
26

MC-DeF: Creating Customized CGRAs for

Dataflow Applications

GEORGE CHARITOPOULOS, School of Electrical and Computer Engineering, Technical University

of Crete

DIONISIOS N. PNEVMATIKATOS, School of Electric and Computer Engineering, National Technical

University of Athens

GEORGI GAYDADJIEV, Bernoulli Institute, University of Groningen and Department of Computing,

Imperial College London

Executing complex scientific applications on Coarse-Grain Reconfigurable Arrays (CGRAs) promises im-

provements in execution time and/or energy consumption compared to optimized software implementations

or even fully customized hardware solutions. Typical CGRA architectures contain of multiple instances of

the same compute module that consist of simple and general hardware units such as ALUs, simple proces-

sors. However, generality in the cell contents, while convenient for serving a wide variety of applications,

penalizes performance and energy efficiency. To that end, a few proposed CGRAs use custom logic tailored

to a particular application’s specific characteristics in the compute module. This approach, while much more

efficient, restricts the versatility of the array. To date, versatility at hardware speeds is only supported with

Field programmable gate arrays (FPGAs), that are reconfigurable at a very fine grain.

This work proposes MC-DeF, a novel Mixed-CGRA Definition Framework targeting a Mixed-CGRA archi-

tecture that leverages the advantages of CGRAs by utilizing a customized cell array, and those of FPGAs by

incorporating a separate LUT array used for adaptability. The framework presented aims to develop a com-

plete CGRA architecture. First, a cell structure and functionality definition phase creates highly customized

application/domain specific CGRA cells. Then, mapping and routing phases define the CGRA connectivity

and cell-LUT array transactions. Finally, an energy and area estimation phase presents the user with area

occupancy and energy consumption estimations of the final design. MC-DeF uses novel algorithms and cost

functions driven by user defined metrics, threshold values, and area/energy restrictions. The benefits of our

framework, besides creating fast and efficient CGRA designs, include design space exploration capabilities

offered to the user.

The validity of the presented framework is demonstrated by evaluating and creating CGRA designs of

nine applications. Additionally, we provide comparisons of MC-DeF with state-of-the-art related works, and

show that MC-DeF offers competitive performance (in terms of internal bandwidth and processing through-

put) even compared against much larger designs, and requires fewer physical resources to achieve this level

of performance. Finally, MC-DeF is able to better utilize the underlying FPGA fabric and achieves the best

efficiency (measured in LUT/GOPs).

Authors’ addresses: G. Charitopoulos, School of Electrical and Computer Engineering, Technical University of Crete, Uni-

versity Campus, Akrotiri Chania 73100, Greece; email: gcharitopoulos@isc.tuc.gr; D. N. Pnevmatikatos, School of Elec-

tric and Computer Engineering, National Technical University of Athens, Iroon Polytexneiou 9, Athens 15780, Greece;

G. Gaydadjiev, University of Groningen, Nijenborgh 9 9747 AG Groningen.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).

1544-3566/2021/04-ART26

https://doi.org/10.1145/3447970

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3447970
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3447970&domain=pdf&date_stamp=2021-04-14


26:2 G. Charitopoulos et al.

CCS Concepts: • Computer systems organization → Data flow architectures; • Hardware → Recon-

figurable logic and FPGAs;

Additional Key Words and Phrases: CGRA, CGRA framework, reconfigurable computing, FPGA

ACM Reference format:

George Charitopoulos, Dionisios N. Pnevmatikatos, and Georgi Gaydadjiev. 2021. MC-DeF: Creating Cus-

tomized CGRAs for Dataflow Applications. ACM Trans. Archit. Code Optim. 18, 3, Article 26 (April 2021), 25

pages.

https://doi.org/10.1145/3447970

1 INTRODUCTION

Specialized hardware accelerators of scientific applications are shown to achieve better perfor-
mance and/or energy consumption [21, 27, 36, 38, 43]. However, designing and implementing ac-
celerators is a difficult process requiring a combination of deep knowledge of the application,
hardware description, or domain-specific programming languages and software tools. Through-
out the years, several alternatives have been proposed in order to make this process easier. The
dataflow paradigm is a promising and well-established approach toward the creation of customized
hardware solutions. Several frameworks that extract dataflow graphs (DFGs) and map them on spe-
cialized hardware have been proposed [17, 37]. Still, mapping complex DFGs on FPGAs is a tedious
process. The process is simplified using Coarse-Grain Architectures (CGAs), i.e., architectures that
are used to map DFGs on pre-defined and fixed hardware. CGAs exploit hardware customization
and often achieve faster and more energy-efficient execution. However, fixed/pre-defined hard-
ware is also a drawback to these architectures as they lack in terms of flexibility and versatility
compared to other solutions.

A more flexible solution compared to CGAs are Coarse-Grain Reconfigurable Array (CGRA) ar-
chitectures, i.e., architectures that feature large reusable units with reconfigurable capacity [12],
compared to more flexible approaches, which are highly customizable and tailored to the applica-
tion’s needs and requirements. The CGRA concept is a new incarnation of a decades-old research
idea, which has been presented in research in various forms. Coarse-grain reconfiguration showed
promise with successful projects such as RaPiD [13]. From a different perspective, the notion of
large portions of an FPGA that are reconfigurable while the rest of the integrated circuit is in op-
eration (i.e., dynamic partial reconfiguration) takes us back to at least the Xilinx Virtex II family
from large volume FPGAs, and as far back as the Algotronix CAL series (a.k.a. Xilinx 6200) in the
late 1980s and early 1990s. Nonetheless, there is a need to readdress this problem, because of the
quantitative aspects of present-day FPGAs, applications, and CAD tools.

Since early reconfigurable architectures, e.g., programmable logic arrays (PLAs), the basis of
mapping has been to map in a 1-to-1 fashion a single application gate/function onto a single gate
of the architecture. CGRA application mapping, although improved, continues to follow this par-
adigm limiting the capabilities of CGRAs. Additionally, despite their massive customization abili-
ties, CGRAs still strive to achieve efficient mapping while being as generic as possible. So far, few
related works in the field of CGRAs have stirred away from a 1-to-1 mapping methodology, i.e.,
mapping one compute function/operation on a single CGRA cell. This intentional lack of multiple-
instruction–multiple-data cell operation leads to sub-optimal designs in terms of offered accelera-
tion and general execution time. Therefore, we need a CGRA definition framework that is able to
(a) map multiple nodes in one cell and (b) offer customized cell functionality, while maintaining a
degree of flexibility.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.

https://doi.org/10.1145/3447970


MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:3

A Mixed-CGRA architecture combines advantages from both the CGRA and the FPGA
paradigms, using both a coarse-grain cell structure and an amount of (LUT-based) reconfigurable
logic, for added flexibility, connected with a fast and high-bandwidth communication infrastruc-
ture. In this article, we present holistically, a Mixed-CGRA Definition Framework (MC-DeF), which
uses the application’s DFG representation and performs application analysis in order to decide the
CGRA-cell structure and functionality, mapping and routing of the target application on the re-
sulting architecture, and finally, area occupancy and energy consumption value estimations based
on the created design. Implementation options of the resulting design are as an ASIC circuit, with
added flexibility through the use of the adjacent reconfigurable LUT array, or as an overlay to an
FPGA.

A key advantage of MC-DeF is a new degree of abstraction, when considering application func-
tions/gates/nodes, that allows for application-customized CGRAs that are also able to accom-
modate applications with similar size and computational characteristics. We introduce a map-
ping algorithm that allows for efficient mapping of multiple application nodes in one cell, i.e.,
many-to-one mapping. Finally, the inclusion of a few key but easy-to-understand threshold val-
ues, cost functions, and restrictions in the MC-DeF workflow allows the user to create design
tailored execution, area, or energy requirements. This article expands on our previous works [5,
6] and proposes a complete and novel MC-DeF coupled with a Mixed-Coarse-Grain Reconfigurable
Array (Mixed-CGRA) architecture. In this article, we introduce three new features in MC-DeF’s
toolchain:

—An MC-DeF extension to map applications on a CGRA customized for a different
application.

—An MC-DeF extension to support CGRA cells that include a small amount of reconfigurable
logic for additional flexibility.

—A novel Mapping Improvement Algorithm used in the mapping process of MC-DeF.

Additionally, we perform several experiments using nine scientific applications in order to

—evaluate MC-DeF as a holistic framework and the resulting designs of the nine applications;
—evaluate the advantages in performance when we introduce reconfigurability within the

CGRA cell;
—showcase the ability of MC-DeF to perform flexible mapping of new applications on existing

CGRAs without loss of performance;
—evaluate the novel Mapping Improvement Algorithm; and
—compare our framework with state-of-the-art related works in the field of CGRA

architectures.

The rest of the article is structured as follows: Section 2 presents related work on the field of
CGRA architectures, while Section 3 presents an example of the problem we want to solve with
MC-DeF. MC-DeF and the targeted Mixed-CGRA are described in Section 4. Evaluations of MC-
DeF and comparisons with other works are in Section 5. Finally, Section 6 concludes our work and
presents our final remarks.

