
Technical University of Crete

School of Electrical and Computer Engineering

CLONE: Cloud Ontology Editor

by

Alexandros G. Preventis

A thesis submitted in partial fulfillment of the requirements for the

degree of

Master of Science

in Electrical and Computer Engineering

Chania, October 2020

Abstract

Ontology development is a collaborative process that can involve several
persons participating in different ways. The evolution of Web Services tech-
nology has facilitated collaboration on the Web, providing the means for
simultaneous editing, tracking of changes and storing files on the cloud.
Ontology development teams could greatly benefit from these collaboration
features, that until now have been applied mainly to document processing.
In this work, we introduce CLONE, a light-weight, Web based ontology
editor that provides a real-time collaborative environment for creating and
editing RDF and OWL ontologies. CLONE is designed using a component-
based, service-oriented architecture taking advantages of the easy extensi-
bility and scalability features of this approach. CLONE provides all the
essential features of stand-alone ontology editors, as well as significant col-
laboration features, including simultaneous editing, change history, team
conversations and role-based access-control mechanisms.

Contents

1 Introduction 7

1.1 Problem Definition . 8

1.2 Proposed Solution . 9

1.3 Thesis Outline . 10

2 Background and Related Work 11

2.1 Semantic Web . 11

2.2 RDF & RDFS . 12

2.3 OWL . 12

2.4 OWL API . 14

2.5 Ontology Engineering . 14

2.6 Collaborative Ontology Editors 15

2.6.1 OntoWiki . 16

2.6.2 NeOn Toolkit . 16

2.6.3 Web Protégé . 17

2.6.4 OntoStudio . 18

2.6.5 Overview . 18

3 Requirements Analysis 21

3.1 User Roles . 23

3.2 Use Cases . 23

3.2.1 Ontology Management 23

3.2.2 Ontology Editing . 24

3.3 Activities . 26

3.3.1 Ontology Management 26

3.3.2 Ontology Editing . 36

4 Architecture 41

4.1 Challenges and Decisions . 41

4.2 Architectural Layers . 42

4.2.1 Presentation Layer . 42

4.2.2 Application Layer . 44

4.2.3 Data Access Layer . 44

2

4.3 Software Components . 44
4.3.1 Web UI Component 44
4.3.2 Transformation Component 44
4.3.3 Authorization Component 46
4.3.4 Clone Core Component 46
4.3.5 Ontology Editing Service 48
4.3.6 Ontology Repository 49
4.3.7 Reasoning Service . 52

4.4 Overall Architecture . 54

5 Implementation 55
5.1 Deployment . 55
5.2 User Interface . 56

5.2.1 Sign-in . 56
5.2.2 Home page . 56
5.2.3 Ontology Editor . 62
5.2.4 Ontology Tabs . 66

5.2.4.1 The Ontology tab 66
5.2.4.2 Classes . 67
5.2.4.3 Object Properties 68
5.2.4.4 Data Properties 69
5.2.4.5 Annotation Properties 71
5.2.4.6 Individuals 71
5.2.4.7 Datatypes 72

6 Conclusions and Future Work 74

Appendices 75

A Database Schemata 76
A.1 Clone Core Component’s SQL Database 76

3

List of Figures

2.1 Simple RDF graph . 13

3.1 Use Cases: Ontology Management 25

3.2 Use Cases: Ontology Editing 27

3.3 Create new Ontology . 30

3.4 Import Ontology . 30

3.5 Upload Ontology . 30

3.6 Download Ontology . 31

3.7 Leave Ontology . 31

3.8 Delete Ontology . 31

3.9 Activity diagram: Add ontology user 32

3.10 Activity diagram: Create ontology version 33

3.11 Activity diagram: Manage ontology versions 34

3.12 Activity diagram: Edit ontology information 35

3.13 Activity diagram: View Ontology 38

3.14 Activity diagram: Edit Ontology 39

3.15 Activity diagram: Apply Reasoning 40

4.1 Architectural Layers . 43

4.2 Architectural Layers with Components 45

4.3 Architecture of the Clone Core Component 47

4.4 Architecture of the Ontology Editing Service 50

4.5 Architecture of the Ontology Repository Service 52

4.6 Architecture of the Reasoning Service 53

4.7 Overall Architecture . 54

5.1 The nodes where CLONE’s artifacts have been deployed. . . 56

5.2 Sign-in . 57

5.3 Home page . 57

5.4 Create new ontology . 58

5.5 Insert ontology from URL . 59

5.6 Insert ontology from URL . 59

5.7 Ontology menu . 60

5.8 Edit ontology’s basic information 61

4

5.9 Manage user roles . 62
5.10 Manage ontology versions . 63
5.11 Ontology Editor . 63
5.12 Reasoning result . 64
5.13 Ontology history and conversation 65
5.14 Ontology tab . 66
5.15 Classes tab . 67
5.16 Object Properties tab . 70
5.17 Data Properties tab . 70
5.18 Individuals tab . 72
5.19 Individuals tab . 73

A.1 Clone Core Component’s database schema 78

5

List of Tables

2.1 Overview of Collaborative Ontology Editors 20

6

Chapter 1

Introduction

In the past few years the World Wide Web has evolved from a medium
for displaying information, to an environment where people can communi-
cate, work, collaborate and exchange content. This new “form” of the Web,
known as Web 2.0, mostly consists of content generated by users. The next
step in Web’s evolution is called the Semantic Web (also referred to as Web
3.0 or Web of Data). The Semantic Web provides a common framework that
makes data machine-readable by enhancing it with metadata. This meta-
data provide information on what the data represents and how it should
be processed. A set of metadata that describes the concepts of a specific
domain can be represented by means of an ontology.

An ontology (also known as vocabulary) describes the concepts that de-
scribe a domain of interest and also the relationships that hold between those
concepts. Ontologies enable sharing the structure of information, so that it
can be processed by people or agents. For example, in the case of public
transportation, companies sharing and publishing an ontology, would allow
agents to extract and aggregate data making it possible to answer queries
about every single route (e.g., pricing, duration etc.). Ontologies also make
knowledge reusable, allowing it to be used by other people, or applications,
in order to describe a different (or more specific) domain of interest. For
example, an ontology about edible things could be used and extended in
order to describe the domain of fruits.

There are several data models for expressing ontologies (ontology lan-
guages), the most prevalent of which are the Resource Description Frame-
work (RDF) and its more expressive descendant, the Web Ontology Lan-
guage (OWL). RDF and OWL are designed to be machine-readable, thus it
is difficult for developers to use them directly to create ontologies. Ontology
Editors provide the means of creating, editing and manipulating ontologies,
by offering user interface, hiding the syntax complexity of an ontology lan-
guage and taking over the ontology language generation in the background.
There are several ontology editors available, each one with different features

7

and advantages. Developers can choose an editor according to their needs.
Most of the editors, though, are stand-alone applications that are executed
in native environments. They are well-suited for sole ontology development,
without providing any means for collaboration.

1.1 Problem Definition

Building an ontology usually requires more than a skilled developer and an
ontology editor. In fact it is a collaborative task in which, apart from the
developers, there are several other participants who provide knowledge and
information on the domain of interest. Braun et al. [1] describe this process
as an informal learning process, called “Ontology Maturing,” that can only
be fulfilled through collaboration.

To enable collaboration, participants of the ontology creation process
need to:

• have direct and ubiquitous access to the ontology, enabling them to
access it at any time from any place

• be in constant and real-time communication with each other in order
to discuss and propose changes, resolve differences and provide help
to each other

• be able to edit the ontology simultaneously and view changes from all
editors of the ontology when they occurred,

• keep a track of ontology changes, which includes a detailed descrip-
tion on the changes, including the editor of each change, the type of
the change and the time it occurred (e.g., John on 2015/07/01 14:54
edited the superclasses of class Animals),

These requirements (along with others described in Chapter 3), until now
have been partially fulfilled by sending e-mails (for communication and shar-
ing ontology files), using social media applications and file-sharing applica-
tions. This sort of communication and sharing can seriously obstruct the
development process, as the members cannot participate in it simultane-
ously, but they have to edit the ontology one by one, locally, and then pass
it to the others.

The ideal solution to overcome this obstacle would be ontology editors
that enable manipulation of RDF and OWL ontologies and also provide the
aforementioned collaboration features. Existing collaborative editors mostly
focus on enhancing document content with semantics. Only few of them fully
support editing of the structure of ontologies and even fewer provide editing
functionalities in full extend of the W3C specifications1.

1http://www.w3.org/TR/owl2-syntax/

8

http://www.w3.org/TR/owl2-syntax/

1.2 Proposed Solution

We introduce CLONE (Cloud Ontology Editor), a lightweight, Web-based
ontology editor that provides a real-time collaborative environment for cre-
ating and editing RDF and OWL ontologies. It’s friendly and easy-to-use
interface allows users to create ontologies without being familiar with the
peculiarities (e.g. syntax) of the underlying ontology representation lan-
guage. CLONE runs in the cloud and requires no software installation on
the user’s machine. Users can access and edit their ontologies from any place
or machine, just by using a Web-browser.

CLONE has been designed as a component-based, service-oriented dis-
tributed system. It is composed of autonomous, reusable components that
operate as Web services running in the cloud and communicate with each
other through RESTful interfaces. CLONE’s architecture allows for (a)
load-balancing, as heavy work is distributed between the components, (b)
extensibility, as new component that provide different services can easily
be added to the system and (c) scalability, as nodes that have to do much
“heavy lifting” can easily be replaced with others that utilize more physical
resources.

CLONE provides all the essential features of stand-alone ontology edi-
tors, but also provides significant collaboration features. These include the
following:

• Ontology creation. Users can create ontologies from scratch or by
uploading an ontology file. They can also import ontologies directly
from the Web.

• Private repositories. Users maintain a private ontology collection which
includes the ontologies they have created or uploaded. Collections can
be modified by their owners at any time.

• Full support of OWL 2 axioms, as they are defined in OWL 2 structural
specification, allowing users to exploit OWL’s expressiveness to the
fullest extent, enabling them to create more elaborate and detailed
ontologies.

• Reasoning support. Users can apply reasoning over their ontologies to
check consistency or even to view the new, inferred ontology.

• Comprehensive error-recovery mechanisms, including flow control but-
tons (Undo/Redo) that allow users to undo up to 50 changes on the
ontology and version control mechanism that allows users to return to
previous states of the ontology.

• Team editing. Ontology owners can invite other people to collaborate
in the engineering process.

9

• Access-control mechanisms. Ontology owners can assign roles to the
users they invite. There are three different user-roles that can be
assigned: viewer, editor or administrator, each providing additional
access-rights compared to the role before it in the list.

• Simultaneous editing. All users involved in the editing process, can
make changes on the ontology at the same time. Changes made by
one user will instantly appear to all other users editing the ontology.

• Change tracking. Information for each change made on the ontology
is recorded and becomes available to all members of the editing team.

• Team conversation. The editor provides a real-time conversation mech-
anism facilitating communication between the editing team.

The prototype is hosted on the Intelligent System Laboratory’s cloud
infrastructure. A public instance of CLONE is available on the Web2.

1.3 Thesis Outline

Related work in the field of ontology engineering is discussed in Chapter 2.
This includes a description of the Semantic Web and related technologies,
work on the ontology engineering process and presentation of existing col-
laborative ontology editors and their features. A requirement analysis for
collaborative ontology editors is presented in Chapter 3. In Chapter 4 there
is discussion about the architecture of the overall system and its compo-
nents. Details on CLONE’s implementation are presented and discussed in
Chapter 5. Finally, conclusions and issues for future work are discussed in
Chapter 6.

