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Abstract—We show that any characteristic function game
(CFG) G can be always turned into an approximately equiva-
lent game represented using the induced subgraph game (ISG)
representation. Such a transformation incurs obvious benefits
in terms of tractability of computing solution concepts for G.
Our transformation approach, namely AE-ISG, is based on the
solution of a norm approximation problem. We then propose a
novel coalition structure generation (CSG) approach for ISGs that
is based on graph clustering, which outperforms existing CSG
approaches for ISGs by using off-the-shelf optimisation solvers.
Finally, we provide theoretical guarantees on the value of the
optimal CSG solution of G wrt the optimal CSG solution of the
approximately equivalent ISG. As a consequence, our approach
allows one to compute approximate CSG solutions with quality
guarantees for any CFG. Results on a real-world application
domain show that our approach outperforms a domain-specific
CSG algorithm, both in terms of quality of the solutions and
theoretical quality guarantees.

Index Terms—induced subgraph games (ISGs), coalition struc-
ture generation (CSG), ridesharing, social networks, graphs

I. INTRODUCTION

Induced subgraph games (ISGs) constitute a celebrated
characteristic function game (CFG) representation introduced
by Deng and Papadimitriou [1], based on a weighted graph
among the agents, in which the value of each coalition is the
total weight of all its internal edges (i.e., that of the subgraph
induced by the coalition). The ISGs representation is succinct:
any ISG can be completely represented using a polynomial
amount of space. In virtue of such simplicity, ISGs have
very appealing computational properties, and thus have been
widely studied in the cooperative game theory literature [2].
For instance, the Shapley value can be immediately computed.
Moreover, when the edges’ weights are non-negative, one can
efficiently check whether an outcome is in the core of the
game [1]. In this paper we show that the coalition structure
generation (CSG) problem on ISGs (i.e., determining the
optimal partition of the space of agents, the one that maximises
the sum of formed coalitions’ values), can be solved very
efficiently as a graph clustering (GC) problem.

Unfortunately, the applicability of ISGs is limited by their
simplicity, as ISGs are not capable to represent every possible
CFG [2], which, in turn, have been applied to model very
important real-world application domains [3], [4]. Indeed,
to the best of our knowledge, no actual-world applications
of ISGs exist in the literature, and no research to date has

examined the problem of how to approximate a generic CFG
by an ISG, so as to exploit the properties of the ISG model.

Thus, having the means to (approximately) transform a CFG
G into an ISG is an interesting direction to investigate, so as
to allow one to enjoy the above-mentioned benefits in terms
of tractability of computing solution concepts for G.

Motivated by the above discussion, in this paper we achieve
this objective by proposing a method to turn any graph-
restricted [5] and unrestricted game into an Approximately
Equivalent ISG, namely AE-ISG. AE-ISG is based on a norm
approximation problem [6], which works with any norm. We
discuss how to control the approximation with both soft and
hard constraints, which allow one to tailor the approximation
quality so as to pursue different objectives (e.g., reduce the
overall difference between the values of the coalition in the
ISG and in the original CFG, or focus on particular classes
of coalitions). Our model can then be solved by off-the-shelf
solvers very efficiently. We highlight the equivalence between
the CSG problem on ISGs and the graph clustering problem.
This allows us to employ a wealth of optimisation techniques
for graph clustering so as to tackle CSG on ISGs very
efficiently and outperform approaches specifically designed for
CSG on ISGs. To the best of our knowledge, this is the first
work to highlight and exploit such equivalence. Finally, we
provide a technique to compute a theoretical upper bound on
the quality of the optimal CSG solution of the original game
wrt the CSG solution of the ISG, i.e., a method to formally
guarantee that the original CSG solution is not better than a
given amount wrt the one efficiently computed for the ISG.
Thus, we provide an efficient method to compute approximate
CSG solutions with quality guarantees for any CFG.

We test our approach in a real-world domain, i.e., rideshar-
ing. Results show that our approach can transform CFGs with
hundreds of agents, while achieving a good approximation
quality. Moreover, we provide a highly-parallel GPU version
that supports up to 5400 agents (i.e., considering the entire
ridesharing dataset, as opposed to 400 agents with the CPU
version). Finally, we show that our CSG approach outperforms
a recent method proposed by Bistaffa et al. [7] that is
specifically designed to provide approximate CSG solutions
(with theoretical quality guarantees) in the social ridesharing
domain. Notice that, in contrast to [7], our approach does not
exploit any specific knowledge about the domain.

In Figure 1 we provide an example in which we show how
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Graph clustering (KGC)
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r(0, 12) = 0 r(012) = 0

r(CS∗AE) = 1 minr = minr = 0
V (CS∗G)− V (CS∗AE) = 0 ≤ 1− 0 = 1

Quality guarantees (Propositions 5 & 6)

Fig. 1. Overview example. The flow of our approach is highlighted in bold.

we compute an (approximate) solution to the CSG problem of
a game G. We start by transforming the original game (i.e.,
the dashed box in the figure) into an AE-ISG one, and then,
given that CSG on ISGs is a graph clustering problem, we
employ ILP to obtain an optimal solution of the new game. We
guarantee that an upper bound on the optimal CSG solution of
G (the dotted box in the figure, not computed by our approach)
exists, wrt to the AE-ISG’s computed optimal solution. We
provide a summary of the adopted notation in Table I. The
technical details will be discussed in the forthcoming sections.

In more detail, this paper makes the following contributions:

• We propose AE-ISG, our approach to turn any CFG into
an approximately equivalent ISG.

• We provide the computational complexity of AE-ISG and
we show that it has polynomial complexity when the
cardinality of coalitions is bounded by a constant.

• We propose a novel, practically efficient solution algo-
rithm for CSG on ISGs based on graph clustering, and
which outperforms two notable CSG approaches [7], [8].

• We formally characterise a bound on the value of the
optimal CSG solution of the original CFG wrt the CSG
solution of the approximated ISG. Thus, our approach
allows one to efficiently compute approximate solutions
with quality guarantees for any CFG.

• We validate our CSG approach on a real-world problem
showing that it outperforms a recent method proposed
by Bistaffa et al. [7], which is specifically designed
to provide approximate CSG solutions (with theoretical
quality guarantees) in the social ridesharing domain.