2 RELATED WORK

Our main focus on related work in the field of CGRA architectures is architectures that have been
evaluated using FPGA devices or act as FPGA overlays. Stojilovic et al. present a technique to
automatically generate a domain-specific coarse-grained array from a set of representative appli-
cations [40]. Their technique creates a shortest common super-sequence found among all input

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:4 G. Charitopoulos et al.

applications based on weighted majority merge heuristic. Using this super-sequence, the frame-
work creates a cell array able to map the application’s instructions.

Several works attempted to combine the DFG paradigm with CGRAs [31, 34, 45]. Most of them
focus on domain-specific architectures based on statically defined functional units (FUs). This ap-
proach limits the abilities regarding the contents of the CGRA “cell.”

REDIFINE [2] is a polymorphic ASIC in which specialized hardware units are replaced with
basic hardware units that can create the same functionality by runtime re-composition. The high-
level compiler invoked creates substructures containing sets of compute elements. Paired with
REDIFINE, HyperCell [33] enhances the CGRA compute elements with reconfigurable macro data-
paths that enable exploitation of fine grain and pipeline parallelism at the level of basic instructions
in static dataflow order.

Mapping dataflow applications on CGRAs is a wide research field. Niedermeier et al. present
a novel programming paradigm designed to combine the principles of dataflow execution with
CGRAs [34]. The authors present a Haskell-based programming language coupled with a CGRA
architecture comprising reconfigurable cores. Each core includes a FU, a register file, and a program
memory.

Intermediate Fabrics (IFs) is an overlay architecture consisting of 196 heterogeneous FUs with
an island-style interconnect [10, 28]. The complete CGRA is implemented on an Altera Stratix
III FPGA in order to support fully parallel, pipelined implementations of a set of image process-
ing kernels. The DySER architecture consists of a heterogeneous array of 64 FUs interconnected
with a programmable network [15, 16, 23]. A key disadvantage of DySER is high LUT consump-
tion. Early implementations were only able to fit a 2×2 32-bit DySER on the FPGA. Subsequent
implementations used DSP blocks as the homogeneous FU, thus achieving larger arrays.

FPCA, fully pipelined and dynamically composable architecture [9], was proposed as an array
of clusters, organized in a mesh with Nearest-Neighbor style interconnect, where each cluster
consists of a set of Processing Elements (PEs). PEs are connected by a permutation network with
a high connectivity within a cluster, and then by a global NN style interconnect for more scalable
connectivity. The Soft Coarse-Grained Reconfigurable Array (SCGRA) overlay [30] was proposed
to address the FPGA design productivity issue, demonstrating a 10–100× reduction in compilation
time compared to the AutoESL HLS tool. Application-specific SCGRA overlays were subsequently
implemented on the Xilinx Zynq platform [29], achieving a speedup of up to 9× compared to the
same application running on the Zynq ARM processor.

In [32], the authors using various configurations of tile-array overlays create just-in-time accel-
erators. They identify several functionally independent programming patterns of an application,
implement them, and place them on partially reconfigurable tiles. Results show a considerable in-
crease in resource utilization, while recording similar or better acceleration rates, when compared
to a standard High-Level Synthesis (HLS) implementation of the complete application.

Apart from using heterogeneous customized FUs, several researchers have elaborated on the
use of digital signal processing (DSP) blocks as the CGRA FU. A fully pipelined DSP block-based
overlay architecture is presented in [22]. The overlay uses the dynamic programmability of the
DSP block and maps up to three operations to each node (one add/sub, one mul, one ALU op),
resulting in a significant reduction in the number of processing nodes required. DeCO [22, 24],
uses the same principle as [22] but the CGRA is arranged in a cone-shaped cluster of DSP-based
FUs utilizing a simple linear interconnect between them.

Another type of CGRA architecture is the expression-grained reconfigurable array (EGRA) [3].
The architecture is described as a template with each PE hardware able to be customized prior to
fabrication. The authors, by analyzing patterns in the application’s computations, decide on a set
of arithmetical/logical units to implement in the PEs.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:5

Table 1. CGRA Frameworks Features Checklist

Features

Related Work

EGRA [3]
DySER
[15, 16]

IF, IF opt.
[10]

Stitch [41]
Stojilovic

Domain Specific
CGRAs [40]

DECO
[22, 24]

MC-DeF

Application operation/function
-based CGRA cell

� � � � ✗ � �

Many-to-one mapping � ✗ ✗ � � ✗ �
Commonly used function chain
discovery

� ✗ ✗ � � � �

LUT array flexibility ✗ ✗ ✗ ✗ ✗ ✗ �
One CGRA many applications ✗ � � ✗ � ✗ �

Stitch [41] is a many-core architecture with tiny, heterogeneous and configurable accelerators
inserted at each core, designed for smart-wearable devices. The accompanying compiler is able to
combine smaller accelerators, or parts of them, i.e., patches, from different cores to form large and
complex ones. Patches from different cores communicate via a dedicated single-cycle multi-hop
SMART NOC.

The CGRA-ME framework [7] starting from an arbitrary CGRA description and a benchmark
application creates (a) a simulated design for logic functionality verification, (b) a configuration
bitstream for the CGRA, and (c) a Verilog RTL architecture model of the final design. Compared to
MC-DeF, this work omits the cell definition phase that creates application-based customized de-
signs. Additionally, it uses a high-cost Simulated Annealing Mapper to map and route the CGRA
design, while MC-DeF uses cost-function–based Node Mapping technique for mapping and a light-
weight cost-function–based Mapping Improvement algorithm for routing.

While MC-DeF bares a resemblance to many of the works stated in this section, it stands out as
being one of the few works adding LUT array-based versatility as well as creating unique CGRA
cells that can be either domain- or application-specific depending on the user’s requirements. Con-
trary to [40], MC-DeF employs a technique that tries to find common sequences of operations
within one application. This leads to a more application-specific CGRA with the flexibility added
through the use of an adjacent LUT array. MC-DeF and EGRA [3] are the only frameworks able
to create an operation/function-based CGRA cell based on application analysis. While similar in
principle, MC-DeF performs a more detailed application analysis, including the cell chains of com-
monly used functions instead of just the stand-alone functions. Table 1 offers a checklist of features
used in other related works and in MC-DeF. We can observe that the LUT array flexibility feature
is only available in MC-DeF. Additionally, our framework is the only one able to provide the user
with all the key features listed here. In Section 5, we evaluate our approach and compare it to
Intermediate Fabrics, Intermediate Fabrics (opt), DySER, and DECO.

3 CREATING CGRAS FROM DFGS

The problem we address in our work is the following: Given an application dataflow graph, find
a suitable set of nodes to implement in a CGRA cell, map the graph nodes unto the cells cre-
ated in the previous step, and place and route the resulting transformed application DFG in the
CGRA architecture shown in Figure 1. The figure depicts the cell array (CE grid), the connectivity
network, and the adjacent LUT array that enables mapping arbitrary functions that are not very
common in the application. The picture also depicts the internal structure of the cell with the net-
work configuration memory (CM), the implemented application nodes (APP_N), and the necessary
FIFOs.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:6 G. Charitopoulos et al.

Fig. 1. Structure of the proposed CGRA.

The whole process performed by our framework is shown in Figure 2. The framework consists
of four phases:

—Cell Structure and Functionality: the process of determining the structure and function-
ality of the CGRA cell(s).

—Mapping: the process of mapping the application’s computational elements on the CGRA
cells and the accompanying LUT array.

—Routing: the process of connecting the different cells using switch boxes and the underly-
ing network.

—Area and Energy Estimation: the process of estimating the occupied area and the energy
consumption of the resulting chip.

Our intention is for MC-DeF to be a self-contained tool able to aid the user in creating cus-
tomizable CGRA designs from an application’s DFG. To obtain that, the user needs to first invoke
a High-Level Synthesis tool or another compilation-style front-end. As a front-end for our frame-
work, we use the Maxeler Platform, which uses the Dataflow Paradigm to enable massive amounts
of hardware acceleration. Maxeler Technologies is an HPC company that specializes in Multiscale
Dataflow Computing (MDC) [35].

The Maxeler framework uses as input a high-level language implementation of a dataflow appli-
cation and after synthesis creates a dataflow graph. The DFG created contains a high abstraction
hardware representation of the input applications. The nodes of the DFG are hardware modules
such as adders, counters, multipliers, and so forth. The DFG nodes are an intermediate represen-
tation between the high-level code and the resulting hardware.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:7

Fig. 2. An example execution of MC-DeF for two different application DFGs.

MC-DeF creates a fully routed design based on a user-provided architectural template. The ar-
chitecture proposed here tries to balance the versatility and generality aspects of the framework.
The basis of the architecture is a cell array, responsible for the computational needs of the mapped
application. Additionally, we include LUT-based logic to support versatility of our architecture.
The LUT-based logic can be integrated to our architecture either as a separate and adjacent LUT
array or as LUT logic included in the CGRA cells.