2http://www.intelligence.tuc.gr/clone/

10

http://www.intelligence.tuc.gr/clone/

Chapter 2

Background and Related
Work

2.1 Semantic Web

The Semantic Web [2] (also known as Web 3.0 or Web of data) is the evo-
lution of the World Wide Web that enables content to be linked, shared
beyond the boundaries of applications and reused. This practically means
that data published by one application, can be understood, processed and
used by other applications to produce useful results. In that end, the ac-
tivities that have been initiated by the W3C (previously the Semantic Web
Activity1 and now the Data Activity2), have developed technologies that en-
able people to create data stores on the Web, build vocabularies, and write
rules for handling data.

The main areas of Semantic Web are the following:

• Linked Data focuses on making data, and relationships between data,
on the Web available in a standard format, reachable and manageable
by Semantic Web tools. W3C’s standardizations in that area, among
others, include RDF [3] and OWL [4].

• Vocabularies provide a formal representation of concepts that are
used to describe a particular domain of interest. Vocabularies are used
to classify the terms that can be used in a particular application, char-
acterize possible relationships, and define possible constraints on using
those terms. W3C’s standardizations in that area include RDF and
RDF Schemas, Simple Knowledge Organization System (SKOS) [5],
OWL and Rule Interchange Format (RIF) [6].

• Queries, meaning the technologies that provide the means for retriev-
ing information from the Web of Data. The standard for querying in

1http://www.w3.org/2001/sw/
2http://www.w3.org/2013/data/

11

http://www.w3.org/2001/sw/
http://www.w3.org/2013/data/

the Semantic Web is SPARQL [7], a query language for retrieving data
stored in RDF format.

• Inferences provide the means for discovering new relationships or
possible inconsistencies between data. Inferences improve the quality
of data integration on the Web, by automatically analyzing the content
of the data, or managing knowledge on the Web in general. Inferences
are generated by the use of software tools called Reasoners.

• Vertical Applications is a term for describing generic application
areas, specific communities, etc, that explore how Semantic Web tech-
nologies can be used to help their operations, improve their efficiencies,
provide better user experiences, etc.

2.2 RDF & RDFS

One of Semantic Web’s objectives is to make data machine readable. To
do so, the need arises for formal ways to describe concepts of application
domains and the relationships that hold between them. This formal repre-
sentation of knowledge is called an ontology.

There are several data formats for encoding ontologies, among them, the
Resource Description Framework (RDF) [3], that is a W3C standardization.
RDF is based on the idea that each resource on the Web is identified by a
unique identifier (called Uniform Resource Identifier) and can be described
in terms of properties and property values. Statements about resources
in RDF have the form of subject–predicate–object expressions, that are
called triples. For example the statement “John Smith lives in London” can
be decomposed as follows: “John Smith” is the subject, “London” is the
object and “lives in” is the predicate. This way, statements in RDF can be
represented as graphs with the nodes being the resources and arcs being the
properties. Figure 2.1 illustrates a simple RDF graph.

RDF is suitable for describing ontologies, but it provides limited expres-
siveness. To overcome this limitation, an extension of RDF was introduced,
called RDF Schema (RDFS) [8]. RDFS is a general-purpose language for
representing RDF vocabularies. It provides a set of constructs (classes, prop-
erties), built on the limited vocabulary of RDF, that can be used for the
description of ontologies. RDFS is also a W3C recommendation3.

2.3 OWL

The Web Ontology Language (OWL) [4] is a semantic markup language for
publishing and sharing ontologies on the World Wide Web. It is developed

3http://www.w3.org/TR/rdf-schema/

12

http://www.w3.org/TR/rdf-schema/

Person

John Smith

City

London

John Smith

http://www.example.com/ontologies/persons#Location

http://www.w3.org/1999/02/22-rdf-syntax-ns#type http://www.w3.org/1999/02/22-rdf-syntax-ns#type

http://www.example.com/ontologies/persons#JohnSmith

http://www.example.com/ontologies/persons#FullName

http://www.example.com/ontologies/persons#London

http://www.example.com/ontologies/persons#Cityhttp://www.example.com/ontologies/persons#Person

Figure 2.1: Simple RDF graph representation of the statement “John Smith
is a person that lives in London.”

as a vocabulary extension of RDF and is derived from the DAML+OIL Web
Ontology Language [9]. OWL is intended to provide a language that can be
used to describe the classes and relations between them that are inherent in
Web documents and applications. Any OWL ontology can also be described
as an RDF graph.

OWL provides three increasingly expressive sub-languages:

1. OWL Lite supports classification hierarchy and simple constraints.

2. OWL DL supports maximum expressiveness without loosing compu-
tational completeness and decidability.

3. OWL Full provides maximum expressiveness and the syntactic free-
dom of RDF, but without computational guarantees.

Each of these sublanguages is an extension of it’s simpler predecessor.
OWL is part of W3C’s Semantic Web technology stack. In October 2007

a new W3C working group was started to extend OWL with several new
features. This new version was called OWL 2 [10]. Though OWL 2 adds
new functionality with respect to OWL 1, it should be noted that it provides
complete backwards compatibility, to all intends and purposes. This means
that all OWL 1 ontologies are valid OWL 2 ontologies.

OWL 2 provides three more sub-languages, called Profiles, that offer
important computational or implementational advantages in particular ap-
plication scenarios. Each profile is a subset of the structural elements that
are provided by OWL 2 DL and all are more restrictive than OWL 2 DL.
The profiles are:

1. OWL 2 EL which enables polynomial time algorithms for all the
standard reasoning tasks.

13

2. OWL 2 QL which enables conjunctive queries to be answered in
LogSpace using standard relational database technology.

3. OWL 2 RL which enables the implementation of polynomial time
reasoning algorithms using rule-extended database technologies oper-
ating directly on RDF triples.

2.4 OWL API

The OWL API [11] is high level application programming interface (API),
written in Java, for working with OWL ontologies. It is fully compliant with
W3C’s OWL 2 structural specification. OWL API supports ontology man-
agement, ontology change, ontology parsing and rendering, data structure
storage and reasoner interfaces. The latest releases of the OWL API also
provide validation methods for the OWL 2 ontology profiles.

2.5 Ontology Engineering

Ontology engineering refers to “the set of activities that concern the ontology
development process, the ontology life cycle, the principles, methods and
methodologies for building ontologies, and the tool suites and languages
that support them” [12].

In the past, the methodologies for ontology engineering had a central-
ized approach that usually involved a small group of people that consisted of
domain experts that provided the knowledge to be modeled and knowledge
engineers that structured and formalized the ontology. These methodolo-
gies regard ontologies as something stable that, since developed, is never
changed.

As ontologies’ popularity increased and they started to be used in more
and more applications, the number of people involved in ontology engineer-
ing increased as well. Ontologies grew in size, with some of them contain-
ing thousands or even millions of concepts (e.g., NCI Thesaurus4 contains
110,000 concepts and 400,000 inter-concept relationships). Effective devel-
opment of such ontologies from one person or a small group of people is im-
possible. The need for more people to participate in the ontology engineering
process became apparent and imminent. Ontology engineering became a so-
cial, collaborative, evolving process that involves a geographically dispersed
community—ontology engineers, domain experts and ontology users—with
different knowledge and expertise [13, 14].

The emerge of ontology editors enabled more people to actively partici-
pate in the ontology engineering process, since explicit knowledge of ontology

4https://ncit.nci.nih.gov/ncitbrowser/

14

https://ncit.nci.nih.gov/ncitbrowser/

languages was no more required. Ontology editing could be done by any par-
ticipant, separately, just by using a desktop application. The difficulties that
arose with this approach, concern the synchronization of multiple different
ontology versions that are created by each of the editors, as well as the lack
of means to facilitate communication between participating editors. The
problem of synchronization was usually addressed (a) either by all proposed
changes being approved or rejected by a “lead editor” who eventually pub-
lishes a formal version of the ontology, or (b) by the use of version control
systems, which mostly rely on textual differences between files. The com-
munication problems were partially tackled with the use of e-mails, instant
messaging and discussion forums.

All these problems have been definitely addressed with the appearance
of Collaborative ontology editors, which are specialized software tools that
provide, apart from ontology editing features, some of the desired features
that facilitate collaboration during the ontology engineering process. Col-
laborative ontology editors come either in a form of extension on already
existing ontology editors [15, 16], or as new ontology editors that are explic-
itly designed to support collaboration [17]. The adoption of Collaborative
editing tools led to the development of new decentralized ontology engineer-
ing methodologies. Simperl and Luczak-Rösch [18], in their work, present a
detailed survey on collaborative ontology editing tools as well as the ontology
engineering methodologies that have been developed over the years.

Collaborative ontology editors well facilitate the manual ontology de-
velopment process enabling groups of people to participate actively. The
volume of RDF data that is being published on the Web, though, is so
huge that even with collaboration, it is practically infeasible to be managed
by people. The next step for ontology development is creating tools that
integrate human and computational intelligence. In the future, ontology
engineering methodologies orient from a tool-assisted, but primarily manual
engineering process to a data-driven approach in which human involvement
is optimally leveraged for the resolution of those issues that can not be
feasibly automatized.

2.6 Collaborative Ontology Editors

The main challenge in collaborative ontology engineering is choosing the
right tool that offers multiple-user access at the knowledge level, adequate
version management, as well as communication mechanisms that enable ef-
fective collaboration between geographically distributed participants.

In the past few years, many ontology editors have been developed that,
partially or fully, satisfy these requirements. In the scope of this work,
we present some of the ontology editing tools that provide collaboration
mechanisms and are still under active development or maintenance.

15

2.6.1 OntoWiki

OntoWiki [19] is a Semantic Wiki application for managing structured data
in a collaborative, Web-based environment. It allows users to navigate
through RDF knowledge bases and view Linked Data in a wiki-like form5.
Users can create different views on data, such as tables, calendars and maps.
RDF content can be edited in-line on the pages that it is displayed. It
can also be exported in various serialization formats, suitable for machine-
consumption. OntoWiki includes a version control mechanism that allows
each page to roll back to previous states. Finally, reasoning and consistency
checking can be applied with the use of DL-Learner plug-in for OWL.

OntoWiki, like most Wiki based ontology editors where any user can add
or edit content, trades part of the expressiveness of the ontology with ease-of-
use, resulting to limited expressiveness, compared to other ontology editors.
Moreover, it does not provide role management, allowing any registered user
to modify the Ontology data. Lastly, OntoWiki does not provide any explicit
communication mechanism between the collaborating parties.

2.6.2 NeOn Toolkit

NeOn Toolkit [20] is based on the Eclipse6 platform and provides several
plug-ins, each one providing different functionality. The standard platform
offers common functionalities such as ontology browsing, editing, import and
export in various formats (OWL, F-Logic, UML). Additional functionalities,
that are essential for ontology engineering (i.e., ontology visualization, rea-
soning, collaboration), are only provided by the use of plug-ins.

The two plug-ins that enhance NeOn Toolkit with collaboration func-
tionalities are:

• WikiFactory, that enables automatic creation of semantic wiki-based
Web sites, allowing for dynamic content management and content syn-
chronization with the underlying OWL Ontology.

• Cicero, that enables asynchronous discussions on aspects related to
ontology-engineering and also supports decision making. Cicero is
based on the DILIGENT knowledge process, a methodology for col-
laborative ontology engineering [13].

These two plug-ins provide limited collocation features to NeOn. Si-
multaneous ontology editing and central version control are not supported.
Instead, every user has to keep and work on a local copy of the ontology and
need to invoke the OWLdiff plug-in in order to locate the differences with a
central copy of the ontology and only apply the differences. Finally, NeOn

5Wiki is a website or database developed collaboratively by a community of users,
allowing any user to add and edit content

6https://eclipse.org/

16

https://eclipse.org/

Toolkit does not provide sufficient role management in ontology editing, as
any contributor can apply any changes.

