ’make’ for the SW
API. Then export the ASE_WORKDIR environment variable that points to the /build_sim/work
directory and initiate the SW simulation. To do so, issue:

$ export ASE_WORKDIR = <path to project/directory/hw/build_sim/work>
$ with_ase ./<sw_api_name> <sw_api_parameters>

This step concludes the ASE simulation for the simulator platform. For more detailed infor-
mation visit [42] and Appendix A. The SW parameters are depicted in figure 7.6.

7.5 Bitstream Generation and FPGA Execution

The Bitstream Generation and RTL synthesis have already been discussed in section 4.4, however,
all the details will be discussed in this section. The synthesis starts just like before, by configuring
a build environment. After this configuration, navigate to the project’s hw directory and initiate
the creation of a synthesis build directory (build_fpga). This is done by executing:

$ afu_synth_setup -s rtl/sources.txt build_fpga

Now, enter the build_fpga directory and initiate the synthesis of the green bitstream. This is
done by issuing:

$ qsub-synth

The blue bitstream that contains the FIU is pre-configured and pre-loaded to the FPGA. The
green bitstream will be the one used for partial reconfiguration of the FPGA containing the accel-
erator. The developer can monitor the green bitstream’s synthesis process by issuing:

$ tail -f build.log

60

The synthesis process can take multiple minutes or hours. After its completion, the user opens
a shell on the FPGA system of the selected class by issuing qsub-fpga. While in this shell,
the developer needs to export the PBS_O_WORKDIR environment variable that points to the
/build_fpga directory:

$ export PBS_O_WORKDIR = <path to project/directory/hw/build_fpga>

Now, enter the build_fpga directory and load the green bitstream to the FPGA. This is possible
by issuing:

$ fpgaconf <synthesis_name>.gbs

After this is completed, the only thing left to do is to navigate to the sw directory, ’build/make’
the SW API and run the program by issuing:

$./<sw_api_name> <sw_api_parameters>

This concludes the bitstream generation and the whole simulation process running on the
FPGA. For more detailed information visit [42] and Appendix B. The SW parameters are depicted
in figure 7.6.

61

Chapter 8

Results and Data Analysis
8.1 The Branch Predictor (BP) Simulator Results

The first series of experiments were conducted in order to test all of the Branch Predictor models
on the HARP Platform. The experiments provided a great deal of information as regards to timing,
efficiency, resource utilization and also the ideal size of an input trace buffer. The configuration
parameters for all BP models can be seen in figure 8.1. All of the parameter names and their
explanations have already been described in section 6.8.2. Once again, as in section 6.8.2, for
the 2-Level Predictor, the PAg was chosen as it represents the more generic version of a 2-Level
Adaptive Predictor. Also, no model has a Return Address Stack (RAS=0).

Figure 8.1 – Branch Predictor parameters for each model.

A very useful mathematical equation to calculate the Simulation Time in msec, given the
number of Clock Cycles (CCs) and the clock frequency in MHz, is given below.

SimulationTime =
Number_o f _CCs

Clock_Frequency_in_MHz

1000
(msec)

62

The HW integrated design includes the AFU and a single 16-slot FIFO along with all the
predictor models described in chapter 6. The overall resource utilization of the Branch Predictor
Simulator platform described in the bdw_503_pr_afu_synth.syn.rpt output file, along with the
total available resources of the Arria 10 GX 1150 FPGA is shown in figures 8.2 and 8.3.

Figure 8.2 – Intel Arria 10 GX 1150 Available Resources [16].

Figure 8.3 – Resource Utilization of the Branch Predictor Simulator.

At this point, the simulator includes only the Branch Predictor Models. The results from
the HARP hybrid platform execution can be seen in figures 8.4, 8.5 and 8.6. To guarantee that
the AFU will write the correct results back to the DDR, a 10ms delay was integrated to the SW
API between the AFU’s ’write_finished’ response and the API’s log file generation. The simula-
tions were executed with different input buffer sizes for 1000000, 14361067 (entire trace from the
SPEC95 compress95 benchmark) and 80274735 (entire trace from the SPEC95 go benchmark)
traces. The design successfully meets timing at 200MHz, so the overall simulated time is calcu-
lated accordingly. Address and direction hits are depicted to verify the correct functionality of the
accelerator when selecting different input buffer sizes. On all figures, the best run is highlighted
in magenta.

Figure 8.4 – Execution Results for 1000000 traces from the SPEC95 compress95 benchmark for
all Branch Predictor Models.

63

Figure 8.5 – Execution Results for 14361067 traces from the SPEC95 compress95 benchmark for
all Branch Predictor Models. . The address/direction hit results are a perfect match with the BP
models results when tested as bare-metal on the ModelSim Simulator as shown in figure 6.8

Figure 8.6 – Execution Results for 80274735 traces from the SPEC95 go benchmark for all Branch
Predictor Models.