The CGRA architecture proposed in this article uses a two-level network as its communication
infrastructure. As is common with most CGRA architectures, the communication infrastructure
is divided into local and semi-local/global. The first local level serves cell-to-cell communication.
The implemented network for cell communication is a modified DMesh network [19], a mesh-type
network-on-chip (NOC) architecture, which enhances the typical 2D-Mesh network with diagonal
connections. DMesh is able to improve average latency and saturation traffic load; the authors re-
port on a 25% reduction of inter-node distance over a classic 2D-Mesh, while using almost double
the resources. In our MC-DeF defined architecture, we use a modified DMesh network that im-
plements only bi-directional diagonal connectivity. The rationale behind this choice is the typical
structure of a dataflow graph with input data coming from the top of the graph (input) and flowing
downward (toward the outputs). This idea is further exploited in the DECO architecture [24] with
the cone-shaped array structure.

The elimination of four connection points does not affect our design since their use is to al-
leviate network congestion. In our case, this is not necessary since very few cell-to-cell connec-
tions are bi-directional, and also all computations are pipelined. Additionally, we reduce the re-
source utilization of the array at the expense of additional distance between same row/column
cells. Same row/column connectivity is implemented with the inclusion of a bi-directional cross-
bar switch at the intersection of the diagonal links and a bypass logic inside the cell’s connectivity
matrix.

The second level of the MC-DeF network is a grid of wide vertical and horizontal bi-directional
buses independent to each other. The light-blue lines in Figure 1 are used for data input/output

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:8 G. Charitopoulos et al.

Fig. 3. The MC-DeF flow with its associated phases and techniques.

movements to/from our array. The number of buses used is relative to the number of cells on the
x-axis of our cell array. Each cell has a bi-directional connection with the mentioned bus. While it is
common for input/output connections to be directly connected with edge-placed cells, in our case
we opt toward a fully connected grid, that will enable flexibility in our placement algorithms in the
mapping phase of MC-DeF. Also, we use horizontal bi-directional buses, green lines in Figure 1, to
establish communication between the cell and LUT arrays. The number of buses used is relative
to the number of cells on the y-axis of our cell array.

If the user opts for a LUTs-in-cell approach a third-level, i.e., the LUT network, is added to the
communication infrastructure responsible for transferring data generated by LUT-based nodes.
The third level works in parallel and transparently from the other two, which further increases the
internal bandwidth of the design. However, the user has to consider the logic overhead required
to implement the third level of the network.

Finally, to increase versatility, we opt toward the ability of our framework to map additional
applications on an already configured CGRA design, shown on the right-hand side of Figure 2.
The main difference between the two MC-DeF runs is that now we skip the Cell Structure and
Functionality Definition phase. The mapping and routing phases are carried out based on the cell
structure created during our first MC-DeF run.

4 MIXED-CGRA DEFINITION FRAMEWORK

This section presents the Mixed-CGRA Definition Framework and its associated processes and
algorithms, highlighting the extensions compared to previous work [5, 6]. The complete process
carried out by MC-DeF is shown in Figure 3. The gray rectangles denote the phases of MC-DeF:
(a) Cell Structure and Functionality Definition (CSFD) phase (Section 4.1) decides on the contents
of the CGRA cell, (b) the Node mapping phase (Section 4.2) creates a modified DFG graph using
the resulting CGRA cell, (c) the Routing phase (Section 4.3) creates a mapped and routed design
ready to place on an FPGA device, and (d) Energy and Area Estimation phase (Section 4.4) presents
the user with estimates of the created CGRA design.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:9

4.1 CSFD Phase

The majority of current CGRA architectures use a static and pre-defined set of compute elements,
soft-core processors, and/or ALU elements coupled with instruction memories to create a com-
pute cell. While these kinds of approaches have proven highly flexible and are general enough
to map a wide range of applications, they lack in (a) application scaling, (b) resource utilization,
and (c) total number of operations performed in parallel. With MC-DeF, we opt toward a CGRA
cell able to perform more than one operation in parallel, includes high abstraction hardware mod-
ules, and is able to implement a wide range of applications through cell-network communication
reconfiguration.

To create highly customized cells optimized to the target application’s characteristics, MC-DeF
utilizes three techniques. The first one is the Impact Factor metric, introduced in [5], which de-
notes the estimated resource impact a DFG node has on the actual resource utilization of the
application, i.e., the percentage of LUTs, FIFOs, BRAMs, and DSPs used by a node, over the total
resource usage of the application. Nodes with high Impact Factor are labeled for inclusion in the cell
structure.

The second technique is Frequent Sub-Graphs Discovery, a process bearing a strong similarity
to the one used to identify frequent chains of instructions [8]. In [5], the authors run a modified
version of GraMi [14], an algorithm for extracting frequent sub-graphs from a single large graph. A
graph is extracted only if it exceeds a frequency and a resource utilization threshold, thus limiting
the search space to sub-graphs that have high occurrence frequency and use the most hardware
resources.

The third technique deals with a critical issue in CGRA design: oftentimes nodes have the same
sequence of operations but apply it on different bit-widths. The naive approach considers these
nodes as separate, leading to CGRA designs that are harder to route due to cell heterogeneity. To
address this, we include in the CSFD phase Node Merging; an algorithm designed to find whether
two nodes with the same functionality should be merged under the same bit-width and what the
optimal bit-width for the current application is, described in detail in [6]. We use two metrics for
Node Merging: the bit-width difference between the two nodes, and the Percentage Gain of merging
these two nodes.

Through the CSFD phase, MC-DeF decides which DFG nodes will be implemented within the
CGRA cell and ensures that the functionality of the CGRA cell is beneficial in terms of resources,
frequency of occurrence in the DFG, and the bandwidth achieved among cell communication. The
threshold values applied are subject to change according to user needs and design restrictions.

4.2 Node Mapping

Node mapping is the process of assigning DFG nodes of an application in CGRA cells. However,
CGRA cells may contain multiple independent or chained functions, making the problem of map-
ping nodes to cells a difficult algorithmic process. In order to efficiently allocate the DFG nodes on
the CGRA cells, we implement a novel Node Mapping algorithm. Starting from an application DFG
using nodes N = A, B, C, D, MC-DeF decides on the contents of the CGRA cell on the CSFD phase;
the resulting CGRA cell contains one stand-alone node and a sub-graph (right arrow notation de-
notes a sub-graph inclusion in the CGRA cell), i.e., E = A→C, B. In the mapping phase of MC-DeF,
we want to create a new graph that emits the nodes included in the CGRA cell and substitutes
them with a new node, Node E, which describes the resulting CGRA cell as shown in Figure 4.
Ultimately, the hardware elements included in E1 and E2 are the same but their utilization differs;
as can be seen, only the sub-graph A→C is used in E2. Node Mapping finds and evaluates possible
coverings/mappings of the DFG using two cost functions:

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:10 G. Charitopoulos et al.

—Unutilized cell resources: this cost function measures the amount of unused resources
among all the CGRA cells. A CGRA cell consisting of three nodes, with only two of them
used, will have an unutilized cell resources count equal to one.

—Connections between cells: this cost function measures wire connections between different
CGRA cells.

The pseudo-code for the node mapping algorithm used in MC-DeF is shown in Algorithm 1.
The mapping algorithm considers all the nodes or chains of nodes implemented in the cus-
tomized CGRA cell. If the CGRA cell contains a sub-graph, i.e., two or more nodes explicitly con-
nected, the algorithm finds all the corresponding nodes (nodes between node_source_pattern and
node_dest_pattern) and places them in a cell structure, with the insert function. Then, for each

ALGORITHM 1: Node Mapping

Result: Best mapping of DFG nodes in cells

inputs = master_cell, DFG_Nodes, DFG_Edges;

while runs == 100 do

mapped_nodes = 0;

for item in master_cell do
/* For each pattern or individual node in master_cell structure find all the corresponding

instances in the DFG and place them in cells. */

if pattern in master_cell then

for edge in DFG_Edges do

if edge in pattern then

cell =insert(node_source_pattern);

cell =insert(node_dest_pattern);

extra_nodes = search_adjacent_nodes(cell, DFG_Nodes);

/* Removes nodes based on cell utilization and */

/* distance of extra nodes in each possible mapping */

check_with_other_cells(Cell_list, C, extra_nodes);

cell = insert(extra_nodes);

end

else if No patterns in master_cell then

for edge in DFG_Edges do

if edge part of master_cell then

cell = insert(node);

mapped_nodes = mapped_nodes + 1;

/* At this point extra nodes include non-connected pattern nodes */

extra_nodes = search_adjacent_nodes(Cell, DFG);

check_with_other_cells(Cell_list, C, extra_nodes);

cell = insert(extra_nodes);

end

mapping = insert(cell);

end

cell_util = measure_cell_utilization(mapping);

cell_con = measure_cell_connectivity(mapping);

best_mapping = compare_mappings(mapping, best_mapping);

run++
end

non_mapped_nodes = search_non_mapped(DFG_Nodes, best_mapping);

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:11

Fig. 4. Node Mapping in the MC-DeF. (1) CSFD phase decides on the CGRA cell contents; (2) Mapping

creates a DFG using the new node E, the functionality of which is equivalent to the CGRA cell defined;

(3) and (4) Placement and Routing phases place the nodes in a CGRA grid and decide the connectivity

between them.

of the nodes already placed in the cell, through the use of the search_adjacent_nodes, the algo-
rithms record all the DFG nodes that are adjacent, i.e., with a direct connection, or close, with
minimum distance, to the ones already in the cell, and stores them in the extra_nodes structure.
These nodes are then being checked against all other placed nodes in the cell array, with the
check_with_other_cells function, and the ones already placed are removed from the extra_nodes
structure. The remaining nodes are all inserted in the cell provided adequate available logic, or, if
not, the algorithm chooses at random which ones to insert in the current CGRA cell. At this stage
non-inserted nodes are stored and prioritized for inclusion in subsequent runs of the mapping al-
gorithm. The same process is repeated if the current processed CGRA cell logic is not a chain of
nodes. For each unique mapping created, the algorithm measures the Unutilized cell resources and
the Connections between cells cost functions and chooses the mapping that best minimizes them.
This process is repeated for 100 mappings. This number is a design time parameter that can be
fixed accordingly by the user depending on the required effort spent by the framework to find an
optimal solution. Finally, with the use of the search_non_mapped function, the mapping process
records all the nodes not able to be placed within a cell; these nodes will later be placed in the LUT
structure available.

