
TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Accelerating Fully Homomorphic
Encryption (FHE) schemes with

FPGAs

Author:
Georgios AGORITSIS

Thesis Committee:
Prof. Sotirios IOANNIDIS

Prof. Apostolos DOLLAS

Prof. Georgios KARYSTINOS

A thesis submitted in fulfillment of the requirements
for the diploma of Electrical and Computer Engineer

in the

School of Electrical and Computer Engineering

Microprocessor and Hardware Laboratory

September 13, 2023

https://www.tuc.gr/
https://www.ece.tuc.gr/
https://www.mhl.tuc.gr/

iii

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Accelerating Fully Homomorphic Encryption (FHE) schemes with FPGAs

by Georgios AGORITSIS

This thesis delves into the exploration of FPGA acceleration possibilities for
Fully Homomorphic Encryption (FHE), focusing on the OpenFHE library.
Following a software profiling procedure, the thesis centers its attention on
the Number Theoretic Transform (NTT) as a key acceleration point and inves-
tigates state-of-the-art optimization techniques from the existing literature.
The chosen platform is the Xilinx Alveo U50 FPGA card, with the OpenFHE
library as the foundation. The study demonstrates how a hardware-based
project designed for the Alveo U50 card can be integrated into OpenFHE. Al-
though this research does not introduce a novel acceleration method, it pri-
marily focuses on showcasing the integration of an application developed in
Xilinx Vitis IDE with OpenFHE. An essential contribution is the provision of
a functional NTT implementation that supports various NTT sizes, comple-
menting OpenFHE. The implementation encompasses an in-place forward
NTT with the Cooley-Tukey butterfly and Harvey’s modular multiplication
optimization, utilizing High-Level Synthesis (HLS). This work stands as the
first hardware accelerator for OpenFHE, deployed on a Xilinx FPGA, sup-
porting up to 218-point Number Theoretic Transforms without FPGA recon-
figuration. The accelerator is seamlessly integrated with OpenFHE as a hard-
ware component. While the project does not yield an immediate speedup
for OpenFHE, it lays a solid foundation for future acceleration endeavors.
Future work directions and optimization suggestions are identified and con-
clude the thesis.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

v

TECHNICAL UNIVERSITY OF CRETE

Abstract
School of Electrical and Computer Engineering

Electrical and Computer Engineer

Accelerating Fully Homomorphic Encryption (FHE) schemes with FPGAs

by Georgios AGORITSIS

Αυτή η εργασία διερευνά τη δυνατότητα χρήσης Αναδιατασσόμενης Λογικής (FPGA)
για την επιτάχυνση της Πλήρους Ομομορφικής Κρυπτογράφησης (FHE), εστι-
άζοντας στη βιβλιοθήκη OpenFHE. Μετά από μια software profiling διαδικασία,
η εργασία επικεντρώνεται στο Number Theoretic Transform (NTT) ως κύριο
στόχο επιτάχυνσης και διερευνά την υφιστάμενη βιβλιογραφία για υπάρχουσες τε-

χνικές βελτιστοποίησης. Ως πλατφόρμα υλοποίησης επιλέγεται η FPGA κάρτα
Xilinx Alveo U50. Η μελέτη δείχνει τον τρόπο με τον οποίο η υλοποίηση ενός
αλγορίθμου στην κάρτα Alveo U50 μπορεί να ενσωματωθεί στο περιβάλλον της
OpenFHE. Παρόλο που δεν παρουσιάζεται μια νέα μέθοδος επιτάχυνσης, η εργα-
σία επικεντρώνεται κυρίως στην ενσωμάτωση μιας εφαρμογής που αναπτύχθηκε

στο περιβάλλον του Xilinx Vitis IDE με τη βιβλιοθήκη OpenFHE. Στα πλαίσια
της εργασίας παρέχεται μια πλήρως λειτουργική υλοποίηση του ΝΤΤ που είναι ισο-

δύναμη με την υπάρχουσα υλοποίηση του NTT από την OpenFHE. Η υλοποίηση
γίνεται σεHigh-Level Synthesis (HLS) και περιλαμβάνει έναν in-place ευθύNTT
μετασχηματισμό, ο οποίος χρησιμοποιεί την πεταλούδα των Cooley και Tukey,
καθώς και την βελτιστοποίηση του modular multiplication από τον D. Harvey.
Η παρούσα εργασία περιλαμβάνει τον πρώτο επιταχυντή σε αναδιατασσόμενη λογι-

κή για την OpenFHE, που εγκαθίσταται σε μια Xilinx FPGA, υποστηρίζει NTT
μεγέθους έως και 218

, χωρίς επαναπρογραμματισμό της FPGA και ενσωματώνεται
απρόσκοπτα στο περιβάλλον της βιβλιοθήκης. Αν και δεν καταφέρνει να επιταχύνει

τη βιβλιοθήκη, θέτει τη βάση για μελλοντικές προσπάθειες επιτάχυνσης. Τέλος, η

εργασία ολοκληρώνεται με την πρόταση ιδεών βελτιστοποίησης και κατευθύνσεων

για μελλοντικές εργασίες.

HTTPS://WWW.TUC.GR/
https://www.ece.tuc.gr/

vii

Acknowledgements
First and foremost, I would like to express my gratitude to Prof. Sotirios
Ioannidis, my supervisor, for enabling me to work on this thesis and for
the unwavering trust he placed in me. I would also like to thank Andreas
Brokalakis for his guidance and all his support and availability during the
past months. His understanding and contribution were substantial. Special
thanks to Prof. Apostolos Dollas and Prof. Georgios Karystinos for being
members of the thesis committee and for assessing my work. Last but not
least, I would like to thank my family and my friends for the support and
encouragement throughout my studies. Their presence, feedback and contri-
bution have shaped me to this day.

Georgios Agoritsis
Chania 2023

ix

Contents

Abstract iii

Abstract v

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Scientific Contributions . 3
1.3 Thesis Outline . 4

2 Theoretical Background 5
2.1 Learning With Errors (LWE) and Lattice-based Cryptography 5
2.2 Fully Homomorphic Encryption (FHE) and FHE Schemes . . 6
2.3 Modular Arithmetic . 9
2.4 Residue Number System (RNS) 10
2.5 Number Theoretic Transform (NTT) 11
2.6 OpenFHE Open-source Library 19

3 Related Work 25
3.1 Accelerating FHE Schemes . 25
3.2 The FPGA Perspective . 26
3.3 Thesis Approach . 28

x

4 Defining the Architecture 29
4.1 OpenFHE Library Profiling . 29
4.2 Acceleration Target . 32
4.3 Target Architecture . 36

5 FPGA Implementation 39
5.1 Tools Used . 39

5.1.1 Vitis IDE . 39
5.1.2 High Level Synthesis (HLS) 40
5.1.3 Vitis pragmas and optimizations 41

5.2 FPGA Platform . 42
5.3 Design Space Exploration . 43
5.4 NTT Accelerator Design . 49

5.4.1 Host Code Design . 50
5.4.2 Kernel Code Design . 51

5.5 Integration with OpenFHE . 52
5.5.1 Generating an .so file using Xilinx Vitis IDE 53
5.5.2 Configuring OpenFHE 54

6 Results 57
6.1 FPGA Resource Utilization and Performance 57
6.2 Performance Evaluation . 61

7 Conclusions and Future Work 69
7.1 Conclusions . 69
7.2 Future Work . 70

A OpenFHE Modified Source Code 73

References 77

xi

List of Figures

2.1 Cooley-Tukey Butterfly . 15
2.2 Gentleman-Sande Butterfly . 15
2.3 Forward 8-point NTT with Cooley-Tukey (CT) butterfly 16
2.4 Inverse 8-point NTT with Gentleman-Sande (GS) butterfly . . 16

4.1 Function execution time % out of C++ code total execution
time (1/2) . 31

4.2 Function execution time % out of C++ code total execution
time (2/2) . 31

5.1 Xilinx Vitis Development Flow 39
5.2 Xilinx Vitis HLS Development Flow 40
5.3 Xilinx Alveo U50 Data Acceleration Card 43

6.1 Performance comparison of software NTT function call (OpenFHE)
and hardware NTT function call (This Work). For the hard-
ware NTT function call the Kernel Computation Time (KCT)
and Total Function Execution Time (TFET) are included. . . . 63

6.2 Comparison of NTT implementations (NTT computation time
only) . 63

xiii

List of Tables

4.1 A comparison of existing NTT accelerators with OpenFHE sup-
ported parameters . 34

4.2 Target platforms and resource utilization of existing NTT ac-
celerators . 36

5.1 Available resources of Xilinx Alveo U50 FPGA 43
5.2 Design Space Exploration Resource Utilization Results 48
5.3 Design Space Exploration Latency Results 49
5.4 Target Design Resource Utilization Results 49
5.5 Target Design Latency Results 49
5.6 Deployed HLS Pragmas in algorithm 10 52

6.1 Alveo U50 Post-Route Resource Utilization 57
6.2 NTT Hardware Accelerator Timing Results (KC(%) and DT(%)

correspond to the percentage of Kernel Computation Time and
Data Transfer Time out of the Total Function Execution Time
respectively) . 59

6.3 Program Device Latency . 59
6.4 Results and comparison for NTT implementations of size n =

4096 . 60
6.5 Performance of Software NTT (OpenFHE) 61
6.6 Performance comparison of Software NTT time (NTT function

included in OpenFHE library) and Hardware NTT time (ker-
nel computation, data transfers, total hardware function exe-
cution time) . 62

6.7 Power Consumption and Energy Efficiency comparison of a
FHE application when NTTs are launched only in Software
(SW OpenFHE - SW NTT case) and when NTTs are launched
on the FPGA (SW OpenFHE - HW NTT case) - OpenFHE in
both cases is launched on Software 66

xv

List of Algorithms

1 Montgomery Modular Multiplication 9
2 Barrett Modular Multiplication 10
3 Plantard Modular Multiplication 10
4 In-Place Cooley-Tukey Forward NTT 17
5 In-Place Gentleman-Sande Inverse NTT 18
6 Harvey/Shoup Cooley-Tukey Butterfly 18
7 OpenFHE’s In-Place Forward CT-NTT 33
8 OpenFHE’s Harvey Modular Multiplication 34
9 HLS-friendly NTT algorithm with GS-butterfly [40] 45
10 Implemented HLS-friendly CT-NTT 47

xvii

List of Abbreviations

ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CC Clock Cycle
CPU Central Processor Unit
CS Computer Science
CRT Chinese Remainder Theorem
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
DTT Data Transfer Time
FF Flip Flops
FHE Fully Homomorphic Encryption
FPGA Field Programmable Gate Array
GPU Graphic Processor Unit
HBM High Bandwidth Memory
HDL Hardware Description Language
HLS High Level Synthesis
KL Kernel Latency
KCT Kernel Computation Time
LUT Look Up Table
NTT Number Theoretic Transform
TFET Total Function Execution Time
PL Programmable Logic
RAM Random Access Memory
SDK Software Development Kit
SRL Shift Register Logic
URAM Ultra Random Access Memory

xix

Dedicated to my family and friends. . .

1

Chapter 1

Introduction

1.1 Motivation

Cryptography plays a vital role in safeguarding the security and confiden-
tiality of sensitive data across diverse applications. One of the most ground-
breaking advancements in cryptography is Fully Homomorphic Encryption
(FHE) [12], an encryption scheme that allows users to perform computations
on encrypted data without decrypting it. This remarkable property opens
up a wide range of possibilities for secure computation in scenarios where
privacy is of utmost importance.

The history of FHE dates back to the early 1970s when researchers began ex-
ploring the possibility of performing computations on encrypted data. How-
ever, it wasn’t until Craig Gentry’s groundbreaking work in 2009 [24] that
FHE became a practical reality. Gentry introduced the concept of bootstrap-
ping, which enabled the evaluation of arbitrary circuits on encrypted data,
thus overcoming the limitations of earlier attempts. His work opened up
new avenues for secure data processing and sparked widespread interest in
FHE research and development.

FHE finds application in numerous domains where data privacy is paramount.
Industries such as healthcare, finance, cloud computing, and machine learn-
ing can benefit from secure data processing without compromising confiden-
tiality. FHE enables secure outsourcing of computations, confidential data
sharing, and privacy-preserving machine learning algorithms.

Several FHE schemes have been developed over the years, including the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme [8], the Brakerski/ Fan- Ver-
cauteren (FV) scheme [21], [7], and the Cheon-Kim-Kim-Song (CKKS) scheme
[13]. Each scheme has its own strengths and is suited to different types of

2 Chapter 1. Introduction

applications and performance requirements. The underlying mathematical
problem that powers most of FHE schemes is the Ring Learning With Errors
(RLWE) problem [9]. RLWE provides a foundation for constructing secure
and efficient FHE schemes, allowing computations to be performed on en-
crypted data while maintaining the security guarantees.

To make FHE practical and viable for real-world applications, software li-
braries implementing FHE have been developed. These libraries provide
high-level abstractions and tools for working with FHE schemes, making it
easier for developers to integrate FHE into their applications. Examples of
existing FHE libraries include OpenFHE [2], Palisade [50] (the predecessor
of OpenFHE), and Microsoft SEAL [56].

OpenFHE is a state-of-the-art open-source software library specifically de-
signed to facilitate the use and development of FHE applications. It pro-
vides a comprehensive set of tools and functionalities for working with var-
ious FHE schemes, including key generation, encryption, and decryption
operations, while it also complies with the Homomorphic Encryption post-
quantum security standards [33]. OpenFHE aims to make FHE accessible
and usable for developers, researchers, and practitioners, promoting collab-
oration and innovation in the field of secure data processing.

While software libraries like OpenFHE make the use of FHE schemes easily
accessible to developers, performance issues remain as an adoption obsta-
cle. FHE schemes encrypt plaintexts into high degree polynomials and per-
form computations over these polynomials, thus increasing the complexity of
computations. Number Theoretic Transform (NTT) [38] has been proposed
as a way to reduce the complexity of polynomial multiplication from O(n2)

to O(n log n) and has been widely adopted throughout the FHE schemes as
a fundamental computational primitive. Indeed, by using performance anal-
ysis tools [34], we identified that NTT computations account for more than
30% of the overall computation time in typical scenarios.

In an effort to address the performance issues that plague the adoption of
FHE schemes, this work conducts a feasibility study on using reconfigurable
hardware accelerators to offload computationally-significant functions of the
OpenFHE library. According to our performance measurements, a natural
starting point is the offloading of the NTT computations. Our goal is to cre-
ate hardware accelerated functions that are fully functional and equivalent
to those included in the OpenFHE library (i.e. without limitations on specific
data sizes or operations) and integrate them in the library in a manner that

1.2. Scientific Contributions 3

developers who employ the OpenFHE library need not be aware of the com-
plications or other issues related to using hardware accelerators. As such,
we hope that our work can be used as a reference point for future works
targeting OpenFHE library acceleration using Xilinx FPGAs.

In conclusion, Fully Homomorphic Encryption (FHE) has the potential to
transform data privacy and security by enabling computations on encrypted
data. With the development of schemes such as BGV, FV, and CKKS, FHE is
finding applications in various domains. Existing software libraries, such as
OpenFHE, provide valuable resources for FHE implementation and develop-
ment. The integration of FPGA-based accelerators with the OpenFHE library
can potentially open up new possibilities for accelerating FHE computations.
This work is the first attempt of accelerating the NTT used in OpenFHE with
the Xilinx FPGAs (more specifically Xilinx Alveo U50) without any functional
limitations.

1.2 Scientific Contributions

We use Intel HEXL-FPGA [35] and the work of Mert et al. [40] as the start-
ing point of our work. Our target platform is Xilinx Alveo U50 Data Center
Accelerator Card. The goal of this thesis is to design a functional NTT accel-
erator on Alveo U50 and integrate it with OpenFHE [2]. Our work is the first
attempt to accelerate OpenFHE using a Xilinx Alveo FPGA to the best of our
knowledge and can be used for future work as a template to further optimize
OpenFHE acceleration. In more details:

• We confirm that NTT can be a bottleneck operation in OpenFHE, due
to multiple NTT transformations used in internal high-level functions.
Note that the NTT is a critical component among all FHE high-level
functions and is the starting point of any existing FHE accelerator.

• We provide an alternative way of integrating our design with OpenFHE
library, instead of using the library’s Hardware Abstraction Layer (HAL),
to simplify hardware acceleration research on OpenFHE.

• We provide a functional and OpenFHE-equivalent NTT implementa-
tion supporting NTT sizes up to 218 in Xilinx Vitis HLS, using and com-
bining existing work for NTT in literature, in order to create a baseline
for future research.

4 Chapter 1. Introduction

• We identify further optimization approaches and future work direc-
tions at the last chapters of this document.

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: Chapter 2 provides the necessary
theoretical background concepts related to the goal of this thesis.

• Chapter 3 - Related Work: Chapter 3 provides a brief overview of ex-
isting works in literature and the thesis approach.

• Chapter 4 - Defining the Architecture: Chapter 4 includes OpenFHE li-
brary software profiling results and presents the proposed accelerator’s
architecture.

• Chapter 5 - FPGA Implementation: Chapter 5 report on the FPGA-
based design and implementation of the proposed accelerator.

• Chapter 6 - Results: Chapter 6 reports the performance and resource
utilization results of the proposed FPGA design.

• Chapter 7 - Conclusions: Chapter 7 concludes the thesis and provides
the final conclusions, alongside proposals for future work directions.

5

Chapter 2

Theoretical Background

2.1 Learning With Errors (LWE) and Lattice-based

Cryptography

Learning With Errors (LWE) [9] is a lattice-based cryptographic problem that
was introduced in 2005 and forms the basis of many homomorphic encryp-
tion schemes, including FHE. In the LWE problem, one must find a small
integer secret vector hidden within a set of noisy linear equations. These
equations introduce errors to make it computationally difficult to recover the
secret vector from the noisy data.

The problem formulation is as follows:

c[i] = (a[i], a[i] ∗ s + e[i]) mod q for i = 0, 1, 2, ...

where:

c[i] is a ciphertext,

a[i] is a random vector chosen uniformly from a discrete set,

s is the secret vector (small integer vector) that the adversary aims to find,

e[i] is a small noise term,

q is a large modulus.

The noise term e[i] is generated from a probability distribution, and it is what
adds the "noise" to the equations. The LWE problem involves finding the
secret vector s from a collection of such noisy equations.

LWE has a search version and a decision version:

6 Chapter 2. Theoretical Background

• Search LWE problem: Given a set of computed pairs of points (a[i], a[i] ∗
s + e[i]), find s.

• Decision LWE problem: Given a set of computed pairs of points (a[i], a[i] ∗
s + e[i]) and some random points, determine the points that originate
from s. The random points are generated using a uniform distribution.

The main challenge in the LWE problem is that the noise terms make it com-
putationally difficult to directly recover the secret vector s. The security of
LWE relies on the assumption that solving the system of equations and ex-
tracting the secret vector s is hard even for powerful adversaries.

LWE has been widely used to demonstrate the security of various cryptosys-
tems. However, their efficiency is limited by the fact that their keys are ma-
trices randomly generated over a small integer q in the ring Zq, causing their
dimension to increase linearly as security parameters grow. To address this
efficiency concern, ring variants have been introduced.

In 2009, a variant of LWE called Ring Learning with Errors (Ring-LWE) was
proposed as a solution [9]. RLWE extends the LWE problem to polynomial
rings. Instead of using vectors, RLWE operates on polynomials within a ring,
such as the polynomial ring modulo a power of two. The RLWE problem
involves finding the secret polynomial amidst errors introduced through the
polynomial ring.

One significant advantage of Ring-LWE over its LWE counterpart is the re-
duction in key size by a factor of n. For a message that would require several
thousand bits to be secured using LWE, Ring-LWE accomplishes the same
with only hundreds of bits. This makes Ring-LWE a more feasible and effi-
cient system, especially for implementations with constrained computational
resources. OpenFHE uses Ring-LWE as its main security guarantee.