The final line of simulation data on figures 8.4, 8.5 and 8.6, represents the number of times the
Meta-predictor would have selected the 2-Level’s prediction over the n-bit’s. Of course, there are
many cases where the 2-Level prediction was the same as the n-bit’s. However, this value only
represents how many times the Meta-predictor would have selected the 2-Level’s prediction
over the n-bit’s.

This concludes the first part of the experiments regarding only the Branch Predictor (BP)
Simulator loaded onto the HARP hybrid platform. This system is provided as a standalone BP
HW simulator, alongside the Full State Simulator described in this dissertation.

8.2 The Combined BR and Cache Simulator Results

The second series of experiments involved the integration of the Cache Model, inside the already
functional BP simulator. After conducting the first set of experiments, the optimal input buffer
sizes for the BP simulator has already been determined. A FIFO identical to the one used for the
BP simulator, is added to the design for storing the cache-lines fetched from the Cache’s Read
FSM. The parameters used to configure the Cache Model along with their values, selected for the
second execution phase, are depicted in figure 8.7 and described in section 5.3.

64

Figure 8.7 – Cache Model Parameters and their Values for the 2nd HW Execution Phase.

All the parameters for the BPs are the same as in phase 1. The overall resource utilization,
described in the bdw_503_pr_afu_synth.syn.rpt output file, for the Combined BP and Cache
simulator on the HARP platform, is given in figure 8.8. These numbers include a 5-FSMs AFU
(without the State FSM), all of the BP models, the Cache model and the 2 FIFOs.

Figure 8.8 – Overall resource utilization of the Combined BP and Cache simulator.

As in phase 1, the BPs are executed for the same 14361067 trace input file from the SPEC95
compress95 benchmark. The Cache model is executed using the 10000000 trace file generated
for the bare metal simulation as described in section 5.5. The simulation results after the HW
execution are identical to the ones exported from the bare metal simulation of each individual
model and can be seen in figure 8.9. However, the HW Run Time is not the best time, but the
average execution time that was exported after multiple runs.

Figure 8.9 – Execution Results for 14361067 traces from the SPEC95 compress95 benchmark for
all Branch Predictor Models and 10000000 traces from the trace file reported in section 5.5 for the
Cache Model.

65

This concludes the second part of the experiments regarding the combined Branch Predictor
(BP) and Cache Simulator loaded onto the HARP hybrid platform. This system is provided as
a standalone BP+Cache HW simulator, alongside the Full State Simulator described in this
dissertation.

8.3 The Full State Simulator Results

The final set of results contain all the information from executing the Full State Simulator on the
HARP hybrid platform. The Full State Simulator is an extension of the BP+Cache simulator
described is section 8.2. It has the same capabilities and functionality, but, it is also capable of
printing the system’s state inside the result log file, along with the simulation results. The
necessary logic and hardware, that were added to complete this simulator, are describe in detail in
section 7.3.5.

The Full State Simulator executed in this step, contains the BPs and Cache Models whose pa-
rameters are the same as the ones used to execute the BP Simulator and the BP+Cache Simulator
described in sections 8.1 and 8.2 respectively. This was intentional, because a correct execution
of a full state simulation can be verified when the simulation results are a perfect match with the
simulation data delivered in the previous sections.

The added logic, obviously means an increase in the HW needed to deploy this extended
simulator platform. The overall resource utilization of the Full State Simulator is depicted in
figure 8.10.

Figure 8.10 – Overall resource utilization for the Full State Simulator.

After ~100 executions on the Full State Simulator, average timing result estimations were
exported from the simulation data. These data include the ’average number of clocks after reset’
and the ’average simulation time’. Depending on the data being processed by the simulator,
the ’average MIPS’ parameter was added, stating the number of instructions that the Full State
simulator can handle in 1 second. The ’average MIPS’ was calculated by including the AFU
processing time as well as the state export, so, it is an key result parameter for the entire
system behavior. These timing results are depicted in figure 8.11.

Figure 8.11 – Timing Statistics for the Full State Simulator.

66

After the AFU is finished, the SW API is responsible for printing the system state in a readable
and user-friendly format. The simulation results regarding the hits and misses of the BPs and
Cache are the same as in sections 8.1 and 8.2 and are printed at the top of the simulation log
file. The following section contains the data from the cache memory module. As mentioned in
section 7.3.5, an 8-way cache memory is printed each time. Depending on the Cache Model’s
configuration, all unused ways will be printed as zeros. The following sections are the contents of
the memory modules used by the One-Level, 2-Level and Tournament Predictors. The format of
the data exported from the AFU is described in section 7.3.5, however, the format of the Full State
Simulator’s log file that includes the system’s state is also depicted in figure 8.12.

Figure 8.12 – Format of the data included in the Full State Simulator’s log file.