2.6.3 Web Protégé

Web Protégé [21] is a collaborative Web-based platform that supports on-
tology editing and knowledge acquisition. It started as a Web front-end for
the Collaborative Protégé server, a plug-in that had been created for the
3rd version of the stand-alone Protégé platform, that provided collaboration
capabilities. Since this plug-in has not been supported by the next versions
of Protégé, the Web platform is the only collaboration editor that is actively
supported by the Protégé community.

Web Protégé is one of the most comprehensive tools for collaborative
ontology engineering that is currently available. It provides most of the
desired collaborative features. Most specifically, it provides:

• highly adaptable and customizable user interface. The users can add
tabs and views and adjust the layout in many ways to better suit their
needs.

• multiple-user access to the ontology and simultaneous editing. Any
changes made by one user are immediately visible to others.

• communication mechanisms, in form of a chat channel for direct com-
munication or discussion threads that users have created.

• central ontology repository with access control mechanisms. Ontology
are accessible only to those that have the appropriate permissions.

• various formats for ontology import/export (RDF/XML, OWL/XML,
Turtle, etc.).

• 3 different roles for the users (editor that can make changes to the
ontology, viewers that can only view the ontology and commentators
that can participate in the discussions).

• annotations in a form of ontology (Changes and Annotations Ontology
– ChAO), this way allowing for annotating the changes made on the
ontology and also commenting on the ontology engineering process
itself.

• change history, in the form of revisions, each representing atomic user
actions.

• versioning, allowing to download the ontology state in a specific revi-
sion.

• graph visualization of the ontology concepts and their interrelations.

17

Web Protégé is very similar to the stand-alone Protégé platform in many
ways. It is surpassed, though, by the stand-alone version in aspects of
expressiveness as it does not support all OWL2 axioms. It also does not
provide any mechanisms for consistency checking or reasoning.

2.6.4 OntoStudio

OntoStudio [16] is a commercial ontology engineering platform created by
Semafora7 that originates from the NeOn Project. Thus, it is also based
on the Eclipse platform and it provides many plug-ins that offer various
functionalities:

• It allows creating, browsing, maintaining and managing ontologies.

• It uses a central repository where the ontologies can be stored and
edited by multiple-users simultaneously, this way allowing collabora-
tive development.

• It supports multiple import/export formats (OWL, RDF, F-Logic,
UML).

• It supports reasoning and consistency checking.

• It allows users create maps between the concepts of their ontology and
either other ontologies, or databases, through a graphical editor that
is provided by the OntoMap plug-in. After the mappings have been
applied, the user can query on these data-sources using the concepts
of their ontology.

• It provides a graphical and a textual rule editor, that enables users to
enrich their ontologies with additional semantics and possibilities.

OntoStudio offers a Web interface that can be used for applying very
simple changes on ontologies, such as editing classes or other entities.

OntoStudio provides most of the essential functionalities for ontology
engineering, plus some additional functionalities that are not found in other
ontology editors (i.e., ontology mapping). It targets, though, users that are
familiar with ontology engineering and can be considered experts. Its inter-
face is not suitable for users that have no previous experience in knowledge
engineering and representation and it cannot easily be used by them.

2.6.5 Overview

Table 2.1 presents an overview of the ontology editors that have been dis-
cussed, along with the features that they provide. It is clear that, though

7http://www.semafora-systems.com/en/

18

http://www.semafora-systems.com/en/

support of collaborative ontology engineering has been provided by some
editors, no editor provides full collaboration support in all the stages of
ontology development.

19

T
ab

le
2.1:

O
v
erv

iew
of

C
ollab

orative
O

n
tology

E
d

itors

E
d
ito

r
M

u
lti-u

se
r
a
c
c
e
ss

&
e
d
itin

g
V
e
rsio

n
in
g

C
o
n
siste

n
c
y
ch

e
ck

in
g

R
o
le

m
a
n
a
g
e
m
e
n
t

C
o
m
m
u
n
ic
a
tio

n
C
lo
u
d

im
p
le
m
e
n
ta

tio
n

&
S
O
A

d
e
sig

n

O
n
to

W
ik

i
W

ik
i-b

a
sed

a
ccess

an
d

ed
it-

in
g
,

co
n

cu
rren

cy
con

trol
a
t

p
a
g
e

lev
el.

V
ersion

con
tro

l
in

p
age

level.
D

iff
eren

ces
b

etw
een

version
s.

R
ollb

ack
.

P
rov

id
ed

b
y

p
lu

g-in
.

C
on

trib
u

tors.
N

o
com

m
u

n
ication

su
p

p
ort.

N
o

clou
d

im
p

lem
en

tation
.

O
p

erates
as

a
W

eb
ap

p
lication

.

N
eO

n
T

o
o
lk

it
N

o
t

su
p

p
o
rted

.
L

o
ca

l
access

a
n

d
ed

itin
g
.

N
o

v
ersion

-co
n
trol.

C
on

sisten
cy

ch
eck

in
g

v
ia

p
lu

g-in
s.

P
rov

id
ed

v
ia

C
icero

p
lu

g
-in

.
C

on
trib

u
tors.

E
n

ab
led

b
y

C
icero

p
lu

g-in
.

C
on

form
s

to
th

e
D

IL
IG

E
N

T
m

eth
o
d

ology.

N
o

clou
d

im
p

lem
en

tation
.

O
p

erates
as

a
d

esk
top

ap
p

lication
.

W
eb

P
ro

tég
é

S
im

u
lta

n
eo

u
s

access
a
n

d
ed

it-
in

g
.

C
h

a
n

g
es

im
m

ed
iately

seen
b
y

oth
er

u
sers.

C
h

an
ges

a
u

to
m

atically
saved

to
cen

tra
l

rep
o
sito

ry.

R
ev

ision
s

a
u

to
m

a
tically

cre-
a
ted

o
n

ea
ch

ch
an

g
e.

A
b

ility
to

rollb
ack

to
a
n
y

rev
isio

n
.

N
o

con
sisten

cy
ch

eck
in

g
or

reason
in

g
su

p
p

ort.
E

d
itors,

C
o
m

m
en

tators
an

d
V

iew
ers

In
stan

t
m

essagin
g,

th
read

ed
d

iscu
ssion

s,
an

n
otation

s
of

ch
an

ges

C
lou

d
im

p
lem

en
tation

.
N

o
S

O
A

d
esign

.
O

p
erates

as
a

W
eb

ap
p

lication
.

O
n
to

S
tu

d
io

S
im

u
lta

n
eo

u
s

access
a
n

d
ed

it-
in

g
.

R
eq

u
ires

con
n

ection
of

th
e

sta
n

d
-a

lon
e

ap
p
lication

to
th

e
C

o
lla

b
o
ra

tion
S

erver
to

en
a
b

le
con

cu
rren

cy
con

tro
l.

N
o

v
ersion

con
tro

l.
C

on
sisten

cy
ch

eck
in

g
an

d
rea-

son
in

g
su

p
p

ort.
C

on
trib

u
tors.

N
o

com
m

u
n

ication
su

p
p

ort.
N

o
clou

d
im

p
lem

en
tation

.
O

p
erates

as
a

d
esk

top
ap

p
lication

.

C
L

O
N

E
S

im
u

lta
n

eo
u

s
access

a
n

d
ed

it-
in

g
.

C
h

a
n

g
es

im
m

ed
iately

seen
b
y

oth
er

u
sers.

C
h

an
ges

a
u

to
m

atically
saved

to
cen

tra
l

rep
o
sito

ry.

R
ev

ision
s

crea
ted

b
y

u
sers.

A
b

ility
to

ro
llb

a
ck

to
an

y
re-

v
isio

n
.

C
on

sisten
cy

ch
eck

in
g

an
d

rea-
son

in
g

su
p

p
ort.

A
d

m
in

istrato
rs,

E
d

ito
rs

an
d

V
iew

ers
In

stan
t

m
essagin

g.
S

O
A

d
esign

an
d

C
lou

d
im

p
lem

en
tation

.

20

Chapter 3

Requirements Analysis

Collaborative ontology editing is a very well-researched topic. The works by
Tudorache et al. [15], and Simperl et al. [18] highlight user requirements and
the functionality that collaborative ontology editors should support. Build-
ing upon their work, CLONE has been designed to support the following
features:

Shared Access: All users have access to the same resources. Collaborative
ontology editors should allow all users participating in the ontology
engineering process to access the same file, at the same time.

Access Control: Access to the ontology should be controlled by the on-
tology administrators. Administrators are entitled to grant access to
users (i.e. developers or editors). Users may have been granted access
to the whole ontology or only to specific parts of it. However, they are
allowed to view the entire ontology. This particular feature is impor-
tant in the case of large ontologies, where the development of different
ontology parts may be assigned to different parties.

Role Management: In collaborative ontology development, not all par-
ticipants contribute in the same way. Domain experts contribute by
providing knowledge on the domain of interest, but they rarely get
involved into the development process. Thus, they should be able to
browse the ontology and communicate with the developers to propose
possible modifications, but they aren’t always allowed to modify the
ontology themselves. On the other hand, developers are allowed to
modify the entities of the ontology and also participate in conversa-
tions with other users and consult the domain experts. Finally, there
are users that are allowed to administrate the ontology: (a) to manage
the ontology project, (b) to manage the users that have access to the
ontology, as well as their permissions, (c) to be able to browse and edit
any part of the ontology.

21

Versioning: Users can create and maintain versions of an ontology that is
under-development. These versions can be stored in different locations
(i.e. the users can maintain local copies of the ontology in their private
computers), or they can be stored centrally in the system’s database.
Versions stored in the system can be used as restoration points of the
ontology.

Error Recovery: The editing tool should enable the users to recover from
errors. This can be done by preventing errors (e.g., prompt users to
confirm that they want to complete some actions, otherwise enable
them to cancel these actions), by implementing backwards error re-
covery functions (e.g., provide “Undo” and “Redo” buttons), or by
enabling users to roll-back the system to a previous working state
such as a previous ontology version. Among others, administrators
can choose to roll back part or the entire ontology to a previous stored
version.

Communication: One of the most essential features of collaborative ontol-
ogy development is enabling communication between the participants,
allowing them easily to share knowledge and ideas with each other.
Communication can be instant (like a chat) allowing users to commu-
nicate in real time, or in a form of threaded discussions.

Expressiveness: OWL 2, is the most expressive of Semantic Web’s ontol-
ogy languages. It supports complex expressions such as defined classes,
complex property restrictions, negative property assertions etc. A col-
laborative ontology editor should provide full support of the expres-
siveness that OWL 2 offers, allowing ontology developers to use this
expressiveness to its full extend. This is a feature that currently is not
supported by any of the existing collaborative ontology editors. They
mostly allow developers to perform simple ontology actions, such as
modify class hierarchy or create object and data property assertions.

Consistency Checking: In collaborative ontology development, consis-
tency checking of the ontology under development, is even more cru-
cial. Enabling multiple users to simultaneously edit the same ontology
file and its included entities, may lead to many inconsistencies and er-
rors. It is crucial that a collaborative ontology editor provides built-in
consistency checking mechanisms that allow users to check the ontol-
ogy at any time.

CLONE’s functionality fulfills all the aforementioned requirements. In
section 3.1 we define CLONE’s user roles. Sections 3.2 and 3.3 describe the
use cases and the activities that can be performed, respectively, from the
viewpoint of two functional aspects: Ontology Management and Ontology
Editing.

22

3.1 User Roles

In order to use CLONE users will have to register to the system. After their
registration they can become part of an editing team, either as ontology
creators or as invitees to other user’s ontologies. Each editing-team member
is assigned a role, that defines the actions they can perform in the ontol-
ogy. CLONE distinguishes between three user roles, each one with different
privileges and permissions.