2.2 Fully Homomorphic Encryption (FHE) and FHE

Schemes

Fully Homomorphic Encryption (FHE), is an encryption scheme that allows
users to perform computations on encrypted data without decrypting it. Whilst
FHE was initially introduced in the 1970s, it was in 2009 that Craig Gentry

2.2. Fully Homomorphic Encryption (FHE) and FHE Schemes 7

[24] proved that FHE can be used in practise. Starting from a Somewhat Ho-
momorphic Encryption (SWHE) scheme, Gentry proved how it can be trans-
formed in a FHE scheme using the bootstrapping technique [8]. In SWHE
schemes one can evaluate a ciphertext in the form of a low-degree polyno-
mial until the noise increases up to a point that any further operation on the
ciphertext will make it undecryptable. In a FHE scheme, the ciphertext can
be a polynomial of any size and boostrapping is used as a noise maintenance
technique, to allow more computations on the encypted data.

Bootstrapping can be defined as a ciphertext refresh operation that reduces
the generated noise into levels that allow more operations to be performed
[66]. In schemes like CKKS, bootstrapping is performed in a periodic man-
ner [10] and is a memory and compute intensive operation. In schemes like
CGGI, bootstrapping is performed after each bit-wise operation. As boot-
strapping can be a bottleneck operation for FHE, a great part of the commu-
nity has focused in accelerating this high level function, and the main focus
usually is the intensive memory access required by the algorithm. Following
their existing work [10], the same research team recently proposed an FPGA
accelerator that supports bootstrapping [1] by optimizing the required mem-
ory access pattern.

Following Gentry’s work, multiple FHE schemes have been proposed in liter-
ature, the Brakerski-Gentry-Vaikuntanathan (BGV) [8], the Fan-Vercauteren
(FV) [7], the Cheon-Kim-Kim-Song (CKKS) [13] and the Chillotti - Gama -
Georgieva - Izabachene (CGGI) [14] schemes to name the most important.
Choosing the right FHE scheme for an application depends on both the ap-
plication (machine learning computations, encrypted queries in databases,
etc.) and the data type used in the application (integer numbers, floating
point numbers, etc.).

Grouping FHE schemes based on the supported data type, three classes of
schemes are formed [2]. The first include the BGV and BFV schemes and
support modular arithmetic over finite fields in the form of vectors of inte-
gers modulo a number. The second group include among others the CGGI
scheme and support boolean circuits. The third and most recent group is the
one that comprises of the CKKS scheme. In this scheme, vectors of real and
complex numbers are supported, enabling approximate computations. All
these groups, are based on the hardness of the RLWE problem [9], due to the
noise added during homomorphic operations, such as encryption and key
generation.

8 Chapter 2. Theoretical Background

Plaintexts in FHE depend on the scheme used and can have the form of vec-
tors of integers, vectors of real/complex numbers or boolean values. A pa-
rameter p, called the plaintext modulo, is also defined based on the worst
multiplication scenario of the dataset. This parameter is later used to define
the ciphertext modulo q, which is used internally in FHE operations. The
bigger the ciphertext modulo, the more operations can be performed on the
ciphertext without using bootstrapping. Ciphertexts are arrays of hundreds
or thousands of integers in all schemes that map to polynomial coefficients,
which means that plaintexts are encrypted into polynomials and the size of
the polynomials is a power of two, typically in the range [210, 217]. In FHE,
the basic mathematical structure used is a polynomial ring (denoted by Rq) of
dimension n = ϕ(m), where m is the index of the m− th cyclotomic polyno-
mial, ϕ is Euler’s totient function, and q is the coefficient modulus of the ring.
n,m, and q are all positive integers. One can view this ring as the set of poly-
nomials of degree less than n with integer coefficients in {−q/2, . . . , q/2}.
The nature of the ciphertexts pose a challenge for FHE on its own, due to
the fact that polynomial arithmetic can be expensive as the polynomial size
increases.

To tackle this challenge, multiple techniques are used. Regarding modular
arithmetic, efficient modular reduction algorithms such as Barrett reduction
[26] or Montgomery reduction [41] have been proposed. To accelerate the
main bottleneck, the polynomial multiplication, the Number Theoretic Trans-
form (NTT) [38] has been used. There is a great variety of NTT algorithm
optimizations in the literature [39], [32], [53], [51]. Using the NTT, the com-
plexity of polynomial multiplication is reduced from O(n2) to O(n log n).
To further accelerate the NTT and its efficiency, a Residue Number System
(RNS) representation is used on the initial polynomial [25]. This means, that
multiple polynomials with smaller coefficients are calculated and NTTs can
be performed in parallel. The set of RNS calculated polynomials represent
the original polynomial. The main advantage of this approach is that it can
bound arithmetic to be performed for example in 64 bits variables without
overflow, regardless of the initial coefficient bit requirements (that can be up
to multiple hundreds bits). All these approaches have been integrated in all
state-of-the-art software libraries available.

2.3. Modular Arithmetic 9

2.3 Modular Arithmetic

A key component of lattice-based cryptography and hence FHE, is the mod-
ular arithmetic operations. Among those modular arithmetic operations, the
modular multiplication is of specific interest. That is due to the fact that mul-
tiplication greatly increases the size of the result which often exceeds the tar-
get modulo, thus modular reduction will be applied more frequently during
multiplication compared to modular addition. In addition, the Number The-
oretic Transform (NTT), one of the main bottlenecks for FHE, utilizes modu-
lar multiplication to form its result. Consequently, modular reduction tech-
niques are of specific interest for FHE, the most important of which include
the Montgomery modular multiplication [43], the Barrett modular multipli-
cation [26] and a recently proposed algorithm from Plantard [48]. Plantard’s
publication also includes an overview of a variety of modular reduction al-
gorithms for unsigned arithmetic. Modular reduction algorithms for signed
arithmetic have also been proposed [4]. Below, we present Montgomery (al-
gorithm 1), Barrett (algorithm 2) and Plantard (algorithm 3) modular multi-
plication algorithms.

A common approach between these methods is using the fact that multiplica-
tions and divisions with powers of two are implemented using bit-shift oper-
ations in hardware. In addition, the mod operation can be viewed as a bit
masking operation that maintains only the target bits of a word. Regarding
Montgomery’s method, one of the most used algorithms for modular multi-
plication [48], its result is scaled by the factor 2−n. On the contrary, Barrett’s
method returns directly the correct result, but is slightly more expensive than
Montgomery multiplication in terms of computational resources.

Algorithm 1 Montgomery Modular Multiplication

Require: X, Y (0 < X, Y < q) as input values. q is an odd modulus (q < 2n).
R such that R = (−P−1) (mod 2n).

Ensure: Z = XY2−n (mod q), (0 ≤ Z ≤ q).
function MONTGOMERYMODMUL(X, Y, R, q, n)

Z ← (XY + q · (XYR (mod 2n)))/2n

if Z ≥ q then
Z ← Z− q

return Z

Plantard’s method is in fact a special case of the Montgomery modular mul-
tiplication [4], which operates on 2n-bit words and computes the multiplica-
tion result in a n-bit word, taking advantage of the property that 2n-bit word

10 Chapter 2. Theoretical Background

Algorithm 2 Barrett Modular Multiplication

Require: X, Y (0 < X, Y < q) as input values. q is a modulus. R such that
R = ⌊22n/q⌋.

Ensure: Z = XY (mod q), (0 ≤ Z ≤ q).
function BARRETTMODMUL(X, Y, R, q, n)

Z ← (XY− q · (((XY)/2n−1)R)/2n+1))
if Z ≥ 2q then

Z ← Z− 2q
else if Z ≥ q then

Z ← Z− q
return Z

multiplication can be viewed as a modular multiplication modulo 22n. In
Plantard modular multiplication, one less multiplication is performed com-
pared to Montgomery’s method.

Algorithm 3 Plantard Modular Multiplication

Require: X, Y (0 < X, Y < q) as input values. q is a modulus. R such that
R = q−1 (mod 22n).

Ensure: Z = XY(−2−2n) (mod q), (0 ≤ Z ≤ q).
function PLANTARDMODMUL(X, Y, R, q, n)

Z ← ⌊(q · (⌊XYR (mod 22n)/2n⌋+ 1)/2n⌋
if Z = q then

Z ← Z− q
return Z

2.4 Residue Number System (RNS)

When polynomial multiplication is studied, the Residue Number System
(RNS) representation is the starting point of any acceleration attempt. An
introduction to the properties of the RNS can be found at [22]. In the RNS
domain, a polynomial with coefficients modulo Q is decomposed into multi-
ple polynomials with coefficients modulo qi for i = 0, 1, 2, In other words,
the moduli qi are chosen so as Q = ∏(qi) for i = 0, 1, 2, The foundation
of the RNS system is the Chinese Remainder Theorem [45]. Operations such
as addition, subtraction and multiplication can be performed for every qi in
parallel, as:

[c1, c2, c3] = [(a1 ⊕ b1)modq1, (a2 ⊕ b2)modq2, (a3 ⊕ b3)modq3]

where ⊕ is one of the following operations [+,−, ∗].

2.5. Number Theoretic Transform (NTT) 11

Choosing the smaller moduli qi values is also important and depends on the
effective range of numbers that the initial modulo Q covers. A great effort has
been put in studying what are the best candidates for a moduli set selection.
[45] includes a summary of different moduli sets found in the literature up to
2011. While more recent works have been published, we do not focus more
on it, as choosing a moduli set was out of the scope of this thesis.

2.5 Number Theoretic Transform (NTT)

The Number Theoretic Transform (NTT) is a special case of the Discrete Fourier
Transform (DFT) over finite fields [49] and it is also used to efficiently com-
pute the polynomial multiplication between high degree polynomials [38].
That is due to the fact that using the NTT the complexity of polynomial
multiplication drops from O(n2) to O(n log n). A comprehensive review of
NTT and state-of-the-art optimizations can be found at [55]. Prior to ex-
plaining the NTT, we describe the polynomial multiplication over the rings
Zq[X], Zq[X]/(Xn− 1), Zq[X]/(Xn + 1) and then we will also define the prim-
itive n− th root of unity.

Let A(x) and B(x) be two polynomials of degree n− 1 in the ring Rq = Zq[X]:

A(x) = a0 + a1x + . . . + an−2xn−2 + an−1xn−1

B(x) = b0 + b1x + . . . + bn−2xn−2 + bn−1xn−1

The polynomial multiplication is defined as:

C(X) = A(X) · B(X) =
2n−2

∑
k=0

ckxk

where ck = ∑k
i=0 aibk−i (mod q) ∈ Zq[X]. Thus, polynomial multiplication

can also be viewed as the linear convolution between the coefficients of A(x)
and B(x). In addition to the linear convolution, the cyclic convolution and
the negacyclic convolution should also be defined.

For the cyclic convolution, consider that A(x) and B(x) are again two polyno-
mials of the same degree, but in the Rq = Zq[X]/(Xn − 1) ring. Then, the

12 Chapter 2. Theoretical Background

polynomial multiplication is defined as:

C(X) = A(X) · B(X) =
n−1

∑
k=0

ckxk

where ck = ∑k
i=0 aibk−i + ∑n−1

i=k+1 aibk+n−i (mod q) ∈ Zq[X]/(Xn − 1).

The negacyclic convolution for A(x) and B(x) is defined in the ring Rq =

Zq[X]/(Xn + 1) instead.

C(X) = A(X) · B(X) =
n−1

∑
k=0

ckxk

where ck = ∑k
i=0 aibk−i −∑n−1

i=k+1 aibk+n−i (mod q) ∈ Zq[X]/(Xn + 1).

To form the cyclic or the negacyclic convolution of C(x), where C(x) is the re-
sult of the linear convolution, one has to perform a modular reduction using
(xn − 1) or (xn + 1) respectively:

C(x)cyclic = C(x) mod (xn − 1)

C(x)negacyclic = C(x) mod (xn + 1)

Regarding the primitive n − th root of unity, we follow the definition pro-
vided by [55]. Note that a ring can have multiple primitive n − th roots of
unity.

Definition 2.1: Let Zq be an integer ring modulo q, and n− 1 the polynomial degree
of the aforementioned polynomials A(x) and B(x). Define ω as primitive n− th root
of unity in Zq if and only if:

ωn ≡ 1 (mod q)

and
ωk ̸≡ 1 (mod q)

for k < n.

For the forward cyclic NTT, let a(x) = a0 + a1x+ . . .+ an−2xn−2 + an−1xn−1 ∈
Zq[X]/(Xn − 1) be our polynomial of degree n− 1 and ω a primitive n− th
root of unity in Zq[X].

2.5. Number Theoretic Transform (NTT) 13

â = NTT(a) where âi =
n−1

∑
j=0

ajω
ij mod q for i = 0, 1, . . . , n− 1

The inverse cyclic NTT can be defined as:

a = INTT(â) where ai =
1
n

n−1

∑
j=0

âjω
−ij mod q for i = 0, 1, . . . , n− 1

The polynomial multiplication of A(x) and B(x) using the NTT is defined as:

C(x) = INTT(NTT(A(x)) · NTT(B(x))) ∈ Zq[X]/(Xn − 1)

where · represents the coefficient-wise multiplication between each coeffi-
cient of the initial polynomials. Note that the result of the cyclic transforms
is in Zq[X]/(Xn − 1), while FHE operates in Zq[X]/(Xn + 1), mentioned as
Rq in section 2.2. In order for the polynomial multiplication to produce a re-
sult in the Zq[X]/(Xn + 1) ring, a negacyclic NTT transform has to be used.

In the negacyclic NTT the primitive 2n− th root of unity in Zq must be de-
fined as:

ψ2n ≡ 1 (mod q)

The following property must also be true:

ψ2 ≡ ω (mod q)

To perform the negacyclic polynomial multiplication, one has to multiply
each coefficient of the initial polynomials A(x) and B(x) with a power of ψ.
Powers of ψ are also called twiddle factors. The modified polynomials are:

A′(x) = a0 + ψa1x + . . . + ψn−2an−2xn−2 + ψn−1an−1xn−1

B′(x) = b0 + ψb1x + . . . + ψn−2bn−2xn−2 + ψn−1bn−1xn−1

and the negacyclic polynomial multiplication is now computed as:

C(x) = (1, ψ−1, . . . , ψ−(n−1)) · INTT(NTT(A′(x)) · NTT(B′(x)))

14 Chapter 2. Theoretical Background

where C(x) ∈ Zq[X]/(Xn + 1) and · represents the coefficient-wise multipli-
cation between each coefficient of the polynomials and between the multi-
plied coefficients and the inverse powers of ψ. In other words, the negacyclic
forward NTT can be defined as:

Â = NTTψ(A) where âi =
n−1

∑
j=0

ajψ
iωij mod q for i = 0, 1, . . . , n− 1

and the inverse negacyclic NTT as:

A = INTTψ(Â) where ai =
1
n

n−1

∑
j=0

âjψ
−iω−ij mod q for i = 0, 1, . . . , n− 1

Following the naive approach, multiple optimizations have been proposed
in literature [39]. To avoid multiplying each input coefficient with the appro-
priate power of ψ and then performing the NTT, Roy et al. [53] proposed that
powers of ψ can be merged with the powers of ω as ψiωij = ψ2ij+i, using the
property ψ2 ≡ ω (mod q). The negacyclic NTT can now be defined as:

Â = NTTψ(A) where âi =
n−1

∑
j=0

ajψ
2ij+i mod q for i = 0, 1, . . . , n− 1

A similar optimization is available due to Pöppelmann et al. [51] for the
inverse negacyclic NTT, which can now be defined as:

A = INTTψ(Â) where ai =
1
n

n−1

∑
j=0

âjψ
−(2ij+i) mod q for i = 0, 1, . . . , n− 1

To further accelerate the NTT, a divide and conquer technique was proposed
by Cooley and Tukey [16] in 1965 and is called Cooley-Tukey (CT) butterfly
(figure 2.1) in literature. The turning point of their work was using the same
power of ψ in two calculations, thus reducing the number of calculations
in the entire NTT. Terms like (A− ψkB) and (A + ψkB) are calculated once
and used by other butterfly units as the transform progresses. Using the CT
butterfly is possible as long as n is a power of two for a n-point NTT.

2.5. Number Theoretic Transform (NTT) 15

FIGURE 2.1: Cooley-Tukey Butterfly.

A similar technique, mainly applied to the inverse NTT, was published by
Gentleman and Sande [23] in 1966 and is called Gentleman-Sande (GS) but-
tefly (figure 2.2) in literature.

FIGURE 2.2: Gentleman-Sande Butterfly.

Using many butterflies, one can form high-degree NTT and INTT transforms.
We refer the reader to figures 2.3 and 2.4, where a 8-point forward CT-based
NTT and a 8-point GS-based INTT are displayed. Note that both transforms
use the powers of ψ in the way proposed by Roy et al. [53] and Pöppelmann
et al. [51].

An important remark on the below figures is the order of the input and out-
put coefficients. One can notice that in the case of CT-based forward NTT the
input is in normal order, while the output’s order is mixed. On the contrary,
the GS-based inverse NTT has its input in mixed order and the output in nor-
mal order. In literature, researchers refer to this mixed order as bit-reversed
order [6] [55] [38]. The bit-reversed order applies to the index i used to access
each coefficient in the coefficient vector [a0, a1, . . . , an−1]. For an index i with
binary representation 0bi0i1 . . . ilog2(n) this process can be defined as:

BitReverse(0bi0i1 . . . ilog2(n)) = 0bilog2(n)ilog2(n)−1 . . . i1i0

For example, for the 8-point NTT transform (n = 8), index 0 in binary is 0b000
and in bit-reversed representation is 0b000 = 0d0, while index 1 in binary
representation is 0b001 and in bit-reversed representation is 0b100 = 0d4,
and so on.

16 Chapter 2. Theoretical Background

FIGURE 2.3: Forward 8-point NTT with Cooley-Tukey (CT) but-
terfly

FIGURE 2.4: Inverse 8-point NTT with Gentleman-Sande (GS)
butterfly

Combining the CT-based forward NTT and the GS-based inverse NTT, we
manage to avoid reordering the output coefficients, as the GS INTT restores
the bit-reversed ordered coefficients that the CT NTT produced [39]. We take
the Cooley-Tukey Radix-2 NTT transform and the Gentleman-Sande Radix-2

2.5. Number Theoretic Transform (NTT) 17

inverse transform from [39] and present it in algorithms 4 and 5. We mod-
ify the presentation of the algorithms slightly, so as to follow the conven-
tions used in OpenFHE library. Both of CT and GS-based NTT/INTTs can
be found in their reverse forms (from bit-reversed ordered input to normal
ordered output and normal ordered input to bit-reversed ordered output re-
spectively). However, we omit presenting them here, as both of these ver-
sions are out of the scope of this work.

Algorithm 4 In-Place Cooley-Tukey Forward NTT

Require: a = (a0, a1, ..., an−1) ∈ Zn
q in normal-ordering. n is a power of two.

q is a prime such that q ≡ 1 (mod 2n). ψrev ∈ Zn
q are the powers of ψ in

bit-reversed order.
Ensure: a← NTTψ(a) in bit-reversed order.

function COOLEYTUKEYRADIX2NTT(a, ψrev, n, q)
t← n≫ 1
logt1← log2(t)
for m = 1; m<n; m=2*m do

for i = 0; i<m; i++ do
j1← i≪ logt1
j2← j1 + t
indexOmega← m + i
omega← ψrev[indexOmega]
for indexLo = j1; indexLo<j2; ++indexLo do

indexHi← indexLo + t
X0 ← a[indexLo]
X1 ← a[indexHi]

▷ Cooley-Tukey Butterfly
a[indexLo]← X0 + omega · X1 (mod q)
a[indexHi]← X0 − omega · X1 (mod q)

t← t≫ 1
logt1← logt1− 1

return

Further optimizing the butterflies has also been studied. Harvey in his paper
[32] utilizes Shoup’s butterfly method used in NTL library [58] to optimize
the CT and GS butterflies. This technique uses precomputed values based
on the powers of ψ, so as to accelerate the modular multiplication used in
each butterfly and reduce the modular correction steps. Algorithm 6 below
presents the optimized CT butterfly. Note that in Harvey’s paper algorithm
6 is presented as the inverse butterfly, while in our case we use this version
for the forward transform. To efficiently use this approach, the powers of
ψ and the preconditioned powers of ψ should have been precomputed and
provided as input to the algorithm.