The execution of the Full State Simulator concludes the final part of the experiments regarding
the integration of the Branch Predictor (BP) and the Cache Simulator onto the HARP hybrid
platform, that are also capable of exporting the system’s state. This system is provided as the
third and final standalone Full_State_Simulator (FSS) HW simulator, alongside the other
two simulators described in this dissertation.

67

8.4 Analysing the Data

Analyzing the execution and simulation results is arguably one of the most important sections in
every research dissertation. The results exported from the experimental process provide informa-
tion about the performance of the Hardware Models but also about the capabilities and behavior
of the HARP target platform. By monitoring the data exported from the Simulator and the over-
all system operation, many useful results and conclusions can be reported. This data analysis is
presented in the form of a series of bullets for better clarity of each observation.

• Execution-Simulation Comparison: The first thing to highlight is that all bare-metal sim-
ulation results, regarding the BP and Cache models, matched perfectly with the execution
results of these models when integrated on the HARP HW platform. Each individual model
has been tested and verified as a bare-metal standalone HW module using the SimpleScalar
6.7 and the DineroIV 5.7 ’golden models’. Therefore, this identicality between simula-
tion and execution results verifies the correct functionality of every single module of
this simulator platforms.

• Sub-optimal, Yet Fast: The BP models, as well as the Cache model, are all prototypes and
can receive multiple upgrades and optimizations like pipelining and prefetching. However,
the current performance of this simulator is already very promising, with multiple simula-
tion results and system-state data being exported at the fraction of the time as from similar
simulator platforms. Furthermore, given an accurately build SW API, this particular sim-
ulators are designed to run in coordination with a fast functional full system simulator on
specified timestamps, meaning that they can export heavy-duty simulation results while the
fast SW simulator continues unobstructed.

• HARP Capabilities: The QPI is the only channel utilized, with the maximum 4CL (2048-
bit-batch) DDR read requests and streaming 512-bit DDR write requests. However, the
maximum throughput of the QPI has not been reached (this will be discussed later on).
Furthermore, the HARP platform is heavily underutilized, with less than 3% of the of
its resources being used for the BP and Cache simulators. The integration of the ARM
modules, that complete the Full System Simulator (2.8) on the HARP hybrid platform, will
definitely increase the system requirements. However, there will still be a great amount
of unutilized HW meaning that multiple instances of the Full State Simulator or the Full
System Simulator can be integrated, to execute multiple system simulations, at different
timestamps, in parallel. This will translate into delivering great amounts of speedup and
overall platform efficiency (parallel simulations => x2, x3, etc.). Also, the HW clock can
be pushed close to 400MHz by using different development strategies and the provided
’uClk_usr’ OPAE parameter that allows the user to specify a system clock different from
the pre-specified 100, 200 and 400MHz.

• The Input Buffer’s Size: The experimental procedure highlighted the fact that selecting the
correct size of the input buffer for the BP models can lead to increased performance
and simulator efficiency. At first, selecting a large input buffer seemed like the best choice,
given that the SW API would need to ’refill’ the input buffer and recall the AFU for fewer
times. However, the execution results printed a different pattern, that indicated that the best
size was actually 16MB for the 109MB trace and 32MB for 612MB the trace file. The
conclusion is that selecting the best size will eventually come from experimentation and
the choice is not so obvious. One of the reason might be the AFU’s capability to access

68

certain DDR address ranges (closer to a page size) better. The cache model’s input
buffer size cannot be configured for the current simulator integrations and might be one of
the reasons why this model is much slower than the BPs. It can be developed to boost the
cache model’s efficiency and is being encouraged as future work.

• Regarding the DDR Read Requests: The execution phase, highlighted the importance
of multiple CL-read requests. A single CL (512-bit) read request is handled after 10-20
CCs for a 200MHz HW design, whereas, quadruple CL (4*512 = 2048-bit) read requests
are handled after 16-25 CCs, meaning an estimated 3x increase in bits read per second.
This is a major improvement in the simulator model’s efficiency that requires an input FIFO
to store all the data on arrival, as well as a reorder buffer, because the data requested are
received out-of-order.

Figure 8.13 – Best and Worst QPI Latency achieved with single (512-bit) and quadruple (2048-bit)
read requests to the DDR.

Figure 8.14 – Current QPI Utilization achieved for Reads, compared to the maximum theoretical
unidirectional throughput

• Regarding the DDR Write Requests: The CCI-P is capable of handling streaming DDR
write requests, delivering a valid common signal whenever a request is handled. Note that a
write-valid signal (sRx.c1.rspValid) is received by the AFU when a DDR write request
is handled, not when the data has been successfully written to the DDR. That is why
the developer should add a SW delay between the printing of the simulation results and the
completion of the Write/State FSMs.

