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Instruction Set Randomization (ISR) is able to protect against remote code injection attacks by randomizing
the instruction set of each process. Thereby, even if an attacker succeeds to inject code, it will fail to execute
on the randomized processor. The majority of existing ISR implementations is based on emulators and binary
instrumentation tools that unfortunately: (i) incur significant runtime performance overheads, (ii) limit the
ease of deployment, (iii) cannot protect the underlying operating system kernel, and (iv) are vulnerable to
evasion attempts that bypass the ISR protection itself.

To address these issues, we present the design and implementation of ASIST, an architecture with both
hardware and operating system support for ISR. ASIST uses our extended SPARC processor that is mapped
onto a FPGA board and runs our modified Linux kernel to support the new features. In particular, before
executing a new user-level process, the operating system loads its randomization key into a newly defined
register, and the modified processor decodes the process’s instructions with this key. Besides that, ASIST uses
a separate randomization key for the operating system to protect the base system against attacks that exploit
kernel vulnerabilities to run arbitrary code with elevated privileges. Our evaluation shows that ASIST can
transparently protect both user-land applications and the operating system kernel from code injection and
code reuse attacks, with about 1.5% runtime overhead when using simple encryption schemes, such as XOR
and Transposition; more secure ciphers, such as AES, even though they are much more complicated for map-
ping them to hardware, they are still within acceptable margins,with approximately 10% runtime overhead,
when efficiently leveraging the spatial locality of code through modern instruction cache configurations.
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1 INTRODUCTION

Code injection attacks enables an attacker to execute malicious code through the exploitation of
a software vulnerability. The vast majority of code injection attacks exploit vulnerabilities that
allow the diversion of control flow to the injected malicious code. Arbitrary code execution is also
possible through the modification of non-control-data [20]. The most commonly exploited vulnera-
bilities for code injection attacks are buffer overflows [2]. Despite considerable research efforts [25,
26, 62], buffer overflow vulnerabilities remain a major security threat [21]. Other vulnerabilities
that allow the corruption of critical data are format-string errors [23] and integer overflows [63].

Instruction set randomization (ISR) has been proposed as a countermeasure against code injec-
tion attacks [8, 37, 50]. ISR randomizes the instruction set (ISA) of a processor so that an attacker
is not able to know the instruction set of the target machine to inject or disclose meaningful code.
Therefore, any injected code will fail to accomplish the desirable malicious behavior, probably
resulting in invalid instructions. To prevent successful machine code injections, ISR techniques
typically encrypt the instructions of a program with a specific key. This key actually defines
the valid instruction set for this program. The processor decrypts at runtime every instruction
of the respective process with the same key. Only the correctly encrypted instructions will lead to
the intended code after decryption. Any injected code that is not encrypted with the correct key
will result in irrelevant or invalid instructions. At the same time, code fragments, called gadgets,
cannot be disclosed in a decrypted form, hence not chained into a meaningful attack payload (as
it typically happens in code-reuse attacks such as ROP [17] and JOP [14]).

Most of the existing ISR implementations utilize binary transformation tools in order to en-
crypt the text section of the target binaries. Running those binaries requires an emulator that is
responsible for decrypting the instructions at runtime [16, 37]. Other solutions rely on dynamic
binary instrumentation tools [35, 50]. Such approaches have several limitations though: (i) They
incur a significant runtime performance overhead due to the software emulator or instrumentation
tool. This overhead is often prohibitive for the wide adoption of such techniques. (ii) Deployment
is limited by the necessity of several tools, like emulators, simulators, and manual encryption of
the programs that are protected with ISR. (iii) They are vulnerable to code injection attacks into
the underlying emulator or instrumentation tools. More importantly, they do not protect against
attacks targeting kernel vulnerabilities [3–5, 19], which are becoming an increasingly attractive
target for attackers. (iv) Most ISR implementations are vulnerable to evasion attacks aiming to
guess the encryption key and bypass ISR protection [60, 65].

To address these issues, we propose ASIST: a hardware/software scheme to support ISR on top
of an unmodified ISA. Similarly to other proposed hardware extensions that enhance security [26,
34, 54, 62], we advocate that hardware support for ISR is essential to guard against user- and
kernel-level code injection attacks, while the performance penalty incured is within acceptable
margins. To randomize the code instructions, we implement three different encryption algorithms,
tailored for different needs and usages: (i) XOR, (ii) Transposition, and (iii) AES. As we have shown
in our previous work [47], XOR and Transposition require minimal resources in the processor
die; however, they are vulnerable to key guessing attacks and cryptanalysis. To overcome this, in
this article we extend our previous implementation with more secure ciphers, such as AES. The
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AES algorithm requires significantly more modifications on the processor architecture; however,
it offers enhanced protection compared to XOR and Transposition.

In addition, we explore two possible choices for implementing runtime decryption at the CPU:
(i) at the instruction fetch pipeline stage of the modified processor and (ii) between the MMU and
the instruction cache. We compare two techniques for encrypting the executable code: (i) stati-
cally, by adding a new section in ELF that contains the key that has been used to encrypt all code
sections of the binary file, using a binary transformation tool, and (ii) dynamically, by generating
a random key at load time and encrypting with this key at the page fault handler all the executable
memory mapped pages. The dynamic encryption approach supports dynamically linked shared
libraries, whereas static encryption requires statically linked binaries. We discuss and evaluate the
advantages of each approach in terms of security and performance. Finally, our modified processor
can also encrypt the return address at each function call and decrypt it right before returning to
the caller. By doing so, ASIST is capable to protect against ROP attacks by (i) preventing gadget
discovery, via the use of strong encryption schemes (i.e., AES) [17, 55], and by (ii) limiting the
discovery of call-preceded code locations, via the encryption of the return addresses [18].

To demonstrate the feasibility of our approach, we present the prototype implementation of
ASIST by modifying the Leon3 SPARC V8 processor [1], a 32-bit open-source synthesizable pro-
cessor [28]. We also modified the Linux kernel 3.8 to support the implemented hardware features
for ISR and evaluate our prototype. Our experimental evaluation results show that ASIST is able
to prevent code injection attacks practically without any performance overhead, i.e., less than 1%,
when using simple encryption schemes such as XOR and Transposition; more secure ciphers, such
as AES, introduce a slightly higher overhead, about 10%, which are acceptable in real scenarios con-
sidering the benefits in terms of security. Meanwhile the hardware extensions add about 10% of
additional hardware to support all ISR modes of our design. Our results also indicate that the dy-
namic code encryption at the page fault handler does not impose significant overhead, due to the
low page fault rate for executable pages. This outcome makes our dynamic encryption approach
very appealing, as it is able to generate a different, random key at each execution, transparently

encrypt any executable program, and support shared libraries with negligible overhead.
Overall, the main contributions of our work are as follows:

• We design and implement ASIST, the first, to the best of our knowledge, hardware-
based support for Instruction-Set Randomization (ISR). Our evaluation results show that
a hardware-based ISR implementation, like ASIST, is able to prevent code injection attacks
and protect the system against attacks that exploit OS kernel vulnerabilities, at negligible
overhead.

• We extend our previous work, which was based on simple XOR and Transposition tech-
niques, by adding the AES cipher. By doing so, we can guarantee that an encryption key
cannot be derived even if the attacker has access to both the plaintext and the ciphertext
(e.g due to a memory leak). In addition, it can hinder any gadget discovery—which actually
is a pivotal step of code reuse attacks—that are based in code pointer leaks to bypass ASLR
and the exploitation of memory disclosure vulnerabilities to map the text segment of a pro-
cess; in both cases instructions will be encrypted with a strong cryptography scheme that
prevents any form of cryptanalysis or bruteforce attacks.

• To enable AES, we replicated the cache line fill protocol and placed the ASIST unit between
the MMU and the instruction cache. This new MMU component is responsible for decrypt-
ing the instructions blockwise before sending them to the cache subsystem. This is a major
contribution over the previous design, in which the instructions where decrypted only after
they were fetched from the cache, for several reasons: First, it increases the performance
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due to spatial locality. Second, the new component makes our design ISA-agnostic, hence
more easily portable to other architectures, such as CISC.

