TECHNICAL UNIVERSITY OF CRETE

ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Control of Humanoid Robot
through Eye Tracking Interface
for People with Moving Disabilities

Athanasios-Iakovos Apostolopoulos

Thesis Committee
Professor Michail G. Lagoudakis (ECE)
Professor Katerina Mania (ECE)
Professor Panagiotis Partsinevelos (MRE)

Chania, March 2024

IIoAYTEXNEIO KPHTHE

2 XOAH HAEKTPOAOION MHXANIKQN KAI MHXANIKON YTIOAOTIETQN

"EAeyyoc AvOpmmogro0vg Poumnor
néoo Awemapig lopakorovdnong BAéupatog
vio. Atopa pe Kivntikn Avokoiia

AOBavaoroc-Iakmpog ATooToAOTOVAOS

E&etaotucn Emtponn
Koafnyntmc Myoni I'. Aayovddxkng (HMMY)
Kanyntpio Katepiva Movid (HMMY)
KaOnyntc Havayiwng HoprowvéBerog (MHXOIT)

Xavid, Mdaptioc 2024

Abstract

In the field of assistive technologies for the mobility impaired people, this diploma thesis
embarks on a journey motivated by the profound aspiration to enhance the quality of life for
individuals facing total mobility impairment. Confronted with day-to-day challenges that
often necessitate reliance on others for assistance, the quest for alternative methods to
provide accessibility becomes imperative. This journey involves a meticulous exploration of
diverse technologies, tools, and assets to serve the specific needs of individuals with
tetraplegia within the broader domain of assistive technologies. More specifically, our
research addresses the overarching problem by combining robotic systems and eye-tracking
technology, seeking to empower individuals with limited autonomy through innovative and
intuitive solutions and to bridge the social gap by providing some alternative autonomy. Our
approach centers on integrating eye-tracking technology into a Unity-created application and
establishing a communication protocol through the Robot Operating System (ROS)
framework to control a robotic system in simulation. The result is an intuitive, lean, and
user-friendly application to control a humanoid robot. While several challenges emerged in
the course of the thesis, such as compatibility issues and software limitations, the end system
lays the groundwork for the development of future applications in the field of assistive
technologies. A multifaceted user evaluation of the system's performance is also discussed.
Overall, our approach encapsulates a pioneering effort in assistive technologies, illuminating
a path toward a more inclusive and accessible future.

IHepiinyn

2T0vV TOUED TV VTOGTNPIKTIKOV TEYVOAOYLOV Yoo GTOHO HE KWWNTIKO TpoPfAnuata, 1M
TOPOVCO SIMAMUATIKY epyacia Eekvd Eva Taliol pe kivintpo ™ Pabid emdinén va Pertidoet
mv mowdtto {®NG aATOUMV TOL OVTILETOTILOVY OAIKT KIvNTIKY avarmpio. AVIIHETOTOL IE
KAOMUEPIVEG TPOKANGELS OV GLYVA amottovv TV eEApPTNOoN amd GAAovg Yo Bonbeta, M
avalnon evoAraxTikav pebodwv yio v mapoyn tposPaciotntag KadicToTol ETTOKTIKY.
Avtd 10 Ta&idr meprlopPdaver pio oxoAaoTikn €EepedVOT] OOPOPETIKAV TEYVOAOYLDV,
gpyoreiov kot mwOpwV Yy TNV €EUINPETNON TOV EWIKOV OVAYKOV TOV OTOH®V UE
TETPOTANYIO GTOV €VPVTEPO TOUEN TOV VIOCTNPIKTIK®OV TEXVOAoyI®V. [Tio cuykekpuéva, 1
€peuvd pog avtipeT®milel To YEVIKOTEPO TPOPANUA GLVOVALOVTOS POUTOTIKG GLGTILOTOL KO
teyvoroyia mapakorovOnong PAEUUOTOC, EMOOKOVTIOS VO EVOLVOUDGCEL ATOMO. LE
TEPLOPICUEVT] OVTOVOUIN HECH KOVOTOU®MY Kol SosOnTikdv ADGEMY Kol VO YEPUPNDGEL TO
KOWOVIKO ybouo mop€yovtog KAmow evOAAAKTIK ovtovouio. H mpocéyyion pog
EMKEVIPOVETAL GTNV EVOMUATOCN NG TEYVOAOYiag mapakolovnong PAéupatog ce o
epappoyn mov dnuovpynnke oto mepifdiiov Unity Kot otnv aviantuén evog TpOTOKOAAOL
emkovoviag pécm tov mAaiciov Robot Operating System (ROS) yw tov éheyyo evog
POUTOTIKOY GLOTNHATOG Ge TTpocopoimwon. To amotélecpa sivar por dStousOnrtikn, Mty Kot
QUMK TPOG TO YPNOTN EQOPUOYN Yo TOV €Aeyyo €vOG avOpmmoegldovc poumdt. Evad
TPOEKLYOV OPKETEG TPOKANGES KOTd TN JSdpKeww NG epyaciag, Ommg Cnmmuota
ouUPaTOTNTAG Kol TEPLOPIGHOL AOYIGHIKOD, TO TeEMKO cvotnua Bétel Tig Pdoelg yo v
AVATTUEN LEALOVTIKMOV EQOPUOYDY GTOV TOUEN TMV VIOCTNPIKTIKMOV TEXVOAOYLDV. Zu{nteiton
emiong p ToAOTAELPT AEOAOYNON TOV EMOOCEMV TOV GLGTHUOTOS OO TOVG YPY|OTES.
YUVOMKA, M TPOGEYYIOY| LG TEPIKAEIEL 1O TPOTOTOPLOKT) TPOCTAOELN GTIG VITOCTNPIKTIKEG
TEYVOLOYiEG, TOL OaVOdEIKVVEL oL Topeic. TPog €vo PEAAOV o TPOSPAcLo, Ywpig
OTTOKAEIGLLOVG,.

Acknowledgments

First of all, I would like to thank the thesis committee, Professor Michail G. Lagudakis,
Professor Katerina Mania, and Professor Panagiotis Partsinevelos for their guidance and
support.

I would like to thank the SencelLab research team for their support and providing a great
and inspiring environment for innovation and research. I especially thank Angelos
Antonopoulos, a good friend and colleague, for his guidance, support, and inspiration all
those years.

I would like to thank the Surreal research team for their advice. Specifically to Minas
Katsiokalis for his guidance.

Last, but not least, I am grateful to my family, my cornerstone, for their love, faith, and
sacrifices.

Athanasios-lakovos Apostolopoulos, March 2024

10

11

Table of Contents

ADSIFACTccuueiitiiiiniiiiniiiitncisntecisstecssstesssstissssnssssstesssssesssssessssesssssasssssssssssessssssssssssssssssssssasssssnse 5
Iepiinyn 7
Acknowledgments 9
Table Of CONLENTS...cccceiieiiriiiniiiiniiiiteisiteeisnicsssnecssssecssssecssssesssssessssessssssessssssssssesssssssssssssses 11
List of Figures 13
LiSt Of TADIES.cuuueieeeriiiiiiiiiiiniiicitiecsiticsnteninnesineiessnsecssssessssessssssssssssesssssessssnesssesssssssssssssssns 14
LiSt 0f ADDIevIAtionS......cciceeiiiieicsiiicsseiissenenisnrenssnncssnecsssnecssssecssssesssssssssssessssssssssssssssesssssses 15
Chapter 1 INtrodUCTION.....ueeiiciirnriecssssnreccsssnsicssssssresssssssssssssssssssssssssasssssssssssssssssssssssssssssssnsss 16
1.1 ThesiS CONIIDULION.cccuiiieiiieeiieeeiieeeieeeetee et e et e e ereeesaaeeeraaeeeaaeeenaeeensaeesnsaeeennes 17