• No FPGA Memory Reset: On this system, the SW API does not issue a reset signal to the
AFU. This means that between runs on the same HW loaded onto the HARP platform, the
Arria 10 Altera syncram memory modules are not reset. So, each new simulation starts by
having all of its memory modules filled with data from the previous execution. In order to
export accurate simulation results and an actual system state, the user has to execute only
one time after loading the HW platform on HARP. In general, for every new execution,
for example with different SW API parameters, the FPGA needs to be reprogrammed.
Luckily, this is nothing but an inconvenience that can be easily solved as future work.

• The 500ms SW Delays: The Cache simulator model runs a little slower than the BP models.
For that reason, the SW API needs to issue a ’usleep’ for at least 400-500ms before issuing
the ’write-start’ signal to the AFU, in order for the Write or State FSM to print the correct

69

simulation results. This 500 ms delay can be avoided by developing a faster Cache simulator
model that utilizes memory prefetching and pipelining. This work is proposed as future
work. Also, the State FSM requires another ~500msec in order to print the system’s state,
thus increasing the execution time even more.

• Duplicate State Memories: In order to export the system state, mirror memory modules
were used to store the system’s internal memory contents. The simulator can be upgraded
by using interfaces to access the internal memory modules. This will result in reduced
resource utilization and the removal of the AFU’s control that is responsible for updating
the duplicate memories. This work is proposed as future work.

• The Importance of a System State: One of the biggest advantages of the Full State simula-
tor is the fact that it can export system states in an efficient manner. The state is exported as
an easy-to-read log file alongside all the simulation data. Each memory module has its
own private section, with discrete contents and explanation about the format of each
section. This means that a user/developer can manage these data to warm-up a new timing
or functional simulation from either of the timestamps that the states were exported from.
They can also be used to monitor, the contents of the memories to validate the functionality
of a system or even manipulate specific data in order to view certain system behavior. Of
course, the system states can also be used as backups for very large simulation procedures
that take multiple hours, days or even months to finish. Having these states means that a
process can be restarted from various checkpoints in time, rather than from the start,
which results in massive time reduction of the execution phase.

• Comparing the results with Similar Platforms: The data comparison is performed by
using the results exported from the three execution phases described in sections 8.1, 8.2 and
8.3 along with the results from the PROTOFLEX [26] paper regarding the Simics-fast and
the Simics-trace simulators. These results regarding the MIPS capabilities of each system
is depicted in figure 8.15.

Figure 8.15 – MIPS capabilities of the BP, the BP+Cache and the Full State simulators compared
to the Simics-fast and the Simics-trace simulators.

70

The results of interest are the ones regarding the Simics-trace and the Full State Simulator.
The Full State Simulator appears to have a ~5.6x speedup compared to the Simics-trace
Simulator. The fact that the state export does not affect the performance of the Full
State Simulator, compared to the BP and the BP+Cache Simulators, indicates that, by
integrating the optimizations proposed in this section and chapter 9, the system may have
more potential than the one presented so far. Estimated results after some key optimizations,
can be found in the following bullets.

• System Estimation No1: The suggestion for optimal use of the Full State Simulator is that
it should be executed in parallel with a fast functional simulation as depicted in figure
9.1. That way, if not all, the majority of the processing time will be ’hidden’ by the SW
execution. A state of the art SW API will be responsible of exporting trace data from the
functional simulator at different timestamps throughout a simulation process, possibly even
at run time. These data can then be ’fed’ to multiple HW modules (simulator engines) loaded
onto the FPGA and various system checkpoints can be exported in parallel, maximizing the
potential of the HARP platform.

• System Estimation No2: As in the majority of the accelerator architectures and platforms,
a bottleneck may be presented in the I/O transactions between the FPGA and the SW or
DDR. From figure 8.13 the current system’s maximum achieved throughput is approxi-
mately 0,097GiB/sec => 99,32 MiB/sec. The maximum QPI throughput is registered at 8
GT/s, meaning an approximate 14,9 GiB/s.

Figure 8.16 – The Estimated MIPS capabilities of the 5, 10, 20 and 40 simultaneously executed
Full State Simulators compared to the Simics-fast and the Simics-trace simulators.

From the data exported and calculated so far (8.10), more than 40 Full State Simulators
can run simultaneously on the HARP hybrid platform, without congesting the QPI or
exceeding the FPGA HW resources. All simulators can work independently, processing
traces from the same or different input trace files. The input trace files could also be from
various benchmarks. This means that multiple checkpoints and simulation statistics can be
exported simultaneously for different timestamps and for different programs and system
configurations.

71

From the experimentation phase, the speedup from using multiple Full State Simula-
tors, has been calculated to be linear. So, by combining all these data, figure 8.16 depicts
the estimated MIPS processing capabilities of 5, 10, 20 and 40 Full State simulator engines,
running in parallel on the HARP platform. The implementation of 5 parallel simulators,
is the one that is currently under development, because the full system simulator will re-
quire enough HW resources to host multiple ARM models and other peripherals for the full
system architectural simulator 2.8. All these analysis is done for 2 reasons:

1. The first one is that the use of Full State simulators on HARP is a highly efficient and
robust implementation of an accurate Cache and Branch Predictor simulator, that also
highlights the capabilities of the HARP hybrid chip.