Viewer: A viewer can view the ontology and all its entities (Classes, Indi-
viduals, etc.) but is not allowed to make any modifications. Viewers
can also view the change history of the ontology and participate in its
conversation.

Editor: Editors can perform all actions that viewers can. Moreover, they
can modify the ontology entities.

Administrator: Ontology administrators have unrestricted access to the
ontology. They can manage the ontology (i.e. edit/delete it, cre-
ate new versions) and its editing team by adding/removing users or
changing the user roles. They also can modify the ontology entities.
Ontology creators are automatically assigned the “administrator” role.

3.2 Use Cases

CLONE’s user actions can be separated into two functional aspects: On-
tology Management and Ontology Editing. Ontology Management includes
the set of actions that users can perform on ontology files, while Ontology
Editing includes the set of actions that users perform on the Entities of an
ontology.

In this Section we discuss the use cases of CLONE from the scope of
these two aspects.

3.2.1 Ontology Management

The user actions for Ontology Management are:

(i) Creation of a new, empty ontology.

(ii) Insert an ontology from a Web location just by inserting its URL.

(iii) Upload an ontology file from the local machine.

(iv) View the details of an ontology, including the ontology’s name, the
URL where the ontology file is stored, a short description of the ontol-
ogy, the date that it was created and the username of its creator.

23

(v) Download an ontology to the local machine.

(vi) Leave the editing team of an ontology. By doing so, the user renounces
any permissions that they had been granted on the ontology. This does
not apply on ontology creators who cannot leave its editing team.

(vii) Manage user roles on a specific ontology. Ontology creators can allow
other users to view, edit or manage their ontologies, by assigning roles,
as described in 3.1.

(viii) Delete user’s role, removing any permissions that had been granted to
them.

(ix) Create new versions of an ontology. A version is a snapshot of the
current state of the ontology that can serve as restoration point. Ad-
ministrators can create ontology versions at any time.

(x) Change the active version of an ontology. Administrators can swap
between ontology versions, allowing them to role-back the ontology in
case of errors.

(xi) Delete ontology versions. In the case that there are versions of the
ontology that have become obsolete (e.g., they have been created in
the early stages of the development process) administrators can delete
them.

(xii) View version details, such as the date and time that the version has
been created and its creator.

(xiii) Edit ontology name.

(xiv) Edit ontology’s description.

Figure 3.1 illustrates the aforementioned actions, associated with the
actors (different users) of CLONE.

3.2.2 Ontology Editing

The actions for Ontology Editing are:

(i) View Ontology. This use-case includes the actions for browsing the
ontology and viewing its classes, object properties, data properties
and individuals.

(ii) Download an instance of the current ontology.

(iii) Apply Reasoning on the ontology. All ontology users can invoke the
Reasoning Service allowing them to check for possible inconsistencies
in the ontology. After the reasoning is completed, the user is informed
about any inconsistencies that have been found.

24

Figure 3.1: Use Cases: Ontology Management.

25

(iv) View Inferred ontology. Following the reasoning action, provided that
the ontology is consistent, the user can choose to view the Inferred
ontology1.

(v) Download Inferred ontology. Though users are not able to edit the
Inferred ontology version, they can download it to they local machine.

(vi) Participate in conversation. The ontology editing environment pro-
vides a chat service to facilitate the communication between the edit-
ing team. Through the chat view, users can also see a list with the
members of the editing team that are currently active.

(vii) View Ontology changes. CLONE keeps a history with every change
that has taken place in the ontology from the moment of its creation.
Users are able to view these changes as well as who has made them.

(viii) Create new ontology version. Editors and Administrators can take
snapshots from the ontology. These snapshots can be used from the
administrators as restoration points.

(ix) Edit ontology. This use-case includes all the actions that can, in any
way, modify the axioms of the ontology. CLONE provides full support
of the OWL2 axioms, as they are described in “OWL 2 Web Ontology
Language Structural Specification and Functional-Style Syntax”2.

Figure 3.2 illustrates these use-cases, associated with their actors. The
users that act as Viewers can only perform actions that do not change the
content of the ontology. Editors can edit the content. In the editing envi-
ronment, Administrators can perform exactly the same actions as Editors.

3.3 Activities

In this Section, we describe the activities of the users in CLONE. Each
activity is also described by means of UML diagram.

3.3.1 Ontology Management

The “ontology management” activities refer to the use cases described in
subsection 3.2.1. The user starts from their Home page, which is the page
that the user is presented after they log-in to the system. The Home page
is thoroughly described in subsection 5.2.2.

1Inferred ontology is the ontology that has been created by the reasoner, by including
on the initial ontology all the inferred axioms that it has produced.

2https://www.w3.org/TR/owl2-syntax/#Axioms

26

https://www.w3.org/TR/owl2-syntax/#Axioms

Figure 3.2: Use Cases: Ontology Editing.

27

Create new Ontology: The user clicks on the “Create Ontology” button.
The “Create new Ontology” dialog window will show up, prompting
the user to fill in the ontology name and optionally a description for
the ontology. Then the user clicks on the “Save” button. A new blank
ontology has been created and is available in the user’s home page.
This activity covers the ontology management use case (i). Figure 3.3
illustrates the UML activity diagram.

Import Ontology: The user clicks on the “Insert from URL” button. The
“Insert Ontology from URL” dialog window will show up, prompting
the user to fill in the URL where the ontology is located. Then the user
clicks on the “Insert” button. The ontology has been imported and is
available in the user’s home page. This activity covers the ontology
management use case (ii). Figure 3.4 illustrates the UML activity
diagram.

Upload Ontology: The user clicks on the “Upload Ontology” button. The
“Upload Ontology” dialog window will show up, prompting the user
to fill in the ontology name and select the ontology file that will be up-
loaded. Then the user clicks on the “Upload” button. A new ontology
has been created, from the uploaded ontology file, and is available in
the user’s home page. This activity covers the ontology management
use case (iii). Figure 3.5 illustrates the UML diagram.

Download Ontology: The user clicks on the ontology’s dropdown menu.
The ontology file, containing the ontology exported in RDF/XML for-
mat, is downloaded on the user’s computer. This is the activity man-
agement use-case (v) and is illustrated as a UML activity diagram in
Figure 3.6.

Leave Ontology: The user clicks on the ontology’s dropdown menu and
selects the “Leave Ontology” option. The system then displays a dialog
window asking the user to confirm that they want to leave the ontology.
After the user confirms the action, they will be removed from the
ontology editing team and any (view or edit) permissions that had been
granted will be revoked. The corresponding ontology management use-
case to this activity is (vi). Figure 3.7 illustrates the UML activity
diagram.

Delete Ontology: The Ontology Administrator clicks on the ontology’s
dropdown menu and selects “Delete Ontology”. A dialog window will
appear asking the user to confirm the action. After confirming, the
ontology and all related data (such as its editing team along with
their roles, the change history, any stored versions, its conversation)
is removed from the system. Any users viewing or editing the ontol-

28

ogy at the time of the removal will be redirected to their home page.
Figure 3.8 illustrates the UML diagram of this activity.

Manage User Roles: The Ontology Administrator clicks on the ontol-
ogy’s dropdown menu and selects “Manage Roles”. The “Manage
Roles” dialog window will appear where the user add editing-team
members and assign roles. Editing-team members can be specified by:
(a) their username in CLONE or (b) the e-mail address that they used
for registering to the system. Then, the administrator can select the
role that will be assigned to the new team member. The role defaults
to Viewer and can be changed to Editor or Administrator. Finally,
the administrator clicks on the “Add” button and the new editing-
team member is added. The specific ontology will be included to the
new member’s home page. This activity corresponds to the ontology
management use case (vii) and is illustrated in Figure 3.9.

Create Ontology Version: The user clicks on the ontology and opens it
in the editing environment. Then he/she clicks on the “Create Ver-
sion” button. A confirmation message will appear on the bottom of
the screen notifying the user that the version has been created suc-
cessfully. This activity is available to Editors and Administrators. It
corresponds to the ontology management use case (ix). Figure 3.10
illustrates the UML activity diagram.

Manage Ontology Versions: The Ontology Administrator clicks on the
ontology’s dropdown menu and select “Manage Versions”. The “Man-
age Versions” dialog window (described in subsection 5.2.2) will ap-
pear, providing information on the active ontology version (its creation
date and the user who created it) and listing the available versions of
the ontology (that are snapshots of the ontology taken by editors or
administrators). In this window, the user can (a) view the current
ontology version information, (b) change the active version of the on-
tology, by setting one of the version listed as “active” or (c) delete
an ontology version. This activities are illustrated as a UML diagram
in Figure 3.11. The use cases covered are: ontology management (x),
(xi) and (xii).

Edit Ontology Information: The Ontology Administrator clicks on the
ontology’s dropdown menu and selects “Edit Information”. The “Edit
Ontology” dialog will appear where the user can change the name
and/or the description of the ontology. Clicking “Save” will save the
changes. Figure 3.12 illustrates the UML activity diagram. The use
cases covered are: ontology management (xiii) and (xiv).

29

Figure 3.3: Create new Ontology Figure 3.4: Import Ontology

User clicks on "Upload Ontology" button

Opens "Upload Ontology" dialog

Fill in the ontology name and
select the ontology file

Click "Upload"

Figure 3.5: Upload Ontology

30

Click on the ontology's
dropdown menu

Download Ontology

Figure 3.6: Download Ontology

Click on the ontology's
dropdown menu

Leave Ontology

"Leave Ontology"
confirmation dialog

Confirm leaving
ontology

User removed
from ontology team

Figure 3.7: Leave Ontology

Click on the ontology's
dropdown menu

Delete Ontology

"Delete Ontology"
confirmation dialog

Confirm deletion

Ontology deleted

Figure 3.8: Delete Ontology

31

Click on the ontology's
dropdown menu

Click on "Manage roles"

"Manage Roles" dialog

Click "Add" button

Select user's role

User is added to the
ontology

Type user's "username" Type user's "e-mail"

Specify user by

USERNAME E-MAIL

Select between:
- Viewer (default)
- Editor
- Administrator

Figure 3.9: The process of granting users with access privileges to the on-
tology as viewers, editors or administrators

32

Click on the ontology

Ontology opens in the
"Ontology Editor" view

Click "Create version"
button

Confirmation message
appears at the bottom

Figure 3.10: Creating new ontology versions. Use case (ix).

33

Click on the ontology's
dropdown menu

Click on "Manage versions"

"Manage Versions" dialog

Modify active version?

NO YES

SET ACTIVE VERSION DELETE VERSION

View active version's
details

Find the version of interest
on the "Available versions"

list

Click the "Make Active"
icon

Click the "Delete" icon

Ontologe version
has been set as "active"

Ontology version
has been deleted

Figure 3.11: Manage ontology versions from the“Manage versions” dialog
window. These activities describe the processes of viewing the ontology’s
version details, setting a different ontology version as active, or deleting an
ontology version.

34

Click on the ontology's
dropdown menu

Click on "Edit Information"

"Edit Ontology" dialog

Edit ontology name
and/or description

Click "Save"

Ontology Information
has been changed

Figure 3.12: Edit an ontology’s name or description.

35

3.3.2 Ontology Editing

The “Ontology Editing” activities refer to the use cases described in subsec-
tion 3.2.2. In these, the user starts from the ontology editor page and they
take the necessary steps to meet their respective goals.

The diagrams used here are UML Swimlane Activity Diagrams. In these
diagrams, each actor is represented by a swimlane and the activities that
they perform are enclosed into this lane. In our case, we consider the user
and CLONE’s component to be the actors.

Open Ontology Editor: The user clicks on an ontology listed in the Home
page. The Clone Application then loads the ontology details (ontology
name and location in the Ontology Repository) from the database.
The Clone Application sends the ontology information to the Ontology
Editing Service (hereafter OES), requesting the Ontology Axioms, in
JSON format.