• We introduce a dynamic code encryption technique that can transparently encrypt pages
with executable code at the page fault handler, using a randomly generated key for each ex-
ecution. This technique can support shared libraries and does not impose significant over-
head.

• In terms of performance evaluation, we performed extra experiments to see how the in-
struction cache size affects the performance of ISR, showing that when we increase the
cache size (to 32 KB or 64 KB) the runtime overhead of a multi-round, block, cipher, such as
AES is reduced to practical margins. Since we evaluate our design using an FPGA we also
offer measurements regarding the area overhead.

2 INSTRUCTION SET RANDOMIZATION

In this section, we describe our threat model, give some background on ISR, and discuss the main
limitations of existing implementations that emphasize the need for hardware support.

2.1 Threat Model

Our threat model includes any programming bugs or inadvertent design flaws in software that can
be exploited by an active adversary to launch a code injection or code reuse attack. The adversary
does not have administrative access (i.e., superuser) and can have either local or remote access
to the system. We also consider a trusted operating system and that the executable files cannot
be accessed when stored on disk. The operating system is also protected by our design against
code reuse and code injection attacks. Any hardware bugs or vulnerabilities that may arise due
to hardware design choices (such as Spectre [39] and Meltdown [43]) are outside of our threat
model, as mitigation would require orthogonal solutions for hardware reliability. Finally, we do
not target denial-of-service attacks or side-channel attacks. Below, we list different type of attacks
and describe how ASIST can protect in each case.

Remote and local machine code injection attacks. The threat model we address in this work
is the remote or local exploitation of any software vulnerability that allows the diversion of the
control flow to execute arbitrary, malicious injected code. Moreover, we also prevent the attacks
that rely on disclosing the text segment of a process through memory disclosure vulnerabilities,
i.e., Code Reuse Attacks. We address vulnerabilities in the stack, heap, or BSS, i.e., any buffer
overflow that overwrites the return address, a function pointer, or any control data. We focus on
protecting the potentially vulnerable systems against, machine code injection attacks, and text
segment disclosure.

Kernel vulnerabilities. Remotely exploitable vulnerabilities on the operating system kernel
[3–5, 19] are becoming an increasingly attractive target for attackers. Our threat model includes
code injection and code reuse attacks based on kernel vulnerabilities. We propose an architecture
that is capable of protecting the operating system kernel as well. Our design can also thwart attacks
that use a kernel vulnerability to run user-level code with elevated kernel privileges [38].

Return-to-libc and Code Reuse Attacks. Instead of injecting new code into a vulnerable
program, an attacker can execute existing code upon changing the control flow of a vulnerable
system to perform the attack. This can be done either by redirecting the execution to existing
library functions, attacks typically known as return-to-libc attacks [45]; either by using existing
instruction sequences ending with a ret instruction (called gadgets), a technique known as return-

oriented programming (ROP) [17, 55]. These types of attacks can be also achieved by chaining
gadgets with function pointers residing in the stack [15]. ISR was originally designed to protect
a system against code injection attacks, and not to address return-to-libc and ROP attacks [37].
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However, ISR with strong encryption can prevent the discovery of usable gadgets, which is the
pivotal step of code reuse exploitation techniques. In the case where an attacker has managed
to disclose the text pages of a process: the text pages will be encrypted using a different key for
each process, prohibiting any gadget extraction (e.g., though cryptanalysis or bruteforce attacks).
Snow et al. [59] introduced the concept of Just-In-Time-ROP attacks, in which even a single leak
of a code pointer and the presence of a memory disclosure vulnerability can be exploited by an
attacker to map the text segment of a process. This can be achieved by recursively scanning dis-
closed code pages for more code pointers. A similar technique described by Bittau et al. [12] can
circumvent ASLR. Herein, an attacker will exploit available memory disclosure vulnerabilities to
bypass ASLR. Then, brute force will be used in order to find a ROP sequence that can read the code
pointed from the leaked code pointers and send them to the attacker (e.g., write to socket). The
attack has been demonstrated to complete within approximately 4,000 requests. Again, ISR makes
it hard for an attacker to discover usable gadgets, since the text segments will be encrypted.

Key guessing attacks. Existing ISR implementations are vulnerable to key guessing or key
stealing attacks [60, 65]. This way, sophisticated attackers may be able to bypass the ISR pro-
tection mechanism, by guessing the key and then injecting and executing code that is correctly
encoded with this key. In this work, we aim to design and implement ISR in a way that it will be
very difficult for attackers to guess or infer the code randomization key. To achieve this goal, we
extend our previous work [47], which was based on simple XOR and transpotition techniques, by
implementing AES; by doing so, an attacker with knowledge of both the plain-text and cipher-text
of instructions will not be able to reconstruct the encryption key.

Transient execution attacks. Any vulnerabilities in hardware that can disclose protected or
inaccessible memory when successfully exploited, cannot be mitigated by ASIST—by being able
to dump the whole memory, an attacker is able to retrieve the process key and circumvent our
mechanism. For instance, in the recently discovered Spectre [39] and Meltdown [43] attacks, the
instructions that are executed either speculatively or out-of-order can cause cache modifications.
An attacker that can control the cache and observe the effects of the transiently executed instruc-
tions is capable to disclose otherwise inaccessible memory and retrieve the process key that is
used for code encryption. Our mechanism is not designed to protect against such attacks, since
they rely on architectural choices rather than software bugs.

2.2 Defense with ISR

ISR protects a system against any native code injection attacks. To accomplish this, ISR uses per-
process randomized instruction sets. This way, the attacker cannot inject any meaningful code into
the memory of the vulnerable program. The injected code will not perform the intended malicious
behavior and will probably crash after just a few instructions [8]. To apply the ISR idea, existing im-
plementations first encrypt the binary code of each program with the program’s secret key before
it is loaded for execution. The program’s key defines the mapping of the encrypted instructions to
the real instructions supported by the CPU. Then, at runtime, the randomized processor decrypts
every instruction with the proper program’s key before execution. Injected instruction that have
not been correctly encrypted will result in irrelevant or invalid instructions after the obligatory
decryption. However, correctly encrypted code will be decrypted and executed normally.

2.3 Limitations of Existing Implementations

Existing ISR Implementations use binary transformation tools, such as objcopy, to encrypt the
code of user-level programs. For runtime decryption they use emulators [40] or dynamic binary
instrumentation [44, 46, 52]. In Table 1, we list and compare existing ISR implementations.
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Table 1. Comparison of ASIST with Existing ISR Implementations

ISR Imple-
mentation

Runtime
Overhead

Shared
Libraries

Self modifying
Code

Hardware
Support Encryption

Dynamic
Encryption

Kernel
Protection

ROP
Prevention

Bochs
emulator [37]

High No No No XOR with 32-bit key No No No

Valgrind tool
[8, 9]

High Yes API No XOR with random key Yes No No

Strata SDT
[35]

Medium No No No AES with 128-bit key No No No

EMUrand
emulator [16]

Medium No No No XOR with 32-bit key No No No

Pin tool [50] Medium Yes Partially No XOR with 16-bit key No No No

Polyglot [56] Low to
medium

Yes Yes Yes AES with 128-bit key No Yes Partial

Shuffler [66] Medium No No No XOR only for return address Yes No Yes

Morpheus [29] Low1 No No Simulation QARMA 64-bit blocks with
128-bit key

Yes No Yes

ARM Pointer
Authentication

Medium Yes Yes Only pointers Yes No Yes Yes

ASIST Zero, Low to
medium in
AES

Yes API Yes XOR with 32-bit–128-bit key,
Transposition with 160-bit
key, AES with 128-bit key

Yes Yes Yes

ASIST provides a hardware-based implementation of ISR without runtime overhead, it supports the necessary features of
current systems and protects against kernel vulnerabilities.