18 Chapter 2. Theoretical Background

Algorithm 5 In-Place Gentleman-Sande Inverse NTT

Require: a = (a0, a1, ..., an−1) ∈ Zn
q in bit-reversed ordering. n is a power of

two. q is a prime such that q ≡ 1 (mod 2n). ψ−1
rev ∈ Zn

q are the powers of
ψ−1 in bit-reversed order.

Ensure: a← INTTψ(a) in normal ordering.
function GENTLEMANSANDERADIX2INTT(a, ψ−1

rev , n, q)
t← 1
logt1← 1
for m = n; m>1; m=m/2 do

for i = 0; i<m; i++ do
j1← i≪ logt1
j2← j1 + t
indexOmega← m + i
omega← ψ−1

rev [indexOmega]
for indexLo = j1; indexLo<j2; ++indexLo do

indexHi← indexLo + t
X0 ← a[indexLo]
X1 ← a[indexHi]

▷ Gentleman-Sande Butterfly
a[indexLo]← X0 + X1 (mod q)
a[indexHi]← (X0 − X1) · omega (mod q)

t← t≪ 1
logt1← logt1 + 1

for i = 0; i<n; i++ do
a[i]← ai · n−1 (mod q)

return

Algorithm 6 Harvey/Shoup Cooley-Tukey Butterfly

Require: X, Y (0 < X, Y < 4 ∗ q) as input values and q as modulus.
A root of unity W such that 0 < W < q and W ′ = ⌊Wβ/q⌋, (0 < W ′ < β),
where β is the processor word bit-size (e.g. β = 64 for 64-bit word-size).

Ensure: X′ = X + WY (mod q), Y′ = X−WY (mod q), (0 ≤ X′, Y′ ≤ 4q).
function HARVEYCTBUTTERFLY(X, Y, W, W ′, q)

if X ≥ 2q then
X ← X− 2q

Q← ⌊W ′Y/β⌋
T ←WY−Qq (mod β)
X′ ← X + T
Y′ ← X− T + 2q

return X’,Y’

2.6. OpenFHE Open-source Library 19

2.6 OpenFHE Open-source Library

Moving from the theoretical investigation of FHE to the practical one, there
is a great variety of software libraries implementing FHE schemes. These
libraries provide high-level abstractions and APIs for working with FHE
schemes, making it easier for developers to integrate FHE into their appli-
cations. Among all available libraries, we choose to work with OpenFHE [2],
a C++ open-source library implementing all major FHE schemes (BGV, BFV,
CKKS, CGGI and more). OpenFHE follows the design of the PALISADE li-
brary [50], merged with selected capabilities of HElib [31], HEAAN [11] and
FHEW [18]. The latest stable version release is 1.0.4.

OpenFHE also complies with the Homomorphic Encryption post-quantum
security standards available in [33] and currently supports only RNS variants
of each scheme. OpenFHE is also the first FHE library that supports OpenMP
multithreading. The main advantage of these libraries is the fact that by pro-
viding a non-scheme-specific API, the user does not need to understand the
implementation of the internal low level functions, neither worry for their
performance.

When using OpenFHE, the user should choose the plaintext modulo P for the
input data of the FHE application. The encrypted data operate on a different
modulus Q which is larger than the modulus P. The plaintext modulus P
and the ciphertext modulus Q serve different purposes in the homomorphic
encryption scheme. In more details:

• Plaintext Modulus (P): The plaintext modulus P is a parameter that de-
termines the range of values that can be encrypted and operated on in
the plaintext space. It defines the maximum value that can be repre-
sented in the plaintext domain. Any plaintext value to be encrypted
must be smaller than the plaintext modulus P. The choice of P depends
on the application requirements and the desired precision or granular-
ity of computations.

• Ciphertext Modulus (Q): The ciphertext modulus Q is a parameter that
defines the size of the ciphertext space and affects the security level and
noise growth during homomorphic operations. It determines the max-
imum value of the encrypted ciphertexts. The choice of Q is typically
larger than the plaintext modulus P to accommodate the intermediate
results and noise introduced during homomorphic operations.

20 Chapter 2. Theoretical Background

When performing homomorphic computations, the ciphertexts are manip-
ulated using homomorphic operations (e.g., addition, multiplication) with-
out decrypting them. The operations are performed on the encrypted data,
preserving the confidentiality of the underlying plaintext. During the ho-
momorphic operations, the ciphertext modulus Q is critical as it affects the
noise growth. As the homomorphic operations are executed, the noise in the
ciphertext accumulates, potentially leading to decryption errors or reduced
security. Hence, choosing an appropriate ciphertext modulus Q is important
to balance security and efficiency. In summary, the plaintext modulus P de-
termines the maximum value that can be encrypted in the plaintext space,
while the ciphertext modulus Q affects the security level and noise growth
during homomorphic operations in the encrypted ciphertext space.

A high-level view of the steps one needs to follow so as to use OpenFHE’s
API in the target application is:

1. Select FHE parameters (plaintext modulo, etc.)

2. Generate public-private key pair

3. Encode plaintext data

4. Encrypt

5. Perform computations

6. Decrypt (optional)

7. Decode (optional)

Another advantage of OpenFHE is the very active community of researchers
working on it. A forum is available and users can submit questions and dis-
cuss on FHE related topics, facilitating further someone’s introduction to the
library. OpenFHE also includes all performance optimization features men-
tioned in previous sections, such as the modular reduction techniques, the
RNS system and the NTT. Regarding the modular reduction, the library inter-
nally implements the Barrett and Montgomery reduction, which are mainly
used in modular multiplication operations.

In section 2.2, the basic mathematical structure of FHE was presented, the
polynomial quotient ring Rq of dimension n = ϕ(m), where m is the index
of the m − th cyclotomic polynomial, ϕ is Euler’s totient function, and Q
or q is the coefficient modulus of the ring. OpenFHE uses a specific quo-
tient ring that is defined as Rq = Zq[X]/(Xn + 1). This ring can be also

2.6. OpenFHE Open-source Library 21

viewed as the set of polynomials of degree less than n with integer coeffi-
cients in {−q/2, . . . , q/2}. OpenFHE defines three data representation types:
Poly, NativePoly and DCRTPoly. Based on the definitions provided in the
OpenFHE documentation:

• A Poly is a single-CRT representation using big integer types (e.g. 128
bit) as coefficients, and supporting a large modulus q.

• A NativePoly is a single-CRT representation using native integer types,
which limits the size of the coefficients and the modulus q to 64 bits.

• A DCRTPoly is a double-CRT representation.

This means that while Poly uses a single large modulus q, DCRTPoly uses
a set of smaller moduli. Hence, computations with DCRTPoly data type is
much faster than with Poly data types, because DCRTPoly operations can fit
into the native bitwidths of commodity processors.

OpenFHE internally represents polynomial ring elements as being either in
COEFFICIENT or EVALUATION format. It is generally computationally less
expensive to carry on all operations in the evaluation form. Multiplication is
currently implemented only in the EVALUATION format. The coefficient
representation of a is a vector containing the coefficients in normal order:

a = [a0, a1, ..., aϕ(m)−1] ∈ Zq

By selecting m and q as two integers in a way that the ring Rq = Zq[X]/(Xn +

1) contains a primitive m − th root of unity (denoted by ω), we construct
vector b for the evaluation representation as:

b = [b0, b1, ...] ∈ Zq

where
bi = a(ωi) (mod q) for i ∈ Z∗q

As a note for all i we have the equality (a mod (X−ωi)) = a(ωi) = bi,
meaning that the evaluation representation of a is just a Chinese Remainder
Theorem-based polynomial representation [25].

In RLWE-based FHE schemes (BGV, BFV and CKKS), the coefficient modulus
q is a very large integer and can be a few hundred bits in size. That means we
would need to use multi-precision arithmetic to perform polynomial arith-
metic in Rq. Multi-precision arithmetic is known to be inefficient due to its

22 Chapter 2. Theoretical Background

serial nature. DCRT helps us convert these multi-precision arithmetic op-
erations into native arithmetic that uses processor-register-size operations.
DCRTPoly can be in both coefficient and evaluation format. Having a poly-
nomial in Rq, the procedure to create a DCRTPoly starts by decomposing the
modulo q as a product of (t + 1) small primes (p0, p1, ..., pt). The size of each
small prime is typically 32, 40, 50 and up to 60 bits. This allows us to factor
our polynomial into smaller polynomials using the Chinese Remainder The-
orem. The result is a matrix of dimensions (t + 1)× n where n is the ring size
or the polynomial degree. The coefficients of this matrix are native integers
and in coefficient format.

Having two polynomials, coefficient-wise modular addition or subtraction
can be performed directly in their coefficient representation as:

Cij = Aij ⊕ Bij (mod pi)

where ⊕ can be [+,−] and i = 0, 1, ..., t.

However, polynomial multiplication between two polynomials in Rq is cur-
rently supported only in evaluation format. Switching formats requires us-
ing the Number Theoretic Transform (NTT). NTT and Inverse NTT opera-
tions take O(n log n) time using current best known algorithms, where n is
the ring dimension. Applying the NTT transform into our (t + 1) × n ma-
trix, yields another matrix of dimension (t + 1) × n. The key-point here is
that the schoolbook polynomial multiplication can now be substituted by a
coefficient-wise modular multiplication:

Cij = Aij ∗ Bij (mod pi)

where i = 0, 1, ..., t.

We remind that addition and subtraction can also be computed in the eval-
uation format in the same way as in the coefficient format. The conversion
back from evaluation format to coefficient format may not always be needed,
and we can do further operations in the evaluation representation.

In OpenFHE, in-place and out-of-place Number Theoretic Transform vari-
ants are available. The library implements the negacyclic NTT transform in
order to perform transformations within the Rq = Zq[X]/(Xn + 1) ring. For
the forward NTT transform, the Cooley-Tukey radix-2 butterfly with normal-
ordered input and bit-reversed output is used. To avoid, reordering the

2.6. OpenFHE Open-source Library 23

output, the Gentleman-Sande radix-2 butterfly with bit-reversed input and
normal-ordered output is used for the inverse NTT. The library also precom-
putes the necessary roots-of-unity for each modulo qi and stores it, so as to
avoid re-computing the roots if the same modulo is used in the same applica-
tion run. This approach is also followed for the preconditioned roots of unity
factors that are used for Harvey’s efficient modular multiplication algorithm.

OpenFHE internally sets the necessary parameters. For the negacyclic Num-
ber Theoretic Transform (NTT), the library sets a modulo Q that is decom-
posed into a number of smaller moduli qi and a ring of a constant size.
Selecting Q and qi as prime numbers, the library ensures that the modular
arithmetic system satisfies certain desirable properties. Prime numbers have
the property that every non-zero element is invertible modulo Q, meaning
that there exists a unique multiplicative inverse for each non-zero element
in the ring. This property is crucial for performing division and inversion
operations in the polynomial quotient ring. The size of the ring, which is
usually a power of two and determined by the parameter Q, should be large
enough to accommodate the input data and to preserve the desired precision
in the transformed domain. This choice ensures that the polynomial remains
within the ring during the NTT computation.

Overall, OpenFHE is in the center of attention in the Fully Homomorphic
Encryption community, as it implements all available FHE schemes and in-
tegrates most of available optimizations both in the algorithmic level (e.g.
NTT optimizations) and in the software implementation level (e.g. deploy-
ing acceleration techniques such as multithreading). OpenFHE also includes
benchmarks for all important low-level and high-level functions, under the
benchmark folder of its source files. Researchers aiming to compare OpenFHE
performance with other existing libraries, using some reference benchmarks,
can you use the work of Gouert et al. [28] by modifying slightly the PAL-
ISADE’s benchmarks provided. Instructions of how to migrate a project from
PALISADE to OpenFHE are provided in OpenFHE’s documentation.

25

Chapter 3

Related Work

3.1 Accelerating FHE Schemes

While the usefulness of FHE schemes is undeniable and consolidated efforts
like the OpenFHE library are a step towards their wider adoption, there is
a significant barrier that hinders their practical use: their real-world perfor-
mance. When measuring the performance of FHE compute, a comparison is
typically made against equivalent computations on the plain text version of
the data. The encryption methods to enable FHE can increase the size of the
data by 100-1000x, and then compute on that data is 10000x to 1 million times
slower than conventional compute. To put this into perspective, one second
of compute on the raw data can take from 3 hours to 12 days.

As such, FHE scheme acceleration is a significantly active field of research
within the FHE community. Two main components are targeted: the com-
putational intensive polynomial operations and the highly time consuming
ciphertext maintenance operations. There is a plethora of accelerators de-
signed for different hardware platforms, such as CPUs, GPUs, FPGAs and
ASICs [54], [59], [61], [52], [1], [6], [35], [37], [17], [57]. A systematic compar-
ison of existing FHE accelerators is provided in [66], while an overview of
researched acceleration methods can be found in [27].

No matter the targeted platforms, accelerators are usually designed either
to accelerate high-level functions of a specific FHE scheme, such as key-
switching, modulus switching and bootstrapping [59], [61], [1], or optimize
low-level functions, common among different FHE schemes, such as the Num-
ber Theoretic Transform (NTT) and the polynomial multiplication [52], [6],
[35], [5], [42].

26 Chapter 3. Related Work

3.2 The FPGA Perspective

A Field Programmable Gate Array (FPGA) is an integrated circuit (IC) de-
signed to be configured after manufacturing. Similarly to an ASIC device, an
FPGA implements custom circuits that perform a specified logic functional-
ity. This is achieved by programming its logic elements and signal routing
instead of etching a circuit on a silicon substrate. As such, FPGAs cannot pro-
vide neither the performance nor the energy efficiency that can be achieved
with ASIC devices. But at the same time, due to its reconfiguration capabil-
ities, an FPGA can be vastly more flexible, adaptable and easier to deploy
and use post fabrication. Modern solutions that employ High Level Syn-
thesis design tools and standardized deployment environments (in SoCs or
PCIe-based accelerator boards) further lower the design and deployment dif-
ficulties for FPGA-based solutions.

Compared to software programmable devices such as CPUs or GPUs, a com-
pute function implemented in an FPGA is realised at a far lower level (logic
gate level) with significantly less overheads attributed to software elements.
This apparently means that performance and energy efficiency can be sig-
nificantly higher but programmability, ease of development and flexibility
are to a certain degree sacrificed. Therefore, an FPGA can be seen as a mid-
dle ground between general-purpose processors and application-specific cir-
cuits in terms of performance, energy efficiency and programmability. This
makes them ideal for accelerating compute functions that cannot be effec-
tively handled by CPUs or GPUs and at the same time they are not standard-
ised enough or fixed to the extend that an ASIC design cost may be justified.

This is the reason that the FHE research community has heavily relied on
using FPGA devices to explore acceleration opportunities in order to make
the FHE schemes significantly faster. For example, the Intel proposed HEXL
library [6], tries to take advantage of the AVX-512 Instruction Set to accelerate
the NTT and the polynomial multiplication on general purpose processors
(CPU). However, while it achieves high single core acceleration, when multi-
threading is enabled, the overall performance decreases mainly due to the
caused heat dissipation that forces the CPU to reduce its working frequency.

To overcome these limitations, Intel has also published a High Level Synthe-
sis (HLS) FPGA-based accelerator (Intel HEXL-FPGA [35]) that supports the
same functionality as Intel HEXL and is open-source. Their work supports
operations on polynomials of degree in range [210, 215]. The FPGA approach

3.2. The FPGA Perspective 27

improves another limitation of HEXL, the slow memory access, but the HLS
design does not manage to optimally utilize the FPGA resources. Microsoft
proposed HEAX [52] in 2020, a multi core FPGA-based architecture targeting
the NTT, the modular multiplication and the key-switching function through
different hardware modules. HEAX needs to be reconfigured to support dif-
ferent cryptographic parameters, such as different polynomial degree, how-
ever it outperforms Intel HEXL-FPGA. HEAT [59], another FPGA-based ac-
celerator, was designed to accelerate primitive operations of the BFV scheme
(e.g. addition, subtraction, multiplication, modulus switching, NTT). HEAT
operates on polynomials of degree up to 4096 (212), limiting its practical use.

The main disadvantage of many FPGA accelerators is the fact that the sup-
ported parameters are fixed and limited, leading to designs of limited gen-
erality. Dedicated architecture (ASIC) accelerators supporting different FHE
schemes have also been proposed (F1 [54] supporting polynomials of max-
imum degree 214, ARK [37] supporting polynomials of maximum degree
216). A common issue regarding ASIC approaches is the designs’ throughput.
FHE applications launched on ASICs will not always succeed in fully utiliz-
ing its available resources, leading to highly underutilized designs. While
it is obvious that accelerating low-level functions propagates to high-level
functions as well, accelerating directly the ciphertext maintenance operations
is crucial so as to make FHE practical. FAB [1] is a recently proposed FPGA
accelerator supporting bootstrapping and polynomials of degree up to 216.
FAB outperforms F1 ASIC-based design for a logistic regression application
but does not manage to reach the performance of ARK. ARK also targets
FHE high-level functions and deploys on-the-fly data generation to reduce
the size of the plaintexts used in bootstrapping.

Accelerating only the NTT is also common in the literature. Various accel-
erators have been proposed for different platforms, targeting different NTT
algorithm versions [40], [19], [5], [42], [44]. These works are the result of
many NTT proposed optimizations [39], [32], [53], [51] and they usually sup-
port a limited range of NTT parameters (e.g. polynomial degree, ciphertext
modulo bits, etc.). For example, the work of Mert et al. [40] includes design-
ing a NTT accelerator on a Xilinx Virtex-7 FPGA, using Verilog, High-Level
Synthesis (HLS) and a RISC-V ISA and compare the resuls of each design ap-
proach. The maximum supported polynomial degree is 212. Note that most
works implement a different NTT algorithm for the forward transform, indi-
cating the variety of NTT-related works in the literature. HLS designs for the

28 Chapter 3. Related Work

NTT have also been proposed, each focusing on optimizations based on the
supported NTT parameters and the available FPGA platform [40], [47], [36]
[46].

Recent works on Number Theoretic Transform (NTT) accelerators have also
focused on area efficient [19] and configurable designs [20]. As accelerating
the NTT is only one part of FHE acceleration attempts, area efficient and con-
figurable designs are essential in the case where someone attempts to accel-
erate more functions beyond the NTT. For example, supporting fast and effi-
cient NTTs of size 217 can utilize a significant amount of resources for some
designs in an FPGA. If more kernels are to be included, such as an inverse
NTT kernel or a key-switching kernel, area efficiency of the kernels design is
paramount. Overall, optimizing hardware designs for the NTT depends on
the use-case, the platform used and the experience of the designer with the
available technology and implementation methods.

3.3 Thesis Approach

According to the aforementioned, we believe that offloading computation-
ally intensive parts of the FHE computations on hardware accelerators im-
plemented in FPGA is a viable path towards increasing the performance of
FHE schemes. However, in order to ensure adoption and increase the im-
pact of these efforts, we need to ensure that compatibility with the de-facto
standard FHE library (OpenFHE) is maintained, while ease of use and de-
ployment remains high without introducing any significant restrictions (e.g.
limited functionality, support only for specific data sizes, etc).

