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Abstract
Balancing energy demand and production in modern Smart Grids with increased
penetration of intermittent renewable energy resources is a challenging problem.
Demand-Side Management (DSM), i.e., the design and application of sophisticated
mechanisms for managing and coordinating energy demand, has been hailed as a
means to deal with this problem. In this dissertation, we propose mechanisms for the
formation of agent cooperatives offering large-scale DSM services, and put forward a
complete framework for their operation. Individuals, being either mere consumers, or
even prosumers of electricity, are represented by rational agents and form coalitions
to offer demand shifting from peak to non-peak intervals.

For cooperatives of consumers, we present an effective consumption shifting
scheme, equipped with desirable guarantees, such as individual rationality, truth-
fulness, and (weak) budget balance. Our scheme employs several algorithms to
promote the formation of the most effective shifting coalitions. It takes into account
the shifting costs of the individuals, and rewards them according to their shifting
efficiency. In addition, it employs internal pricing methods that guarantee individ-
ual rationality, and allow agents with initially forbidding costs to also contribute
to the shifting effort. The truthfulness of agent statements regarding their shifting
behaviour is ascertained via the incorporation of a strictly proper scoring rule. We
provide a thorough evaluation of our approach on a simulations setting constructed
over a real-world dataset. Our simulation results clearly demonstrate the benefits
arising from the use of agent cooperatives in this domain.

Moreover, to also allow the decentralized coordination of cooperatives of pro-
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sumers, we combine, for the first time in the literature, a strictly proper scoring rule
with a specialized cryptocurrency framework. Using our approach, prosumers col-
laborate with the use of a blockchain-oriented framework to manage their demand,
in order to make more profits from the selling of their energy. When tested on a
simulation setting that uses dynamic electricity pricing to promote the usage of lo-
cally generated renewable energy, our approach drives the prosumers to become more
engaged in DSM and achieve increased profits; the balancing of demand and local
renewable supply is more effective; and dynamic electricity prices are more stable.

Furthermore, we propose a vehicle-to-grid/grid-to-vehicle (V2G/G2V) algorithm
that balances demand and local renewable supply in environments populated with
electric vehicles. The approach promotes new business models that make effective use
of the capability of electric vehicles to store energy in their batteries. Additionally, to
assess participating agents’ uncertainty, and correctly predict their future behaviour
regarding power consumption shifting actions, promoting in this way accuracy and
effectiveness, we adopt various machine learning techniques, adapt them to fit the
problem domain, and use these to effectively monitor the trustworthiness of agent
statements regarding their final shifting actions. Simulation results confirm that
the adoption of machine learning techniques provides tangible benefits regarding
enhanced cooperative performance, and increased financial gains for the participants.

Finally, we provide the methodology for delivering large-scale DSM services in
the real world. To this purpose, we devise an IoT service-oriented architecture for
DSM applications, through which we test different GUIs and incentive types for
managing energy consumption. In this context, we present a “serious game” solution
that was tested by real human subjects. Our approach comes complete with the
adoption of a statistical analysis methodology to validate reductions in consumption
and the promotion of renewable energy usage in real world settings. Our results show
that using the proposed methods in real-world large-scale settings can significantly
benefit the end-users, the Grid, and the environment. The success of our approach
indicates that the combination of methods from multiple fields of Computer Science
can deliver high quality human-centered solutions to complex real-world problems.
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Abstract (Greek)
Η εξισορρόπηση της ζήτησης και της παραγωγής ενέργειας στα σύγχρονα έξυπνα δίκτυα
με αυξημένη διείσδυση των ανανεώσιμων πηγών ενέργειας είναι ένα μεγάλο πρόβλημα,
για τη λύση του οποίου απαιτούνται περίπλοκοι μηχανισμοί για την αποτελεσματική δια-
χείριση της ζήτησης ενέργειας (Demand-Side Management - DSM). Σε αυτή τη διατριβή,
προτείνουμε μηχανισμούς για το σχηματισμό συνεταιρισμών ευφυών πρακτόρων που προ-
σφέρουν υπηρεσίες DSM μεγάλης κλίμακας, και παρουσιάζουμε ένα ολοκληρωμένο πλαί-
σιο για τη λειτουργία τους. Τα άτομα, είτε απλώς καταναλωτές, είτε ακόμη και παραγωγοί,
ταυτόχρονα, ηλεκτρικής ενέργειας, αντιπροσωπεύονται από ορθολογικούς πράκτορες και
σχηματίζουν συνεταιρισμούς για να προσφέρουν τη μετατόπιση της ζήτησης από τα χρο-
νικά διαστήματα με έλλειψη ανανεώσιμης παραγωγής, σε άλλα με περίσσεια.

Για συνεταιρισμούς καταναλωτών, σχεδιάσαμε ένα αποτελεσματικό σχήμα μετατόπι-
σης της κατανάλωσης, το οποίο προσφέρει συγκεκριμένες εγγυήσεις, όπως ορθολογισμό
κατ` ανεξαρτησία (individually rational), ειλικρίνεια (truthfulness) και ασθενή ισολογισμό
του κεφαλαίου (weak budget balance). Το σχήμα μας χρησιμοποιεί διάφορους αλγορίθ-
μους για την προώθηση του σχηματισμού των πιο αποτελεσματικών ομάδων συνεισφο-
ράς. Λαμβάνει υπόψη τα ατομικά κόστη μετατόπισης κατανάλωσης και ανταμείβει τους
συνεισφέροντες πράκτορες ανάλογα με την αποδοτικότητα τους. Επιπλέον, χρησιμοποιεί
εσωτερικές μεθόδους ανατιμολόγησης που εγγυώνται τον ορθολογισμό κατ'ανεξαρτησία,
και επιτρέπουν στους πράκτορες με αρχικώς απαγορευτικά κόστη να συμβάλλουν επίσης
στην προσπάθεια μετατόπισης της κατανάλωσης. Η ειλικρίνεια στη συμμετοχή των πρα-
κτόρων εξασφαλίζεται μέσω της ενσωμάτωσης ενός αυστηρά αρμόζοντα κανόνα βαθμο-
λόγησης. Παρέχουμε μια διεξοδική αξιολόγηση της προσέγγισής μας σε μια προσομοίωση
διαμορφωμένη βάσει συνόλου δεδομένων από τον πραγματικό κόσμο. Τα αποτελέσματα
καταδεικνύουν σαφώς τα οφέλη που προκύπτουν από τη χρήση συνεταιρισμών πρακτόρων
σε αυτόν τον τομέα.

Επιπροσθέτως, για να επιτρέψουμε επίσης τον αποκεντρωμένο συντονισμό των συ-
νεταιρισμών καταναλωτών-παραγωγών ενέργειας, συνδυάζουμε για πρώτη φορά έναν αυ-
στηρά αρμόζοντα κανόνα βαθμολόγησης με ένα εξειδικευμένο κρυπτονόμισμα (cryptocur-
rency). Χρησιμοποιώντας την προσέγγισή μας, οι καταναλωτές-παραγωγοί συντονίζονται
με τη χρήση ενός πλαισίου βασισμένου σε "αλυσίδα από μπλοκ" (blockchain), για να δια-
χειριστούν τη ζήτησή τους προκειμένου να κερδίσουν περισσότερα από την πώληση της
παραγωγής τους. Όταν τη δοκιμάσαμε σε ένα περιβάλλον προσομοίωσης που χρησιμοποιεί
δυναμικά μεταβαλλόμενη τιμολόγηση ηλεκτρικής ενέργειας για να προωθήσει τη χρήση
τοπικά παραγόμενης ανανεώσιμης ενέργειας, η προσέγγισή μας ωθεί τους καταναλωτές-
παραγωγούς να εμπλακούν περισσότερο στη διαχείριση της ζήτησης και να επιτύχουν αυ-
ξημένα κέρδη. Ακόμη, η εξισορρόπηση της ζήτησης και της παραγωγής ανανεώσιμων πη-
γών ενέργειας είναι αποτελεσματικότερη, και οι δυναμικά μεταβαλλόμενες τιμές ηλεκτρι-
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κής ενέργειας είναι πιο σταθερές.
Επιπλέον, προτείνουμε έναν αλγόριθμο για την φόρτιση και αποφόρτιση ηλεκτρικών

οχημάτων (υπηρεσία V2G / G2V) που έχει επίσης ως στόχο την εξισορρόπηση της ζήτησης
και της τοπικής ανανεώσιμης προσφοράς, αλλά προωθεί επίσης και νέα επιχειρηματικά
μοντέλα που κάνουν αποτελεσματική χρήση της δυνατότητας των ηλεκτρικών οχημάτων
να αποθηκεύουν ενέργεια στη μπαταρία τους. Συμπληρωματικά, για να αξιολογήσουμε
την αβεβαιότητα των συμμετεχόντων, και να προβλέψουμε σωστά τη μελλοντική τους
συμπεριφορά όσον αφορά τη διαχείριση ενεργειακής κατανάλωσης, προωθώντας έτσι την
ακρίβεια και την αποτελεσματικότητα, υιοθετούμε διάφορες τεχνικές μηχανικής μάθησης,
τις προσαρμόζουμε στα συγκεκριμένα προβλήματα, και τις χρησιμοποιούμε για την απο-
τελεσματική παρακολούθηση της αξιοπιστίας των δηλώσεων του κάθε πράκτορα σχετικά
με τις πραγματικές του ενέργειες. Τα πειραματικά αποτελέσματα επιβεβαιώνουν οτι η υιο-
θέτηση τεχνικών μηχανικής μάθησης παρέχει απτά οφέλη όσον αφορά την ενισχυμένη
απόδοση των συνεταιρισμών και αυξημένα οικονομικά οφέλη για τους συμμετέχοντες.

Τέλος, παρουσιάζουμε μια μεθοδολογία για την παροχή υπηρεσιών διαχείρισης ζή-
τησης (DSM) μεγάλης κλίμακας στον πραγματικό κόσμο. Προωθούμε μια αρχιτεκτονική
διαδικτύου των πραγμάτων (IoT) για εφαρμογές DSM, μέσω της οποίας δοκιμάσαμε διαφο-
ρετικές γραφικές διεπαφές (GUI) και τύπους κινήτρων για τη διαχείριση της κατανάλωσης
ενέργειας. Οι λύσεις αυτές οργανώθηκαν στην μορφή ενός "σοβαρού παιγνίου'' (serious
game), το οποίο παρουσιάστηκε σε, και χρησιμοποιήθηκε από πραγματικούς ανθρώπους.
Η προσέγγιση μας σε αυτή τη διατριβή συνοδεύεται από μια μεθοδολογία στατιστικής
ανάλυσης για την επικύρωση των μεγεθών μείωσης της κατανάλωσης και της προώθη-
σης της χρήσης ανανεώσιμης ενέργειας σε πραγματικές συνθήκες. Τα αποτελέσματα μας
δείχνουν οτι η χρήση των προτεινόμενων μεθόδων σε συνθήκες μεγάλης κλίμακας πραγ-
ματικού κόσμου μπορεί να ωφελήσει σημαντικά τους τελικούς χρήστες, το δίκτυο, και
το περιβάλλον. Η επιτυχία της προσέγγισής μας δείχνει οτι ο συνδυασμός μεθόδων από
πολλούς τομείς της Επιστήμης των Υπολογιστών μπορεί να προσφέρει υψηλής ποιότητας
ανθρωποκεντρικές λύσεις σε σύνθετα προβλήματα του πραγματικού κόσμου.
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Chapter 1

Introduction

Electricity is undoubtedly one of the most important commodities in our world,

affecting almost every aspect of daily life, from industrial production processes and

commercialism, to people’s heating, well-being and recreation. As a consequence of

this fact, governmental policies have naturally driven energy generation companies

to expand their production infrastructure, so as to meet the end-users’ increasing

energy demand. However, legacy systems for electricity generation mainly produce

electricity by the burning of fossil fuels; apart from the fact that their sources are

depleting, their use is harmful to the environment as their extraction might harm

surrounding areas, and their burning produces gases which help exacerbate the so-

called “greenhouse effect”.

As a remedy for these concerns, recent trends propose “greener” approaches that

will help future electricity production become less polluting, introducing the hope

for a more sustainable development [60, 71, 147]. The emerging renewable energy

generation sources can be organized in a non-industrial and decentralized manner,
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allowing the average household to contribute and benefit from its participation to

the electricity production process [5, 140]. Despite the positive effects from using

renewable energy sources, new challenges arise for electricity production and grids

management. This is because weather-dependent electricity sources are by definition

intermittent, and potentially unreliable regarding their output size.

To overcome the difficulties of effective renewable energy sources integration,

“Smart Grid”-related research has received much attention in the last few years. Its

general objective is to create a more secure, reliable and efficient electricity networks

infrastructure, with affordable energy produced mostly by green sources, production

costs minimized, and energy savings maximized [53]. Smart Grids offer communi-

cation infrastructure for all levels of the power grid, from generators, to transmis-

sion systems, and, finally, to the end-users. The information that is exchanged at

real-time can be used to build prediction models, and balance demand and supply

proactively, resulting to the so-called Demand-Side Management (DSM). In DSM,

the end-users alter their demand profiles, instead of the producer side controlling

the production levels, since this might be hard or very expensive, e.g., because re-

newable generation output is often uncontrollable, or due to the need for turning on

emergency generators. DSM in Smart Grid environments generally aims to induce

changes to the consumers’ demand curves, so as for the total demand to match the

production [68, 192, 177].

Now, to achieve successful DSM, we must make sure that two conditions hold:

Firstly, energy consumption management must be performed in a coordinated fash-

ion so as to make the small individual demand portions count in the face of the
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large aggregate consumption levels, and also guarantee that certain Grid1 stability

constraints will hold. Secondly, DSM participants must come in very large numbers,

overcoming this way a participants “critical mass”, one that is able to contribute in

DSM at any time interval of the day, offering adequate quantities of load for shifting,

despite the uncertainty that exists.

Naturally, the complex data communication and calculations required, can all be

performed by autonomous agents [147, 202]: as such, this field provides a grand chal-

lenge for the fields of Artificial Intelligence (AI) and Multi-Agent Systems (MAS).

Note that whether an agent decides to contribute and how much load will actually

be shifted to other intervals (i.e., DSM participation and action), are both linked to

every day human activities, which, usually, are hard to be postponed or rescheduled.

This fact induces uncertainty regarding the actual shifting of load, a procedure that

will take place in the future. Thus, sophisticated mechanisms that provide incen-

tives and rewards must be incorporated, so that participants cooperate and become

engaged in the DSM efforts [181]. More specifically, a mechanism must ensure that

each participant will be granted back proportions of the profit achieved by DSM in

a personalized manner, and, moreover that, no participant must be able to “game”

the mechanism, e.g. via collusions, misleading statements, and unethical practices

aiming for manipulation [172].

In the work presented in this thesis, we engineer an effective DSM scheme that can

be easily applied to existing Smart Grids. The main mechanism combines methods

and techniques inspired by multiple fields of computer science that is, multiagent

1By the term Grid, we refer to the entities that actually manage the electricity grid, e.g. by
setting the prices, and managing the distribution of electricity in general. Such entities can be
individual utility companies, or nationwide independent system operators (ISO).
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systems, artificial intelligence, optimization, and game theory and mechanism de-

sign. Here, individual preferences are taken into account, and personalized rewards

are given back to the participants, according to their distinct interactions with the

scheme. We model Grid constraints and formulate truthful mechanisms that guar-

antee security and reliability from the Grid side, as well as participation incentives

for the end-user side. Apart from the core of the mechanism that is designed to

deliver large-scale cooperative DSM operations, additional modules, such as machine

learning techniques for regression, contemporary Internet of Things [70] architectures

for easy application deployment and user interaction, as well as blockchain technol-

ogy [131] for decentralized coordination, are also incorporated forming a complete,

functional, and effective DSM framework. By using such an approach, all stakehold-

ers can benefit—and so does the environment—due to the increased utilization of

renewable energy resources, resulting this way to a “win-win” scanario, both for the

Grid side and for the end-users.

In the rest of this chapter, we provide a thorough explanation of the motiva-

tion behind our work, and highlight the difficulties that exist in the highly complex

domain of energy efficiency in the Smart Grid.

1.1 Multiagent Demand-Side Management

As mentioned above, research towards sustainable approaches and solutions, espe-

cially in the energy domain, has flourished in recent years (partly due to the observed

climate change [2, 4]). In order to reach a sustainable energy plan, new Grid architec-

ture designs are needed, which will incorporate recent technological advancements,
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and deliver a green and secure infrastructure [102]. Of course this is a complex ven-

ture, due to the nature of electricity, and requires specific handling. This is because,

first, the storage of electricity is still rather expensive, and, second, the energy output

of green sources is intermittent. Hence, supply might easily become unstable and

limit the penetration of “green” sources into the electricity grid [31].

The contemporary Smart Grid agenda of research aims to create a more secure,

reliable and efficient electricity networks infrastructure, with energy produced mostly

by “green” sources, production costs minimized, and affordable electricity made eas-

ily and reliably available to the public [51, 53, 60].

Due to the scale and complexity of electrical networks management, AI and MAS

solutions are in high demand in the emerging markets involving business entities pro-

viding Smart Grid services [23, 147]. Many such entities have already adopted a busi-

ness model that pulls together the resources and abilities of multiple economically-

minded individuals. Specifically, the emergence of virtual power plants (VPPs) or

cooperatives2 of small-to-medium size electricity producers, consumers, or even pro-

sumers3—that operate as a virtually single entity—has been hailed as a means to

create large, efficient, trustworthy providers of renewable energy production or elec-

tricity consumption reduction (peak-trimming) services [23, 40, 96, 100, 147, 155].

VPPs can also deliver a range of DSM services. As argued in [129], due to the un-

certain nature of the most widespread generators (solar and wind), DSM is expected

to play an important role for the reliability of the future smart grids. Note that,

frequently, in related literature, DSM is also termed as Demand Response (DR).

2The term cooperative refers to conglomerations of end-users that organize and operate largely
on a democratic manner [1]; which is not necessarily the case for Virtual Power Plants.

3A prosumer is an entity that both produces and consumes energy.
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However, DR usually indicates that participants might be called in for last minute

action, while in DSM participation is requested long in advance, thus the two notions

must not be confused [23].

In DSM, consumers contribute to the stability of the electricity grid in exchange

for certain, usually monetary, rewards. Furthermore, load-management schemes are

an alternative to electricity storage—a problem difficult by its nature, and the tack-

ling of which requires the use of expensive equipment [125]. In light of these facts, a

reliable and sustainable energy infrastructure should conduct proactive balancing, be-

tween the amount of electricity produced and consumed, at all times. As technology

and metering devices’ capabilities advance, new possibilities appear. For example,

even though the smart grid is at a relatively early stage, it could be enhanced by us-

ing multi-agent technologies; each agent represents a consumer, a producer, or even

a prosumer, has its own goals and preferences, is interconnected to the other agents,

and must comply with rules, such as paying for electricity, in order to reach these

goals. Moreover, these autonomous and intelligent agents can attempt to learn the

users’ preferences and interests, and control their energy consumption appropriately.

For the cooperative shifting to be successful at large-scale shifting effort, it is obvi-

ous that coordinated joint shifting efforts have to take place, carried out by demand

shifting coalitions.
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1.2 Scaling-up: Smart Cities and The Internet-of-

Things

Despite the fact that massive participation is required for DSM to work, this often

leads to herding effects. As such, the estimated consumption curve could significantly

change, both endangering the Grid’s stability, but also leading to substantially dif-

ferent economic outcomes [195]. In order for agent cooperatives to be functional,

efficient, and profitable, they need to make business decisions regarding which mem-

bers to include in consumption shifting coalitions, from a very large set of available

end-users. These decisions naturally depend on the abilities (e.g., electricity produc-

tion or consumption reduction capacities) of individual agents. These abilities need

to be either monitored by some central cooperative-managing agent, or need to be

truthfully and accurately communicated to it. However, it is clear that in the large

and dynamically changing scene of the Smart Grid, trust between selfish agents is

not implied, and must be guaranteed.

Continuing with the technological advancements of recent years, everyday phys-

ical objects have been modified with the embodiment of short-range and energy

efficient mobile transceivers and have been enhanced with unique identifiers. The

networking of such objects, originally not meant to be “computerized”, has led to the

so-called “Internet-of-Things” (IoT) [24], which is considered as the next industrial

revolution [70]. IoT is expected to find applications in many areas, such as industry,

logistics, building and home automation, smart cities, smart manufacturing, health-

care, automotive, etc. The aforementioned are only a small fragment of the areas

that benefit from IoT technologies [73, 26]. In our case, one can take advantage
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of the easily connected devices and cloud services offered by IoT [98] to: construct

complex DSM applications; manage the large sets of sensors; data streams and user

preferences; and, finally, deliver the infrastructure for DSM that enables large-scale

user participation.

Moreover, in large settings where trust is an issue and where centralized control

is unlikely, there is much need for tools for trusted decentralized cooperation. Cryp-

tocurrencies and blockchain-oriented algorithms is a recent technology developed to

cover this need [185]. Blockchain algorithms run distributedly, and are transparent

by using encryption methods, which guarantee that the transactions are secure, and

that no external third-parties need to take part in the exchanges [62]. In our work,

to overcome the potential herding effects and the need for cooperative manager de-

termination, we champion the use of a purpose-designed cryptocurrency protocol for

distributed prosumer cooperative coordination.

1.3 Providing the Incentives for Participation

In a Smart Grid setting, trust is very important between the participants, thus

appropriate incentives must be given to truthfully and accurately report their in-

tended future actions, along with their corresponding uncertainty regarding those

actions [7, 40, 96, 155]. Generally, the smooth operation of the Smart Grid and

related DSM schemes is aided by the existence of rules and incentives that lead

potentially selfish individuals to adopt a cooperative behaviour and coordinate their

actions. This is exactly the problem studied by mechanism design (MD) [133], a sub-

field of game theory (GT) that explores how to design a setting (viewed as a game)
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so that rational actors (or players) adopt a behaviour that helps meet the designer’s

objectives. In other words, MD schemes seek to offer incentives or counter-incentives

for achieving desired social outcomes, to individuals that aim to maximize their own

utility. Typically, such schemes strive to be incentive compatible, meaning that par-

ticipants are incentivized to be truthful regarding their private preferences, and that

“gaming” the scheme leads to worse outcomes for “misbehaving” actors. As such,

MD can be used to create DSM schemes that promote more efficient network op-

eration, by granting economic and/or social gains (or, reversely, threaten to inflict

similar losses) to the participating individuals—e.g. monetary prizes, and promo-

tions in social networks. Of course, scheme participation is determined by each actor

individually; and the incentives must be sophisticated, so as to drive changes to

human behavior and habits (with which electricity consumption is strongly corre-

lated), while maintaining the profitability of energy sector businesses. Thus, apart

from the technological point of view, a designer should also consider the social as-

pect, one that incentivizes people to participate in demand side management (DSM)

efforts—for instance by shifting their consumption to match the availability of green

energy.

In order to provide incentives for consumption rescheduling to the actors, variable

pricing techniques are often used. This means that instead of applying a flat pric-

ing scheme, time-of-use (TOU), or real-time pricing (RTP) are employed [27, 146].

By setting higher electricity price values for buying energy during intervals of high

demand, and lower values during intervals of low demand, it is possible for an elec-

tricity consumer to reduce her expenses by rescheduling her energy usage to the

most profitable intervals [7]. This is a task that becomes even more important (and
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challenging) when it comes to electricity prosumers. As prosumers both produce

and consume energy [21, 184], they can take advantage of fluctuations in prices, and

generate even more profit [111].

Now, it is conceivable that the Grid would be willing to promise significantly lower

electricity rates for considerable shifting efforts only, which cannot normally be un-

dertaken by any consumer alone (due to small reduction capacity or high shifting

costs). As a result, agents are motivated to join forces in a cooperative, to coordinate

their actions so as to reach the expected reduction levels and make their participa-

tion in the scheme worthwhile. This is similar to group buying in e-marketplaces,

where some members can obtain items that cost more than they are able to pay for

alone, but due to group internal price fluctuations set by corresponding mechanisms,

the purchase finally becomes advantageous to all [105, 203]. Inspired by work in

that domain, and also work on scoring rules [67, 155, 153], in this thesis we devise an

individually rational, incentive compatible, and budget-balanced reward sharing mech-

anism which determines variable reduced electricity prices for coalescing agents via

internal money transfers, and incentivizes them to participate in the consumption

shifting scheme.

Unfortunately, even if the participating agents are perfectly truthful regarding

their abilities and corresponding uncertainty, their reports and estimates can still

be highly inaccurate. This can be due to, for example, communication problems,

malfunctioning equipment, or prejudiced beliefs and private assumptions—e.g., a

truthful reporting agent might be overly pessimistic or optimistic. To tackle this

issue, we also propose the application of generic prediction methods, which are nev-

ertheless able to adapt to a specific agent’s behaviour regarding the promised and
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final consumption shifting actions.

1.4 Contributions

In this thesis, we examine how methods and techniques from multiple computer

science fields can be combined and augmented, to deliver effective DSM schemes

that can allow for broad user participation, i.e. thousands, hundreds of thousands,

and even more end-users, and nevertheless examine the preferences of each individ-

ual. As the reader may have suspected, in order to establish DSM mechanisms that

would actually work in realistic large-scale environments, the designer should exam-

ine many aspects, and most probably be called to utilize solutions from various fields

of engineering and computer science.

To the best of our knowledge, this is the first time that a complete framework for

effective large-scale cooperative demand shifting is provided in the literature. The

contributions of our work can be summarized as follows:

1. We coin the term Multiagent Demand-Side Management, where large sets of

end-users of various types (consumers, prosumers, electricity storage facilities)

join forces in cooperatives to contribute to the balancing between demand and

supply of electricity, by altering their demand profile in exchange of rewards,

either monetary or social. Though this has been envisaged by prior work,

e.g., [96, 146], in this thesis we explicitly propose mechanisms and algorithms to

offer a solution that can be applied effectively to large, real-world environments.

2. Inspired by work in the cooperative games and related MAS literature [39, 173],
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we propose several methods for the formation of shifting coalitions. These

coalition formation methods group together agents based on criteria such as

their perceived shifting contribution potential, and their expected economic

gains from participation (Chapter 3).

3. Our mechanisms come with individual rationality, truthfulness, and (weak)

budget balancedness guarantees. As such, the design of our mechanism pro-

motes broad participation opportunities, guaranteeing that consumers of any

category or type have strong economic incentives for participation in the scheme,

as verified theoretically and also confirmed by our simulations (Chapters 3, 4,

and 5).

4. We also devise internal pricing mechanisms that determine variable, and in-

dividual specific reduced electricity prices for our agents, via implementing

expected gain transfers among the coalescing consumers. The resulting inter-

nal price balancing incentivizes even agents with initially forbidding shifting

costs to participate in the cooperative effort. We put forward several such in-

ternal price balancing techniques: a heuristic mechanism; and five alternative

ones. All of our proposed internal pricing methods satisfy budget-balancedness

(Chapter 3).

5. To promote truth-telling and efficiency in load shifting, we employ a strictly

proper scoring rule, the continuously ranked probability score (CRPS), proposed

in the mechanism design literature [67]. The use of CRPS incentivizes agents

to truthfully and precisely report their predicted shifting capabilities, helping

in this way to model and tackle related uncertainty (Chapters 3 and 4).
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6. We apply a novel cryptocurrency model for the coordination and management

of the cooperative shifting actions, and combine it for the first time with a scor-

ing rule, resulting on a large-scale DSM scheme for prosumers that promotes

accuracy and engagement (Chapter 4).

7. We propose a V2G/G2V mechanism that can take advantage of fleets of electric

vehicles, a load type that has different constraints for the shifting of consump-

tion. Additionally, power that is stored in the electric vehicles batteries can be

used as a source of electricity to reduce external electricity imports and better

utilize locally generated renewable energy (Chapter 5).