1.2 THESIS OVEIVIEW....ececuiieeiiieiiieeeieeeeiteeeteeesiteeessaeeetaeesssaaessaeesssaeessseeessseeesseessseennseeas 17
Chapter 2 BacKg@roUNd.......cccceivericcsisnricssssnsnessssssncsssssssessassess 19
2.1 Eye Tracking TeChNOIO@ICS.......c..eeeiuiiieieiieeiieeeiie ettt et tae e aae et eeeavee s 19
B U 1V OO PP TUUORUSTUPRRPROPON 19

2.3 Rob0ot Operating SYSEIM.......c..eiiiiieiiiieeiieeeiieeeieeeeieeeereeesreeesereeeaaeeesaeessseeessseeesnnes 20

B N € 1 /<) oo USRS 21

2.5 TOUTAPICEIA. ...ccuveeeiiieeeiieeeiee ettt e et e et e e et e e e taeestaeesstaeessseeessseeesssaeessseeesseeensaeanns 21
2.6 ASSIStIVE TEChNOIOZICS. ... viieiiiieiie ettt e sre e e veeenaae e 22
Chapter 3 Problem Statement 23
3.1 Control of a Humanoid Robot by People with Mobility Impairment.......................... 23

3.2 Related WOTK......ooieiiiiieeee ettt e 23
Chapter 4 OUur APProach...cceeciccncnniicssssnniecsssssseccssssssscsssssssess 25
4.1 Eye Tracking Came@Ta...........ceccuiieeiieeeiieeeieeesieeesveeesreeesseeesareessseeesssseessseeesssesesssesenns 25
4.1.1 Hardware OVEIVIEW......cc..iiiuiiiiiiiieeiie ettt ettt ettt ettt e e e e ee 25

4.1.2 CapabilitieSs....ccuveeeeiieeiieeiee ettt et e et e et e et e e e tae e e ta e e enaaeenrraeeennee s 26

4.1.3 Tobii Experience AppliCation..........c.ceecuereeiuieeriiieeiiieesieeeriee e eieeeevee e 26

4.1.4 Unity SDK and FUnctionality..........ccccecueeeviiieeiiieeeiie et 27

4.2 Development of Graphical User Interface...........ccccouveeviieeiiiencieiciieceiee e 28
4.2.1 GUI DESIZN..cccuuiiieiiieeiiieeiieeeee e eiteeeieeesveeestteeeeveeeabeessnaeessseeesnsaeessseeessseeenssens 28

4.2.2 GUI LAYOUL....cutiiiiiiieee ettt ettt ettt e i 28

4.2.3 Eye Tracker Controlled Selection............ccccveeeviiierciieeniiieeeiee e e 30

4.3 Personal RODot 2 (PR2)...cciiiiiiiiiinnnneeiiiiccsinnssssnssiicccssssssssssssssscssssssssssssssssscsssssssssasssss 31

A T B D 1T o3 1 15 (o) 4 FO USRS 31

4.3.2 Hardware OVEIVIEW......cc..iiiuieiiiiiieeiie ettt ettt ettt ettt et sabeesbee e ee 32

4.3.3 Software ArChiteCtUIe.coiiiiiiiiiiieiiete e 32

4.3.4 Capabilities....ccuvieeeeiieieiiie ettt et e et e e e et e e et e e e e e e nrreeennaee s 32

4.3.5 ROS Gazebo SImulation..........c.coiiiiiiiiiiiiiiieeieeee e 33

4.3.6 SIMUIAtION SEt UP....viiiiiiiiiiieiciie ettt ettt e e are e e e e sseeeenes 33

4.4 Bridge between Unity and ROS...........coooiiiiiiiieeeeceee e 34
4.4.1 ROSbridge package (ROS Side)......cccvuiiiiiiriieiieiieeiieeiieeieesee e 35

4.4.2 ROS# package (UNity Side)......cccueerrieriieiiieiiieiienieeieeeee et eseee e seeeeveeseneennees 35

4.5 PR2 Control Methods.........coocviiiiiiiiiiiieeieeiieeie ettt seveesaesane e 36
4.5.1 PR2 Movement PUDLIShET..........c.cccuiiiiiiiiiiiieicce e 36

4.5.2 PR2 JOINt CONIOL.....iiiiiiiiieiieiiieiie ettt ettt 37

4.6 PR2 POV StrEamMING......cc.eeeiiiiiiieiieiiieeiiesiteeieesieeeteesieeesseessaessseesssessseensaesnseesseessseenses 38
4.6.1 web_video Server (ROS)......coiiiiiiiiiiiieeiiecie ettt 38

4.6.2 WebStream (UNILY)......cceeiierieeiiieiieeiieeiie et esite e esteeebeesaeesveesseessseessnesnseenseenns 38
Chapter 5 ReSUILS......uiiiiviiiiiiiciiiinisnnicssntisssnnissssnesssssssssssosssssssssssossssssssssssssssssssssssssssssssssssses 40
S T USET STUAY .c.vieeeveeiieeiie ettt ettt et e ettt et e et e ete e tteesbeessaeenseessseesseenseessseenseassseeseesnsaans 40
5.1.1 User Study Procedure...........ccueeiieiiieiiieiieiecie ettt 41

5.1.2 User Study First Trial........cceeoieeiiiiiieiiiciiecieeieesee ettt 42

5.1.3 User Study Second Trial.........ccceeiiiiiiiiieiiieiecieeeecee e 43
Chapter 6 Conclusions 44
0.1 CONCIUSION.ouviieiiieiieeiieeiie ettt et ete et stt e et e et e e b e e s aeeeabeesaeeesseenssesnsaessaeesseenssesnsaens 44
0.2 DISCUSSION.....eeutieeiiietieeieentteeteestteeteestteeteesseeeseessaeesseessseenseessseasseesssesnseessseenseesssessens 44

0.3 FULUIE WOTK ...ttt ettt ettt e st e e e ssbeebeesaseesseessaeensaens 45
6.4 Lessons Learned...........cccueeiiiiiiieiieiiieiteceeetesee ettt 45

BiblIOGrapRhy...cceeiciviiniviinisnicssseicssnicssnicsssnicsssnsssssssssssssssssossssssssssssssssssssssssssssssssssesssssessnsses 46

13

List of Figures

Figure 2.1: Tobii screen-based evye trackers p.19

Figure 2.2: ROS File System, The Computation Graph Level, The Community Level p.21
Figure 3.1: A user is sitting in a wheelchair and using the system p.24

Figure 3.2: Eye-gaze-controlled telepresence systems p.24

Figure 4.1: Tobii Eye Tracker 5 p.25
Figure 4.2: Tobii Experience application p.26

Figure 4.3: Camera calibration feature p.27

Figure 4.4: Set up display feature p.2

Figure 4.5: Primary Menu p.29
Figure 4.6: Head Movement Menu p.29

Figure 4.7: Han ntrol Menu p.30

Figure 4.8: PR2 Movement Menu p.30
Figure 4.9: PR2 Robot p.32

Figure 4.10: PR2 Empty World Simulation p.34

Figure 4.11: Bridge between Unity and ROS p.35

Figure 4.12: ROS Nodes Graph presenting Nodes Only p.38
Figure 4.13: Project Overview p.39

Figure 5.1: Application running on Unity on Windows 11 machine p.40

Figure 5.2: GUI and Tobii Eye Tracker 5 camera placement p.40
Figure 5.3: PR2 ROS Noetic Simulation on Ubuntu p.20.04 41

Figure 5.4: Expansion of th ns’ box colliders p.42

List of Tables

Table 4.1.1 Tobii Eyve Tracker 5 Characteristics

Table 5.1.2 User Study First Trial Results
Table 5.1.3 User Study Second Trial Results

14

15

List of Abbreviations

POV
ROS
GUI
SDK
API
PR2
URL
HTTP
PCCR

Point of View

Robotic Operating System
Graphical User Interface

Software Development Kits
Application Programming Interfaces
Personal Robot 2

Uniform Resource Locator
HyperText Transfer Protocol

Pupil Central Cornwall Reflection

16

Chapter 1 Introduction

Individuals with mobility impairments navigate daily existence fraught with challenges far
beyond physical limitations. The simple tasks that many take for granted, such as moving
from one place to another or accessing basic amenities, become arduous undertakings
fraught with obstacles. Dependence on external support is frequently an undeniable truth,
gradually diminishing individual autonomy and self-reliance. However, the availability of
personnel to provide necessary aid is only sometimes guaranteed, leaving individuals
grappling with a profound sense of dependency and restricted freedom. In this context, the
quest for alternative methods that can empower individuals with mobility impairments to
reclaim control over their lives takes on paramount importance. Within this domain of
assistive technologies, the pursuit of innovative solutions unfolds, driven by the imperative
need to alleviate daily struggles and enhance the quality of life for those with mobility
challenges.