Our paper is organised as follows: Section II provides the
necessary theoretical background and a review on the related
literature with the associated research gap. Sections III and
IV discuss the formalisation and the solution of the AE-
ISG model. Section V discusses KGC, i.e., our approach to
solve CSG on ISGs, and the associated theoretical quality
guarantees. Section VI presents our experimental evaluation.
Section VII concludes the paper and outlines future work.

Symbol Definition
G Characteristic function game
S Coalition
CS Coalition structure
v(S) Value of S in G
V (CS) Value of CS in G
CS∗G Optimal CSG solution of G
wi,j Weight of edge (i, j)
w(S) Value of S in the ISG
W (CS) Value of CS in the ISG

AE-ISG(G) Approximately equivalent ISG of G
CS∗AE Optimal CSG solution of AE-ISG(G)
rS Residual associated with S

r(CS) Sum of residuals associated to S ∈ CS
minr Minimum r(·) over all coalition structures
minr Lower bound on minr

TABLE I
NOTATION ADOPTED THROUGHOUT THE PAPER.

II. BACKGROUND & RELATED WORK

A. Characteristic function games

A characteristic function game G [2] is given by a pair
(N, v) where N = {1, . . . , n} is a finite, non-empty set of
agents and v : 2N → R is a characteristic function, which
maps each coalition S ⊆ N to a real number v(S), referred
to as the value of S. In this paper we focus on graph-
restricted games, a particular class of characteristic function
games first introduced by Myerson [5], and widely studied in
the literature [7], [9]. A graph-restricted game is given by a
pair (G, v), where G = (N,E) is an undirected, connected
graph, with |N | = n and |E| = e. Myerson considers a
coalition S to be feasible if all of their members are connected
in the subgraph of G induced by S. That is, for each pair
of players from i, j ∈ S there is a path in G that connects
them without going out of S. Given G, the set of feasible
coalitions is FC(G) = {S ⊆ N | The subgraph induced by
S on G is connected}. Notice that every unrestricted CFG
can be represented as a graph-restricted game with a fully
connected graph. For this reason, in this paper we only refer
to graph-restricted games. In addition to such constraints,
several application domains inherently enforce a maximum
cardinality constraint on the size of coalitions [7], [10], i.e.,
feasible coalitions cannot have more than k members. Notice
that a scenario without cardinality constrains can be seen as a
cardinality-constrained one with k = n.1 Thus, in this paper
we only refer to cardinality-constrained domains.

B. Induced subgraph games

Induced subgraph games are a simple CFG representa-
tion introduced by Deng and Papadimitriou [1]. An ISG
is described by an undirected, connected, weighted graph
Gw = (N,E), with |N | = n and |E| = e. The weight of edge
(i, j) is denoted by wi,j . We assume wi,j ∈ R ∀(i, j) ∈ E.

1If k = n, the number of coalitions is exponential, hence our transformation
approach is no longer polynomial, since all values must be read at least once.
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In the ISG that corresponds to Gw, the set of players is N ,
and the value of a coalition S ⊆ N is defined to be the total
weight of all its internal edges, or, in other words, the subgraph
induced by S, i.e., w(S) =

∑
{i,j}⊆S wi,j such that (i, j) ∈ E.

Self-loops are allowed, so that w({i}) = wi,i. The value of a
coalition structure CS is assessed as the sum of the weights of
all the edges induced by CS, i.e., W (CS) =

∑
S∈CS w(S).

The representation is succinct: any ISG can be completely
represented using a polynomial amount of space. In virtue
of their simplicity, ISGs have very appealing computational
properties. For instance, the Shapley value φi of agent i can
be immediately computed as φi = 1

2

∑
(i,j)∈E wi,j . Moreover,

when the edges’ weights are non-negative, one can efficiently
check whether an outcome is in the core of the game [1].
ISGs are not capable to represent every possible CFG: in any
ISG the value of each coalition is completely determined by
the values of its sub-coalitions of size one and two, and in
general this is not the case for any CFG [2]. Thus, having the
means to (approximately) transform a CFG into an ISG is an
interesting direction to investigate.

In terms of coalitional value definition, ISGs can be inter-
preted as a specific version of the MC-nets representation [11],
[12], where a game is described by a collection of rules, and
each rule r is of the form Br → vr, where Br is a Boolean
formula over a set of variables {b1, . . . , bn} and vr is a real
value. The value of a given coalition S is then assessed as
the sum of the values of all the rules applicable to S, i.e.,
every rule r such that Br is satisfied by the following truth
assignment: bi = true if i ∈ S and bi = false if i 6∈ S. Along
these lines, every ISG can be encoded by an MC-net in which,
for each edge connecting agents i and j and having a weight
wi,j , one defines a rule i ∧ j → wi,j [12]. However, since
ISGs are defined over a graph, graph-based constraints [5]
can naturally be applied (as we do in this paper).

One of the fundamental optimisation problems in the con-
text of CFGs is coalition structure generation, discussed below.

C. Coalition structure generation

In its standard definition, the coalition structure generation
problem [13] takes as input a CFG G = (N, v). Here we
assume that CSG takes as input a graph-restricted game
G = (G, v), since we focus on this game representation. A
coalition structure CS is a partition of N into feasible disjoint
coalitions. The set of feasible coalition structures is CS(G).

The value of a coalition structure CS is assessed as
the sum of the values of its composing coalitions, i.e.,
V (CS) =

∑
S∈CS v(S). CSG aims at identifying CS∗ =

argmaxCS∈CS(G) V (CS). Naturally, CSG can also be consid-
ered over ISGs also, with the objective of computing the coali-
tion structure CS that maximises W (CS) =

∑
S∈CS w(S).

Bachrach et al. [14] provide an analysis of the computa-
tional aspects of this problem, showing that it is NP-complete.
More recently, Leon et al. [15] showed that CSG on ISGs can
also be solved using quantum annealing by casting it as a
quadratic unconstrained binary optimisation (QUBO) prob-
lem. The approach proposed by Leon et al. suggests that CSG
on ISGs could be solved more efficiently in the future with the

development of quantum computing technology. Regardless of
advances in quantum computing, in this paper we show that
CSG on ISGs can also be tackled very efficiently as a graph
clustering problem, discussed hereafter.