8. The methods that we adopt in this work for agent behavior prediction, orig-

inate in Machine Learning, are very generic, and have wide areas of applica-

tion. Their employment in the power consumption shifting domain ensures

that member agents can be ranked by the cooperative according to their per-

ceived consumption shifting capabilities; and thus untruthful or inaccurate

agent statements regarding their capacity and corresponding uncertainty will

not be able to jeopardize the stability and effectiveness of the overall mecha-

nism governing the cooperative business decisions (e.g., which agents to select

for consumption shifting at a given point in time). This is key for the economic

viability of any such cooperative (Chapter 6).

9. We have developed a serious game with intuitive Graphical User Interfaces

(GUIs) and researched system architectures that are used for engaging the

end-users in DSM participation; prototypes have been tested in trials with real

people (Chapter 7).
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Figure 1-1: Overview of scientific fields, and our contributions.

10. Finally, our proposed scheme is easy-to-use and directly applicable, as it re-

quires no legislature changes whatsoever—it only requires the willingness of

national authorities (or perhaps even utility companies that adopt DSM as

part of their business) to provide better prices for joint, large-scale demand

shifting.

Figure 1-1 provides an overview of the scientific fields that inspired this research,

and shows the main links of our thesis components and contributions with these

fields. The core of our demand shifting mechanism is composed of a constrained

optimization process, which applies constraints calculated based on the Grid’s pa-

rameters to select the most appropriate participants for the DSM procedure, i.e. to



1.4. CONTRIBUTIONS 41

form coalitions of actors from the large pool of the available agents. Classic coalition

formation theory studies [39] the participation incentives and behavior of groups

of agents that join forces and act collectively. Here, to form the acting coalitions,

further constraints are explicitly examined, that concern the individual preferences

of the agents. Our mechanism takes into account agent availability and shifting ca-

pability, and offers back tangible benefits for engaged and truthful contributors, as

dictated by Game Theory and Mechanism Design practices. These fields offer guide-

lines for solutions regarding resource allocation, electronic marketplaces, preferences

aggregation, and so on, aspects which are found in the domain of DSM in Smart

Grids. In our mechanism, after the DSM procedure takes place and utility is gener-

ated, this is distributed back to agents in a fair and personalized manner, rewarding

accuracy and truthfulness the most with the use of a strictly proper scoring rule [67],

thus making the mechanism incentive compatible.

Also, by incorporating a special purpose, blockchain-based cryptocurrency pro-

tocol [117], we have extended the proposed DSM mechanism to include electricity

prosumers that coordinate without the need of a, potentially third-party, central

entity. This fact removes the single point of failure of the cooperative manager, and

paves the way to energy democracy and self-production, always guaranteeing the

Grid’s reliability. To enhance the DSM mechanism even more, we have studied a

number of prediction methods from the fields of Artificial Intelligence and Machine

Learning, that are able to monitor and learn agent behavior in the DSM procedures,

helping this way to better evaluate each agent’s capabilities, and manage to select

appropriate agent sets for future participation, and guaranteeing effectiveness in the

collective balancing procedures. Additionally, we coin and evaluate a constrained



42 CHAPTER 1. INTRODUCTION

optimization-based algorithm that, once again, forms coalitions of EVs that offer

V2G/G2V services, and that are rewarded back based on the energy they feed to

the Grid and on the driver-set prices for offering this service. Moreover, and in light

of the recent technological advancements in the Internet of Things, we have studied

system and agent architectures for delivering DSM schemes in the real world, and,

in particular, how intuitive graphical user interfaces for aiding the end-user can be

developed. Finally, in the scope of a Horizon 20204 project, in this thesis, we have

worked closely together with several European real-world energy cooperatives, and

aim to expand our collaboration to examine how the proposed DSM scheme can be

incorporated into their business plans.

1.5 Thesis Outline

The structure of the rest of this dissertation is as follows. Chapter 2 presents the

general placement of our work against the current state-of-the-art. Note that at the

beginning of each chapter we also provide links to past related work on corresponding

fields.

Chapter 3 introduces a cooperative DSM scheme suitable for small consumers

of electricity. The scheme comes along with desirable properties that guarantee

effectiveness and strong incentives for user participation.

Chapter 4 builds on the same principles, but extends to electricity prosumers

settings, where a cryptocurrency protocol is also included for agent coordination and
4The Horizon 2020 programme was established by the European Union (EU) in order to serve

as the financial instrument that would help secure Europe’s global competitiveness in research and
innovation (see https://ec.europa.eu/programmes/horizon2020/).

https://ec.europa.eu/programmes/horizon2020/
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reward sharing, without the need of centralized entities.

Chapter 5 provides an algorithm for the incorporation of electricity storage sys-

tems, and more specifically Electric Vehicles, where the user and system constraints

require specific handling.

Chapter 6 presents agent behavior monitoring and prediction techniques, and

shows the increased accuracy and effectiveness of DSM, when we add these in our

scheme.

Chapter 7 discusses the new architecture trends of the Internet of Things, and

showcases a serious game scenario, where human users interact with intelligent agents

inside their residences, to achieve profitable and meaningful demand shifting.

Chapter 8 concludes our work, and draws on future work directions, discussing,

apart from the Smart Grid, different application fields of our approach, as well as

numerous extensions that can be performed.

Finally, Appendix A includes sections that describe the realistic simulation datasets

that were used in our experiments.
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Chapter 2

Background

The scope of the work presented in this thesis, combines and involves many different

areas at various levels of the DSM process. Starting from a higher level, in this

chapter we discuss existing notions regarding cooperatives, virtual power plants, and

aggregators. Then, we set the theoretical framework, originating from mechanism

design, that is used to analyze the properties and guarantees of our approach. We

also highlight the uncertainty of agent behavior and introduce the difficulties that the

designer of DSM schemes would confront, as well as the means to effectively drive

agent behavior, that is, truthful and incentive compatible solutions. This chapter

also introduces some essential background on optimization and blockchain-oriented

cryptographic applications, since they can be used to enable decentralized DSM.

Finally, we present some essential principles for the design of agent-based systems

and front-ends for the DSM process, which motivate user engagement, and define

some key notions that are present in the Smart Grid.

45
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2.1 Basic Assumptions

To set the basis of our model and introduce some essential notation, consider a set

of actors (agents), A:

A = {a1, a2, ..., aN} (2.1)

each ai of which is characterized by her electricity demand q−i,t during a time interval

t, as well as her electricity production during t, q+i,t, both measured in kWh. For

mere electricity consumers, q+i,t is considered to be zero, while for “prosumers” (i.e.

consumers and producers of electricity) it can take (real) positive values. Each mea-

surement q−i,t is composed of the power consumption of the electrical and electronic

appliances that are placed in the premises of agent i’s building, or infrastructure. The

same holds for q+i,t, where part of the amount may originate from photovoltaic (PV)

panels, or wind generators. It is possible to disaggregate loads to identify the kind of

appliance that is enabled simply by observing the aggregate curve [139]. In our work

however, we do not focus on such matters, and assume (without loss of generality)

that each agent has full control and perfect knowledge regarding their own electrical

and electronic appliances consumption, time intervals of initiation and turning off,

etc. Importantly, we acknowledge that electricity consumption is strongly related to

each inhabitant’s daily routine and personal preferences, and that specific patterns

exist in the aggregate hourly demand curve. This is a natural assumption, that exists

also in the real-world, as can be seen also in an example of real hourly demand and

production curves of Greece, shown in Figure 2-1. As concerns the RES production

curve, this cannot be easily controlled, since it strongly depends on time and weather
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Figure 2-1: Aggregate demand and RES supply curves of Greece (1/7/2016-
4/7/2016). [Source: https://www.entsoe.eu, http://www.admie.gr]

conditions.1

2.2 Cooperatives, Virtual Power Plants, and Ag-

gregators in the Real-world

The emergence of effective, large-scale DSM is not a thing for the future. User con-

glomerates, such as cooperatives, VPPs and aggregators, have already been formed

in various countries of the world. Such notions are often used interchangeably to

describe large sets of consumers, prosumers, or generators, which, although small in

size as individuals, coordinate and interact with the electricity grid as a single entity

in order to have much larger impact on the market [58, 66, 161].

According to the 2015-2016 report of the American Public Power Association,

there are 877 cooperative providers (26.5% of all providers) in total in the U.S., offer-
1In the case of Greece, most RES generators are photovoltaic panels, thus they produce energy

only during daytime.

https://www.entsoe.eu
http://www.admie.gr
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ing energy to the 12.8% of the total customers. In Europe, the requirement for large-

scale, coordinated consumer action, lies at the foundations of the fledging industry

of renewable energy sources cooperatives (REScoops, see, e.g., https://rescoop.eu).

These are cooperatives of electricity consumers, renewable energy producers, or “pro-

sumers” which form in the emerging Smart Grid, and, so far, have exceeded 2500

business entities in numbers. Their activities include producing and trading re-

newable energy, and providing DSM services. The operations of such real-world

cooperatives and related Smart Grid businesses can naturally benefit from incorpo-

rating schemes and methods such as ours, in order to select the most appropriate

participants for DSM actions; take individual preferences into account; and redis-

tribute profits in a “fair” manner, rewarding truthful and accurate participants more

than unhelpful and misbehaving ones [158]. Further elaboration and analysis of the

REScoops profiles and activities can be found in [12], in [50], and in [142].

To be more specific, we provide the following definitions that can be found in the

literature:

• Cooperatives are autonomous associations of people who join voluntarily

to meet their common economic, social, and cultural needs and aspirations

through jointly owned and democratically controlled businesses. Coopera-

tive businesses carry with them underlying social values and ethical principles.

Those principles are: voluntary and open membership; democratic member con-

trol, economic participation by members; autonomy and independence; educa-

tion, training and information dissemination; cooperation among cooperatives;

and concern for community [197]. In the Smart Grid, cooperative members

are electicity end-users, or even small scale producers. An example is coop-
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erative virtual power plants [40], a broad term that intuitively represents the

aggregated capabilities of a set of distributed energy resources (DER). For ex-

ample, it can be thought of as a portfolio of DERs, as an independent entity or

agent that coordinates DERs pooling their resources together, or as an external

aggregator that “hires” DERs to profit from their exploitation.

• Virtual Power Plants are aggregations of different types of distributed re-

sources, which may be dispersed in different points of medium voltage dis-

tribution networks. A VPP is composed of a number of various technologies

with various operating patterns and availability, which can connect to differ-

ent points of the distribution network. It actually aggregates the capacity

of many diverse DERs, it creates a single operating profile from a composite

of the parameters characterizing each of the DERs and can incorporate the

impact of the network on aggregate DERs output. A VPP is a flexible rep-

resentation of a portfolio of DERs that can be used to make contracts in the

wholesale market and to offer services to the system operator [161]. Virtual

power plants rely upon software systems to remotely and automatically dis-

patch and optimize generation or demand-side or storage resources in a single,

secure web-connected system [23].

• Aggregators act as intermediates to several small assets, such as home users,

in order to allow them to interact with the market and have increased negotia-

tion power. The aggregator has two main goals, first to provide actual services

(e.g. DSM) to the system operator, and secondly to guarantee profits (e.g. via

reduced electricity bills) to the end users [66].
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Note that, although these notions may be built upon different backgrounds, the

final result from the scope of the Grid is the same in every case: they can provide

substantial control on the traded energy, and help increase the stability and safety

of the network. In our work we promote the coordination of the individuals via such

schemes. We choose to use the term cooperative because it implies commitment and

engagement from the participants side, features that are imperative for the success

of decentralized DSM operations.

Under the “umbrella” of the cooperative, every q−i,t and q+i,t of the individuals of

A, are summed up to the aggregate cooperative demand and supply for each time

interval t, measured in kWh:

Q−
t =

N∑
i=1

q−i,t, ∀i ∈ A (2.2)

Q+
t =

N∑
i=1

q+i,t, ∀i ∈ A (2.3)

2.3 Demand-Side Management and Mechanism De-

sign

DSM services can be loosely divided into three categories: consumption reduction

programs, load management programs, and energy conservation programs [3, 96,

196]. Now, although reduction and conservation can obviously contribute to the

reliability and sustainability of the power system, they require large investments

for equipment and infrastructure upgrade [68]. Moreover, these efforts can reach a
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maximum effectiveness level, beyond which further reductions cannot be tolerated,

because such actions begin to interfere with consumer comfort and well being [168].

In any case, for any DSM scheme to be easily adopted, it should be made sure that

consumer needs are accommodated and consumer tasks are eventually completed—

even at earlier or later times than originally scheduled.

In mathematical terms, agent i has the capabibility to reduce its demand q−i,t

during a time interval, by an amount

ri,t ≤ q−i,t

and, as concerns the cooperative,

Rt =
N∑
i=1

ri,t ≤ Q−
t , ∀i ∈ A

Assuming that the agent will have to consume ri,t at an earlier or later time interval,

ri,t is referred to as the shifting capacity of agent i during t. However, in order

for a rational, self-interested agent to reduce and shift its demand, it expects to be

rewarded, at least as much as the anticipated shifting cost, ct→t′
i , measured in euros.

From a strict game theoretic scope that follows the descriptions of [138] and [173],

each agent has a strategy, i.e. a complete contingent plan, or decision rule, that defines

the action an agent will select in every distinguishable state of the world, si(θi) ∈ Σi,

which, in our case, is the choice of an agent to participate in DSM or not (Σi denotes

the set of all strategies available to agent i). The θi ∈ Θ denotes the agents preference

type. Here, it is a tuple containing all the necessary values required to describe the
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behavior of each agent i, e.g.

θi = ⟨q−i,t, q+i,t, ri,t, ct→t′

i ⟩

Now, a self-interested, rational agent seeks to maximize its utility, ui(o, θi), which

numerically corresponds to reward received, as a result of a selected action that

leads to an outcome o ∈ O. Due to the fact that the utility is awarded after each

(unknown) agent’s action takes place, the speculation regarding the outcome for each

agent is termed as expected utility. This means that the expected utility can be used

to determine the preference of an agent towards selecting a specific strategy, given

its type. We say that, if

ui(o1, θi) > ui(o2, θi)

then agent i prefers outcome o1 over o2.

Game-theoretic solution concepts, correspond to formal “rules” for predicting how

a game will be played. To continue, we must define the strategy profile, the strategies

used by all agents, s = {s1, s2, ..., sN}. A subscript of −i denotes the set that includes

every agent apart from i. This way, the set of all agent strategies apart from i’s would

be s−i = {s1, ..., si−1, si+1, ..., sN}. Also, s′i denotes any other strategy profile that

agent i could choose to use. We now briefly describe some fundamental GT solution

concepts [138].

Definition 2.3.1. [Nash equilibrium] The Nash equilibrium describes the strategy

profiles s, for which every agent maximizes its expected utility:

ui((si(θi), s−i(θ−i)), θi) > ui((s
′
i(θi), s−i(θ−i)), θi), ∀s′i ̸= si
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This means, that if a strategy profile is in Nash Equilibrium, no participant has an

incentive to select another strategy, due to the fact the the expected utility decreases

when choosing alternatives. Although Nash Equilibrium is a very strong concept,

its calculation requires that each agent must have perfect information regarding the

types and strategies of all other agents. In practice, this is rarely realizable (plus

the calculations cost can be prohibitive) [52], thus more robust solution concepts are

used in settings with uncertainty, such as the Bayes-Nash Equilibrium.

Definition 2.3.2. [Bayes-Nash Equilibrium] A strategy profile s = {s1(·), s2(·), ...,

sN(·)} is in Bayes-Nash equilibrium if for every agent i and all preferences θi ∈ Θi:

ui((si(θi), s−i(·)), θi) > ui((s
′
i(θi), s−i(·)), θi), ∀s′i(·) ̸= si(·)

Now, in some settings, one might be lucky enough to discover Dominant Strate-

gies:

Definition 2.3.3. [Dominant strategy] Dominant strategy is a strategy si that

weakly maximizes an agent’s expected utility for all possible strategies of the other

agents:

ui((si, s−i), θi) > ui((s
′
i, s−i), θi), ∀s′i ̸= si, s−i ∈ Σ−i

The Dominant Strategy equilibrium signifies that regardless of the strategies of

every other agent, selecting si will grant the maximum utility. In strategic dominance,

the personal choices and preferences of the rest of the agents do not have to be known,

and are irrelevant.

In the cooperative games domain—i.e., games in which participants cooperate

and try to maximize the collectively achieved utility, also termed as social welfare—a
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quite popular solution concept is the Shapley Value [39]. In cooperative games agents

play by forming coalitions and each possible coalition is mapped to a real number

with the use of a characteristic function, v : 2N → R. Such games belong to the

class of characteristic function games. The result of the characteristic function can be

thought of as the collectively achieved utility of a potential coalition of players. Here,

there is an additional requirement that is, to divide the social welfare and reward

back the individual participants. This is a quite complex task, since, frequently,

each agent contributes in different degrees. The Shapley value aims to reward each

agent proportionally to their average marginal contribution, that is the collective

utility increase actually caused by the agent’s participation. Let c ∈ C denote a

coalition from the set of all possible coalitions between players in A, and c−i, the

same coalition, but without agent i.

Definition 2.3.4. Shapley value The Shapley Value in a characteristic function

game G = (A, v) for an agent i is given by:

ϕi(G) =
1

N !

∑
c∈C

(v(c)− v(c−i))

As we can see, the Shapley value requires a vast number of calculations that

grows super exponentially as N , the number of participating agents, increases. This

is why in this thesis we do not employ the Shapley value to distribute utility to the

agents.

To persuade candidates for DSM participation to actually contribute, the out-

comes should be such that, despite the shifting costs, the agent finally profits after

contributing. At the same time, there should be counter-incentives for agents that
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do not “play fair”, that is, for those that select actions such that they jeopardize the

total outcome for all agents, to increase their own. The subfield of game theory that

sets the rules of a game, as well as the game itself, is called Mechanism Design(MD),

or “inverse game theory” [133]. MD is defined by [138] as “the sub-field of microeco-

nomics and game theory that considers how to implement good system-wide solutions

to problems that involve multiple self-interested agents, each with private informa-

tion about their preferences.” These solutions are modelled by a single function, the

social choice function.

Definition 2.3.5. [Social choice function] The social choice function f : Θ1 × ... ×

ΘN → O chooses an outcome f(θ) ∈ O, given agent types θ = (θ1, ..., θN).

This function selects the optimal choice for agents that have given types. The task

of the mechanism designer is to set the rules of a game, e.g. which are the available

actions, how the outcomes are determined, so that the solution of the social function

is solved, despite the individual self interests of each agent.

We can now give a formal definition of what a mechanism is:

Definition 2.3.6. [Mechanism] A mechanism M = (Σ1, ...,ΣN , g(·)) defines a set of

strategies Σi available to each agent, and an outcome rule g : Σ1 × ... × ΣN → O

such that g(s) is the outcome implemented by the mechanism for strategy profile

s = (s1, ..., sN).

What a mechanism really does, is to define the strategies that are available to

players, and, furthermore, the method by which the final outcomes are determined,

as a result of agents selecting their strategies. Now, suppose that agents select their

strategies such that they are in equilibrium (e.g. Nash, Dominant strategy, etc.), and
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compute the outcome. If this outcome is the solution of the social choice function,

for all possible agent preferences, then we say that the mechanism M with outcome

function g(·) implements the social choice function f(θ):

Definition 2.3.7. [Mechanism implementation] A mechanism M = (Σ1, ...,ΣN , g(·))

implements social choice function f(θ) if g(s∗1(θ1), ..., s∗N(θN)) = f(θ), for all (θ1, ...,

θN) ∈ Θ1×...×ΘN where strategy profile s∗1(θ1), ..., s∗N(θN) is an equilibrium solution

to the game induced by M.

2.4 Incentive Compatibility and Related Proper-

ties

Usually, a key property sought after by MD approaches is incentive compatibil-

ity [133]. This means that the design must be such, that actors finally choose will-

ingly to follow the social choice function. Additionally, this guarantees that they are

better-off being truthful regarding the private preferences they reveal to the scheme,

while untruthful ones suffer penalties, exclusions, and are in general subject to nega-

tive incentives. These properties are very important in mechanism design in general,

but in the DSM domain as well: since agents need to coordinate in the present, and

commit for collective consumption shifting in the future, coordination must by based

on accurate and truthful statements of the participants. Otherwise, the success of

collective DSM actions is jeopardized because there will be no guarantees for the

satisfaction of the necessary constraints for effective and profitable DSM.

Incentive compatible mechanisms are mainly built upon the direct revelation prin-
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ciple. This principle dictates that the only action available to agents by a mechanism,

is to state its preferences [138].

Definition 2.4.1. [Direct-revelation mechanism] A direct revelation mechanism M =

(Θ1, ..., ΘN , g(·)) restricts the strategy set Σi = Θi for all i, and has outcome rule

g : Θ1 × ...×ΘN → O, which selects an outcome g(θ̂) based on reported preferences

θ̂ = (θ̂i, ..., θ̂N).

The next step is to guarantee that the preferences reported by the agents to

the mechanism are their true ones. This is performed by first asking for their true

preferences, and, secondly, guaranteeing that the agents will finally choose to report

them [138].

Definition 2.4.2. [Truth-revelation] A strategy si ∈ Σi is truth-revealing if si(θi) =

θi for all θi ∈ Θi.

Definition 2.4.3. [Strategy-proof] A direct revelation mechanism is strategy-proof

if truth revelation is a dominant strategy equilibrium.

Finally, we need an incentive compatible mechanism consisting of a social choice

function that is solved for truth-revealing agent strategies [138].

Definition 2.4.4. [Incentive compatible implementation] An incentive compatible

direct revelation mechanism M implements a social choice function f(θ) = g(θ),

where g(θ) is the outcome rule of the mechanism.

A complementary definition to the above is the quasi-linear agent preference [138].
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Definition 2.4.5. [Quasi-linear preference] A quasi-linear utility function for agent

i with type θi is of the form:

ui(o, θi) = vi(x, θi) ⇔ pi

where outcome o defines a choice x from a discrete choice set and a payment pi by

the agent.

The quasi-linear preferences imply that the utility of each agent can be translated

to a value function i.e., a price that is paid (or claimed), making this way the utility

transferable among agents.

Another desired property of a mechanism, or, more accurately, of the social choice

function implemented by a mechanism, is budget balance. Budget-balanced mech-

anisms guarantee that the utility that is to be redistributed among participants is

generated by their own participation, and no external funding is required [138].

Definition 2.4.6. [Budget-balance] A social choice function f(θ) = (x(θ), p(θ)) is

budget balanced if for all preferences θ = (θ1, ..., θN)

N∑
i

pi(θ) > 0

A more relaxed case is that of weak budget balance, where, although again the

mechanism will not require external funding, some profit might be generated that is

not claimed by the participants:

Definition 2.4.7. [Weak budget-balance] A social choice function f(θ) = (x(θ), p(θ))
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is weakly budget balanced if for all preferences θ = (θ1, ..., θN)

N∑
i

pi(θ) ≥ 0

A third property that is a pre-requisite to any solution mechanism is individual

rationality: since individuals are assumed to participate in the mechanism only if it

is rational for them to do so, the mechanism ensures that participation incentives do

in fact exist [138].

Definition 2.4.8. [Individual rationality] A mechanism M is individually rational

if for all preferences θi it implements a social choice function f(θ) with

ui(f(θ, θ−i)) ≥ ūi(θi)

where ui(f(θ, θ−i)) is the expected utility for agent i at the outcome, given distri-

butional information about the preferences θ−i of other agents, and ūi(θi) is the

expected utility for non-participation.

This means that when a mechanism is individually rational, then participating

agents achieve at least as much expected utility as from not participating, given their

prior beliefs regarding other agents’ preferences.

It should be clear to the reader by now, that in the multi-agent DSM mecha-

nism that we propose, agents should truthfully report their shifting preference types,

and maximize their utilities/payoff functions by doing so. This can be achieved by

combining a priori statements—these can be thought of as agents’ commitments

regarding their participation—with the actual actions that take place after DSM ac-



60 CHAPTER 2. BACKGROUND

tualization. This is achieved with the incorporation of scoring rules, which we will

be discussing next.

2.5 Scoring rules

Scoring rules [67] are functions that can be used to mathematically evaluate the

quality of probabilistic forecasts. Such functions assign a numerical value—termed

as score—given a predictive distribution, and the event that finally materializes. The

scoring rule function is referred to as

S(P, x) : fX ,R → R

where P is the probability density function (PDF) of the forecast that belongs to

the set of the probability density functions. The sample x can be generated from

another, or the same PDF, noted as Q. In general, scoring rule functions have a

range in R, but the extended R̄ = [−∞,∞] can also be used.

Now, we say that a scoring rule is proper if the following hold [67]:

S(P, P ) ≥ S(P,Q),∀P,Q

This means that if the materialized value originates from the stated predictive dis-

tribution, then the score value is at least as high as if x originated by any other

PDF Q. Although this concept is appropriate for some fields, in our case we would

like the score to generate even higher values when x is generated by the predictive

PDF P , than from any other Q. As such, the participant will be guaranteed that
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the maximum profit is earned by being truthful. This is the case for strictly proper

scoring rules:

S(P, P ) > S(P,Q),∀P,Q, P ̸= Q

Here, the equality must hold if and only if P = Q, which means that the forecasters

are better off stating their true beliefs accurately, since this is the only value that

gives the best score. As such, a mechanism can exploit a rule’s strict propriety

property, to ensure that scores that are lower than the best, result to lower returns

(e.g., via the use of penalties) to the participants—and, by so doing, ensure the

truthfulness [133] of the agent reports. Scoring rules are already being applied in

various scientific fields, such as probabilistic weather forecasts that use ensembles,

economic and financial forecasting methods, wind turbine generation forecasts, etc.

For example, in the work of [35] Boutilier discusses proper scoring rules that

incentivize self-interested forecasting experts to report predictions truthfully to de-

cision makers. The main idea is that the agent might have increased inherent utility

by misreporting the forecast to the aggregator. Thus, the author proposes the use of

a compensation rule, that actually rewards the agent the loss in her utility caused by

truthful reports. In this way, the agent has no incentive to report untruthfully. In

our research, we are concerned about truthful prediction statements, and thus incor-

porate such scoring rules, in particular the Continuously Ranked Probability score.

However, it is also desirable to study prediction methods’ accuracy and efficiency

(Chapter 6).
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2.5.1 The Continuously Ranked Probability Score

In the mechanism proposed in this thesis, the incentivization for truthful reporting

is made possible with the incorporation of the strictly proper scoring rule, the Con-

tinuously Ranked Probability Score (CRPS) [67], that actually performs an opposite

reward assignment; as the participant’s actions deviate from the committed ones,

fines apply that punish such deviations. Thus, it is of the participants’ best interests

to be truthful.

CRPS has also been recently used in [155] to incentivize renewable energy-

dependent electricity producers to accurately state their estimated output when

participating in a cooperative. The evaluation of producers’, but also consumers’

forecasts, is performed using CRPS in other works as well, e.g. [186, 19, 65, 33].

The use of CRPS allows us to directly evaluate probabilistic forecasts, and the

score is given by:

CRPS(N (µ, σ2), x) = σ[
1√
π
− 2ϕ

(
x− µ

σ

)
− x− µ

σ

(
2Φ

(
x− µ

σ

)
− 1

)
] (2.4)

In our setting, N (µ, σ2) is the uncertainty stated over the expected absolute relative

errors regarding the reduction capacity, as reported by an agent; while x is the

actually observed error, ϕ the PDF, and Φ the CDF of a standard Gaussian variable.

The mean µ and variance σ2 of the predictive distribution can be estimated by each

agent through private knowledge of its consumption requirements and business needs.
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2.6 Uncertainty in Demand-Side Management

The incorporation of CRPS and proper scoring rules in general, implies that the

mechanism also takes into account uncertainty factors that might be present in a

setting. As we have already discussed, large-scale consumption shifting is in general

accompanied with high uncertainty, since human factors affect the operations. In

our work, we not only model uncertainty in agent behavior, but we also take it into

account into the mechanism; and provide functional tools to tackle it.