The field of robotics has witnessed remarkable advancements, particularly in accessibility
support for individuals with mobility impairment. These innovations aim to enhance the
quality of life for people facing partial or complete mobility challenges, offering them
newfound independence and opportunities for interaction with their surroundings. One
significant avenue within this domain involves the integration of humanoid robots,
bridging the gap between individuals with limited mobility and the environment.

The motivation behind this thesis stems from the deep desire to empower individuals
facing mobility challenges. In the pursuit of providing telepresence capabilities and
self-assistance, integrating robotics becomes a promising avenue. Enabling users to interact
with their surroundings, navigate spaces, and perform tasks remotely has the potential to
redefine accessibility standards. By leveraging robotic technologies, particularly humanoid
robots, we strive to bring a transformative change that enhances the overall well-being of
individuals with partial or complete mobility impairment.

Despite the advancements in robotics for accessibility support, one persistent challenge
remains—the limited means of user input for controlling humanoid robots. Conventional
interfaces may not adequately address the diverse needs and capabilities of individuals
with mobility impairment. This creates a barrier to the seamless interaction between users
and robots, restricting the full potential of these technologies.

In this thesis, we propose a novel approach to address the aforementioned challenge. We
harness the capabilities of an eye tracker to serve as an intuitive control interface. Through
the integration of an eye-controlled user interface developed in Unity, users can effortlessly
send commands to a PR2 (Personal Robot 2) robot. The robot, operating within the Robot
Operating System (ROS) framework and simulated in the Gazebo environment, responds
to these commands, offering a tailored solution to the limited user input problem. This

17

innovative approach opens avenues for telepresence and self-assistance, redefining the
accessibility landscape in robotics.

1.1 Thesis Contribution

The primary contribution of this thesis is developing a cohesive system that leverages
eye-tracking capabilities to control a cursor within a Unity-based GUI, subsequently
interfacing with the PR2 robot through the ROS Noetic system. The approach involves
meticulous design considerations, addressing challenges in message type compatibility
between Unity and ROS, and refining the eye-tracking implementation for enhanced user
experiences. The results demonstrate a functional system, showcasing the successful
integration of these diverse technologies to enable more natural and efficient human-robot
interactions. This research contributes to the advancement of assistive technologies and the
broader field of robotics, where intuitive control mechanisms play a pivotal role in shaping
the future of human-robot collaboration.

1.2 Thesis Overview

e Chapter 2 - Theoretical Background: In this chapter, the presentation of all the
essential background knowledge needed for this thesis is included. An introduction
to all technologies, tools, and assets used in the implementation process. Finally, a
brief description of Tetraplegia and the domain of Assistive Technologies is
presented. It gives an insight into the challenges addressed in this thesis.

e Chapter 3 - Problem Statement: This chapter identifies and articulates the core
issues and challenges that form the basis of the research in this thesis. A detailed
analysis of the problems faced by individuals with mobility impairments and the
limitations of existing assistive technologies is presented. This chapter sets the
stage for the subsequent chapters, framing the context for the proposed solutions.

e Chapter 4 - Approach: This chapter provides a comprehensive insight into the
methodologies, strategies, and approaches adopted to tackle the identified
problems. It outlines the systematic process employed to design and implement the
solution, offering a transparent view of the thought process and decision-making
that led to the development of the system.

e Chapter 5 - Results: This chapter presents the results of a user study conducted to
evaluate the eye-tracking-controlled application. Two rounds of testing were
performed with four participants, focusing on intuitiveness, usability, aesthetics,
response time, and identifying any issues. The results indicated that the system
achieved its goal of providing an intuitive, streamlined, and user-friendly interface,
especially benefiting scenarios where a standard mouse is impractical.

e Chapter 6 - Conclusion: The final chapter consolidates the entire thesis, providing
a cohesive summary of the journey from problem identification to solution
implementation. It includes a discussion of the results, their implications, and their
contribution to the broader field of assistive technologies. The concluding chapter

18

also paves the way for future work, reflecting on lessons learned and offering
insights for continued advancements in the domain.

19

Chapter 2 Background

2.1 Eye Tracking Technologies

Eye-tracking technologies [1] have revolutionized human-computer interaction by
capturing and analyzing individuals' gaze behavior. Employing various techniques, these
technologies monitor the movement and focus of a user's eyes, providing valuable insights
into visual attention and cognitive processes.

2 The illuminators The cameras
craata a pattam of take high-resolution
near-infrared light on images of the user's
1 An eye tracker /ﬁ\\ the eyes. eyes and the patterns.
consists of cameras, b .
illuminators and £ Y :
algorithms. ./ \

The image processing

4 algorithms find specific
details in the user's eyes and
reflections patterns.

Gaze point
P> Based on these details the eyes’

position and gaze point are
calculated, for instance on a computer
monitor, using a sophisticated

3D eye model algorithm.

The Eye Tracker

Figure 2.1: Tobii screen-based eye trackers

The most common method is called pupil central corneal reflection (PCCR). As shown in
Figure 2.1, it involves using infrared light to illuminate the eyes and capture reflections of
the cornea and retina. This data is then processed to determine the point of gaze, enabling
precise tracking of eye movements. Eye tracking finds applications across various
domains, from usability studies in design to assistive technologies for individuals with
disabilities. In the context of this thesis, eye tracking serves as a pivotal interface, allowing
users to control a user interface and, consequently, a humanoid robot, adding a different
solution to accessible and intuitive interaction for individuals with mobility impairments.

2.2 Unity

Unity [2] is a cross-platform game engine developed by Unity Technologies. Originally
designed as a game engine, Unity offers robust capabilities for rendering graphics,

20

handling physics, managing animations, and creating immersive 3D and 2D environments.
Unity provides a broad set of tools and features that empower developers to build
applications for diverse platforms. Unity's Asset Store provides a vast marketplace where
developers can find and share assets, plugins, and tools to enhance their projects.
Development accelerates by offering pre-built components and functionalities. Unity's
versatility and feature-rich environment make it a preferred choice for developers creating
various applications, including Ul-centric ones.

2.3 Robot Operating System

Robot Operating System (ROS) [3] is an open-source middleware framework designed for
the development, integration, and operation of robotic systems. Despite its name, ROS t
name, ROS is not an operating system but a collection of tools, libraries, and templates that
facilitate the development of robotic systems. It was initially developed by the Stanford
Artificial Intelligence Laboratory in collaboration with Willow Garage and later
maintained by the Open Source Robotic Foundation (OSRF). ROS has evolved into a
standard in the robotics community, fostering collaboration and innovation across a
plethora of robotic applications.

Many useful and key features define this tool. ROS is built in a middleware architecture,
enabling seamless communication among distributed robotic communications. This
communication middleware facilitates the exchange of data between modules, allowing for
the construction of complex robotic systems composed of a variety of sensors, actuators,
and computational units.

ROS adopts a distributed computing approach, breaking down robotic systems into
modular units called nodes. Nodes are lightweight processes that communicate
asynchronously with each other using a publish-subscribe messaging system. This way the
nodes exchange data seamlessly and operate independently of each other.

In ROS, topics are a fundamental communication mechanism that enables different parts of
a robotic system to exchange data. ROS topics facilitate the publish-subscribe
communication. This decoupled communication architecture enhances modularity,
flexibility, and scalability in robotic systems.

Through its service framework, remote procedure calls (RPC) are also supported in the
form of requests and replies. A service provider node registers a service while service
clients make requests and wait for replies. Standardized message types enable nodes to
communicate uniformly.