Therefore, in this work we aim to provide a hardware-based accelerator in-
tegrated into OpenFHE. We employ a Xilinx Alveo U50 available in our data
center and mainly focus on showing how a Xilinx Vitis IDE-developed ap-
plication can be integrated with OpenFHE. We are going to provide a func-
tional NTT implementation supporting various NTT sizes that can be tested
alongside OpenFHE with the goal that applications employing the vanilla
OpenFHE library can seamlessly employ its hardware-accelerated version as
well.

29

Chapter 4

Defining the Architecture

4.1 OpenFHE Library Profiling

Software profiling is the process of analyzing the runtime behavior of a soft-
ware application to gather information about its execution characteristics,
such as function calls, memory usage and execution time. Profiling helps de-
velopers identify performance bottlenecks, memory leaks, and areas of the
code that can be optimized for better efficiency. Profiling tools, like gperftools
(Google Performance Tools) [34], provide insights into how the program is
actually running, helping developers make informed decisions about code
optimization and resource allocation. We use gperftools as our main profil-
ing tool, in order to determine the computational bottlenecks of OpenFHE
library. gperftools is an open-source collection of profiling and performance
optimization tools developed by Google. It includes tools for CPU and heap
profiling, memory debugging, and code coverage analysis.

To configure OpenFHE for gperftools, one needs to add the below code lines
in the CMakeLists.txt included in the OpenFHE source directory.

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -lprofiler")

set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -lprofiler")

set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -lprofiler")

Following this step, the user needs to open a new terminal session in the
gperftools directory (∼/gperftools) and execute the below code lines:

export OMP_NUM_THREADS=1

LD_PRELOAD=/usr/local/lib/libprofiler.so CPUPROFILE=test.prof \

/home/user/openfhe_folder/build_folder/example

google-pprof --web \

/home/user/openfhe_folder/build_folder/example test.prof

30 Chapter 4. Defining the Architecture

Using the code above, the results will be displayed in a new web browser
session. Alternatives for different result format can be found at [30]. To en-
sure the best results, OpenFHE’s multithreading must be disabled by setting
the OMP_NUM_THREADS terminal environment variable to 1.

We use the above settings to get profiling results for the different schemes of
OpenFHE using the following files: example.cpp1 (C++ code developed dur-
ing the thesis, which includes the same dataset computations for BGV, BFV,
CKKS schemes), logistic_regression_ a16_int.cpp/ logistic_regression_a16_fp.cpp
(modified C++ code files compatible with OpenFHE out of T2 benchmarks
[28]), boolean.cpp/ boolean-ap.cpp (C++ code example included in OpenFHE),
simple- ckks- bootstrapping.cpp/ iterative- ckks- bootstrapping.cpp/ advanced-ckks-
bootstrapping.cpp (C++ code example included in OpenFHE).

We keep track of the most called functions and we identify the key opera-
tions of each scheme. Our results can be found in the figures 4.1 and 4.2.
Our profiling results are in line with those presented in Section 3.2 confirm-
ing the focus on accelerating functions such as the NTT. We focus on the
BFV, BGV and CKKS scheme results, to avoid memory bound problems of
TFHE/FHEW schemes, due to large key sizes and large intermediate data of
these schemes.

Based on figures 4.1 and 4.2, we notice that the majority of our code exam-
ples consume a significant amount of time at the SwitchFormat function, be-
cause of multiple function calls. Bootstrapping (EvalBootstrap function) and
multiplication (EvalMult function) are other bottleneck operations. How-
ever, EvalBootstrap is solely used for the CKKS scheme, while the EvalMult
high-level function consists of some SwitchFormat function calls. Having no
prior experience with Fully Homomorphic Encryption, we choose to work
with accelerating the SwitchFormat function, which breaks down to the for-
ward and the inverse Number Theoretic Transform (NTT). The NTT has been
identified as an FHE bottleneck operation multiple times in literature. For the
rest of this thesis, we focus on the forward NTT, however our work can be
modified to apply for the inverse NTT as well.

1example.cpp is provided in the private GitHub repository for this thesis (https://
github.com/parasecurity/FHE_FPGA/tree/main/OpenFHE_FPGA)

https://github.com/parasecurity/FHE_FPGA/tree/main/OpenFHE_FPGA
https://github.com/parasecurity/FHE_FPGA/tree/main/OpenFHE_FPGA

4.1. OpenFHE Library Profiling 31

FIGURE 4.1: Function execution time % out of C++ code total
execution time (1/2)

FIGURE 4.2: Function execution time % out of C++ code total
execution time (2/2)

To ensure that results are in the quotient ring Rq = Zq[X]/(Xn + 1), OpenFHE

32 Chapter 4. Defining the Architecture

SwitchFormat function calls an implementation of a negacyclic NTT (neg-
ative wrapped convolution (NWC) NTT) with a Cooley-Tukey butterfly for
the forward transform (coefficient to evaluation format) and with a Gentleman-
Sande butterfly for the inverse transform (evaluation to coefficient format).
Combining these two different NTT configurations, a bit-reordering proce-
dure is avoided, as the CT-NTT uses inputs in normal order and yields a bit-
reversed output, while GS-NTT uses inputs in bit-reversed order and yields
a normal-ordered output.

4.2 Acceleration Target

Following our profiling results, we define the acceleration target of this thesis
as the NTT function:

void NumberTheoreticTransformNat<VecType>::

ForwardTransformToBitReverseInPlace(const VecType& rootOfUnityTable,

const VecType& preconRootOfUnityTable,

VecType* element)

that can be found at the src/core/include/math/hal/transformnat-impl.h file
of the library source files [2]. OpenFHE computes once the necessary roots-
of-unity ψ and ψ−1 for each modulo qi used and stores it in the rootOfUni-
tyTable and rootOfUnityInverseTable variables respectively, to avoid recom-
puting it in case it is needed during the same application run. The library
also uses Harvey’s optimization and pre-computes some factors based on
each ψj of the rootOfUnityTable that corresponds to the same modulo qi and
stores it in the preconRootOfUnityTable. This is also done for the rootOfU-
nityInverseTable and the inverse NTT operation. The rootOfUnityTable and
preconRootOfUnityTable vectors include the precomputed roots of unity and
preconditioned roots of unity in bit-reversed order. The element vector is the
vector of coefficient to perform the forward NTT on. An overview is pro-
vided in algorithm 7. HarveyModMul function can be found at src/core/in-
clude/math/hal/ubintnat.h file and for an overview the reader is pointed to
algorithm 8.

To determine our target architecture, we had to compare existing NTT hard-
ware accelerators and the design choices that come with each one of them.
Table 4.1 demonstrates the supported parameters and the characteristics of
each studied accelerator. We focus on accelerators with publicly accessible
source codes in our study.

4.2. Acceleration Target 33

Algorithm 7 OpenFHE’s In-Place Forward CT-NTT

Require: a = (a0, a1, ..., an−1) ∈ Zn
q in normal-ordering. n is a power of

two usually in the range [210, 217]. q is a prime such that q ≡ 1 (mod 2n).
ψrev ∈ Zn

q are the powers of ψ in bit-reversed order and ψ
prec
rev ∈ Zn

q are the
preconditioned powers of ψ in bit-reversed order.

Ensure: a← NTT(a) in bit-reversed order.
function FORWARDTRANSFORMTOBITREVERSEINPLACE(a, ψrev, ψ

prec
rev)

t← n≫ 1
logt1← log2(t)
for m = 1; m<n; m=2*m do

for i = 0; i<m; i++ do
j1← i≪ logt1
j2← j1 + t
indexOmega← m + i
omega← ψrev[indexOmega]
precOmega← ψ

prec
rev [indexOmega]

for indexLo = j1; indexLo<j2; ++indexLo do
indexHi← indexLo + t
loVal← a[indexLo] ▷ X0
hiVal← a[indexHi] ▷ X1

omegaFactor = HARVEYMODMUL(hiVal, omega, precOmega, q)
▷ Harvey’s Modular Multiplication W*X1 mod q

hiVal← loVal + omegaFacTor ▷ X0 + (W*X1 mod q)

▷ Correction steps
if hiVal ≥ q then

hiVal← hiVal− q ▷ X0 + (W*X1 mod q) - q
if loVal < omegaFactor then

loVal← loVal + q ▷ X0 = X0 + q

loVal← loVal− omegaFacTor ▷ X0 - W*X1 mod q

▷ Cooley-Tukey Butterfly
a[indexLo]← hiVal ▷ X0 + W*X1 mod q
a[indexHi]← loVal ▷ X0 - W*X1 mod q

t← t≫ 1
logt1← logt1− 1

return

34 Chapter 4. Defining the Architecture

Algorithm 8 OpenFHE’s Harvey Modular Multiplication

Require: value1 and value2 as the operands to perform the modular multi-
plication on. mod is the modulus and a prime such that mod ≡ 1 (mod 2)n.
ψ

prec
rev ∈ Zmodn is a preconditioned power of ψ.

Ensure: value1 ∗ value2 (mod q).
function HARVEYMODMUL(value1, value2, ψ

prec
rev , mod)

q← HighWordOf(value1 ∗ ψ
prec
rev)

▷ e.g. keeping 64 high bits of a 128-bit value
yprime← value1 ∗ value2− q ∗mod
if yprime - mod ≥ 0 then

yprime← yprime - mod
return yprime

TABLE 4.1: A comparison of existing NTT accelerators with
OpenFHE supported parameters

Name Implemen-
tation

Max Mod.
Q (bits)

NTT supported
ring size (N)

Optimizations Notes

OpenFHE
[2]

C++ Native
word size
modulo q
(64 bits)
& small
moduli qi
up to 60
bits

All powers of
two

NWC (Inv)NTT, in-
cludes CT, GS, Harvey
butterflies, Barrett,
Montgomery reduc-
tion, etc.

-

Intel HEXL
[6]

AVX512 &
C++ API
(CPU)

62 210, 211, 212, 213,
214, 215, 216, 217

NWC (Inv)NTT, CT,
GS, Harvey butterflies,
Barrett reduction

Requires precomputa-
tion of twiddle factors
but avoids bit revers-
ing operations. In-
cludes dyadic multi-
plication functionality.

Intel
HEXL-
FPGA [35]

HLS &
C++ API
(Stratix 10
FPGA)

62 210, 211, 212, 213,
214, 215

NWC (Inv)NTT, CT,
GS, Harvey butterflies,
Barrett reduction

Requires precomputa-
tion of twiddle factors
but avoids bit revers-
ing operations. In-
cludes dyadic multi-
plication functionality.

Griffinfly
[29]

HLS (Var-
ium C1100
FPGA)

64 (const.
modulo
264− 232 +
1)

212, 224 Goldilocks NTT -

Suprana-
tional [44]

System
Verilog &
C++API
(Varium
C1100
FPGA)

64 (const.
modulo
264− 232 +
1)

212, 224 Goldilocks NTT, con-
stant geometry RAM
access pattern

Includes dynamic
twiddle factors gener-
ation and bit reverse
operations

Parametric
NTT [40]

Verilog/
HLS/
RISC-V
(Virtex 7
FPGA)

8-64 Up to 215 NWC (Inv)NTT, GS
butterfly, Montgomery
Modular Multiplica-
tion

Includes design-time
constant twiddle fac-
tors precomputed
based on input param-
eter

Following the aforementioned comparison, we investigated whether Open-
FHE uses the same parameters throughout an application run. The cipher-
text modulus Q = q0 · q1 . . . · qk, which is a product of multiple smaller

4.2. Acceleration Target 35

primes, might change depending on the scheme used, the specific choice
of some FHE-specific algorithms, and the FHE operations that the applica-
tion performs. Furthermore, there is an auxiliary ciphertext modulus P =

p0 · p1 . . . · pk that is used in certain algorithms, such as key switching. Once
all the moduli qi’s and pi’s are selected for a certain application, they will re-
main the same throughout the execution of the application. The ring dimen-
sion will also remain the same. If the application restarts, there is a slight
chance that the moduli qi’s and pi’s might change due to some introduced
randomness. However, the ring dimension is unlikely to change.

We remind that another NTT parameter requirement is that for each modu-
lus qi (or pi), NTT requires a 2N-th primitive root of unity modulo qi (or pi)
(also called ψ or twiddle factors), where N is the ring dimension. These pa-
rameters are fixed once generated, but they may change from one run of the
application to another. For a given application, in word-wise FHE schemes
such as BFV, BGV and CKKS, only fixed-size NTTs (e.g. 216 points NTT) will
be performed (based on the selected ring-size). In binary-wise FHE schemes
such as DM (also known as FHEW) and CGGI (also known as TFHE), both
implemented in OpenFHE, the application keeps switching between differ-
ent ring sizes internally.

We conclude that twiddle factors generation is out of the scope of our work,
as OpenFHE already includes functions generating these parameters. In ad-
dition, reordering the NTT output is also not required, as OpenFHE uses the
CT butterfly for the forward transform and the GS butterfly for the inverse
transform.

Table 4.2 contains the resource utilization of each work included in table 4.1,
if available. For the Parametric NTT, resource utilization results are available
from [40] and [20]. For Supranational, resource utilization results are avail-
able at their GitHub repository [44]. In the table, we list each work along
with its defined ring size, the target platform and the resource utilization.
We also provide percentages to denote the resource utilization of each work
out of the overall resources available on each platform.

36 Chapter 4. Defining the Architecture

TABLE 4.2: Target platforms and resource utilization of existing
NTT accelerators

Design Ring Device Resource utilization [% of overall device resources]
size LUT REG DSP BRAM URAM

Suprana-
tional [44]

212 Varium
C1100

327,707
[43.68%]

547,426
[35.15%]

2,880
[48.42%]

136
[11.23%]

64
[10.00%]

Parametric
NTT [40]

210 Virtex-7 17,188
[3.97%]

- 96
[2.66%]

48
[3.26%]

-

Parametric
NTT [40]

212 Virtex-7 99,384
[22.94%]

- 992
[27.55%]

176
[11.97%]

-

4.3 Target Architecture

To define the target architecture of this thesis, we use the results provided in
sections 4.1 and 4.2. We also take into consideration the functional require-
ments of OpenFHE. Our target architecture for our NTT accelerator can be
categorized as the OpenFHE requirements, the target NTT version and the
modular reduction algorithm, the input/output interface, the target platform
and the integration with OpenFHE. We start with OpenFHE requirements.

OpenFHE Requirements:

Input Data (from OpenFHE):

• Vector of power-of-two size in quotient ring size range [210, 218] contain-
ing polynomial coefficients of size up to 60bits (due to smaller moduli
decomposition of initial ciphertext modulus) – max data size = 218 * 60
bits = 15728640 bits = 1966080 bytes = 1,875 Mb

• Ciphertext modulus up to 60bits - max data size = 60 bits

• Powers of ψ/twiddle factors (same size with input vector – unique for
each smaller moduli qi and precomputed once) - max data size = 218 *
60 bits = 15728640 bits = 1966080 bytes = 1,875 Mb

• (optional – if Harvey’s optimization is used) Preconditioned powers of
ψ (same size with input vector – unique for each smaller moduli qi and
precomputed once) - max data size = 218 * 60 bits = 15728640 bits =
1966080 bytes = 1,875 Mb

• Total input size requirements: about 5,625Mb

Output Data (to OpenFHE):

https://docs.xilinx.com/v/u/en-US/ds1003-varium-c1100
https://docs.xilinx.com/v/u/en-US/ds1003-varium-c1100
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview
https://docs.xilinx.com/v/u/en-US/ds180_7Series_Overview

4.3. Target Architecture 37

• Vector of power-of-two size containing polynomial coefficients in NTT
domain – max data size = 218 * 60 bits = 15728640 bits = 1966080 bytes
= 1,875Mb

• Total output size requirements: about 1,875Mb

NTT Algorithm:

• Negative Wrapped Convolution (NWC)/Negacyclic Cooley-Tukey (CT)
Forward NTT

We choose to implement the Negative Wrapped Convolution (NWC) Num-
ber Theoretic Transform (NTT) to support the polynomial multiplication over
the quotient ring Zq[X]/(Xn + 1) and to be compatible with the NTT imple-
mentation of OpenFHE. Note that only fixed-size NTTs will be performed
for a given application (based on the selected ring-size). We can also use
Harvey’s optimization. In this case, we do not need an additional modular
reduction module. We remind the reader that the target NTT algorithm can
be found at algorithm 7.

Accelerator Input/Output Interface

Regarding the input and output interface between the accelerator and OpenFHE,
the requirements are listed below:

Input data format:

• Vector of power-of-two size in range [210, 218], containing polynomial
coefficients of size up to 60bits (due to smaller moduli decomposition
of the initial ciphertext modulus) - maximum data width: 2D Array of
max size [218 – 1 : 0][59 : 0]

• Ciphertext modulus up to 60bits - data width: 60 bits

• Powers of ψ/twiddle factors - data width: maximum data width: 2D
Array of max size [218 – 1 : 0][59 : 0]

• (optional - if Harvey’s optimization is used) Preconditioned powers of
ψ - maximum data width: 2D Array of max size [218 – 1 : 0][59 : 0]

Using the uint64_t data type for the above vectors, each vector requires 218 ∗
64 bits = 16777216 bits = 2097152 bytes = 2Mb. So, a total of 6Mb will be
needed in the worst case scenario, to store all necessary data on the FPGA.

Output data format:

38 Chapter 4. Defining the Architecture

• Vector of power-of-two size [210, 218] containing polynomial coefficients
in NTT domain – maximum data width: 2D Array of max size [218 – 1
: 0][59 : 0]

Again, using the uint64_t data type for this vector, 218 ∗ 64 bits = 16777216
bits = 2097152 bytes = 2Mb need to be transferred back from the FPGA at the
end of the transform.

Target Platform:

As already mentioned, our target FPGA platform is the Xilinx Alveo U50
FPGA. We refer the reader to table 5.1 for an overview of the available plat-
form resources.

OpenFHE Integration:

OpenFHE has been designed to allow integration of different hardware accel-
erators, such as GPUs, FPGAs and ASICs [2]. It uses a Hardware Abstraction
Layer (HAL) designed to allow acceleration of polynomial arithmetic oper-
ations. HAL introduces OpenFHE’s ability to instantiate multiple different
mathematical back-ends, allowing the user to choose the desired configura-
tion through a cmake option of the CMakeLists.txt file. The Number Theo-
retic Transform (NTT) is included in a layer supported by HAL and hence
one can replace or override an OpenFHE NTT function implementation, just
by creating a new back-end.

Intel HEXL [6] is the only officially integrated hardware accelerated back-end
with OpenFHE. OpenFHE provides a configurator to allow installation of In-
tel HEXL alongside the library. As already mentioned, Intel HEXL uses the
Intel Advanced Vector Extensions 512 (AVX512) instruction set to implement
the polynomial operations with word-sized primes on 64-bit Intel processors.
When the polynomial layer is accelerated, this propagates to higher FHE op-
erations within the library.

Still, we choose not to use HAL to integrate our design with OpenFHE. While
this may not be the optimal case, we follow this approach to reduce the de-
velopment time of our accelerator’s integration with the library and provide
an alternative for researchers focusing only at testing different acceleration
methods for OpenFHE, instead of focusing on the integration of their design
with the library.

More technical details about the integration of our work with the library are
provided in section 5.5.

39

Chapter 5

FPGA Implementation

5.1 Tools Used

5.1.1 Vitis IDE

Xilinx Vitis IDE (Integrated Development Environment) is a unified platform
for developing both software and hardware designs targeting Xilinx FPGAs
and SoCs (System-on-Chips). Vitis provides a high-level approach, where de-
velopers can use high-level programming languages, such as C/C++, to de-
sign hardware modules. Users can use a set of optimization options and di-
rectives, which the tool manages accordingly in order to create an optimized
hardware design. An overview of Vitis development flow can be found in
figure 5.1.

FIGURE 5.1: Xilinx Vitis Development Flow

40 Chapter 5. FPGA Implementation

For the purposes of this thesis, we used both Xilinx Vitis IDE 2020.1 and
Xilinx Vitis IDE 2022.2 versions.