Kc et al. [37] implemented ISR by modifying the Bochs emulator using XOR with a 32-bit key
in their prototype. The use of an emulator results in significant slowdown, up to 290 times slower
execution on CPU intensive applications. Barrantes et al. [8, 9] use Valgrind [46] to decrypt appli-
cations’ code, which is encrypted with XOR and a random key equal to the program’s length. This
prototype supports shared libraries by copying each randomized library per process, and offers
an API for self-modifying code. However, the performance overhead with Valgrind is also very
high, up to 2.9 times slower than native execution. Hu et al. [35] implemented ISR with a software
dynamic translation tool [52] using AES encryption with 128-bit key size. Dynamic translation
results in lower but still significant performance overhead that is close to 17% on average and as
high as 250%. To reduce runtime overhead, Boyd et al. [16] proposed a selective ISR that limits
the emulated and randomized execution only to code sections that are more likely to contain a
vulnerability. Portokalidis and Keromytis [50] implemented ISR with shared libraries support us-
ing Pin [44]. The runtime overhead ranges from 10% to 75% for popular applications, while it has
four-times slower execution when memory protection is applied to Pin’s code.

Polyglot [56] is similar with ASIST but does not offer dynamic encryption. Thus, attackers can
still launch blind ROP attacks, since the code will not be encrypted with different keys on each
launch. Moreover, it uses a separate shared key cache inside the processor, in order to support dy-
namic libraries, which increases the circuit area overhead of the proposed mechanism significantly.
Shuffler [66] proposes a mechanism that periodically re-randomizes the address space layout of a
process. The proposed mechanism offers adequate protection against control-flow attacks by con-
tinuously modifying the code pointer addresses. However, it is not scalable, because it requires
a parallel thread to each protected process, responsible for the re-randomization. Moreover, the
proposed mechanism can protect only user-level applications. Morpheus [29] is a promising ar-
chitecture for thwarting the majority of control-flow attacks. Yet, it has been only implemented

1Implemented in simulator, with system call emulation.
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and evaluated on gem5 simulator [11], with a single process context, using the system call em-
ulation capabilities of gem5, without any estimation of the area overhead of their design. The
proposed mechanism requires extensive modifications of the original processor by adding several
hardware components, which may be impractical for low-powered or resource-contraint devices
(e.g., IoT devices), due to the extra substantial area overhead Finally, the authors state that the
latency of their mechanism will be prominent in pipelined processors; this does not seem to be
the case though, since every execution unit of an out-of-order processor should be extended with
an attack detector, imposing even more area overhead in the final design. ARM recently launched
processors with pointer authentication capabilities [41]. In this approach, authentication codes are
created for every control-flow pointer, calculated with special instructions. If an adversary mod-
ifies pointers residing in the stack, then the modification will be detected by the authenticating
instructions placed just before the control-flow transition instruction, i.e., indirect jump, return.
However, Google project zero reviewed the deployment of the PAC and found that forging pointer
authentication codes was possible [33].

To put our work into context, we provide a quantitatively and qualitatively comparison in
Table 1. ASIST is the first ISR implementation with hardware support, resulting in negligible run-
time overhead for any type of applications. ASIST also introduces a new dynamic code encryption
approach that allows the transparent encryption of any application with shared libraries. To de-
fend against attempts to guess or steal the encryption key, ASIST (i) stores the encryption key
in a hardware register accessible only by the kernel through privileged instructions and avoids
storing the key in process’s memory, (ii) generates a new random key at each execution of the
same program when dynamic encryption is used, (iii) supports large key sizes up to 128-bit, and
(iv) AES support for resilience even when memory is disclosed. Moreover, ASIST prevents the ex-
ecution of injected code at the kernel by using separate keys for user-level programs and kernel’s
code. Finally, ASIST is able to prevent Code Reuse Attacks using return address encryption, while
hindering the discovery of the code layout even when memory leaks are present.

3 ASIST ARCHITECTURE

ASIST consists of different modules and components across different layers of the hardware, the
operating system, and the user-space, as can be shown in Figure 1. Overall, the processor has been
extended with two new registers: usrkey and oskey, which store the keys of the running user-level
process and operating system kernel’s code, respectively. Additionally, a new register asist_mode

is used to select the encryption algorithm. The operating system keeps the key and the mode of
each process in a respective field in the process table and stores the key and the mode of the
next process that is scheduled for execution in the usrkey and asist_mode registers using the sta

privileged SPARC instruction. Moreover, the processor is modified to decrypt instructions before
they are fetched from RAM, using one of the above two keys, according to the supervisor bit.

3.1 Encryption

ASIST offers three different algorithms for code encryption, namely XOR, Transposition, and AES.
These algorithms have different performance and security characteristics, as we will see in more
detail in Section 3.1.5 and Section 5.2, and can be used to cover different needs or requirements.
We support two options for encrypting an executable program: static and dynamic. In static en-
cryption, the program is encrypted before each execution with a pre-defined key. In dynamic en-
cryption, a key is randomly generated at the binary loader, and all code pages are encrypted with
this key at the page fault handler before they are mapped to the process’s address space.

The main advantage of static code encryption is that it has no runtime overhead for XOR and
Transpotition, while imposing acceptable overhead when using AES. However, this approach has
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Fig. 1. ASIST architecture. The operating system reads the key from the ELF binary (static encryption) or

randomly generates a new key (dynamic encryption), saves the key in the process table, and stores the key

of the running process in the usrkey register. The processor decrypts each instruction (or I-cache line in case

of AES) using usrkey or oskey registerm, according to the supervisor bit.

several drawbacks. First, the same key is used for each execution, which makes it susceptible to
brute force attacks trying to guess this key. Second, each executable file needs to be encrypted
before running. Third, static encryption does not support shared libraries; all programs must be
statically linked with all necessary libraries. In contrast, dynamic encryption has a number of
advantages: it generates a random key at each execution so it cannot be easily guessed, it encrypts
all executables transparently without the need to run an encryption program, and it is able to
support shared libraries. The drawback of dynamic encryption is the runtime overhead to encrypt
a code page when it is loaded to memory at a code page fault. In Section 5, we show that due to
the low number of code page faults, dynamic encryption is very efficient.

3.1.1 Static Binary Encryption. To statically encrypt an ELF executable we extended objcopy
with a new flag (---encrypt-code). The encryption key can be provided by the user or randomly
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Fig. 2. The ELF format of a statically encrypted executable file. The key is stored in a new note section inside

the ELF file, and all the code sections are encrypted with this key.

chosen by the tool. Figure 2 shows the modifications of a statically encrypted ELF binary. We
add a new note section (.note.asist) inside the encrypted ELF file that contains the program’s
encryption key. We also changed the ELF binary loader in the Linux kernel to read the note section
from the ELF, get the key, and store it in a new field (key) of the current process. In this operation
mode, we set a new field per process (asist_mode) to static. The key is stored in the process table
and is used by the kernel to set the usrkey hardware register each time this process is scheduled
for execution.

Our static encryption tool also finds and encrypts all the code sections in ELF. Therefore, all
needed libraries must be statically linked, to be properly encrypted. Moreover, it is important
to completely separate code from data into different sections by the linker. This is because the
encryption of any data, which are not decrypted by the modified processor, will probably disrupt
the program execution. Fortunately, many linkers are configured this way. Similarly, compiler
optimizations like jump tables, which are used to perform faster switch statements with indirect
jumps, should be also moved to a separate, non-code section.

To address the issue of using the same key at all executions, which may facilitate a key guessing
attack, one approach could be to re-encrypt the binary after a process crash. Another approach
could be to encrypt the original binary at the user-level part of execve(), by randomly generating
a new key and copying the binary into an encrypted one. Even though this approach can occur
considerable overheads due to the extra time needed to copy and encrypt the entire binary at
load time, we believe that this can be useful to protect against attacks that probe applications
continuously to find execution traces that do not crash. By re-randomizing the binary code each
time, the possibilities to achieve such text segment disclosements are eradicated.