Functionality in ROS is Organized into packages, which are directories containing
configuration files, libraries, and executables. Packages encapsulate specific
functionalities, making code reuse and collaboration more manageable.

21

The ROS Master registers all of the nodes in the ROS system. It tracks publishers and
subscribers to topics as and as services. It enables individual ROS nodes to locate one
another. Once these nodes have located each other, they communicate with each other
peer-to-peer.

ROB

v Master
k Manifest #— 35t + * Registration ¢ Begistrakion ¢
FRGaOE ROS jessageg ROS Magsages ROS
I Hode 1 Hoda 2 Hoda n
rerk] Kanisnail [Bers i ng T Cihars T Messages T
ROS Hode 2

Subseriber
BOS Nedel e =
Publisher———=3_F Topic: /JolntPos :
Message Type: std msgs/String

ROS Kode n
Subscribar

Figure 2.2: ROS File System, The Computation Graph Level, The Community Level

2.4 Gazebo

Gazebo [4] is an open-source 3D simulation environment widely used in robotics for
simulating the dynamics and interactions of robots in diverse environments. It serves as a
powerful tool for testing and validating robotic algorithms, controllers, and systems before
deploying them on physical hardware. Gazebo is part of the ROS ecosystem, seamlessly
integrating with other ROS tools to create a comprehensive robotic development platform.

Gazebo facilitates the development and testing of robot algorithms, including navigation,
perception, and control. Researchers and developers can iterate quickly in the simulated
environment, refining algorithms before deploying them on physical robots.

2.5 Tetraplegia

Tetraplegia (preferred to “quadriplegia”) [5] [6], is a paralysis condition that results in the
loss of sensory and motor function in all four limbs and typically the torso. It is caused by
injury or damage to the spinal cord, usually in the cervical region (neck), affecting the
nerves that control movement and sensation throughout the body. Individuals with
tetraplegia experience varying degrees of impairment, ranging from partial to complete
paralysis, depending on the level and extent of spinal cord injury. This condition often
leads to challenges in mobility, self-care, and overall physical independence.
Rehabilitation, assistive technologies, and support services play crucial roles in helping
individuals with tetraplegia adapt to and navigate their daily lives.

https://wiki.ros.org/Nodes
https://wiki.ros.org/Topics
https://wiki.ros.org/Services

22

2.6 Assistive Technologies

Assistive technology [7] refers to devices, tools, software, or equipment designed to
enhance the functional capabilities and independence of individuals with disabilities or
limitations. These technologies aim to mitigate barriers and facilitate access to information,
communication, education, employment, and daily activities. Assistive technologies can
cover a broad spectrum, including mobility aids, communication devices, screen readers,
adaptive computer peripherals, and other specialized tools tailored to address specific
challenges associated with various disabilities. The primary goal is to empower individuals
with disabilities, promote inclusivity and improve their overall quality of life by enabling
greater social participation.

23

Chapter 3 Problem Statement

3.1 Control of a Humanoid Robot by People with
Mobility Impairment

People with mobility impairments face substantial challenges interacting with their
environment and accessing digital applications. Traditional interfaces often prove
inadequate for individuals with limited or no physical mobility. The primary problem
addressed by this thesis is the need for a practical, intuitive, and comfortable interface
catering to this demographic. Benefiting from eye-tracking technology, this project aims to
provide a lean solution to enable users to interact with the application through gaze,
offering a pathway for those with limited physical capabilities to access and control the
digital interface effortlessly.

Furthermore, the lack of accessible means for individuals with mobility impairments to
navigate and engage with their surroundings remains a significant concern. This thesis
extends its focus to address this broader challenge by entering the field of robotics. The
ability to remotely control a humanoid robot opens new possibilities for individuals with
mobility impairments to engage with the world, overcome physical limitations, and foster a
sense of independence. This multifaceted approach tackles key problems faced by
individuals with mobility impairments, providing comprehensive solutions to enhance their
daily lives.

3.2 Related Work

In accessibility support, assistive technologies have emerged as invaluable tools designed
to empower individuals with mobility impairments, fostering independence and inclusion.
These technologies span a diverse range, employing various means and methods to address
these unique challenges. There are three basic principles to achieve seamless integration of
the user’s capabilities. They are improving the assistive technology mechanics. Improving
the user-technology physical interface. Sharing of control between the user and the
technology. Powered wheelchairs, prosthetic limbs, functional electrical stimulation,
wearable exoskeletons, and telepresence robots are a few great and diverse examples that
this field encompasses.

In this study [8], a wheelchair-mounted 6DOF assistive robot is controlled by an Eye-gaze
interface as shown in Figure 3.1. The objective is to design an eye-tracking assistive XArm
6 robot control system for individuals with a disability. The developed method is meant to
enable self-assistance activities in daily living. The graphical user interface is designed and
integrated with the developed control architecture to achieve the goal.

24

Eye
Tracker Interface

Emergency =&

‘ Switch

Figure 3.1: A user is sitting in a wheelchair and using the system

Another interesting study [9] on the matter adopted a different approach. It utilizes a VR
headset to accomplish the eye-tracking to give control to the user. On the other side of the
communication a simple robot mounted with a 360-degree camera as a telepresence
device. This system is also targeted at People with Motor Disabilities to provide
opportunities for social interaction and participation in public events. Figure 3.2 is the
overview of Eye-gaze-controlled telepresence systems a telepresence robot with a VR
headset.

Live video stream

Gaze control

v

VR HMD Telerobot that carries /8
with eye trackers a 360° video camera

Figure 3.2: Eye-gaze-controlled telepresence systems

25

Chapter 4 Our Approach

4.1 Eye Tracking Camera

4.1.1 Hardware Overview

The Tobii Eye Tracker 5 [10] is a cutting-edge eye-tracking device designed for integration
with various applications and systems. It is a compact and unobtrusive hardware unit
equipped with advanced infrared sensors capable of precisely capturing the user's eye
movements. The device is designed to be easily mounted on a computer monitor, offering a
non-intrusive and seamless eye-tracking experience. With its high sampling rate and
accuracy, the Tobii Eye Tracker 5 provides detailed data on gaze points, allowing
developers to unlock a new dimension of interactivity in their applications.

Sensor IS5 with custom Tobii NIR sensor (850nm)
Field of view 40 x 40 degrees

Support screen size 157 t027” [16:9] or 30” [21:9]

Head tracking CPU + Network (CNN) combined / 6DoF
Image sampling rate and gaze frequency 133Hz non-interlaced gaze at 33Hz
[Mluminator 33Hz

Software Tobii Experience

Table 4.1.1: Tobii Eye Tracker 5 Characteristics

Figure 4.1: Tobii Eye Tracker 5

26

4.1.2 Capabilities

Leveraging state-of-the-art technology, the Tobii Eye Tracker 5 boasts impressive
capabilities that extend beyond traditional input methods. It can accurately track head and
eye movements, including gaze direction and fixation points, enabling precise interaction
with digital content. The device supports dynamic calibration, ensuring accurate tracking
for users with varying eye characteristics. Additionally, it incorporates features like gaze
awareness, enabling applications to respond intelligently to the user's attention, and
enhancing the overall user experience. With these capabilities, the Tobii Eye Tracker 5
opens doors to innovative user interfaces and immersive experiences.