5.1.2 High Level Synthesis (HLS)

Historically, the development of FPGA designs was a challenging process.
Engineers had to use low-level hardware design tools and a deep under-
standing of digital hardware design was required. To overcome this chal-
lenge, the engineering community introduced the High Level Synthesis (HLS)
approach. HLS is an automated design process that creates hardware designs
out of high-level descriptions using typical programming languages (such as
C or C++). The main benefit of using HLS is the faster development time of
hardware designs for both hardware and software engineers. The Vitis HLS
Development Flow is displayed in figure 5.2.

FIGURE 5.2: Xilinx Vitis HLS Development Flow

Vitis HLS is a high-level synthesis tool that translates C/C++ functions into
device logic using programmable logic (PL) elements and RAM/DSP blocks.
Vitis HLS synthesizes the C/C++ code into an RTL design and packages it as
a compiled object (.xo) file that can be imported into the Vitis environment.
There can be multiple functions targeted on the FPGA, each being a sepa-
rate kernel. Vitis HLS will synthesize these kernels one by one and generate
separate .xo files. Xilinx Vitis HLS documentation is available at [62], while
example code and tutorials are available at a dedicated GitHub repository
[63].

5.1. Tools Used 41

While HLS may not lead to the optimal hardware design, it minimizes devel-
opment time of hardware functions compared to using Hardware Descrip-
tion Languages, such as System Verilog. We choose to use HLS, to reduce
the development time of our accelerator, as the main objective of this the-
sis was first to establish our knowledge around FHE and alternative ways
of integrating OpenFHE with our design and then design a forward NTT
transform hardware kernel. In that way, we have created a baseline work for
future reference for researchers aiming to further accelerate OpenFHE library
using Xilinx tools and FPGAs.

5.1.3 Vitis pragmas and optimizations

Vitis HLS comes with a set of optimization directives, that the user needs
to use in order to instruct the compiler of how to handle specific parts of the
high-level code and produce an optimized hardware design. These optimiza-
tion directives are also called pragmas. Directives and Pragmas are two sides
of the same coin. They only differ in the way of usage. While directives are
specified in a configuration file, pragmas are specified in specific areas of the
high-level C/C++ source code. In this section, we introduce the directives
used in the context of this thesis in the form of HLS pragmas.

Array Partition:

The ARRAY_PARTITION pragma partitions an array into smaller arrays or
individual elements. This pragma is usually used to increase the amount of
read and write ports of a memory by assigning multiple small memories to a
variable instead of one large memory. It potentially improves the throughput
of the design under study. However, it requires more memory instances or
registers, which can also be a limitation depending on the target application.

Bind Storage:

The BIND_STORAGE pragma is used to assign a variable to a specific mem-
ory type in the RTL manually. If this pragma is not used, Vitis automatically
decides of what memory type should be used for a specific variable of the
source code. The user can decide about the memory ports for read or write
purposes, as well as for the implementation of the memory (BRAM, URAM,
SRL).

Interface:

42 Chapter 5. FPGA Implementation

The INTERFACE pragma specifies how RTL ports are created from the func-
tion description during interface synthesis. It can be only used on the top-
level function of the HLS code. The ports in the RTL implementation are
derived from the arguments of the top-level function and the corresponding
data types. It also defines the execution control protocol of the HLS code
(execute, idle, complete, ready, etc.)

Unroll:

The UNROLL pragma transforms the target loops by creating multiples copies
of the loop body. A loop can be partially unrolled using the factor argument.
This creates a number of loop body copies and reduces the loop iteration ac-
cordingly. By unrolling a loop, data access and throughput can be increased.
Loops remain rolled if the UNROLL pragma is not used.

Pipeline:

The PIPELINE pragma allows the concurrent execution of operations in a
function or a loop. A pipelined loop can drastically increase the hardware
performance, however appropriate code structuring should take place be-
fore using the pipeline pragma, so as to avoid data and memory dependency
issues.

More details about pragmas and HLS can be found at [62].

5.2 FPGA Platform

The target FPGA platform for the purposes of this thesis is the Xilinx Alveo
U50 Data Center Accelerator Card (figure 5.3) installed on a Dell server (kro-
nos.mhl.tuc.gr) of the Microprocessor and Hardware Laboratory (MHL) of
the Technical University of Crete (TUC). This Alveo data center card is PCI-
Express Gen3x16 compliant, designed to accelerate compute intensive appli-
cations such as machine learning, data analytics, and video processing. An
overview of its features can be found at table 5.1.

The Vitis IDE tool supports all Alveo card versions and requires the Xilinx
Runtime (XRT) library to be installed and enabled. XRT provides an API and
drivers for the host program to connect with the target FPGA platform and
handles transactions between the host program and hardware kernels. We
use the xilinx_u50_gen3x16_ xdma_201920_3 version of the Alveo U50 as our
platform configuration. Detailed documentation about the card, as well as

5.3. Design Space Exploration 43

the necessary files to setup the platform for the Vitis IDE 2022.2 environment
are accessible at [3].

FIGURE 5.3: Xilinx Alveo U50 Data Acceleration Card

TABLE 5.1: Available resources of Xilinx Alveo U50 FPGA

Name LUT REG DSP BRAM URAM HBM
Xilinx
Alveo
U50

872K 1.743K 5,952 1,344 (x36Kbit)=
47.3Mbit=
5.9Mbyte

640 (x288Kbit)=
180Mbit=
22.5Mbyte

8Gb (316
GB/s)

5.3 Design Space Exploration

We implemented an in-place forward NTT with the Cooley-Tukey butterfly
and Harvey’s modular multiplication optimization, equivalent to algorithm
7. We chose the in-place variant, so as to reduce the overall memory footprint.
As already mentioned, our accelerator is designed using High-Level Synthe-
sis (HLS). Our algorithm consists of log2(n) stages, where in each stage n/2
butterfly operations will be executed, n being a power of two. The inputs of
the algorithm consist of a vector of n coefficients, a vector of n precomputed
(by OpenFHE) roots of unity ψ, a vector of n precomputed (by OpenFHE)

44 Chapter 5. FPGA Implementation

preconditioned roots of unity ψ for Harvey’s optimization and the current
NTT size n.

As a starting point of our design, we created a new Vitis application project
and we adopted the code architecture of algorithm 4 proposed in [40] (algo-
rithm 9 below), an HLS-friendly iterative forward NTT algorithm that uses
the Gentleman-Sande butterfly and the Montgomery modular reduction al-
gorithm. In this version of the algorithm, the inner loop of the naive in-place
Gentleman Sande NTT (see algorithms 4 or 5 for similar code structure) is de-
composed into four loops to help the HLS compiler to synthesize an efficient
design. The original inner loop is now split into an index calculation loop, a
memory read loop, an operation loop and a memory write loop. Algorithm
9 deploys the array partition pragma for the vectors a and ω, the pipeline
pragma for the butterfly loop and the unroll pragma for the four inner loops.

We modify the code to implement the Cooley-Tukey butterfly and we use
the HLS implementation of Harvey’s optimization out of Intel HEXL-FPGA
source code [35]. The HLS ARRAY_PARTITION, the HLS PIPELINE and the
HLS UNROLL pragmas were also used, as in [40]. The pipeline directive is
used so as to pipeline the four small loops that substituted the initial inner
loop. Each of these small loops is also fully unrolled and are configured to
utilize 8 parallel butterfly units (NBU = 8). We confirm the findings of [36]
that a write-after-read (WAR) dependency between the memory read loop
and the memory write loop is not resolved by the Vitis tool and we modify
our code according to El-Kady et. al [36] and Cohen [15] works.

The key point of this modification is the observation made by Cohen [15],
that for each butterfly the two indices used, differ in their parity. The parity is
defined as one if the number of ones in the binary representation of the index
is odd and as zero if the number of ones is even. Hence by assigning the input
coefficient into two memories according to the index parity and by utilizing 2
parallel butterfly units (NBU = 2), we implement the CT-based NTT provided
in [36]. Note that that El-Kady et. al test their code for NTT of size n = 256 =

28, while Mert et. al [40] for NTT size up to n = 4096 = 212. Our approach
aims to support NTT size up to 218. Also note that contrary to our work, both
of [40] and [36], do not use the optimizations of Roy [53] for the powers of ψ,
neither Harvey’s optimization [32]. Using these optimizations means storing
more data on the FPGA, which increases the memory requirements of our
design.

5.3. Design Space Exploration 45

Algorithm 9 HLS-friendly NTT algorithm with GS-butterfly [40]

Require: a = (a0, a1, ..., an−1) ∈ Zn
q . n is a power of two. q is a prime such

that q ≡ 1 (mod 2n). ω ∈ Zn
q are the twiddle factors. NBU is the number

of butterfly units for parallel operation processing.
Ensure: a← NTT(a).

function NTT(a, ω, NBU, n)
t← n≫ 1
logt1← log2(t)
STAGE_LOOP:
for i = 0; i < logt1; i++ do

BUTTERFLY_LOOP:
for s=0; s<t; s=s+NBU do

IDX_CALC_LOOP:
for bu=0; bu<NBU; bu++ do

j[bu]← (s + bu)≫ (logt1− 1− i)
k[bu]← (s + bu)&((t≫ 1)− 1)
ie[bu]← j[bu] · (1≪ (logt1− i)) + k[bu]
io[bu]← ie[bu] · (1≪ (logt1− i− 1))
iw[bu]← (1≪ i) · k[bu]

MEM_READ_LOOP:
for bu=0; bu<NBU; bu++ do

U[bu]← a[ie[bu]]
V[bu]← a[io[bu]]
W[bu]← ω[iw[bu]]

OP_LOOP:
for bu=0; bu<NBU; bu++ do

E[bu]← (U[bu] + V[bu]) (mod q)
O[bu]← (U[bu]−V[bu]) ·W[bu] (mod q)

MEM_WRITE_LOOP:
for bu=0; bu<NBU; bu++ do

a[ie[bu]]← E[bu]
a[io[bu]]← O[bu]

return a

46 Chapter 5. FPGA Implementation

We also attempted to use the same pragma directives used in [36] with the
NBU set to 2 in our design for NTT sizes in the range [210, 218]. However,
when the design is synthesized, a memory dependency between the mem-
ory read loop and the memory write loop is encountered, despite the various
array partition settings tested. We observed that we cannot use complete ar-
ray partition (which would resolve the issue) for the coefficient array sizes
we operate on, as the complete array partition can be applied to arrays up
to 1024 elements [40]. The tool manages to resolve the dependency issue
but the working frequency of the accelerator is decreased. Hence using the
PIPELINE pragma reduces the achieved frequency of our accelerator. How-
ever, the overall performance is better when the design is pipelined.

Another design goal is to avoid off-chip memory accesses for the intermedi-
ate results. We use BRAM and URAM resources available on the Alveo U50
to avoid read and write operations on the global memory. The total memory
requirements for all NTTs in range [210, 218] can be met with the available
on-chip memory resources. Our design allocates the necessary memory re-
sources to handle a 218-point NTT and thus it can support any NTT size up
to 218 without FPGA reconfiguration. We use and test the BIND_STORAGE
pragma with different options to assign the coefficients, the rootOfUnityTable
and the preconRootOfUnityTable variables in available memory resources.
We remind the reader that based on the defined architecture of section 4.3,
for 218-point NTT, 6Mb of memory is required, which exceeds the 5.9Mb of
BRAM resources available on the Alveo U50, hence using URAM resources
is required. Using the BIND_ STORAGE pragma for all three aforemen-
tioned variables of our design resulted in better results compared to using
the BIND_ STORAGE pragma for the coefficients only and letting the tool
automatically assign the appropriate memory type for the other two vari-
ables.

Algorithm 10 is a high-level overview of our work. We explore various ver-
sions with different NBU parameter and pragmas selection in order to iden-
tify the optimal design. Table 5.2 includes the resource utilization results for
each tested case, while table 5.3 includes latency results for the different ver-
sions under study.

In table 5.3, the #CC column refers to the necessary clock cycles of a circuit
consisting of NBU butterflies to generate the result. The n-point NTT BL
column refers to the NBU parallel butterfly operations latency for each n-
point NTT measured in microseconds. To get these latency results, we use

5.3. Design Space Exploration 47

Algorithm 10 Implemented HLS-friendly CT-NTT

Require: coe f = (c0, c1, ..., cn−1) ∈ Zn
q . n is a power of two in the range

[210, 218]. q is a prime such that q ≡ 1 (mod 2n). ψrev ∈ Zn
q are the powers

of ψ in bit-reversed order and ψ
prec
rev ∈ Zn

q are the preconditioned powers of
ψ in bit-reversed order. NBU is the number of butterfly units for parallel
operation processing. Stages is the number of stages required to execute
the NTT.

Ensure: a← NTT(a).
function NTT(coe f , ψrev, ψ

prec
rev , q, n, stages)

t← n≫ 1
STAGES_LOOP:
for i = 0; i < stages; i++ do

BUTTERFLY_LOOP:
for s=0; s<t; s=s+NBU do

INDEX_CALC:
for bu=0; bu<NBU; bu++ do

j[bu]← (s + bu)≫ (stages− 1− i)
k[bu]← (s + bu)&((t≫ i)− 1)
indexLo[bu]← j[bu] · (1≪ (stages− i)) + k[bu]
indexHi[bu]← indexLo[bu] + (1≪ (stages− i− 1))
indexOmega[bu]← (1≪ i) + j[bu]
parity_arr[bu]← parity(indexLo[bu])
not_parity_arr[bu]← not(parity_arr[bu])

MEM_READ:
for bu=0; bu<NBU; bu++ do

omega[bu]← ψrev[indexOmega]
precOmega[bu]← ψ

prec
rev [indexOmega]

X0[bu]← coef[indexLo[bu]≫ 1][not_parity_arr[bu]] ▷ X0
X1[bu]← coef[indexHi[bu]≫ 1][parity_arr[bu]] ▷ X1

BUTTERFLY_OPERATION:
for bu=0; bu<NBU; bu++ do

▷ equivalent to X1·W - Q·q (mod β)
Q← ⌊X1[bu] · precOmega[bu]/β⌋
yprime← X1[bu] · omega[bu]−Q · q
hiVal[bu]← X0[bu] + yprime ▷ X0 + (W·X1 mod q)
loVal[bu]← X0[bu]− yprime ▷ X0 - (W·X1 mod q)

MEM_WRITE:
for bu=0; bu<NBU; bu++ do

coef[indexLo[bu]≫ 1][not_parity_arr[bu]]← hiVal[bu]
coef[indexHi[bu]≫ 1][parity_arr[bu]]← loVal[bu]

return

48 Chapter 5. FPGA Implementation

TABLE 5.2: Design Space Exploration Resource Utilization Re-
sults

NBU Pragmas Resource Utilization Results
Array Partition Bind Storage Pipeline LUT REG DSP BRAM URAM

8
coefficients = 64

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = auto

precOmega = auto
No 19002

[2.17%]
17007
[0.9%]

284
[4.7%]

1028
[88.1%]

64
[10%]

8
coefficients = 64

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 19002

[2.17%]
17007
[0.9%]

284
[4.7%]

1028
[88.1%]

64
[10%]

16
coefficients = 32

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
Yes 32611

[4.25%]
27600
[1.71%]

594
[9.98%]

4
[0.34%]

192
[30.1%]

16
coefficients = 64

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 29835

[3.89%]
28618
[1.78%]

594
[9.98%]

1028
[88.1%]

64
[10%]

16
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
Yes 32611

[4.25%]
27600
[1.71%]

594
[9.98%]

4
[0.34%]

192
[30.1%]

16
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
No 32254

[4.25%]
27371
[1.71%]

588
[9.88%]

4
[0.34%]

192
[30.1%]

32
coefficients = 64

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 49311

[6.43%]
48343
[3%]

1170
[19.7%]

1028
[88.1%]

64
[10%]

32
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 49311

[6.43%]
48343
[3%]

1170
[19.7%]

1028
[88.1%]

64
[10%]

32
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
Yes 52556

[6.81%]
47393
[2.9%]

1170
[19.7%]

4
[0.34%]

192
[30.1%]

64
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 90978

[10.4%]
87367
[5%]

2322
[39%]

1028
[88.1%]

64
[10%]

the following formula:

BL = #CC · times · clock_period = NBU · times · 1
F

,

where times is the number of times the NBU butterfly units should be used to
complete a n-point NTT. For ease of reading, we present BL results for 4096,
8192 and 16384-point NTTs only.

We choose the optimal design based on the minimum BL value of table 5.3
and we summarize the results in the tables 5.4 and 5.5.

5.4. NTT Accelerator Design 49

TABLE 5.3: Design Space Exploration Latency Results

NBU Pragmas Latency Results
Array Partition Bind Storage Pipeline F (MHz) #CC n-point NTT BL (µs)

8
coefficients = 64

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = auto

precOmega = auto
No 172.9 33

n=4096: 586
n=8192: 1270

n=16384: 2736

8
coefficients = 64

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 164.1 33

n=4096: 617
n=8192: 1338

n=16384: 2882

16
coefficients = 32

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
Yes 161.5 36

n=4096: 342
n=8192: 741

n=16384: 1597

16
coefficients = 64

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 155.1 36

n=4096: 356
n=8192: 772

n=16384: 1663

16
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
Yes 173.7 36

n=4096: 318
n=8192: 689

n=16384: 1485

16
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
No 183.2 65

n=4096: 544
n=8192: 1180

n=16384: 2543

32
coefficients = 64

omega = 32
precOmega = 32

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 136.1 68

n=4096: 383
n=8192: 831

n=16384: 1790

32
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 136.1 68

n=4096: 383
n=8192: 831

n=16384: 1790

32
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
Yes 135.3 68

n=4096: 385
n=8192: 836

n=16384: 1801

64
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = auto

precOmega = auto
Yes 121.9 132

n=4096: 415
n=8192: 900

n=16384: 1940

TABLE 5.4: Target Design Resource Utilization Results

NBU Pragmas Resource Utilization Results
Array Partition Bind Storage Pipeline LUT REG DSP BRAM URAM

16
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
Yes 32611

[4.25%]
27600
[1.71%]

594
[9.98%]

4
[0.34%]

192
[30.1%]

TABLE 5.5: Target Design Latency Results

NBU Pragmas Latency Results
Array Partition Bind Storage Pipeline F (MHz) #CC n-point NTT BL (µs)

16
coefficients = 64

omega = 64
precOmega = 64

coefficients = URAM T2P
omega = URAM T2P

precOmega = URAM T2P
Yes 173.7 36

n=4096: 318
n=8192: 689

n=16384: 1485

5.4 NTT Accelerator Design

We split our design in two parts, the host code, which sets up the FPGA
and provides an API for the integration with OpenFHE, and the kernel code,
which includes the Number Theoretic Transform implementation in HLS. All
relevant project files can be found in the thesis private GitHub repository1.

1https://github.com/parasecurity/FHE_FPGA/tree/main/OpenFHE_FPGA

https://github.com/parasecurity/FHE_FPGA/tree/main/OpenFHE_FPGA

50 Chapter 5. FPGA Implementation

5.4.1 Host Code Design

The host code in Vitis IDE is written in C++ language using the OpenCL API
[64]. The Xilinx Runtime (XRT) API [65] can also be used. We split the host
code into two files, the ntt.hpp file, that contains the function headers, etc.
and the ntt.cpp file that contains the API implementation. The provided NTT
API is:

/// @brief

/// @function NTT

/// Calls the Number Theorectic Transform.