2. The second one is that this system does not require much HW resources and can run
independently and efficiently in coordination with similar other HW components. This
means that it will not be a bottleneck or hindrance when integrated to the full system
architectural simulator.

• System Estimation No3: From the Architectural and experimental evaluation process, it is
concluded that the current system can be parallelized between (worst) 74% and (best) 83%.
Based on Amdahl’s Law the maximum speedup for the optimized system can be:

– best: 5.96x => 33.67 MIPS

– worst: 3.83x => 21.64 MIPS

Of course, these optimized modules can also work independently and in parallel with other
modules, loaded simultaneously on the Harp platform. The estimated performance of these
systems is depicted in figure 8.17. These theoretical estimations can be used to determine
that this system’s efficiency has much room for improvement.

Figure 8.17 – The Estimated MIPS of one or multiple optimized and parallelized Full State sim-
ulators compared to the Simics-fast and the Simics-trace simulators.

72

Chapter 9

Conclusion and Future Work
This dissertation was all about utilizing high-performance hardware that can simulate a system’s
Cache and Branch Prediction accurately and efficiently. Arguably it is a great approach towards
scalable and accelerated full system simulators using FPGAs. 3 individual simulators are deliv-
ered capable of simulating 3 key Branch Predictor Models, the Cache memory, and also, exporting
the system’s state. The system simulator is accurate, validated by golden models and efficient in
terms of HW resource utilization and time consumption.

Being one of the first works on the HARP XEON-FPGA Hybrid Chip and the first project
developed by the Technical University of Crete, compared to previous platforms, it performs great
and has room for improvement. It is but the first step towards a true, full system simulator that will
be able to run multiple simulations in parallel, thus providing simulation data and system states
faster than any other previous simulator platform. It is also a work that provided great insight on
Intel’s Hybrid Chip and highlighted all of its strengths and behaviours. This knowledge is going
to be the key for developing powerful HW on this particular platform in the future.

As mentioned in the Introduction, a HW system is much faster if it is designed specifically
for a target hardware to maximize speed and resource utilization. This simulator is designed to
exploit the benefits of the HARP CPU-FPGA hybrid platform and the QPI interconnect to its max.
However, due to it being a prototype, there are a number of improvements that can push this HW
design to even greater efficiency and speed:

• All the modules developed for this work can be directly integrated onto the new Skylake
Xeon SP platform [15] to validate the benefits of a faster Xeon processor and differences in
performance between the UPI over the QPI.

• The Full State Simulator described in this dissertation will be combined with the ARM
processor simulator described in section 2.8, to become a complete full system simulator
platform. That system is currently under development at the Technical University of Crete
and it is being created in coordination with this simulator, so the ’matching’ will be pos-
sible with no major setbacks or incompatibility issues. The system will then be able to
handle full-system simulations and provide complete timing reports and system states.

• The module that controls the n-bit predictor is developed as a 3-state FSM. This results
at a prediction from the n-bit every 3 CCs. It is possible that the n-bit predictor model’s
efficiency can be enhanced by prefetching the next branch instruction thus reducing the
states by 1. Also, the system can be easily pipelined and the memories can be replaced with
dual-port syncrams for maximum efficiency.

• The same upgrades described for the n-bit predictor can also be applied on the 2-Level and
the Tournament predictor. This will result in predictions being exported every 3CCs instead
of 5. In case of a pipeline design, a prediction will be available every CC after the
initiation interval that is equal to 3.

• A configurable input buffer size is used for the BPs, but not for the Cache Model. The SW
API and the AFU can be configured in such a way so that they can handle a configurable

73

input buffer for the cache model. This might possibly increase the performance of the
Cache model, just like in the BP models, depending on the input trace file’s size as well.

• SystemVerilog provides the capability of using interfaces to access HW modules. They can
be utilized in order to eliminate the mirror memories that are used to export the system’s
state. The AFU will be able to access the internal memory modules directly, using these
interfaces to export the final system state, thus decreasing the resource utilization.

• As observed from the execution and simulation results, the HARP hybrid platform’s re-
sources are heavily underutilized. This means that multiple Full State Simulators can be
loaded onto the FPGA, creating a system that can handle multiple simulations in parallel.
With every new instantiation, the performance of the simulator platform is multiplied
along with its efficiency and time consumption. The huge size of the Arria 10 GX 1150
FPGA provides a suitable candidate for this type of a simulator engine. The only bottleneck
might be the number of DDR Read Requests issued from these multiple simulator engines.
A well developed HW control module is necessary, in order to benefit from the maximum
capabilities of the HARP’s QPI as well as experimentation to find the best possible bal-
ance between data fetching efficiency and the number of Full State Simulators that the
HARP platform should execute simultaneously.
This idea will be more effective if the Full State Simulators are executed alongside a fast
functional simulator. At different checkpoints, the simulator will be ’called’ and multiple
log files will be exported, thus ’hiding’ much of the HW execution time inside the SW
execution. In detail, this idea is featured in figure

Figure 9.1 – Parallel Full State Simulator execution.