In order to serve this request, the OES needs to have the latest ver-
sion of the ontology loaded on its memory (presented as “datastore” in
Figure 3.13). It requests the ontology file from the Repository, which
sends it in RDF/XML format. The OES, then, receives the file, stores
it to its memory, serializes the ontology axioms to JSON format and
returns them to the Clone Application. The latter converts the Ontol-
ogy Axioms to human readable form and displays them to the user.

In the case that another member from the editing-team has already
opened the ontology in the editor, the OES will have it already loaded
on its memory, thus it will serve the request without having to request
the ontology file it from the Repository.

This activity covers the ontology editing use case (i). and is prereq-
uisite for all other ontology editing activities in this subsection. The
UML activity diagram is illustrated in Figure 3.13.

Edit Ontology: The ontology has been opened in the Ontology Editor. In
this environment, the Ontology entities are grouped in various tabs,
based on their type (Classes, Object Properties, Individuals, etc.).

Whenever the user selects an entity tab, the related information is
requested from the Clone Application. The latter responds with the
data and the user is presented with the respective entity list. The
user can click on an entity to view any axioms associated with it.
This information is again requested by the Clone Application, which
in turn requests them from the Ontology Editing Service (OES). The
OES pulls the requested information from its memory and sends them
to the Clone Application that displays them to the user.

The user then chooses to edit the selected entity. The changes per-
formed are sent to the Clone Application, which forwards them to the

36

OES. The latter applies the changes to the ontology and then performs
two simultaneous actions: (a) requests from the Ontology Repository to
store the changes in the current version’s ontology file and (b) responds
to the Clone Application with the changes performed. The Clone Ap-
plication then responds to the user by displaying the updated entity
axioms and, at the same time, notifies any other connected users of
the changes that have been performed. This way, CLONE manages to
display all user changes in real time and ensures that all active users
are displayed the latest version of the ontology.

This activity covers the ontology editing use case (ix). Figure 3.14
illustrates the UML activity diagram.

Apply Reasoning: The ontology has been opened in the Ontology Editor.
The user clicks on the “Apply Reasoning” button. The Clone Appli-
cation requests from the Reasoning Service to apply reasoning on the
ontology, providing some ontology details (ontology identifier and a
callback URL which will be used for retrieving the inferred ontology,
provided that the reasoning process completes successfully).

The Reasoning Service retrieves the ontology from the Ontology Edit-
ing Service and applies reasoning. In case the ontology is found incon-
sistent, the Clone Application is notified and it, in turn, notifies the
user. In the case that the ontology is consistent, the Reasoning Service
simultaneously performs two actions: (a) Notifies the Clone Applica-
tion of the result and (b) sends the inferred ontology to the OES in
order to store it and make it accessible to the Clone Application.

The user may select to view the inferred ontology. The Clone Applica-
tion requests the ontology’s JSON representation from the OES and
when it receives it, it displays the ontology to the user (in a separate
window).

This activity covers the ontology editing use cases (iii), (iv) and (v).
Figure 3.15 illustrates the UML activity diagram.

37

Figure 3.13: Activity diagram describing the process of opening an ontology
for editing. This step is prerequisite for all other ontology editing activities
in this subsection.

38

Figure 3.14: Activity diagram describing the process of editing entities of
an ontology.

39

Figure 3.15: Applying reasoning on an ontology.

40

Chapter 4

Architecture

In this chapter we identify the logical layers that group the system’s opera-
tions and we provide an in-depth analysis of the software components that
constitute it.

4.1 Challenges and Decisions

CLONE has been implemented taking into consideration the following re-
quirements:

(i) High demand on computational resources. CLONE has to cope
with multiple users editing large ontology files simultaneously. Sev-
eral editing teams may use the application at the same time, updating
their ontologies, performing reasoning and participating in conversa-
tions. These tasks, especially when performed by several users simulta-
neously, require large amounts of computational resources, something
that the system has to deal with.

(ii) High Availability. Specific features supported by CLONE can be
very time-consuming. For instance, reasoning over an ontology is a
task that may take several minutes to complete. CLONE has to fulfill
such operations, without compromising the service quality for other
users that are using the system at the same time.

(iii) Extensibility. Though CLONE fully supports OWL 2, there might
be a need to further extend its functionality either to enhance the user
experience or to add more features. To that end, the system has to be
modular and easily extensible.

To address these challenges, CLONE has been designed as a component-
based, service-oriented, distributed system that enables:

(i) Distribution of Workload. The system comprises of different in-
dependent service components, communicating with each other using

41

REST APIs. This design allows the distribution of the workload to dif-
ferent virtual machines. It also helps to achieve high availability, since
the single point of failure is eliminated. In the case of a component
failure (e.g. the ontology conversation service becomes unavailable)
users will still be able to use other features of the application.

(ii) Asynchronous execution of long processes. The components re-
sponsible for executing long processes (such as storing ontology files),
have been implemented as asynchronous Web Services that are exe-
cuted silently in the back-end, allowing users continue working on the
ontology uninterrupted.

(iii) Extensibility. Since the components operate independently, it is very
easy to modify them, replace them or add totally new components,
without compromising the operation of the entire system.

4.2 Architectural Layers

CLONE adopts a 3-layer architecture design model. The first layer (Pre-
sentation Layer) handles the user’s interaction with the system. The sec-
ond layer (Application Layer) implements the business logic of the system
and manages the communication between the various service components.
Finally the third layer (Data Access Layer) is responsible for persisting in-
formation, be storing it relational or document oriented databases or in the
file system. These layers are illustrated in Figure 4.1 and are discussed in
the following subsections.

4.2.1 Presentation Layer

The Presentation Layer is responsible for interacting with the User. It im-
plements functionality for:

• Providing the appropriate methods (User Interface) that enable the
user to interact with the system.

• Transferring user commands to the Application Layer in order to be
executed by the back-end.

• Presenting the information provided from the back-end to a human-
readable form.

The Presentation Layer implements also the Web interface for users inter-
acting with the system. It communicates with the Application Layer over
REST APIs. The data exchanged between the communicating layers is in
JSON format. In specific use cases (such as Editing an Ontology) the ex-
changed data need to be translated from JSON to HTML or reverse. This
transformation is handled by the Transformation Component.

42

Presentation Layer

Service Layer

Relational DB Document Oriented DB File System
Data Access Layer

Business Logic Layer

Application Layer

FRONT-END

BACK-END

Figure 4.1: Architectural Layers

43

4.2.2 Application Layer

This layer operates in the back-end and is responsible for processing infor-
mation. It can be further divided into two sub-layers:

(i) The Business Logic Layer that is responsible for executing the business
logic of the application. It serves as the orchestrator of the entire
application, as it handles the communication among the other layers.

(ii) The Service Layer that includes a pool of services that are utilized by
the previous sub-layer. Each of the individual services are discussed in
the following subsection.

4.2.3 Data Access Layer

This layer also operates in the back-end. Its responsibility is to store and
retrieve information that is sent either by the Application Layer or the
Service Layer.

4.3 Software Components

Each of the layers comprises of a logical group of software components that
implement specific functionality. Figure 4.2 illustrates the components that
constitute the layers and their inter-connections. In the following subsec-
tions we discuss each software component and the functionality that it im-
plements.

4.3.1 Web UI Component

The set of the visual elements that are used for displaying information to the
user and accept user input. These include the Web pages of the Application,
as well as the scripts and modules that are responsible for presenting of
information.

4.3.2 Transformation Component

The data that is exchanged between the Presentation Layer and the Appli-
cation Layer is in JSON format. The module responsible for transforming
the data into JSON is the Transformation Component. More specifically, it
performs the following transformations:

(i) Data received from the back-end into an appropriate format to be
presented to the user. In particular, it receives data in JSON format
from the Application Layer and transforms it to HTML to be presented
to the user.

44

Presentation Layer

Ontology Edit
Service

Reasoning
Service

Ontology
Repository

Logging
Service

Service Layer

Relational DB Document Oriented DB File System
Data Access Layer

Business Logic Layer

Application Layer

Transformation Component

Clone Core Component

Web UI Component

Authorization Component

Figure 4.2: Architectural Layers with Components.

45

(ii) User actions and commands into a format that can be processed and
executed by the back-end. More specifically, it transforms user com-
mands into JSON objects before they are sent to the Application Layer.

4.3.3 Authorization Component

This component is responsible for user authentication and authorization. It
performs user identification based on the provided credentials1 and grants
the appropriate permissions to access specific resources or perform specific
actions. Assigning these functionalities to a separate component, allows
for easily integrating different authorization methods (i.e., OAuth2) or even
use third party authorization services as alternatives (e.g., Facebook, Google
Account etc.).

4.3.4 Clone Core Component

Clone Core Component is responsible for executing the business logic of
the application. It works as the orchestrator of the system, as it receives
requests by the user, divides it into simpler tasks and distributes them to
the other service-components. Afterwards, it combines the results of each
separate task to compose the response that will be sent to the user. More
specifically, the responsibilities of this component are:

(i) Provide the interface through which the front-end communicates with
the back-end.

(ii) Receive the user’s requests, and partially process the information.

(iii) Forward received information to the appropriate services that will pro-
cess it.

(iv) Respond to the front-end with the outcome of the information process-
ing.

The architecture of Clone Core Component is illustrated in Figure 4.3.
It implements the following software modules:

(i) User Authentication whose role is to identify the user. This module
is responsible for logging the user in the system and initialize the user’s
session.

(ii) Authorization Component whose purpose is to check the user’s
permissions before the execution of any action and either allow the
execution, provided that the user has the appropriate permissions, or
block it otherwise. In the latter case, the component also generates

1In the current implementation, the component performs username-password authen-
tication.

46

DataAccess Ontology

Changes
Store

File

Reason

Clone Core Component

DataAccess Ontology

Changes
Store

File

Reason

Relational

Database

mysqli

MySQL

Message

Details

Message

ManagerSendMessage Message

Details

Synchronizer

Synchronize

User

Details
Identity

ManagerIdentification

User

Details
Authorization

Ontology

Editor Edit

Ontology

Details

Store

File

Ontology

ManagerManageOntology

Ontology

Details

Store

File

Reason

Reasoning

Manager Reason

Reason

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

«delegate»

Figure 4.3: Architecture of the Clone Core Component.

47

an error message. This component operates as a middleware and is
invoked before serving any requests. It cannot be directly invoked by
the user but only by other components that require authorization.

(iii) Ontology Manager that handles all user’s interactions with Ontology
projects (not Ontology contents). This module provides the function-
ality to create, edit or delete Ontology projects. Furthermore, it is
used for granting or revoking user permissions on ontology projects.
The component interacts with CLONE’s SQL database (described in
Appendix A.1), to persist changes on the ontology project informa-
tion, as well as with the Ontology Repository for creating/deleting the
associated ontology files.

(iv) Ontology Editor Manager that is responsible for communicating
with the Ontology Editing Service (OES) and forward any changes the
user made to the ontology contents. The component implements the
functionality that enables connecting to the OES over its REST API,
to perform actions that the user has requested on a specific ontology.

(v) Reasoning Manager that is responsible for carrying forward the
user’s request for reasoning over the ontology to the Reasoning Ser-
vice.

(vi) Message Manager that is responsible for delivering the messages
that are exchanged in the Ontology Editor’s chat. It utilizes the Server
Sent Events (SSE)2 technology enabling real-time message transmis-
sion without requiring from the client to sent multiple requests.

(vii) Synchronizer that is responsible for synchronizing the clients that
are simultaneously editing the same ontology file. Each change that a
user makes in the ontology, is transmitted through this component, to
all the clients that are viewing the specific ontology’s contents. The
Synchronizer also utilizes the SSE technology.