/// @param[in/out] coeff_poly vector of polynomial coefficients

/// @param[in] root_of_unity_powers vector of twiddle factors

/// @param[in] precon_root_of_unity_power vector of twiddle

/// factors for the constant (Harvey’s optimization)

/// @param[in] coeff_modulus stores the coefficient modulus

/// @param[in] n stores the polynomial size

///

void alveo_accelerator::NTT(uint64_t* coeff_poly,

const uint64_t* root_of_unity_powers,

const uint64_t* precon_root_of_unity_powers,

uint64_t coeff_modulus,

uint64_t n);

OpenFHE redefines the data types that are used in the library, so as to cre-
ate a data type configurability and abstraction. Data compatibility between
OpenFHE and C++ native data types can be ensured using the reinterpret_cast
C++ function. The NTT function can optionally contain data correctness tests
for the data movement between OpenFHE and the accelerator, to ensure that
OpenFHE data are type casted correctly and are compatible with the acceler-
ator’s data types.

OpenCL specific variables like cl::Context, cl::CommandQueue, cl::Kernel,
cl::Program and cl::Platform need to be initialized accordingly. The user is
provided with the program_device function that is used to initialize the
aforementioned variables and to program the Alveo U50 device with the bi-
nary file (xclbin file) containing the NTT design, generated by Vitis. This
function should be called at the beginning of an OpenFHE application, prior
to any setup and initialization step.

/// @brief

/// @function program_device

5.4. NTT Accelerator Design 51

/// Programs the target FPGA using the internally defined binary (xclbin) file.

/// The function also contains the binary file path (xclbin file) used to

/// program the Alveo U50 device.

///

void alveo_accelerator::program_device();

The program_device function will traverse all available platforms to find the
target Xilinx platform. Once the platform is found, the code will create a
program using the binary file (xclbin file) and it will load it into the platform.
The cl::Context and the cl::CommandQueue variables are used to control the
hardware kernels. Next, inside the NTT function, we assign the input data
from OpenFHE into cl::Buffer variables and we enqueue the buffers, so as
the data can be migrated into the kernel space. Once the data have been
migrated, the kernel is launched using the enqueueTask command. When
the kernel execution has been completed, the output data need to be migrated
back from the kernel space to the host code and OpenFHE space.

5.4.2 Kernel Code Design

The kernel code in Vitis IDE is written in HLS and implements an in-place
forward NTT with the Cooley-Tukey butterfly and Harvey’s modular mul-
tiplication optimization, equivalent to algorithm 7. The in-place variant was
chosen to reduce the overall memory footprint. As already mentioned, algo-
rithm 10 is the high-level overview of our work. We remind that our im-
plementation consists of log2(n) stages, where in each stage, n/2 butterfly
operations will be executed, where n is a power of two. The inputs of the
algorithm consists of a vector of n coefficients, a vector of n precomputed (by
OpenFHE) roots of unity ψ, a vector of n precomputed (by OpenFHE) pre-
conditioned roots of unity ψ for Harvey’s optimization and the current NTT
size n.

Based on the design space exploration results presented in section 5.3, we set
the number of paraller butterfly units (NBU) to 16. We choose to implement
a pipelined NTT, as using the PIPELINE pragma improves the accelerator’s
performance. To avoid off-chip memory accesses for the intermidiate resutls,
we use the BIND_STORAGE pragma, to assign the coefficients, the rootO-
fUnityTable and the preconRootOfUnityTable variables in URAM memories
only.

To move the data between the FPGA and the host code, we use the INTER-
FACE pragma with m_axi and s_axilite modes in the top-level function of

52 Chapter 5. FPGA Implementation

the kernel, based on available Xilinx documentation and tutorials. We have
ensured that our design can fit in the FPGA and is functional and OpenFHE-
equivalent for all supported NTT sizes. The hardware generated for the
BUTTERFLY_LOOP of our algorithm (algorithm 10) will be used as many
times required to execute the n-point NTT, leading to a universal NTT de-
sign which supports the desired n-point NTTs defined in our architecture.

Table 5.6 includes all HLS pragmas used in our design. After multiple syn-
thesis attempts, we find that using the specific HLS pragmas, when the num-
ber of parallel butterfly units (NBU) is set to 16, is the best option in order to
support all NTT sizes in range [210, 218]. In section 5.3, we tested our design
for NBU set to 32 and 64, however the working frequency of the device was
decreased, while the number of clock cycles for the defined butterfly units
increased, resulting in a slower design. Setting the NBU to 16 outperforms
a design with NBU set to 8 as well, as the NBU=16 design achieves higher
working frequency and higher operation parallelism.

TABLE 5.6: Deployed HLS Pragmas in algorithm 10

Code HLS Pragma
j, k, indexLo, indexHi, indexOmega array_partition complete
parity_arr, not_parity_arr array_partition complete
omega, precOmega, X0, X1 array_partition complete
loVal, hiVal array_partition complete
coef, omega, precOmega array_partition block factor 64
coef, omega, precOmega bind_storage ram_t2p uram
BUTTERFLY_LOOP pipeline
INDEX_CALC unroll
MEM_READ, MEM_WRITE unroll
BUTTERFLY_OPERATION unroll

5.5 Integration with OpenFHE

This section introduces a new integration approach of Xilinx FPGA-based
accelerated back-ends with the OpenFHE library. Our proposed integration
method has been tested with Xilinx FPGAs and hardware designs generated
using the Xilinx Vitis IDE 2020.1 or 2022.2 platforms and consists of two steps.
In the first step, we need to create a dynamic library (.so) using the Vitis en-
vironment. This library will contain our hardware implementation. Hav-
ing generated and configured the library, we need to include this design in
OpenFHE. These two steps are further explained below.

5.5. Integration with OpenFHE 53

5.5.1 Generating an .so file using Xilinx Vitis IDE

In order to generate an .so file out of a Vitis application project, one needs to
modify the Vitis compiler default settings. In particular, one needs to add the
-fPIC flag to the CXXFLAGS and the -shared, -Wl,-soname= libalveontt.so.1
-o libalveontt.so.1.0 flags in the LDFLAGS of the makefile for all build con-
figurations (Emulation-SW, Emulation-HW, Hardware). Building now the
project generates the libalveontt.so.1.0 file. The CXXFLAGS and the LD-
FLAGS of the Vitis generated makefile should look like:

CXXFLAGS += -std=c++1y -DVITIS_PLATFORM=$(VITIS_PLATFORM) -D__USE_XOPEN2K8

-I$(XILINX_XRT)/include/

-I/tools/Xilinx/Vitis_HLS/2022.2/include/ -O0 -g -Wall -c

-fmessage-length=0 –fPIC

LDFLAGS += -luuid -lxrt_coreutil -lxilinxopencl -lpthread -lrt -lstdc++

-L$(XILINX_XRT)/lib/ -shared

-Wl,-soname= libalveontt.so.1 -o libalveontt.so.1.0

-Wl,-rpath-link,$(XILINX_XRT)/lib

Navigate into the active build configuration folder (Emulation-SW, Emulation-
HW, Hardware) of the project, open a new terminal session and execute the
following code lines:

sudo mv libalveontt.so.1.0 /usr/local/lib

sudo ln -sf /usr/local/lib/libalveontt.so.1.0 /usr/local/lib/libalveontt.so.1

sudo ln -sf /usr/local/lib/libalveontt.so.1.0 /usr/local/lib/libalveontt.so

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib

The path /usr/local/lib should be added to the /etc/ld.so.conf file. This can
be done by creating or opening the file, if already created, and adding the
/usr/local/lib in a line. The file can be created or opened using the vim text
editor with the below command:

sudo vim /etc/ld.so.conf

The final step is executing the ldconfig command in the terminal:

sudo ldconfig

When the above procedure is done once, most of the steps can be omitted
when configuring a newer version of the .so file generated in Vitis. In this
case, the user should only execute the below code lines in a terminal ses-
sion at the active build configuration folder (Emulation-SW, Emulation-HW,
Hardware) of the project, once the .so file is generated:

54 Chapter 5. FPGA Implementation

sudo mv libalveontt.so.1.0 /usr/local/lib

sudo ldconfig

A useful tutorial about dynamic libraries can be found at [60].

5.5.2 Configuring OpenFHE

To configure OpenFHE for using the libalveontt.so, we modify the src/core/C-
MakeLists.txt file of the library, by adding the following code lines:

if(BUILD_STATIC)

add_library(alveontt STATIC IMPORTED GLOBAL)

set_target_properties(alveontt PROPERTIES IMPORTED_LOCATION \

"/usr/local/lib/libalveontt.so")

endif()

if(BUILD_SHARED)

add_library(alveontt SHARED IMPORTED GLOBAL)

set_target_properties(alveontt PROPERTIES IMPORTED_LOCATION \

"/usr/local/lib/libalveontt.so")

endif()

and we modify the below code lines from:

if(BUILD_SHARED)

set (CORELIBS PUBLIC OPENFHEcore ${THIRDPARTYLIBS} ${OpenMP_CXX_FLAGS})

target_link_libraries (OPENFHEcore ${THIRDPARTYLIBS} ${OpenMP_CXX_FLAGS})

add_dependencies(allcore OPENFHEcore)

endif()

into:

if(BUILD_SHARED)

set (CORELIBS PUBLIC OPENFHEcore ${THIRDPARTYLIBS} ${OpenMP_CXX_FLAGS})

target_link_libraries (OPENFHEcore ${THIRDPARTYLIBS} ${OpenMP_CXX_FLAGS})

add_dependencies(allcore OPENFHEcore)

find_package(OpenCL REQUIRED)

target_link_libraries(OPENFHEcore OpenCL::OpenCL)

target_link_libraries(OPENFHEcore alveontt)

endif()

As already mentioned, the target NTT algorithm is located in the src/core/
include/math/hal/intnat/transformnat-impl.h OpenFHE file. Appendix A
includes the updated code in the file. Note that only the modified parts of

5.5. Integration with OpenFHE 55

the code are included. The ntt.hpp file is included in the OpenFHE code by
using the #include directive. For the original file, the reader is referred to the
OpenFHE source files.

Now that the updated file is in place, open a new terminal session in the
OpenFHE directory and execute the below code lines:

export LIBRARY_PATH=/usr/lib/x86_64-linux-gnu

source /tools/Xilinx/Vitis/2022.2/settings64.sh

source /opt/xilinx/xrt/setup.sh

export PLATFORM_REPO_PATHS=/opt/xilinx/platforms

export OMP_NUM_THREADS=1

The last command disables the multithreading functionality of OpenFHE.
The library includes some examples in the bin/examples/ folder, once the li-
brary has been built. In the folder where the executables are located the be-
low command must be executed in the terminal session.

emconfigutil --platform xilinx_u50_gen3x16_xdma_201920_3

To test that the configuration of the library is successful, suppose we want to
execute the bin/examples/pke/simple-ckks-bootstrapping example. To do
so, ensure that the emconfigutil command has been executed for the bin/ex-
amples/pke/ folder or execute it as:

cd bin/examples/pke

emconfigutil --platform xilinx_u50_gen3x16_xdma_201920_3

cd ../../../

If the example is to be executed in either the Software Emulation mode or the
Hardware Emulation mode, one must execute:

export XCL_EMULATION_MODE=sw_emu

or

export XCL_EMULATION_MODE=hw_emu

If the example is to be executed directly on the FPGA and one of the above
commands has been executed once, the XCL_EMULATION_ MODE variable
should be unset with the below command:

unset XCL_EMULATION_MODE

The example can be executed in the terminal session by typing:

./bin/examples/pke/simple-ckks-bootstrapping

57

Chapter 6

Results

In this chapter, we describe the performance, the resource utilization and the
power consumption of our proposed accelerator deployed on a Xilinx Alveo
U50 FPGA. Our design was synthesized and implemented using the Xilinx
Vitis IDE 2020.1 tool with the xilinx_u50_gen3x16_xdma_201920_3 platform
configuration that was available in the Microprocessor and Hardware Labo-
ratory (MHL) at the Technical University of Crete (TUC).

6.1 FPGA Resource Utilization and Performance

Tables 6.1 and 6.2 report on the resource utilization and timing measurements
of our NTT accelerator on the Alveo U50 board. The results correspond to
the NTT kernel with Number of Butterfly Units (NBU) set to 16. We observe
that our design utilizes a small amount of the available platform resources
(mainly URAM resources with 2 clock cycles latency) and achieves a clock
frequency of 173.7 MHz.

TABLE 6.1: Alveo U50 Post-Route Resource Utilization

Resource Utilization Available Utilization %
LUT 32611 743808 4.25
REG 27600 1577349 1.71
DSP 594 5948 9.98

BRAM 4 1163 0.34
URAM 192 636 30.1

We measured the latency of the parallel butterfly units (NBU=16), which cor-
respond to the four inner loops of algorithm 10, to be 36 clock cycles. We
execute multiple NTTs of each size in range [210, 218] and we note down the
mean time of the total execution time on the FPGA. It should be noted that

58 Chapter 6. Results

the reported times in Table 6.2 are the times observed by the user applica-
tion, i.e. they are measured from the software application that invokes the
hardware accelerator.

Therefore, we define as start time the moment when the host application calls
the function that invokes the hardware accelerator and as the end time, we
define the moment that this function returns. In Table 6.2, Total Function
Execution Time (TFET) is calculated as (end time - start time) and is mea-
sured in microseconds, while Kernel Computation Time (KCT) only counts
the hardware kernel execution time for each NTT size. In other words, KCT
measures the required time to execute an n-point NTT without taking into
account the data transfers to and from the Alveo board. The Data Trans-
fer Time (DTT) measures the time needed to copy the required data to the
FPGA board and retrieve the results once the computation is completed. The
required initialization time of these cl::Buffer variables as well as all steps
required to prepare the data prior to transfering them to the accelerator, is
included in the Total Function Execution time. We also calculate the kernel
computation (KC) percentage (%) and the data transfer (DT) percentage (%)
out of the Total Function Execution time entries listed in table 6.2. Results for
our work were obtained by executing the ./bin/benchmark/ntt-benchmark
benchmark1. This benchmark is our modification of the lib-benchmark built-
in benchmark that can be used to test all different NTT sizes.

The KC and the DT percentages define the main cost of using our accelerator.
For small NTT sizes, the data transfer costs are significant compared to the
kernel execution time and are mostly attributed to the processes required to
setup and execute the transfers. This can be observed through the non-linear
scaling of the data transfer times for small data sizes (doubling the amount
of data required, results in a small increase in data transfer time for example
when moving from 1024 to 2048 NTT size - for larger data sets, e.g. mov-
ing from 217 NTT size to 218, the data transfer time follows an almost similar
increase). For the larger NTT sizes (214 and above), the kernel computation
time is dominant. These observations indicate that this is a compute-bound
computation and the main focus of future optimizations should be centered
around the improvement of the kernel in order to yield any significant per-
formance benefits.

1ntt-benchmark.cpp is provided in the private GitHub repository for this thesis
https://github.com/parasecurity/FHE_FPGA/tree/main/OpenFHE_FPGA/1.%20Alveo_
accelerator/benchmarking/ntt-benchmark.cpp

https://github.com/parasecurity/FHE_FPGA/tree/main/OpenFHE_FPGA/1.%20Alveo_accelerator/benchmarking/ntt-benchmark.cpp
https://github.com/parasecurity/FHE_FPGA/tree/main/OpenFHE_FPGA/1.%20Alveo_accelerator/benchmarking/ntt-benchmark.cpp

6.1. FPGA Resource Utilization and Performance 59

TABLE 6.2: NTT Hardware Accelerator Timing Results (KC(%)
and DT(%) correspond to the percentage of Kernel Computa-
tion Time and Data Transfer Time out of the Total Function Ex-

ecution Time respectively)

NTT size Kernel Com-
putation
Time (µs)

Data
Transfer
Time (µs)

Total
Function
Execution
Time (µs)

KC
(%)

DT
(%)

1024 (210) 168.80 123.39 558.56 30.02 22.09
2048 (211) 303.10 138.75 679.51 44.60 20.04
4096 (212) 488.60 172.76 1102.81 44.30 15.66
8192 (213) 983.70 221.05 1766.32 55.69 12.51
16384 (214) 1958.90 273.22 3026.75 64.70 9.02
32768 (215) 3915.60 313.32 5894.50 66.40 5.30
65536 (216) 7174.50 475.97 10904.30 65.79 4.36
131072 (217) 16493.80 686.70 23524.10 70.10 2.90
262144 (218) 34411.10 1228.47 49858.50 69.00 2.40

Another conclusion that can be drawn from the results presented in Table 6.2
is that there is a significant time required in order to prepare the data to be
transferred to the FPGA accelerator. This is reflected in the time difference
between Total Function Execution Time and the sum of the Kernel Compu-
tation Time and Data Transfer Time. Depending on the NTT size, a 30% to
50% is spent on copying data between buffers prior to their transfer to the
FPGA board. This is an obvious optimization point that if resolved, can yield
significant performance uplift.

To program the FPGA device, the program_device function, that comes along
our proposed API, should be called once. We measure the required time to
program the FPGA with our binary file to be between 70-130 ms.

TABLE 6.3: Program Device Latency

Function Required Time (ms)
program_device 70-130

Among the different related works presented in Section 3, our HLS results
can be directly compared with those from Mert et. al [40] for a 4096-point
NTT. In this work, results from both HLS and Verilog implementations are
presented and can provide an interesting insight for future optimizations.
Table 6.4 demonstrates the relevant comparison results (it should be noted
that smaller NTT size results are also available in their paper, however none

60 Chapter 6. Results

of them has been tested with 60-bit coefficient size). We remind that our de-
sign supports any coefficient size up to 64 bits, with no further configuration
needed. OpenFHE bounds the coefficients to be up to 60 bits. We observe,
that our design, for NBU set to 16, outperforms Mert’s HLS approach in
terms of the NTT operation clock cycles, while the Verilog approach outper-
forms both Mert’s HLS approach and our work. The design of Mert achieves
reduced resource utilization for NBU set to 8 for both HLS and Verilog com-
pared to our work. The main difference between this work and Mert’s de-
signs is the maximum NTT size supported, which in the case of Mert et al.
is 4096 (212). This significantly reduces the memory requirements, as BRAM
resources can host all NTT related data.

TABLE 6.4: Results and comparison for NTT implementations
of size n = 4096

Version NBU LUT REG DSP BRAM URAM # of CC Time (µs)
This Work (Alg. 10) 16 32611 27600 594 4 192 55296 488.6
Alg. 4 [40] HLS 8 17768 - 360 128 - 73731 -
Alg. 4 [40] Verilog 8 23215 - 248 176 - 3276 26.2

Note that our work and the work of Mert focus on slightly different NTT
versions and optimizations and target different platforms (Alveo U50 FPGA
and Virtex-7 FPGA respectively). Our design uses both powers of ψ and
the preconditioned powers of ψ, instead of the simple powers of ω used by
Mert’s algorithm. We also use Harvey’s modular multiplication optimiza-
tion instead of the Montrgomery modular multiplication. Comparing our re-
sults with the Verilog results provided in their paper, we conclude that using
Verilog can significantly optimize the NTT design and we encourage future
works on accelerating OpenFHE to focus on using Verilog or System Verilog
for their hardware design.

Mert et al. report 26.2µs latency for their 4096 point NTT Verilog version (125
MHz on a Virtex-7 FPGA). This time corresponds to the kernel execution
time only, without taking into consideration the data movement between the
host and the FPGA. They do not provide latency results for their 4096 point
NTT HLS version. Our design has a kernel execution latency of 488.6µs when
NBU is set to 16 (173.7 MHz on an Alveo U50 FPGA), approximately 18 times
slower.

6.2. Performance Evaluation 61

6.2 Performance Evaluation

In this section, we will compare our performance results with both the per-
formance of OpenFHE native NTT software function and the performance of
Intel HEXL-FPGA for NTT sizes 4096 (212), 8192 (213), 16384 (214). Results for
Intel HEXL-FPGA are provided in [66] and correspond only to kernel execu-
tion time. No data transfer time is measured. These results are not official
Intel results (Intel does not publish any related measurements), but results
from the researchers of [66] that replicated Intel’s design. In their publica-
tion, they do not provide explicit numbers for the results, but only a graph,
thus in figure 6.2 below we provide Intel HEXL-FPGA approximate perfor-
mance results.