Even though some nodes are not directly mapped to CGRA cells, e.g., node D in Figure 4, CSFD
phase strives to ensure that these nodes are but a small fraction of the total resources used by
the application. However, it is necessary to map these nodes in the Mixed-CGRA design. MC-DeF
offers the user two alternatives for “rogue” nodes.

—LUT array: An adjacent LUT array able to accommodate all the DFG nodes not directly
mapped to the cell logic.

—LUTs-in-cell: The remaining rogue nodes are implemented in small LUT array structures
placed inside the CGRA cells.

The LUT-array approach is straightforward in terms of implementation from MC-DeF. First,
during the Node Mapping phase, any node that is not included in the cell array is labeled for LUT-
based implementation on the LUT array. Then, the Routing phase establishes the grid network
responsible for transferring data to and from the LUT array. Node implementation and mapping

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:12 G. Charitopoulos et al.

within the LUT-array structure is similar to mainstream FPGAs. The LUT array is not treated as a
CE because the intention is to offer a degree of reconfigurability that CGRA cells do not.

The LUTs-in-cell (L-i-C) option is more complex. First, we have to take into consideration
the size of the individual LUT structures and to keep an almost uniform distribution among the
CGRA cells. The inspiration for this idea was the Stitch architecture [41] and its ability to create
heterogeneous and configurable core tiles. Additionally, we ideally want to place rogue nodes inside
cells that have a direct connection with, e.g., RN 1 takes inputs and gives output to nodes placed
in Cell 2, so we intuitively want to place it in the cell’s 2 LUT structure.

For more complex decisions, we invoke the cost functions implemented in the Routing phase
of MC-DeF and make placement decisions accordingly. The routing cost functions are taken into
consideration because for rogue nodes there are no resource-related restrictions. For routing pur-
poses a separate network is implemented working transparently from the cell network. The two
networks communicate via dedicated buffers.

The algorithm tries to find a mapping that minimizes the cost functions and terminates its ex-
ecution after discovering at least 100 mappings. Each mapping is different depending on which
of the adjacent nodes will be selected for cell inclusion. The above number is used empirically
through experimentation with the applications used to evaluate MC-DeF. Further increase of the
number of minimum mappings discovered could yield better overall mapping results but at the
cost of increased execution time. This number can be tailored by the end user of the framework.

4.3 Cell Routing

In this phase, MC-DeF establishes the connections needed to route the cell array, as well as the
input/output infrastructure of the design. The Routing phase of MC-DeF uses two cost functions in
order to create designs with low communication overhead: the number and size of synchronization
FIFOs used in each cell and the distance of two communicating cells.

Dataflow execution dictates that operands arrive at compute nodes synchronized. However,
operands from different paths may observe different compute and communication latencies. MC-
DeF uses synchronization FIFOs where needed to re-time inputs in each CGRA cell. Synchronizing
cell-node inputs could be remedied—but not fully solved—by latency-aware mapping of the cells;
however, this would lead to increasing the overall latency of all the cell array. By inserting syn-
chronization FIFOs inside the cells, we ensure unobstructed parallel and pipelined execution.

Cells are recognized by their position in the array, i.e., vertical and horizontal coordinates. For
two cells that exchange data between them, their distance is equal to the number of D-Mesh bi-
directional crossbar switches between them. For example, the distance of cell A (0,0) and cell B
(2,1) is 2. After calculating the cell distance between two connecting cells, the synchronization
FIFOs are formulated accordingly. The distance between cells and, Input/Output nodes and the
LUT array is three since communication is achieved over the slower grid network. The distance
between the nodes within the LUT array is not considered.

These cost functions are used for improving the communication infrastructure. The next step
of the routing process is to minimize them using a Mapping Improvement algorithm. Through
multiple trials, we observed that simultaneously minimizing both metrics is not possible. Instead,
we focused the minimization on the metric with the largest variance among its values. As a result,
the Mapping Improvement Algorithm focuses on minimizing the distance of two communicating
cells.

For the two cells mentioned before, we move one of them along the axis that shows the largest
distance. For example, moving Cell A to the (1, 0) position reduces the distance by 1. After this cell
movement we need to re-calculate the average distance per cell compared with the previous value
and perform more cell movements if necessary. The process is repeated until a local minimum

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:13

Table 2. Energy Consumption of Electronic Circuits Used in MC-DeF

Circuit (32-bit double percision) Energy (pJ)
Node Add/Sub 10
Node Multiply 9
Node Division 13

Logic Gates Nodes 0.5
64-bit read from an 8-KB SRAM 2.4
Data movement between cells 0.115 pJ/bit/mm

Table 3. Area Occupancy Estimations of Electronic

Circuits Used in MC-DeF

Circuit Area (μm2)

Node Add/Sub
Node Multiply/Divide

2,500

FIFO (bits)

Width Depth

<=8 <=1,000 250
>8 <=1,000 250
<=8 >1,000 �Depth/1, 000� * 250
>8 >1,000 �Depth/1, 000� * �Width/8� * 250

value is found, after a finite number of movements. In Section 5, we provide results on the number
of movements required to reach a local minimum for our example applications and the percentage
of improvement achieved by our Mapping Improvement Algorithm.

4.4 Area and Energy Estimations

The overall cost of the resulting CGRA architecture is evaluated by measuring the area of the re-
sulting architecture and the energy consumption. Similar to other state-of-the-art related works
([4] and [39]), we estimate the area occupancy of our architecture assuming a 7 nm lithography
technology. Thus, a 6 T SRAM bit cell unit’s size is 30 nm2, i.e., 38.5 Mb in 1 mm2. For exam-
ple, a 1k × 8-bit FIFO will occupy approximately 250 μm2, while the area needed to implement
a fused double precision Multiply-Accumulate on 7 nm is 0.0025 mm2. Additionally, we consider
two 19.5-mm2 Input/Output infrastructures at the top and bottom of the CGRA with 13 mm length
and 1.5 mm width. Also, the LUT array area is calculated based on [1, 44]. The numbers reported
by the area evaluation phase of MC-DeF are CGRA-only, CGRA+I/O, and Total (CGRA+I/O+LUT)
Area in mm2.

Calculating energy consumption of the resulting Mixed-CGRA design is based on the individual
computing elements used. Dally in [11] shows how the 64-bit double precision operation energy
halved from 22 nm to 10 nm. Additionally, in [26] Dally and co-workers accurately measure the
energy consumption of several electronic circuits on a 10 nm lithography technology. The num-
bers reported in this study are the basis of our energy consumption estimations and constitute a
pessimistic estimate for a 7 nm lithography.

In Tables 2 and 3, we present the area and energy estimations considered by our MC-DeF frame-
work. The nodes presented in these tables are the ones found in the application DFGs used for our
studies and initial calibration of the MC-DeF. The system interconnect access requires 1000 pj.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:14 G. Charitopoulos et al.

Table 4. MC-DeF Metrics, Thresholds, and Cost Functions

Name Type MC-DeF Phase

Impact Factor† metric
CSFD

Application Analysis
Utilization of frequently occurring
sub-graphs†

threshold
CSFD

Sub-graph Discovery
Frequency of frequently occurring
sub-graphs†

threshold
CSFD

Sub-graph Discovery

Percentage Gain†
metric

(threshold applied)
CSFD

Node Merging

Bit-difference†
metric

(threshold applied)
CSFD

Node Merging
Connections between Cells∗ cost function Mapping

Unutilized Cell Resources† cost function Mapping
Cell Distance∗ cost function Routing
Number and Size of Sync. FIFOs∗ cost function Routing

Entries annotated with ∗ are used for Communication infrastructure optimization, and those with † for CGRA array

optimization.

Additionally, in the MC-DeF energy and area consumption estimations, we assume 100% utiliza-
tion of the cell and LUT arrays on a fully utilized pipeline dataflow path. These values are worst-
case scenarios, so they correspond to highly overestimated scenarios. Additional optimizations at
the implementation level would allow for more efficient designs.