The work of [74] describes the highly uncertain nature of such environments.

Some key points regarding the residential behaviour characteristics of DR partici-

pants are the following:

• Houses of similar sizes, demographically similar occupants, similar set of ap-

pliances, and under the same geographical condition, vary in consumption by

as much as 200%.

• Houses where occupants have moved, new occupants consumption cannot be

estimated.

• Individuals do not make consistent rational decisions, according to economists.

• People tend to overestimate the amount of energy they use, and are optimistic

with commitments in energy efficiency applications.

• The effects of Price Unresponsiveness.

• Users might not be able to respond to price signals, e.g., due to misunderstand-

ings or the lack of immediate feedback.
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• Equity issues that is, differences between the real value of assets and the costs

of liability.

A potential solution to the equity issues is providing personalized suggestions,

based on the individual capabilities and profile of each participant, where they re-

ceive different suggestions for consumption shifting and pricing according to their

own needs and interests. This is a main feature of the mechanism, as described in

Chapter 3.

2.7 Constrained Optimization for DSM

We term DSM approaches that aim to optimize consumption schedules given spe-

cific user preferences optimization or decision-theoretic (DT) approaches, since they

largely use techniques originating in optimization and decision theory. Typically,

these methods aggregate individual preferences, turn them into constraints, and solve

the resulting joint optimization problem centrally, to produce altered demand pro-

files for the individuals. Their usual objective is to minimize a cost (or to maximize a

payoff) function. Costs (payoffs) can be monetary or associated with participant dis-

comfort minimization, maximizing the use of renewable or locally produced energy,

and similar concerns.

DT methods can be deterministic or stochastic, and focus on either real-time or

longer-term planning [29]. Regardless, an assumption they commonly make is that

stated individual preferences are exactly as provided, and not subject to change.

Moreover, unlike their GT counterparts, these methods do not tackle conflicts arising

among users due to optimization (e.g., due to unfair sharing of DSM profits), nor do



2.7. CONSTRAINED OPTIMIZATION FOR DSM 65

they explicitly incentivize users to participate or cooperate in the DSM process [29].

Now, as is well-known, optimization problems are formulated as a function f that

is to be minimized (or maximized), subject to a set of constraints, that can include

both equality, and inequality constraints. In mathematical terms this is expressed

as:

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

hi(x) = 0, i = 1, ..., l

(2.5)

The above statement describes the problem of finding an x that minimizes the func-

tion f0(x), by choosing from the x’s that also satisfy the conditions fi(x) ≤ 0 and

hi(x) = 0. The x is called optimization variable, and the function f0 : Rn → R the

objective function. The inequalities fi(x) ≤ 0 are termed as inequality constraints

functions, while hi(x) = 0 are the equality constraint functions [36]. For the solu-

tion of convex problems, i.e. for an x to be the optimal x∗ given convex f0(x) and

affine inequality constraints, a set of conditions must hold, the Karush-Kuhn-Tucker

(KKT) conditions. Lastly, unconstrained optimization problems can be formulated

as well, by setting m, and l to zero.

In DSM, f0(x) represents the costs of participating parties, and the constraint

functions model the preferences and limitations that exist. The main problem with

the usual approaches however, is that the problem is solved in a centralized man-

ner, by a party that needs to have perfect knowledge regarding agent personal

preferences—and the Grid’s as well, so that to be able to formulate the problem.
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Even worse, after the global solution is found, then every agent is obligated to follow

it and alter their consumption profiles, thus leading to inflexible solutions that are

rarely successful in practice for large-scale applications. In the core of the mechanism

that we propose we also solve constrained optimization, but we combine it with incen-

tivization schemes (by using GT techniques), and also incorporate a cryptocurrency

protocol to overcome centralizations.

2.8 Cryptocurrencies and Blockchain Technology

A field that is of interest to us due to its potential for decentralized problem solving,

is the blockchain-oriented technology with the most famous application being that of

digital currencies, or cryptocurrencies. To help explain the way blockchain and cryp-

tocurrencies work, we will use the example of Bitcoin. Introduced by the work of [131]

in 2008, Bitcoin is the first, and most widespread cryptocurrency. Bitcoin consists

of a number of interconnected peers that execute a special purpose, open-source,

and decentralized software. Peers exchange messages that contain information re-

garding the bitcoin transactions, i.e., who sent electronic coins to whom. They also

aggregate such messages, and simultaneously try to solve a “computationally hard”

cryptographic problem, termed as proof-of-work. The first peer that manages to

solve this problem combines information regarding (a) a proof of the solution, (b)

the so far received transactions, and (c) additional data required by the ciphering

algorithms. This, along with its hash, is propagated to the rest of the network as a

message, which constitutes the next block of the blockchain. The rest of the network

that receives this block, can validate its legitimacy by performing a set of crypto-
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graphic checks. If the block is indeed valid, peers add it into the blockchain, and, as

a whole, listen to new transaction messages, and try to solve another instance of the

cryptographic problem, this time to generate the next block of the blockchain. The

process of creating blocks is called mining. Mining also guarantees that the peer who

managed to create the new block will be rewarded, either by newly created coins,

or by the transaction fees that are set by the “transactees”, or by a combination of

both; it depends on the state of the network, i.e. if the maximum amount of bitcoins

has already been mined, etc.

Now, if a malicious peer tries to modify past transactions, e.g. in order to double-

spend an amount that has already been spent in a past transaction, it will have to

change part of the data included into previous blocks. However, such an attempt

would fail, since each block includes the hash of the previous block in its header, as

shown in Figure 2-2. Locally changing a past block, and propagating it to the peer

network would cause inconsistencies in the hashes, thus the other peers would reject

such changes through the validation process. Another type of attack, would be to try

and alter data in the current block, thus no changes in history should be required. In

such cases, the blockchain is “forked” and is split into two different paths, one with

the most recent block holding the true state of the blockchain, and another one that

has the most recent block altered. Here, the path that finally prevails and is accepted

by the peer network is the longest one. This way, highjacking the blockchain and

the peer network might be possible, however, to achieve this, one should be able

to control a majority of peers, which should also have much larger computational

power than the rest of the network. With the current technology, and due to the

presence of large “fair-playing” mining pools controlled by different stakeholders and
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Figure 2-2: Simplified blockchain of Bitcoin. [Source: https://bitcoin.org/en/
developer-guide]

placed in various physical locations on the globe, this is so far considered as rather

impossible [6]. As a minor note, transactions and related data are compressed into

Merkle trees [118], for communication and computational efficiency.

So far, as the reader might have already noticed, there is no reference to a trusted

third party that is required to make the transactions realize. This is why Bitcoin

has become so popular by now; as a means of currency, bitcoins are not regulated

by governments or central banks, and thus, less fees are required to be payed in

general. More importantly, no party needs to perfectly trust anyone in order for

transactions to take place. Trust, in particular, is a fundamental issue to consider

when designing large-scale distributed systems that are open to participants [145],

such as a DSM scheme. Especially in cases where cooperative schemes are used,

trusted participants guarantee the correct and smooth operation of the system, thus

their existence is very important.

https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide
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Apart from Bitcoin, more than 800 alternative cryptocurrencies are currently

fully functional and available to individuals via exchanges in the real world. A great

number of them are pure clones of the Bitcoin technology, and are introduced to serve

other communities, however there exist examples that differentiate from the original,

e.g. by adopting alternative proofs, including anonymity and privacy features, etc.

Furthermore, cryptocurrency protocols are also enabling smart contracts [49].

Smart contracts are automated procedures, which can be also considered as au-

tonomous agents. Their goal is to execute a contract, when the required actions

have been performed. In our work, as we explain later in Chapter 4, we utilize a

cryptocurrency protocol that is able to execute smart contracts for DSM purposes.

Here, the inputs are smart meter measurements that indicate effective participation

in electricity demand shifting efforts, offered by prosumer cooperatives. The scheme

is mainly aiming to evaluate how effective and “helpful” each individual prosumer is

in flattening the difference between renewable supply and demand. Additionally, the

exchangeability of the proposed cryptocurrency for fiat currencies i.e., real money, is

also possible constituting it this way as even more engaging for participants. Addi-

tionally, by incorporating such a protocol we offer a decentralized solution that has

no need for central cooperative managers, and removes single points of failure from

the mechanism.

More interestingly, only recently, innovative business cases that utilize blockchain-

oriented algorithms have begun to appear.2 Specific blockchain-based networks are

proposed, which give to small prosumers—i.e. residences, or small companies, the

2https://hbr.org/2017/03/how-utilities-are-using-blockchain-to-modernize-the-grid,
https://www.theguardian.com/sustainable-business/2017/jul/13/could-a-blockchain-based-electricity-network-change-the-energy-market,
https://www.euractiv.com/section/electricity/news/is-blockchain-about-to-disrupt-the-electricity-sector/

https://hbr.org/2017/03/how-utilities-are-using-blockchain-to-modernize-the-grid
https://www.theguardian.com/sustainable-business/2017/jul/13/could-a-blockchain-based-electricity-network-change-the-energy-market
https://www.euractiv.com/section/electricity/news/is-blockchain-about-to-disrupt-the-electricity-sector/
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ability to trade energy on their own, change energy suppliers, etc. More specifically

in the work of [121], the concept of an “NRGcoin” was incorporated to balance de-

mand and renewable production in a Smart Grid setting that included prosumers.

There, given the levels of demand during a time interval, the producer was awarded

more NRGcoins for importing energy to the Grid at intervals when renewable supply

was weak, and fewer at intervals when renewable supply was in excess. This way,

prosumers were incentivized to produce when renewable energy was really needed.

However, given the intermittent and uncontrollable nature of the most common re-

newable generators (i.e. wind and solar), such approaches must be enhanced with

carefully designed coordination mechanisms in order to effectively promote DSM.

The scheme that we describe in Chapter 4 is the first approach that combines cryp-

tocurrency technology with mechanism design for large-scale decentralized DSM,

allowing also for prosumers with uncontrollable renewable generators to benefit from

such actions.

2.9 Designing the front end of DSM applications

Since electricity usage and participation in DSM highly relies on human activities and

interventions, one critical step for delivering successful and effective DSM schemes is

to design appropriate graphical user interfaces (GUI), which could be considered as

the front-end of the Smart Grid’s mechanisms and applications [147]. Through the

visual presentation of data, also termed as data visualization, human end-users are

informed regarding the opportunities for DSM participation, and can easily weigh

the potential impacts. This helps to plan their actions, recognise underlying threats,



2.9. DESIGNING THE FRONT END OF DSM APPLICATIONS 71

and maximize the gain of each user according to her personalized needs [20].

In the DSM field, there are various data sources that influence both the user deci-

sions, as well as the system efficiency. Such data sources are electricity prices, either

retail or wholesale, periodical consumption measurements and forecasts, renewable

production levels, monetary gains (cumulative and per-device/participation). Addi-

tionally, stored historical data from the aforementioned data sources can play a very

important role in a user’s final decisions, and help provide an overview of her overall

DSM efficiency [193].

In order for data visualization approaches to become effective, three principles

must be taken into account, namely accuracy, utility, and efficiency [208]:

1. Accuracy states that the actual data items that are interpreted to visual items

must have matching attributes. This means that both the placement and the

color of a visual item must adhere to the relationship that the original data

items had—e.g. use same color for the same group, specify respective positions

according to the relationship the original data items have, etc.

2. Utility implies that by using visualizations, users should be directed on how

to implement certain tasks and achieve their goals. This includes the clear

presentation of the current tasks, as well as the subsequent ones that should

follow, in order to achieve a certain goal.

3. Efficiency defines the ease of comprehension and usage. Data visualization

should make clear statements regarding the current state of situation, thus

requiring minimum effort by the user to understand and take action. Here,

an important factor is also a task’s time of completion, as well as the learning
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curve for the user to be able to use the data visualization system.

Moreover, the work of [95] discusses an additional categorization of visualizations,

the pragmatic and the artistic.

Pragmatic visualization includes the accuracy principle and is defined as the tech-

nical application of visualization techniques to analyze data. From mere numerical

data presentation to more sophisticated graphs and scatter plots, pragmatic visual-

izations are used to directly communicate scientific results in an objective way.

Artistic visualization, on the other hand, is usually used to communicate intu-

itions and drive inspiration, using the data as the basis for the presentation. Here,

efficiency is not a concern, since raw data is not the centre of attention, however it

is used to prove that the presented concern is actually real.

In systems that are highly user-centric, it is important to combine multiple views

and deliver charts and graphs that update at real-time when a user changes param-

eters [165]. This technique is also known as coordinated views. Coordinated views

are crucial for what-if scenarios in GUIs for DSM. By utilizing what-if scenarios,

the GUI can be used to “evaluate fine-grained effects of behavior changes, such as

rescheduling and appliance’s running time” [20].

It should be clear by now that, to achieve the design of useful and effective GUIs

in a DSM setting, combining all the above techniques is crucial. These visualization

techniques help the user to immediately understand how her preferences or changes in

decisions affect multiple aspects of the system. In Chapter 7, we present a prototype

GUI design for DSM, which incorporates multiple visualization techniques, and can

be utilized by real-world applications. The proposed design was evaluated by human

users in a serious game setting that simulated day-ahead planning of residential users
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in DSM, both for electrical appliances consumption shifting and heating/cooling

equipment operation optimization.

Serious games [120] can be defined as any form of interactive computer-based

game software for one or multiple players that has been developed with the inten-

tion to offer more than entertainment [152]. For example, serious games have been

developed for educational and e-learning purposes, as well as for health and safety

training [113]. Such games promote the engagement of the players via various means,

such as by configuring the difficulty according to each player’s capabilities, via virtual

rewards, the tracking of the player’s skill improvement, etc. [32].

2.10 The Grid and the Electricity Markets

In this section we describe some key notions and authorities that are present in

contemporary electricity markets, e.g. in Europe and in North America, relating to

the establishment of the Smart Grid.

To begin, typically there exist three different markets, the wholesale market, the

retail (customer market), and the balancing market. The wholesale market, also

termed as the “day-ahead market” allows generating and utility companies to buy

and sell energy for future delivery [90]. Such markets are regional or country-wide

and aim to provide liquidity to the energy market.

The customer market is placed one level below, and includes the utility companies

that sell electricity to the end users. In customer markets, prices for buying (from

local producers) or selling electricity (to the consumers) are set according to contracts

and the portfolio of each market actor. Such prices are often set by the various power
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authorities, or, in many cases, by a nationwide independent system operator (ISO),

managing the electricity grid [93]. ISO authorities are also the Transmission System

Operator (TSO) and the Distribution System Operator (DSO). TSOs are responsible

for the operation and maintenance of the electricity transmission network in large-

scale markets, while DSOs for the distribution of the energy from generators to the

end-users in local markets. In our work here, as is also common in the literature, we

term such authorities as “the Grid” for convenience.

Next, the balancing market, is placed at the top level of the Grid hierarchy, and

is provided by the ISO and TSO authorities. The balancing market is responsible

for the balancing between supply and demand in real-time [90]. In general, in this

kind of market, prices are much worse for the participants, giving them this way

incentives to match production and demand beforehand, to the degree possible.

The methods proposed in this dissertation, although requiring participants in

large numbers being this way closer to the customer market, can be incorporated

into the two other markets as well; this can be decided and mutually agreed by the

cooperative members.

Finally, we describe the pricing schemes that are commonly used in electricity

markets around the world. We note that in recent years economists have been ad-

vocating the use of dynamic pricing schemes in the electricity market as a means to

avoid market inefficiencies and the aforementioned shortcomings of existing demand

reduction schemes [38].

• Flat pricing: This is the most simple and common pricing scheme, where

a fixed price is assigned to every time interval for consuming or producing

electricity.
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• Time-of-Use (TOU): To apply TOU rates, one should first divide each day

in consecutive time slots and then apply different (although fixed) rates for

producing or consuming during each time interval.

• Real-time Pricing (RTP): RTP can be defined as energy prices that are

set for a specific time period on an advance or forward basis and which may

change according to price changes in the market. Prices paid for energy con-

sumed during these periods are typically established and known to consumers

a day ahead or an hour ahead in advance of such consumption, allowing them

to vary their demand and usage in response to such prices and manage their

energy costs by shifting usage to a lower cost period, or reducing consumption

overall [125]. However, RTP has been strongly criticized for promoting the

complete liberalization of household energy pricing. In addition, due to in-

creased levels of consumer uncertainty regarding imminent price fluctuations,

it may also require user manual response or the continuous monitoring of smart

meters, leading to difficulties in application. Moreover, recent work shows that

RTP mechanisms do not necessarily lead to peak-to-average ratio reduction,

because large portions of load may be shifted from a typical peak hour to a

typical non-peak hour [126]. By contrast, a scheme proposed in this disserta-

tion is a TOU one, and explicitly takes into account the Grid’s perspective on

which time intervals are preferable for shifting consumption to, and imposes

the necessary constraints to avoid—to the extent possible—the event of new

peaks arising.
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Chapter 3

Collective Electricity Consumption

Shifting by Consumer Cooperatives

In this chapter, we take the provision of electricity load management solutions one

step forward, by proposing the formation of agent cooperatives for demand shifting

services. In particular, this chapter demonstrates how to perform large-scale, col-

lective electricity consumption shifting. To the best of our knowledge, ours is the

first to date complete mathematical framework for collective electricity consumption

shifting, which comes with several desirable properties and guarantees, and which

is also evaluated extensively via simulations on a real-world consumption dataset.

A mechanism is designed to promote truthful DSM participation, which also takes

uncertainty into account, and forms effective demand shifting coalitions. The shift-

ing of these coalitions is such, that reliability of the Grid is ascertained, and agents

do not loose from participation. Simulation results on realistic data imply that the

mechanism is “win-win”, and results to flatter aggregate daily demand curves. Our

77
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scheme motivates self-interested business units, represented by autonomous agents

to join forces in a cooperative and shift power consumption from peak intervals to

others with lower demand, in order to receive lower electricity price rates for their

contribution. This is similar to economy of scale approaches, where groups of buyers

join together to finally buy goods in larger quantities at a better price each [143, 203].

Consumption re-scheduling can be performed a day-ahead, thus avoiding the dangers

and risks of last-minute action. In this way, our scheme proactively balances future

supply and demand, without any losses affected to the utility of the contributors.

Now, for the cooperative to be successful at large-scale shifting efforts, it is obvi-

ous that coordinated joint shifting efforts have to take place, carried out by demand

shifting coalitions. Inspired by work in the cooperative games and related MAS liter-

ature [39], we propose several methods for the formation of shifting coalitions. These

coalition formation methods group together agents based on criteria such as their

perceived shifting contribution potential, and their expected economic gains from

participation. We also devise internal pricing mechanisms that determine variable,

and individual-specific reduced electricity prices for our agents, via implementing ex-

pected gain transfers among the coalescing consumers. The resulting internal price

balancing incentivizes even agents with initially forbidding shifting costs to partici-

pate in the cooperative effort.1 We put forward several such internal price balancing

techniques: a heuristic mechanism and five alternative ones. All of our proposed

internal pricing methods satisfy budget-balance.

1This is similar to group purchasing in e-marketplaces, where agents collectively get better
prices for their purchases; and where, due to group-internal price fluctuations set by corresponding
mechanisms, the purchase finally becomes advantageous to all—even though some members would
not be able to obtain the items even at the better rate promised [105, 203].
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Thus, our DSM mechanism employs coalition formation and internal pricing tech-

niques in order to facilitate the shifting of sizeable electricity consumption amounts

from peak to non-peak time intervals. The effectiveness of the joint coalitional shift-

ing actions naturally depends on the accuracy of the members’ statements regarding

their shifting capabilities, and their confidence about meeting their forecasted goals.

These statements, however, might not be accurate forecasts, as consumers might not

be able to accurately predict their shifting capabilities, or are not truthful (due to

low trust towards their partners, or similar concerns). Therefore, to promote truth-

telling and efficiency in load shifting, we employ a strictly proper scoring rule, the

continuously ranked probability score (CRPS), proposed in the mechanism design lit-

erature [67]. The use of CRPS incentivizes agents to truthfully and precisely report

their predicted shifting capabilities.

An extensive experimental evaluation of the proposed mechanisms and methods

was performed on a large dataset containing real consumption patterns from the

Kissamos district at western Crete, Greece. Our experiments confirm that granting

a low enough price to the consumers incentivizes cooperative consumption shifting—

as long as this price allows the agents to (collectively) overcome their shifting costs.

Moreover, our results indicate that the coalition formation method that yields the

best results with respect to load shifting effectiveness and actual monetary gains for

the participants, is one that creates agent coalitions that maximize in expectation

both the eligible amount for shifting, and the expected gains of their members.

We also assess the behaviour of the various internal pricing methods we propose,

and conclude that our heuristic price balancing approach, in particular, is the most

appropriate for use in this domain. Further, we demonstrate that employing CRPS is
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effective: inaccurate agents suffer penalties that are higher than those of their more

accurate counterparts, and individual agents and coalitions alike are incentivized to

be truthful and accurate regarding their stated shifting capacities.

Summing up, our work here provides several contributions, also depicted schemat-

ically in Figure 3-1:

• This is the first time that a complete framework for effective large-scale demand

shifting is provided in the literature.

• We propose a variety of novel coalition formation methods that can be used by

consumers wishing to join forces for cooperative demand shifting, along with

several novel internal pricing techniques, the application of which incentivizes

even agents with low shifting capacities to offer their services in the scheme.

• Our mechanisms come with individual rationality, truthfulness, and (weak)

budget balancedness guarantees. As such, the design of our mechanism pro-

motes broad participation opportunities, guaranteeing that consumers of any

category or type, have strong economic incentives for participation in the

scheme, as verified theoretically and also proven by our simulations.

• DSM participation is planned in a proactive manner. The proposed scheme

aims to shift power consumption to non-peak intervals and flatten the con-

sumption curve on a day-ahead basis. This allows more careful planing and

removes the difficulties of last-minute call for action, which is a serious issue

in real world DSM applications.

• Finally, our proposed scheme is easy-to-use and directly applicable, as it re-
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Figure 3-1: Overview of the scientific fields, and our contributions in Chapter 3.

quires no legislature changes whatsoever—it only requires the willingness of

national authorities (or perhaps even utility companies that adopt DSM as

part of their business) to provide better prices for joint, large-scale demand

shifting.

The remainder of this chapter is structured as follows. Section 3.1 reviews related

work. In Section 3.2 we give a detailed description of our problem and setting. Sec-

tion 3.3 then discusses the details of methods for forming effective shifting coalitions.

Section 3.4 describes our internal price balancing methods, and Section 3.5 discusses

the scheme’s properties and complexity. Section 3.6 describes our experiments and

corresponding results; and, finally, Section 3.7 concludes this chapter.

Parts of the research described in this chapter appeared originally in [7] and

in [10].
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3.1 Related Work

Here we review related work and outline its connections to our approach in this

chapter of the dissertation. To begin, the beneficial nature of cooperative producer

VPPs is demonstrated in [40], where the benefits arising from distributed energy

resources coalescing to profitably sell energy to the Smart Grid. Our approach also

advocates the creation of cooperative VPPs, but on the consumer side—and details

a complete framework for the cooperative shifting of consumption loads, to achieve

the proactive and effective large-scale electricity demand curve balancing.

Regarding existing approaches that have explicitly attempted to provide solu-

tions to the problem of aggregating distributed energy resources, Chalkiadakis and

co-authors have in several research papers in recent years proposed mechanisms for

the effective coordination of decentralized energy resources (DER), equipping these

with the tools and incentives to participate in DER cooperatives (which could also

be viewed as VPPs or aggregators). Such cooperatives could either be cooperatives

of energy producers (as in [40, 155]), energy consumers (as in [7, 96, 10]), or energy

prosumers (as in [9]). These approaches are, in broad terms, viewing the coordina-

tion/aggregation problem as a cooperative game played among the individual agents,

and mechanism design tools are often used to provide incentives to the players to re-

port their true capabilities. These are also aided by machine learning and statistical

tools to enable (a) decision-making under uncertainty [22, 21], and (b) the detection

of errors and the correction of individual consumption/production estimates to the

degree possible [10, 136].

Then, in [135] the authors suggest a MAS-based aggregator architecture to man-
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age different kind of assets playing a role in a hypothetical smart grid environment.

The aggregator, or curtailment service power, undertakes the responsibilities to man-

age DR events, identify curtailable load at customer levels, enrol new customers, and

calculate payments/penalties. Players behavioural strategies are stochastically as-

signed. Six typical consumers profiles are simulated (two residential, two industrial,

and two commercial).

The work of [156], presents a demand-response exchange platform where aggre-

gators can buy and sell flexibility. The architecture focuses exclusively on residential

consumers (PHEV, appliances, air conditioners, water heater). The objective is to

reduce the overall aggregator load under a threshold for a given duration. One day

before an event the ISO call for a bidding session at the DR exchange then the ag-

gregators inform their consumers. The architecture is simulated in Jade. There are

5,555 residential consumers simulated with a 15 minutes time stamp, and no utility

price scheme is assumed.

Large-scale and agent-based DSM has been presented in the work of [200]. Au-

thors provide an informationally decentralized framework for managing micro-storage

facilities. They perform a game-theoretic analysis and discover optimal charging

strategies, as well as optimal levels of micro-storage infrastructure adoption for par-

ticipants. On the other hand, [97] focuses on predicting the demand-response po-

tential of prosumers. A centralized optimization algorithm is used as a planning

mechanism. An incentives-based contribution system is theorized, for which at a

certain incentive level a certain shredding potential is expected. There is a one-day

simulation provided in the paper, using a 15 min time frame, and considering 100

arbitrarily chosen residential load profiles. Different combination of price level and
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load reduction are supposed.

Our work provides both centralized and decentralized solutions for agent-based

large-scale DSM. In particular, we focus on a specific load type for DSM, that is

the flexible, or shiftable load type. This type of load may refer to the operation

of appliances directly connected to human daily activities, for example, heating of

water, cooking, clothes washing, charging of electronics devices, etc., involving this

way user shifting preferences that vary according to each case, and, importantly, high

levels of uncertainty regarding the future planning and DSM performance. Another

characteristic that is present is that, although such loads can be curtailed during a

time interval, it is imperative to be consumed at later, or earlier time intervals, i.e.,

it cannot be reduced from the aggregate daily load. Additionally, the aggregation

of the expected consumption profiles of cooperative or community members, allows

for a more precise planning regarding the ordered DSM from the Grid side, since we

apply specific constraints regarding the aggregate hourly load. This fact helps with

the elimination of potential herding effects, which can emerge as a result of dynamic

pricing of electricity [146].

Kota et al. [96] were actually the first to propose a demand side management

scheme involving electricity consumer cooperatives. Their scheme comes complete

with certain incentive compatibility guarantees, but differs to ours in many important

ways. In their scheme, consumers represented by agents form cooperatives with the

purpose to participate in the (wholesale) electricity markets as if they were producers,

essentially selling energy nega-watts in the form of reduction services. However, their

approach would, in most countries, require legislature changes in order to be applied

in real life. Moreover, agents in their scheme have to essentially sign strict contracts
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with the Grid to participate in the market, and cooperative members risk the danger

of being significantly “punished” for not meeting their obligations through what

might appear to a small-scale, household consumer as a complicated protocol. Thus,

real consumers might prove reluctant to join cooperatives and participate in their

scheme. By comparison, in our scheme, agents simply run the danger of being

granted less profit for their actions than originally promised. Importantly, they are

also capable of minimizing this risk, due to the fact that they are guided a priori

(and have agreed) to the time slots where they can actually shift consumption to.

Indeed, no guidelines whatsoever as to where to shift consumption to are provided

in [96], and deals agreed there involve reduction promises only. Our approach allows

for a more relaxed agent-Grid interaction, for explicit power consumption shifting to

targeted time intervals.