D. Graph clustering & graph partitioning

The problem of splitting a given graph into groups of
vertices (with many edges joining vertices of the same cluster,
and comparatively few edges joining vertices of different
clusters) is a fundamental task arising in systems characterised
by a network structure [16]. This problem has been widely
studied in the literature as graph clustering or graph partition-
ing [16]. Despite (or perhaps due to) the widespread presence
of this problem in different fields, graph clustering and graph
partitioning do not have unique definitions [16].

In this paper we denote the problem of performing CSG on
ISGs as a graph clustering one, since they share several fea-
tures (e.g., the number of groups is not known in advance [17],
[18], the objective function is equivalent—see Section V).
Throughout this paper, we will adopt the graph clustering
formalism provided by Brandes and Erlebach [17], who focus
on clustering over weighted graphs. Following the original
definition of ISG, we allow edges with negative weights, which
express the dissimilarity of the incident nodes in the context
of graph clustering [17]. Our graph clustering formalisation of
CSG on ISGs will be detailed in Section V.

E. Related work

We now provide a review of the literature related to our
work, in the fields of cooperative game theory, graph cluster-
ing, mathematical optimisation, and machine learning.

To the best of our knowledge, there is no previous attempt in
the cooperative game theory (CGT) literature to approximately
represent any CFG as an ISG, even though this task has
been studied from an operational research (OR) perspective
as the approximation of a combinatorial function (i.e., the
original game’s characteristic function) by means of a poly-
nomial function of degree 2 [19]. Certainly, no previous work
has investigated the benefits of this transformation to tackle
computationally-hard CGT problems (e.g., CSG) in real-world
scenarios, as we do in this paper.

Our work is also motivated by the successful application
of approaches that approximate a complex input function by
means of a more computationally manageable one, achieving
a significant performance improvement [20].

There has recently been much work on computing optimal
coalition structures or cooperative solution concepts on graph-
restricted settings [7], [8], [21]. Now, a strand of literature
pioneered by Myerson [5], and later developed by Voice et
al. [8] and Bistaffa et al. [7], [22], has over time proposed CSG
algorithms with good properties both in terms of computa-
tional complexity and practical applicability. On the one hand,
Voice et al. [8] proposed an optimal CSG approach for graph-
restricted games that satisfy the independence of disconnected
members (IDM) property (such as ISGs), whose complexity is
bounded by the width of the tree decomposition of the graph.
On the other hand, Bistaffa et al. proposed a CSG approach
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based on edge contraction that has been shown to provide good
approximate solutions with theoretical quality guarantees in
real-world scenarios such as collective energy purchasing [22]
and ridesharing [7]. Hence, we compare against these two
approaches in Section VI.

Furthermore, the work by Bachrach et al. [14] provides
an in-depth computational complexity analysis of the CSG
problem on ISGs (denoted as weighted graph games), showing
that it is NP-complete for general graphs. Nonetheless, the
authors do not discuss any algorithmic approach to the solution
of such a problem. Chalkiadakis et al. [21] also discussed
stability issues arising in graph-restricted games, focusing on
the computational complexity of the core [2] as a solution con-
cept (considering several graph topologies), without assuming
that the grand coalition necessarily forms. To the best of our
knowledge, none of the works in the literature has explicitly
highlighted the natural link between the CSG problem on ISGs
and the graph clustering problem.

Graph clustering is a very mature field offering several
solution approaches [16], [23], [24]. However, the computa-
tion of exact solutions or approximate solutions with quality
guarantees (i.e., the aim of this paper) is not usually pursued.
Rather, the focus is on heuristic solutions so as to meaningfully
identify clusters in large graphs (e.g., social networks) [16].
For this reason, the standard exact approach to solve graph
clustering is based on integer linear programming (ILP) [17].

In the field of mathematical optimisation, a wealth of
solution techniques have been developed in the last few
decades, especially in the context of convex optimisation,
which comprehends problems such as least-squares and linear
programming. It is well known that these problems have a
fairly complete theory, arise in a variety of applications, and
can be solved numerically very efficiently. The reader can refer
to Boyd and Vandenberghe [6] for a comprehensive and in-
depth dissertation on this subject.

Learning approaches have also been used in cooperative
games. In particular, Balcan et al. [25] explore a probably
approximately correct learning model in cooperative games
that aims at learning an unknown characteristic function on
the basis of several known coalitional values (i.e., samples).
Instead, our work aims at approximating (i.e., minimising an
error function over) the set of coalitional values of a fully
known function (see Equation 2).

III. THE AE-ISG MODEL

Given a graph-restricted CFG G, we aim at computing the
ISG that best approximates G. More formally, given a graph-
restricted game G = (G, v), the set of feasible coalitions
FC(G), and a norm ‖·‖, our objective is to define an ISG
such that the differences between the values of the coalitions
in FC(G) in the original game and the values in the ISG are
minimised, according to ‖·‖.

To achieve this objective, we consider an ISG based on a
weighted graph Gw with the same vertices and edges of G,2

2More precisely, Gw also includes one self-loop for each node of G,
necessary to represent the values of singletons (see Section II-B).

and the vector r ∈ R|FC(G)| defined as

rS =

w(S)︷ ︸︸ ︷∑
(i,j)∈E
{i,j}⊆S

{wi,j}−v(S), ∀S ∈ FC(G). (1)

Each rS represents the difference between the value of S in
the ISG, i.e., w(S), and its value in G, i.e., v(S).

Definition 1 (approximately equivalent ISG). The approxi-
mately equivalent ISG of G, denoted AE-ISG(G), is the ISG
in which the weights wi,j are such that the norm ‖r‖ is
minimised.

Henceforth, AE-ISG(G) is the ISG that best approximates
G, in the sense that the differences among the values of the
coalitions in FC(G) are minimised, according to ‖·‖.3

The above defined minimisation problem is called an un-
constrained4 norm approximation problem (see Boyd and
Vandenberghe [6], Chapter 6), which can be represented in
the form

minimise ‖Aw − v‖, (2)

where v ∈ R|FC(G)| is the vector of the values of the
coalitions in FC(G), w ∈ Re is the vector of weights, and
A ∈ {0, 1}|FC(G)|×e is a matrix with |FC(G)| rows (i.e., one
per coalition in FC(G))5 and e columns (i.e., one per weight),
such that

AS,wi,j
=

{
1, if {i, j} ⊆ S,
0, otherwise.