Results for OpenFHE library were obtained using the ./bin/benchmark/ntt-
benchmark executable. We launch OpenFHE on a Ubuntu 20.04 LTS ma-
chine running on an Intel Core i7-8750H CPU (12 x 4100MHz CPUs and
CPU caches: L1 Data 32 KiB (x6), L1 Instruction 32 KiB (x6), L2 Unified 256
KiB (x6), L3 Unified 9216 KiB (x1)). The NTT performance reported for each
benchmark corresponds to the mean execution time out of multiple single-
thread NTT operations that contain the computation of the roots of unity and
the preconditioned roots of unity needed by the CT NTT of OpenFHE. We
also measure the time needed only for the CT NTT operation in OpenFHE.
The software performance results can be found in table 6.5.

TABLE 6.5: Performance of Software NTT (OpenFHE)

NTT size Software NTT (µs) Software Twiddle
Factor Generation

& NTT (µs)
1024 (210) 35.9 72.5
2048 (211) 61.18 162
4096 (212) 103.76 354
8192 (213) 216.75 778

16384 (214) 481.95 1772
32768 (215) 965.23 3837
65536 (216) 2099.7 7484

131072 (217) 4147.86 16487
262144 (218) 9268.65 36463

For performance results of our work, the reader is referred to table 6.2. A
comprehensive comparison between the OpenFHE native NTT implementa-
tion and our hardware accelerated NTT is provided in Table 6.6. We remark

62 Chapter 6. Results

that the Software NTT column refers only to the software-based NTT cal-
culation time required. For our work (hardware NTT), we provide data in
three columns, namely Kernel Computation Time (KCT), Data Transfer Time
(DTT) and Total Function Execution Time (TFET). We calculate the speedup
by comparing the Software NTT time with the Total Function Execution Time.
We define a negative speedup for when OpenFHE native NTT function out-
performs our work. Our results showcase that if the kernel design and data
transfer are optimized, NTTs of size above 214 could reach and maybe outper-
form OpenFHE’s native NTT software-based implementation. These results
are visualised in Figure 6.1.

TABLE 6.6: Performance comparison of Software NTT time
(NTT function included in OpenFHE library) and Hardware
NTT time (kernel computation, data transfers, total hardware

function execution time)

Hardware NTT (µs)

NTT size
Software
NTT (µs)

Kernel
Computa-
tion Time

(µs)

Data
Transfer

Time (µs)

Total
Function
Execution
Time (µs)

Speedup

1024 (210) 35.9 168.8 123.39 558.56 -15.5x
2048 (211) 61.18 303.1 138.75 679.51 -11.1x
4096 (212) 103.76 488.6 172.76 1102.81 -10.6x
8192 (213) 216.75 983.7 221.05 1766.32 -8x

16384 (214) 481.95 1958.9 273.22 3026.75 -6.3x
32768 (215) 965.23 3915.6 313.32 5894.5 -6.1x
65536 (216) 2099.7 7174.5 475.97 10904.3 -5.2x
131072 (217) 4147.86 16493.8 686.7 23524.1 -5.6x
262144 (218) 9268.65 34411.1 1228.47 49858.5 -5.4x

Figure 6.2 provides the performance comparison of the NTT computations
of OpenFHE, Intel HEXL-FPGA and our work. Note that in the case of
OpenFHE, it includes only the NTT computation execution time results and
not the overall software NTT time (that would include the twiddle factor
generation as well). In the same figure, only kernel execution time results are
available for both Intel HEXL and our work. For a 4096-point NTT, our de-
sign has a kernel execution time (KCT) of 488.6 µs, while the kernel execution
time along the data initialization and data movement operations between the
host and the FPGA (TFET) can reach up to 1102.81 µs.

6.2. Performance Evaluation 63

210 211 212 213 214 215 216 217 218

102

103

104

105

102

103

104

NTT size

Ti
m

e
(µ

s)
SW (OpenFHE) HW KCT (This Work) HW TFET (This Work)

FIGURE 6.1: Performance comparison of software NTT func-
tion call (OpenFHE) and hardware NTT function call (This
Work). For the hardware NTT function call the Kernel Compu-
tation Time (KCT) and Total Function Execution Time (TFET)

are included.

Open
FHE

HEXL-F
PGA

This
W

ork

102

103

104

102

103

104

Ti
m

e
(µ

s)

n = 4096 (212) n = 8192 (213) n = 16384 (214)

FIGURE 6.2: Comparison of NTT implementations (NTT com-
putation time only)

We observe that our kernel design is approximately 15 times slower than
the design of HEXL-FPGA. This can be explained by both the more complex
design choices used in Intel HEXL-FPGA and the smaller set of supported
parameters. Supporting NTTs of maximum size 215 can significantly increase

64 Chapter 6. Results

the performance of a design, as less memory resources are needed and the
HLS tools can achieve better place and route results.

Intel HEXL-FPGA [35] does not report the achieved clock frequency and does
not use the PIPELINE HLS pragma, but it achieves a better performance
mainly because of the data scheduling procedure in the available butterfly
units. They also use a dynamic operation reordering, which is used to change
the flow of the butterfly units input and output data, so as to avoid data and
memory dependencies in their code. They also provide slightly different HLS
compiled designs based on the configured NTT size, while in our case we use
a generic HLS design that can support all target NTT sizes. Intel’s design also
uses a different set of tools and optimizations based on Intel platforms. Re-
source utilization data were not available.

Our design achieves a clock frequency of 173.7 MHz. While Xilinx Vitis
2022.2 tool achieves higher frequencies for our design due to better imple-
mentation optimizations, we use Xilinx Vitis 2020.1 tool which was the avail-
able tool on the MHL server. We observe that our design does not manage
to accelerate the NTT operation of OpenFHE. This is mainly the result of the
low working frequency achieved by our design, the small number of paral-
lel butterflies (NBU=16) and the naive data transfer approach. We remind
the reader that when NBU was set to 32 or 64 for our design, the working fre-
quency was reduced and the performance of our design dropped. We believe
that better memory management can significantly improve the performance
of our design. For example, using BRAM resources as small caches, in order
to provide data to the available butterfly units, could potentially decrease
the design’s latency, due to more efficient place and route results. Regarding
the generated kernel, the data dependency between the different stages of
the NTT is the main design bottleneck. To solve this data dependency, the
butterfly operations could be reordered, to avoid requesting data that are not
yet out of the pipeline. We highlight that this is an algorithmic problem and
restructuring the algorithm is needed to further optimize the NTT algorithm.

Observing the OpenFHE results of table 6.5 yields another acceleration target
candidate. We remind that the third column reports the sum of the required
time to generate the root of unity powers and the preconditioned roots of
unity factors (for Harvey’s optimization) needed by the NTT and the soft-
ware NTT time. The roots of unity, also known as twiddle factors, are unique
for each modulo qi used in OpenFHE. However, in an OpenFHE application
the moduli qi can be finite and reused and the NTT size is fixed. That means

6.2. Performance Evaluation 65

that any NTT with a modulo qi will use the same twiddle factors and the
same preconditioned Harvey’s factors. Following this observation, if consec-
utive NTTs with the same modulo qi are scheduled on our FPGA accelerator,
it is not necessary to transfer the aforementioned factors and the data transfer
cost is avoided. While we do not provide this functionality in our design, it
would reduce the data transfer cost and thus it would improve the accelera-
tor’s performance.

On another note, while we considered the twiddle factor generation out of
the scope of this work, we believe that generating those factors on the FPGA
when necessary, could significantly improve an accelerator’s performance,
as the data preparation and transfer costs would be completely avoided. As
initializing the cl::Buffer variables and transferring their data on the FPGA
can take up to around 30-40% of the total function call time, minimizing them
would produce significant performance uplift. Thus, we suggest that future
work should include twiddle factor generation functionality alongside the
NTT kernel on the FPGA. Deploying both of the aforementioned suggestions,
one would be able to substitute a higher-level OpenFHE function and thus
provide better acceleration results compared to our work. That means that
instead of substituting the target function:

void NumberTheoreticTransformNat<VecType>::

ForwardTransformToBitReverseInPlace(const VecType& rootOfUnityTable,

const VecType& preconRootOfUnityTable,

VecType* element)

one could accelerate the below OpenFHE function that includes the neces-
sary NTT factor precomputation and the NTT computation function call (also
included in the src/core/include/math/hal/transformnat-impl.h file:

void ChineseRemainderTransformFTTNat<VecType>::

ForwardTransformToBitReverseInPlace(const IntType& rootOfUnity,

const usint CycleOrder,

VecType* element)

Last but not least, we consider the energy impact of our solution compared to
the software OpenFHE library. To get representative results, we executed an
existing OpenFHE example (ckks-noise-flooding) which includes 216-point
NTTs, iteratively, for 400 times. Each iteration yields 184 calls to the NTT
functions. In that way, we simulate a Fully Homomorphic Encryption-based

66 Chapter 6. Results

application, where multiple encryption, evaluation, bootstrapping and de-
cryption operations will be performed. In the case of the hardware acceler-
ated OpenFHE, since the whole application is executed, the effects of oper-
ating, programming and maintaining active the FPGA board are also taken
into consideration.

Both, pure software and hardware-accelerated, applications were executed
on the same Dell R530 server installed in TUC’s data center facilities. The
server has two Intel Xeon E5-2630v4 processors (10-cores/20-threads per CPU,
base frequency of 2.2GHz and Turbo frequency of 3.1GHz) and has a single
Xilinx Alveo U50 card installed. Through the server’s out-of-bound man-
agement module (Dell iDRAC) we were able to monitor the overall power
consumption of the system during the execution of the two applications. No
other user-level processes were allowed to run on the server during bench-
marking times. We kept the server in idle state for at least 15 minutes be-
tween each test to get accurate measurements and measured an idle-state
power consumption of 140 watts.

The example needs 8.3 minutes to complete when executed on a CPU us-
ing OpenFHE native implementations and 19.1 minutes to complete when
OpenFHE’s NTT has been substituted with our FPGA implementation. To
calculate the overall energy consumption for the two cases, one can use the
following formula:

Energy(Joule) = Power(Watt) · Time(Seconds)

Table 6.7 includes energy results for both the software run of the application
and the hardware (FPGA-based) run.

TABLE 6.7: Power Consumption and Energy Efficiency com-
parison of a FHE application when NTTs are launched only
in Software (SW OpenFHE - SW NTT case) and when NTTs
are launched on the FPGA (SW OpenFHE - HW NTT case) -

OpenFHE in both cases is launched on Software

Case Power (W) Time (min) Energy (KJ)
Idle 140 - -
SW OpenFHE - SW NTT 157 8.3 78.186
SW OpenFHE - HW NTT 154 19.1 176.484

We observe that using our approach leads to higher overall energy consump-
tion. However, this is the result of both non highly optimized NTT kernel and

6.2. Performance Evaluation 67

data transfer operations that roughly double the required execution time. We
remark that when OpenFHE uses our accelerator as a hardware component,
the mean power consumption is slightly better than when OpenFHE library
is launched solely on the CPU. A highly optimized FPGA-based NTT design
could potentially decrease the energy consumption of the OpenFHE library
if the required total function execution time was decreased.

69

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis conducted an in-depth study of potential FPGA acceleration tar-
gets for Fully Homomorphic Encryption and more specifically for the Open-
FHE library. It identifies the Number Theoretic Transform (NTT) as the start-
ing point of any acceleration attempt and elaborates on the state-of-the-art
optimizations available in the literature. The results of the proposed design,
revealed that accelerating the OpenFHE library using a High-Level-Synthesis
(HLS) approach can be both demanding and challenging. While it does not
necessarily yields the optimal results, it remains easier compared to an HDL-
based approach.

To the best of our knowledge, this work is the first hardware accelerator for
OpenFHE that is implemented on a Xilinx Alveo U50 FPGA and supports up
to 218-point Number Theoretic Transforms without FPGA reconfiguration.
Our accelerator is fully integrated with OpenFHE as a hardware component.
While our work does not manage to provide a speedup for OpenFHE, we
identify several potential optimization opportunities for future work refer-
ence. A lower-level approach (in the form of an HDL-based design) can
be employed for the implementation of the critical computations within the
NTT butterflies to achieve higher working frequencies, while the HLS ap-
proach may be preserved for the control paths of the accelerator. Reordering
butterfly operations to avoid data and memory dependencies in the design,
enabling concurrent data transfers and kernel execution and generating NTT-
related factors directly on the FPGA, should be further examined so as to
improve the overall performance of the accelerator. We also observed that
migrating to newer versions of the Vitis tools (2022.1 vs 2020.1) provided a
measurable QoR improvement. Last but not least, optimizations on the host

70 Chapter 7. Conclusions and Future Work

code domain dealing with software buffers and data copies during the com-
munication with the hardware accelerator are also possible and we measured
a potential opportunity to reduce overall execution time by as much as 50%.

Overall, we aspire to make our work the foundation of any further accelera-
tion attempt of Fully Homomorphic Encryption schemes, included in OpenFHE
library, with FPGAs. Since FHE schemes are only recently becoming practi-
cal to use, we consider that it is important to consolidate related research ef-
forts towards the OpenFHE library that seems to become the standard. Our
work alleviates restrictions and other requirements that make a hardware ac-
celerated version of the library less accessible to application developers and
researchers outside the field of hardware design and allows the easy integra-
tion of any worthwhile research outcomes, be it on the software or hardware
components of the library.

7.2 Future Work

Concluding our work, we provide some directions for future research re-
garding hardware acceleration of OpenFHE library. In particular, future re-
searchers should consider:

• modifying the design to achieve higher clock frequencies.

• enabling concurrent data transfers (from the host to the FPGA) and ker-
nel execution.

• enabling BRAM-based caching for efficient memory usage.

• implementing twiddle factor and other NTT essential factor generation
on the FPGA.

• deploying multiple instances of the same kernel and scheduling mul-
tiple NTT operations accordingly. As OpenFHE supports multithread-
ing, supporting multiple NTT computations scheduling on the FPGA
can make the accelerator even more practical when using the library.

• using Verilog or System Verilog to achieve the best acceleration results
and the minimum resource utilization on the target platform, thus al-
lowing more hardware accelerated functions to fit on the FPGA.

• including inverse NTT and element-wise multiplication units to substi-
tute the polynomial multiplication functions in OpenFHE.

7.2. Future Work 71

• accelerating other OpenFHE high-level functions such as key-switching
and bootstrapping.

73

Appendix A

OpenFHE Modified Source Code

Appendix A includes the modified OpenFHE source code of the src/core/
include/math/hal/intnat/transformnat-impl.h file. We split the below code
in two parts. Part 1 of the below code was not included in the original ver-
sion of the file, while part 2 of the code is a modification of the existing Chine-
seRemainderTransformFTTNat<VecType>::ForwardTransformToBitReverse
InPlace function. The main difference is that we substitute the native func-
tion call NumberTheoreticTransformNat<VecType>().ForwardTransformTo
BitReverseInPlace() with our implemented FPGA-based function alveo_acce
lerator ::NTT(). We maintain the native OpenFHE NTT function call for data
correctness testing and timing purposes.

[...]

// Part 1

#define CL_HPP_CL_1_2_DEFAULT_BUILD

#define CL_HPP_TARGET_OPENCL_VERSION 120

#define CL_HPP_MINIMUM_OPENCL_VERSION 120

#define CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY 1

#include <CL/cl2.hpp>

#include "/path/to/vitis/project/include/ntt.hpp"

[...]

// Part 2

template <typename VecType>

void ChineseRemainderTransformFTTNat<VecType>::

ForwardTransformToBitReverseInPlace(const IntType& rootOfUnity,

const usint CycloOrder,

VecType* element) {

74 Appendix A. OpenFHE Modified Source Code

if (rootOfUnity == IntType(1) || rootOfUnity == IntType(0)) {

return;

}

if (!lbcrypto::IsPowerOfTwo(CycloOrder)) {

OPENFHE_THROW(lbcrypto::math_error,

"CyclotomicOrder is not a power of two");

}

usint CycloOrderHf = (CycloOrder >> 1);

if (element->GetLength() != CycloOrderHf) {

OPENFHE_THROW(lbcrypto::math_error,

"element size must be equal to CyclotomicOrder / 2");

}

IntType modulus = element->GetModulus();

auto mapSearch = m_rootOfUnityReverseTableByModulus.find(modulus);

if (mapSearch == m_rootOfUnityReverseTableByModulus.end() ||

mapSearch->second.GetLength() != CycloOrderHf) {

PreCompute(rootOfUnity, CycloOrder, modulus);

}

std::cout<<"*************************"<<std::endl;

std::cout<<"NTT progress: START"<<std::endl;

// Generate data correctness test files

// into /path/to/test/files/directory

std::string path = "/path/to/test/files/directory";

std::ofstream myfile;

myfile.open (path+"/ntt_parameters.txt");

myfile << "Parameter n - ring size = " << n;

myfile << "\nModulo q = " << modulus;

myfile << "\nLog2 Modulo q: "<<log(modulus.ConvertToDouble())/log(2);

myfile << "\nInput array length: "<< n;

myfile << "\nInput array length log2: "<< log(n.ConvertToDouble())/log(2);

myfile.close();

myfile.open (path+"/ntt_input.txt");

for (uint32_t i=0; i<n; i++){

myfile << (*element)[i] << "\n";

}

myfile.close();

myfile.open (path+"/rootOfUnity_br_input.txt");

for (uint32_t i=0; i<n; i++){

myfile << m_rootOfUnityReverseTableByModulus[modulus][i] << "\n";

}

Appendix A. OpenFHE Modified Source Code 75

myfile.close();

myfile.open (path+"/preconRootOfUnity_br_input.txt");

for (uint32_t i=0; i<n; i++){

myfile << m_rootOfUnityPreconReverseTableByModulus[modulus][i] << "\n";

}

myfile.close();

// write expected result in file

VecType ptr(element->GetLength(),modulus);

//VecType* ptr = temp_vec[0];

for (uint32_t i=0; i<n; i++){

ptr[i] = (*element)[i];

}

// Measure CPU time of native function call

std::chrono::duration<double> cpu_time(0);

auto cpu_start = std::chrono::high_resolution_clock::now();

// Call OpenFHE Native NTT function for timing purposes

NumberTheoreticTransformNat<VecType>().ForwardTransformToBitReverseInPlace(

m_rootOfUnityReverseTableByModulus[modulus],

m_rootOfUnityPreconReverseTableByModulus[modulus], &ptr);

auto cpu_end = std::chrono::high_resolution_clock::now();

cpu_time = std::chrono::duration<double>(cpu_end - cpu_start);

std::cout << "CPU time: ";

std::cout << cpu_time.count()*1000 << " ms" << std::endl;

myfile.open (path+"/ntt_expected_output.txt");

for (uint32_t i=0; i<n; i++){

myfile << ptr.at(i) << "\n";

}

myfile.close();

// Cast input data

auto* data = reinterpret_cast<uint64_t*>(&element->at(0));

auto* rootsOfUnity =

reinterpret_cast<uint64_t*>(&m_rootOfUnityReverseTableByModulus[modulus][0]);

auto* preconRootsOfUnity =

reinterpret_cast<uint64_t*>(&m_rootOfUnityPreconReverseTableByModulus[modulus][0]);

uint64_t coeff_modulus = modulus.ConvertToInt();

// Call Alveo NTT implementation

alveo_accelerator::NTT(data, rootsOfUnity, preconRootsOfUnity,

coeff_modulus, n.ConvertToInt());

76 Appendix A. OpenFHE Modified Source Code

std::cout<<"NTT progress: COMPLETED"<<std::endl;

std::cout<<"*************************"<<std::endl;

}

[...]

77

References

[1] R. Agrawal, L. de Castro, G. Yang, et al., “Fab: An fpga-based acceler-
ator for bootstrappable fully homomorphic encryption”, in 2023 IEEE
International Symposium on High-Performance Computer Architecture (HPCA),
2023, pp. 882–895. DOI: 10.1109/HPCA56546.2023.10070953.