4.5 Discussion

The Mixed-CGRA reconfigurable designs produced by MC-DeF are technology agnostic. Two
main avenues for the implementation of these designs are (i) on FPGAs, and (b) as custom ASICs.
The former option is typical in the CGRA research field, and we can take advantage of the FPGA
reprogramming and use MC-DeF results as an overlay structure. The overlay, together with the
data transfer protocol and framework forms a complete system. The latter option is to produce a
highly optimized, one time programmable accelerator for a specific application domain. However,
the certain level of reconfigurability remains in the LUT array and the programmability of the Cell
Array switch boxes.

Throughout its execution MC-DeF uses several metrics, thresholds, and cost functions. In
Table 4, we list the name, type, and MC-DeF phase each of them used. The parameters used can
be divided into two categories: those used to create a more compact and resource-efficient array
and those used to create a fast and high bandwidth communication framework.

The threshold values applied can be used for design space exploration in order for the user to
find a hardware solution tailored to either area or energy restrictions. This feature is also aided by
the fast execution and simulation times of MC-DeF averaging below 2 minutes.

5 EXPERIMENTAL EVALUATION

In this section, we present evaluations of our framework and its individual components. For
evaluation purposes, we use nine scientific applications: Hayashi Yoshida coefficient estimator
[18], Mutual Information of two random variables, Transfer entropy between two processes [20],
Fast Fourier transform 1D, Linear Regression, Fuzzy Logic Generator, Breast Mammogram, Lo-
cality Sensitive Hashing (LSH), and a client of a high-speed packet capture application. All the

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:15

Table 5. MC-DeF Experimental Results

Hayashi Yoshida
Mutual

Information
Transfer Entropy LSH Capture Client

Resources (LUT, BRAM, DSP) (3,912,0,4) (17,677,2,4) (17,533,2,4) (36,488,144,112) (170,0,0)

DFG Nodes 270 225 199 294 118

Cell Structure
NodeEq→NodeAnd

NodeAdd/Sub
NodeAdd/Sub

NodeMul→NodeDiv
NodeAdd/Sub

NodeMul→NodeDiv
NodeAdd/Sub

NodeMul
NodeBits→NodeEq

CGRA dimensions 6×6 4×4 4×4 9×9 3x3

Clock frequency 290 MHz 270 MHz 270 MHz 270 MHz 320MHz

LUT array size 357 320 399 3,525 85

Total chip area mm2 144 125 125 227 121

Energy consumption 22.165 J 22.245 J 22.245 J 23.519 J 32.848 J

Avg. distance/cell 3 5.4 5.6 8.8 3

Avg. FIFO size/cell 4 9.4 10.9 18.9 0

Avg. outputs/cell 1 2.5 2.5 1.2 1

Internal bandwidth 29 GB/s 43.2 GB/s 43.2 GB/s 70.2 GB/s 15.3 GB/s

Linear Regression
Fuzzy Logic
Generator

Breast
Mammogram

FFT 1D

Resources (LUT, BRAM, DSP) (6,841,22,10) (26,442,66,29) (3,410,24,0) (68,003,285,44)

DFG nodes 87 199 109 3,209

Cell structure
NodeAdd/Sub

NodeEq→NodeMux
NodeBits→

NodeAdd/Sub

NodeAnd→NodeMux
NodeDiv

NodeGte→NodeAnd

NodeAdd/Sub→NodeCat
NodeAdd/Sub

CGRA dmensions 4×4 7×7 4×4 12×12

Clock frequency 270 MHz 250 MHz 270 MHz 270 MHz

LUT array size 881 1,073 803 15,374

Total chip area mm2 122 184 122 293

Energy consumption 21.793 J 21.650 J 21.830 J 32.522 J

Avg. distance/cell 7.1 3.4 7 10.3

Avg. FIFO size/cell 15.3 6.6 2.5 0

Avg. outputs/cell 1.5 1 2.5 1.5

Internal bandwidth 19.4 GB/s 38 GB/s 19.4 GB/s 80.2 GB/s

application DFG files were provided by the Maxeler AppGallery site [42]. The application charac-
teristics, i.e., resource utilization and DFG size, are presented in Table 5. In this section, we first
present the results related to the final Mixed-CGRA architecture for the target applications. Indi-
vidual results are also presented in this section regarding

—the Mapping Improvement Algorithm,
—the ability of our CGRA designs to map different applications in an already configured array,

and
—the differences between the LUT array and the L-i-C design options.

Finally, we compare our MC-DeF framework and Mixed-CGRA architecture with related work in
the field.

5.1 Baseline Results

To evaluate MC-DeF, we first verified its functionality using nine scientific applications’ DFGs
provided by Maxeler Ltd. Initially, MC-DeF determines the structure and functionality of a CGRA

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:16 G. Charitopoulos et al.

cell, as well as the in-cell LUT structures or the adjacent LUT array used for mapping non-cell
nodes. Then, the framework continues to map the DFG nodes to cells and eventually specify the
connectivity network of the design and finalize the mapping of the cells using the novel Map-
ping Improvement Technique. Finally, MC-DeF provides the user with area occupancy and energy
consumption estimations and presents a final report to the user.

Using the finalized MC-DeF reports from each of the nine applications, we report the customized
CGRA cell functionality, the size of the cell array, the mapping of non-cell nodes, the utilization
of a cell in the array, i.e., average output/cell, and the achieved clock frequency. Also, MC-DeF
provides the user with insight regarding the communication network’s utilization; we report the
average distance/cell, synchronization FIFO size/cell, and finally the internal bandwidth recorded.
Energy consumption of the resulting designs is calculated using the amount of input data of each
application supplied by the user. Energy consumption estimations are based on the amount of
floating-point operations performed and the cell array’s network energy consumption, i.e., the
energy required for transferring the data through the cell array. Each cell of the cell array performs
pipelined and parallel operations. MC-DeF design can be implemented either as an overlay or a
stand-alone design following the architecture shown in Figure 1; for this case, the target board for
our designs is a Stratix V FPGA. MC-DeF design results for all nine applications are presented in
Table 5.

For each of the cell structures implemented, we calculate the energy consumption and area
occupancy based on the tables presented in Section 4.4. For nodes that do not appear in this section,
we use energy and area estimation as derived from simple VHDL implementation of the node,
such as equality nodes. The right arrow annotation between certain nodes denotes a sub-graph
inclusion in the cell, e.g., NodeEq→NodeAnd in the Hayashi Yoshida application.

For the majority of applications, the communication infrastructure is configured using 32-bit
channels. MC-DeF decides on the communication infrastructure after enumerating input and out-
put bit-widths for each node implemented in the cell array. Also, this choice is made considering
the majority of operations performed for each application, which in most cases is 32-bit double
precision floating point.

Results obtained verify the correct functionality of our framework. For each application, we can
see that cells perform different operations, which results in different clock frequencies achieved.
The highest frequency, 320 MHz, is achieved in the smallest application, High-Speed Capture
Client, while Fuzzy Logic Generator records the lowest frequency, 250 MHz. Also, fluctuations
in area occupancy and energy consumption estimations are based on the type of operations per-
formed and the size of the cell array; the most expensive application in terms of energy and area
is the FFT one. Some interesting observations we can make by analyzing the results shown in
the tables is the energy and area tradeoff evident in the Hayashi Yoshida application. As seen in
Table 5. Hayashi Yoshida has similar energy consumption with the Mutual Information and Trans-
fer Entropy application. This is due to the larger cell array size of Hayashi Yoshida compared to
the other two applications and the fact that the Equality and logical AND operations are 64 bits
wide, thus utilizing two 32-bit circuits for each operation.

5.2 L-i-C vs LUT Array Impact

The two approaches regarding mapping non-cell nodes have vastly different architectures regard-
ing both mapping the nodes and routing. First, it is necessary to distinguish the LUTs used to
map rogue nodes (on the LUT array) and the LUTs used for memory purposes (on Memory LUTs).
It is established that for buffers or even small memory FIFOs the mapping tools will not always
use BRAMs but LUT structures. These memory structures are placed, by MC-DeF, inside the cells
using them in order to minimize the communication overhead induced.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:17

Table 6. LUTs-in-Cell vs. LUT-Array Configurations

Hayashi

Yoshida

Mutual

Information

Transfer

Entropy

LUT array 361 429 473
LUT percentage 9.22 2.42 2.69
Memory LUTs 562 4,481 2,046

LUT + MemLUT percentage 23.59 27.77 14.36
Avg. L-i-C array 19 27 30
Max. L-i-C array 26 104 104
Avg. distance/cell 3.7 6.7 7

Internal bandwidth 37.5 GB/s 48.3 GB/s 48.3 GB/s

The migration of the LUT array inside the cells refers only to LUTs used for nodes and not
memory LUTs. In Table 6, we present the results comparing the two different LUT configurations.
The cell LUT arrays are currently of varying size, so we report an average L-i-C array size and a
maximum one. A part of the future work is to have a unified size for all the cell LUT arrays and
create larger ones when necessary by merging arrays from different cells, similar to Stitch [41].
The varying size of L-i-C arrays is the reason why designs with the L-i-C option are not able to
accommodate various applications.