4.1.3 Tobii Experience Application

The Tobii Experience [11] application complements the Tobii Eye Tracker 5, providing
users with a platform to explore the device's capabilities. This application serves as a
demonstration of eye-tracking technology, allowing users to understand its potential in
real-world scenarios. This application acts as a gateway for users to familiarize themselves
with the technology's capabilities before integrating it into their preferred applications.
This application also provides two calibration tools to help increase accuracy. The
“Improve calibration” feature configures the tracker and creates a personalized calibration
profile. The “Set up display” feature sets the ratio between the camera and screen scale.

ience

Tobii Eye Tracking

To TouxvidtL opy (el

Mouyvidt Metadoan ATIOPPNTO KO GPCAELX

P YN

A

MopoywykoTnTa

a!l

Figure 4.2: Tobii Experience application

27

KaBloTe og pa katakdpupn Bon Pmpooté amd tnv 0Bdvn

Figure 4.3: Camera calibration feature

METOKIVAOTE TIG YPXHMEG OTO ONUASIO ETAVW QMO TOV AVIXVEUTH|

Figure 4.4: Set up display feature

4.1.4 Unity SDK and Functionality

Tobii offers a robust Unity SDK [12] that facilitates seamless integration of the Tobii Eye
Tracker 5 into Unity-based projects. The SDK provides an API and tools to access
eye-tracking data within the Unity environment. Developers can effortlessly incorporate
gaze data into their applications, allowing for gaze-based interactions and insights into user
behavior. The Unity SDK also supports features like dynamic object mapping, enabling
developers to create immersive experiences that respond intelligently to the user's gaze.
With straightforward integration and comprehensive documentation, the Tobii Unity SDK
empowers developers to harness the power of eye-tracking technology in their projects.

The SDK offers a native C++ API called Tobii Game Integration API as well as support for
the game engine Unity. TobiiAPI is a static API that provides functionality like the
collection of gaze point data, head pose data, and User presence. Finally, the Tobii G2OM
tool is a machine-learned selection algorithm that accurately predicts what the user is
looking at. It helps developers focus on creating great eye-tracking experiences, while also
giving users a more consistent experience.

28

4.2 Development of Graphical User Interface

4.2.1 GUI Design

In designing the Graphical User Interface (GUI) for the eye-tracking selector, three
fundamental principles guided the development process. First and foremost, the emphasis
was placed on usability, particularly with the integration of big buttons tailored for easy
access by the Tobii Eye Tracker 5. Recognizing the precision of gaze-based interactions,
the larger buttons aim to facilitate intuitive selection, aligning with the natural eye
movement patterns captured by the eye-tracking hardware. Additionally, a spread layout
strategy was employed to minimize the likelihood of incorrect button selection. This
approach ensures that buttons are strategically spaced, reducing the risk of inadvertent
clicks and enhancing the overall accuracy of user interactions. To further optimize the user
experience, the GUI incorporates a categorization system with smaller menus, fostering a
lean, clean, and intuitive environment. By organizing buttons into logical groupings, the
interface achieves a streamlined design, promoting efficiency and ease of navigation for
users interacting with the eye-tracking selector.

4.2.2 GUI Layout

The Graphical User Interface (GUI) of the application is strategically organized into four
distinct menus, with a primary menu serving as the central hub and three specialized
menus dedicated to the control of specific robot movements. The core menu acts as the
focal point, providing users with easy access to the various functionalities of the
application. Within this core menu, users can seamlessly navigate to the specialized menus
tailored for precise control. The 'Head Movement Menu' facilitates intuitive manipulation
of the robot's head, allowing users to direct their gaze with precision. The 'Hand Control
Menu' empowers users to interact with the robot's hand movements, enabling seamless
coordination of dexterous actions. Lastly, the 'PR2 Movement Menu' focuses on the overall
locomotion and positioning of the PR2 robot, providing users with comprehensive control
over its movements. This modular approach not only ensures a clean and organized user
interface but also allows for efficient and intuitive management of diverse robot
functionalities through a well-structured menu hierarchy.

29

POV Camera 1

Hand Movinent

Figure 4.5: Primary Menu

Head Movment

POV Camera 1

Head Left Head Right

Figure 4.6: Head Movement Menu

30

Hand Controle

POV Camera 1

Figure 4.7: Hand Control Menu

Movement

POV Camera 1

Turn Left Turn Right

Figure 4.8: PR2 Movement Menu

4.2.3 Eye Tracker Controlled Selection

In the strategic development of the application, the Unity Game Engine emerged as the
natural choice, driven primarily by its exclusive compatibility with the Tobii Eye Tracker 5
SDK. Unity, renowned for its versatility and an extensive toolkit tailored for GUI
applications, provided an ideal platform for the seamless integration of eye-tracking
functionalities. The Tobii SDK not only facilitates the access and processing of gaze data
through a rich collection of functions but also augments Unity's capabilities with new
objects and unique components. This symbiotic relationship between Unity and the Tobii
SDK not only streamlines the development process but also opens up a realm of
possibilities, empowering us to create a more immersive and user-centric experience.

31

Gaze Cursor Control:

The "Gaze Cursor_Control 2" script serves as a fundamental component in enabling an
eye-tracking-controlled cursor within the context of the Thesis development. Designed for
integration with the Tobii Eye Tracker 5 and Unity SDK, this script continuously monitors
the connection status of the eye tracker. Upon detection of a connected device, it fetches
the current gaze point in Tobii screen coordinates using the TobiiAPI.GetGazePoint()
function. This gaze point is then validated, converted to Unity screen coordinates, and used
to update the cursor position. The Windows API function SetCursorPos facilitates this
update, ensuring the cursor accurately follows the user's gaze. To enhance the precision of
the cursor movement, the script employs a smoothing factor of 0.15, allowing for a
seamless and responsive eye-tracking cursor control experience. By consistently updating
the cursor position based on real-time gaze information, this script contributes to the
creation of an intuitive and efficient eye-controlled interface, aligning with the overarching
goals of the Thesis development.

GazeClick Script for Button Interaction:

The "GazeClick" script facilitates the interaction between the user's gaze and Ul buttons. It
begins by checking the availability of the Tobii Eye Tracker and retrieving the current gaze
point in Tobii screen coordinates. A ray cast is then performed from the camera, simulating
a ray projected from the user's gaze point onto the screen. If the ray hits a Ul element, the
script identifies the targeted button. To ensure accurate button detection, the script
incorporates a timer mechanism, allowing the system to distinguish intentional button
selection from momentary glances. If the user's gaze dwells on a button for a
predetermined time, the script triggers a button click using the button.onClick.Invoke()
method. This dwell time threshold ensures intentional clicks while avoiding accidental
activations. This way, the script enables intuitive and precise interaction with UI buttons
through gaze-based dwell times, aligning with the principles of eye-tracking technology for
a user-friendly interface.

4.3 Personal Robot 2 (PR2)

4.3.1 Description

The PR2 (Personal Robot 2) [13] is a versatile and advanced humanoid robot designed by
Willow Garage, renowned for its capability to perform various tasks in both research and
practical applications. The robot stands approximately 165 cm tall and features a mobile
base with two large wheels and a collection of sensors, making it adept at navigating its
environment.

32

Figure 4.9: PR2 Robot

4.3.2 Hardware Overview

The PR2 is equipped with a robust set of sensors and actuators, including a Hokuyo laser
rangefinder for mapping and navigation, a Kinect sensor for 3D perception, and a suite of
touch and force sensors for interacting with the environment. Its two 7-DOF arms allow for
precise manipulation of objects, and its torso can tilt to provide additional flexibility in its
actions. The robot's design emphasizes modularity, enabling researchers and developers to
swap out components for experimentation and customization easily.

4.3.3 Software Architecture

PR2 operates on the Robot Operating System (ROS), a flexible framework for writing
robot software. This architecture allows for seamless communication between different
hardware components and software modules. The PR2's software stack includes various
ROS packages for perception, navigation, manipulation, and control. It enables the robot to
perform a wide range of tasks, from recognizing objects and navigating environments to
grasping and manipulating items.

4.3.4 Capabilities

The PR2 has been integral to advancing the field of robotics, serving as a platform for
testing and refining new algorithms and approaches. Its dual-arm design, mobility, and
extensive sensor suite make it suitable for a wide range of experiments, contributing to the
development of more capable and intelligent robots. Overall, the PR2 stands as a testament

33

to the fusion of cutting-edge hardware and software, offering a robust platform for
innovation and exploration in the field of robotics.

4.3.5 ROS Gazebo Simulation

In the comprehensive development and testing of the robotic system crucial to this thesis,
the ROS Noetic Gazebo PR2 simulation [14] stands as a cornerstone. The selection of ROS
Noetic as the underlying simulator, in conjunction with the Ubuntu 20.04 operating system,
was a deliberate choice made to ensure compatibility with Unity (version 2021.3.3f1) and
the communication tools employed in this research. This strategic alignment facilitates
seamless integration between the simulated robot environment and the Unity-based
graphical user interface, streamlining the development process and enhancing overall
system coherence.