Other approaches, like those in [80] and [127], aim to to optimize consumption

schedules via searching for Nash equilibria in specific game settings. We chose not

to follow this line of research, because it requires that every “player” retains a spe-

cific and fixed strategy. This cannot be realistically assumed to hold—let alone be

guaranteed—in any large, open multiagent environment. In the work of [163], au-

thors propose a Vikrey-Clarkes-Groves (VCG) mechanism for DSM. The use of their

mechanism is shown via simulations to benefit both the provider side, as well as the

demand side. The main difference with our approach is that this is centralized since

rescheduling of loads is calculated by the energy provider, and, furthermore, it calls

for last minute action, which can induce decreased participation.

Several simple reduction schemes, that promise reduced flat electricity rates for

lower consumption levels over prolonged periods of time, are already in place in the
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real world [23]. Unfortunately, most of those schemes can be easily manipulated

in “unethical” ways by individuals. For instance, they have no means to exclude

consumers that simply happened to be able to not demand electricity over some

period; that is, an individual could go away on holiday for a month, and collect

a cash reward for doing so. Our scheme does not suffer such problems, as it (a)

rewards consumption reduction—and, importantly, promotes consumption shifting—

on essentially an hour-to-hour basis (planned a day ahead), and (b) rewards these

“short-term” services based on how successfully they were delivered.

Examining the work of [119], it addresses the issue of realistic mechanism design

for sharing the cost of electricity between strategic, rational, and selfish household

agents with private information, in day-ahead planning. Actually, an aggregator

undertakes to buy electricity from a wholesale market. Next, agents provide the

aggregator with their consumption needs (appliance types, desired hours of initiation,

and expected consumption). Then, the aggregator solves the aggregate optimization

problem wrt. monetary cost of energy for each interval, and communicates the

solutions (i.e. consumption profiles for each home and appliance) back to the agents.

On the second stage of the mechanism, agents try to meet the promised behavior,

and are finally charged based on their actual actions, after the application of the

spherical scoring rule, which is strictly proper. Authors provide mathematical proofs

of asymptotic incentive compatibility, and ex-ante weak budget balancedness. This

model is applied only in residential cases. In [82] coalition formation is utilized to

combine intermittent renewable generators with energy stores, so that the coalitions

always provide what promised, regardless of the uncertainty due to, e.g., weather

conditions.
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In [199], the authors present a tariff model where the price for electricity depends

on agent predictions of demand. This approach forms a concave game where partic-

ipants are called to report their future baseline consumption. The final price that

agents pay for consumption is either better for the accurate ones, or for those that

joined the game earlier in time. The Shapley value solution concept, used widely in

cooperative game theory for computing fair payments among coalition members [39],

is utilized to distinguish rewards among good and poor predictors; and it is shown

that no agent has an incentive to consume electricity in excess of its actual require-

ments, regardless of the baseline it reported.

The work of Gottwalt et al. [68], assumes variable electricity prices and presents

an environment that simulates the behaviour of house tenants participating in de-

mand side management efforts. However, it makes no references to the potential

discrepancies between expected and final actions. By contrast, our model captures

such uncertainties, and uses specific techniques to promote efficiency, as we will

explain in Section 3.3.

Finally, various scoring rules have been widely used to incentivize agents to act by

the rules and not deviate intentionally. The work of [35] proposes the use of scoring

rules that compensate forecasting experts for the utility loss they suffer by stating

truthful forecasts. Other recent works in the Smart Grid domain, use the spherical

scoring rule to incentivize participants to accurately predict aggregate electricity

demand or demand response actions [119, 159]. We chose to use the CRPS instead

of the spherical scoring rule, because the CRPS is indifferent between the sign of

the error, while the spherical is not [114]: our goal here was to incentivize precise

forecasts, and deviations to either side—i.e., either lower, or higher than stated—
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should be penalized equally.

3.2 A Generic Electricity Consumption Shifting

Model

In this section we describe our electricity consumption shifting model. We begin

by describing the problem setting and the required notation. After defining the

complete model, we proceed to discuss the necessary constraints that must hold in

order to guarantee the feasibility of collective demand shifting efforts. Next, we

analyze the incentives of participation for each agent and identify the relationships

between shifting costs and prices offered for consumption. Based on these, we propose

a pricing scheme that grants lower prices for consuming the (possibly collectively)

shifted demand during non-peak intervals; and equip our mechanism with a strictly

proper scoring rule to promote accuracy and effectiveness in the coordinated efforts.

To begin, power supply must continuously meet demand that varies between time

intervals. To meet this need and in order to provide incentives for consumption at

times where production and power supply are cheap, the electricity pricing scheme

used in many countries consists of two different pricing rates, one for day-time and

one for night-time consumption. In our model, we also assume that there exist

exactly two different price levels ph > pl. These, however characterize each specific

time interval t, based on a demand threshold τ t under which electricity generation

costs are lower, e.g. when renewable energy levels are higher:
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Table 3.1: Notation.

Symbol Meaning
i Agent ID
t Time interval
th Peak time intervals
tl Non-peak time intervals
pt Price of electricity during t
ph Peak time price
pl Non-peak time price
pg Better price granted for consumption shifting efforts
τ t Demand threshold that characterizes peak and non-peak intervals
sl Safety limit ≤ τ
Dt Electricity demand during t
qthτ Amount of load whose removal can allow for a better price

Qth
max Maximum amount of load eligible for a better price when shifted from th

qthmin Minimum amount of load eligible for a better price when shifted from th
rthi Load reduced by i at th
qtli Load shifted by i to tl
qtlsl Load quantity available under sl during a tl
r̂thi Stated agent shifting capacity (amount of load pledged to be removed from th)
r̃thi Cooperative estimate over the agent’s reduction capacity

cth→tl
i Agent cost for shifting one kWh from th to tl
σ̂i Stated agent uncertainty regarding stated r̂thi
p̂i Agent i’s reservation price for shifting to specific tl
ξi Agent i’s contribution potential
peff
i Agent i’s “effective price”—i.e., price eventually paid by i at tl
r̂thC Stated cooperative shifting capacity
σ̂C Stated cooperative uncertainty regarding stated r̂thC
GC Cooperative expected gain
pC Price awarded for cooperative action
Bi Electricity bill for i
bi Cooperative contributor’s bill

Note: the key parameters of our scheme are only the prices pl, ph, pg(·), and Qth
max, and qthmin,

which are essentially determined by the Grid.
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pt =

 ph, if Dt ≥ τ t

pl, if Dt < τ t
(3.1)

where Dt is the energy demand during t. The intervals during which pt = ph are

considered to be peak-intervals, at which consumption needs to be reduced. We note

peak intervals as th ∈ TH and non-peak ones as tl ∈ TL.

Now, given the daily consumption pattern known to the Grid, it would ideally

like consumption to drop under a safety limit that is placed below τ . Dropping

below the safety limit would ensure that some low cost generated load is available

in case of high uncertainty or an emergency, thus minimizing the risk that high-cost

generators would have to be turned on. That is, the Grid would ideally want to

reduce consumption by Qth
max ≥ qthτ , where:

1. Qth
max is the load normally consumed over the safety limit at th (that is the

maximum load eligible for shifting), and

2. qthτ is the minimum amount of load whose potential removal can, under the

Grid’s estimations, allow for a better electricity price2 to be offered to con-

tributing reducers.

Intuitively, qthτ is a sizable load quantity that makes it cost-effective for the Grid to

grant a very low electricity rate, in anticipation of reaching a demand level that is

close to the safety limit. We denote the load reduced by some agent i at a th as rthi ,

and that shifted to each tl ∈ TL as qtli .
2The specific nature of the authority maintaining or setting the prices is not relevant to our

mechanism.
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3.2.1 Scheme overview

We now provide an overview of the proposed shifting scheme. First, the Grid gives

information for the time intervals that consumption needs to be reduced at, and those

that it is best to shift consumption to. The consumption of the shifted load during

these preferred non-peak intervals is granted a better price. Then, the consumer

side weighs its costs and potential profits, and chooses to participate in a shifting

operation or not. The exact procedure is:

1. The Grid announces peak and non-peak time intervals3 with high and low

consumption prices and asks agents to announce their willingness to shift some

of their production from peak to non-peak intervals, promising them a better

consumption price for doing so.

2. The agents put forward bids to shift specific amounts from peak to non-peak

intervals, along with their costs for doing so, and their uncertainty (in the form

of a probability distribution) regarding their ability to honor their bids. If the

agents represent a cooperative, deliberations internal to the cooperative occur,

in order to determine its bids, as we detail later.4

3. A clearing process takes place, determining the accepted agent bids.
3We must note that time intervals can be of any size. In this work, we consider them to be

24 hour intervals per day, that is a pretty common division in the energy domain. However, any
frequency could be accepted, as the performance of the algorithm is affected by the number of peak
time intervals regardless of the resolution.

4Note that, instead of communicating individual agent shifting costs, it would be possible for the
cooperative to announce a marginal shifting cost that would allow profitable participation; then the
agents would decide whether they contribute or not (see, e.g., Chapter 4). However, this removes
the ability to perform internal price balancing, i.e. most profited agents granting a small part of
their gain to necessary, but potentially non-profited agents, so that to make shifting profitable for
everyone, as we discuss later in Section 3.4.
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4. During the next day,5 the agreed consumption shifting activities take place.

The clearing process, apart from determining the expected gains from participation,

also guarantees the feasibility of the efforts, by applying specific constraints, which

we describe in the following subsection. In reality, of course, such efforts are expected

to be best conducted by consumers joining forces in cooperatives, as this is the only

way to actually deliver substantial—and thus effective—power consumption shifting.

We explain the formation of the cooperatives in Sec. 3.3 below.

3.2.2 Constraints

We came up with specific constraints that must hold in order to safely shift demand.

These constraints are checked during the demand shifting operations and actually

limit the eligible load for reduction by our mechanism. Such limits are important, in

order to tackle herding effects. Note that the constraints do not attempt to directly

control consumers’ actions, just characterize which amounts of load are considered

eligible for shifting. If the consumer deviates and constraints no longer hold, then

the standard fares are applied.

To begin, ∑
i

rthi ≥ qthτ (3.2)

that is, the amount of load reduced must be larger than the minimum needed at th.

In order for the Grid to achieve profits, the reduction must be above certain levels,

guaranteeing that the peak will be trimmed.

5Our mechanism can be employed for any future date of our choice.
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Second, ∑
tl

qtli ≤
∑
th

rthi , ∀i (3.3)

meaning that every reducer shifts to a subset of non-peak intervals an aggregate load

amount of at most the load reduced over the th intervals he participates in. Note

that the consumer might consume during a tl more than reduced during th, as we do

not explicitly restrict power flow. In such situations, the better price of Subsec. 3.2.4

is charged only for the eligible amount, and the excess is charged according to the

original prices that would be charged during tl.

Moreover, ∑
i

∑
tl

qtli ≤ Qth
max,∀th ∈ TH (3.4)

has to hold, meaning that the sum of all reducing agents shifted load to all non-peak

intervals must be at most equal to Qth
max, assuming that the Grid has no interest in

further reducing consumption, once it has dropped under τ th .

Finally, ∑
i

qtli ≤ qtlsl,∀tl ∈ TL (3.5)

Namely, the total shifted load at each tl must not exceed the qtlsl quantity which

is actually available under the safety limit, in order to avoid the creation of a new

“peak” at tl. The objective is to keep demand close to the safety limit in as many

intervals as possible.

As an example, consider the situation in Fig. 3-2, where a peak induced by some

load needs to be trimmed (red shaded). Consumers shift that load as an aggregate

consumption to earlier or later intervals (green shaded), where demand is below the
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safety limit. Note that to avoid the creation of a new peak during those intervals,

the addition of shifted load must not make demand exceed the safety limit. The

threshold placement denotes the production levels for cheaper production, thus a

lower price is charged for consumption.

Figure 3-2: Scheme objective representation. Portions of peak-load at th intervals,
are shifted to lower demand intervals tl.

3.2.3 Agent incentives

The participation of each agent in the scheme obviously depends on his individual

costs and potential gains. Suppose that an agent i ponders the possibility of altering

his baseload consumption pattern by shifting some electricity consumption ri from

an interval th to tl. This shifting effort is associated with a cost cth→tl
i per kWh for
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the agent.6 The gain that an agent has for shifting ri to tl given tl’s lower price pl,

is equal to

gain(i|pl) = ri(ph − pl − cth→tl
i ) (3.6)

since the agent would be able to consume ri at tl for a lower rate. However, under

normal circumstances this gain is negative for the agent, that is,

pl + cth→tl > ph (3.7)

because if not, then the agent would have already been able to make that shift (and

its baseload pattern would have been different than its current one).

Now, if the Grid is able to grant an even lower rate pg for consumption of ri ≥ qthmin

at tl s.t.

pg + cth→tl ≤ ph (3.8)

then the agent will be incentivized to perform the shift, as his perceived gain(i|pg)

would now be non-negative.

Lemma 1 (Better Price). The better price must lead to non-negative gains

Proof Assume that pg rate is better than ph by at least cth→tl
i . Then:

pg ≤ ph − cth→tl
i ⇔ (3.9)

(ph − pg − cth→tl
i ) ≥ 0 (3.10)

6Note that this cost can be elicited by using existing CHI methods, such as [190].
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Since ri denotes the amount of kWh shifted, its value is always positive and multi-

plication does not change the sign:

ri(ph − pg − cth→tl
i ) ≥ 0 (3.11)

As defined by Eq. (3.6), this is the gain of an agent for shifting from a peak interval

to another non-peak one where a price rate pg is given, so the following finally holds:

gain(i|pg) ≥ 0 (3.12)

Thus, the gain for every agent is non-negative, and individual rationality is guaran-

teed. □

3.2.4 Group price

Our scheme allows the shifting of sizable load consumption from peak to non-peak

intervals. The eligible load for coordinated shifting is granted an even lower, “group”

price pg < pl, which is a function of the actual load reduced at th, rthi , in a way that

for larger load portions, the price becomes better. We term this price as pg because

such reduction will likely be possible only by groups7 of agents. Thus, the group

price is given as:

pg(r
th
i ) < pl (3.13)

and it is awarded if the actual quantity of the load shifted from th exceeds some

minimum value qthmin, set by the Grid given its knowledge of qthτ (e.g., it could be
7In our case this reduces to a single and large group, i.e. the cooperative
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qthmin = qthτ ). The function can actually be linear or non-linear, as long as it is

decreasing and complies with the incentive analysis of Subsection 3.2.3.

To elaborate further, the Grid is not willing to offer a lower price to every con-

sumer, as then it would only need to lower the pl rates. Instead, pg is awarded only to

adequately large participant numbers, those whose coordinated consumption shifting

finally reduces the Grid’s generation costs. This is analogous to what happens in

economy of scale and group buying paradigms [143, 203] which takes place for several

years in actual real world trades.

3.2.5 Continuously ranked probability score

Now, to promote efficiency in load shifting and (in the face of the global constraints

described in our model) avoid Grid interaction with unreliable participants, the

agents need to be motivated to precisely report their true reduction capabilities.

To achieve this, we employ a strictly proper scoring rule, the continuous ranked prob-

ability score (CRPS) [67], which has also been recently used in [155] to incentivize

renewable energy-dependent electricity producers to accurately state their estimated

output when participating in a cooperative. Recall that a scoring rule S(P̂ , x) is a

real valued function that assesses the accuracy of probabilistic forecasts, where P̂ is

the reported prediction in the form of a probability distribution over the occurrence

of a future event, and x is the actual occurrence itself. As such, a mechanism can

exploit a rule’s strict propriety property, to ensure that scores that are lower than the

best result to lower returns (e.g., via the use of penalties) to the participants—and,

by so doing, ensure the truthfulness and incentive compatibility [133] of the agent

reports. The use of CRPS, in particular, allows us to directly evaluate probabilistic
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forecasts, and the score is given by:

CRPS(N (µ, σ2), x) = σ[
1√
π
− 2ϕ

(
x− µ

σ

)
− x− µ

σ

(
2Φ

(
x− µ

σ

)
− 1

)
] (3.14)

In our setting, N (µ, σ2) is the uncertainty stated over the expected absolute relative

errors8 regarding the reduction capacity, as reported by an agent; while x is the

actually observed error, ϕ the PDF, and Φ the CDF of a standard Gaussian variable.

A CRPS value of zero signifies a precise forecast, while a positive value shows the

distance between prediction and occurrence. For convenience, we normalize CRPS

values to [0, 1], with 0 assigned when we have exact forecast, and 1 assigned when the

forecast gets far from the occurrence. To improve readability, we also henceforth note

CRPS(N (µ, σ2), x) as CRPS without the arguments and write CRPSi to denote

the CRPS rule applied to agent i’s performance, while the stated agent uncertainty

over its error is considered to be zero mean, N (0, σ̂2), so this confidence measure

will be sometimes simply referred to as σ̂. Given this notation, an agent i whose bid

to shift some load from th to tl is accepted, is charged an electricity bill Bi
9, given

its actual contribution rthi
10, and its additional consumption qtli at the low-cost time

interval tl:

Btl
i = (1 + CRPSi)q

tl
i pg(r

th
i ) (3.15)

Note also that it can be qtli < rthi , since an agent can shift rthi to multiple tls.

8The mean µ and variance σ2 of this distribution can be estimated by each agent through private
knowledge of its consumption requirements and business needs.

9Btl
i is the bill the agent receives for the qtli quantity it shifted to tl. The agent might have been

billed a separate amount for any quantity already being consumed at tl before shifting.
10Note that rthi is the actual amount reduced at th, which also determines the electricity price pg

for i at tl; while qtli is the quantity shifted from th to tl and consumed there.
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Lemma 2. The payment rule Btl
i , as defined in (3.15), is strictly proper.

Proof Equation (3.15) shows that Btl
i is an affine transformation of CRPSi, which

is a strictly proper scoring rule. According to [123] any affine transformation of a

strictly proper scoring rule is also strictly proper. Thus, Btl
i is strictly proper. □

To summarize, CRPS provides a scoring function for evaluating the accuracy of a

forecast, given its actual occurrence. When agent-stated forecasts are off the occur-

rences, contributors are “fined” proportionally to their CRPS score. However, while

this mechanism design technique provides the agents with strong incentives to stay

truthful (and, indeed, provides theoretical guarantees for statement truthfulness),

it does not guarantee agent statements accuracy, as we have already explained in

Chapter 1.

3.3 Forming Effective Demand Shifting Coalitions

In the general case, it is very rare for reducers to have shifting capacity greater than

qthmin, even for large industrial consumers. Therefore, the agents need to organize

into cooperatives in order to coordinate their actions and achieve the better rates

promised by the Grid for effective consumption shifting. As we have already men-

tioned, shifting is meaningful only for substantial quantities, such that the Grid can

guarantee better prices, which make participation worthwhile. Consequently, coop-

erative action is needed. We envisage a cooperative as being composed by hundreds

or even thousands of consumers. In what follows, we explain how bids are formed for

the cooperative case, and what is actually charged at the end of the shifting efforts
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to the participants. In this section we detail different methods for the formation

of demand shifting coalitions i.e., that act to carry out specific “shifting contracts”,

inside the cooperative, and discuss their final billing, which also incorporates a CRPS

score.

Naturally, at every given time interval th earmarked for potential consumption

reduction, only a subset Cth of cooperative members might be available for shifting

services. We assume that every member agent announces its availability for every

such th to a cooperative manager agent, along with its reduction (shifting) capacity

r̂thi ; its confidence σ̂2
i on its ability to reduce that amount at th (specifically, the

agent’s expected relative error with respect to r̂thi reduction is normally distributed

according to N (0, σ̂2
i )); and the set of low cost intervals tl that he pledges to move

consumption to.

Even so, more often than not, it is impossible for all agents in Cth to participate

in the cooperative effort. This is because their shifting costs might be so high that

they would not allow their inclusion in any profitable cooperative bid. Therefore,

only a subset C of Cth will be selected for participation in the bid. Such a shifting bid

is composed by the following parts: th, the high cost interval to reduce consumption

from; r̂C , the amount C pledges to reduce at th; a pair (Tl, Ql) that determines the set

of low cost intervals tl to shift consumption to, along with the set of corresponding

quantities that will be moved to each tl; the per kWh shifting costs cth→tl
i associated

with moving consumption from th to tl; and a probabilistic estimate of its σ̂2
C , in

the form of a normal distribution describing the joint relative error on predicted rC ,

N (0, σ̂2
C).

Thus, at a given time interval th the cooperative has to select C agents to co-
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operate and shift demand to some tl. Without loss of generality and for ease of

presentation, let us assume that tl is just one specific time interval (though in reality

it is just one interval among many in Tl). Assume also that |C| = n, and thus the

total stated reduction capability of C at th is:

r̂thC =
n∑

i=1

r̂thi (3.16)

Given this, the collective expected gain by this shifting operation, assuming the

stated quantity r̂thC and corresponding stated confidence σ̂C are accurate forecasts,

is:11

GC = r̂thC (ph − pg(r̂
th
C )− cth→tl) (3.17)

where r̂thC is the amount of load pledged to be shifted, with qthmin ≤ r̂thC ≤ Qth
max and

pg(r̂
th
C ) is the price corresponding to the shifting forecast. Cost cth→tl denotes the

(expected) weighted mean shifting cost:

cth→tl =

∑n
i=1 r̂

th
i cth→tl

i∑n
i=1 r̂

th
i

(3.18)

where r̂tli is the load pledged to be shifted by each agent.

Obviously, the cooperative has to select a C so that GC is non-negative in Eq. 3.17

above. Notice that in order for inequality cth→tl < ph − pg(r̂
th
C ) to hold, it is not

required that each cth→tl
i is less than the price difference too, because the quantity

of shifted load also matters. This allows for the possibility that reducers with high

11This is assuming that all r̂thC pledged to be shifted is actually later on consumed at tl. If only
qtlC < r̂thC is consumed at tl, then the gain is GC = r̂thC ph − pg(r̂

th
C )qtlC − cth→tlqtlC .
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shifting costs but low shifting capacity can also contribute in the cooperative bid.

Moreover, the cooperative needs to be able to estimate its confidence σ̂C over the

expected performance of any subset of an acting set of agents C. This confidence is

also calculated using the weighted mean formula of Eq. 3.18, where, however, instead

of individual costs, individual confidence estimates are now used:

σ̂C =

∑n
i=1 r̂

th
i σ̂i∑n

i=1 r̂
th
i

(3.19)

Now, there are several ways to determine the subset C of agents to be selected for

shifting. Also, due to the uncertain nature, the estimation of the reduction quantity

that C will contribute at th is also another issue which can be addressed with different

approaches. We proceed to describe the process by which the cooperative determines

the subset C of Cth to participate in its bid at th.

3.3.1 Choosing the acting coalitions

In more detail, suppose a set of n agents that constitute the cooperative. As already

explained, in order for the cooperative to place a bid, each contributing agent i

must state its reduction capacity, r̂thi , at th high-consumption (peak) intervals, and

corresponding shifting costs cth→tl
i for moving consumption to non-peak, tl, intervals.

Agents are also required to state their uncertainty over their expected relative error

regarding their reduction capacity, in a form of a normal distribution N (µi, σ̂
2
i ).12

Next, the cooperative assigns an estimate of each agent’s expected performance r̃thi ,

12 As stated earlier, we set µi = 0. This simply assumes that random relative errors, over a long
enough time range, will be normally distributed around a mean of 0.
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which is a function F of its stated capacity r̂thi and its error distribution N (µi, σ̂
2
i ).

Function F can correspond to various performance prediction methods, as we will

be explaining in Chapter 6.

r̃thi = F(r̂thi ,N (µi, σ̂
2
i )) (3.20)

One potential estimate is the conservative one, i.e.:

r̃thi = r̂thi − σ̂ir̂
th
i (3.21)

With r̃thi at hand, the absolute relative error between the actual reduction and

the expected one is given by:

xth
i =

|rthi − r̃thi |
r̃thi

(3.22)

This value is used for the computation of agent i’s CRPS score (cf. Eq. (4.21)).

Then, each agent’s reservation price p̂i is calculated as the difference between the

price paid for consuming at the “high-cost” th intervals, and the agent i’s costs for

shifting consumption to tl intervals with lower electricity charges:

p̂i = ph − cth→tl
i (3.23)

Thus, this p̂i quantity is the highest price i is willing to pay for shifting consumption

from th to tl without suffering a monetary loss. Now, the agent’s contribution po-

tential ξi can be calculated as the product of the expected reduction and reservation
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price:

ξi = r̃thi p̂i (3.24)

The contribution potential is a measure that compactly captures the impact of the

individual agents contribution to the coalition. It is higher when more load is offered

for shifting and agent reservation prices are high, meaning they are in less need for

compensation, and, as such, their employment would cost less to the Grid side; and

it is lower for agents with low reduction capacities, and low reservation prices (i.e.,

greater compensation demands for shifting).

The agents are then ranked by some ξi-related ranking criterion of the coopera-

tive’s choosing (cf. below), and shifting coalitions are formed by the number of top

agents that meet any set of requirements determined by the cooperative (e.g., “maxi-

mize the shifting capacity”, etc.). Selected coalition agents are awarded low, variable

prices for shifting to tl, determined by the group price pg ≤ pl which is guaranteed

by the Grid, and by monetary gain transfers that make it worthwhile for everyone

selected to participate in the shift, as described in Section 3.4 below.

Thus, in order to form the acting coalitions, one must first check, for every i,

whether p̂i ≤ 0. If that holds for all i, we stop; the problem is infeasible (as all agents

need to be paid with a rate equal at least p̂i in order to participate). Furthermore, if

for all i it holds that p̂i ≤ pmin
g (where pmin

g is the best possible quantity-dependent

group price that can be granted), then the problem is again infeasible and we stop

(as all agents need to be paid with a rate at least equal to pmin
g − p̂i in order to

participate). If that is not the case, then there exist some agents in Cth for which

there is a price they can accept to pay so as to move some of their consumption to tl
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without suffering a loss. We now present four different coalition formation methods

that one can use in order to identify such agents.13

Rank by contribution potential and maximize expected capacity (Method

CF1)

The algorithm ranks all agents in Cth by their contribution potential, i.e., ξi = r̃thi p̂i,

in decreasing order. Then, starting from the agent with the highest ξi value, we

sum these values up in decreasing order, and add the respective agents in a group

C. Intuitively, the algorithm attempts to add in the coalition members with high

“potential” to contribute to reduction—that is, members with potentially high r̃i to

contribute, while being able to accept a relatively high (though reduced) energy price

p̂i. This process continues until the following conditions are met for the maximum

possible group of agents C:

∑
i∈C

ξi ≥ r̃CpC (3.25)

r̃C ≥ qthmin (3.26)

r̃C ≤ Qth
max (3.27)

where qthmin and Qth
max are the minimum and the maximum quantity admitting a

13In what follows, we relax the notation somewhat, by dropping time indices where these are
clearly implied.
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group price at th, respectively;

r̃C =
∑
i∈C

r̃i (3.28)

; and

pC = pg(r̃C) (3.29)

is the price rate offered by the Grid for reduction r̃C .

To provide further intuition, note that the expected gain of every agent in some

group C given pC is:

gain(j|pC) = r̃j(p̂j − pC) (3.30)

If we were simply given a C for which this gain was positive for every member, then

each agent would have been able to just pay pC and enjoy the corresponding gain.

However, the reducing set C has to be dynamically determined by the cooperative—

and, in order to guarantee individual rationality, so is the price paid by each one

of its members. Note also that by progressively adding agents with lower ξi values

to C, the agents j preceding them can only become better-off, in terms of expected

gain, as the group price pC expected to be attained drops.

Now, if all agents in Cth are inserted in C and r̃C is still lower than qthmin (i.e.,

there is a violation of the constraint of Eq. (3.26)), the problem is infeasible and

we stop. Likewise, if all agents are in C and
∑

i∈C ξi − r̃CpC < 0 (violation of the

constraint of Eq. (3.25)), the problem is again infeasible and we have to stop.