3.1.2 Dynamic Code Encryption. Our other approach is to dynamically encrypt a program’s
code before it is loaded into the process’s memory. This technique is based on the fact that every
page with executable code will be loaded from disk (or buffer cache) to the process’s address space
through a page fault, the first time it is accessed by the program. By encrypting the code page
at this point, ASIST will dynamically encrypt only the code pages that are actually used by the
program at each execution.
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To support this, the ELF binary loader is modified to randomly generate a new key, which is
stored into the process table. It also sets the asist_mode field of the current process to dynamic.
The code encryption is performed by the page fault handler at a text page fault, i.e., on a page
containing executable code, if the process that is responsible for the page fault uses dynamic en-
cryption according to asist_mode. Then, a new anonymous page is allocated, and the code page
fetched from disk (or buffer cache) is encrypted and copied on this page using the process’s en-
cryption key. The new page is finally mapped to the process’s address space.

Moreover, we allocate an anonymous page, i.e., a page that is not backed by a file, and copy
the encrypted code on this page, so that the changes will not be stored at the original binary file.
Even though processes that run the same code could share the respective code pages in physical
memory, we have a separate copy of each page with executable code for each process, as they
have been encrypted with different keys. This may result in a small memory overhead, but it is
necessary to use a different key per process and achieve better isolation. As shown from recent
attacks [12] this approach can prevent probed processes to be forced to use the same key every
time they are restarted after being crashed by the attacker.

In practice, the memory allocated for code, accounts only for a small fraction of the total mem-
ory. Also, we notice that we can still benefit from buffer cache, as we copy the cached page.

Finally, we also modified the fork() system call to randomly generate a new key for the child
process. When the modified fork() copies the parent process’s page table, it omits copying its last
layer so that the child’s code pages will not be mapped with pages encrypted with the parent’s
key. To operate correctly, the dynamic encryption approach requires a separation of code and data
per each page. For this, we modify the linker to align the ELF headers, data, and code sections to
a new page by adding the proper padding.

3.1.3 Shared Libraries. One approach to support shared libraries is to bind each page with a
separate key, similarly to Polyglot [56]. By doing so, shared libraries are supported using a per-
page regional key. While this minimizes the memory overhead of having multiple copies of the
same page for different processes, it also has several drawbacks; for example, it complicates our
hardware, affects the context-switch time, and imposes additional overhead in order to fetch the
key for decrypting the instructions.

To overcome this, the code of a shared library in ASIST is encrypted with each process’s key on
the respective page fault when loading a page to process’s address space, as we explained above. In
this way, we have a separate copy of each shared library’s page for each process. This is necessary
to use a different key per process, which offers better protection and isolation.

3.1.4 Self-Modifying Code. The design we presented does not support randomized programs
with self-modifying code or runtime code generation, i.e., programs that modify their code or
generate and execute new code. To support such programs, we added a new system call in Linux
kernel, namely asist_encrypt(char *buf, int size). This system call encrypts the code of
length size that exists in the memory region starting from buf bytes length, using the current
process’s key that is stored in process table. We note that the buf buffer may still be vulnerable
to a code injection attack, e.g., due to a buffer overflow vulnerability in the program that may
lead to the injection of malicious code into buf. Then, this code will be correctly encrypted using
asist_encrypt() and will be successfully executed. Like previous work supporting ISR with self-
modifying code [8], we believe that programs should carefully use the asist_encrypt() system
call to avoid malicious code injection in buf. By doing so, ISR can prevent even from JIT-Spraying
attacks [13], where an attacker can overwrite JIT code pages residing in the heap with pages that
contain malicious code; similar to code injection attacks, the attacker needs to provide encrypted
code with the correct key to execute arbitrary code.
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3.1.5 Encryption Algorithms and Key Size. The simplest, and probably the fastest, encryption
algorithm is to XOR each bit of the code with the respective bit of the key. Since code is much
larger than a typical key, the bits of the key are reused. In our prototype we implemented XOR
encryption with key sizes that can range from 32 bit to 128 bit. Even though larger keys typically
reduce the probability of key guesses and key extraction attacks, still they can be easily exploited
when the attacker has knowledge of both the plain-text and cipher-text (e.g., due to a memory
leak) [60, 65]. A better solution, with slightly more overhead, is to use the Transposition cipher
algorithm. In Transposition the bits of a 32-bit word are shuffled using an 160-bit key. For each bit
of the encrypted word we choose one of the 32 bits of the original word based on the respective bits
of the key. That way, the ciphertext constitutes a permutation of the plaintext. Even though the
Transposition cipher provides better security than simple XOR, it is vulnerable to anagramming.

To overcome all previous limitations, we have also implemented the AES algorithm. AES can
guarantee that even attackers with the knowledge of both the plaintext and the ciphertext (e.g.,
due to a memory leak) cannot derive the encryption key. The implementation of a hardware-based
AES for ISR though is not a trivial thing. One of the major differences of AES compared to XOR
and Transposition is that it operates on 16-byte blocks. Thus, to retrieve the plain-text even of
a single instruction, we need to decrypt a 16-byte aligned block. Moreover, our AES decryption
unit requires approximately 12 cycles for decrypting each block instead of on-cycle decryption
offered by the previous two algorithms. Other challenges are related to the specific architecture
of the Leon3 processor that we used for the implementation of ASIST. For instance, the I-cache
communicates with the memory interface using a 32-bit AHB bus, and hence the cache lines fill at
a rate of one instruction per cycle. Moreover, Leon3 uses a critical word first policy, i.e., during a
cache miss the instruction that caused the miss will be fetched first instead of the first instruction
of the cache line. Then it will be immediately forwarded to both the integer unit and the I-cache.
After that the rest of the cache line will be filled. To extend the previous design of ASIST [47] to
support the AES algorithm, we had to make significant modifications. As we will see in Section 5.2,
even when using a complex, multi-round, symmetric encryption algorithm like AES, the impact
on the performance is within acceptable margins when configuring our prototype with a typical
I-cache size. This is due to the implementation of a dedicated AES decryption unit placed before
the I-cache. Thus, we can benefit from the I-cache locality to minimize instruction decryptions.

3.2 Hardware Support

3.2.1 Placement of the Decryption Unit. The placement of the decryption unit can add extra
cycles on the execution pipeline or even break runtime optimizations added by the processor. To
avoid such performance overheads, it is important to place the decryption unit as early as possible.
We considere two options for placing the decryption unit: before and after the I-cache.

When the decryption unit is after the I-cache, the instructions remain encrypted inside the cache
and the decryption takes place every fetch cycle, as shown in Figure 4(b). This may add extra delays
and increased power consumption—especially for complex cipher algorithms such as AES—since it
is located in the critical path of the processor. Moreover, since the instructions are encrypted in the
I-cache, it may jeopardize any pre-decoding operations located after the instruction cache, such as
trace cache [51]. If it is stored encrypted in the I-cache, then pre-decoding cannot be performed,
which may decrease performance. Some pre-decoding may be quite involving (e.g., Trace Cache
would combine instructions from multiple basic blocks into a large basic block).

When the decryption unit is located before the I-cache, it is accessed only on I-cache misses,
as shown in Figure 4(a). Especially for AES decryption, this is essential, since we need to decrypt
a whole block (16-bytes) of instructions each time. Decrypting 16-byte blocks at once can lead
to reduced power consumption, as the instructions that are executed frequently, e.g., in loops,
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Fig. 3. ASIST hardware support for runtime instruction decryption. The AES extended ASIST processor is

between the AHB interface and the I-cache controller. Each cache block is fetched, decrypted, and then sent

to the I-cache. To support AES, a separate AES decryption unit is instantiated to decrypt each block.

reside decrypted in the I-cache. As shown in Section 5.2, even with AES, the runtime overhead is
acceptable due to the locality of the I-cache accesses.

To recap, we selected to place the decryption unit after the I-cache for cipher algorithms that
can be completed in one-cycle, such as XOR and Transposition. For more complicated cipher al-
gorithms, such as AES, the decryption is placed before the I-cache.

3.2.2 Architectural Extensions. ASIST requires two extra registers to store the encryption keys:
usrkey and oskey. These registers are memory mapped using a new Address Space Identifier (ASI)
and are accessible only by the operating system through two privileged SPARC instructions: sta

(store word to alternate space) and lda (load word from alternate space). The operating system sets
the usrkey register using sta with the key of the user-level process that is scheduled for execution
before each context switch. In case of a 32-bit key, a single sta instruction can store the entire key.
For larger keys, more sta instructions are needed.