These proposals conclude this MSc Thesis regarding the Simulator Modules developed on the
HARP Hybrid CPU-FPGA platform. When applied, the complete system will be able to handle
full system simulations with accuracy and performance at a fraction of the time compared to
similar platforms. As for the current systems, they provide an excellent baseline for future devel-
opment with the 3 standalone simulators capable of handling any system simulation regarding the
Branch Predictors and the Cache to monitor performance and to export system states.

74

Bibliography
[1] Mentor. ModelSim Logo;. https://www.digikey.ca/product-detail/en/intel/

SW-MODELSIM-AE/544-2590-ND/2021454.

[2] Intel Logo;. https://rtos.com/platform/intel-fpga/.

[3] CPU-FPGA Logo;. https://www.elprocus.com/wp-content/uploads/2014/09/
9-17-2014-5-05-59-PM.png.

[4] TUC Logo;. https://www.tuc.gr/index.php?id=4992.

[5] OPAE;. https://01.org/OPAE.

[6] Quartus Prime;. https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/overview.html.

[7] Intel Labs;. https://www.intel.com/content/www/us/en/research/overview.
html.

[8] FORTH;. https://www.forth.gr/.

[9] Pancretan Endowment Fund;. https://www.pancretanpef.org/.

[10] Imperas and OVP;. http://www.ovpworld.org/.

[11] DineroIV;. http://pages.cs.wisc.edu/~markhill/DineroIV/.

[12] gem5;. http://gem5.org/Main_Page.

[13] Austin T. The SimpleScalar system software infrastructure tool set; 2004. [currently devel-
oped and supported by SimpleScalar LLC]. http://www.simplescalar.com/.

[14] Intel HARP;. https://software.intel.com/en-us/
hardware-accelerator-research-program.

[15] Integrated Xeon-FPGA Hybrid Chip;. https://www.nextplatform.com/2018/05/24/
a-peek-inside-that-intel-xeon-fpga-hybrid-chip/.

[16] Arria 10 FPGA Family;. https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/pt/arria-10-product-table.pdf.

[17] Edler J. Dinero IV: Trace-driven uniprocessor cache simulator. http://www cs wisc edu/˜
markhill/DineroIV. 1994;.

[18] Todd Austin;. http://web.eecs.umich.edu/~taustin/.

[19] K.Kyriakidis, D.Theodoropoulos, A.Dollas, D.Pnevmatikatos. A full system simulator for
disaggregated computing platforms and cloud data centers;. http://purl.tuc.gr/dl/
dias/BF0CE2BD-47BD-48E9-B3C0-5B49CD508F61.

[20] dReDBox;. http://www.dredbox.eu/.

[21] ACACES;. http://acaces.hipeac.net/2018/index.php?page=home.

75

https://www.digikey.ca/product-detail/en/intel/SW-MODELSIM-AE/544-2590-ND/2021454
https://www.digikey.ca/product-detail/en/intel/SW-MODELSIM-AE/544-2590-ND/2021454
https://rtos.com/platform/intel-fpga/
https://www.elprocus.com/wp-content/uploads/2014/09/9-17-2014-5-05-59-PM.png
https://www.elprocus.com/wp-content/uploads/2014/09/9-17-2014-5-05-59-PM.png
https://www.tuc.gr/index.php?id=4992
https://01.org/OPAE
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/overview.html
https://www.intel.com/content/www/us/en/research/overview.html
https://www.intel.com/content/www/us/en/research/overview.html
https://www.forth.gr/
https://www.pancretanpef.org/
http://www.ovpworld.org/
http://pages.cs.wisc.edu/~markhill/DineroIV/
http://gem5.org/Main_Page
http://www.simplescalar.com/
https://software.intel.com/en-us/hardware-accelerator-research-program
https://software.intel.com/en-us/hardware-accelerator-research-program
https://www.nextplatform.com/2018/05/24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/
https://www.nextplatform.com/2018/05/24/a-peek-inside-that-intel-xeon-fpga-hybrid-chip/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/pt/arria-10-product-table.pdf
http://web.eecs.umich.edu/~taustin/
http://purl.tuc.gr/dl/dias/BF0CE2BD-47BD-48E9-B3C0-5B49CD508F61
http://purl.tuc.gr/dl/dias/BF0CE2BD-47BD-48E9-B3C0-5B49CD508F61
http://www.dredbox.eu/
http://acaces.hipeac.net/2018/index.php?page=home

[22] FireSim for Amazon EC2 F1;. https://fires.im/.