(3)

The vector r = Aw − v is called the problem’s residual, and
each component rS is called the residual associated with S.
It is well known that every norm approximation problem is
convex and there is always at least one solution [6]. Thus,
and since any CFG G corresponds to a graph-restricted game
over a fully-connected graph, we can immediately obtain that:

Proposition 1. Given a CFG G, an AE-ISG(G) always exists.

A. `1 and `2 norms

In this paper we consider the `1 and the `2 norms, since they
are the most widely used in the optimisation literature [6]. We
remark that our approach can be directly used with all norms.

Under `1, Equation 2 represents a sum of (absolute) resid-
uals approximation problem [6]. In this case, Equation 2 can
be rewritten as

minimise
∑

S∈FC(G)

∣∣∣∣∣∣∣∣
∑

(i,j)∈E
{i,j}⊆S

{wi,j} − v(S)

∣∣∣∣∣∣∣∣, (4)

3Notice that AE-ISG(G) also represents a quadratic approximation (i.e.,
an approximation by means of a polynomial function of degree 2) of G’s
characteristic function [19].

4In an unconstrained norm approximation problem each rS can be ar-
bitrarily large. We investigate the effects of constraining such quantities in
Section III-B.

5We remark that, since the process of building our AE-ISG model involves
one independent operation per row of A, it can be parallelised using up to
|FC(G)| threads.
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The weights wi,j that solve Equation 4 can be computed by
solving the Linear Programming (LP) problem [6] defined by

minimise
∑

S∈FC(G)

tS ,

subject to

∑
(i,j)∈E
{i,j}⊆S

{wi,j} − tS ≤ v(S),

∑
(i,j)∈E
{i,j}⊆S

{wi,j}+ tS ≥ v(S),
∀S ∈ FC(G).

(5)

In the case of `2, we adopt a similar approach and we rewrite
Equation 2 as

minimise
∑

S∈FC(G)

 ∑
(i,j)∈E
{i,j}⊆S

{wi,j} − v(S)


2

. (6)

The obtained problem is a least-squares approximation prob-
lem [6]. This can be solved analytically, and its unique solution
is w =

(
ATA

)−1
AT v.

B. Controlling residuals
In our approximation model with `1 and `2 norms, each

residual rS receives the same “emphasis”. On the one hand,
this approach leads to the best approximation over all coali-
tions, since the objective of the minimisation (i.e., ‖r‖) con-
siders all residuals with the same weight. On the other hand, in
some cases achieving the best overall approximation might not
be very meaningful, especially when solving problems such as
CSG on the approximated ISG.

In fact, one might want to better approximate a specific class
of coalitions, rather than all of them. As an example, in some
scenarios CSG solutions are likely to contain singletons, due
to the structural properties of the domain.6 In such domains it
is useful to explicitly define the values of singletons in the
approximated ISG, since a coalition structure that contains
several singletons is a potential optimal CSG solution. This
results in CSG solutions of the approximated ISG that better
represent the CSG solution of the original game wrt the
unconstrained approach.

1) Hard constraints: Along these lines, one approach to
control the residuals on some coalitions can be achieved by
augmenting Equation 2 with a set of (linear) inequalities,
obtaining the constrained norm approximation problem

minimise ‖Aw − v‖
subject to Aw − v ≤ h,

(7)

where h ∈ R|FC(G)| specifies the maximum residuals we aim
to achieve. It is well known that every norm is a convex
function [6], hence Equation 7 is still a convex optimisation
problem. There is in general no analytical formula for the
solution of convex optimisation problems, but (as with LP
problems) there are very effective methods for solving them,
such as interior-point methods [6].

6In ridesharing, if a commuter without a car cannot be accommodated in
a car, she will use public transportation (i.e., she will be a singleton).

A crucial aspect of the introduction of constraints that bound
the residuals is that, in contrast to the unconstrained problem,
it is no longer guaranteed that at least one optimal solution
exists. This is particularly clear if we consider constraints that
enforce all residuals to be exactly zero, i.e., force the values of
all coalitions in G to be perfectly represented in AE-ISG(G).
It is not always possible to perfectly represent a CFG as an
ISG (see Section II-B), hence satisfying such constraints is not
always possible. Nonetheless, in some scenarios it is possible
(and useful) to force an exact representation of a subset of
coalitions R ⊆ FC(G) that are more interesting than others.
We represent this constraint by defining h as

hS =

{
0, if S ∈ R,
∞, otherwise.

In this case, we can rewrite Equation 7 as

minimise ‖Aw − v‖
subject to A′w = v′,

(8)

where v′ ∈ R|R| is the vector of the values of the coalitions
in R, and A′ ∈ {0, 1}|R|×e is defined similarly to Equation 3.

Remark 1. The constrained norm approximation problem in
Equation 8 is solvable iff the system A′w = v′ is solvable,
i.e., iff the rank of A′ is equal to the rank of the augmented
matrix A′|v′, by applying the Rouché-Capelli theorem.

Notice that, in case of hard constraints, the values of all the
coalitions in R are fixed (i.e., no longer subject to optimi-
sation). As a consequence, the number of variables in such
constrained problem is reduced wrt the unconstrained problem,
with an obvious improvement in terms of solution runtime. If
R contains only the singletons, rank(A′) = rank(A′|v′) = n,
hence it is always possible to compute the optimal solution.

If we enforce constraints on the problem, it might not be
possible to solve it (see Remark 1). We now discuss a different
approach that is always guaranteed to lead to a solution.

2) Weighted norm (soft constrains): An alternative ap-
proach to control the residuals is using a W -weighted norm
‖r‖W = ‖Wr‖ [6], where W ∈ R|FC(G)|×|FC(G)| is called
the weighting matrix. W is often diagonal, in which case it
gives different relative emphasis to different components of
the residual vector r, effectively acting as soft constraints.

A W -weighted norm approximation problem is equivalent
to a norm approximation problem with AW = WA and
bW = Wb, hence the techniques and properties discussed in
Section III are still applicable. Most importantly, it is now
always possible to compute an optimal solution. Intuitively,
in contrast to hard constraints, soft constraints allow one to
“emphasise” classes of coalitions without over-constraining
the problem, hence preventing the computation of a solution.