The ASIST processor chooses between usrkey and oskey for decrypting instructions based on
the value of the Supervisor bit. The Supervisor bit is 0 when the processor executes user-level
code, so the usrkey is used for decryption, and it is 1 when the processor executes kernel’s code
(supervisor mode), so the oskey is selected. When a trap instruction is executed (ta instruction in
SPARC), control is transferred from user to kernel and the Supervisor bit changes from 0 to 1;
interrupts are treated similarly. Thus, the next instructions will be decrypted with oskey. Control
is transferred back to user from kernel with the return from trap instruction (rett in SPARC). Then
the Supervisor bit becomes 0 and the usrkey is used. The context switch is performed when the
operating system runs, and oskey is used for decryption. Then the proper key of the process that
will run immediately after rett is stored at usrkey.

Figure 3 presents a high level overview for ISR support when using the AES cipher algorithm,
and the corresponding MMU that is required. As we can see, every time the I-cache requests an
address, the ASIST controller will request the 16 byte aligned memory block (four LS bits of the
address equal to zero) from the AHB interface. This is essential, since the I-cache deploys critical
word first algorithm, i.e., the address that caused the cache miss will be requested first. The ASIST

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 36. Publication date: November 2020.



On Architectural Support for Instruction Set Randomization 36:13

Fig. 4. Alternative choices for the placement of the decryption unit in the ASIST-enabled processor.

Fig. 5. Decryption using XOR with 128-bit key.

Based on the last two bits of the instruction’s ad-

dress (offset) we select the respective 32-bit part

of the 128-bit key for decryption.

Fig. 6. Decryption using Transposition with 160-

bit key. The implementation needs 32 multiplex-

ers with all the 32 bits of the encrypted instruc-

tion as input lines in each one.

controller will request and fetch each word of the cache line using the AHB protocol and fill a
128-bit buffer. When the whole block is fetched the buffer is forwarded along with the decryption
key to the AES decryption unit. The AES decryption unit we deployed expands the key on each
round and requires 12 cycle to decrypt each block. When the block of instructions is decrypted
each instruction is forwarded to the I-cache controller in the same manner the vanilla processor’s
AHB interface would, hence we preserve the critical word first policy. While these extra steps
needed on each I-cache miss seem to impose significant performance overhead, our evaluation
results indicate that we can amortize a vast percentage of the overhead in most cases due to the
I-cache locality.

3.2.3 Decryption Algorithms and Key Size. Figure 5 shows the implementation of XOR decryp-
tion with 128-bit key. Since each encrypted instruction in our architecture is a 32-bit word, we need
to select the proper 32-bit part of the 128-bit key, the same part that was used in the encryption
of this instruction. Thus, we use the two last bits of the instruction’s address to select the correct
32-bit part of the 128-bit key using a multiplexer and, finally, decrypt the instruction. The same
approach is used for XOR decryption with other key sizes, multiple of 32 bits. The implementation
of decryption with Transposition, as shown in Figure 6, requires more hardware. This is because
it needs 32 multiplexers, one per bit of the decrypted instruction. Each multiplexer has 32 input
lines with all the 32 bits of the encrypted instruction, to choose the proper bit.

Using AES, we have increased area overhead due to the fact that we added an AES decryption
unit in the processor. However, modern processors are equiped with cryptography accelerators;
thus, we can safely consider it a useful addition. For AES key we utilize the 128 least significant
bits of the Transpotition key. Our AES decryption unit, expands the key per-round. It also has
five select lines that define the selection of the input bit at each position. The select lines of each
multiplexer are part of the 160-bit key. Besides the additional hardware, the runtime operation
of Transposition is equally fast with XOR, as it does not spend extra cycles. When using AES,
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the runtime overhead is slighly increased due to the complexity of the encryption algorithm, i.e.,
12 cycles per 16 byte block instead of on-cycle for XOR and traspotition. To dynamically select the
decryption algorithm and key size, we have added a memory mapped register: asist_mode.

3.2.4 Return Address Encryption. To transparently protect a system against return-to-libc and
ROP attacks [17, 55], we extended our hardware design to provide protection of the return address
integrity without any runtime overhead. To this end, we slightly modified the ASIST processor
to encrypt the return address in each function call using the process’s key and decrypt it just be-
fore returning to the caller. This is similar to the XOR random canary defense [25], which uses
mprotect() to hide the canary table from attackers. However, we take advantage of the two hard-
ware key registers, which are not accessible by an attacker, to hide the encryption key. Also, our
hardware implementation does not impose any performance overhead.

In the SPARC V8 architecture, function calls are performed with the call synthetic instruction,
which is equal to jmpl func_addr,%o7. Hence, call writes the contents of the program counter (PC),
i.e., the return address, into the o7 register, and then transfers the control to the function’s address
func_addr. To return from a function, the ret synthetic instruction is used, which is equal to jmpl

%i7+8,%g0 when returning from a normal subroutine (i7 register in the callee is the same with o7

register in the caller) and jmpl %o7+8,%g0 when returning from a leaf subroutine.
To encrypt the return address on each function call, we just XOR the value of the PC with the

usrkey register when a call or jmpl instruction is executed and the value of the PC is stored into
the o7 register. The return address, i.e., the i7 register in the callee, is decrypted with usrkey when
a jmpl instruction uses the i7 register (or o7 in case of leaf subroutine) to change the control flow
(ret instrunction). Thus, the modified processor will return to the (%i7 XOR usrkey)+8 address.

This way, the return address remains always encrypted, e.g., when it is pushed onto the stack
(window overflow), and it is always decrypted by the jmpl instruction when returning. Hence,
any modification of the return address, e.g., though a stack-based buffer overflow or fake stack
by changing the stack base pointer, or any ret instructions executed by a ROP exploit without the
proper call, will lead to an unpredictable return address upon decryption.

Note that jmpl is also used for indirect jumps, not only for function calls and return, so our
modified jmpl decrypts the given address only when the i7 (or o7) register is used. This is a usual
convention for function calls in SPARC and it should be obeyed, i.e., the i7 and o7 registers should
not be used for any indirect jumps besides returning from function calls. Also, the calling con-
ventions should be strictly obeyed: Return address cannot be changed in any legal way before
returning, and ret instructions without a preceding call instruction cannot be called without a sys-
tem crash. As the calling conventions are not always strictly obeyed in several legacy applications
and libraries, the use of return address encryption may not be always possible. Therefore, although
ASIST offers this hardware feature, it may or may not be enabled by the software. We use one bit
of the asist_mode register to define whether the return address encryption will be enabled or not.

We note that return address encryption was first introduced in the initial ASIST implementation
[47], as well as in other proposed mechanisms [29, 66], to prevent the disclosure of the text pages
location. Encryption in those mechanisms is applied to all code pointers. In our new design we
are not only relying on code pointer obfuscation for preventing gadget discovery; by encrypting
the text segment with a strong encryption scheme (AES), even the disclosure of code pointers is
not sufficient for an attacker to discover usable gadgets. Finally, in the case where an attack can
be mounted without disclosing the text segment of the process (e.g., indirect JIT-ROP), any binary
obfuscation technique can be used along with our ISR with strong encryption to provide sufficient
protection. Such attacks require extensive knowledge of the victim application to succeed [32].
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3.3 Operating System Support

In this section, we describe the extra functionality needed in the operating system to support the
ASIST hardware features that we describe in Section 3.2.

3.3.1 Kernel Modifications. In our prototype, we modified the Linux kernel, and we ported our
changes to 2.6.21 and 3.8 kernel versions. First, we added two new fields in the process table records
(task_struct in Linux kernel): the process’s key and the asist_mode. We initialize the process’s key

to zero and asist_mode to dynamic, so each unencrypted program will be dynamically encrypted.
We changed the binary ELF loader to read the key of the executable ELF file, in case it is statically

encrypted, or generate a random key, in case of dynamic encryption, after calling the execve()
system call. Then, the loader stores the process’s key to the respective process table record. We
also changed the scheduler to store the key of the next process that is scheduled to run in the
usrkey register before each context switch. For this, we added an sta instruction before the context
switch to store a 32-bit key. For larger keys, the number of sta instructions depends on key size.