Throughout the deliberative process of selecting a suitable robot for this application,
alternatives such as Nao [15] or Pepper [16] were considered. However, after meticulous
evaluation, these options were deemed unsuitable for the telepresence robotic system
envisioned in this thesis. The PR2 emerged as the optimal choice, driven by its inherent
compatibility with ROS Noetic and the abundance of open-source materials and tools
available for its implementation. The decision to leverage the PR2 not only aligns with the
research goals but also underscores the commitment to an open and collaborative
approach, essential for the successful realization of the objectives outlined in this thesis.

4.3.6 Simulation Set Up

To establish the foundation for simulating the PR2 robot in ROS Noetic, a series of key
dependencies and libraries are meticulously installed. The process initiates with the
installation of dependencies for SDformat, a simulation description format crucial for
accurate representation. This encompasses acquiring development tools, libraries, and
necessary packages essential for the subsequent build of SDformat. Following this,
SDformat is cloned from its GitHub repository, specifically opting for version 'sdf6' to
ensure compatibility with the intended simulation framework. A dedicated build directory
is then created, configuring the build using CMake, and SDformat is compiled with a
predefined installation prefix.

Next in the sequence is the installation of ROS Convex Decomposition, a pivotal library
for decomposing convex shapes within the simulation. A fresh workspace is established for
Convex Decomposition, wherein the GitHub repository is cloned, and the workspace is
built using catkin make. The setup script is thoughtfully added to the user's bashrc file,
ensuring seamless sourcing for future use.

Simultaneously, the installation of ROS ivcon, or Inventor File Converter, is undertaken.
This ROS package plays a crucial role in converting Inventor files. Similar to Convex

34

Decomposition, a dedicated workspace is created, the ivcon repository is cloned, and the
workspace is built using catkin make. As a final step, the setup script is appended to the
bashrc file for streamlined future access.

The culmination of these preparatory stages involves the creation of a workspace
specifically tailored for the PR2 simulator. This encompassing workspace hosts a selection
of PR2-related repositories, including the simulator itself (pr2_simulator), the mechanism
packages (pr2_mechanism), common packages (pr2_common), and mechanism messages
(pr2_mechanism msgs). With the framework in place, the workspace undergoes building
using catkin_make, solidifying the essential components required for simulating the PR2
robot within the ROS Noetic environment. This meticulous setup, comprising SDformat
dependencies, Convex Decomposition, ivcon installation, and the PR2 workspace creation,
forms the robust underpinning for the ensuing simulations and experiments in this research
endeavor.

Figure 4.10: PR2 Empty World Simulation

4.4 Bridge between Unity and ROS

Establishing a seamless communication bridge between Unity and ROS serves as a crucial
component for the successful operation of the application. This communication interface
plays a pivotal role in facilitating the exchange of control commands from the Unity-based
graphical user interface (GUI) to the robot, enabling users to interact with the system
intuitively. Additionally, it serves as a conduit for relaying real-time feedback data from
the robot back to the GUI, ensuring that users receive timely and accurate information
about the robot's state and actions. This bidirectional communication framework not only

35

enhances the user experience by providing a responsive control mechanism but also
enables a dynamic and interactive connection between the Unity environment and the
ROS-controlled robot, forming the backbone of the application's functionality.

Unity ROS

Publish Control Control
Signal PR2 Robot

Subscribe to Gazebo
Outcomes Simulation

Figure 4.11: Bridge between Unity and ROS

4.4.1 ROSbridge package (ROS Side)

The ROSbridge package [17],[18] serves as a crucial middleware on the ROS side, acting
as a communication bridge between the ROS environment and external systems, such as
Unity. It facilitates the exchange of messages and commands in a format that is compatible
with both ROS and non-ROS applications. During the simulation, a ROSbridge server is
initiated, running concurrently with the simulation environment. This server becomes the
communication hub, allowing external entities like the Unity-based GUI to interact with
the ROS-controlled robot seamlessly.

While the simulation runs, the ROSbridge server operates as an intermediary, handling
communication between the ROS environment and external systems. This integration
ensures that the simulation environment remains responsive to commands and data
requests from Unity, creating a cohesive and interactive experience.

4.4.2 ROS# package (Unity Side)

The ROS# package [19] is designed for Unity and is the counterpart to the ROSbridge on
the Unity side. It includes essential components like the ROSConnector object and
RosConnector script, which function as the client connecting to the ROSbridge server.
Through the utilization of sockets, the ROSConnector establishes a communication link

36

between the Unity environment and the ROSbridge server, enabling the GUI to send
control commands and receive real-time feedback data from the ROS-controlled robot.

In the Unity environment, the ROS# package seamlessly integrates into the project. The
ROSConnector object and associated script, RosConnector, play a pivotal role as they
connect to the ROSbridge server via socket. This connection establishes a bidirectional
communication channel, allowing the Unity-based GUI to efficiently send commands to
the robot and receive timely updates on the robot's state. The robust integration of ROS#
ensures effective communication between Unity and ROS, forming a cohesive framework
for controlling and monitoring the robot during the simulation.

4.5 PR2 Control Methods

In controlling the PR2 robot through the ROS bridge, the focus is on enabling seamless
communication between the Unity-based graphical user interface (GUI) and the simulated
robot in ROS. The primary challenge lies in the disparity between supported message types
in the ROS# package, where some critical types like

"pr2_controller msgs/Pr2GripperCommand" for gripper movements and
"pr2_controllers msgs/JointTrajectoryActionGoal" for joint movements

are not natively supported. To overcome this limitation, two distinct methods, namely
“pr2_movement pub” and “command pub,” are employed for publishing command
messages.

4.5.1 PR2 Movement Publisher

The ‘pr2 movement pub’ method efficiently handles GUI buttons associated with the
movement of the robot's base. It serves as a critical component for controlling the
movement of the PR2 robot within the simulated environment. This script is part of the
RosSharp.RosBridgeClient namespace emphasizes its role in communicating with the ROS
environment. The script inherits from the UnityPublisher class, which is specialized for
publishing messages of type MessageTypes.Geometry. Twist. This message type is
commonly used in ROS to represent linear and angular velocities, making it suitable for
controlling the robot's movement.

The script is equipped with buttons in the Unity Inspector, each corresponding to a specific
movement command: forward, backward, right turn, left turn, move right, and move left.
Upon pressing any of these buttons, a corresponding method (e.g., "MoveForward’,
"TurnRight") is triggered. These methods set the linear and angular components of the
"Twist’ message according to the desired movement, and a predetermined number of
frames (‘movementFrames’) is assigned for the duration of the movement. The script

37

continuously publishes these 'Twist® messages to the ROS environment, effectively
controlling the robot's movement. This approach ensures a smooth and controlled motion
of the PR2 in the simulated environment, offering a user-friendly way to interact with the
robot.

4.5.2 PR2 Joint Control

On the other hand, for gripper and joint controls, a thoughtful bypass solution is
implemented using the ‘command pub’ method. Here, instead of attempting to publish
unsupported message types directly to the joint controller of the robot, the GUI sends
straightforward "Int16" type messages to a dedicated handling node residing in the ROS
PR2 simulation package named "pr2 limb control." The node, specifically the
"gripper command listener.py," subscribes to a Unity-created topic through the
‘command pub® script. When an "Int16" message is received, the node interprets the
unique values associated with each control button press, subsequently publishing the
correct and supported message type for gripper or joint movements. This strategic by-pass
approach successfully facilitates the GUI buttons in orchestrating predetermined
movements of the PR2 robot, offering a streamlined and intuitive remote control
experience.

This implementation showcases the versatility and adaptability achieved through the ROS
bridge, allowing the GUI to exert precise control over the simulated robot's various
functionalities, including base, gripper, and joint movements, through a simplified button
interface.