Assume that this has not happened, and both conditions have been met for

maximal C.14 This means that there is at least one agent j in C that has a positive

14That is, assume that C was actually constructed so that, after a subset of agents L has met
r̃L ≥ qthmin, we kept adding agents to L until by adding an agent k we constructed some C ′ so that
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gain, given pC . That is,

gain(j|pC) = r̃j(ph − ci − pC) = ξj − r̃jpC > 0 .

If not, then no agent has a positive gain, and thus
∑

iC
ξi − r̃ipC ≤ 0, leading to∑

iC
ξi ≤ r̃CpC , contradicting condition of Eq. (3.25) above. This also means that

agents in C are collectively willing to pay a total amount for moving their r̃i con-

sumptions to tl, which is greater than what their group will be asked to pay for

(assuming accurate forecasts), given the Grid’s offer pC for r̃C reduction.

Thus we have ended up with the maximal C so that Eq. (3.25) and Eq. (3.26)

hold, and which contains some agents with positive and some agents with negative

gain given pC . This means that the cooperative bid is actually formed as r̃C . We

will later (in Section 3.4) use these agents to implement a gain transfer scheme so

that all individual agents in C end up with non-negative gain themselves.

Rank by contribution potential and meet minimum expected capacity

requirements (Method CF2)

When using CF2, we form coalitions in the same manner we did when employing

CF1, with the difference that we stop adding agents in the coalition at the point

when the reduction capacity r̃C becomes equal or more than the minimum amount

of load eligible for a better price qthmin. This way, coalitions with the minimum

shifting capacity are formed. Thus, CF2 runs the risk of proving overly “optimistic”

wrt. its final shifting performance estimates. This fact was actually verified by our∑
i∈C′ ξi − r̃′Cp

′
C has turned to negative, in which case we remove k from the list C ′ so that we end

up with a C that has
∑

i∈C ξi − r̃CpC ≥ 0.
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experiments in Section 3.6.2.

Rank by expected gain and maximize expected capacity (Method CF3)

Here we rank the available agents by their expected gain (cf. Eq. (3.30)) with respect

to the pg offered at the very moment they are to be included in the coalition. Then,

the agents are added in the coalition under formation given this ranking, as long as

the “feasibility constraints” of Eqs. (3.25), (3.26), and (3.27) hold.

Note that the ranking used in this particular method, encompasses an insight

regarding the expected gain given the better price offered (Eq. (3.30)). By contrast,

CF1 and CF2 rank the agents by contribution potential. However, having a high

contribution potential does not necessarily mean that the gain of an agent is also high.

For instance, assume two agents, the first of which with r̃1 = 100, p̂1 = 0.05, and

thus ξ1 = 5; and the second one with r̃2 = 20, p̂2 = 0.06, and thus ξ2 = 1.2. Assume

pC = 0.055. Then, we get (expected) gains gain(1|pC) = −0.5 and gain(2|pC) = 0.1

respectively. In this case, CF1 would rank agent 1 before agent 2, while CF3 would

do the opposite.

This results to the potential exclusion from the acting coalition of agents that

could contribute much to the joint gain—because by the time their inclusion is exam-

ined by CF1, the feasibility constraints15 have already been violated, and formation

has stopped. For this reason, one would expect that using CF3 would give rise to

coalitions with an increased gain potential and a higher number of agents, which is

naturally linked to increased shifting ability. This was verified by our experiments

in Section 3.6.2.
15Usually Eq. (3.27), due to the addition of agents with high capacity but low gain potential.
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However, employing CF3 is computationally more expensive. This is because

whenever an agent enters the coalition, the total reduction capacity increases, and

consequently pg changes. This price change induces further changes in the expected

gain of the agents, the criterion by which agents get ranked, and thus the respective

values have to be recalculated with every new addition. The added complexity is of

order O((n− k)2), where n is the number of the possible contributors, and k is the

number of agents that form the minimum coalition.

Random selection of contributors and maximize expected capacity (Method

Random)

Here we do not rank agents by any criterion whatsoever, but those included in the

coalitions are simply chosen randomly. The random inclusion continues until the

maximum capacity is reached, just as it was the case in CF1.

At this point we must note that any simpler approaches than the ones we mention,

comes with no incentive compatibility guarantees. The method that ranks agents by

their contribution potential (CF1) and the one that randomly selects them (Random)

are our baseline approaches.

3.3.2 Cooperative bidding and billing

Above we defined coalition formation methods to determine which agents to actually

include in the acting coalitions, and we showed how to compute specific values that

characterize the coalition in terms of expected performance. Given these, the actual

bid that the cooperative submits for a peak interval th, consists of:
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1. The sets of non-peak intervals that the coalescing agents agree to shift to,

namely the tls.

2. The total expected reduction capacity r̃C .

3. The total confidence of the coalition σ̂C , as calculated using Eq. (3.19).

Next, the shifting actions take place, and the cooperative is billed according to its

shifting performance, as we now explain. Assuming that a coalition C was selected

for shifting and eventually acted, the total cost (or, the electricity bill) charged by

the Grid to the cooperative for consuming qtlC after curtailing rthC is given as:

BC = (1 + CRPSC)q
tl
Cpg(r

th
C ) (3.31)

with CRPSC being calculated using the cooperative confidence (Eq (3.19)), and the

collective absolute relative error realized after shifting. Note that strict propriety

is maintained in this rule, since the only factor depending on agent forecasts is

(1 + CRPSC).

However, even if GC (Eq. 3.17) is positive, it is not certain that all individual

agents in C have a positive gain (and thus an incentive to participate) as well.

Nevertheless, with GC ≥ 0, the possibility of allowing all agents in C to make a

non-negative gain arises, via “price balancing” and the use of internal gain transfers.

These transfers also have to be performed in such a way so that the budget-balance

of any cooperative bid is ensured—that is, the sum of the n members’ bills will have

to be equal to BC (or, if not, definitely not be less than it). We now proceed to

discuss potential ways that achieve these goals.
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3.4 Internal Pricing

As a next step, the cooperative must pre-assign different effective price rates peff
i to

each contributor, producing bills that must sum up at least to BC , i.e., the bill charged

to the shifting team C. This is done with the understanding that a member’s final

effective price will eventually be weighted according to its individual contribution,

given also that an acting coalition C of agents will receive an actual price rate that is

dependent on its CRPS score. Moreover, in order to allow even negative gain agents

to be included in the coalition, their prices must be reassigned in order to ascertain

that no contributor suffers a gain loss, and maintain individual rationality.

In short, an internal price balancing or “gain balancing” process is employed,

assigning peff
i effective prices that guarantee that each agent will be granted non-

negative gains from participation. More specifically, we propose certain (weakly)

budget-balanced internal pricing mechanisms, which meet the goals above, and also

ensure that the gains derived from cooperative shifting efforts are shared among its

members in intuitively fair ways (e.g., larger and more accurate contributors can still

expect after internal price balancing to rank higher than smaller and less accurate

ones in terms of gain). The first pricing method we propose is a heuristic gain

balancing algorithm. That is then followed by five additional pricing methods based

on different mathematical programming formulations. Note that gain balancing takes

place only if the collective (expected) gain is positive, and under no circumstances

leads to negative (expected) gains for any of the individual participants.
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3.4.1 Heuristic internal price balancing

The heuristic algorithm actually balances the gains of the participants, such that

nobody ends up with negative expected gain, and that the most favored ones grant

some of their gain to achieve this. However, the new ranking maintains the same

order, i.e. the one who used to have the most gain, ends up also with the most

after the balancing takes place. The procedure is described in detail by Algorithm 1.

To begin, the cooperative initially computes individual reservation prices and corre-

sponding gains and proceeds to rank agents in C in decreasing order with respect to

their expected gain (Lines 1-3), that is:

gain(i|peff
i = pC) = r̃i(p̂i − pC) (3.32)

If all agents already have non-negative gain, then everyone pays pC and expects to

achieve gain(i|pC) without need of balancing (Line 1). If negativities exist (Line 4),

then we must rearrange peff
i such that agents with the highest gain provide some of

their surplus to those with negative, to make their participation individually rational.

The first step is to count the total negative gain existing and assign negative gain

agents a reduced peff
i so that their gain becomes exactly zero (Lines 5-6). These

agents are added in the set of negative gain participants, denoted as G−. In Lines

7-32, an iterative process takes place, where the gain of the top agents is reduced

until it reaches the gain of those below. This is achieved by the following procedure:

having ranked the contributors based on their expected gains, we increase peff
i of

the top agent until its gain drops to the point that it is equal to the gj gain of the
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j = i+ 1 agent below (as long as gj ≥ 0). The value of peff
i is calculated by:

peff
i =

ξi − gj
r̃i

(3.33)

with gj being the target gain i.e., the gain of the agent below (Lines 20-22).

Then we do the same for the second top agent, until its gain reaches that of the

third. We continue in this manner until all requested gain is transferred (Lines 16-17,

24-25), or one’s gain reaches zero (Lines 12-14). If the latter happens, we move to

the top again and repeat (Line 8).

The peff
i prices thus determined represent internally pre-specified prices, agreed

upon by all the agents, and set ahead of the actual shifting operations. The actual

bill bi that an agent i ∈ C will be called to pay, however, is determined after the

actual shifting operations have taken place, and depends on its actual performance

wrt. the performance of other agents also, as follows:

bi =
(1 + CRPSi)p

eff
i qi

(
∑

j∈C\{i}(1 + CRPSj)p
eff
j qj) + peff

i qi
BC (3.34)

Strict propriety is ensured by this rule, as it is an affine transformation of a mem-

ber’s CRPSi score; if the sum in the denominator was over all agents including i,

i.e. if
∑

j∈C(1 + CRPSj)p
eff
j qj then Eq. (3.34) would not have been an affine trans-

formation of i’s CRPS score. By contrast, Eq. (3.34) is an affine transformation of

CRPSi. As such, its strict propriety is maintained [123]. Moreover, the sum of the

bi bills is always at least as much as the overall bill BC charged to C, making the

mechanism weakly budget balanced, and generating some small cooperative surplus
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Algorithm 1 The Heuristic Internal Price Balancing Method
Input: pC , r̃i, ci∀agenti ∈ C
Output: peff

i ∀agenti ∈ C

1: Assign peff
i = pC , ∀i ∈ C

2: Compute reservation prices p̂i and gain gi = gaini, ∀i ∈ C
3: Sort agents by gain in decreasing order
4: if Negative expected gain agents exist (i.e., the set G− is non empty) then
5: Count total negative gain L =

∑
gj , ∀j ∈ G−

6: Assign agents ∀j ∈ G−, peff
j = p̂j

7: donation := 0
8: while donation < L do
9: for all Positive gain agents do

10: if donation < L then
11: if agenti is the last positive gain agent in sorted gain list then
12: if donation+ gaini ≤ L then
13: donation = donation+ gaini

14: peff
i = p̂i

15: else
16: donation = L
17: Assign peff

i s.t. only the remaining gain needed is transferred
18: end if
19: else
20: if donation+ (gaini − gaini+1) ≤ L then
21: donation = donation+ (gaini − gaini+1)

22: Assign peff
i s.t. the amount of i’s gain is equal to that of i+ 1’s

23: else
24: donation = L
25: Assign peff

i s.t. only the remaining gain needed is transferred
26: end if
27: end if
28: else
29: Assign peff

i = pC
30: end if
31: end for
32: end while
33: end if
34: return peff

i , ∀i ∈ C

(which could be used for cooperative administration expenses, maintenance, or other

similar purposes).
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In this approach, the amount of gain that needs to be transferred in order for

required but high-shifting cost agents to contribute with no losses, is provided from

the most profitable ones. However, the heuristic internal price balancing method is

such, that after the application, the ranking with respect to gains does not change.

This means that (a) no contributor suffers losses and also (b) that those who gained

more than other agents, still gain more than those specific agents. Summarizing, the

internal price balancing informally provides incentive compatibility guarantees for

the stated shifting cost values.

3.4.2 Internal pricing as a constrained optimization problem

It is often desired to formulate problems in a form of constrained minimization or

maximization, in order to be able to apply generic solving methods. In our case, the

problem of dividing the aggregate profit of the cooperative to the individuals could

be optimized according to various criteria. The initial approach that was discussed in

the previous subsection, had as a criterion to change as few prices as possible, with-

out violating any constraints. Also, when the algorithm had to change the prices due

to the existence of negative gains of participants, it chose to alter those of the highest

gain agents first. Here, by adding specific constraints we can guarantee that the out-

comes, despite the optimization criterion, will maintain the individual rationality and

budget balancedness properties. Furthermore, each cooperative might set different

optimization criteria, according to its own interests. Then, off-the-shelf, practically

efficient methods can be applied to solve the optimization problems. Later, in Sec-

tion 3.6.6, we study the effects that each of these optimization criteria has on the

agents payoffs. In what follows, we present the general form of our optimization
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problem, and five different criteria for gain balancing.

Equation (3.35) describes the general constrained optimization problem that we

will be solving, but for each of the following cases, different objective functions

f(peff)16 are going to be used:

opt
peff

f(peff)

s. t. peff ≤ p̂

gain(p̂|peff) ≥ 0

r⊤peff = rCpC

(3.35)

The opt operator can mean either minimize, or maximize. The first constraint

guarantees that each agent will pay at most its reservation price, and the second

constraint, that its gain will be non-negative (individual rationality). The third con-

straint dictates that the sum of individual monetary charges will be equal to the total

amount that the cooperative is charged for the shifted consumption of electricity. Af-

ter using an off-the-shelf method to solve the problem described by Eq. 3.35 and thus

calculate the peff
i effective prices, the actual bi bills that agents pay are once again

determined via employing Eq. 3.34. We now present the objective functions f(peff)

that are to be optimized, and form affine problems [36] with optimal solutions.17

16For ease of notation, peff refers to the vector containing all peff
i s.

17By affine problems we refer to convex functions with affine equality constraints. This is funda-
mental in convex optimization formulations, in order to tackle infeasibility caused by the defined
constraints [36].
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1: Minimize maximum individual gain loss Namely:

minimize
peff

max{gain(p̂|peff)− gain(p̂|pC)} (3.36)

This case measures the gain differences for each agent induced by the internal pricing

change, and tries to minimize the maximum of these differences.

2: Maximize sum of individual gains Namely:

maximize
peff

∑
gain(p̂|peff) (3.37)

This case sums up individual gains of the cooperating agents, and strives to maximize

this particular sum.

3: Minimize sum of gain loss Namely:

minimize
peff

∑
{gain(p̂|peff)− gain(p̂|pC)} (3.38)

This objective sums up the total gain loss of agents induced by the price balancing,

and aims at minimizing this particular sum.

4: Minimize the maximum individual gain loss and the sum of gain loss

(sum of objectives 1 and 3) Namely:

minimize
peff

max{gain(p̂|peff)−gain(p̂|pC)}+
∑

{gain(p̂|peff)−gain(p̂|pC)} (3.39)
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This case is a combination of cases 1 and 3, that is it minimizes the sum of the

maximum gain loss of agents and also the sum of all agents’ gain loss.

5: Minimize price differences Namely:

minimize
peff

∥peff − pC∥1 (3.40)

By introducing the ℓ1-norm as an objective function, what we actually manage to do

is to induce the minimum number of gain transfers required inside the cooperative.

As such, this case is expected to produce outputs that are very similar to those

of our previously proposed heuristic gain balancing scheme—with one important

difference: criterion 5 does not guarantee that the initial ranking of participants wrt.

gains is maintained. The experimental simulations in Section 3.6.6 actually confirm

our expectations regarding this method’s behaviour.

Moreover, note that the initial gain ranking is not maintained by any of the objec-

tive functions proposed here, since this would require the enforcement of additional

constraints that would change dynamically according to the number of participants

in each shifting coalition. This fact makes the optimization problem formulation

more complex, and have negative impacts on the genericness of such approaches.

3.5 Mechanism Properties

The mechanism that we described in the previous sections, although simple, exhibits

certain desirable properties. First of all, participation in shifting coalitions is indi-

vidually rational in expectation, since non-negative gains are guaranteed for every
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coalescing agent, by the application of the constraints and the internal price balanc-

ing; the latter also allows the inclusion of even agents with high shifting costs, that

otherwise could only lose by participating.

Another property that is ascertained is weak budget balancedness. Equation 3.34

in particular, dictates that no loss can be generated by the cooperative, as partici-

pants are asked to pay a proportion of the cooperative bill, respective to each one’s

performance and contribution. Note though, that the proportions might sum up to

more than 1, so there are cases when the cooperative generates (small) profit. Also,

the cost is divided “fairly” among the individuals, judging by their load quantity,

their calculated effective price, and, of course, their deviation between promises and

final actions, as measured by the CRPS.

Moreover, the use of the CRPS scoring rule ensures that the presented mechanism

is truthful with respect to their shifting capacity-related statements. An agent has to

be as accurate as possible regarding shifting capacity and corresponding uncertainty,

as otherwise it will suffer a gain loss due to a bad CRPS score. The truthfulness

of the agent statements regarding their shifting costs is more difficult to formally

guarantee. Since the agents operate in a large, dynamic, and open environment,

one cannot determine an incentive compatible mechanism in the Bayes-Nash sense,

because analysing Bayes-Nash equilibria properties is computationally infeasible in

such settings. Indeed, it is next to impossible for a member agent to reason on the

unknown capabilities or availability of thousands of other agents, and no common

prior determining such properties can be reasonably assumed. So, given this uncer-

tainty, the best that an agent can do is to be truthful regarding its shifting costs:

If the agent states inflated shifting costs, it runs the danger of not being selected
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for C. Similarly, if the agent states shifting costs lower than its real ones, then it

risks suffering a high reduction in expected gain (since the lower these costs are, the

higher its peff
i effective price). In addition, the sheer size and dynamic nature of the

problem makes it improbable that a rational consumer would be willing to utilize, on

a daily basis, the resources necessary to estimate potentially beneficial fake shifting

costs, in order to game the scheme. The internal price balancing mechanism makes

this even more complex. In practice, the cooperative could use estimates of industry-

dependent shifting cost limits, to fend off any such attempts. Moreover, if an agent

is able to and chooses to stick to promised actions, this will allow him to achieve

high returns.

Additionally, the proposed mechanism is fair18 for both the Grid and the con-

tributors, in the following sense: first, the Grid is the one that sets the thresholds,

safety limits, and group price functions, according to the expected savings that will

come up. Next, at the consumer side, fairness is promoted in various ways:

• (a) our mechanism guarantees that there will be no loss in expectation

• (b) accurate participants achieve larger gains

• and (c) we give contribution opportunity to negative gain agents, when required

Even when internal to the coalition price balancing is applied19 the mechanism
18We use the term “fair” a bit loosely, without referring to some formal notion of fairness, such

as max-min fairness or the Shapley value [39]. Note however that CRPS payments punish non-
accurate agents and “boost” the gains of accurate ones. In this sense, CRPS itself could be seen as
constituting a formal notion of fairness: agents realize that their final billing will take place using
CRPS, and that their bill is proportional to what they deliver and to what others have promised
to deliver and finally deliver.

19Recall that internal price balancing only takes place when negative gain agents exist, but this
is not always the case. The frequency depends on the specific settings.
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is still fair in the case of the heuristic approach.

Last but not least, the pricing schemes and coalition formation methods employed

by the mechanism, can be readily used by cooperatives offering electricity demand

management services, as they are simple enough and require no legislature changes

whatsoever—in sharp contrast to real-time pricing approaches [23].

Computational complexity Let |A| be the number of the agents in the cooper-

ative; for each peak interval that is announced, only the |Cth| ≤ |A| available agents

communicate their information. Thus, the determination of potential contributors

subject to the grids constraints, is of order O(|Cth |). Next, we rank the |Cth | agents by

their contribution potential r̃ip̂i, paying the cost of an off-the-shelf algorithm such as

O(|Cth| log(|Cth|)). The formation of the minimum coalition of |c| ≤ |Cth | agents, as

required by the coalition formation methods CF1 and CF2 (Section 3.3.1), involves

two summations and two conditional checks, i.e., it has O(|c|) complexity. Now,

method CF1 needs additional O(|C| − |c|) calculations to expand to the maximal

coalition, where |C|, |c| ≤ |C| ≤ |Cth|, is the final number of agents in the coalition.

In case negative gain agents exist and price balancing needs to be initiated, an ad-

ditional ranking according to expected gain is needed, adding O(|C| log(|C|)) to the

complexity when the heuristic internal price balancing is used. Final calculations

regarding peff
i s and bis add a linear increase of O(|C|). Thus, the complexity for

the planning of shifting operations during a single peak interval can be kept just

linearithmic to |Cth |—that is, it increases less than quadratically with the number

of available individuals during a peak interval th . However, if the cooperative em-

ploys the constrained optimization problem formulations of Section 4.2 for internal
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price balancing, then the complexity rises to O(|C3|), i.e. the typical complexity of

quadratic programming algorithms, which can be used to solve affine problems such

as ours [36].

3.6 Experimental Evaluation

In this section we conduct extensive experimental simulations of our mechanism on

real consumption patterns. We first present our real world dataset, and explain how

we augmented it to also contain information which is still unavailable and cannot be

obtained, but is nevertheless required in order to illustrate the mechanism’s perfor-

mance. We then proceed to evaluate the coalition formation methods of Section 3.3.1.

Following that, we examine the effects of using variable group prices and employing

the CRPS scoring rule or not; and, finally, study the differences among our various

internal price balancing techniques.

3.6.1 The simulations dataset

To experimentally evaluate our methods, we created a simulations dataset based

on real electricity consumption data,20 from Kissamos, a municipality at the greek

island of Crete. The dataset contains hourly consumption values for the year 2012,

as well as contract types and geographical locations, and a summary of its contents

appears in Table 3.2. This dataset was selected because it included various consumer

types, containing measurements from residential customers, to public and agricul-

20The dataset was provided by the Hellenic-Public Power Company (PPC, www.dei.gr).

www.dei.gr
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tural consumer types.21 Analytical descriptions of the datasets that we used in our

simulations can be found in Appendix A. We note that participants in our setting

belong to two classes of realistic, highly plausible agent behavior. First, 50% of the

participants are mainly confident, and also have a high probability to deliver what

they promised (they belong to the BB class of agents presented in Appendix A);

while 50% of the agents are uncertain predictors, which might or might not follow

stated forecasts. The exact definition of these two classes of agents appears in Ap-

pendix A. Note that once the necessary (due to the lack of real data) agent shifting

costs are calculated, the only additional parameters that one might need to adjust

for experimentation are pg(·), qmin, and Qmax.

Table 3.2: Kissamos 2012: Size and corresponding individual average consumption
and bills for each consumption contract type.

Type Count
Avg Daily Individ. Avg Daily/ Type

% Of total
Avg. Bill Cost (e)

Cons. (kWh) (kWh) over 100 days
Residential 5889 7.294 42956.721 35.410 61.66
Commercial 1381 25.080 34636.032 28.550 213.20
Agricultural 271 111.473 30209.372 24.901 933.17
Municipal 295 13.776 4063.979 3.349 113.30
Public 68 76.361 5192.588 4.280 645.36
Industrial 38 107.257 4075.785 3.359 903.74
Public Law 12 14.921 179.053 0.147 120.13
Total 7954 - 121313.532 100 -

21For further validation we also run our simulations using an additional dataset that contained
industrial customers only from India.
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Key parameters of the shifting scheme

We assume a threshold τ for our model, to the 93% of the maximum demand value

among all time intervals, and is fixed for all of them—though, it could also be

variable across time intervals. The safety limit is 97.5% of τ . We report that in

our simulations there are on average 6.2 peak intervals and 14.9 non-peak intervals

per day. The pl, ph price levels correspond to the day/night retail prices provided

by PPC, the greek public power company, i.e. pl = 0.0785 e/kWh and ph = 0.094

e/kWh. The pg group price rate ranges from pmax
g = 0.05625 to pmin

g = 0.0214

e/kWh, depending on the reduction size q:

pg(q) =
0.0214− 0.05625

(Qth
max)κ − (qthmin)

κ
(qκ − (qthmin)

κ) + 0.05625 (3.41)

with q ranging from Qth
max, that is the amount of load above τ , to some minimum qthmin,

which we set to 0.3Qth
max. To also account for non-linear group pricing functions, the

reduction size q, as well as Qth
max and qthmin, are raised to a power of κ. By assigning

different values to κ, we can achieve various slopes of the pricing function. For the

rest of the experiments, the value assigned to κ is 1, unless otherwise stated.

3.6.2 Evaluation of the proposed coalition formation meth-

ods

In our first set of experiments we compare the performance of the different coalition

formation methods described in Section 3.3.2.22 Recall that CF1 maximizes contri-
22The internal price balancing method used in this and all subsequent experimental subsections

up to 3.6.6, is our heuristic price balancing technique.
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Table 3.3: Average results over a 100 days simulation period.

CF1 CF2 CF3 Random

Exp. Coop. Gain (e/day) µ 52.15 4.31 62.66 7.22
σ 22.18 2.09 16.75 7.94

Actual Coop. Gain (e/day) µ 33.16 -6.35 38.35 4.59
σ 14.02 3.33 10.41 5.22

Total Gain (100 days) Σ 3316.03 -635.63 3835.61 459.59
Coop. “Surplus” (e/day) µ 0.18 1.13 0.43 0.09

Expected Reduction (kWh/day) µ 1153.975 355.924 1341.691 216.499
‘ σ 496.659 155.061 372.472 235.063

Final Reduction (kWh/day) µ 966.400 301.963 1125.482 190.791
σ 410.780 132.343 308.096 206.762

Peak (Demand ≥ τ) Trimmed (%) µ 71.31 22.42 83.33 15.36
σ 23.83 8.23 3.35 17.17

Avg. Reducing Coalition Size µ 191.11 17.98 239.22 337.14
Gain per participant (e/day) µ 0.17 -0.52 0.16 0.01

bution potential and expected capacities, CF2 maximizes contribution potential but

meets minimum capacity requirements, CF3 maximizes expected gain and capacities,

and Random selects the contributors at random. Since ours is the first approach to

large scale coordinated demand shifting, there exist no benchmark methods to com-

pare ours to.

Table 3.3 shows the average results for the four methods—with each one of them

applied on the same input values with the others per day, over a 100 days simulation

horizon. We can observe that the most successful coalitions with respect to the

amount of actual gain are formed by employing CF1 and CF3. The CF3 formation

method, in particular, generates the highest amounts of expected and actual final
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gains, apparently due to its ability to rank agents with respect to expected gain.

In addition, CF3 achieves larger consumption reduction (shifting) amounts, leading

to higher percentage of peak load trimmed. This is due to the fact that acting

coalitions sizes are on average larger when CF3 is in use, for the reasons explained

in Section 3.3.2; a fact that also means that their members errors with respect to

shifting abilities are “cancelling out” better, and performance improves. Moreover,

CF3 appears to more robust overall when compared to CF1, since CF3 results come

with a variance that is consistently lower.

By contrast, the other two methods, CF2 and Random, do not do as well. CF2

does not seem to be effective, neither with respect to shifted quantities, nor with

respect to gain. This is because CF2 forms coalitions that appear to secure the

minimum required reduction amount; however, typically the agents are not capable

of delivering their promises, and as such, the coalition’s final actual gain is negative.

Random, on the other hand, does manage to generate positive gain, but judging

from the actual reduction amount (which is the minimum of all the methods), it fails

to select effective and efficient participants. That was to be expected, since when

Random is employed the contributors are selected in an entirely random fashion.

Table 3.4 contains additional information regarding the 100-day simulation re-

sults. Specifically, it presents the most active participants from each consumption

category, when using the different coalition formation methods.

We see there that the most active participants, participating in the scheme dozens

of times per month, gain approximately 0.03 euros per kWh shifted, as illustrated

in Table 3.5. This performance leads to electricity bills that are reduced up to

approximately 20% for the most active residential participants when CF1 or CF3 is
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Table 3.4: Shifting performance of the most active participants per consumer class
and coalition formation method, over 100 days.