To implement dynamic encryption and shared library support we modified the page fault han-
dler. For each page fault, we check whether it is related to code (text page fault) and whether the
process that caused the page fault uses dynamic code encryption. If so, then we allocate a new
anonymous page that is not backed by any file. Upon the reception of the requested page from
disk (or buffer cache), we encrypt its data with process’s key and copy it at the same step into the
newly allocated page. Then, the new page is mapped into the process’s address space.

3.3.2 Kernel Encryption. To encrypt kernel’s code we used the same approach with static binary
encryption. We modified an uncompressed kernel image by (i) adding a new note section that
contains the kernel’s encryption key and (ii) identifying and encrypting all code sections. We
had to separate code from data into different sections while building the kernel image. The oskey

register saves the key of kernel’s encrypted code. We also modified the bootloader to read and store
the kernel’s key into the oskey register with a sta instruction, just before the kernel’s execution.
Since oskey is initialized with zero, which has no effect in XOR decryption that is also default, the
unencrypted code of the bootloader can be successfully executed in the randomized processor. In
case of AES encryption, if the key is zero, our decryption unit will not decrypt fetched instructions.

We decided to statically encrypt the kernel’s code so as to not add extra delay to the boot process.
Due to this, the key is decided at the time the kernel image is built and encrypted, and it cannot
change without re-encryption. Another option would be to encrypt the kernel’s code while boot-
ing, using a new key that is randomly generated per boot. This option could delay to the boot
process. Most systems typically use a compressed kernel image that is decompressed while boot-
ing. Thus, we can encrypt the kernel’s code during the kernel loading stage when the image is
decompressed into memory. The routine that decompresses and loads the kernel to memory must
first generate a random key, then encrypt the kernel’s code along with decompression and store
the key in the oskey register.

4 ASIST PROTOTYPE IMPLEMENTATION

In this section, we describe the ASIST prototype and present the results of the hardware synthesis
using an FPGA, in terms of additional hardware needed compared to the unmodified processor.
We also discuss how the proposed system can be ported to other architectures and systems.

4.1 Hardware Implementation

We implement ASIST on Leon3 SPARC V8 processor [1], a 32-bit open-source synthesizable pro-
cessor [28]. Leon3 uses a single-issue, seven-stage pipeline, 8 register windows, and a 16 KB 2-way
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Table 2. Additional Hardware Used by ASIST

Synthesized Processor Flip Flops LUTs

Vanilla Leon3 9,227 16,986
XOR with 32-bit key 9,294 (0.73% increase) 17,090 (0.61% increase)
XOR with 128-bit key 9,486 (2.81% increase) 17,116 (0.77% increase)

Transposition with 160-bit key 9,838 (6.62% increase) 18,153 (6.87% increase)
AES with 128-bit key 10,207 (10.6% increase) 18,405 (8.3% increase)

We see that ASIST adds just 0.6–0.7% more hardware with XOR decryption using a 32-bit key, while it adds
significantly more hardware (6.6–6.9%) when using Transposition. When using AES the overhead is slightly
over 10%.

set associative D-cache. To study the overhead that will be imposed in a typical processor we
also configured our Leon3 with 16-KB (2-way associative), 32-KB, and 64-KB (4-way associative)
I-cache sizes, respectively. The cache has a single level and is pure Harvard architecture. Finally,
we synthesized and mapped the modified ASIST processors on a Xilinx XUPV5 ML509 FPGA board
[67]. The FPGA has 256 MB DDR2 SDRAM memory and operates at 80-MHz clock frequency. The
source code of our implementation is available [30].

4.2 Additional Hardware

Table 2 shows the results of the synthesis for three different hardware implementations of ASIST:
(i) using XOR decryption with 32-bit and 128-bit keys, respectively; (ii) using decryption with
Transposition and a 160-bit key; and (iii) using AES decryption with 128-bit key. We also show the
case for the unmodified Leon3 processor as a baseline to measure the additional hardware used by
ASIST to implement the ISR functionality in each case. We see that ASIST with XOR encryption
and 32-bit key adds less than 1% of additional hardware, both in terms of additional flip flops (0.73%)
and lookup tables (0.61%). When a larger key of 128 bits is used for encryption, we observe a slight
increase in the number of flip flops (2.81%) due to the larger registers needed to store the two
128-bit keys. The implementation of Transposition results in significantly more hardware used
for both flip flops (6.62% increase) and lookup tables (6.87% increase). This is due to the larger
circuit used for the hardware implementation of Transposition, which consists of 32 multiplexers
with 32 input lines each, as we showed in Section 3.2.3. Finally, the AES implementation results
in approximately 10% more hardware, mostly due to its larger complexity. Obviously, the extra
hardware required can be decreased in cases where the processors already contain cryptographic
accelerators (such as the AES-NI [7] contained in the majority of recent Intel and AMD CPUs). Such
accelerators can be used directly by our ISR implementation, thus amortizing a large percentage
of the area overhead.

4.3 Kernel and Software Modifications

As we describe in Section 3.3, we have modified the Linux kernel and its toolchain to provide a
full-featured SPARC workstation. In particular, we ported our Linux kernel modifications in 3.8.0
kernel version. We built a cross compilation tool chain with gcc version 4.7.2 and uClibc version
0.9.33.2 to cross compile the Linux kernel, libraries, and user-level applications. Thus, all programs
running in our system (both vanilla and ASIST), including the vulnerable programs that we use
for the security analysis, as well as the benchmarks that we use for the performance evaluation,
were cross compiled on another PC. We created a new linker script to separate code and data for
both static and dynamic code encryption, and align headers, code, and data into separate pages
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in case of dynamic encryption. To implement static encryption, we extended objcopy with the
---encrypt-code flag. The key can be provided by the user or randomly chosen.

4.4 Portability to Other Architectures

4.4.1 Complex Instruction Set Computer (CISC) and 64-bit Architectures. In our current proto-
type, we have implemented the runtime decryption of instructions for RISC architectures that
use fixed-length instructions. Thus, porting the decryption functionality in other RISC systems
is straightforward. Moreover, our design does not require any modification in the standard reg-
isters and data path, and hence it can easily tailored to 64-bit (or wider) architectures in which
the instruction length is still 32-bit wide, e.g., SPARC, RV64I, and so on. In the case of larger in-
struction width, the only downside would be the number of instructions contained in each 16-byte
encrypted block. CISC architectures, such as x86, support variable-length instructions. In our de-
sign, we encrypt instructions per 16-byte blocks, and thus we do not depend on the instruction
length. Moreover, since the instructions are stored decrypted in the I-cache, we do not interfere
with the split-line access technique utilized in CISC architectures (i.e., when an instruction is split
in two different cache lines).

Regarding ASIST’s hardware extensions, implementing new registers that are accessible by the
operating system is straightforward in most architectures, including x86. Encrypting the return
address at each function call and decrypting it before returning depends on the calling convention
at each architecture. For instance, in x86 it can be implemented by slightly modifying call and
ret instructions. Finally, even though we have implemented our prototype by modifying the Linux
kernel, the same modifications (i.e., binary loader, the process scheduler and the page fault handler)
can be made in other operating systems as well.

4.4.2 Out-of-order Execution. The Leon3 processor that we use for the implementation of
ASIST is a simple seven-stage pipelined processor. As such, there are no options available to syn-
thesize an out-of-order core. Even though this prevents us from evaluating ASIST in terms of
performance and circuit area overhead, still we believe that our design can be used in out-of-order
execution cores without any modifications. This is due to the fact that ASIST can decrypt every
instruction right before being stored in the I-cache, hence not modifying the processor core itself.
In terms of performance overhead, we can extrapolate that the resulting overheads will be similar
with the in-order execution that are presented in Section 5.2. The overhead of ASIST highly cor-
relates with the I-cache miss rate, rather than the core’s architecture. In terms of area overhead,
we can expect that our additional hardware will be a lower percentage of the processor than the
current, in-order, implementation of ASIST, since out-of-order cores require more area.