Figure 4.12 gives an overview of the pr2 simulation in ros noetic graphically illustrated by
the rqt graph. This graph shows Nodes and the Topics that provide the communication
between them.

38

fcallorated

Sr————

Inarrow stereo textured

—

I
T raow st toctwodtarow st tredpx.
_ e o

Ihamw_gtereo

C:nwm_nwﬂmm;;; —

head o conoler
Rorse gontoler _—— est] conolonmand

= — - o

— —
—

\ Parso sontrollercontiand .
Ir_gripper_controller T

N —) 1=
i - S

e
I S

— oty conlesats ~ font s
T o racton_nods s e T -

e —
—— 1 hsipper controleriommend

Aopper.conroler Agtbpe contoleats _:
T e
oo
e D — —

Agtoper cotledommand. " _-

e o satss I
T ———(pamechwismdagnates

— e fvdestareoffiiage raw

* e cntotertarmand - —
— — o —
— - - T hbydenserer)
C‘».’Tim; _,/»I ... ol (44512, 1709803614618 i:‘) I
joram_eam _ _
ot >

Figure 4.12: ROS Nodes Graph presenting Nodes Only.

4.6 PR2 POV Streaming

4.6.1 web_video_server (ROS)

In the pursuit of establishing a bidirectional communication link between the user and the
PR2 robot, it becomes imperative to provide the user with real-time visual feedback of the
robot's surroundings. This necessitates the streaming of video data from the onboard
camera(s) of the PR2 back to the graphical user interface (GUI). To facilitate this, the
integration of the ‘web video server’ ROS package [20] comes into play. This ROS
package serves as a bridge, enabling the streaming of video data from the robot's cameras
to external applications, such as the Unity-based GUI.

4.6.2 WebStream (Unity)

The "WebStream" script in Unity acts as a crucial component in this video streaming setup.
Its primary objective is to connect to the streaming feed provided by the
‘web_video server’ ROS package and project the video frames onto the GUI. The script

39

utilizes a series of functions and parameters to achieve this functionality. It defines a URL
variable that points to the specific streaming topic and quality settings. The script leverages
Unity's texture and rendering capabilities to display the video feed on a designated mesh
renderer within the GUI.

The "GetVideo® function establishes a connection to the streaming server by creating an
HTTP request to the provided URL. It then retrieves the response stream, initiating the
continuous retrieval of video frames. The "GetFrame® coroutine manages the asynchronous
retrieval of video frames, ensuring a seamless and continuous display of the streaming
feed. By employing the "FindLength® function, the script accurately determines the length
of each frame, allowing for proper decoding and rendering.

Notably, the "WebStream' script provides a practical solution for integrating live video
streaming into the Unity GUI, fostering enhanced user monitoring and interaction with the
PR2 robot. The seamless communication achieved through this script contributes to a more
immersive and intuitive user experience, enabling effective remote control and observation
of the robot's activities.

Tobii EyeTracker 5
Camera

Web Video

Tobii EYE Tracker Streaming
Unity SDK PR2 Robot

ROSBridge
Application pr2_simuletor

Unity 2021.3.3f1 ROS Moetic 1.16.0

Ubuntu 20.04

Figure 4.13: Project Overview

The system was built to cater to the needs of bedridden people with tetraplegia or other
mobility impairments. To provide a surrogate body and help with accessibility to that
surrounding environment and telepresence capabilities through live video streaming from
the robot.

40

Chapter 5 Results

5.1 User Study

A user study was conducted to playtest the application (Figure 5.1) and unearth run-time
problems through the impartial lens of the users. The system was given to four healthy
participants aged twenty-three (23) to fifty-three (53). For this test, two computers were
used, arranged side to side. One is equipped with the eye-tracking camera running the
application on Windows 11 (Figure 5.2), and the other hosts the server, loaded with the
PR2 simulation on Ubuntu 20.04 (Figure 5.3). A video demonstrating the application demo
is available on YouTube [21]. On the top left side of the video the GUI of the application
can be seen, while on the bottom right there is a view of the PR2 Simulation environment.
The participant can be seen both in the upper right and bottom left corner, using the
application hands-free, only by Eye-Gaze interaction.

POV Camera 1

Figure 5.1: Application running on Unity on Windows 11 machine.

Movement

POV Camera 1

41

Figure 5.2: GUI and Tobii Eye Tracker 5 camera placement.

p

XPOPN -~ - @OB|ESZ(BEIE O

Il)1 steps: 1. RealTime Factor:

Figure 5.3: PR2 ROS Noetic Simulation on Ubuntu 20.04

5.1.1 User Study Procedure

Before running each participant's playtest, a mandatory eye-tracker calibration was done.
Creating a personal movement profile from the Tobii Eye-Tracker SDK is recommended to
increase the quality of the outcome. After the calibration, the participants were given a
quick introduction to the scope of this study and were instructed to limit their interaction
with the application to gaze interaction. They were encouraged to do a full walk-through of
the options of the application, after which were left to manipulate it as they pleased.

The study was conducted in two rounds. The first round purpose was to collect first
thoughts on the design and collect any complaints and potential bugs on the application's
runtime. The second round was for the users to assess the quality of some implemented
recalibrations. In both rounds, the participants were given a questionnaire at the end in
order to express their thoughts in a compact form. The questionnaire had five simple
questions:

1. Rate the intuitiveness of the application on a scale from one to ten, where one is not
intuitive at all and ten is extremely intuitive.

2. Rate the usability of the application on a scale from one to ten, where one is not
easy to use, and ten is extremely easy to use.

3. Rate the application’s user environment on aesthetics from one to ten, where one is
chaotic-disorganized, and ten is clean and user-friendly.

4. Rate the response time of the robot after a successful button Click from one to ten,
where one is unresponsive, and ten is immediate response.

42

5. What problems did you face during the trial?

5.1.2 User Study First Trial

Questions Ql: Q2: Q3: Q4: Qs:

Participants

Participant 1 9/10 7/10 10/10 10/10 Cursor
(age 23) drifting
Participant 2 9/10 6/10 10/10 10/10 Cursor
(age 25) drifting
Participant 3 9/10 7/10 10/10 10/10 Cursor
(age 28) drifting
Participant 4 7/10 5/10 10/10 10/10 Cursor
(age 53) drifting

Table 5.1.2 User Study First Trial Results

The results reflect that the application succeeds in delivering an intuitive and user-friendly
application. The response time of the simulation seemed to be within desirable parameters
proving that the ROSbridge implementation is working under lean parameters without
overwhelming the network. Only one aspect of this iteration had a significant lack in its
intended functionality.

After the end of the first trial it was apparent the need to increase the efficiency of the
eye-tracking controlled cursor. The problem is noted here as “Cursor drifting”, because it
describes the behavior of the cursor when it approaches the frame of the screen. This
makes the core of the screen the more efficient area and the borders of the screen the more
erratic area. To combat this issue two recalibrations were adopted. The first was to
implement a smoothing algorithm. This function smoothens the cursor movement by
applying a smoothing factor to the calculated gaze points over time. The second
modification was made on the peripheral buttons of the GUI, expanding the box colliders
towards the erratic aria as shown in Figure 5.1.2. This, in effect, compensates for the
Cursor Drift and focuses on the location that the user is looking at and beehives within the
desirable parameters.

43

Hand Controle

Figure 5.4: Expansion of the battens’ box colliders

5.1.3 User Study Second Trial

Questions Ql: Q2: Q3: Q4: Q5:

Participants

Participant 1 10/10 10/10 10/10 10/10 _
(age 23)

Participant 2 10/10 9/10 10/10 10/10 _
(age 25)

Participant 3 10/10 10/10 10/10 10/10 _
(age 28)

Participant 4 9/10 8/10 10/10 10/10 _
(age 53)

Table 5.1.3 User Study Second Trial Results

With these modifications the next iteration of the application had significant improvement
in the participant's experience. The Second trial showed that the recalibrations managed to
bridge the gap between the previous iteration and the target capabilities. The user
experience assessment reveals that the developed system delivers an intuitive, streamlined,
and user-friendly interface. It provides a unique solution in situations where a standard
mouse is impractical. Finally, in the last trial, the participants were asked their preference
between a monitor mount eye-tracker, a VR, and an IEG headpiece as an alternative
prolonged GUI control methodology. They chose the non-invasive and less cumbersome
approach, the monitor approach.