As its name suggests, Clone Core Component is the core of the entire
system, since it is responsible for coordinating the software components
and also executing the business logic. It can easily be inferred that this
component can only exist once in each deployment of CLONE.

4.3.5 Ontology Editing Service

Ontology Editing Service is the component responsible for editing ontologies.
It has been designed as a RESTful Web Service, independently from the
other components. The component has been written in Java Programming

2http://www.w3.org/TR/eventsource/

48

http://www.w3.org/TR/eventsource/

Language 3, utilizing the JAX-RS API4 for implementing its REST API and,
internally, the OWL API for manipulating the ontologies. Its architecture
is illustrated in Figure 4.4. It comprises of the following software modules:

(i) Ontology Loader is responsible for retrieving ontology files from
specified locations and for loading the ontologies to its memory, mak-
ing them available for editing. The ontology file has to be accessible
on the Web. Once an ontology has been loaded, its entities can be
accessed for manipulation through the component’s REST API.

(ii) Ontology Editor performs read and write operations on the resources
and communicates with the Ontology Saver in order to store the changes
in the ontology file.

(iii) Ontology Saver is the module responsible for writing the ontology
to a file and then send the file in order to be stored. The ontology
file is sent over the HTTP, to the location that the ontology has been
retrieved from, using the PUT method. In the scope of our implemen-
tation the location where the ontologies are retrieved from or stored
to, is the URL of the Ontology Repository component.

(iv) Inactive Ontology Collector is used for unloading from the system’s
memory any “unneeded” ontologies. It operates as a background pro-
cess that is invoked periodically (every 15 minutes) and checks, for each
loaded ontology, the last time that it has been accessed. The ontologies
that have not been accessed for more than an hour are removed from
the systems memory. This module is essential to the system’s sustain-
ability, as it frees computational resources and makes them available
for reuse.

The Ontology Editing Service handles the changes that are taking place
in the ontologies that are edited by CLONE. Since the ontologies are loaded
into the components memory, in the case that multiple ontologies are edited
simultaneously, the memory resources that are occupied may be massive (de-
pending on the size of each ontology). In that end, Ontology Editing Service
has been designed to operate independently, allowing it to be replicated and
enabling load-balancing among the replicas.

4.3.6 Ontology Repository

The Ontology Repository is a Web Service responsible for managing ontology
files. It provides a REST API that enables the creation and deletion of
ontology files and ontology versions. The ontology files are stored into the
server’s file-system. Each ontology file is stored along with a metadata object

3https://www.java.com/en/
4https://github.com/jax-rs

49

https://www.java.com/en/
https://github.com/jax-rs

«Web Service»

Ontology Editing Service

REST

Ontology

Loader

LoadOntology

SaveOntology

Ontology

Saver
SaveOntology

Ontology

Editor

EditOntology

Inactive

Ontology

Collector

«library»

OWL-API osgi

v4.0.1

«libra...

JAX-RS RI

2.15

«use»

«delegate»

«use»

«delegate»

«use»

«delegate»

«use»

Figure 4.4: Architecture of the Ontology Editing Service.

50

Listing 4.1: Ontology metadata stored by the Ontology Repository

1 {
2 "databaseId": "15 e67a1090de6d",

3 "fileName": "Family",

4 "resourceUri": "http ://147.27.60.63:8080/ OntologyRepository

↪→ /webresources/ontologies /15 e67a1090de6d",

5 "creator": "apreventis",

6 "creationTime": "2020 -03 -15 14:52:46",

7 "activeVersion": false

8 }

that contains information about the ontology. The metadata objects are
stored in JSON format (displayed in Listing 4.1) into a MongoDB database.
They store the following information:

• A unique ontology project ID, named “databaseId” that is used for as-
sociating the metadata objects with an ontology project. Many meta-
data objects may be associated with the same ontology project, but
each metadata object corresponds to exactly one ontology file in the
repository. This is because, an ontology project is associated with as
many ontology files as the versions that have been saved by its editing
team.

• The file name of the ontology. This name is used when the user re-
quests to download the ontology to their local machine.

• The resource location on the Web.

• The username of the creator of the ontology file.

• The date and time that the file was created.

• An indicator that shows whether the ontology file is the one that is
currently used as the active version in the ontology project. Only one
active version may exist in a project.

Figure 4.5 illustrates the components of the Ontology Repository. These
are:

(i) Ontology Manager provides a REST API for accessing ontology files.
It handles the requests for the specified resources (i.e., ontology files)
and invokes the Metadata Manager and the File System Manager.

(ii) Metadata Manager is responsible for interacting with the compo-
nent’s NoSQL database, in order to manage the metadata objects.
These include creating new metadata objects whenever new ontology
files are added to the repository, updating existing metadata objects

51

«Web Service»

Ontology Repository

REST

File System

Manager

Metadata

Manager

Ontology

Manager

«library»

JAX-RS RI 2.15

NoSQL

Database

MongoDB

«delegate»
«delegate»

Metadata
Details

«use»

Figure 4.5: Architecture of the Ontology Repository Service.

when the active version of an ontology is changed or deleting metadata
objects when their associated ontology file is removed.

(iii) File System Manager handles the interactions with the ontology
files. It is responsible for organizing the ontology files in the file sys-
tem’s directories, and also for creating, retrieving or deleting ontology
files.

The Ontology Repository has been written in Java, using the JAX-RS
library for providing the REST features.

4.3.7 Reasoning Service

The Reasoning Service is a Web Service that provides an API for applying
Reasoning on ontology files. When invoked, it requires two URLs, the first
(named “ontologyUri”) specifies the location of the ontology to be reasoned
about and the second (named “callbackUrl”) specifies the location where the
reasoned ontology will be sent, after the reasoning process has completed.
The service pulls the ontology from the Web location specified and loads
it into its memory, where the reasoning takes place. After the reasoning
is completed and in the case that the ontology was found consistent, the
service will send the inferred ontology (using a POST request) to the second
URL that was provided. Finally the service will respond to the requester,
informing on the reasoning results and providing the Web location of the
inferred ontology. Listings 4.2 and 4.3 display examples of request and
response payloads, to the Reasoning Service, respectively. Both the payloads
are in JSON format.

52

Listing 4.2: Request payload for invoking the Reasoning Service

1 {
2 "callbackUrl": "http ://147.27.60.63:8080/

↪→ OntologyEditingService/rest/ontologies",

3 "ontologyUri": "http ://147.27.60.63:8080/

↪→ OntologyEditingService/rest/ontologies /10"

4 }

Listing 4.3: Response of reasoning over a consistent ontology

1 {
2 "inferredOntologyUri": "http ://147.27.60.63:8080/

↪→ OntologyEditingService/rest/ontologies /11",

3 "isConsistent": true

4 }

«Web Service»

Reasoning Service

REST
postOntology

Reasoner

postOntology

«libra...

OWL-API v3.5

«libra...

JAX-RS RI 2.15

«libr...

Pellet v2.3.4

«use»

«delegate»

«use» «use»

«delegate»

Figure 4.6: Architecture of the Reasoning Service.

53

Figure 4.7: Overall Architecture

4.4 Overall Architecture

In the previous section, we have described CLONE’s software components
and the functionalities that each of them implements. Figure 4.7 illustrates
how these components are connected and interoperate in order to provide
CLONE’s functionality.

The user interacts with the Clone Core Component, which is responsible
for receiving each action and breaking it into smaller simpler tasks. These
tasks are then distributed to the rest of the components, over REST API
calls. When a component completes its task, it responds to the Clone Core
Component with the results. Finally, when all components have responded,
the Clone Core Component will combine the individual responses into the
final response that will be presented to the user.

54

Chapter 5

Implementation

5.1 Deployment

In the previous chapter we introduced the software components that consti-
tute CLONE. In this section we describe the deployment targets for each of
these components, that in the UML notation are called Nodes1.

In CLONE’s implementation each node is a Web Server, that allows
a component to work independently as a Web Service and inter-operate
with other components, by making its REST API available on the Web.
Figure 5.1 illustrates the nodes where the software components have been
deployed. CLONE consists of the following nodes:

(i) Clone Application Server is the node that receives all requests di-
rectly from the user and communicates with all other nodes utilizing
the services they provide. This node includes an Apache HTTP Server
where the Clone Core Component is executed and a MySQL Database
Server that hosts CLONE’s relational database.

(ii) Ontology Repository Server is the node responsible for storing
ontology files and versions. This server includes an Apache Tomcat
Web Server, that executes the Ontology Repository component and a
MongoDB Server that stores the ontology file metadata.

(iii) Ontology Manipulation Server includes an Apache Tomcat Web
Server, that executes the Ontology Editing Service component.

(iv) Ontology Reasoning Server also includes an Apache Tomcat Web
Server, that executes the Reasoning Service component.

1A Node is a deployment target which represents computational resource upon which
artifacts may be deployed for execution.

55

Figure 5.1: The nodes where CLONE’s artifacts have been deployed.

5.2 User Interface

CLONE’s User Interface (UI) has been designed given emphasis on both
usability and functionality. It enables users to easily create, manage and
manipulate Ontologies using OWL’s expressiveness to its full extent.

The layout and color conventions have been inspired by Protégé OWL
Editor, one of the most popular ontology editors [22]. This way, users can
be familiar with the tool, even if they are using it for the first time.

In this section we describe the pages of the application, along with the
functionality that is provided by each one.

5.2.1 Sign-in

When a user first visits CLONE, the landing page is displayed (Figure 5.2)
that has two forms: one for logging into the system, provided that the user
has already created an account, and another for registering to the system
and creating new account. All fields in each of these forms are required.
When the user fills either form, he/she will enter the application and is
redirected to the home page.

5.2.2 Home page

The home page (Figure 5.3) is the first page that the user views after logging
into the system. The page consists of two basic visual components (a) the
header, which is (the dark area) placed on the top of the page and (b) the
content, which is the white area in the center of the page. The header is

56

Figure 5.2: The user fills-in either the left form to log-in or the right in order
to create an account and acquire credentials.

Figure 5.3: The user’s home page.

fixed and it is the same in all the application pages and from there the user
can navigate in the application, or log-out from it. The content is the visual
component where the dynamic information of each page is displayed and it
varies from page to page.

On the top of the page’s content there are the “New ontology” buttons.
CLONE provides three ways to create an ontology: create an ontology from
scratch, import an ontology from a web location or upload an ontology from
the local file system. The different options to create ontologies are described
below.

(i) Create ontology: When the user clicks on the “Create Ontology”

57

Figure 5.4: The modal for creating a new ontology.

button, a modal will appear containing a form, as shown in Figure 5.4.
The form contains three fields, (a) the ontology name, a name that will
help the user and their team to identify the ontology, (b) the ontology
IRI (an ontology IRI will be pre-filled by the system, but the user may
change it as they will) and (c) a description of the domain that the
ontology represents.

(ii) Insert from URL: This option allows the user to import an already
existing ontology from a web location. When the user clicks the “Insert
from URL” button a modal will appear (Figure 5.5), where the user has
to specify the ontology name, an optional description of the ontology
and the URL of the ontology. After clicking “Insert” he system will
create a copy of the ontology from the specified location and store it
into the Ontology Repository, making it available for manipulation to
the user and the development team.

(iii) Upload ontology: Finally, by clicking on the “Upload ontology” but-
ton, a modal will appear where the user has to specify the ontology
name, an optional description for the ontology and select the ontol-
ogy file from the local file system, as displayed in Figure 5.6. Then,
by clicking “Upload” the specified ontology file will be copied to the
Ontology Repository and the ontology will be available for editing.

After creating an ontology using any method, the respective modal will
automatically close and the new ontology will be added in the user’s list.
The creator of the ontology will be assigned the administrator role, which
cannot be changed.

58

Figure 5.5: The modal for importing an ontology from a web location.