Notice that, even when hard constraints are guaranteed
not to over-constrain the problem (e.g., when forcing only
singletons to be exact), using a weighted norm is preferable in
terms of approximation quality. In fact, since the optimisation
problem is less constrained wrt the hard-constrained case,
the solution is guaranteed to be better in terms of overall
quality (i.e., the original CFG is better represented), while still
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emphasising singletons and, hence, obtaining better results in
terms of CSG solutions.

IV. SOLVING THE AE-ISG MODEL

A wealth of very efficient off-the-shelf optimisation solvers
(e.g., CPLEX, Gurobi) can be used to solve norm approxima-
tion problems based on `1 and `2 norms, since the solution
of LP and least-squares problems are very mature technolo-
gies [6]. In addition, we provide a highly-parallel solver based
on the LSQR algorithm [26] for the least-squares problem in
Equation 6, similar in style to the conjugate gradient method
applied to the least-squares problem.

A. Computational complexity

We formally characterise the worst-case complexity of
solving the AE-ISG model in Proposition 2. We remark that
this complexity analysis represents a worst-case scenario, and
that modern solution algorithms are very efficient and require
a lower number of operations, especially by exploiting the
sparsity of A [6]. Along these lines, we remark that memory
utilisation is a crucial aspect especially when using GPUs [27],
whose memory is not as abundant as in the host machine.

Proposition 2. The worst-case complexity of solving
the AE-ISG model when using `1 (resp. `2) is
O
(
(e+ |FC(G)|)2 · |FC(G)|

)
(resp. O

(
e2 · |FC(G)|

)
).

Proof. The proof is in the supplementary material.

The number of edges e is usually small compared to |FC(G)|,
hence the above complexity is dominated by |FC(G)|. In
general, |FC(G)| = 2n, if G is fully connected. Nonetheless,
this is just a worst-case scenario, which rarely occurs in actual-
world domains. When G is sparse the number of feasible
coalitions is significantly lower [5]. As discussed in Section II,
several application domains inherently enforce a maximum
cardinality constraint on the size of coalitions. Even without
such explicit constraints, it is reasonable to assume that very
large coalitions will not form, since the coordination or com-
munication costs involved would be impractical, especially in
large-scale scenarios.

As a result, the number of feasible coalitions (and, thus, the
complexity of solving the AE-ISG model) is O

(
nk
)

[10], i.e.,
polynomial in the number of agents.

V. SOLVING CSG ON ISGS: k-CONSTRAINED GRAPH
CLUSTERING

Solving the CSG problem on ISGs amounts to partition G
so as to maximise the sum of the weights of the edges induced
by each coalition. This task is equivalent to a graph clustering
problem, in which each coalition corresponds to a cluster and
the optimal solution is given by

CS∗ = argmax
CS∈CS(G)

∑
S∈CS

∑
(i,j)∈E
{i,j}⊆S

wi,j .

︸ ︷︷ ︸
graph clustering objective function

(9)

Equation 9 highlights the objective function of our graph
clustering problem. Notice that maximising such a quantity is
equivalent to maximise the coverage γ(S) of each cluster [17],
a standard measure adopted as a graph clustering objective
function.7

Since we are interested in computing the optimal coalition
structure, we adopt the state-of-the-art exact approach to solve
graph clustering, i.e., ILP (see Section II-E). Specifically, we
put forward KGC, k-constrained Graph Clustering, an ILP-
based approach to solve the CSG problem. Within KGC, we
adopt the formulation of graph clustering proposed by Brandes
et al. [17], [18]. The ILP is given by n2 decision variables
Xi,j ∈ {0, 1}, one for every pair of nodes i, j ∈ N .8 The key
idea is that these variables can be interpreted as an equivalence
relation (over N ) and thus form a clustering (or, equivalently,
a coalition structure). Xi,j = 1 represents the fact that agents i
and j are in the same coalition. If such variables are arranged
as a matrix, the active variables in the ith row represent all
agents in the coalitions that also contain agent i.

To ensure consistency, we enforce the following constraints,
which guarantee

reflexivity ∀i ∈ N : Xi,i = 1,

symmetry ∀i, j ∈ N : Xi,j = Xj,i,

transitivity ∀i, j, z ∈ N :


Xi,j +Xj,z − 2 ·Xi,z ≤ 1

Xi,z +Xi,j − 2 ·Xj,z ≤ 1

Xj,z +Xi,z − 2 ·Xi,j ≤ 1.

(10)

If required, cardinality constraints can be enforced by having
at most k active variables in each row, i.e.,

∀i ∈ N :
∑
j∈N

Xi,j ≤ k. (11)

Finally, to reflect Equation 9 we maximise the sum of the
weights of the edges inside each coalition, i.e, our objective
function is ∑

(i,j)∈E

wi,j ·Xi,j . (12)

Equation 12 encodes the characteristic function of the ISG,
i.e., W (·) in the example in Figure 1. Hence, it follows that

Proposition 3. KGC provides the optimal solution to the CSG
problem on ISGs since (10), (11), and (12) encode a graph
clustering problem.

The use of an ILP formulation to solve CSG on ISGs
provides clear computational advantages wrt alternative ap-
proaches (i.e., CFSS [7] and the algorithm by Voice et al. [8]).

Remark 2. While ILP is an NP-complete problem [29], off-
the-shelf ILP solvers are able to solve ILP very efficiently by
using well-known optimisation techniques, as shown by our

7γ(S) ∝ v(S), since γ(S) =
v(S)∑

(i,j)∈E wi,j
and

∑
(i,j)∈E wi,j is

constant across all S.
8This ILP can be simplified by leaving

(n
2

)
variables and

(n
3

)
con-

straints [18]. Fan and Pardalos [28] provide a number of different ILP
formalisations for graph partitioning, which, in our case, would still result
in a quadratic number of variables.
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experiments in Section VI. Indeed, the worst-case time com-
plexities of alternative solution approaches are much higher
(i.e., O(nn) [7] and O(n · ωω) [8], where ω is the width of the
adopted tree decomposition). Heuristic GC approaches [16],
[23], [24] can also be used. However, by employing a heuristic
approach we cannot provide any of the quality guarantees in
Section V-A, which rely on the optimality of the GC solution.