The overhead induced by the individual LUT-array network is observed in the distance per cell
metric. However, it does not correlate directly to a decrease in the design’s internal bandwidth,
because the operations performed by a single cell are increased. This is the case with the Hayashi-
Yoshida application, where despite the fact that the distance/cell metric is increased, the overall
bandwidth is also increased due to more operations performed simultaneously and transmitted in
parallel with the cell network via the dedicated LUT network.

Finally, we should note that through the CSFD phase of MC-DeF, the created cells are highly
customized and tailored to the application’s needs. The percentage of LUTs used for the imple-
mentation of an application, through the use of CSFD-related techniques and algorithms, is not
over 10%. Even when including LUTs for memory structures, the largest percentage is for Mutual
Information—27.77%.

5.3 Flexible Mapping of New Applications on Existing CGRAs

It is often the case that between application runs, the user is not able to re-run the whole frame-
work and create an application-customized CGRA design. MC-DeF offers the ability to the user
to map a different application in an already configured CGRA. This operation is carried out in a
time-multiplexed fashion by swapping applications that are not originally configured for the ex-
isting CGRA architecture. The new application uses available logic in the cells that matches its
operational demands, and utilizes the LUT array as needed.

In the MC-DeF case, we conduct experiments and record measurements of the mapping abil-
ity, for each application generated CGRA, to map all the other applications. The NxN table pre-
sented in Figure 5 denotes whether or not an application can be mapped on the configured CGRA.
In the y-axis we see the applications used for the CGRA configuration and on the x-axis the
to-be-mapped applications. In order for an application to be mapped, the LUT array provided
originally must be large enough to accommodate the logic not able to be mapped on the cell ar-
ray, denoted by the ✗ and �symbols. Also, we present the needed LUTs for each application in
order to be mapped on the CGRA and based on how much each square is filled, we can see how

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:18 G. Charitopoulos et al.

Fig. 5. Table that shows the needed LUTs and the ability to map each application on each already-configured

CGRA. The coverage of the blue bar shows how many of the available LUTs in the adjacent LUT array are

used when another application is mapped on the configured CGRA. An ✗ denotes the application cannot be

mapped.

Table 7. Percentage of Mapped Applications

Available LUTs
Applications

Hayashi
Yoshida

Mutual
Information

Transfer
Entropy

LSH
Linear

Regression
Fuzzy Logic
Generator

Breast
Mamm.

FFT 1D

0 0 86 100 0 15 42 28 0

1,500 15 100 100 42 15 42 28 42

3,500 42 100 100 100 28 100 57 100

Total LUTs
needed for 100%
mapping

15,790 983 983 2,088 15,727 3,440 60,792 3,362

under-utilized the LUT array is. A fully colored cell in the table means that the new application
needs more LUTs compared to the ones already present, e.g., the Mutual Information application
needs 5,119 LUTs to be mapped on a Hayashi Yoshida configured CGRA, while the available LUTs
are only 410, thus the corresponding square is full and the ✗ symbol is showing in the square. By
loading the configured CGRA architecture’s and the new application’s .xml files in MC-DeF, the
framework is able to create a mapped and routed design of the new application. This process of
swapping applications in an existing CGRA cannot be used while simultaneously using the L-i-C
design option. Additionally, the user has to plan ahead for this situation by giving more space to
the adjacent LUT array. The added overhead in terms of unused LUT resources is proportional to
the generality added in the design. In Table 7, we see the generality percentage, i.e., the percentage
of the total applications able to be placed on a configured CGRA for all reference applications,
e.g., a Mutal Information configured CGRA is able to map 89% of the other applications without
additional LUTs in the configured LUT array. Additionally, we present the generality percentages
when there are more than the original deigned LUTs available (1,500 and 3,500) and, finally, the
minimum number of LUTs needed in order for an application-configured CGRA design to be able
to map all the other target applications.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:19

A similar attempt in making one CGRA design and adapting different applications on it is done
in [40]. There the authors try to create an application domain-specific CGRA and through a Gen-
erality metric determine the percentage of applications in a certain domain that can be mapped
on it. In our studies, so far we have not employed an application domain approach in the creation
of the CGRA specification. However, in Table 7 we can see the ability of MC-DeF to build scal-
able architectures that, provided enough resources, are able to accommodate applications from
different domains. A key observation to be made is the importance of the composition of a CGRA
cell; during the CSFD phase, MC-DeF tags for inclusion not only node sequences, as is the case in
[40], but also individual nodes. This provides the cell with more versatility and the reason why,
provided enough resources, the generality percentage of MC-DeF is able to reach 100.

5.4 Mapping Improvement

The next set of figures presents the correct functionality of the Mapping Improvement tech-
nique. As stated in Section 4.3, the Mapping Improvement algorithm implemented is used to min-
imize the average distance/cell metric instead of the average synchronization FIFO size one. To
make this decision, we conducted experiments where both metrics were the minimization target
and recorded the variance of the other.

In the case where the FIFO size metric was the minimization target, the average distance/cell
metric showed a variance of 7.8 for Mutual Information, 5.7 for Transfer Entropy, and 4.4 for
Hayashi Yoshida. In the opposite case, the variance of the average FIFO size metric was 1.5, 1.1,
and 1.01, respectively. Since the variance of the average distance/cell metric is larger, the possible
improvement by minimizing it is also larger. This led us to choose the average distance/cell metric
as the minimize target. The Improved Mapping Technique terminates its execution after perform-
ing 100 cell movements. In the experiments performed, we observed that beyond that point there
was very little, if any, improvement in the average distance/cell metric. This number is not fixed
in the framework’s code but is able to change according to the user and the application’s size, with
an added increase in the framework’s execution time. In Figures 6–8, we record the values of the
average distance/cell and average synchronization FIFO size metrics over the course of the cell move-
ments performed for our target applications. The orange line shows the trend of the distance/cell
metric during its descent, while gray dots are values that are larger than the current minimum.
Finally, the blue line is the progress of the sync. FIFO size metric. The x-axis is the number of
cell movements performed ending at 100 and the y-axis is the average value among all the cells
of the two metrics recorded. The number of cell movements performed is chosen by the user and
depends on the design time effort spent while MC-DeF searches for an optimal mapping solution.

We observe that the point where a minimum is found is arbitrary and differs between the three
applications. For example, the Mutual Information hits its minimum distance/cell value after the
45th and the 100th cell movement, while Transfer Entropy records its value after the 99th. Addi-
tionally, compared to the initial mapping for each application, we can see a 64.2%, a 70%, and a
51.2% decrease in the Avg. Distance/Cell for the Transfer Entropy, Hayashi Yoshida, and Mutual
Information applications, respectively.

5.5 Comparisons

In Section 2, we referenced several works that also propose CGRA designs. Performing fair and
direct comparisons between different CGRA architectures is a complex procedure; a main obstacle
we encountered was the fact that each CGRA architecture had been implemented and/or targeted
on a different FPGA fabric or utilized a different overlay architecture.

Moreover, the applications used to evaluate MC-DeF do not appear in any of the related works
examined for comparison purposes. To achieve a fair and meaningful comparison, we followed the

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:20 G. Charitopoulos et al.

Fig. 6. Mapping Improvement Algorithm for Transfer Entropy.

Fig. 7. Mapping Improvement Algorithm for Hayashi Yoshida.

methodology presented in [25]. We compare a baseline scenario architecture created by MC-DeF,
i.e., the CGRA implemented for the Hayashi Yoshida application, with Intermediate Fabrics, Inter-
mediate Fabrics (opt), DySER, and DECO; for all the compared architectures the numbers presented
are according to their best performing application. Our comparisons are based on generic metrics:

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:21

Fig. 8. Mapping Improvement Algorithm for Mutual Information.

Table 8. Quantitative Comparison of CGRAs

Resource IF IF (opt.) DySER DECO (DSP) MC-DeF MC-DeF+DSP

CGRA grid 14×14 14×14 6×6 20 (cone) 6×6 6×6
Frequency 131 148 175 395 290 290
Total OPs 196 196 36 60 108 108
Peak GOPs 25.6 29 6.3 23.7 31.3 31.3
LUT used 91 K 50 K 48 K 10 K 15 K 13 K
DSPs used 196 196 36 20 0 36
LUTs/GOPs 3,550 1,725 7,620 430 482 415

clock frequency achieved, total operations carried out in parallel on the array, peak giga operations
per second on a fully utilized array, and resource utilization.

In [25], the authors encountered the same obstacle when trying to perform fair and direct com-
parisons between different CGRA architectures. The solution provided was a new comparison met-
ric, LUTs/GOPs. This metric represents the interconnect resource used per unit peak throughput,
giving the ability to quantify the area overhead of the overall interconnect architectures irrespec-
tive of the different FU/cell implementation. The results obtained by comparing our framework
with state-of-the-art related works are presented in Table 8.

The FPGA devices for each CGRA architecture are as follows: Intermediate Fabrics architecture is
implemented in an Altera Stratix III E260 FPGA; DySER and DECO are both implemented in a Xilinx
Zynq XC7Z020 device. A uniqueness observed in DECO is that the cells are arranged in a cone
shape so X ,Y array size is not applicable. As a reference design for our comparisons, we consider
a CGRA size 6×6 with three operations/cell operating at a maximum frequency of 290 MHz, the
actual frequency achieved for the Hayashi-Yoshida application (Table 5). To calculate the number

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:22 G. Charitopoulos et al.

of operations performed by our architecture, we multiply the clock frequency achieved with the
total operations performed by each cell when the CGRA is fully utilized. In all of the cases the cell
is considered to perform all available operations per clock cycle.