Figure 5.6: The modal for uploading an ontology from the local file system.

59

Figure 5.7: The available actions that an administrator can perform on an
ontology.

In the home page users can browse the ontologies that they are allowed
to view or edit. For each ontology in the list, some basic information is
presented such as the ontology’s name, its location in the Ontology Reposi-
tory, a description, its creation date and the user’s role in the development
team. Users can also perform specific actions on these ontologies, depend-
ing on their role in the development team, as they are described in Subsec-
tion 3.2.1. The available actions can be selected using the ontology menu,
that appears by clicking the expand button on the top right corner of the
ontology. Figure 5.7 illustrates the actions that are available on an ontology
that the user administrates.

(i) Download Ontology: By selecting this action, the user can download
the the ontology file locally. The downloaded ontology file will be saved
in the RDF/XML serialization format.

(ii) Edit Information: This option allows the user to edit the basic in-
formation of the ontology, such as the ontology name or its description,
in a new modal, as displayed in Figure 5.8.

(iii) Manage Roles: This option enables the user to manage the users that
can access an ontology and their permissions. When the user selects to
manage the ontology’s roles, a modal will appear (Figure 5.9) allowing
them to (a) add new users to the development team and assign them
roles or (b) remove existing users from the development team and
revoke their permissions.

A new user can be added to the ontology team by entering his/her
username or e-mail in the user input and selecting the role that he/she
is going to be associated with, from the roles drop-down. The available

60

Figure 5.8: Edit ontology’s basic information.

roles are Viewer, Editor or Administrator. The privileges that come
with either role are described in Subsection 3.2.1.

To remove a user from the development team, the administrator should
click on the “minus” button that appears on the right side of each user
in the list. Ontology creators cannot be removed from the development
team.

In order to change a user’s role, he/she has to be removed and inserted
again with the new role.

(iv) Manage Versions: Using this option, administrators can create new
versions of an ontology, or change the current version that the team is
working on. When the option is selected, a modal appears (Figure 5.10)
containing information on the currently active ontology version and a
list with all the available versions. Administrators are enabled to set
any version in the list as the active version, or delete it in case that it
is not further needed.

In order to set a version as active, the administrator has to click on
the yellow “check” button, that is placed on the right of each version
in the list. Note that when the active ontology version is changed, any
users editing or viewing the previous version will lose access to it and
they will have to refresh the page in order to view the access one.

To delete a version, the user needs to click on the red “minus” button,
on the right of the version.

61

Figure 5.9: Manage user roles.

(v) Delete Ontology: This option allows the user to completely remove
the ontology and anything associated with it, including ontology ver-
sions and conversations. The ontology will also be removed from the
ontology repository.

5.2.3 Ontology Editor

In order to open an ontology in the editor, the user has to click on it from
the home page, as displayed in Figure 5.3. After this, the user is directed to
the ontology editor page, where he/she can view the the ontology data and,
provided that they have the appropriate permissions, edit it.

The ontology editor page can be divided in the following visual compo-
nents:

(i) The header, which is placed on the top of the page and under the
application header. The header displays the name of the ontology
that is currently open on the editor, and on its right side, the available
management actions that the user can perform. These include applying
reasoning on the ontology, creating a new version with the current state
of the ontology or downloading an ontology file (.owl) that contains the
ontology.

62

Figure 5.10: Manage ontology versions.

Figure 5.11: The Ontology Editor.

63

Figure 5.12: The modal that informs the user about the reasoning result.

If the user selects to apply reasoning on the ontology, CLONE will
invoke the Reasoning Service to perform consistency checking. The
user will be notified about the results in a dialog that will appear as
soon as reasoning is complete (Figure 5.12). The user can then choose
to view the inferred ontology in a separate window, or return to the
edited ontology.

In the case that the users selects to create a version of the ontology,
it is created instantly and added to the available versions that can be
used as restoration points, as described in Subsection 5.2.2. The user
is notified and he/she can continue editing the current version.

The last action, will download the ontology file of the current version
in the same way that is described in Subsection 5.2.2.

(ii) The left vertical menu, is the dark-colored column that is placed on
the left of the page, as displayed in Figure 5.11. This menu contains
two buttons, the “Undo” button that is no the top and the “Redo”
that is below the former. Similarly to most text editing applications,
CLONE allows to undo any change made to the ontology, by simply
pressing “Undo”. The button is enabled after the user performs his/her
first change and is able to revert up to 50 changes. The “Redo” button
can be used to apply any change that has been previously “undone”
using the “Undo” button.

Although the functionality of the buttons resembles this of a text-
editor, they do not work in the same way. In CLONE, any changes are
immediately saved in the ontology and made visible to the other users.
They are even logged to the change history. In order to implement the
“undo” and “redo” functionality, for every action that is performed, a
reverse action —an action that reverts the previously made change—
is stored in a stack. Whenever the user selects to undo an action,
the last stored reverse action is executed, reverting the previous user-

64

(a) The history of changes. (b) The team chat.

Figure 5.13: The ontology change history panel and the team conversation
panel.

made action. For instance, suppose that a user wants to add a new
Individual in the ontology. The moment that the individual is added,
an action that will remove it from the ontology is stored in the undo
stack. When the user selects to undo the last change, the action is
retrieved from the stack and executed, removing the individual. The
“Redo” stack works similarly.

(iii) The right vertical menu, is the dark-colored column that is placed
on the right of the page. It contains two buttons that give access
to two of the most essential features of CLONE. On the top of the
menu is placed the “Change History” button and below that, is the
“Conversation” button. When clicking on each of these buttons, a
panel will expand showing the history of changes that took place on
the ontology, or the team conversation on the ontology. Figure 5.13
displays both these panels.

The Change History panel is where all the changes that have taken
place on the ontology are displayed. Whenever a change is applied on
the ontology or its entities is created, updated or deleted a new history
record is inserted in the change-log database. A history record keeps
track of (a) the user that performed the action, (b) a description of
this action and the date and (c) time that it took place.

65

Figure 5.14: The ontology tab gives access to the basic properties of an
ontology.

The Ontology Conversation panel allows for real time commu-
nication between the development team of an ontology. It facilitates
knowledge sharing and exchange of ideas, while browsing the ontol-
ogy or between its entities. It also informs about other users that are
currently online. Conversation messages are visible to all users in the
development team, even if they are not online at the time of sending.

(iv) The central panel, is the main panel of CLONE. It contains 7 tabs,
each one providing access to different type of ontology entities. These
tabs are described in the following Subsection.

5.2.4 Ontology Tabs

5.2.4.1 The Ontology tab

This tab gives access to specific ontology properties. These are (a) the
Ontology IRI which is used to uniquely identify an ontology, (b) the Version
IRI that is used as an optional unique identifier for the ontology’s version,
(c) Annotations that can be used to associate information to the ontology
—for example to add a short description, or the names of the creators—
and (d) Imports that allow specifying other Ontology IRIs in order to gain
access to their entities. Figure 5.14 illustrates the Ontology tab, along with
the properties that can be accessed.

66

Figure 5.15: The classes tab enables managing ontology classes.

5.2.4.2 Classes

Classes provide an abstraction mechanism for grouping resources with simi-
lar characteristics. Every OWL class is associated with a set of individuals,
that is called the class extension.

This tab allows users to browse through the classes that have been de-
fined in an ontology. It also enables users create new classes and edit or
delete existing ones. The tab is divided into 5 panels that are described
below.

The classes panel enlists all the ontology classes. The classes are pre-
sented in a tree view. Each class will appear below its parent. In the case
that a class has been set to have more than one super-classes (that do not
belong in the same sub-tree) it will appear under both. By moving the
mouse over a class, two buttons appear next to its name, one for editing
the its name (and URI) and one for removing the it from the ontology. By
clicking on a class in the list, its related classes will be displayed in the other
4 panels.

The Annotations panel is used for displaying annotations that have been
added on the selected class. Clicking the “plus” allows adding new anno-
tations, using the Annotation Editor. Existing annotations can be removed
by clicking the “minus” button that appears when moving the mouse over
them.

The Super Classes panel displays the super-classes of the selected class.
These can either be named classes or anonymous2. New super-classes can

2An anonymous class is described by the the restrictions that are placed on the class
extension, whereas named classes are described by their URI.

67

be added using the Class Expression Editor.
Similarly to the Super Classes tab, the Disjoint Classes tab is used to

display the classes that have been defined to be disjoint with the selected
and the Equivalent Classes tab, these that have been defined as equivalent.
These classes also can be named or anonymous. To add any disjoint or
equivalent classes, the user can click on the “plus” button on the respective
tab, that will pop-up the Class Expression Editor.

5.2.4.3 Object Properties

OWL Object properties represent relations between two Individuals. This
tab allows users to define new object properties, edit existing ones or remove
them from the ontology definition.

The Object Properties tab displays the object properties that have been
defined in an ontology, as well as their characteristics and associations. Users
can browse through existing project properties, create new, edit or delete
existing ones. This tab is divided in 8 panels, that are described below.

The Object Properties panel enlists the object properties that are in-
cluded in the ontology. As in the case of classes, the properties are displayed
in hierarchical structure. This panel provides functionality to create/edit/re-
move object properties. Users can use the search input on the top of the list
to filter the properties by name.

Similarly to classes, there is the annotation panel that displays annota-
tions on the selected object properties. Through this panel users can manage
existing annotations or create new ones.

The Characteristics panel allows users to assign specific axioms3 on the
selected object property. Depending on their axioms, object properties can
be characterized as:

• Functional Properties,

• Inverse-Functional Properties,

• Reflexive Properties,

• Irreflexive Properties,

• Symmetric Properties,

• Asymmetric Properties,

• Transitive Properties.

Users can define the selected object property Domains and Ranges classes
from the respective panels. The Domains and Ranges can either be OWL
named classes or Class Expressions.

3https://www.w3.org/TR/owl2-syntax/#Object_Property_Axioms

68

https://www.w3.org/TR/owl2-syntax/#Object_Property_Axioms

Also the following property relations can be specified on the selected
object property, using the respective panels.

1. Super Properties are analogous to super classes. A sub-property
inherits the axioms of its super-properties.

For example, consider the following axioms:

(i) John hasDog Fluffy. (ii) hasDog sub-class of hasPet.

The ontology entails the following assertion: John hasPet Fluffy

2. Equivalent Properties are properties that are semantically equiva-
lent to the selected property.

For example, consider the following axioms:

(i) hasBrother EquivalentTo hasMaleSibling. (ii) George hasBrother
Philip.

The ontology entails the following assertion: George hasMaleSibling
Philip

3. Disjoint Properties that are properties that are pairwise disjoint to
the selected property.

For example, consider the following axioms:

(i) hasMother disjointTo hasFather. (ii) George hasFather John. (iii)
George hasMother Mary.

At this point, the ontology is consistent and the disjoint axiom is sat-
isfied. If one were to add the following assertion: “George hasMother
John” the axiom would be invalidated and the ontology would become
inconsistent.

It is important to note that in all three aforementioned panels, users can
either add named object properties or Property Expressions.

5.2.4.4 Data Properties

OWL Data properties are used for connecting individuals with literals. The
Data Properties tab allows users manage the data property definitions in
the ontology. The tab is identical to the Object Properties tab in all but
two things:

(i) The range of data properties is a Datatype whereas in object properties
it is a Class Expression

(ii) Data properties can have only one characteristic, the Functional Prop-
erty.

69

Figure 5.16: The Object Properties tab.

Figure 5.17: The Data Properties tab.

70

5.2.4.5 Annotation Properties

Annotation properties can be used to provide an annotation for an ontology,
axiom, or an IRI. For instance, one can add a comment on an object prop-
erty using the annotation property “comment”, as displayed in Figure 5.16.
Annotation properties (like other types of properties) can have Domains,
Ranges and super-properties, all of which can be specified in the Annota-
tion Properties tab. The Domains and Ranges can be specified using an
entity’s IRI, thus any OWL entity can be set as an annotation property
domain or range.