A. Quality guarantees on CSG solutions

The purpose of this subsection is twofold. First, we discuss
how our ILP-based approach discussed above allows one to
compute approximate solutions with given quality guarantees
for the CSG problem on ISGs. Second, if such an ISG is
the result of the approximation of a CFG G by means of
AE-ISG, we discuss how we can provide a theoretical upper
bound on the quality of the optimal CSG solution of G wrt
the CSG solution of the ISG. Notice that, by combining these
two contributions, we can compute approximate CSG solutions
with quality guarantees for any CFG.

1) Approximate CSG on ISGs: Modern ILP solvers, among
other solution techniques, also adopt branch-and-bound [30].
This enables the computation of anytime approximate solution
with quality guarantees. Formally, given an optimality gap
OCS ≥ 0 (often expressed as a percentage value), it is possible
to stop the ILP solver as soon as the current solution CS
guarantees that

W (CS∗AE)−W (CS) ≤ OCS , (13)

where CS∗AE denotes the optimal CSG solution of AE-
ISG(G), and W (·) denotes the characteristic function of AE-
ISG(G), i.e., W (CS) computes the sum of the weights of
all the edges induced by a given CS within AE-ISG(G). It
follows that CS∗AE is the coalition structure with the maximal
value of W (·).

Intuitively, the solver stops as soon as the value of CS
is within OCS from the value of CS∗AE . Alternatively, it is
possible to provide a time budget tmax to the solver, which
will stop the execution after tmax returning an optimality gap
OCS that corresponds to the solution found.

2) Quality guarantees on CSG within AE-ISG: In Sec-
tion III-B, we discussed how to incorporate constraints within
AE-ISG so as to produce an optimal CSG solution, CS∗AE , of
the ISG that best approximates the original game G—with G’s
optimal CSG denoted CS∗G. In this section, we discuss how
we provide a theoretical upper bound on the value of CS∗G
wrt the value of CS∗AE .

Formally, given a residual vector r resulting from the
approximation of a game G = (G, v) into the corresponding
AE-ISG(G), we are interested in assessing a quantity Br ≥ 0
that guarantees

V (CS∗G)− V (CS∗AE) ≤ Br. (14)

Intuitively, Br provides an upper bound on the approximation
error between the CSG solutions of the original and the
approximate game. Hence, Br depends on the residual vector
r, as it contains the approximation error for each coalition.
For simplicity, let us initially assume that CS∗AE is known to

be the optimal CSG solution of AE-ISG(G).9 CS∗G, on the
other hand, is not known.

To derive Br on the basis of r, we first prove Lemma 1.

Lemma 1. Given G = (G, v), its approximate ISG AE-
ISG(G), and the corresponding residual vector r, then

V (CS∗G)− V (CS∗AE) ≤ r(CS∗AE)− r(CS∗G),

where r(CS) =
∑

S∈CS

rS . (15)

Proof. The proof is in the supplementary material.

Remark 3. Lemma 1 also implies that r(CS∗AE)−r(CS∗G) ≥
0, since V (CS∗G) − V (CS∗AE) ≥ 0 (given that CS∗G is the
optimal CSG solution for G and V (·) is G’s characteristic
function). Thus, r(CS∗AE) ≥ r(CS∗G), i.e., the sum of the
residuals for CS∗AE is an upper bound on the sum of the
residuals for CS∗G.

Notice that, since CS∗G is not known, r(CS∗AE)− r(CS∗G)
is also unknown. Hence, we compute an upper bound on
r(CS∗AE) − r(CS∗G) as r(CS∗AE) minus a lower bound on
r(CS∗G). Such a lower bound is assessed as the minimum r(·)
over all coalition structures, i.e.,

minr = min
CS∈CS(G)

∑
S∈CS

rS . (16)

We discuss the computation of minr in Section V-A3.

Proposition 4. Given G = (G, v), its approximate ISG AE-
ISG(G), and the corresponding residual vector r, then

V (CS∗G)− V (CS∗AE) ≤ r(CS∗AE)− r(CS∗G) ≤
r(CS∗AE)−minr︸ ︷︷ ︸

Br

. (17)

Proof. By direct application of Lemma 1.

If CS∗AE is not known (i.e., CSG on AE-ISG(G) has been
approximately solved with a given optimality gap), Proposi-
tion 4 can be used in conjunction with Equation 13 to derive
quality guarantees on the suboptimal CSG solution.

Proposition 5. Given a CFG G, its approximate ISG AE-
ISG(G), and a coalition structure CS solution to the CSG
problem of AE-ISG(G) with an optimality gap OCS , then

V (CS∗G)− V (CS) ≤ OCS + r(CS)−minr (18)

Proof. The proof is in the supplementary material.

Proposition 4 provides interesting insights on the approxi-
mation error of CSG solutions within AE-ISG. The difference
between V (CS∗G) and V (CS∗AE) is bounded by a value that
is higher if we have a high positive error for the coalitions in
CS∗AE and a high negative error for the coalitions in CS∗G.
Intuitively, if the value of the true optimal solution CS∗G is
reduced by a high negative error in AE-ISG, and, in contrast,
the value of a different coalition structure CS∗AE is increased

9See Proposition 5 for the case with a suboptimal solution CS with a
known OCS .
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by a high positive error, the difference (i.e., the approximation
error) can potentially be very high.

Similarly, Proposition 5 shows that if we only know a
suboptimal CS with a given optimality gap OCS (i.e., CS∗AE

is unknown), we can still apply this rationale by bounding
r(CS∗AE) as the sum of r(CS) plus OCS . Notice that, if
OCS = 0, then CS = CS∗AE , and, in such a case, Propo-
sition 5 is correctly equivalent to Proposition 4. Given this,

Proposition 6. AE-ISG allows one to compute anytime ap-
proximate CSG solutions with quality guarantees for any CFG.

3) Computing minr: The techniques discussed above rely
on the computation of a lower bound on r(CS∗G), represented
by the quantity minr. Unfortunately, computing minr as
defined in Equation 16 is equivalent to solving a minimisation
CSG problem over the CFG Gr = (N, vr), with vr(S) = rS
as its characteristic function. Hence, solving Equation 16 to
optimality, while perfectly possible, is not reasonable, since
one could solve the original CSG problem over G with the
same computational effort.