[23] Berkeley Architecture Research Group;. https://bar.eecs.berkeley.edu/.

[24] Chisel - Constructing Hardware in a Scala Embedded Language;. https://chisel.eecs.
berkeley.edu/.

[25] Chung ES, Papamichael MK, Nurvitadhi E, Hoe JC, Mai K, Falsafi B. ProtoFlex: Towards
scalable, full-system multiprocessor simulations using FPGAs. ACM Transactions on Re-
configurable Technology and Systems (TRETS). 2009;2(2):15.

[26] ProtoFlex Image Archive;. https://www.archive.ece.cmu.edu/~protoflex/doku.
php.

[27] Xilinx FPGAs;. https://www.xilinx.com/products/boards-and-kits.html.

[28] Wind River Simics;. https://www.windriver.com/products/simics/simics_pn_
0520.pdf.

[29] COSSIM;. https://github.com/H2020-COSSIM.

[30] OMNeT++;. https://omnetpp.org/.

[31] McPAT;. https://www.hpl.hp.com/research/mcpat/.

[32] Xeon E5-2628L v4;. http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%
20E5-2628L%20v4.html.

[33] CCI-P;. https://www.intel.com/content/dam/www/programmable/us/en/pdfs/
literature/manual/mnl-ias-ccip.pdf.

[34] AFU and ASE;. https://opae.github.io/1.1.0/docs/ase_userguide/ase_
userguide.html.

[35] OPAE;. https://github.com/OPAE.

[36] Intel’s FPGA BBB;. https://github.com/OPAE/intel-fpga-bbb.

[37] Synopsys VCS;. https://www.synopsys.com/verification/simulation/vcs.html.

[38] ModelSim;. https://www.mentor.com/products/fv/modelsim/.

[39] QuestaSim;. https://www.mentor.com/products/fv/questa/.

[40] Burger D, Austin TM. The SimpleScalar tool set, version 2.0. ACM SIGARCH computer
architecture news. 1997;25(3):13–25.

[41] Techtitude. SPEC95 benchmarks (little endian); 2008. [Design by
Free CSS Templates]. http://techtitude.blogspot.com/2011/12/
how-to-execute-spec95-benchmarks-in.html.

[42] ASE and Synthesis on vLabs;. https://wiki.intel-research.net/FPGA.html.

[43] tmux shortcuts & cheatsheet;. https://gist.github.com/MohamedAlaa/2961058.

76

https://fires.im/
https://bar.eecs.berkeley.edu/
https://chisel.eecs.berkeley.edu/
https://chisel.eecs.berkeley.edu/
https://www.archive.ece.cmu.edu/~protoflex/doku.php
https://www.archive.ece.cmu.edu/~protoflex/doku.php
https://www.xilinx.com/products/boards-and-kits.html
https://www.windriver.com/products/simics/simics_pn_0520.pdf
https://www.windriver.com/products/simics/simics_pn_0520.pdf
https://github.com/H2020-COSSIM
https://omnetpp.org/
https://www.hpl.hp.com/research/mcpat/
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5-2628L%20v4.html
http://www.cpu-world.com/CPUs/Xeon/Intel-Xeon%20E5-2628L%20v4.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl-ias-ccip.pdf
https://opae.github.io/1.1.0/docs/ase_userguide/ase_userguide.html
https://opae.github.io/1.1.0/docs/ase_userguide/ase_userguide.html
https://github.com/OPAE
https://github.com/OPAE/intel-fpga-bbb
https://www.synopsys.com/verification/simulation/vcs.html
https://www.mentor.com/products/fv/modelsim/
https://www.mentor.com/products/fv/questa/
http://techtitude.blogspot.com/2011/12/how-to-execute-spec95-benchmarks-in.html
http://techtitude.blogspot.com/2011/12/how-to-execute-spec95-benchmarks-in.html
https://wiki.intel-research.net/FPGA.html
https://gist.github.com/MohamedAlaa/2961058

Appendix A

ASE Simulation on vLabs
Configure a build environment
$ source /export/fpga/bin/setup-fpga-env fpga-bdx-opae
Run ASE in the vLab batch queue
$ qsub-sim
Navigate to the hw directory
$ cd <path to project directory>/hw
Construct a simulation build directory
$ rm -rf build_sim/
$ afu_sim_setup -s rtl/sources.txt build_sim
Split the screen
$ tmux
$ Ctrl+b%
Switch between screens
$ Ctrl+bo
Compile and run the RTL simulator
$ cd build_sim
$ make
$ make sim
Switch to the SW pane and go to the sw dir
$ Ctrl+bo
$ cd ../sw
Copy the export ASE_WORKDIR=<path> from the RTL simulator pane and in-
voke it here
$ export ASE_WORKDIR = <path to project directory>/hw/build_sim/work
make and run
$ make
$ with_ase ./<sw_api_name> <api_parameters>