An advantage of MC-DeF compared to related work is its ability to map multiple operational
nodes from the application’s DFG in a single cell. Since operations in the cell are parallel and
pipelined, the total operations performed in the cell is equal to the number of original DFG nodes
in it, e.g., the Transfer Entropy design performs three operations/cell at each cycle. As the contents
of the cell, as defined by our framework, matches the needs and structure of the application DFG
nodes, both the utilization and the processing throughput of the corresponding circuits within the
cell are high. This is an advantage compared to related work where the basis of a cell is a generic
large FU/ALU performing at maximum one or two operations per cycle. This also means that our
designs are more compact, thus reducing resource utilization and energy consumption.

Currently, MC-DeF creates a CGRA architecture based on a generic VHDL library of node im-
plementations for the cell’s structure and functionality. This implementation choice under-utilizes
the DSP circuits offered by the FPGA device. However, by forcing MC-DeF to include one DSP per
cell of fixed hardware logic and reconfigurable LUTs as is our intention. This also reduces the LUTs
used by the whole architecture. The above implementation choice is dubbed MC-DeF (+DSPs) in
Table 8 and records the best results in LUTs/GOPs metric over all compared related work.

In terms of peak performance (GOPs), the standard IF architectures is 1.22× worse than MC-
DeF+DSP, while being 7× larger in terms of LUTs used. IF (opt.) design again is outperformed by
MC-DeF+DSP in terms of GOPs by a factor of 1.07×, but still is quite resource consuming, utilizing
4× more LUTs than the MC-DeF+DSP design. Compared to DySER, an MC-DeF design is able to
perform more operations and also have a better LUTs/GOPs metric. In fact, an unoptimized MC-
DeF design has the second lowest LUTs/GOPs metric approaching an almost ideal interconnect
area overhead.

From the related works used for comparison purposes, we found that DECO is the best perform-
ing one. However, the superiority of DECO is mainly due to the high clock frequency achieved, a
result of the fact that DECO is a DSP-only CGRA architecture. There are two ways for MC-DeF
to achieve a better LUTs/GOPs metric. The first one is to increase the number of peak GOPs by
including more operations in a single cell. This is feasible due to the customization performed
during the CSFD phase of our framework. We also note that the applications we used to evaluate
MC-DeF are larger (in terms of nodes) than the ones used in other works. However, the baseline
version of MC-DeF achieves comparable results in the LUTs/GOPs metric.

Another option is to force the mapping tools of MC-DeF to utilize at least one DSP circuit
per cell. For example, for the implementation of an adder, MC-DeF would not opt for a hy-
brid LUT+DSP implementation but would use only DSPs to achieve even higher clock frequen-
cies while reducing the amount of LUT resources used. To improve the LUTs/GOPs metric, we
implemented an improved version of MC-DeF using DSP blocks as computational units in our
cell array. This reduced the LUTs utilization, thus increasing the LUTs/GOPs metric. However,
the presence of slower LUT-based nodes in the cell prevented MC-DeF from achieving really
high clock frequencies. For the optimized MC-DeF+DSP design, we used 13K LUTs and 36 DSP
blocks, which dropped the LUTs/GOPs metric to 415, the best among related works we compared
against.

By reviewing the results presented in Table 8, we were able to identify the advantages of MC-
DeF over related work:

—MC-DeF is able to create highly customized CGRA cells that match the application compu-
tational needs.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:23

—Universality of operations performed over an application domain allow the user to map and
execute other applications on an existing array (Section 5.3).

—Superiority of MC-DeF in terms of GOPs performed even when compared with larger
designs.

—Better LUT resource utilization when compared with same array-sized designs like DySER.
—The best recorded LUTs/GOPs metric when DSPs are used explicitly on the cell’s

implementation.

6 CONCLUSIONS

In this article. we presented a complete CGRA definition framework for dataflow applications.
MC-DeF performs all the required steps to create a complete CGRA design. Using an applica-
tion’s dataflow graph, MC-DeF performs (a) cell structure and functionality definition, (b) DFG
node mapping in the resulting cell array, (c) routing of the array and the reconfigurable logic, and
(d) area occupancy and energy consumption estimations assuming a 7 nm lithography technology.

MC-DeF offers flexibility support through the use of LUT structures, either in an adjacent LUT
array or included in the cell structure, a unique feature among related works in the field. This level
of reconfigurability introduced in the CGRA architecture allows for efficient mapping of irregular
computations that do not fit the cell computation features. MC-DeF uses a variety of cost functions,
threshold values, and metrics that can be adjusted by the designer to create designs that reach the
desired cost and performance requirements and/or area and energy restrictions.

Also, we explained in detail each phase of our framework and introduced three new features:
first, the ability of MC-DeF to flexibly and efficiently map similarly structured applications on an
existing CGRA, an extension to include small LUT structure in the CGRA cells thus increasing
the maximum operations performed in a cell, and finally, a novel Mapping Improvement Algo-
rithm able to decrease the average distance per cell up to 70% when compared to the original
placement minimizing communication overhead.

We evaluated MC-DeF using nine scientific applications and provided CGRA designs for all
of them. The highest frequency recorded in these experiments was 320 MHz for a high-speed
capture client implementation, while the largest internal bandwidth achieved was 80 GB/s for the
FFT application. Comparisons to the state of the art shows that MC-DeF performs favorably in
terms of giga operations performed per second even when compared with much larger designs
in terms of CGRA size. MC-DeF uses less resources than most of the compared architectures, and
better utilizes the underlying architecture recording the second best LUT/GOPs rating. During
the comparison experiments, we created a resource-optimized version of our framework, MC-
DeF+DSP, that creates designs forced to use one DSP per cell to decrease LUT utilization. The new
design created recorded the best LUTs/GOPs metric (415) compared to related works.

A key issue that we plan on working on in the future is the communication infrastructure. Draw-
ing inspiration from DECO’s coned-shape CGRA and considering the uniqueness of each applica-
tion’s DFG shape and structure, we plan to explore and evaluate alternative network topologies,
connectivity, and so forth. Additionally, we want to observe how our designs scale in terms of
resources and performance, either by creating duplicate CGRAs that execute in parallel or by cre-
ating a larger CGRA able to utilize the entirety of the available hardware for better bandwidth and
execution times. Finally, we want to create a suite of available Mixed-CGRA designs from various
benchmark scientific applications.

REFERENCES

[1] E. Ahmed and J. Rose. 2004. The effect of LUT and cluster size on deep-submicron FPGA performance and density.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12, 3 (March 2004), 288–298.

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.



26:24 G. Charitopoulos et al.

[2] Mythri Alle, Keshavan Varadarajan, Alexander Fell, Ramesh Reddy C., Nimmy Joseph, Saptarsi Das, Prasenjit Biswas,

Jugantor Chetia, Adarsh Rao, S. K. Nandy, and Ranjani Narayan. 2009. REDEFINE: Runtime reconfigurable polymor-

phic ASIC. ACM Transactions on Embedded Computing Systems 9, 2, Article 11 (Oct. 2009), 48 pages.

[3] G. Ansaloni, P. Bonzini, and L. Pozzi. 2011. EGRA: A coarse grained reconfigurable architectural template. IEEE Trans-

actions on Very Large Scale Integration Systems 19, 6 (June 2011), 1062–1074.

[4] J. Chang et al. 2017. 12.1 A 7nm 256Mb SRAM in high-k metal-gate FinFET technology with write-assist circuitry for

low-VMIN applications. In 2017 IEEE International Solid-State Circuits Conference (ISSCC’17). 206–207.

[5] George Charitopoulos and Dionisios N. Pnevmatikatos. 2018. DARSA: A dataflow analysis tool for reconfigurable

platforms. In 18th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation

(SAMOS’18). 65–72.

[6] George Charitopoulos and Dionisios N. Pnevmatikatos. 2020. A CGRA definition framework for dataflow applica-

tions. In Applied Reconfigurable Computing. Springer International Publishing, Cham.

[7] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi, and J. Anderson. 2017. CGRA-ME: A unified

framework for CGRA modelling and exploration. In 2017 IEEE 28th International Conference on Application-Specific

Systems, Architectures and Processors (ASAP’17). 184–189. DOI:https://doi.org/10.1109/ASAP.2017.7995277

[8] N. Clark, Hongtao Zhong, and S. Mahlke. 2003. Processor acceleration through automated instruction set customiza-

tion. In 36th Annual IEEE/ACM International Symposium on Microarchitecture, 2003. MICRO-36. 129–140.

[9] J. Cong, H. Huang, C. Ma, B. Xiao, and P. Zhou. 2014. A fully pipelined and dynamically composable architecture of

CGRA. In 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines. 9–16.

DOI:https://doi.org/10.1109/FCCM.2014.12

[10] J. Coole and G. Stitt. 2010. Intermediate fabrics: Virtual architectures for circuit portability and fast placement

and routing. In 2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS’10). 13–22.