Method ID Consumer
Participations

Total load Total gain Gain/kWh
Class shifted (kWh) (e) (e)

CF1

288 Ind. 368 5987.004 174.46 0.029
372 Pub. 337 1832.405 43.86 0.024
1955 Comm. 292 934.892 25.26 0.027
7528 Res. 237 363.520 12.32 0.033

CF2

288 Ind. 326 5700.062 -169.68 -0.029
372 Pub. 218 1329.302 -31.81 -0.023
1955 Comm. 147 599.539 -15.32 -0.025
7528 Res. 83 188.214 -3.37 -0.017

CF3

288 Ind. 398 6602.649 129.19 0.019
372 Pub. 353 1841.574 47.76 0.025
1474 Comm. 317 1072.027 25.51 0.023
7528 Res. 280 414.244 14.00 0.033

Random

5287 Res. 44 5.648 0.07 0.014
1941 Comm. 41 7.312 0.38 0.052
349 Pub. 38 0.273 0.03 0.125
293 Ind. 35 3.577 0.22 0.061

used, wrt. the average bill of the respective category. Even participants that are

much less active can expect to make substantial gains from scheme participation:

Table 3.6 depicts the gains of agents that participate in the scheme at least 15 times

in a month. As illustrated there, these agents can reduce their monthly bill by

1.4% − 3.5% on average. Notice that these rates are comparable to discount rates

commonly used in consumer rewards programs, and definitely much higher than bank

deposit accounts interest rates currently (2016) in effect in most countries in Europe

and North America.
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Table 3.5: Monthly financial gains for the four most active participants.

Class Avg. monthly Gain/kWh (e) Total gain/month (e) Bill reduction %
bill (e) CF1 CF3 CF1 CF3 CF1 CF3

Industrial 301.24 0.029 0.019 58.15 43.06 19.3% 14.29%
Public 215.12 0.024 0.025 14.62 15.92 6.7% 7.4%

Commercial 71.06 0.027 0.023 8.42 8.50 11.8% 11.9%
Residential 20.55 0.033 0.033 4.10 4.66 19.9% 22.67%

Table 3.6: Average gains for participants with 15 or more participations per month.

Class Avg. monthly # of Total load Gain/kWh Total Bill red-
bill (e) agents shifted (kWh) (e) gain (e) uction %

CF1
Residential 20.55 559 16.776 0.037 0.62 3.0%
Commercial 71.06 109 42.635 0.031 1.34 1.8%

Public 215.12 11 114.004 0.027 3.13 1.4%
Industrial 301.24 25 173.025 0.031 5.37 1.7%

CF3
Residential 20.55 559 19.828 0.036 0.72 3.5%
Commercial 71.06 109 47.507 0.032 1.54 2.1%

Public 215.12 11 119.567 0.029 3.51 1.6%
Industrial 301.24 25 190.272 0.026 5.12 1.7%
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In the case of CF2, the numerical results of Table 3.4 indicate once again that

it is not an appropriate method for coalition formation, as even the most active

consumers lose from participation. Finally, the use of Random does not grant losses

to the most active participants, however the gain is very small for every consumer

type, indicating that its use does not provide adequate incentives for the shifting of

electricity demand.

To further validate our scheme we also conducted simulation experiments on an

additional dataset that included only industrial customers from India, which was

derived after the statistical analysis of 36 small and medium scale actual industrial

facilities. This dataset has been previously used also in [96]. We can see that the

results are similar (see Table 3.7).

Table 3.7: Average results over a 100 days simulation period for the dataset with
only industrial consumers.

CF1 CF2 CF3
Exp. Coop. Gain (e/day) µ 2094.72 415.73 2139.38

Actual Coop. Gain (e/day) µ 895.56 -273.89 933.24
σ 348.03 77.30 361.66

Coop. “Surplus” (e/day) µ 6.20 14.81 6.13
Expected Reduction (kWh/day) µ 32856.45 12868.40 32919.06

Final Reduction (kWh/day) µ 24454.32 9471.053 24539.96
σ 8083.3 2556.5 8058.2

Peak (Demand ≥ τ) Trimmed (%) µ 98.61 42.51 98.63
σ 0.75 5.86 0.75

Avg. Reducing Coalition Size µ 47.70 15.49 49.06
Gain per participant (e/day) µ 18.77 -6.44 19.02

In conclusion, employing CF3 appears to be the most profitable, effective and
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robust of our proposed coalition formation techniques. Also, CF1 is another effective

demand-reducing coalition formation method, which could also be considered as an

alternative. For the rest of the experiments, however, CF3 is our coalition formation

method of choice, unless otherwise stated.

3.6.3 Assessing the effect of different group pricing slopes

We now apply different κ values to the pg(q) pricing function of Eq. 3.41, and observe

their impact on the total cooperative gain and the percentage of peak-load trimmed.

Changing κ from negative to positive values results to different non-linear forms,

and to concave and convex curves respectively, as illustrated in Fig. 3-3. For each κ

value we used the CF3 coalition formation method, and the Conservative approach

for estimating the reduction capabilities of the participants. The results over 100

days, are presented in Table 3.8.

Table 3.8: Results from an 100 days simulation for different values of κ in the group
pricing function.

κ = −4 κ = −1 κ = 1 κ = 4 κ = 10

Peak (Demand ≥ τ) Trimmed (%)
µ 82.86 81.65 81.36 81.47 81.50
σ 3.17 4.18 3.57 3.98 3.23

Total Gain (100 days) Σ 4951.71 4641.15 3835.61 2714.37 1397.49

As we can see, for κ = −4, where pg(q) reaches low values faster, the total

cooperative gain grows larger when compared to the other four cases. Also, the

average percentage of peak-demand trimmed is slightly higher, with lower standard

deviation. This means that this particular pg(q) form is the most incentivizing for the
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Figure 3-3: Forms of pg for different values of κ.

consumer side, and respectively demands larger discounts from the Grid’s side. As

the κ value increases, the total cooperative gain become gradually smaller, without

significant changes in the percentage of the trimmed peak-load. In the rest of our

experiments below, we adopt the pg(q) given by κ = 1 as the middle ground solution.

3.6.4 Coalition size vs. group price range

Overall, it is clear that in order for shifting to take place, the Grid must grant a pg

range that provides enough gain to the agents, in order to overcome the underlying

individual shifting costs. Here we study the dynamics associated with this pg range

selection. Specifically, we examine the average reducing coalition size formed at each

th, given variable pg prices granted for collective consumption shifting. To do so, we

simultaneously add an offset to both the pmax
g and group pmin

g values produced by
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Eq. (3.41), with the offset ranging from -0.015, to +0.025 of their initial values; then,

following formation, we observe the average number of agents in reducing coalitions

for each peak interval.
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Figure 3-4: Average coalition size vs. pg increase for the coalition formation methods
CF1 and CF3.

Figure 3-4 demonstrates this concept, where average coalition sizes over 50 sim-

ulation days are plotted against group price range variations. If the CF1 method

is applied, it is obvious that as pg increases to get closer to plow, fewer agents de-

cide to contribute —and, subsequently, less consumption is finally shifted. In the

case of CF3, however, we observe that the average coalition size is in general more

stable; moreover, for a pmax
g = 0.05625 + 0.015 = 0.07125 and above (i.e., for pmax

g

values close to pl), the CF3 mean and standard deviation of the average coalition
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size increases, in contrast to CF1—and both methods reach the value of zero for

the maximum offset added (i.e., when pmax
g exceeds pl and pmin

g is also high, it is no

longer possible to form profitable coalitions.

This difference in the behaviour is explained as follows. First, recall that CF1

ranks contributors according to their contribution potential ξi, not accounting for

the expected monetary gains to be created. This is acceptable in settings where

agents have low shifting costs, and the formation of shifting coalitions is relatively

easy, i.e. there is abundance of shifting capacities for the offered prices. On the

other hand, when the better price pg is high, it becomes harder to come up with a

coalition of contributors offering large shifting quantities at such high prices. Thus,

it becomes more probable to create infeasible coalitions that violate one of the con-

straints of Eqs. (3.25)—(3.27) during the CF1 process. Hence, the average coalition

size gradually drops to zero.

In the case of CF3, however, contributors are ranked according to their expected

gain, which is a very good indicator of the coalition’s feasibility potential. This

method is able to guarantee the coalition’s feasibility, even if a larger number of

participants is required in order to achieve it. This is in fact illustrated in Figure 3-

4: when few agents in the population can profit directly from the granted pg price,

the required shifting amount is more difficult to gather, and more agents have to join

in the coalition to do so.

3.6.5 Assessing the CRPS effect

In this set of experiments, we gradually increase the relative errors of the agents

and measure the drop in their final gains after applying the CRPS scoring rule.
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Specifically, the relative error of each agent was progressively increased from 0 to 1

by 0.1 over 11 complete runs of 20 simulation days each. This naturally leads to a

higher (i.e., worse) CRPS score for the individual agents, and thus a bad CRPS score

for their corresponding reducing coalitions. Figure 3-5 plots together the CRPS score

and losses in gain,23 for the average individual. We observe that as an individual

agent’s CRPS score gets worse, its gain losses increase. In the vertical axis, we

present the relative difference d between the final bill payed bi (calculated after the

CRPS rule has already been applied) and the peff
i qi expected to be paid at the time

of the formation of the coalition (i.e., before applying CRPS):

d =
bi − peff

i qi

peff
i qi

(3.42)

Notice that this relative difference might be much larger than 2 for a “highly inaccu-

rate” agent. This is because, firstly, if the difference between the statements and the

final actions is very high, applying the CRPS can double the price (cf. Eq. (3.15)).

Secondly, rising individual CRPS scores correspond to reduced cooperative effective-

ness, and thus the final effective group price (and cooperative bill) is higher than

anticipated, resulting to lower-than-expected gains.

It is therefore clear that CRPS can induce substantial “penalties” on erroneous

agents and coalitions. Thus, employing CRPS provides definite incentives for the

agents to produce accurate statements regarding their shifting capacities.

23Note that this does not mean the average gain is negative, just that it decreases as a result of
CRPS-generated penalties.
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Figure 3-5: Average losses in gain (increase in bill) due to CRPS, as induced by
increasing participant inaccuracies, across all intervals.

CRPS penalizing only cooperative performance In this part we also test a

case where the CRPS is applied for producing the overall cooperative bill (Eq. (3.31))

only, but not for determining the individual bills of the participants. That is, instead

of using Eq. (3.34), the final bill of the individuals bi is calculated by

bi =
peff
i qi

(
∑

j∈C peff
j qj)

BC (3.43)

where BC is given by Eq. (3.31).

Table 3.9 summarises the differences between skipping internal penalization (via

using Eq. (3.43)) and not. The first thing to observe is that the “cooperative sur-

plus” is non-existent when CRPS is not applied internally, as expected since the
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exact amount of the cooperative bill is now split among the participants (charged

via Eq. (3.43)). Then, to better illustrate the desired effect of the internal CRPS

penalization, we measure the difference between expected and final gain for agents

with CRPS score higher than 0.2 (which we can consider as inaccurate participants)

and for those with score lower than 0.2 (accurate participants). As shown in the

middle column of Table 3.9, when there is no internal penalty applied to cooperative

members, there exists a difference in final gains and in “losses wrt. expected gains”

between the highly erroneous and less erroneous agents. However, when applying in-

ternal individual penalization, these “losses” for the erroneous participants rise, while

for the non-erroneous ones the average final gain exceeds the value of the expected

gain. Note that the expected gain is given by Eq. (3.30), that does not preclude the

possibility that initial gain estimates are pessimistic. Thus, making more gains than

expected when being accurate, in the presence of highly inaccurate participants is not

overly surprising. This exacerbates the differences in gain transfers between these

two agent classes: it really pays to be truthful and accurate. In a nutshell, applying

the CRPS “internally”, clearly incentivizes the individual agents to be accurate and

deliver what they promised.

3.6.6 Experimenting with different internal price balancing

techniques

In this subsection, we compare the performance of the various optimization criteria

of Section 3.4 with respect to resulting price assignments and resulting gain per

participant. We employ the cvx toolkit of Matlab to obtain the solutions of the
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Table 3.9: Average differences between expected and final gain per contribution, with
and without internal CRPS penalization.

All surplus and gain values Without With
average over participations internal penalty internal penalty
Cooperative “surplus” (e/day) 0 0.10
Exp. gain per participation for agents with CRPS > 0.2 0.03132 0.03132
Final gain per participation for agents with CRPS > 0.2 0.02703 0.02646
Difference 0.00429 0.00486
Exp. gain per participation for agents with CRPS ≤ 0.2 0.03076 0.03076
Final gain per participation for agents with CRPS ≤ 0.2 0.03060 0.03095
Difference 0.00016 -0.00019

various mathematical programming methods of Section 3.4.2. All different pricing

methods operate on the same input data. In this way, the difference in behaviour

occurring by using the various criteria is clearly demonstrated, as shown in Figures 3-

6 and 3-7. The x-axis shows the agent IDs coalescing to shift demand at a th, in this

case from 1 to 68. Note that agent IDs are ranked in descending order with respect

to the gains granted by considering pC as the price paid.

Figure 3-6 in particular, depicts the participant p̂is and peff
i s, where the latter are

calculated with the various methods that we explained earlier. As we observe, certain

pairs of criteria perform similarly: specifically, criteria 2 (maximize sum of individual

gains) and 3 (minimize sum of gain losses), criteria 1 (minimize max individual gain

loss) and 4 (sum of criterion 1 and criterion 3), and our proposed heuristic balancing

and criterion 5 (minimize price differences).

The actual effects of variable pricing can be seen in Fig. 3-7, where we present

the gains for each agent, when assigning the calculated peff; also, the gain before we
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Figure 3-6: Prices (e/kWh shifted) assigned to each individual for a sample peak
interval as a result of employing our pricing methods.

perform internal price balancing is shown with the yellow curve. It is clear from the

figure that optimisation methods 2 and 3 tend to dispense the amount of gain equally

(within some tolerance levels) among the contributors. This can be considered as

a violation of the mechanism’s fairness, as participants end up enjoying the same

amount of gain regardless of the value of their individual contribution.

By contrast, the heuristic price balancing technique (green curve), maintains the

ranking with respect to the gain amount, and so does optimization criterion 5, except

for the higher gain participant. The performance of criterion 5 is mainly due to the

l1 norm application, which tries to change values in as few peff
i s as possible. Notice

however that, unlike the heuristic balancing method, this criterion does not guarantee

that the original agents ranking wrt. gain is maintained after balancing. Criteria 1
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Figure 3-7: Expected gains for each participant for a sample peak interval, when
applying different reward sharing approaches.

and 4, on the other hand, appear to maintain this ranking, but are more generous

to lower ranking agents (thus, the gain-related “gap” or “social distance” among the

agents appears to be closing up when using these methods).

Last but not least, it is important to note that no gain is lost in expectation when

adopting any of the proposed internal pricing methods. As we observe in Fig. 3-7,

despite the existence of (originally) negative gain agents (the yellow curve for which

lies below zero), there are no negative expected gains for any of the participants after

internal pricing (regardless of the specific method used).
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Figure 3-8: Cooperative effectiveness versus contributor availability.

3.6.7 Participant availability

Finally, we examine the relationship between agent availability and cooperative ef-

fectiveness. In particular, we ran the simulator for 11 iterations, each lasting for 30

days. Now, in each iteration, we raise the probability of an agent being unavailable

for participation during a time interval.

Results are shown in Figure 3-8, where we can observe that the cooperative

achieves nearly 100% peak load trimming effectiveness when agents are available

for at least 70% of the time. After that point, cooperative effectiveness drops in a

nearly linear manner proportionally to the percentage of time intervals during which

agents are available. Thus, the higher the participants availability, the greater the

effectiveness of the shifting scheme.
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3.7 Conclusions

In this chapter, we presented a complete framework for large-scale cooperative elec-

tricity consumption shifting, to promote the proactive balancing of the demand curve.

Our proposed shifting scheme is directly applicable, and promotes agent efficiency

in the face of uncertainty. No additional infrastructure or specialised equipment is

required for deployment: off-the-shelf smart metering and transmission equipment

can be readily employed, and the computational complexity of the overall mechanism

planning the cooperative shifting operations is low. This is achieved via the use of

effective coalition formation methods we developed; and via employing the CRPS

strictly proper scoring rule, which incentivizes truthful and accurate forecasts. Fur-

thermore, our mechanism is equipped with internal pricing schemes that employ gain

transfers within a cooperative, to make it worthwhile for individuals to participate

in shifting operations and thus guarantee the scheme’s effectiveness and profitabil-

ity. Our mechanism possesses desirable theoretical properties: individual rationality,

truthfulness, and (weak) budget balancedness. We ran extensive simulations based

on real consumption data, and demonstrated experimentally the effectiveness of our

methods. The results of our experiments confirm that our methods could bring

tangible benefits to energy cooperatives and other Smart Grid business entities.
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Chapter 4

Decentralized Cooperative

Demand-side Management for

Prosumers

In the previous chapter, we showed how it is possible for an electricity consumer to

reduce her expenses by rescheduling her energy usage to the most profitable inter-

vals, by setting higher electricity price values for buying energy during intervals of

high demand, and lower values during intervals of low demand [7]. This is a task

that becomes even more important (and challenging) when it comes to electricity

prosumers. As prosumers both produce and consume energy [21, 184], they can take

advantage of fluctuations in prices, and generate even more profit [111].

However, increased participation to DSM schemes often leads to herding ef-

fects. As such, the estimated consumption curve could significantly change, both

endangering the Grid’s stability, and leading to substantially different economic

143
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outcomes [195]. For this reason, the formation of consumer cooperatives or vir-

tual power plants has been proposed [7, 23, 96, 195], an approach which, however,

requires a centralized entity to serve as the cooperative manager. To overcome both

herding effects and the need for cooperative manager determination, in this thesis

we champion the use of a purpose-designed cryptocurrency protocol for distributed

prosumer cooperative coordination. As discussed in Chapter 2, cryptocurrencies and

blockchain-oriented algorithms run distributedly, and are transparent. Additionally,

they use encryption methods, which guarantee that the transactions are secure, and

that no third-parties need to take part in the exchanges [62]. A first generation cryp-

tocurrency protocol has already been used in a setting with electricity prosumers—

and, to the best of our knowledge it is the only Smart Grid related work, and is

called NRGcoin [122]. Although it incentivizes demand and production balancing,

that protocol does not promote large-scale cooperative consumption shifting. In our

work, we envisage a next-generation, special-purpose cryptocurrency software, which

is executed by each cooperative member in a decentralized fashion, and is used for

coordinating electricity consumption shifting actions and the sharing of the rewards.

Here, for the first time, we show how we can combine cryptocurrency with mech-

anism design for cooperatives formation, to achieve large-scale coordinated shifting

of electricity prosumers consumption. The cooperative shifting activities result to in-

creased prosumer profits from electricity trading. Using a cryptocurrency protocol,

prosumers autonomously create a virtual wholesale mediator between the end-users

and the Grid. The protocol takes into account prosumer shifting capacity statements,

and distributes personalized rewards given the final collective profits achieved, and

the cooperative’s profits sharing policy of choice. The coins awarded represent shares
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on the total cooperative profits.

Summarizing, the work described in this chapter contributes to the state of the

art as follows.

• First, we model prosumers in a market setting with variable prices, and present

a distributed consumption shifting approach for prosumer cooperatives, which

guarantees monetary gains to the participants.

• We apply a novel cryptocurrency model for the coordination and management

of the cooperative shifting actions. In the proposed model, the rewards from

prosumer participation are determined in a personalized manner, in the form

of newly mined coins.

• We examine different coin mining methods, and champion one that evaluates

prosumers via a scoring rule [67] assessing the difference between promised

and final actions. To the best of our knowledge this is the first time that

cryptocurrency mining and scoring rules are combined into one method. By

penalizing inaccuracy, this method incentivizes prosumers to provide truthful

promises.

• We propose specific formation techniques, which select members for participa-

tion in cooperative actions.

The contributions of this chapter and the combined scientific fields are also shown

in Figure 4-1.

Our approach can be applied in conjunction with any existing regulations or

pricing schemes. We evaluate our scheme experimentally on a large dataset that ex-
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Figure 4-1: Overview of the scientific fields, and our contributions in Chapter 4.

tends over a one-year period, and which is based on real consumption and renewable

production data. Simulation results confirm that adopting our mechanism leads to

increased profits for the cooperative participants, stabler variable electricity prices,

and achieves lower Peak-to-Average Ratio (PAR) values for the difference between

electricity supply and demand. Especially when using a scoring rules-based reward

redistribution method, accuracy is explicitly incentivized with increased gains for the

accurate participants.

This chapter is structured as follows: In Section 4.1 we present the system set-

ting and the individual prosumer financial decisions model. Section 4.2 presents the

cooperative model, the cryptocurrency protocol and three different approaches for

personalized reward sharing, as well as methods for contributor selection for cooper-

ative actions. Section 4.3 presents the experimental results, and, finally, Section 4.4
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concludes this chapter.

Parts of the research described in this chapter appeared originally in [9].

4.1 A Generic Prosumer Consumption Shifting Model

We assume a setting encompassing of prosumers, which both import and export

energy from and to the Grid; and a prosumer cooperative, which is a large coalition of

prosumers trading energy as a unique entity. The Grid is regulated by the distributed

system operator (DSO), responsible for the transmission of energy and its pricing.

Actors need to take decisions regarding trading at some day-ahead electricity

market, or consuming electricity at specific 1 to T intervals during the course of a

day (the day-ahead).1 For ease of notation, we slightly differentiate variables from

those presented in Chapter 3, and move the time interval index t to be the subscript

of the variable that denotes energy amounts. Each actor i is characterized by the

amount of electricity (kWh) imported q−i,t, and the amount exported q+i,t, during the

time interval t. The aggregate demand and supply levels for each time interval are

given by

Q−
t =

∑
i

q−i,t

and

Q+
t =

∑
i

q+i,t

in kWh.
1A decision theoretic optimization approach for a single prosumer operating in such a setting

was proposed by [21, 22]. However, they did not include cooperative electricity trading, nor dealt
with consumption shifting.
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We assume reliable renewable production and demand forecasting techniques that

can achieve high precision—lower than 2% mean absolute percentage error [81, 187].

Predictions are noted as q̃−i,t, and q̃+i,t kWh, for imports and exports respectively. The

predicted demand and supply for the planning horizon are noted as Q̃−
t for the total

imports, and Q̃+
t for the total predicted exports.

4.1.1 Promoting Demand-Side Management

Many methods have been proposed for modelling individual consumption profiles [68,

146, 194]. In our work, we examine the rescheduling of shiftable loads, which are those

loads that it is possible to shift to in later or earlier time intervals, with minimum

impact on the consumer’s well being, e.g., battery charging, water-heaters, washing-

machines, etc. Now, to promote demand side management operations, prosumers

should be offered better prices to counterbalance the associated shifting costs. Fol-

lowing existing dynamic pricing mechanisms, which promote the balancing of demand

and renewable energy supply [122], we assume that billing functions are in place (by

the DSO) for selling Bsell
t (), and buying Bbuy

t () energy to/from the Grid, each with

specific properties. First, they are functions of the quantity of energy produced

q+i,t and consumed q−i,t, respectively. Next, and in order to satisfy the supply and

demand balancing requirements [182], both also need to be functions of aggregate

supply, Q+
t , and demand, Q−

t . Specifically, Bsell
t () must take maximum values for

fixed q−i,ts and q+i,ts, during intervals when Q+
t = Q−

t . This incentivizes prosumers to

produce exactly the quantity that is required for consumption (since their income is

then maximized). Intuitively, it is to the DSO’s interest that prosumers decide to

sell when Q+
t = Q−

t , since this defers the need to import or export energy.
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Assumption 1 ([122]). The pricing for selling energy to the Grid during a time

interval t, is a function of the sold quantity, the aggregate quantity produced, and

the aggregate quantity consumed during that interval, Bsell
t (q+t , Q

+
t , Q

−
t ); and for

fixed q+t , it is maximized as:

Q+
t −Q−

t → 0

Note that, assuming the electricity production of prosumers originates mainly

from wind turbines and photovoltaic panels, the quantity produced q+t cannot be

easily controlled [182]. Moreover, the selling prices are also functions of aggregate

demand Q−
t , which we later optimize by shifting consumption tasks in a large-scale

cooperative manner.

The Bbuy
t () on the other hand, should produce lower prices with higher renewable

production excess, prompting prosumers to buy energy from the Grid (and perhaps

store it for future use). Intuitively, it is more efficient to consume the cheap renewable

energy produced locally, than import from some external balancing market where

prices are in general far worse [182]. This is because exporting or importing electricity

involves additional expenditures, e.g. transmission lines, electricity resellers, etc. By

contrast, Bbuy
t () produces higher values as renewable energy supply decreases.

Assumption 2 ([122]). The pricing for buying energy from the Grid during a time

interval t, is a function of the acquired quantity, the aggregate quantity produced,

and the aggregate quantity consumed during that interval, Bbuy
t (q−t , Q

+
t , Q

−
t ); and

for fixed q−t , it is minimized as:

Q+
t −Q−

t → +∞
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.

4.1.2 Shifting to profitable time intervals

Given this model, a prosumer can control the quantity consumed during time inter-

vals by shifting consumption tasks. We now characterize each time interval as peak

or non-peak. Peak intervals th are those intervals during which reducing consumption

can be considered profitable for the prosumer. Specifically, due to Assumptions 1

and 2, this happens when aggregate demand is higher than supply:

Definition 4.1.1 (Peak intervals th). Consider a non-negative threshold τ . A time

interval t is considered to be a peak interval, th, if:

Q̃+
t − Q̃−

t < τ

.

Non-peak intervals tl are those intervals during which, increasing consumption

levels up to the reduced amount of energy that was decreased during th, results to

lower expenses due to a reduced buying price. Specifically, due to Assumptions 1

and 2, this happens when demand is lower than supply:

Definition 4.1.2 (Non-peak intervals tl). Consider a non-negative threshold λ. A

time interval t is considered to be a non-peak interval, tl, if:

Q̃+
t − Q̃−

t > λ

.
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Intuitively, variables τ and λ correspond to load difference thresholds that allow

profitable shifting actions. Their values can be based on the statistics of Q̃+
t and Q̃−

t ,

according to each actor’s business goals.

Now, we assume that each prosumer can alter her baseline demand value q−i .

More specifically, during peak intervals prosumers can reduce down to q−i,th − r̂thi ;

while for the non-peak intervals consumption can be increased up to q−i,tl + r̂thi where

r̂thi is the stated reduction capacity of each actor i. Also, as in [10], there is a shifting

cost cth→tl
i associated with shifting from a peak to a non-peak interval. The actual

reduction capacity rthi , refers to the load that is reduced during a th, and is shifted to

some other, non-peak interval tl. These values can be obtained by using appropriate

smart metering equipment.

We now discuss the price differences induced when a prosumer shifts r̂thi from a

peak interval to a non-peak interval. When prosumers decrease their consumption

during peak intervals, they accrue gains from the lower buy prices, and the higher

sell prices. Namely, the estimated profit by the induced price variations for reducing

at th is given by:

profitthi (r̂
th
i ) = Bsell

th
(q̃+i,th , Q̃

+
th
, (Q̃−

th
− r̂thi ))−Bsell

th
(q̃+i,th , Q̃

+
th
, Q̃−

th
)

+Bbuy
th

(q̃−i,th , Q̃
+
th
, Q̃−

th
)−Bbuy

th
((q̃−i,th − r̂thi ), Q̃+

th
, (Q̃−

th
− r̂thi ))

(4.1)

The result from subtracting the second term in Eq. (4.1) from the first, indicates the

profit from the price differences for selling energy; selling during a peak interval th,

with lowered aggregate demand, (Q̃−
th
− r̂thi ), grants better prices than with the initial

demand, Q̃−
th

(cf. Assumption 1 & Definition 4.1.1 above). Now, the last two terms
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give the difference in the bill that the prosumer will pay for consumption during th.