5 EXPERIMENTAL EVALUATION

We now present the experimental evaluation of our ASIST prototype in terms of security and
performance. As described in Section 4, our prototype is implemented on a FPGA, running Linux
kernel v2.6 or v3.8. For the security evaluation, we also configured the networking of our base
system and the corresponding Etherner adapter, in order to enable remote exploitation attempts.
We also install a ssh server to connect to the Linux OS and execute the cross-compiled benchmark
programs. The output of each benchark is redirected to local files, thus avoiding any network
delays.

5.1 Security Evaluation

5.1.1 Synthetic Attacks. In our first experiment, we use a vanilla v.2.6.21 kernel, which does not
properly implement a non-executable stack on SPARC. We build a custom program with a typical
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Table 3. Representative Subset of Code Injection Attacks Tested with ASIST

CVE Reference Vulnerability Description Access Vector Location Vulnerable Program

CVE-2010-1451 Linux kernel before 2.6.33 does not properly implement a
non-executable stack on SPARC platform

Local Stack Custom

CVE-2013-0722 Buffer overflow due to incorrect user-supplied input validation Remote Stack Ettercap 0.7.5.1 and earlier

CVE-2012-5611 Buffer overflow that allows remote authenticated users to
execute arbitrary code via a long argument to the GRANT FILE
command

Remote Stack Oracle MySQL 5.1.65 and
MariaDB 5.3.10

CVE-2002-1549 Buffer overflow that allows to execute arbitrary code via a long
HTTP GET request

Remote Stack Light HTTPd (lhttpd) 0.1

CVE-2002-1337 Buffer overflow that allows to execute arbitrary code via certain
formatted address fields

Remote BSS Sendmail 5.79 to 8.12.7

CVE-2002-1496 Buffer overflow that allows to execute arbitrary code via a
negative value in the Content-Length HTTP header

Remote Heap Null HTTPd Server 0.5.0 and
earlier

CVE-2010-4258 Linux kernel allows to bypass access_ok() and overwrite
arbitrary kernel memory locations by NULL pointer
dereference to gain privileges

Local Kernel Linux kernel before 2.6.36.2

CVE-2009-3234 Buffer overflow that allows to execute arbitrary user-level code
via a “big size data” to the perf_counter_open() system call

Local Kernel stack Linux kernel 2.6.31-rc1

CVE-2005-2490 Buffer overflow that allows to execute arbitrary code by calling
sendmsg() and modifying the message contents in another
thread

Local Stack Linux kernel before 2.6.13.1

We see that ASIST is able to successfully prevent code injection attacks targeting vulnerable user-level programs as well
as kernel vulnerabilities.

stack-based buffer overflow vulnerability, and we use a large command-line argument to inject
SPARC executable code into the program’s stack, which successfully executes after overwriting
the return address. We then use an ASIST modified kernel without enabling the return address
encryption, and we run a statically encrypted version of the vulnerable program with the same
argument. In this case, the program is terminated with an illegal instruction exception, as the
unencrypted injected code cannot not be executed. Similarly, we run an unencrypted version of
the vulnerable program and relied on the page fault handler for dynamic code encryption. Again,
the injected code caused an illegal instruction exception due to the ISR.

5.1.2 Real Attacks. To demonstrate the effectiveness of ASIST at preventing real code injection
attacks that exploit user- or kernel-level vulnerabilities, we test attacks, shown in Table 3. The
first six attacks target buffer overflow vulnerabilities on user-level programs, while the last three
attacks, a NULL pointer dereference and two buffer overflow vulnerabilities in kernel space.

In addition, we performe similar tests with other known vulnerable programs: Ettercap, which
is a packet capture tool, MariaDB database, sendmail, Light HTTPd, and Null HTTPd webservers.
These programs were cross compiled with our toolchain and encrypted with our extended objcopy
tool. The injected shellcode is executed successfully only on the vanilla system, while ASIST always
prevents the execution of the injected code and results in an illegal instruction exception.

5.2 Performance Evaluation

To evaluate the performance of ASIST, we run the SPEC CPU2006 benchmark suite and two real
world applications, in three different setups: (i) a vanilla Leon3 with unmodified Linux kernel
(namely Vanilla), (ii) ASIST with static encryption (namely ASIST-Static), and (iii) ASIST with dy-
namic code encryption (namely ASIST-Dynamic).

5.2.1 Micro-Benchmarks. In our first benchmark, we run a representing subset of the integer
benchmarks (CINT2006) from the SPEC CPU2006 suite [61], which includes several CPU-intensive
applications. Figure 7 and Table 4 shows the slowdown of each benchmark when using ASIST
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Fig. 7. Percentage of overhead of (a) XOR and (b) Transposition when using the SPEC CPU2006 benchmark

suite. We see that both ASIST implementations have negligible runtime overhead compared to the vanilla

system.

Table 4. Geometric Mean of the Overheads in SPEC2006 Benchmark Suite

Mode XOR Transposition AES (16KB I-cache) AES (32KB I-cache) AES (64KB I-cache)

Static 0.9% 1.76% 12.6% 5.57% 1.08%

Dynamic 0.58% 1.87% 15.16% 8.64% 4.82%

When using a typical size for the I-cache the overhead becomes very low due to the spatial locality of the text segment
accesses.

with static and dynamic encryption, respectively, compared to the vanilla system. We observe that
both XOR and Transposition impose less than 3% slowdown in all benchmarks. This is due to the
hardware-based instruction decryption, which does not add any observable delay. Moreover, the
modified kernel performs only minor extra tasks, such as reading the key from the executable
file (for static encryption) or randomly generating a new key (for dynamic encryption) once per
each execution, while adding only one extra instruction before each context switch. We notice a
slight deviation from the vanilla execution time only for three of the benchmarks: gcc, sjeng, and
h264ref. For these benchmarks, we observe a slowdown of 1–1.2% in static and 1–1.5% in dynamic
encryption, which is probably due to the different linking configurations (statically linked versus
dynamically linked shared libraries).

One might expect that the dynamic encryption approach would experience a considerable per-
formance overhead due to the extra memory copy and extra work needed to encrypt code pages at
each text page fault. However, our results in Figure 7 indicate that dynamic encryption performs
equally well with static encryption. Thus, our proposed approach to dynamically encrypt program
code at the page fault handler, does not seem to add any extra overhead.

For the AES implementation, we observe in Figure 8 and Table 4 an increased overhead; this is
due to the fact that∼12 cycles are added on each I-cache miss. This overhead is further exaggerated
when using dynamic encryption. The performance impact when using the default I-cache size (i.e.,
16 KB) is quite impractical for some of the benchmarks. When using larger I-cache though, the
performance impact of both static and dynamic solutions drops significantly—for a 64 KB I-cache,
only gcc and perlbench exceeded 10% runtime overhead, due to their high I-cache miss rate. Thus,
we can safely assume that even when using AES encryption, ISR is a practical solution.
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Fig. 8. Percentage of overhead with AES when utilizing different I-cache sizes. We see that ASIST with AES

imposes significant overhead when the I-cache size is relatively small and thus the ASIST unit is invoked

frequently. When we increase the I-cache size, the runtime overhead is reduced to practical margins. Note

that the maximum I-cache size we used in our configurations, is typical for modern commodity processors.

Table 5. Data and Text Page Faults per Second and Percentage during Execution When

Running the SPEC CPU2006 Benchmark Suite

Benchmark Data page faults rate Text page faults rate Data page faults (%) Text page faults (%)

400.perlbench 38.4964 1.97215 95.1267% 4.87329%

401.bzip2 44.3605 0.193831 99.565% 0.435044%

403.gcc 60.3235 3.93358 93.8784% 6.12164%

429.mcf 51.7769 0.0497679 99.904% 0.0960275%

445.gobmk 25.4735 0.905984 96.5656% 3.43442%

456.hmmer 0.0546246 0.0223249 70.9877% 29.0123%

458.sjeng 71.9751 0.0676988 99.906% 0.0939702%

462.libquantum 5.18675 0.0486765 99.0702% 0.929752%

464.h264ref 3.19614 0.0333707 98.9667% 1.03331%

Text page faults rarely occur, attributing to less than 5% of the total page faults in most benchmarks. This explains the
negligible overhead of the dynamic encryption approach.