Instead, we compute a lower bound10 on minr (denoted as
minr) by iterating over the set of all the integer partitions of n
with the largest part that is less or equal than k, namely Pn,k.
Specifically, we adopt the algorithm proposed by Knuth [31],
whose complexity is O(|Pn,k|+ k) [31].

Intuitively, each of these integer partitions is representa-
tive for all the coalition structures whose coalitions’ sizes
correspond to the elements of the partition. As an example,
〈5, 5, 3, 2〉 is the integer partition of n = 15 representative for
all the coalition structures with 2 coalitions of size 5, 1 of size
3, and 1 of size 2. It is well known that |Pn,k| as a function
of n is bounded by a polynomial of degree k − 1 [32]. Thus,

Proposition 7. Computing minr has a worst-case time com-
plexity of O

(
nk−1

)
, i.e., polynomial in the number of agents.

Since we are interested in computing a lower bound over all
coalition structures, each integer partition must be associated
to a value that is a lower bound on the values of the
represented coalition structures. Formally, given an integer
partition P = 〈p1, . . . , pi, . . . , pm〉, we define the function
lr : Pn,k → R as lr(P ) =

∑
pi∈P min S∈S

|S|=pi

rS . Then, we

compute minr = minP∈Pn,k
lr(P ). The search space of this

equation can be further reduced if additional constraints are
present.11 Discarding non-valid integer partitions improves the
runtime and allows one to compute a minr that is potentially
closer to minr (i.e., with better quality guarantees).

We now refer the reader back to Figure 1, which provides
a full example showing how we compute quality guarantees.

VI. EMPIRICAL EVALUATION

The main goals of our empirical analysis are to:

10Sandholm et al. [13] also proposed a method to compute a bound on
the optimal CSG solution. Their bound is based on the value of the grand
coalition and all the coalition structures with at least one coalition of size
n−1. This approach is not applicable to cardinality-constrained scenarios, in
which these coalition structures are not feasible and not associated to a value.

11In the ridesharing domain, non-singletons must contain at least one driver.

• evaluate the performance of our approach in terms of
runtime and approximation quality;

• investigate the impact of different norms and different
constraining methods on the above quantities;

• measure the speed-up that can be achieved by using our
GPU solver wrt the CPU version;

• compare KGC with the approach by Voice et al. [8] in
terms of runtime when used to solve CSG on ISGs;

• evaluate the quality of approximate solutions computed
by our approach.

In our tests we compare the unconstrained model with
both the hard and soft constrained ones. As discussed in
Section III-B, we focus on constraints that emphasise residuals
corresponding to singletons, since such a class is particularly
interesting in the context of ridesharing. In the soft constrained
case, we consider a diagonal matrix W such that the weight
corresponding to the ith row is Wi,i = 100 if the ith residual
corresponds to a singleton, and Wi,i = 1 otherwise. Such a
value produces the best results for Wi,i ∈ [10, 105] in terms
of approximation quality, as discussed in the next sections.

Each data point reports the average and the standard error
of the mean over 100 random instances. The CPU (resp. GPU)
version of AE-ISG is implemented in C++ (resp. CUDA),
while KGC is implemented in C++.12 Our tests are run on
a machine with a 3.40GHz CPU, 32GB of memory and a
GeForce GTX Titan Xp GPU.

A. Coalitional values

Coalitional values are generated considering the model
and the experimental methodology by Bistaffa et al. [7].
Specifically, we consider the GeoLife dataset [33] (Figure 2),
which comprises 17621 GPS trajectories with a total distance
of about 1.2 million km. These trajectories are used to derive
the pick-up and drop-off points of our commuting agents. Each
coalition (car) S represents a shared ride that transports each
member from its pick-up to its drop-off point. Thus, the value
of S (namely, v(S)) represents the total travel cost (measured
in e) associated to the length of the shortest route L∗S travelled
by S. More formally,

v(S) =

{
Kpt, if S is a rider without a car,
Kfuel · L∗S , otherwise,

(19)

where Kfuel = −0.06 e/km (considering a fuel cost of −1 e
per litre and an average consumption of 1 litre of fuel every 15
km) and Kpt = −3 e, which represents the cost of a public
transportation ticket, e.g., a bus or a train ticket. Following
Bistaffa et al. [7], we compute L∗S as follows. We consider
the set of pick-up and drop-off points for n agents. We then
consider the matrix D ∈ R2·n×2·n, such that Di,j represents
the length of the shortest path from point i to point j.

We consider the set LS of all sequences of pick-up and
drop-off points of the agents of S in which (i) the first (resp.
the last) point of L ∈ LS is the pick-up (resp. drop-off) point
of the currently designated driver, and (ii) for each request

12Our source code is available at https://github.com/filippobistaffa/APEQIS
and https://github.com/filippobistaffa/KGC.
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Fig. 2. The map of Beijing derived from the GeoLife dataset.

r ∈ S, the pick-up point of r precedes the drop-off point of
r in L ∈ LS . The optimal route for S, namely L∗S , is then
defined as the one that minimises the sum of the lengths Di,j

for every couple (i, j) of subsequent points in L, for every
route L ∈ LS , and considering all the possible drivers in S.

B. AE-ISG runtime

We evaluate the runtime needed to solve the AE-ISG model,
both on the CPU (i.e., with CPLEX) and on the GPU (i.e., with
CUDA). We fix an overall runtime limit of 104 seconds and
we increase the number of agents until such limit is reached.

Figure 3 shows that our (unconstrained) CPU approach
scales up to 400 agents within the runtime limit, and that,
as expected, the introduction of hard constraints has a positive
impact on performance, reducing the runtime by one order
of magnitude. On the other hand, the use of the W -weighted
norm has no impact on the runtime, since it does not reduce
the number of variables wrt the unconstrained model. For this
reason, we do not show such results. Figure 3 also highlights
the significant speed-up produced by GPU parallelism in
the case of `2. Specifically, our GPU version achieves an
average speed-up of 260× in the unconstrained model, and
61× in the constrained one. In the best case (unconstrained
`2), such speed-up is 350×. Notice that the speed-up grows
when the size of the optimisation problem grows, showing that
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R
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Fig. 3. AE-ISG runtime. Solid (resp. dashed) lines refer to the unconstrained
(resp. hard-constrained) approach.
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Fig. 4. Percentage error Errp.

our GPU implementation successfully exploits the increasing
degree of parallelism. Thanks to this, our GPU approach can
scale up to problem sizes considering the entire dataset (not
depicted here), and therefore it is a viable approach for the
transformation of large-scale problems.