Thus, to calculate this quantity, we subtract the billing payed by the prosumer for the

reduced consumption (q̃−i,th − r̂thi ) from the initial estimated bill Bbuy
th

(q̃−i,th , Q̃
+
th
, Q̃−

th
).

Similarly, the estimated loss generated by increasing consumption during non-

peak intervals tl is given by:

losstli (r̂
th
i ) = Bsell

tl
(q̃+i,tl , Q̃

+
tl
, Q̃−

tl
)−Bsell

tl
(q̃+i,tl , Q̃

+
tl
, (Q̃−

tl
+ r̂thi ))

+Bbuy
tl

((q̃−i,tl + r̂thi ), Q̃+
tl
, (Q̃−

tl
+ r̂thi ))−Bbuy

tl
(q̃−i,tl , Q̃

+
tl
, Q̃−

tl
)

(4.2)

To calculate the estimated gain for an actor i, for shifting from a th to a tl,

we subtract the estimated loss at tl and the shifting costs cth→tl per kWh from the

estimated profit at th:

gth→tl
i (r̂thi ) =profitthi (r̂

th
i )− losstli (r̂

th
i )− r̂thi cth→tl

i
(4.3)

Definition 4.1.3 (Eligible interval pairs). Eligible shifting interval pairs for a pro-

sumer i are those (th, tl) pairs for which the gain associated with the shifting is

positive, i.e.:

gth→tl
i (rthi ) > 0

where rthi is the actual quantity of the shifted consumption.

Summarizing, the strategy for individual consumption rescheduling is to find

those shifting interval pairs for which the estimated gain is maximized, and shift

accordingly.
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4.1.3 Shifting without coordination

When optimizing individually, each agent does not take into account other agent

rescheduling actions, and considers their consumption to be the baseline. Thus, the

optimizer can exhaustively calculate the gth→tl
i (r̂thi ) values for each shifting interval

pair, for a stated reduction capacity r̂thi . Then, rescheduling takes place (e.g., shifting

to the most profitable ones). However, without coordination or constraint enforce-

ments, and since every prosumer optimizes individually, herding effects take place,

resulting to substantially different prices during the intervals with the lowest/highest

prices, than those anticipated by the prosumers. These “unexpected” price fluctua-

tions are not in favor of the prosumer, as the estimated gains can end up turning to

losses:

Lemma 3. If every participant is rational, and billing follows Assumptions 1 and 2,

optimizing the rescheduling of consumption individually does not guarantee positive

final gains.

Intuitively, Lemma 3 states that non-coordinated shifting actions in such settings

cannot be expected to always lead to monetary gains for the participants, and co-

operation is essential. It is straightforward to show this, considering the fact that

estimated gains are calculated based on the values Q̃−
th
− r̂thi and Q̃−

tl
+ r̂thi , which are

used in the first and last term of Eq. (4.1), and the second and third term of Eq. (4.2),

respectively. However, since participants are rational, every one acts the same man-

ner, resulting to substantially different values finally realized, i.e. final Bsell(), Bbuy()

prices are calculated using Q̃−
th
− (r̂thi +

∑
j∈C\i r̂

th
j ) and Q̃−

tl
+ (r̂thi +

∑
j∈C\i r̂

th
j ), re-

sulting to lower Bbuy() and higher Bsell(). Moreover, if the total shifting capacity is
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not constrained, the conditions in Def. 4.1.1 and 4.1.2 can stop holding, rendering

the intervals ineligible for profitable shifting.

4.2 Distributed Shifting and Reward Sharing

Now, cooperatives can be key for the effective coordination of consumption shifting

actions [7]. Here we describe the workings of prosumer cooperatives, allowing mem-

bers to both sell and buy energy as a single entity. We assume that cooperative mem-

bers share common estimates regarding the total production and consumption per

interval Q̃+
th

and Q̃−
th

(obtained, e.g., via the summation of communicated individual

estimates). Also, participants execute a novel cryptocurrency mechanism, allowing

for distributed management, transparency, and personalized rewards. An overview

of the network structure and information exchange is shown in Fig. 4-2. Power and

information flow from the substations to the residences, and the residences are con-

nected with additional information links among each other. The substations execute

an external protocol (e.g. NRG coin [122]), which runs independently from the co-

operative blockchain protocol (termed as COOPcoin). As in any blockchain-oriented

algorithm, agent participants share the same information, for example individual

agent statements r̂thi , σ̂i, pricing functions Bsell
t () and Bbuy

t (), and aggregate esti-

mates Q̃+
t , Q̃−

t , etc., thus, they perform the same calculations. Shared information

is encrypted due to privacy concerns and it is assumed that direct mapping between

a given cryptocurrency peer and its physical location cannot be achieved. Note that

DSO substations do not have to actively participate in the cooperative blockchain

scheme, since this is built on top of, and independently from any third party protocol
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that the DSO might be adopting. The cooperative mechanism awards contributors

with new coins, according to specific participation performance measures, as we ex-

plain later. For the scheme to work, each individual i must announce only two values

Figure 4-2: Prosumer network and interactions.

for each shifting interval pair: (a) her reduction capacity, r̂thi ; and (b) her confidence

σ̂i for meeting her reduction promises. The confidence represents the variance of a

normal distribution (with mean value 0) over the error between the stated and the

final action. This is in line with past approaches [7, 155].

An optimistic estimate of the cooperative shifting capacity is then collectively
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calculated as:

R̃th
C =

∑
i∈C

r̂thi (4.4)

and a pessimistic estimate, by:

r̃thC =
∑
i∈C

(1− σ̂i)r̂
th
i (4.5)

Then, the cooperative determines the shifting interval pairs (th, tl), as well as the

target shifting capacity that will lead to increased profits. In order to guarantee

profits, the target shifting capacity is the maximum r∗,th values to be rescheduled

such that Assumptions 4.1.1, 4.1.2 continue to hold. That is, for each shifting interval

pair (th, tl):

maximize r∗,th (4.6)

subject to Q̃+
th
− (Q̃−

th
− r∗,th) < τ (4.7)

Q̃+
tl
− (Q̃−

tl
+ r∗,th) > λ (4.8)

Next, the estimated by the members cooperative gains (minimum and maximum)

are calculated, given the total expected consumption and production values of the co-

operative for each time interval, q̃−C,t =
∑

i∈C q̃−i,t, q̃+C,t =
∑

i∈C q̃+i,t, and the estimates

R̃th
C , and r̃thC :

G̃th→tl
C = profitthC (R̃

th
C )− losstlC(R̃

th
C ) (4.9)

g̃th→tl
C = profitthC (r̃

th
C )− losstlC(r̃

th
C ) (4.10)
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To continue, the estimated gains per kWh are calculated:

G̃th→tl
C,kWh =

G̃th→tl
C

R̃th
C

, g̃th→tl
C,kWh =

g̃th→tl
C

r̃thC
(4.11)

For shifting interval pairs {th, tl} that

g̃th→tl
C,kWh > 0 (4.12)

holds, the shifting procedure is expected to be profitable, and the shifting interval

pair along with its G̃th→tl
C and g̃th→tl

C values are announced to the members.

• If r∗,th ≥ r̃thC , every available contributor can participate in the shifting opera-

tions.

• However, in case r∗,th < R̃th
C , the constraint of Eq. (4.6) does not yet hold and

gains are not certain, so some agents must be excluded from action.

We will examine different approaches for this in the following section.

Finally, if the cooperative actually reduces rthC ≤ r∗,th given actual Q−
t & Q+

t , the

final actual cooperative gain is:

gth→tl
C (rthC ) = profitthC (r

th
C )− losstlC(r

th
C ) (4.13)

Of course, in order for the final gain levels to be inside the estimated range, two

conditions must hold. First, the statements r̂thi , σ̂i, and the predictions Q̃−
t & Q̃+

t

must be accurate. As mentioned earlier, the accuracy of Q̃−
t & Q̃+

t can be ensured

by known methods [81, 187]. We examine how we can achieve the accuracy of r̂thi , σ̂i
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in the next section. Second, the cooperative must be sizeable, meaning that it is the

only actor that can induce significant price changes by consumption rescheduling.

This helps overcome the problems raised by Lemma 3.

Definition 4.2.1 (Sizeable cooperative). A cooperative C is sizeable, if its pes-

simistic reduction capacity estimate is much greater than the sum of external parties

capacity, i.e. when ∑
i∈C

(1− σ̂i)r̂
th
i >>

∑
j /∈C

r̂thj , ∀th (4.14)

Remark 1. The cooperatives that are formed are sizeable, because, due to Lemma 3,

every rational agent avoids optimizing individually, thus seeks to cooperate.

Lemma 4. If statements r̂thi , σ̂i, are accurate, and the cooperative C is sizeable, then,

the cooperative’s shifting suggestions include only eligible shifting interval pairs for

C, in other words C will have:

gth→tl
C > 0

Proof Since the cooperative has accurate knowledge of the total shifting capacity

range R̃th
C , and r̃thC , and it is sizeable, the g̃th→tl

C and G̃th→tl
C estimates are more

accurate than others calculated based on partial knowledge, thus the following holds:

g̃th→tl
C < gth→tl

C < G̃th→tl
C

Now, due to the enforcement of the constraints from Eq. 4.6 and 4.12, for the sug-

gested interval pairs, the minimum gain estimate per kWh is positive, g̃th→tl
C > 0.

Thus the shifting interval pairs suggested by the cooperative are eligible. □
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In conjunction with Remark 1, this Lemma is important for the following reason.

While the calculations above do not take the individual shifting costs into account,

cooperative members must weigh the expected gain per kWh (if these are accurate)

with their own shifting costs cth→tl
i and decide whether they will finally contribute or

not. Now, Lemma 4 shows that the cooperative can take advantage of the predicted

price differences and create profit by rescheduling consumption. Moreover, since

C is sizeable, no other actor can significantly affect prices so that the cooperative

does not meet its goals. Therefore, the g̃th→tl
C are accurate (assuming the r̂thi , σ̂th

i

are too); and then individuals can safely weigh these against own shifting costs to

decide participation. The overall process can be achieved as shown in Alg. 2. The

Algorithm 2 Coordinated shifting for a (th, tl) interval pair
Input: Q̃+

th
,Q̃−

th
,Q̃+

tl
,Q̃−

tl
,{q̃−i,t}C , {q̃+i,t}C

1: Determine and announce G̃th→tl
C,kWh,g̃th→tl

C,kWh

2: Receive agent bids {r̂thi }C ,{σ̂th
i }C ,

3: Check constraints and select agents
4: Wait for shifting actions realization, {q−i,t}C ,{q+i,t}C
5: Distribute revenues to contributors

complexity for solving the algorithm’s first step, i.e. finding the peak and non-peak

intervals, and respective loads and gains for the daily planning horizon, is a function

of the number of time intervals. For example, if the cooperative adopted a constrained

optimization approach, it would be O(t3),2 where t is the number of time intervals.

Next comes the selection of the actual contributors during each peak interval, that

of Line 3. The duration of this procedure depends on the selection method that each

cooperative adopts. The most expensive step of the selection methods we present in

2Since the typical complexity for solvers is cubic.
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Section 4.2.3 below, is that of ranking, whose complexity is O(n2t) in the worst case,

i.e. O(n2) for sorting [137], times t time intervals.

4.2.1 Cooperative balance increase

As already discussed (Eq. (4.13)), prosumers generate gain from the price differ-

ences for both buying and selling electricity. However, the gain part from buying

is immediately awarded to each prosumer in the form of reduced bills, and cannot

be redistributed among the members easily. Better sell prices, on the other hand,

result to larger income for the cooperative, and this profit can be concentrated into

a collective account. The achieved cooperative balance increase by each collective

shifting operation is given by:

bal_inc(rthC ) = Bsell
th

(q+C,th
, Q̃+

th
, (Q̃−

th
− rthC ))−Bsell

th
(q+C,th

, Q̃+
th
, Q̃−

th
)

−Bsell
tl

(q+C,tl
, Q̃+

tl
, Q̃−

tl
) +Bsell

tl
(q+C,tl

, Q̃+
tl
, (Q̃−

tl
+ rthC ))

(4.15)

This equation is derived from Eq. (4.1) and (4.2) after removing the parts that

include Bbuy
th

, and represents the achieved gain from sell prices alone. Assuming

that the initial balance of the cooperative is zero, the cooperative balance over the

time horizon of shifting operations is simply the sum of the per time step balance

increases:

bCOOP =
∑
th

bal_inc(rthC ) (4.16)

However, since each participant contributes to the increase differently, the distri-

bution of rewards must be different as well. A straightforward procedure for this
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redistribution is to generate and award new coins, which, nevertheless, are returned

to the prosumers based on each one’s behavior. For this reason we propose a cryp-

tocurrency protocol that is used simultaneously, to both coordinate, and reward

prosumers.

4.2.2 COOPcoin for prosumer cooperatives

To achieve effective rescheduling of prosumers consumption, and reward back mem-

bers according to their behavior, we propose the employment of a specialized cryp-

tocoin algorithm, designed for the coordination of prosumer cooperative actions. In

existing cryptocurrency schemes, the same protocol is used by all members of the

community, and each member executes a program that is linked with a distributed

database, called the blockchain [25, 94].

The program performs certain calculations—e.g., in our case, consumption and

production measurements, gain calculations, and so on, which implement Alg. 2. The

individual results are then compared with those of other members, and, if validated—

i.e. compared and matched, are written to each user’s database that is, added to

the blockchain and stored as history. If validation fails for a member, the adopted

result is the one calculated by most members. This distributed execution approach

removes the need for cooperative managers.

Note that the distributed nature of such an algorithm is guaranteed with the use

of existing cryptocurrency protocols. Such protocols offer many desirable features,

e.g. distributed consensus, transaction transparency, and anonymized data shar-

ing [141]. Particularly, although data are shared among all participants freely, they

are encrypted, and only the issuer and trusted parties can actually recover actual
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information, and link data with real persons. Increased privacy, transparency, and

the ability to operate democratically without a “manager”, are important for coop-

eratives [1]. Moreover, by ensuring these properties via the use of cryptocurrency,

our approach can naturally extend to virtual power plants [23, 155] (where the trust

among the constituting entities is even lower).

Our cryptocurrency scheme is specifically designed for prosumer cooperatives, and

is called COOPcoin. The proposed cryptocurrency protocol “mines” coins according

to a small number of measurements and calculations regarding the shifting behav-

iors, and does not require computationally intensive operations like other existing

cryptocurrency algorithms, e.g. Bitcoin [94]. Here, “mining”3 is performed collec-

tively, i.e. utility is generated by the better electricity rates as a result of collective

shifting, and in place of the Bitcoin’s “proof-of-work” concept [94], we use what we

term “proof-of-physical-action”: in order to get rewarded with COOPcoins, certain

actions (i.e., electricity consumption shifting actions) must take place in the real

world. For the sharing of the rewards, the protocol generates COOPcoins based on

the collectively achieved profit and uses these to distribute that profit to the partic-

ipants. The actual number of COOPcoins returned to each prosumer is determined

based on their shifting behavior.

More specifically, the number of COOPcoins awarded depends on two terms: the

first, bal_inc(rthC ), is the actual balance increase due to the shifting operations, given

by Eq. (4.15); and the second one, sk, is a scaling factor used for the personalized

3As explained in Chapter 2, since cryptocurrency is not issued by a central authority, the process
that creates new coins is performed by end-users and it is called mining. According to this procedure,
users check if the data of the available transactions are valid, i.e. signatures are genuine, amounts
in transactions are correct, etc., and are given newly created coins as a reward [134].
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rewarding.

b+i,th = bal_inc(rthC ) · si,thk (4.17)

Now, the value of sk that actually scales each participant’s share over the bal-

ance, depends on the reward sharing policies of each cooperative. We examine three

approaches:

The proportionate to estimated reduction (PROPest) approach distributes back the

balance increase to participants in a proportionate manner, according to their capa-

bilities stated prior to the rescheduling actuation.

si,thPROPest =
(1− σ̂i)r̂

th
i∑

i∈C(1− σ̂i)r̂
th
i

(4.18)

The proportionate to actual reduction (PROPact) approach rewards according to the

achieved individual reduction.

si,thPROPact =
rthi∑
i∈C rthi

(4.19)

The accurate (ACCU) approach uses the normalized CRPS scoring rule, to assess

the absolute relative error ϵi between promised r̂thi , and actual rthi performance, with

σ̂i:

si,thACCU =
1− CRPS(N (0, σ̂i), ϵi)∑

j∈C\{i}(1− CRPS(N (0, σ̂j), ϵj)) + 1
(4.20)

As discussed earlier in this thesis, CRPS has been used in the past [7, 155] to
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directly evaluate probabilistic forecasts, and the score is given by:

CRPS(N (µ, σ2), x) = σ[
1√
π
− 2ϕ

(
x− µ

σ

)
− x− µ

σ

(
2Φ

(
x− µ

σ

)
− 1

)
] (4.21)

In our setting, N (µ, σ2) is the uncertainty stated over the expected absolute rela-

tive errorsregarding the reduction capacity, as reported by an agent; while x is the

actually observed error, ϕ the PDF, and Φ the CDF of a standard Gaussian vari-

able. The mean µ and variance σ2 of the predictive distribution can be estimated by

each agent through private knowledge of its consumption requirements and business

needs. Here, it reduces the prosumer COOPcoin reward when her actual perfor-

mance is not inside the stated confidence range. It is used in negative orientation

and is normalized, so that perfect forecasts generate a value of zero, while the worst

ones produce a value of 1. This incentivizes participants to be accurate.

Theorem 1. When using ACCU for electricity prosumers cooperative reward shar-

ing, participants are incentivized to be accurate regarding their statements.

Proof A scoring rule is a function S(P,Q) that assesses the distance between a

predictive distribution P an actual distribution Q. When the rule is strictly proper,

then S(Q,Q) ≥ S(P,Q), with the equality holding iff P = Q, i.e. the value is

maximized for exact forecasts [67]. Since CRPS is used here in negative orientation,

and is normalized, i.e. CRPS ∈ [0, 1], we have that

CRPS(Q,Q) ≤ CRPS(Q,P )



4.2. DISTRIBUTED SHIFTING AND REWARD SHARING 165

with the equality holding if and only if Q = P . Also, because any affine combination

of a strictly proper scoring rule is also strictly proper [123], we exclude agent’s i

CRPS from the denominator of Eq. (4.20), guaranteeing that siACCU is also strictly

proper. Now, due to CRPS placement in Eq. (4.20) for fixed rthi , rthC , the share from

the positive balance increase (Lemma 4) for the participant i is maximized when

CRPS=0, leading to

si,thACCU(Q,Q) ≥ si,thACCU(Q,P )

with the equality holding iff Q = P . Thus, the reward for i is maximized when the

forecast σ̂i is accurate. □

Note that, to maintain strict propriety, i is excluded from the denominator, lead-

ing to a small surplus of gain not being directly awarded to the participants in the

form of COOPcoins. This weak budget balancedness does not affect the other prop-

erties of our approach, and the surplus can be returned to the actors in various ways

(e.g., via the purchase of new equipment, or as bonus to new members).4

4.2.3 Selection of contributors

As pointed out earlier, it is probable that shifting capacity is larger than the maxi-

mum eligible for profitable actions. In such cases, the cooperative must select only

a subset from the available participants in C to include in shifting operations. The

actual method used for the selection can vary among cooperatives, according to their

4 Alternatively, considering that COOPcoins represent shares, if no surplus redistribution actions
are performed, the result is an increase to the exchange rate between the COOPcoin and the
“external” currency used to pay the cooperative, benefiting this way everyone with COOPcoins in
their possession.
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business plans and policies. In any case, it is to the actors’ best interest to form

reliable cooperatives in order to both achieve gains, and contribute to Grid stability.

Here, we examine three selection methods. The first one, is the same as the Random

method of Section 3.3.1. The other two, rank selection candidates as the rest of the

Section’s 3.3.1 methods do, however, they differentiate in the measure that take into

account to rank them.

• The Random selection method picks contributors uniformly until the required

R̃th
C is covered for each th.

• The Reduction Capacity selection method sorts contributors wrt. reduction

capacity for each shifting interval pair, in an ascending order. Then, it starts

including from the one with the lowest value, until R̃th
C is covered for each th.

The objective here is to include as many contributors as possible.

• The Engagement selection method ranks contributors wrt. their wealth in

COOPcoins. Then, starting from the richer one, it continues with the rest,

until R̃th
C is covered for each th. The intuition is to include active and valuable

members, since the wealth in COOPcoins does not only indicate participation

frequency, but overall effectiveness as well.

Following selection, the accepted contributors are called for action, and rewards

are dispensed after the actions occur. As a final note, the computational complexity

of the proposed DSM mechanism is similar to that of Chapter 3, as presented in

Section 3.5.
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4.3 Experimental Evaluation

In this section we present the dataset and the results from our simulations. First,

we report the origin of our dataset, and describe its augmentations to account for

missing values. Next, we show the different impacts of individual and cooperative

shifting actions, as well as selection methods comparison results; the stability of

our proposed scheme is illustrated with a sensitivity test and, finally, we show how

different COOPcoin reward sharing techniques incentivize statement accuracy.

4.3.1 Simulations setting

Our simulations employ a dataset based on consumption data from Kissamos, a

district of Crete, Greece, and renewable production data from Galicia,5 Spain, both

in 2012. More thorough descriptions of the dataset are given in Appendix A, The

consumption data represent hourly demand from different contract categories, and

include seasonal variabilities.6 In particular, the load profiles come from residential,

commercial, industrial, agricultural, public, and municipal customers. However, due

to the nature of agricultural and municipal demand profiles (i.e. mainly pumps, street

lighting, etc.), which are tasks that cannot be shifted in time, these two categories

do not participate in the prosumer cooperative of our simulation. In total, there are

7,376 prosumers in our setting.

The production data come from real wind generators and solar power plants, and

have been scaled and divided, so as to represent the production of each prosumer.
5http://www.sotaventogalicia.com
6The production and consumption values in a Matlab file format can be obtained from http:

//intellix2.intelligence.tuc.gr/~akasiadi/ProsumerCoop/.

http://www.sotaventogalicia.com
http://intellix2.intelligence.tuc.gr/~akasiadi/ProsumerCoop/
http://intellix2.intelligence.tuc.gr/~akasiadi/ProsumerCoop/
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Prosumers are equipped either with both wind generators and solar panels, or with

a single type of generation only. The average daily prosumer electricity production

in our setting is 7.68kWh. The numerical results presented in this section are aver-

ages over 10 yearly iterations—that is, averages over 10 simulation runs, with each

simulation run encompassing 344 days in 2012.7

External Variable Pricing. Now, as the external currency to our mechanism,

we assume that the NRGcoin protocol is adopted by the market and thus Bsell
t () and

Bbuy
t () are calculated based on the formulations shown in [122]:

Bsell
t (q+t , Q

+
t , Q

−
t ) = (0.1 · q+t ) +

0.2 · q+t

e
(
Q+
t −Q−

t

Q−
t

)2
(4.22)

and

Bbuy
t (q−t , Q

+
t , Q

−
t ) =

(0.65 ·Q−
t ) · q−t

Q−
t +Q+

t

(4.23)

Both billing functions satisfy our assumptions regarding variable pricing, as ex-

plained in Section 4.1.1. The parameter values 0.1,0.2,0.65 are set arbitrarily, so

that Eq. (4.22) and Eq. (4.23) to produce reasonable results. An illustrative example

of the Bbuy
t and Bsell

t values during the eleventh and twelfth weeks of the simulation,

are shown in Fig. 4-3.

Shifting Behaviours. Unfortunately, no shifting costs and capacities were avail-

able in the dataset, and we are not aware of any datasets including such values.
7 Note that since the simulated time horizon extends to a year, all seasonal variabilities and

additional uncertainties (e.g. individual agent availability, individual reduction capacities for each
time interval) are sufficiently taken into account.
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Figure 4-3: Time-series of Bbuy
t and Bsell

t used in the simulation as the Grid’s pricing
mechanism.

Thus, we assumed shifting capacities that were on average 35% of the demand, vary-

ing among categories (e.g. higher for industrial prosumers, and lower for residential

ones).

Shifting costs increase inversely proportionally to the prosumer baseline demand,

meaning that shifting to an interval which typically has less demand, induces in-

creased comfort loss. In this setting, the shifting costs result to an average value of

3.9 profitable interval pairs/day, for each prosumer.

Moreover, participants are divided into two different accuracy classes that de-

scribe the relationship between agent confidence statements σ̂i, and final realized

shifting actions. The first one contains the accurate predictors; this describes the re-

alistic case where agents are mainly confident about their statements, and also have

a high probability to deliver what they promised. The second one, corresponds to the

inaccurate predictors, where prosumers might or might not follow stated forecasts.

For accurate predictors, the confidence statements and the parameters for calculat-

ing the absolute relative error ϵi, are sampled from B(1, 5) and B(4, 2) respectively;

note that the actual rthi is calculated by the product of a sample αth
i and the stated
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shifting capacity r̂thi , i.e. rthi = (1− αth
i )r̂

th
i . For inaccurate agents, confidence state-

ments σ̂i are sampled from a “wider” Gaussian N (0.5, 0.15), and the αth
i parameter

is set to 1− σ̂i. About 50% of the participants in our setting belong to the accurate

class, with the rest being inaccurate agents (since agents are assigned to a specific

class with 50% probability).

Parameters τ and λ. To calculate the τ, λ parameters for each day, we first

determined the average kWh difference between supply and demand, Q+
t −Q−

t , across

the 24 values. Then, τ is placed at the 75% of the distance between the average and

minimum difference value, while λ at the 25% of the distance between the average and

the maximum difference value. Nevertheless, these particular values are application

specific, and other algorithms can be used for their calculation as well, according to

each cooperative’s capabilities and business goals. We now proceed to describe the

numerical results from our experiments.

4.3.2 Individual vs. cooperative action

We first compare two different scenarios, one with the prosumers shifting according

to individually optimized plans, and a second where they shift according to the co-

operative suggestions. Contributors are selected randomly, and everyone is accurate

with respect to their promises and final actions, i.e. no specific “accuracy” classes

are used for this set of experiments. Table 4.1 shows the difference in the total bills

of the prosumers, and the average across all year daily peak-to average ratio (PAR)

values, for the total demand and supply difference, buying, and selling prices.

First, we observe that the “collective bill” when prosumers cooperate drops by
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Table 4.1: Performance of individual and cooperative action.

Method Total bill Avg. PAR Avg. PAR Avg. PAR
difference |Q+

t −Q−
t | Bsell Bbuy

Initial - 1.96 1.28 1.21
Individ. -2.4% 4.75 1.38 1.19
Coop. -4.4% 1.86 1.24 1.19

a factor of 2 (-4.4% vs. -2.4%) compared to its reduction when they do not. Ad-

ditionally, the cooperative approach outperforms individual optimization in terms

of peak-to-average ratio (PAR) values (average across 344 days) for the |Q+
t − Q−

t |

and Bsell columns. Lowering the PAR of |Q+
t −Q−

t | means that demand and supply

difference is flattened, thus less electricity is exchanged to the balancing market, and

consumption of locally produced electricity is promoted. By contrast, the increase

of the PAR for the individual approach shows the scale of the herding effects that

take place. Furthermore, reduction in the PAR value of the selling price when co-

operating, means smaller fluctuations, a fact that allows for more realistic planning.

Lastly, both cooperative and individual optimization leads to buying prices that are

quite stable.

4.3.3 Evaluating contributor selection methods

Henceforth, we assume that each prosumer belongs to the two different accuracy

classes introduced earlier. In this setting, we first evaluate the three different contrib-

utor selection approaches we put forward, namely Engagement, Reduction Capacity

and Random. Table 4.2 presents the (average) total cooperative gains and balance

for 2012, for each of the three proposed contributor selection methods, in NRG coins.
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Table 4.2: Total cooperative gains and balance in 2012 for each selection method
(NRG coins).