OWL allows for adding annotations on annotation properties as well,
which can be accomplished via the annotations panel.

5.2.4.6 Individuals

Individuals represent actual object of the domain of interest. They can be
distinguished in Named, which are the individuals that have been assigned an
explicit name and can be used in any ontology, and Anonymous Individuals
that do not have a global name, thus they can only be referred in the ontology
that they are contained. Clone’s current implementation supports Named
Individuals.

Individuals can have one or more types, which are the OWL classes the
individual belongs to. The types of individuals can be either anonymous or
named. Clone allows for assigning both types on individuals, through the
Types panel.

OWL is based on the Open World Assumption, meaning that nothing
can be assumed that exists, unless it is explicitly stated. In the case of
Individuals, this means that we cannot assume that two individuals are
neither the same nor different unless it has been stated. These kind of
statements can be added in the Same Individuals and Different Individuals
panels, respectively.

As we have already mentioned, object properties represent the relation-
ships between two individuals. After having selected the individual to as-
sociate (the subject) from the Individuals list, the user can use the Object
Property Assertions panel to associate it with another individual (the object)
via an object property (the predicate).

Individuals can also be associated with specific values, that can vary
between strings, integers, decimals, floats and others. These associations
can be done from the Data Property Assertions panel. Similarly to Object
Property Assertions, the user can select the Individual that they want to
associate with a value (the subject) from the Individuals list, and then select
the Datatype and type-in the value.

Finally from this tab, users can specify Negative Object Property Asser-
tions and Negative Data Property Assertions. These are object and data

71

Figure 5.18: The Individuals tab.

property assertions that an individual cannot have, and they are introduced
to similarly to object and data property assertions respectively.

5.2.4.7 Datatypes

Datatypes define the particular values a data item can get. This tab in-
cludes a list with the built-in owl datatypes, but users can create their own
datatypes as well. Users are also able to add annotations on datatypes from
the “Annotations” panel. Finally they can add datatype definitions, which
are used for defining that a datatype is semantically equivalent to another
built-in datatype.

72

Figure 5.19: The Datatypes tab.

73

Chapter 6

Conclusions and Future
Work

In this work we introduced CLONE (Cloud Ontology Editor), a Web-based
ontology editor that provides real-time collaboration on designing and build-
ing RDF and OWL ontologies. CLONE offers a user-friendly environment
that facilitates users take advantage of OWL’s expressiveness to its full ex-
tend, without having specific knowledge on the representation language.
The editor provides all the essential features of an ontology editor and also
significant collaboration features, such as ontology versioning, cloud storage,
various access levels, simultaneous editing, change history and many more.

CLONE has a component-based, service oriented architectural design.
Each of its components operates as a service that exposes a REST API,
making the system modular and allowing for extensibility, scalability and
load-balancing.

In the short term, we plan to evaluate CLONE by running a usability
study based on questionnaires addressing various aspects of system func-
tionality (e.g. performance, functionality, ease of use) for different user
categories.

We are currently working on extending CLONE’s functionality to sup-
port more ontology formats such as Manchester Syntax and Turtle and also
incorporate a triple store database for storing native ontology relations. This
will allow handling large ontologies (that contain millions of triples) and also
provide greater efficiency and data handling capabilities.

In the long-term we plan to support temporal ontologies, by integrating
solutions such as Chronos [23], that add temporal aspects in ontologies and
provide the means of describing relations that change over time.

74

Appendices

75

Appendix A

Database Schemata

A.1 Clone Core Component’s SQL Database

users: Stores the following information on the registered users of the application.
first name: The user’s first name.
last name: The user’s last name.
email: The user’s email address. Unique column.
username: The username of the user. Primary key.
password: The user’s password.

ontologies: Stores information on ontologies.
id: Unique identifier of the ontology. Primary key.
name: The name of the ontology.
publisher: The username of the user who created the ontology. Foreign

key from the users table.
description: Ontology description.
location: The location where the file of the ontology is stored.
creation time: The timestamp when the ontology was created.

ontology viewers: Stores information on the users that currently use an ontol-
ogy.
username: The username of the ontology user. Part of the primary key.

Foreign key from the users table.
ontology uri: The ontology location. Part of the primary key.

last ping: The timestamp when the user notified the server that they
are active.

76

messages: Stores the messages of the ontology conversations.
id: Unique identifier of the message. Primary key.
ontology: The ontology ID of the ontology where this message was

sent. Foreign key from the ontologies table.
sender: The username of the user that sent the message. Foreign

key from the users table.
body: The text of the message.
time sent: The datetime when the message was sent.

roles: Stores the user roles of the application.
id: Unique identifier of the role. Primary key.
type: A textual description of the role.

permissions: Stores the specific roles that have been assigned to each user of an
ontology.
user: The username of the ontology user. Part of the primary key.

Foreign key from the users table.
ontology: The ID of the ontology where the user role applies. Part of

the primary key .Foreign key from the ontologies table.
role: The ID of the role that has been assigned to the user, in the

particular ontology. Foreign key from the roles table.

errors: Stores the error code and messages used by the application.
code: Unique code that represents an error.
reason: The reason that has caused this error.
message: The error message that will be displayed to the user.

77

Figure A.1: Entity-Relationship diagram of Clone Core Component’s
database schema.

78

Bibliography

[1] S. Braun, A. Schmidt, A. Walter, G. Nagypal, and V. Zacharias, “On-
tology Maturing: a Collaborative Web 2.0 Approach to Ontology En-
gineering,” in Proceedings of the Workshop on Social and Collaborative
Construction of Structured Knowledge at the 16th International World
Wide Web Conference (WWW 07), Banff, Canada, 2007.

[2] T. Berners-Lee, J. Hendler, O. Lassila, et al., “The semantic web,”
Scientific american, vol. 284, no. 5, pp. 28–37, 2001.

[3] G. Klyne and J. J. Carroll, “Resource Description Framework (RDF):
Concepts and Abstract Syntax,” W3C Recommendation.

[4] D. L. McGuinness, F. Van Harmelen, et al., “Owl web ontology lan-
guage overview,” W3C recommendation, vol. 10, 2004.

[5] A. Miles and J. R. Pérez-Agüera, “Skos: Simple knowledge organisation
for the web,” Cataloging & Classification Quarterly, vol. 43, no. 3-4,
pp. 69–83, 2007.

[6] M. Kifer, “Rule interchange format: The framework,” in Web Reason-
ing and Rule Systems (D. Calvanese and G. Lausen, eds.), vol. 5341 of
Lecture Notes in Computer Science, pp. 1–11, Springer Berlin Heidel-
berg, 2008.

[7] E. Prud’Hommeaux, A. Seaborne, et al., “Sparql query language for
rdf,” W3C recommendation, vol. 15, 2008.

[8] B. McBride, “The resource description framework (rdf) and its vocab-
ulary description language rdfs,” in Handbook on Ontologies (S. Staab
and R. Studer, eds.), International Handbooks on Information Systems,
pp. 51–65, Springer Berlin Heidelberg, 2004.

[9] I. Horrocks, “Daml+ oil: a reason-able web ontology language,” in
Advances in Database Technology—EDBT 2002, pp. 2–13, Springer,
2002.

79

[10] B. Motik, P. F. Patel-Schneider, B. Parsia, C. Bock, A. Fokoue,
P. Haase, R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler, et al.,
“Owl 2 web ontology language: Structural specification and functional-
style syntax,” W3C recommendation, vol. 27, no. 65, p. 159, 2009.

[11] M. Horridge and S. Bechhofer, “The owl api: A java api for owl ontolo-
gies,” Semantic Web, vol. 2, no. 1, 2011.

[12] O. Corcho, M. Fernández-López, and A. Gómez-Pérez, “Ontological
engineering: Principles, methods, tools and languages,” in Ontologies
for Software Engineering and Software Technology (C. Calero, F. Ruiz,
and M. Piattini, eds.), pp. 1–48, Springer Berlin Heidelberg, 2006.

[13] J. Davies, Y. Sure, D. Vrandecic, S. Pinto, C. Tempich, and Y. Sure,
“The diligent knowledge processes,” Journal of Knowledge Manage-
ment, vol. 9, no. 5, pp. 85–96, 2005.

[14] C. Tempich, E. Simperl, M. Luczak, R. Studer, and H. S. Pinto,
“Argumentation-based ontology engineering,” IEEE Intelligent Sys-
tems, vol. 22, no. 6, pp. 52–59, 2007.

[15] T. Tudorache, N. Noy, S. Tu, and M. Musen, “Supporting collaborative
ontology development in protégé,” in The Semantic Web - ISWC 2008
(A. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. Finin,
and K. Thirunarayan, eds.), vol. 5318 of Lecture Notes in Computer
Science, pp. 17–32, Springer Berlin Heidelberg, 2008.

[16] M. Weiten, “Ontostudio R© as a ontology engineering environment,”
in Semantic Knowledge Management (J. Davies, M. Grobelnik, and
D. Mladenić, eds.), pp. 51–60, Springer Berlin Heidelberg, 2009.

[17] A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. Hendler, “Swoop:
A web ontology editing browser,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 4, no. 2, pp. 144 – 153, 2006.
Semantic Grid –The Convergence of Technologies.

[18] E. Simperl and M. Luczak-Rösch, “Collaborative ontology engineering:
a survey,” The Knowledge Engineering Review, vol. 29, no. 01, pp. 101–
131, 2014.

[19] S. Tramp, P. Frischmuth, and N. Heino, “Ontowiki–a semantic data
wiki enabling the collaborative creation and (linked data) publication
of rdf knowledge bases,” Demo Proceedings of the EKAW, vol. 2010,
2010.

[20] P. Haase, H. Lewen, R. Studer, D. T. Tran, M. Erdmann, M. d’Aquin,
and E. Motta, “The neon ontology engineering toolkit,” WWW, 2008.

80

[21] T. Tudorache, C. Nyulas, N. F. Noy, and M. A. Musen, “WebProtégé:
A Collaborative Ontology Editor and Knowledge Acquisition Tool for
the Web.,” Semantic web, vol. 4, pp. 89–99, Jan. 2013.

[22] P. Warren, “Ontology users’ survey–summary of results,” Month, 2013.

[23] A. Preventis, P. Marki, E. G. M. Petrakis, and S. Batsakis, “Chronos:
A tool for handling temporal ontologies in protégé,” in 2012 IEEE 24th
International Conference on Tools with Artificial Intelligence, vol. 1,
pp. 460–467, Nov 2012.

81

	Introduction
	Problem Definition
	Proposed Solution
	Thesis Outline

	Background and Related Work
	Semantic Web
	RDF & RDFS
	OWL
	OWL API
	Ontology Engineering
	Collaborative Ontology Editors
	OntoWiki
	NeOn Toolkit
	Web Protégé
	OntoStudio
	Overview

	Requirements Analysis
	User Roles
	Use Cases
	Ontology Management
	Ontology Editing

	Activities
	Ontology Management
	Ontology Editing

	Architecture
	Challenges and Decisions
	Architectural Layers
	Presentation Layer
	Application Layer
	Data Access Layer

	Software Components
	Web UI Component
	Transformation Component
	Authorization Component
	Clone Core Component
	Ontology Editing Service
	Ontology Repository
	Reasoning Service

	Overall Architecture

	Implementation
	Deployment
	User Interface
	Sign-in
	Home page
	Ontology Editor
	Ontology Tabs
	The Ontology tab
	Classes
	Object Properties
	Data Properties
	Annotation Properties
	Individuals
	Datatypes

	Conclusions and Future Work
	Appendices
	Database Schemata
	Clone Core Component's SQL Database