44

Chapter 6 Conclusions

6.1 Conclusion

This culmination of research and development marks the completion of a project aimed at
revolutionizing assistive technologies for individuals facing complete mobility impairment.
Through the integration of robotic systems and eye-tracking technology, this endeavor
sought to empower users with innovative means of interaction, navigating the challenges
posed by severe mobility limitations. The project's methodologies encompassed a
comprehensive exploration of gaze-based controls, leveraging the capabilities of
eye-tracking technology and integrating them with a robotic system, exemplified by the
PR2 simulation in ROS. This section provides a concise overview of the project's
implementation strategies, highlighting the innovative blend of technologies employed to
create a more accessible and user-friendly solution for individuals with mobility
challenges.

6.2 Discussion

The project's multifaceted exploration traversed through the domains of gaze-based
interaction, robotic control, and seamless integration of these technologies within the
context of assistive applications. The results obtained reflect a commendable stride forward
in providing individuals with complete mobility impairment an avenue for enhanced
independence and interaction. The gaze-based cursor control, though not a perfect
replacement for traditional mouse interfaces, presents a unique opportunity for scenarios
where standard control methods prove challenging.

A significant focus was dedicated to refining the conversion algorithms mapping gaze
coordinates to the system cursor, ensuring a responsive and intuitive control experience.
The challenges faced in achieving precision were met with iterative testing and
adjustments, resulting in a system with a manageable margin of error, particularly in the
context of GUI button interactions.

Video streaming from the PR2 simulation's onboard cameras added a crucial dimension to
the user experience. However, challenges in maintaining optimal video quality persisted,
necessitating occasional compression to mitigate latency. The robustness of
communication between Unity and ROS was showcased, although the compatibility issues
with certain message types highlighted potential challenges in implementing
non-predetermined movements directly controlled by Unity.

45

6.3 Future Work

In the realm of future work, several promising directions unfold, driven by the insights and
challenges encountered in this pioneering project. While initially contemplated, the
integration of blinking tracking functionality confronted limitations owing to the absence
of support from the Tobii Eye Tracker 5 SDK. Exploring alternative blinking detection
methods, such as leveraging external webcams or adopting more advanced eye-tracking
technologies, holds the potential to introduce nuanced and natural user interactions, further
refining the user experience.

Expanding the platform's capabilities could involve the implementation of reverse
kinematics on the PR2 robot, enhancing the versatility of its arm movements and
ultimately increasing accessibility. This addition would empower users to manipulate the
robot's arms with greater precision, opening up new possibilities for interactive tasks.

Moreover, the incorporation of sound transfer capability between the robot and the
application can elevate the telepresence aspect of the system. Enabling users to both hear
the robot's environment and express themselves through the robot enhances the overall
user experience.

Moreover, advancing the robot's movement capabilities by integrating autonomous
obstacle avoidance using onboard sensors emerges as a critical aspect of future
development. This enhancement would contribute to the system's autonomy, allowing the
robot to navigate its environment more effectively and further reducing the reliance on user
input for basic navigation tasks. These forward-thinking ideas underscore the potential for
continual innovation and improvement in the realm of assistive technologies for
individuals with mobility impairments.

6.4 Lessons Learned

The journey of conceptualizing, developing, and refining this assistive technology solution
imparted invaluable lessons. The iterative nature of design and testing underscored the
importance of user feedback and adaptability in crafting a system that genuinely addresses
the needs of its users. The challenges faced in communication between Unity and ROS
emphasize the significance of a flexible and comprehensive communication interface for
future developments in similar interdisciplinary projects. Overall, this project serves as a
stepping stone, laying the groundwork for continued innovation in assistive technologies
for individuals facing complete mobility impairment.

46

Bibliography

[1] Eye-TrackingSystem.
URL: https://www.sciencedirect.com/topics/psychology/eye-tracking-system

[2] Unity. URL:_https://unity.com

[3] ROS URL: https://www.ros.org

[4] Gazebo URL: https://gazebosim.org/home

[5] Rupp R, Biering-Serensen F, Burns SP, Graves DE, Guest J, Jones L, et al.

(2021-03-01). "International Standards for Neurological Classification of Spinal Cord
Injury: Revised 2019". Topics in Spinal Cord Injury Rehabilitation.

[6] The Encyclopedia of World Problems and Human Potential, UIA, Tetraplegia.

[7] Cowan RE, Fregly BJ. Boninger ML, Chan L. Rodgers MM, Reinkensmeyer DJ.
Recent trends in assistive technology for mobility. J Neuroeng Rehabil. 2012:9(1):1-8.

[8] Sunny, M.S.H., Zarif, M.I.I., Rulik, I. et al. Eye-gaze control of a wheelchair mounted
6DOF assistive robot for activities of daily living. J NeuroEngineering Rehabil 18, 173
(2021). https://doi.org/10.1186/s12984-021-00969-2

[9] Zhang, Guangtao, Hansen, John, Minakata, Katsumi, Alapetite, Alexandre, Wang,
Zhongyu, 2019/03/08. Eve-Gaze-Controlled Telepresence Robots for People with Motor

Disabilities 10.1109/HR1.2019.8673093

[10] Tobii Eye tracker 5, URL: https://gaming.tobii.com/product/eve-tracker-5/
[11] Tobii Experience, URL: https://gaming.tobii.com/getstarted/

[12] Tobii Eye tracking 5 Unity SDK,
URL.: https://developer.tobii.com/pc-gaming/unity-sdk/

[13] PR2 Robot, URL: https://robotsguide.com/robots/pr2

[14] PR2 ROS Simulation. URL: http://wiki.ros.org/pr2_simulator

[15] Nao Robot. URL: https://www.aldebaran.com/en/nao

https://www.sciencedirect.com/topics/psychology/eye-tracking-system
https://unity.com
https://www.ros.org
https://gazebosim.org/home
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152171
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8152171
http://encyclopedia.uia.org/en/problem/tetraplegia
https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-9-20
https://jneuroengrehab.biomedcentral.com/articles/10.1186/1743-0003-9-20
https://doi.org/10.1186/s12984-021-00969-2
https://doi.org/10.1186/s12984-021-00969-2
https://doi.org/10.1186/s12984-021-00969-2
https://www.researchgate.net/publication/332950758_Eye-Gaze-Controlled_Telepresence_Robots_for_People_with_Motor_Disabilities
https://www.researchgate.net/publication/332950758_Eye-Gaze-Controlled_Telepresence_Robots_for_People_with_Motor_Disabilities
https://www.researchgate.net/publication/332950758_Eye-Gaze-Controlled_Telepresence_Robots_for_People_with_Motor_Disabilities
https://gaming.tobii.com/product/eye-tracker-5/
https://gaming.tobii.com/getstarted/
https://developer.tobii.com/pc-gaming/unity-sdk/
https://robotsguide.com/robots/pr2
http://wiki.ros.org/pr2_simulator
https://www.aldebaran.com/en/nao

47

[16] Pepper Robot, URL: https://www.aldebaran.com/en/pepper

[17] ROS Bridge Package, URL: http://wiki.ros.org/rosbridge_suite

[18] ROS Bridge Documentation,
URL: _https://carla.readthedocs.io/projects/ros-bridge/en/latest/

[19] ROS# Package, URL: https://assetstore.unity.com/packages/tools/physics/ros-107085

[20] Web Video Server ROS Package: URL: http://wiki.ros.org/web_video_server

[21] Demo video of playtesting: URL: https://youtu.be/9SFLfWfPE7M

https://www.aldebaran.com/en/pepper
http://wiki.ros.org/rosbridge_suite
https://carla.readthedocs.io/projects/ros-bridge/en/latest/
https://assetstore.unity.com/packages/tools/physics/ros-107085
http://wiki.ros.org/web_video_server
https://youtu.be/9SFLfWfPE7M