To better understand the performance of this approach, we further instrumented the Linux ker-
nel to measure the data and text page faults of each process that uses the dynamic encryption
mode. Table 5 shows the data and text page faults per second for each benchmark. We see that all
benchmarks have a very low rate of text page faults, and most of them experience significantly
less than one text page fault per second. Moreover, we observe that the vast majority of page faults
are for data pages, while only a small percentage of the total page faults are related to code. The
negligible overhead with dynamic code encryption at the page fault handler is due to two main
reasons: (i) as we see in Table 5, text page faults are very rare, and (ii) the overhead of the extra
memory copy and page encryption is significantly less that the page fault’s overhead for fetching
the requested page from disk. Note that in our setup we use a RAM file system instead of an actual
disk, so a production system may experience an even lower overhead. The very low page fault rate
for pages that contain executable code makes the dynamic encryption a very appealing approach,
as it imposes practically zero runtime overhead, and at the same time it supports shared libraries
and transparently generates a new key at each program execution.
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Fig. 9. Percentage of overhead of lighttpd in all ISR modes.

Fig. 10. Percentage of overhead of sqlite3 in all ISR modes.

5.2.2 Real-world Applications. First, we run the lighttpd web server in a vanilla system and in
the two encryption approaches (i.e., static and dynamic of ASIST). Figure 9 shows the slowdown of
the average download time for different file sizes. We see that ASIST does not impose any consider-
able delay, as the download time remains within 1% of the vanilla system for all file sizes. We notice
that both static and dynamic encryption implementations perform equally good. We measure the
page faults caused by lighttpd: 261 data page faults per second, while only 0.013 text page fault
per second. Moreover, most of these text page faults occur during the first few milliseconds of the
lighttpd execution, when the code is loaded into memory. When running lighttpd with AES
encryption and a 64-KB I-cache (Figure 9(b)), we notice that despite the overhead measured when
using small datasets, the overhead is reduced when the HTTP response size exceeds 2 KB. 2

Next, we run a sqlite3 database using the vanilla and the three ASIST setups. To evaluate
sqlite3 we implement a benchmark that reads a large text file and updates a SQL table, using the
C/C++ SQLite interface. Figure 10(a) shows the slowdown when inserting data into the database
as a function of the number of insertions. ASIST imposes less than 1% slowdown on the database’s
operation for both static and dynamic approaches, even on small datasets that do not provide ASIST

2The typical workload size for HTTP responses is well over 2 KB on average, except from MicroBlogs, where the average
size is 1 KB [42].
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with enough time to amortize the encryption overhead. The same behaviour is noticed when we
run sqlite3 with AES encryption and a 64-KB I-cache (Figure 10(b)).

6 RELATED WORK

Instruction Set Randomization. ISR was initially introduced as a generic defense against code
injections by Kc et al. [37] and Barrantes et al. [8, 9]. To demonstrate ISR, they proposed imple-
mentations with bochs [40] and Valgrind [46], respectively. Hu et al. [35] implemented ISR with
Strata SDT tool [52] using AES as a stronger encryption for instruction randomization. Boyd et al.
[16] propose a selective ISR to reduce the runtime overhead. Portokalidis and Keromytis [50] im-
plemented ISR using Pin [44] with moderate overhead and shared libraries support. In Section 2.3,
we described in more detail all the existing software-based ISR implementations, and we compared
them with ASIST. ASIST addresses most of the limitations of the existing ISR approaches owing
to its simple and efficient hardware support. Polyglot [56] is similar with ASIST but does not offer
dynamic encryption, and hence blind ROP attacks are still possible. Shuffler [66] protects only user-
space processes by periodically re-randomizing their address space layout. The re-randomization
is perfomed by a separate thread that runs in parallel, one for each process. Morpheus [29] also
uses code pointer obfuscation and instruction set randomization.

Defenses against code injection attacks. Modern hardware platforms support non-
executable data protection, such as the No eXecute (NX) bit [48]. NX bit prevents data from being
executed, so it can protect against code inject attacks without performance degradation. However,
its effectiveness depends on its proper use by software. For instance, an application may not set
the NX bit on all data segments due to backwards compatibility constraints, self-modifying code
and bad programming practices. We believe that ASIST can be used complementary to NX bit, in
case that NX bit may not be applicable or can be bypassed. For instance, many ROP exploits use
the code of mprotect() to make executable pages with injected code, bypassing the NX bit protec-
tion. This way, they can execute arbitrary code to implement the attack without the need of more
specific gadgets, which may not be easy to find, e.g., due to the use of ASLR. In contrast, these
exploits cannot execute injected code in a system using ASIST, as this code will not be correctly
encrypted. Thus, ASIST with ASLR provides a stronger defense.

Attacks demonstrated by Snow et al. [58] is also able to bypass NX bit and ASLR using ROP.
First, it exploits a memory disclosure to map process’s memory layout, and then it uses a disas-
sembler to dynamically discover gadgets that can be used for the ROP attack. ASIST with ASLR,
however, is able to prevent this attack: Even if memory with executable code leaks to the attacker,
the instructions will be encrypted with a randomly generated key. This way, attacker will not be
able to disassemble the code and find useful gadgets. ASIST ensures that key does not reside in
process’s user space memory, while the stronger variant, which utilizes the AES encryption algo-
rithm, aims to avoid inferring the key, even when the ciphertext and plaintext are known. SecVisor
[53] protects the kernel from code injection attacks using a hypervisor to prevent unauthorized
code execution. While SecVisor focuses on kernel’s code integrity, ASIST prevents the execution
of unauthorized code in both user and kernel level.

Defenses against buffer overflow attacks. StackGuard [25] uses canaries to protect the stack,
while PointGuard [24] encrypts all pointers while they reside in memory and decrypts them before
they are loaded into a register. Both techniques are implemented with compiler extensions, so they
require program recompilation. In contrast, BinArmor [57] protects existing binaries from buffer
overflows by discovering the data structures and then rewriting the binary. CFI is a mechanism that
aims to limit the locations where a code pointer can point [6]. Many different policies have been
proposed to reduce the performance overheads and reduce the analysis required [27, 68]. However,
it has been shown that relaxed CFI policies are not sufficient against code-reuse attacks [22].
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Other randomization-based defenses. ASLR [49] randomizes the memory layout of a process
at runtime or at compile time to protect against code-reuse attacks. Giuffrida et al. [31] propose an
approach with address space randomization to protect the operating system kernel. Bhatkar et al.
[10] present randomization techniques for the addresses of the stack, heap, dynamic libraries, rou-
tines, and static data in an executable. Wartell et al. [64] randomize the instruction addresses at
each execution to address code-reuse attacks. Jiang et al. [36] prevent code injections by random-
izing the system call numbers.

7 CONCLUSIONS

We have presented the design, implementation and evaluation of a hardware-assisted architecture
for ISR support, namely ASIST, which is able to protect both user- and kernel-level processes
transparently, without any program modifications. ASIST uses a combination of techniques to
increase security and performance. In particular, it utilizes highly secure cryptographic algorithms,
i.e., AES, that can provide resilience against different types of attacks (e.g., known cipher-text and
plain-text, anagrams, etc.). Moreover, it takes advantage efficient caching strategies and spatial
locality of code to decrease the execution overheads. By doing so, it is able to decrease the excessive
number of decrypt operations—especially for block ciphers that operate on many bytes at once—
and improve the overall performance.

Our experimental evaluation shows that ASIST imposes marginal overheads (less than 1.5% for
XOR and Transposition, and about 10% for AES), while it is able to prevent attacks that exploit both
user- and kernel-level memory vulnerabilities. Overall, our work shows that ASIST can address
most of the limitations of existing software-based ISR implementations, and can be easily ported
to other hardware architectures to defend against code injection attacks.
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