[11] Bill Dally. 2015. Challenges for Future Computing Systems. Presentation in HiPEAC Conference.

[12] Bjorn De Sutter, Praveen Raghavan, and Andy Lambrechts. 2019. Coarse-grained reconfigurable array architectures.

In Handbook of Signal Processing Systems. Springer, 427–472.

[13] Carl Ebeling, Darren C. Cronquist, and Paul Franklin. 1996. RaPiD—Reconfigurable pipelined datapath. In The 6th

International Workshop on Field-Programmable Logic, Smart Applications, New Paradigms and Compilers (FPL’96). 126–

135.

[14] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis. 2014. GraMi: Frequent subgraph and

pattern mining in a single large graph. Proceedings of the VLDB Endowment 7, 7 (March 2014), 517–528.

[15] V. Govindaraju, C. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankaralingam, and C. Kim. 2012. DySER: Unifying

functionality and parallelism specialization for energy-efficient computing. IEEE Micro 32, 5 (Sept. 2012), 38–51.

[16] V. Govindaraju, C. Ho, and K. Sankaralingam. 2011. Dynamically specialized datapaths for energy efficient computing.

In 2011 IEEE 17th International Symposium on High Performance Computer Architecture. 503–514.

[17] Reiner Hartenstein. 2001. Coarse grain reconfigurable architecture (embedded tutorial). In The 2001 Asia and South

Pacific Design Automation Conference (DAC’01). ACM, 564–570.

[18] Takaki Hayashi and Nakahiro Yoshida. 2005. On covariance estimation of non-synchronously observed diffusion

processes. Bernoulli 11, 2 (April 2005), 359–379.

[19] Wen-Hsiang Hu, Seung Eun Lee, and Nader Bagherzadeh. 2008. DMesh: A diagonally-linked mesh network-on-chip

architecture. Network on Chip Architectures (2008), 14.

[20] Konstantinos Iordanou, Sofia Maria Nikolakaki, Pavlos Malakonakis, and Apostolos Dollas. 2018. A performance

evaluation of multi-FPGA architectures for computations of information transfer. In 18th International Conference on

Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS’18). 1–9.

[21] M. Jacobsen, P. Meng, S. Sampangi, and R. Kastner. 2014. FPGA accelerated online boosting for multi-target tracking.

In 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines. 165–168.

[22] A. K. Jain, S. A. Fahmy, and D. L. Maskell. 2015. Efficient overlay architecture based on DSP blocks. In 2015 IEEE 23rd

Annual International Symposium on Field-Programmable Custom Computing Machines. 25–28.

[23] Abhishek Kumar Jain, Xiangwei Li, Suhaib A. Fahmy, and Douglas L. Maskell. 2016. Adapting the DySER architecture

with DSP blocks as an overlay for the Xilinx Zynq. SIGARCH Computer Architecture News 43, 4 (April 2016), 28–33.

DOI:https://doi.org/10.1145/2927964.2927970

[24] A. K. Jain, X. Li, P. Singhai, D. L. Maskell, and S. A. Fahmy. 2016. DeCO: A DSP block based FPGA accelerator overlay

with low overhead interconnect. In 2016 IEEE 24th Annual International Symposium on Field-Programmable Custom

Computing Machines (FCCM’16). 1–8.

[25] A. K. Jain, D. L. Maskell, and S. A. Fahmy. 2016. Are coarse-grained overlays ready for general purpose application

acceleration on FPGAs? In 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing,

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.

https://doi.org/10.1109/ASAP.2017.7995277
https://doi.org/10.1109/FCCM.2014.12
https://doi.org/10.1145/2927964.2927970


MC-DeF: Creating Customized CGRAs for Dataflow Applications 26:25

14th International Conference on Pervasive Intelligence and Computing (DASC/PiCom/DataCom/CyberSciTech’16). 586–

593.

[26] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. 2011. GPUs and the future of parallel computing.

IEEE Micro 31, 5 (Sept. 2011), 7–17.

[27] I. Kuon and J. Rose. 2007. Measuring the Gap between FPGAs and ASICs. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 26, 2 (2007), 203–215.

[28] Aaron Landy and Greg Stitt. 2012. A low-overhead interconnect architecture for virtual reconfigurable fabrics. In The

2012 International Conference on Compilers, Architectures and Synthesis for Embedded Systems (CASES’12). Association

for Computing Machinery, New York, NY, 111–120. DOI:https://doi.org/10.1145/2380403.2380427

[29] C. Liu, H. Ng, and H. K. So. 2015. QuickDough: A rapid FPGA loop accelerator design framework using soft CGRA

overlay. In 2015 International Conference on Field Programmable Technology (FPT’15). 56–63. DOI:https://doi.org/10.

1109/FPT.2015.7393130

[30] C. Liu, C. L. Yu, and H. K. So. 2013. A soft coarse-grained reconfigurable array based high-level synthesis methodol-

ogy: Promoting design productivity and exploring extreme FPGA frequency. In 2013 IEEE 21st Annual International

Symposium on Field-Programmable Custom Computing Machines. 228–228. DOI:https://doi.org/10.1109/FCCM.2013.21

[31] D. Liu et al. 2018. Data-flow graph mapping optimization for CGRA with deep reinforcement learning. IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems (2018), 1–1.

[32] Sen Ma, Zeyad Aklah, and David Andrews. 2016. Just in time assembly of accelerators. In The 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA’16). Association for Computing Machinery, New

York, NY, 173–178. DOI:https://doi.org/10.1145/2847263.2847341

[33] K. T. Madhu, S. Das, S. Nalesh, S. K. Nandy, and R. Narayan. 2015. Compiling HPC kernels for the REDEFINE CGRA.

In IEEE 17th International Conference on High Performance Computing and Communications, and 12th International

Conference on Embedded Software and Systems. 405–410.

[34] A. Niedermeier, Jan Kuper, and Gerard J. M. Smit. 2014. A dataflow inspired programming paradigm for coarse-

grained reconfigurable arrays. In Reconfigurable Computing: Architectures, Tools, and Applications. Springer Interna-

tional Publishing, Cham, 275–282.

[35] O. Pell and V. Averbukh. 2012. Maximum performance computing with dataflow engines. Computing in Science En-

gineering 14, 4 (July 2012), 98–103.

[36] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi, G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini.

2015. PULP: A parallel ultra low power platform for next generation IoT applications. In 2015 IEEE Hot Chips 27

Symposium (HCS’15). 1–39. DOI:https://doi.org/10.1109/HOTCHIPS.2015.7477325

[37] Mainak Sen et al. 2007. Dataflow-based mapping of computer vision algorithms onto FPGAs. EURASIP Journal on

Embedded Systems 2007, 1 (Jan. 2007), 049236.

[38] S. Shreejith, S. A. Fahmy, and M. Lukasiewycz. 2013. Reconfigurable computing in next-generation automotive net-

works. IEEE Embedded Systems Letters 5, 1 (2013), 12–15.

[39] T. Standaert et al. 2016. BEOL process integration for the 7 nm technology node. In 2016 IEEE International Interconnect

Technology Conference/Advanced Metallization Conference (IITC/AMC’16). 2–4.

[40] M. Stojilovi ć, D. Novo, L. Saranovac, P. Brisk, and P. Ienne. 2013. Selective flexibility: Creating domain-specific

reconfigurable arrays. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 32, 5 (May

2013), 681–694.

[41] C. Tan, M. Karunaratne, T. Mitra, and L. Peh. 2018. Stitch: Fusible heterogeneous accelerators enmeshed with many-

core architecture for wearables. In 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture

(ISCA’18). 575–587. DOI:https://doi.org/10.1109/ISCA.2018.00054

[42] Nemanja Trifunovic, Veljko Milutinovic, Nenad Korolija, and Georgi Gaydadjiev. 2016. An AppGallery for dataflow

computing. Journal of Big Data 3, 1 (2016), 4.

[43] B. S. C. Varma, K. Paul, and M. Balakrishnan. 2013. Accelerating 3D-FFT using hard embedded blocks in FPGAs. In

2013 26th International Conference on VLSI Design and 2013 12th International Conference on Embedded Systems. 92–97.

[44] Xilinx 2018. 7 Series FPGAs Data Sheet: Overview. Xilinx. Rev. 2.6.

[45] S. Yin, D. Liu, L. Sun, L. Liu, and S. Wei. 2017. DFGNet: Mapping dataflow graph onto CGRA by a deep learning

approach. In 2017 IEEE International Symposium on Circuits and Systems (ISCAS’17). 1–4.

Received July 2020; revised December 2020; accepted January 2021

ACM Transactions on Architecture and Code Optimization, Vol. 18, No. 3, Article 26. Publication date: April 2021.

https://doi.org/10.1145/2380403.2380427
https://doi.org/10.1109/FPT.2015.7393130
https://doi.org/10.1109/FPT.2015.7393130
https://doi.org/10.1109/FCCM.2013.21
https://doi.org/10.1145/2847263.2847341
https://doi.org/10.1109/HOTCHIPS.2015.7477325
https://doi.org/10.1109/ISCA.2018.00054