C. AE-ISG quality

The approximation error for each coalition is directly repre-
sented by the residual vector r, whose norm ‖r‖ is the object
of the minimisation. On the basis of the optimal r, we can infer
natural quality measures such as the percentage error wrt the
total sum of the coalitional values, i.e., Errp=100 · ‖r‖1∑

S∈S v(S)

or the average coalitional error Erra =
‖r‖1
|r| . Figure 4

shows that, for the unconstrained approach, Errp is ∼5%,
corresponding to Erra = 0.45e. As expected, the intro-
duction of constraints produces a degradation in terms of
overall approximation quality. When the value of singletons
is fixed (i.e., hard-constrained), Errp is ∼9%, corresponding
to Erra = 0.78e. On the other hand, the use of W -
weighted norm results in Errp =∼6%, corresponding to
Erra = 0.53e, confirming that soft constraints produce a
better overall quality. Finally, our results show that `1 and `2
are comparable in terms of approximation quality. Therefore,
we conclude that, within AE-ISG, `2 is preferable to `1, since
it provides a benefit in terms of runtime performance thanks
to GPU parallelism. As a consequence, we only consider `2.

D. KGC runtime

We now compare KGC with the approach by Voice et al. [8]
in terms of runtime when used to optimally solve CSG on
ISGs. Our choice is motivated by the fact that, to the best of
our knowledge, [8] is the only approach designed to optimally
solve CSG on ISGs. In the supplementary material we compare
one of the most notable GC approaches, i.e., one based on the
concept of dominant set [23], with KGC. As expected, the
heuristic approach is much faster in terms of runtime since it
does not seek optimality. Of course, its performance is sub-
optimal: in our tests, its solution quality is 84% wrt the optimal
solution computed by KGC. Moreover, we remark that by
replacing KGC with a heuristic approach one loses all the
theoretical quality guarantees we provide in Section V-A.
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Tree width (ω) Average speed-up wrt [8]
7 10.90×
8 201.72×
9 5237.16×

10 145634.53×

TABLE II
SPEED-UP OF KGC wrt VOICE et al. [8].

We consider 100 ISG instances obtained by means of AE-
ISG, using the same methodology discussed in Section VI. For
this test, we consider n = 60, as larger ISG instances could
not be solved by [8] in a reasonable amount of time. We then
measure the runtime of the two approaches when solving the
same ISG instance. Table II reports the average speed-up (i.e.,
the ratio between the runtime of KGC and the one of [8]),
depending on the width ω of the considered tree decomposition
(as such parameter determines the computational complexity
of [8]). Results show that KGC outperforms the counterpart
approach by providing a speed-up as large as 145634.53×, in
virtue of the fact that its performance is not affected by ω.

E. Approximate CSG solutions with quality guarantees

We now proceed to evaluate our CSG approach in terms
of quality of the approximate CSG solution it provides. We
consider a real-world problem domain, i.e., social rideshar-
ing [7], and we show that it outperforms the approximate
method proposed by Bistaffa et al. [7], namely SR-CFSS,
which was specifically designed for that particular domain,
and which was shown to provide good results. SR-CFSS is
a branch-and-bound search-based CSG approach that can be
either run to completion (to compute the optimal solution), or
stopped after a given time budget. In such a case, SR-CFSS
returns an approximate solution and a theoretical bound for
the value of the optimal one.

To ensure a fair comparison, we measure the runtime re-
quired by our approach, and we provide the same time budget
to the approximate version of SR-CFSS. For this experiment,
we consider n = 100. Following Bistaffa et al. [7], [22], we
consider the Maximum Performance Ratio (MPR), a standard
measure to quantify the quality of approximate algorithms.
Note that here we consider CSG as a minimisation problem,
since in the ridesharing domain coalitional values represent
costs that have to be minimised. Formally, given a game G,
we denote the approximate CSG solution as Approx(G) and
the lower bound for the value of the optimal CSG solution as
Bound(G), i.e., Bound(G) is a value such that the value of
the optimal solution cannot be lower (i.e., better). In the case
of AE-ISG, Bound(G) = Approx(G)−Br (cf. Equation 14).
Then, in the case of minimisation, the MPR is defined [7] as

MPR =
Approx(G)

Bound(G)
.

Figure 5 shows that, both for the hard and soft-constrained
case, our approach provides better solutions (i.e., with lower
costs). Moreover, when using soft constraints, AE-ISG pro-
vides a bound for the optimal that is slightly better than the one
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Fig. 5. Approximate solutions with quality guarantees (lowerMPR is better).

provided by SR-CFSS. Given this, in the soft-constrained case
the MPR associated to AE-ISG outperforms the one associated
to the counterpart approach. Notice that AE-ISG does not pos-
sess any specific knowledge about the characteristic function,
while SR-CFSS is specifically devised for ridesharing.

VII. CONCLUSIONS

We introduced the AE-ISG model, which allows one to turn
any CFG into an approximately equivalent ISG, in which CSG
solutions can be computed by means of our graph clustering
approach. We also provided theoretical guarantees on the value
of the original CSG solution wrt the CSG solution of the
approximated ISG, allowing one to compute approximate CSG
solutions with quality guarantees for any CFG.

In future work, we intend to investigate the impact of a
partially unknown characteristic function on the approximation
quality. We also aim to apply our approach to other important
real-world scenarios—for instance on that of collective energy
purchasing in smart grid scenarios [22]. To this end, it would
be interesting to combine our approach with explicit bargain-
ing or bidding by the agents interested in forming coalitions.

More generally, our work in this paper can naturally lead to
interesting theoretical extensions beyond the coalition structure
generation problem. As an example, we note that promising
preliminary results show that the computational advantages
provided by the AE-ISG paradigm could be fruitfully exploited
to compute Owen values [34], by employing a two-step
procedure based on Shapley value computation (which can
be efficiently computed on ISGs). Along those lines, we aim
at further investigating the theoretical properties of Owen
values in the context of ISGs; and to extend the computational
benefits and quality guarantees provided by our model to
other game-theoretic solution concepts, including those used
for settings with overlapping coalitions [35], [36].
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