[2] A. Al Badawi, J. Bates, F. Bergamaschi, et al., “Openfhe: Open-source
fully homomorphic encryption library”, in Proceedings of the 10th Work-
shop on Encrypted Computing & Applied Homomorphic Cryptography, 2022,
pp. 53–63. [Online]. Available: https : / / github . com / openfheorg /
openfhe-development.

[4] D. Aoki, K. Minematsu, T. Okamura, and T. Takagi, “Efficient word
size modular multiplication over signed integers”, in 2022 IEEE 29th
Symposium on Computer Arithmetic (ARITH), 2022, pp. 94–101. DOI: 10.
1109/ARITH54963.2022.00026.

[5] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “High-
speed ntt-based polynomial multiplication accelerator for post-quantum
cryptography”, in 2021 IEEE 28th Symposium on Computer Arithmetic
(ARITH), 2021, pp. 94–101. DOI: 10.1109/ARITH51176.2021.00028.

[6] F. Boemer, S. Kim, G. Seifu, F. D.M. de Souza, and V. Gopal, “Intel hexl:
Accelerating homomorphic encryption with intel avx512-ifma52”, in
Proceedings of the 9th on Workshop on Encrypted Computing & Applied
Homomorphic Cryptography, ser. WAHC ’21, Virtual Event, Republic of
Korea: Association for Computing Machinery, 2021, pp. 57–62, ISBN:
9781450386562. DOI: 10.1145/3474366.3486926. [Online]. Available:
https://doi.org/10.1145/3474366.3486926.

[7] Z. Brakerski, “Fully homomorphic encryption without modulus switch-
ing from classical gapsvp”, in Annual Cryptology Conference, Springer,
2012, pp. 868–886.

[8] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homo-
morphic encryption without bootstrapping”, ACM Trans. Comput. The-
ory, vol. 6, no. 3, Jul. 2014, ISSN: 1942-3454. DOI: 10.1145/2633600.
[Online]. Available: https://doi.org/10.1145/2633600.

https://doi.org/10.1109/HPCA56546.2023.10070953
https://github.com/openfheorg/openfhe-development
https://github.com/openfheorg/openfhe-development
https://doi.org/10.1109/ARITH54963.2022.00026
https://doi.org/10.1109/ARITH54963.2022.00026
https://doi.org/10.1109/ARITH51176.2021.00028
https://doi.org/10.1145/3474366.3486926
https://doi.org/10.1145/3474366.3486926
https://doi.org/10.1145/2633600
https://doi.org/10.1145/2633600

78 References

[9] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic en-
cryption from (standard) lwe”, SIAM Journal on computing, vol. 43, no. 2,
pp. 831–871, 2014.

[10] L. de Castro, R. Agrawal, R. Yazicigil, et al., Does fully homomorphic en-
cryption need compute acceleration?, Cryptology ePrint Archive, Paper
2021/1636, https://eprint.iacr.org/2021/1636, 2021. [Online].
Available: https://eprint.iacr.org/2021/1636.

[11] J. H. Cheon, A. Kim, M. Kim, and Y. Song, HEAAN, https://github.
com/snucrypto/HEAAN, 2016.

[12] J. H. Cheon, A. Costache, R. C. Moreno, et al., “Introduction to homo-
morphic encryption and schemes”, Protecting Privacy through Homomor-
phic Encryption, pp. 3–28, 2021.

[13] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers”, in Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Ap-
plications of Cryptology and Information Security, Hong Kong, China, De-
cember 3-7, 2017, Proceedings, Part I 23, Springer, 2017, pp. 409–437.

[14] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 seconds”, in
Advances in Cryptology – ASIACRYPT 2016, J. H. Cheon and T. Takagi,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 3–33,
ISBN: 978-3-662-53887-6.

[15] D. Cohen, “Simplified control of fft hardware”, IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 24, no. 6, pp. 577–579, 1976.

[16] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex fourier series”, Mathematics of computation, vol. 19, no. 90,
pp. 297–301, 1965.

[17] D. B. Cousins, Y. Polyakov, A. A. Badawi, et al., Trebuchet: Fully homo-
morphic encryption accelerator for deep computation, 2023. arXiv: 2304 .
05237 [cs.CR].

[18] L. Ducas and D. Micciancio, FHEW, https://github.com/lducas/
FHEW, 2017.

[19] P. Duong-Ngoc, S. Kwon, D. Yoo, and H. Lee, “Area-efficient number
theoretic transform architecture for homomorphic encryption”, IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 70, no. 3, pp. 1270–
1283, 2023. DOI: 10.1109/TCSI.2022.3225208.

https://eprint.iacr.org/2021/1636
https://eprint.iacr.org/2021/1636
https://github.com/snucrypto/HEAAN
https://github.com/snucrypto/HEAAN
https://arxiv.org/abs/2304.05237
https://arxiv.org/abs/2304.05237
https://github.com/lducas/FHEW
https://github.com/lducas/FHEW
https://doi.org/10.1109/TCSI.2022.3225208

References 79

[20] P. Duong-Ngoc and H. Lee, “Configurable mixed-radix number theo-
retic transform architecture for lattice-based cryptography”, IEEE Ac-
cess, vol. 10, pp. 12 732–12 741, 2022. DOI: 10 . 1109 / ACCESS . 2022 .
3145988.

[21] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic en-
cryption”, Cryptology ePrint Archive, 2012.

[22] H. L. Garner, “The residue number system”, in Papers Presented at the
the March 3-5, 1959, Western Joint Computer Conference, ser. IRE-AIEE-
ACM ’59 (Western), San Francisco, California: Association for Comput-
ing Machinery, 1959, pp. 146–153, ISBN: 9781450378659. DOI: 10.1145/
1457838.1457864. [Online]. Available: https://doi.org/10.1145/
1457838.1457864.

[23] W. M. Gentleman and G. Sande, “Fast fourier transforms: For fun and
profit”, in Proceedings of the November 7-10, 1966, fall joint computer con-
ference, 1966, pp. 563–578.

[24] C. Gentry, “Fully homomorphic encryption using ideal lattices”, in Pro-
ceedings of the Forty-First Annual ACM Symposium on Theory of Com-
puting, ser. STOC ’09, Bethesda, MD, USA: Association for Comput-
ing Machinery, 2009, pp. 169–178, ISBN: 9781605585062. DOI: 10.1145/
1536414.1536440. [Online]. Available: https://doi.org/10.1145/
1536414.1536440.

[25] C. Gentry, S. Halevi, and N. P. Smart, Homomorphic evaluation of the aes
circuit, Cryptology ePrint Archive, Paper 2012/099, https://eprint.
iacr.org/2012/099, 2012. [Online]. Available: https://eprint.iacr.
org/2012/099.

[26] R. Géraud, D. Maimuţ, and D. Naccache, “Double-speed barrett mod-
uli”, in The New Codebreakers: Essays Dedicated to David Kahn on the Oc-
casion of His 85th Birthday, Springer, 2016, pp. 148–158.

[27] Y. Gong, X. Chang, J. Mišić, V. B. Mišić, J. Wang, and H. Zhu, “Practical
solutions in fully homomorphic encryption–a survey analyzing exist-
ing acceleration methods”, arXiv preprint arXiv:2303.10877, 2023.

[28] C. Gouert, D. Mouris, and N. G. Tsoutsos, Sok: New insights into fully
homomorphic encryption libraries via standardized benchmarks, Cryptology
ePrint Archive, Paper 2022/425, https://eprint.iacr.org/2022/425,
2022. [Online]. Available: https://eprint.iacr.org/2022/425.

[29] Griffinfly - a submission to the zprize competition under the category, "ac-
celerating ntt operations on an fpga", https://github.com/KULeuven-
COSIC/Griffinfly-ZPRIZE-FPGA-NTT, 2023.

https://doi.org/10.1109/ACCESS.2022.3145988
https://doi.org/10.1109/ACCESS.2022.3145988
https://doi.org/10.1145/1457838.1457864
https://doi.org/10.1145/1457838.1457864
https://doi.org/10.1145/1457838.1457864
https://doi.org/10.1145/1457838.1457864
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2012/099
https://eprint.iacr.org/2022/425
https://eprint.iacr.org/2022/425
https://github.com/KULeuven-COSIC/Griffinfly-ZPRIZE-FPGA-NTT
https://github.com/KULeuven-COSIC/Griffinfly-ZPRIZE-FPGA-NTT

80 References

[31] S. Halevi and V. Shoup, HElib, https://github.com/homenc/HElib,
2014.

[32] D. Harvey, “Faster arithmetic for number-theoretic transforms”, Jour-
nal of Symbolic Computation, vol. 60, pp. 113–119, 2014, ISSN: 0747-7171.
DOI: https://doi.org/10.1016/j.jsc.2013.09.002. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0747717113001181.

[33] Homomorphic encryption standardization, 2023. [Online]. Available: https:
//homomorphicencryption.org/introduction/.

[34] G. Inc., Gperftools, https : / / github . com / gperftools / gperftools,
2023.

[35] Y. Meng, S. Butt, Y. Wang, Y. Zhou, S. Simoni, et al., Intel Homomorphic
Encryption Acceleration Library for FPGAs (version 2.0), https://github.
com/intel/hexl-fpga, 2022.

[36] A. El-Kady, A. P. Fournaris, T. Tsakoulis, E. Haleplidis, and V. Paliouras,
“High-level synthesis design approach for number-theoretic transform
implementations”, in 2021 IFIP/IEEE 29th International Conference on
Very Large Scale Integration (VLSI-SoC), 2021, pp. 1–6. DOI: 10.1109/
VLSI-SoC53125.2021.9607003.

[37] J. Kim, G. Lee, S. Kim, et al., “Ark: Fully homomorphic encryption ac-
celerator with runtime data generation and inter-operation key reuse”,
in 2022 55th IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2022, pp. 1237–1254. DOI: 10.1109/MICRO56248.2022.00086.

[38] Z. Liang and Y. Zhao, Number theoretic transform and its applications in
lattice-based cryptosystems: A survey, 2022. arXiv: 2211.13546 [cs.CR].

[39] P. Longa and M. Naehrig, Speeding up the number theoretic transform for
faster ideal lattice-based cryptography, Cryptology ePrint Archive, Paper
2016/504, https://eprint.iacr.org/2016/504, 2016. [Online]. Avail-
able: https://eprint.iacr.org/2016/504.

[40] A. C. Mert, E. Karabulut, E. Öztürk, E. Savaş, and A. Aysu, “An exten-
sive study of flexible design methods for the number theoretic trans-
form”, IEEE Transactions on Computers, vol. 71, no. 11, pp. 2829–2843,
2022. DOI: 10.1109/TC.2020.3017930.

[41] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of
a fast and scalable ntt-based polynomial multiplier architecture”, in
2019 22nd Euromicro Conference on Digital System Design (DSD), 2019,
pp. 253–260. DOI: 10.1109/DSD.2019.00045.

https://github.com/homenc/HElib
https://doi.org/https://doi.org/10.1016/j.jsc.2013.09.002
https://www.sciencedirect.com/science/article/pii/S0747717113001181
https://www.sciencedirect.com/science/article/pii/S0747717113001181
https://homomorphicencryption.org/introduction/
https://homomorphicencryption.org/introduction/
https://github.com/gperftools/gperftools
https://github.com/intel/hexl-fpga
https://github.com/intel/hexl-fpga
https://doi.org/10.1109/VLSI-SoC53125.2021.9607003
https://doi.org/10.1109/VLSI-SoC53125.2021.9607003
https://doi.org/10.1109/MICRO56248.2022.00086
https://arxiv.org/abs/2211.13546
https://eprint.iacr.org/2016/504
https://eprint.iacr.org/2016/504
https://doi.org/10.1109/TC.2020.3017930
https://doi.org/10.1109/DSD.2019.00045

References 81

[42] A. C. Mert, E. Öztürk, and E. Savaş, “Design and implementation of
a fast and scalable ntt-based polynomial multiplier architecture”, in
2019 22nd Euromicro Conference on Digital System Design (DSD), 2019,
pp. 253–260. DOI: 10.1109/DSD.2019.00045.

[43] P. L. Montgomery, “Modular multiplication without trial division”, Math-
ematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[44] Nantucket - a submission to the zprize competition under the category, "accel-
erating ntt operations on an fpga", https://github.com/supranational/
zprize-fpga-ntt, 2023.

[45] K. Navi, A. S. Molahosseini, and M. Esmaeildoust, “How to teach residue
number system to computer scientists and engineers”, IEEE Transac-
tions on Education, vol. 54, no. 1, pp. 156–163, 2011. DOI: 10.1109/TE.
2010.2048329.

[46] D. T. Nguyen, V. B. Dang, and K. Gaj, “High-level synthesis in im-
plementing and benchmarking number theoretic transform in lattice-
based post-quantum cryptography using software/hardware codesign”,
in Applied Reconfigurable Computing. Architectures, Tools, and Applications,
F. Rincón, J. Barba, H. K. H. So, P. Diniz, and J. Caba, Eds., Cham:
Springer International Publishing, 2020, pp. 247–257, ISBN: 978-3-030-
44534-8.

[47] E. Ozcan and A. Aysu, “High-level synthesis of number-theoretic trans-
form: A case study for future cryptosystems”, IEEE Embedded Systems
Letters, vol. 12, no. 4, pp. 133–136, 2020. DOI: 10 . 1109 / LES . 2019 .
2960457.

[48] T. Plantard, “Efficient word size modular arithmetic”, IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 3, pp. 1506–1518, 2021. DOI:
10.1109/TETC.2021.3073475.

[49] J. M. Pollard, “The fast fourier transform in a finite field”, Mathematics
of computation, vol. 25, no. 114, pp. 365–374, 1971.

[50] Y. Polyakov, R. Rohloff, G. W. Ryan, and D. Cousins, PALISADE lattice
cryptography library (release 1.11.5), https://palisade-crypto.org/,
2021.

[51] T. Pöppelmann, T. Oder, and T. Güneysu, “High-performance ideal
lattice-based cryptography on 8-bit atxmega microcontrollers”, in Progress
in Cryptology – LATINCRYPT 2015, K. Lauter and F. Rodríguez-Henríquez,
Eds., Cham: Springer International Publishing, 2015, pp. 346–365, ISBN:
978-3-319-22174-8.

https://doi.org/10.1109/DSD.2019.00045
https://github.com/supranational/zprize-fpga-ntt
https://github.com/supranational/zprize-fpga-ntt
https://doi.org/10.1109/TE.2010.2048329
https://doi.org/10.1109/TE.2010.2048329
https://doi.org/10.1109/LES.2019.2960457
https://doi.org/10.1109/LES.2019.2960457
https://doi.org/10.1109/TETC.2021.3073475
https://palisade-crypto.org/

82 References

[52] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture for
computing on encrypted data”, in Proceedings of the Twenty-Fifth Inter-
national Conference on Architectural Support for Programming Languages
and Operating Systems, 2020, pp. 1295–1309.

[53] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-lwe cryptoprocessor”, in Cryptographic Hardware and Em-
bedded Systems – CHES 2014, L. Batina and M. Robshaw, Eds., Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 371–391, ISBN: 978-
3-662-44709-3.

[54] N. Samardzic, A. Feldmann, A. Krastev, et al., “F1: A fast and pro-
grammable accelerator for fully homomorphic encryption”, in MICRO-
54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,
2021, pp. 238–252.

[55] A. Satriawan, I. Syafalni, R. Mareta, I. Anshori, W. Shalannanda, and
A. Barra, “Conceptual review on number theoretic transform and com-
prehensive review on its implementations”, IEEE Access, 2023.

[56] Microsoft SEAL (release 4.1), https://github.com/Microsoft/SEAL,
Microsoft Research, Redmond, WA., Jan. 2023.

[57] S. Shen, H. Yang, Y. Liu, Z. Liu, and Y. Zhao, “Cuda-accelerated rns
multiplication in word-wise homomorphic encryption schemes”, Cryp-
tology ePrint Archive, 2022.

[58] V. Shoup et al., “Ntl: A library for doing number theory”, 2001.
[59] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,

“Fpga-based high-performance parallel architecture for homomorphic
computing on encrypted data”, in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA), 2019, pp. 387–398.
DOI: 10.1109/HPCA.2019.00052.

[61] F. Turan, S. S. Roy, and I. Verbauwhede, “Heaws: An accelerator for
homomorphic encryption on the amazon aws fpga”, IEEE Transactions
on Computers, vol. 69, no. 8, pp. 1185–1196, 2020. DOI: 10.1109/TC.
2020.2988765.

[66] J. Zhang, X. Cheng, L. Yang, J. Hu, X. Liu, and K. Chen, “Sok: Fully ho-
momorphic encryption accelerators”, arXiv preprint arXiv:2212.01713,
2022.

https://github.com/Microsoft/SEAL
https://doi.org/10.1109/HPCA.2019.00052
https://doi.org/10.1109/TC.2020.2988765
https://doi.org/10.1109/TC.2020.2988765

83

External Links

[3] “Alveo u50 data center accelerator card”, [Online]. Available: https:
//www.xilinx.com/products/boards-and-kits/alveo/u50.html.

[30] “Guide to gperftools”, [Online]. Available: https://developer.ridgerun.
com/wiki/index.php/Profiling_with_GPerfTools.

[60] “Static, shared dynamic and loadable linux libraries”, [Online]. Avail-
able: http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.
html.

[62] “Vitis high-level synthesis user guide”, [Online]. Available: https://
docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction.

[63] “Vitis hls introductory examples reporitory”, [Online]. Available: https:
//github.com/Xilinx/Vitis-HLS-Introductory-Examples.

[64] “Vitis unified software platform documentation: Application accelera-
tion development”, [Online]. Available: https://docs.xilinx.com/
r / en - US / ug1393 - vitis - application - acceleration / Getting -

Started-with-Vitis.
[65] “Xilinx runtime (xrt) api”, [Online]. Available: https://xilinx.github.

io/XRT/master/html/xrt_native_apis.html.

https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://www.xilinx.com/products/boards-and-kits/alveo/u50.html
https://developer.ridgerun.com/wiki/index.php/Profiling_with_GPerfTools
https://developer.ridgerun.com/wiki/index.php/Profiling_with_GPerfTools
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls/Introduction
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://github.com/Xilinx/Vitis-HLS-Introductory-Examples
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Getting-Started-with-Vitis
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Getting-Started-with-Vitis
https://docs.xilinx.com/r/en-US/ug1393-vitis-application-acceleration/Getting-Started-with-Vitis
https://xilinx.github.io/XRT/master/html/xrt_native_apis.html
https://xilinx.github.io/XRT/master/html/xrt_native_apis.html

	Abstract
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Abbreviations
	Introduction
	Motivation
	Scientific Contributions
	Thesis Outline

	Theoretical Background
	Learning With Errors (LWE) and Lattice-based Cryptography
	Fully Homomorphic Encryption (FHE) and FHE Schemes
	Modular Arithmetic
	Residue Number System (RNS)
	Number Theoretic Transform (NTT)
	OpenFHE Open-source Library

	Related Work
	Accelerating FHE Schemes
	The FPGA Perspective
	Thesis Approach

	Defining the Architecture
	OpenFHE Library Profiling
	Acceleration Target
	Target Architecture

	FPGA Implementation
	Tools Used
	Vitis IDE
	High Level Synthesis (HLS)
	Vitis pragmas and optimizations

	FPGA Platform
	Design Space Exploration
	NTT Accelerator Design
	Host Code Design
	Kernel Code Design

	Integration with OpenFHE
	Generating an .so file using Xilinx Vitis IDE
	Configuring OpenFHE

	Results
	FPGA Resource Utilization and Performance
	Performance Evaluation

	Conclusions and Future Work
	Conclusions
	Future Work

	OpenFHE Modified Source Code
	References