77

Appendix B

RTL Synthesis and FPGA Execution on
vLabs

Configure a build environment
$ source /export/fpga/bin/setup-fpga-env fpga-bdx-opae
Navigate to the hw directory
$ cd <path to project directory>/hw
Construct a synthesis build directory
$ rm -rf build_fpga
$ afu_synth_setup -s rtl/sources.txt build_fpga
$ cd build_fpga
Run Quartus in the vLab batch queue
$ qsub-synth
Monitor the build (the file is created after the job starts)
$ tail -f build.log

When synthesis finishes, re-configure a build environment
$ source /export/fpga/bin/setup-fpga-env fpga-bdx-opae
Open a shell on an FPGA system of the configured class
$ qsub-fpga
export the PBS_O_WORKDIR environment variable
$ export PBS_O_WORKDIR = <path to project directory>/hw/build_fpga
$ cd $PBS_O_WORKDIR
Load the green bitstream onto the FPGA
$ fpgaconf <green_bitstream_name>.gbs
Compile the matching software
$ cd ../../sw
$ make
Run the SW API
$./<sw_api_name> <api_parameters>

78

Appendix C

Glossary
• HARP : Intel’s Hardware Accelerator Research Program.

• Xeon SP : Intel’s XEON CPU that has an integrated Arria 10 GX 1150 FPGA on the same dye.

• Hybrid Simulator : As regards to this dissertation, it is a simulator that runs both on SW and on the
FPGA.

• AFU : Accelerator Functional Unit.

• ASE : AFU Simulation Environment.

• OPAE : Open Programmable Acceleration Engine.

• BBB : Basic Building Blocks.

• FIU : FPGA Interface Unit.

• UPI : Ultra-Path Interconnect.

• QPI : Quick-Path Interconnect.

• CCI-P : Core Cache Interface.

• CC : Clock Cycle.

• BPs : Branch Predictors

• BP Simulator : A standalone simulator for 3 highly configurable Branch Predictor Models.

• BP+Cache Simulator : A standalone simulator which is the extension of the BP Simulator, that can
also simulate multiple Cache Configurations.

• Full State Simulator (or FSS) : A standalone simulator which is the extension of the BP+Cache
Simulator, that can also export the system’s state.

• MIPS : Million Instructions Per Second.

• SW API : Application Programming Interface that is used to interface between an SW application
and the AFU.

• MMIO : Memory Mapped I/O.

• CSR : Control and Status Registers that facilitate HW-SW communication and coordination.

• ALMs : Adaptive Logic Modules, similar to Xilinx’s LUTs.

• LUTs : Look-Up Tables.

• HDL : Hardware Description Language.

• PRR : Partially Re-configurable Region on an FPGA

• FIM : FPGA Interface Manager.

• ISA : Instruction Set Architecture.

79

Appendix D

Related Poster

80

	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Approach, Goals and Contributions

	Related Work
	Dinero IV
	SimpleScalar
	A Full System Simulator for dReDBox
	FireSim
	ProtoFlex
	Simics
	The gem5 Simulator
	Multi-ARM Architectural Simulation on HARP
	COSSIM

	The HARP Platform
	The CPU-FPGA Hybrid Chip
	The CCI-P

	The Tools
	The OPAE
	Intel's FPGA BBB
	Development Phase - The ASE simulation and ModelSim
	Bitstream Generation - The Quartus Prime Pro

	The Cache Model
	Purpose and Functionality
	The Cache Model's Architecture
	The Cache Write Request
	The Cache Read Request

	The Cache Memory: Size, Structure and Replacement Policies
	The Cache Controller
	Generating Trace Files for Cache Simulations
	Testing On ModelSim
	Hardware Verification Using the Dinero IV Cache Simulator

	The Branch Prediction Models
	Purpose and Functionality
	The Input Trace File
	The Branch Target Buffer
	The One-Level (n-bit or Bimod) Predictor
	Module Architecture

	The 2-Level Predictor
	Module Architecture

	The Tournament Predictor
	Module Architecture

	SimpleScalar
	Utilizing Key Features for Branch Prediction Development
	Benchmarking on SimpleScalar
	Extracting a Trace-File

	The Hardware Model's Verification
	Executing on ModelSim
	Comparing the Results

	Hardware Integration
	Prerequisites and workflow
	Building the SW
	Building the HW - AFU
	DDR Read and Write Requests
	The Read FSMs
	The Feed FSMs
	The Write FSM
	The State FSM

	ASE Simulation
	Bitstream Generation and FPGA Execution

	Results and Data Analysis
	The Branch Predictor (BP) Simulator Results
	The Combined BR and Cache Simulator Results
	The Full State Simulator Results
	Analysing the Data

	Conclusion and Future Work
	Bibliography
	Appendices
	ASE Simulation on vLabs
	RTL Synthesis and FPGA Execution on vLabs
	Glossary
	Related Poster