Measure Engagement Reduction Capacity Random
Total Coop. Gains 133805.51 123813.43 80714.62

Total Coop. Balance 68116.49 58134.89 15029.42

The prior COOPcoin wealth distribution required by the Engagement selection, is

determined by conducting simulations using Reduction Capacity selection and ACCU

reward sharing. We can observe that Engagement achieves the highest cooperative

gains, and, consequently, the highest cooperative balance. Reduction Capacity also

performs well wrt. gains in NRG coins. Lastly, Random has the worst outcome,

which, nevertheless, is still profitable.

4.3.4 Shifting capacity sensitivity test

In this set of experiments we gradually change the shifting capacity of every indi-

vidual, from -50%, to +50% of their initial, and examine the impacts to the average

individual gains and average coalition sizes during 2012. Note that during all exper-

iments we enforced two constraints: (a) shifting capacity cannot exceed the hourly

demand, and (b) shifting capacity cannot be negative. Results are presented in Fig-

ure 4-4. As we observe, the average size of the shifting coalitions drops when the

shifting capacity of the prosumers increases, for all selection methods. This is natural,

since increase in the shifting capacity helps meeting cooperative shifting requirements

with fewer members. Regarding the individual gains of participants for 2012, we can

see that Engagement and Reduction Capacity selection methods are not significantly

affected by the difference in the shifting capacity of the individuals. Also, differ-
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Figure 4-4: Average individual gains during 2012, and average shifting coalition sizes
vs. shifting capacity changes for all three selection methods.
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ences in the shifting capacity do not induce changes in the selection methods relative

ranking; for all values, Random consistently ranks last, while Engagement produces

higher gains than the Reduction Capacity.

The increase in average individual gain for the Engagement selection is due to

the fact that “better” performing agents are selected continuously, resulting to the

gain being shared by fewer agents. Lastly, when contributors are selected using the

Random method, the average individual gain decreases for higher shifting capacity

percentages. This happens because shifting operations are overtaken by fewer mem-

bers, who, however, are not examined wrt. their truthfulness. Thus, it is highly

probable that the final cooperative shifting actions deviate from those promised,

leading to less overall gain.

Figure 4-5 presents the total cooperative balance in 2012, for different shifting

capacity percentages. As we can see, the balance of the cooperative decreases for

all methods as prosumers’ shifting capacity increases. This can be interpreted if we

consider the average coalition size values from Fig. 4-4: when the number of acting

prosumers decreases, each individual inaccuracy regarding the shifting operation has

a larger impact on the cooperative performance, leading to reduced cooperative gains.

When actors come in large numbers, their individual errors have less impact, since

they cancel out by others to the opposite direction. Regardless of the observed bal-

ance reduction, we can see that Engagement selection method consistently produces

the highest balance, with Reduction Capacity following, and Random producing the

least, irrespective of the way the shifting capacity changes.



4.3. EXPERIMENTAL EVALUATION 175

−50% −40% −30% −20% −10%  0% +10% +20% +30% +40% +50%
1

2

3

4

5

6

7

8

9
x 10

4

N
R

G
 C

oi
ns

Shifting Capacity Difference

 

 
 b

COOP
 Eng

 b
COOP

 RedCap

 b
COOP

Rand

Figure 4-5: Cooperative balance in 2012 vs. shifting capacity changes for all three
selection methods.



176 CHAPTER 4. PROSUMER COOPERATIVES

Engagement selectionReduction Capacity selection Random selection
−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

C
O

O
P

co
in

 w
ea

lth
 d

iff
er

en
ce

 

 
ACCU
PropEst
PropAct

Figure 4-6: COOPcoin total wealth difference between accurate and inaccurate actors
after 344 days.

4.3.5 Reward sharing methods evaluation

Finally, we use the three reward sharing methods with each selection method, in order

to find the one incentivizing accurate statements the most. Figure 4-6, presents the

difference in the total COOPcoin wealth between accurate and inaccurate actors

when using different selection and reward sharing approaches. We observe that,

for every selection method, this difference is higher when the ACCU approach is

used for rewarding. Also, as expected, when using ACCU redistribution combined

with Engagement selection, the difference in COOPcoin wealth between accurate and

inaccurate participants reaches its highest levels. Interestingly, when using ACCU,

accurate participants are rewarded more, even when the selection criterion does not

distinguish between the two classes (i.e., when using Reduction Capacity and Random
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selection). For all these reasons, ACCU is clearly the most effective in promoting

statements accuracy.

4.4 Conclusions

In this chapter, we presented a cooperative prosumer consumption shifting scheme

that employs a distributed cryptocurrency mechanism for the coordination of mem-

bers’ actions. This special purpose cryptocurrency is combined with scoring rules

to incentivize electricity prosumers to offer decentralized and coordinated DSM ser-

vices, and also allows for personalized pricing. We proposed contributor selection and

reward sharing methods which incentivize truthfulness, guarantee increased profits

from the trading of electricity, and help flatten electricity demand curve. By simulat-

ing a Smart Grid setting with prosumers that was based on real-world data, we tested

the proposed reward sharing and participant selection methods. Results show that

the application of our method leads to more stable electricity prices, more balanced

local demand and renewable supply, as well as increased gains for DSM participants.

When incorporating the method that rewards accurate participants the most, and

also use a selection method based on user engagement, the prosumer cooperative

has increased profits. Though illustrated in the domain of prosumer cooperatives,

our approach immediately applies to the broader domain of prosumer virtual power

plants as well.
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Chapter 5

Incorporating EVs and Energy

Storage Systems

In this chapter we deal with the G2V / V2G (grid-to-vehicle / vehicle-to-grid) prob-

lem in modern “smart” grids and microgrids1. In V2G, battery-equipped EVs com-

municate and strike deals with the electricity grid to either lower their power de-

mands or return power back to the network when there’s a peak in the request for

power [147]. G2V is V2G’s reverse problem, in which EVs must connect and draw

power from the grid without overloading it. In such cases, Electric Vehicles (EV) are

connected to the Grid for charging. However, due to the large number of vehicles

expected to occur in the near future, the additional load amount that the Grid is

called to cover is expected to be large enough to create disturbances in the electricity

supply. For this reason, additional techniques and mechanisms need to be developed,

1A microgrid is similar to a Smart Grid, but smaller in size and scale e.g., a small community
of interconnected prosumers [23].

179
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which will properly manage supply and demand for electricity specifically for electric

vehicles whose needs are slightly different from conventional demand [79].

Here, we propose an extension of the DSM schemes presented in the previous

chapters, concerning consumers and prosumers, to also incorporate the augmented

capabilities of EVs, that is the storage of electricity in the vehicle’s battery. The var-

ious energy cooperatives of consumers or prosumers, along with additional renewable

generators that are locally present, are here grouped under the term Microgrid.

In particular, the extended model that incorporates EVs in our setting is shown in

Figure 5-1. We assume the existence of a microgrid that includes consumers (build-

ings and other facilities), renewable energy sources, and EVS, which are linked to

each other via an authority, e.g the DSO or the Microgrid Regulator. The regulator

may additionally import, or export electricity from and to an external power market,

e.g. the Smart grid, where, however, buying and selling prices are worse due to the

use of additional equipment, taxes, etc. [110]. The Microgrid regulator executes a

specific algorithm for V2G / G2V, whose operation we explain later in the chapter.

Arrows indicate electricity flow; note that for the cases of the Smart Grid and EVs,

the flow can be bidirectional. This algorithm constitutes our main contribution in

this chapter, and possesses several desirable characteristics which we analyze below.

It should be noted that the algorithm provides the possibility of importing electric-

ity from the vehicles themselves to share with the rest of the network, whenever

circumstances allow, i.e.:

• When the price for importing electricity from the smart grid are high enough

during a period of time.
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Figure 5-1: Participant types and interactions of the assumed microgrid with
V2G/G2V services.

• There are connected vehicles that are already charged, with an expected dis-

connection time several hours later than that time.

At the heart of the V2G / G2V algorithm there is a process that estimates the most

appropriate time intervals for charging and discharging the battery of the vehicle

according to

(a) short-term electricity generation and demand forecasts;
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(b) input and output power values   from Smart grid; and

(c) the preferences of electric car owners, the expected time they will be connected

to the grid, and their tolerance to power the grid with energy stored in their

batteries.

Therefore, whenever a vehicle is connected to the grid for either charging or dis-

charging, it reports the expected disconnection time, a value representing the target

State-of-Charge SOC value until the expected time, and a V2G cost value for dis-

charging an energy unit from the battery in the interim period. The V2G cost value

represents the willingness of the owner of each vehicle to offer stored energy to the

grid, and it represents the reservation price that was introduced in Chapter 3. If the

network needs energy and it is drained from electric vehicle batteries, the owners are

rewarded according to the stated V2G cost of discharge. The algorithm applies a se-

ries of constraints, which result in the V2G / G2V mechanism choosing the cheapest

source between the Smart Grid and the EVs to import electricity from.

The proposed V2G / G2V algorithm has the following objectives:

1. Increase the reliability of the electricity grid. This is achieved by constantly

checking demand and production balance, taking into account forecasts, and

additional information on the availability of the vehicle batteries that are pro-

vided by their owners. Scheduling is performed on time intervals-ahead basis,

overcoming this way the drawbacks of planning as last minute action.

2. Reduce consumption costs. The Microgrid regulator draws energy from the

most advantageous sources at any moment, based on the current purchase/sale
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prices from each source (Smart Grid, vehicle batteries), thus ensuring the lowest

cost for consumers.

3. Creating new entrepreneurship models. Individual electric vehicle owners, but

also facilities such as parkings, companies with large fleets of electric vehicles,

can benefit from the network by offering stored energy from their vehicle’s

batteries to the grid for a fee.

4. Personalized rewarding. We extend the state of the art by proposing an algo-

rithm that rewards each vehicle for providing stored electricity to the microgrid

during times of renewable production shortage, in a personalized manner. Fur-

thermore, this is performed in a non-intrusive way, and, as such, it allows

independent decision making for the EV owners side.

5. Incorporation of large numbers of EVs. Calculations are simple and increase in

EV numbers and participation is not forbidding for the algorithm to work.

6. Protection of the environment. The smart grid is made up of a large number

of heterogeneous energy sources, possibly including conventional generators,

which harm the environment. The use of stored energy in vehicle batteries

implies that imports from the smart grid will be less, so the operation of pol-

luting sources is limited. Additionally, by having EVs charging when locally

generated renewable energy is available, we promote self-consumption and the

better utilization of renewable energy sources.

The scope of the work presented in this chapter is shown in Figure 5-2.
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Figure 5-2: Overview of the scientific fields, and our contributions in Chapter 5.

As a final note, several smart charging schemes have been applied in the real

world, e.g. the case of Pacific Gas and Electric company.2. Since 2015, the company

created incentives for EV vehicle owners to participate in Demand Side Management

(DSM) programmes. During the first half of related pilots, approximately 20,000kWh

were shifted as a result of EV DSM. This amount is enough to power the electricity

for two homes over one year, thus avoiding costly and carbon-intensive electricity

generation.

The remainder of this chapter is structured as follows: Section 5.1 discusses ex-

isting approaches to the EV charging problem. Section 5.2 introduces the V2G/G2V

algorithm and the additional constraints that should be taken into account when

addressing this problem. In Section 5.3 we present the simulation results, which are

2https://www.engerati.com/article/pacific-gas-and-electric-company-electric-vehicles-grid

https://www.engerati.com/article/pacific-gas-and-electric-company-electric-vehicles-grid
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based on real-world data. Finally, Section 5.4 concludes this chapter.

Parts of the research ideas described in this chapter appeared originally in [11].

5.1 Related Work

The work of [130] presents an extensive review of Smart Grid systems that incorpo-

rate EVs with renewable energy generators and V2G capabilities. The authors also

outline the imminent market changes that will lead to new business opportunities

for EV owners, either individually, or collectively. It is a fact that as the number of

available electric vehicles increases, demand for power also increases. Now, because

driving is closely linked to people’s daily routine, the demand for electricity in the

day often co-ordinates, resulting in a rapid increase in specific time periods during

the day, reaching levels that can not be covered by the available production, the

herding effect. This problem is not new, and several approaches have been proposed

in the past to efficiently schedule the charging and discharging of individual vehicles:

we review some of them below.

Several recent approaches deal with the formation of EV coalitions, to tackle

the aspects of DSM that relate to the V2G and G2V problems (see, e.g., [54, 85]).

The existing approaches, however, typically exhibit the following characteristics: (a)

they either attempt to form coalitions with respect to a single criterion, or employ

lengthy negotiation protocols in order to capture various coalitional requirements

while respecting the constraints of individuals; and (b) they attempt to form optimal

coalitions or coalition structures (i.e., optimal partitions of the agents space), to

maximize the social utility derived by the formation of coalitions. The inherent



186 CHAPTER 5. INCORPORATING EVS AND STORAGE SYSTEMS

hardness of this optimal coalition structure generation (CSG) problem [39], however,

and the fact that negotiation protocols can be time consuming, severely restricts

the practicality and scalability of such algorithms: they can handle at most a few

hundred EVs. In reality though, hundreds of thousands of EVs connect to the Grid,

and could potentially offer their services; and, if the aim is to balance electricity

demand at real time, any such service should be offered almost instantaneously.

For instance, [54] attempts to tackle the optimal CSG problem, and relies on

a heavy agents negotiation protocol to form coalitions among EVs that sell power

to the Grid. Though it is empirically shown to produce solutions that are close

(∼93%) to the optimal, this is when tested in scenarios with a few dozens of agents

only. Moreover, there is only a single formation criterion—namely, the physical

distance among the EVs. In the real world, however, it is imperative that a multitude

of criteria is taken into account—such as capacity, discharge power, charging and

discharging efficiency, and perceived reliability [85]. In the works of [47] and [48],

EVs coalition formation that is able to examine multiple criteria for V2G is provided

via the use of hypergraphs. This coalition formation algorithm is shown to scale

effectively as the number of EV rises. In our approach, we also examine the G2V

possibility.

Now, in many DSM settings, agents might be restricted to interact with only a

subset of other agents in the environment, due to limited resources, or existing legal

and physical barriers. In such settings, the environment can be seen to possess some

structure that forbids the formation of certain coalitions. This can be captured by

an undirected graph providing a path connecting any two agents that can belong to

the same coalition [39].
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In that spirit, the approach of Vinyals et al. [198] constitutes an attempt to solve

the CSG problem over social networks of electricity consumers (such as EVs). Form-

ing virtual energy consumer (VEC) coalitions, it attempts to flatten the demand in

order to get better prices in what could be a G2V arrangement. By solving the CSG,

it finds the best VEC coalition for every consumer on the market; and guarantees

a stable [39] payoff distribution outcome (i.e., one that removes any monetary in-

centives for the consumers to leave their coalitions). Unfortunately, this solution is

shown to work on social graphs with only a handful of agents. In our approach for

forming DSM coalitions, we do not attempt to form optimal coalitions, but rather

efficient and effective ones that can form in a limited time. In contrast to existing

DSM schemes incorporating MD, our scheme can handle thousands of agents.

Lopez et al. [109] present an optimization approach, which takes power distri-

bution factors into account, and by using auctions it manages to prevent demand

congestion. Agents calculate their bids based on bid and ask prices, and consider

that charging / discharging can be done at different rates for each period of time.

The difference with our own method is that uncertainty is not modelled at all. By

contrast, we consider uncertainty over drivers’ preferences, and in order to model it

we ask drivers for information about when each vehicle will be connected.

In [183], a method for real-time charging is proposed. This is achieved by con-

trolling the levels of active and inactive demand using AIMD algorithms (Additive

Increase Multiplicative Decrease) so that a balance is achieved in the network. This

approach is applied to various scenarios through simulations, and the results show

that it performs well, but there is no mention of the cost of energy, a factor that we

consider to be the main concern. A further difference is that in our approach, the



188 CHAPTER 5. INCORPORATING EVS AND STORAGE SYSTEMS

scheduling is done in advance, one day earlier, instead of as means of “last minute

action”.

The work of [57] presents two V2G schemes that are in effect in the real world,

specifically in Brazil. In their analysis, the authors include both battery damage

and photovoltaic production. However, the authors make some very strong consid-

erations, such as that all vehicles are connected the same hours in the day, and that

charging is only between 00:00 and 06:00. In our approach, each driver-electric ve-

hicle owner decides independently on when to connect and disconnect her vehicle,

thus rendering the mechanism non-intrusive with regard to everyday life and habits

of drivers.

Another approach for optimizing the current flow in systems including electric

vehicles based on mixed integer linear programming (MILP), is presented in [76]. Ac-

cording to this method, the production of wind turbines is forecasted and compared

with the storage of electric vehicle fleets. It then optimizes the flow of electricity

by controlling constraints related to the distribution of electricity but also to the re-

sulting greenhouse gas emissions. Although both concern in advance the next day’s

scheduling of the current flow, the main difference of this work from ours is that

static fleets of EVs are being considered, which permanently offer their energy in the

network, without examining cases of dynamic arrival / departure of vehicles.

In an approach more similar to ours, Karfopoulos and Hatziargyriou [87] propose

a distributed cooperative mechanism that achieves the transfer of demand to periods

of lower total demand (valley-filling). This approach takes into account restrictions

on current electricity prices, availability and capabilities of electric vehicle batteries,

and forecasts for power generation from distributed sources. However, their approach
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does not analyze at all the financial gains or incentives of EV owners resulting from

the procedure. Incentives (e.g. monetary, social, etc.) are very important in mech-

anisms that involve the engagement of users, which, in a way, are asked to change

their behavior and their everyday habits [128].

In [88], authors propose an approach for transferring electricity demand from

EV charging by pre-planning. Neural networks and fuzzy logic methods are used

to predict the demand and production levels of each future time. The problem

of smoothing the demand curve is modelled as a 0-1 knapsack on the Microgrid

side, and on the other hand, a gain-cost function is optimized for each EV. In the

approach of [89], a stochastic mechanism based on “Unscented Transformation (UT)”

is proposed. Here, uncertainties about wind turbine generation, as well as the active

demand for vehicle fleets, are modelled, and cost functions are optimized, subject

to limitations to the capacity of each battery and their decay factors. In that work

also, financial incentives are not taken into account, but the importance of modelling

uncertainty is highlighted.

Now, [106] also examines uncertainty, albeit regarding the arrival / departure of

vehicles and models it as a non-stationary Markov chain. The best policy is made

up of two thresholds: when the battery has more load than the upper threshold,

then the vehicle delivers energy, and when lower than the lower threshold, it charges;

at intermediate levels, it does nothing. In our approach, because of restrictions on

renewable production levels, and because of the ranking of each agent based on its

bid price, we do not have to search for an optimal response policy. In addition,

using a dashboard, each driver can provide data regarding the time of departure,

clearing this way out the uncertainties, hence predicting the state of each vehicle is
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not necessary.

In the work of [103], the electricity trade is being considered, in which the partic-

ipating companies also offer V2G capabilities. In their analysis, the cost of supply of

stored energy is examined in conventional facilities, and their equivalence with EVs

offering their battery energy is investigated. The main difference with our approach

is that the EV side has to offer a unique (collective) selling price, whereas in our

case, each owner reports his or her own, thus removing the need for an additional

mediator.

The work of [150] proposes the use of special pricing for V2G participants to

promote user participation. These are calculated by the DSO. According to our

method, participants are rewarded for the supply of electricity, but based on their

own pricing. In cases where those are more advantageous than the Smart Grid’s

power import price, they are included in the mechanism, otherwise they are ignored.

This removes the responsibility of calculating special pricing from the DSO-side, and

simply rewards participants according to their preferences.

A good example of a Mechanism Design approach for G2V is provided by [154],

which details a dominant-strategy incentive compatible (DSIC) online mechanism for

charging EVs. A greedy pre-allocation policy is tuned to guarantee that deviating

from reported values leads to the same, or worst outcomes for the individuals. This

is achieved by cancelling electricity units’ allocations; or by discharging any over-

allocated units before vehicle departure.

Another approach based on game theory is given by [204]. Here, coalitions are

created from e-vehicles that work together to offer V2G services. Each agent (vehicle)

calculates the best response on whether to charge or discharge, given market prices.
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On the basis of these calculations, it either participates in a coalition or decides to

withdraw from it, taking into account the expected profits from the participation of

all members. By contrast, our approach creates a single coalition, including those

who offer bargains. This way the communication burden and the number of messages

exchanged are kept at a very low level. In [205] a group-selling mechanism is proposed

by individual electric vehicles that cooperate following a two-stage auction process.

Initially, group offers are registered, and at asecond level, the network selects the

most profitable ones. The mechanism turns out to be ex-post budget balanced,

individually rational, and promotes truthfulness. This work, however, makes no

mention of levels of renewable energy production, a measure which is key in our

case.

To summarize, our contribution to the state-of-the-art is a day-ahead V2G/G2V

mechanism for microgrids that incorporate renewable generators as a primary energy

source. The V2G/G2V mechanism can incorporate thousands of EVs and carefully

assess individual EV preferences to better utilize renewable production, by satisfying

grid-related and EV-related constraints, and, what is more, reward EVs for offering

their stored energy to the microgrid according to personalized reservation prices.

Also, the algorithm allows participating EVs to connect and disconnect from the

chargers at different time intervals, constituting this way a non-intrusive approach

for the EV drivers.
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5.2 The V2G/G2V Extension

The main steps followed by our V2G/G2V algorithm are three. First, it categorizes

each time interval (in our case, one hour) as peak or non-peak, namely th and tl,

similarly as in the previous chapters. During peak intervals, demand levels of build-

ings and EVs exceed the levels of renewable energy production, and the microgrid

regulator is therefore required to buy electricity from an external source, termed as

the Smart Grid. An additional import alternative, is the charge of EV batteries

that can be offered by V2G services. During non-peak, more renewable energy is

generated than the demand, so the charging of EV batteries could be shifted then

to store the renewable energy excess.

The second step is to rank the peak intervals on the basis of the deficit, and the

non-peak on the basis of the excess. This step is imperative for the mechanism to

determine which time intervals are the most problematic, and then address them

with the corresponding priority.

The last step, and the most complicated one, is to choose the appropriate groups

of EVs which will either (a) delay their charging, or (b) offer their stored energy to

the microgrid, i.e. provide V2G services.

Starting with the time intervals, we first address the one with the highest im-

balances. In the first stage, it is checked whether the EVs themselves generate the

shortage, and if so, their demand is transferred to subsequent non-peak time inter-

vals, as long as they remain connected to the grid until then. This check can be

performed, e.g., by taking into account demand forecasts from EV chargers, and

historical input preferences of participating drivers and their EV parameters (e.g.
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charge/discharge rate, intervals of EV connections, etc.). The satisfaction of this

constraint is ensured by examining the connection indicator matrix, M :

M =


ci1,1 ci1,2 . . . ci1,24

ci2,1 ci2,2 . . . ci2,24
... ... . . . ...

ciN,1 ciN,2 . . . ciN,24

 , cii,t ∈ [0, 1]

where cii,t indicates the expected connection status of the EV during the day i.e.

one value for each of the 24 hourly intervals, for each EV. Intervals to move demand

to are selected in priority, according to the selling price of electricity; the lower the

price, the better for the microgrid regulator.

In the second stage, if there exist connected vehicles with their batteries charged,

and demand for vehicles does not itself create a deficit, vehicles with better offers

than the Smart Grid’s import prices can give the required energy to the microgrid.

For each candidate EV for participation, all relevant limitations are considered, such

as (a) charging up to the required limits to disconnection; (b) doing so in non-peak

time intervals to avoid further imbalances; and (c) the reservation price p̂i,t set by

the owner is lower than that of the Smart Grid’s current import price. The operation

of the algorithm is described by the flow diagram of Figure 5-3. More formally, the

algorithm requires the following input:

1. Estimated microgrid renewable production levels from generator j, q̃+j,t

2. Estimated demand levels from building or infrastructure k, q̃−k,t

3. Prices for importing electricity from the Smart Grid, for each interval, pSGt
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Figure 5-3: Flowchart of algorithm for V2G/G2V services.

And for each EV:

(a) The connection indicators of the EV, cii,t

(b) Estimated consumption induced by charging EV batteries, Ẽ−
i,t

(c) State of Charge of battery upon connection, SOCi

(d) Target State of Charge upon disconnection, SOCi

(e) Reservation price, p̂i,t

(f) Battery capacity CAPi

(g) Maximum charge/discharge rate DRi
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A key measure for the algorithm, is the imbalance between local production and

demand during a time interval t, γt:

γt =
∑
k

q̃−k,t +
∑
i

Ẽ−
i,t −

∑
j

q̃+j,t (5.1)

As a general constraint for the V2G/G2V process, Ẽ−
i,t values cannot exceed the

maximum charge/discharge rate of DRi, since it signifies an upper threshold for

battery charging demand:

Ẽ−
i,t < DRi ∀i, t (5.2)

To categorize the time intervals to th and tl, we subtract the sum of every EV’s

and building’s demand from the sum of renewable generation during a time interval

t, and classify according to the following rule:t ∈ tl, if γt < 0

t ∈ th, if γt ≥ 0

(5.3)

Next, we sort time intervals according to γt, and for each th, sort the EVs according

to their reservation prices p̂i,t. In cases where G2V can be employed to overcome

imbalances—i.e. the demand of EVs themselves induce the imbalance, then for each

connected vehicle from the sorted list we search for non peak intervals to shift charg-

ing to. The additional constraint that must be examined is to find a non peak interval

tl before the time of expected disconnection according to the connection indicators

in M . The next, and the final step for the G2V part, is to check if battery charge

shifting to that particular tl does not change its categorization to be a th, i.e. for an
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EV i,

γt + (SOCi − SOCi) ∗ CAPi ≤ 0 (5.4)

continues to hold. If these constraints hold, the rescheduling is validated, and actu-

ated.

Now, if imbalances are not induced due to EV demand, battery discharging (V2G)

is required to allow the microgrid to balance demand. Here, apart from the demand

for the recharging of the battery before disconnection, similar to the G2V constraint

check process above, an additional constraint must be examined, that is EV’s reser-

vation price p̂i,t, and the Smart Grid import price during that particular th, pSGt :

p̂i,t < pSGt (5.5)

indicating that the price at which the EV provides the energy from its battery to the

microgrid, is lower than the price asked for Smart Grid imports. If the vehicle finally

participates in V2G, the driver is rewarded back according to the stated reservation

price, and to the amount of energy that was granted to the microgrid from the

EV battery. The above procedure iterates for every vehicle and every peak time

interval that has been identified by the microgrid regulator. Note that, for microgrid

cases with really large EV fleets (e.g. tens of millions), fast multi-criteria coalition

formation methods can be incorporated, e.g. those proposed in the work of [48].

In the following section we present the numerical results of the V2G/G2V ex-

tension application, that indicate less Smart Grid imports and increased EV profits

when applied on real-world data.
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Figure 5-4: Hourly aggregate values for a sample day that is produced from the
simulator.

5.3 Experimental Evaluation

The real-world data that constitute the basis of our dataset comes from two differ-

ent sources. One is a renewable energy park in Spain that includes photovoltaics

and wind turbines,3 the one used in Chapter 4 as well. Consumer data, electric

vehicles and buildings demand come from a UK-funded customer-led network revo-

lution (CLNR) project.4 Both datasets are thoroughly described in Appendix A. An

example of demand and production values generated by our simulator for one day

is shown in Figure 5-4. As shown in the graph, at some time intervals, renewable

energy production is more than the demand of buildings and EVs, while in others

less. Also, on this particular day, demand is high at about 17:00 in the afternoon.

According to the original dataset, the cost of microgrid’s consumption for this day

3http://www.sotaventogalicia.com/en
4http://www.networkrevolution.co.uk/resources/project-data/

http://www.sotaventogalicia.com/en
http://www.networkrevolution.co.uk/resources/project-data/
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Figure 5-5: Hourly aggregate values for a sample day that is produced from the
simulator after V2G/G2V is applied.

is shown to be e4,941.52. The number of EV candidates for participation that were

included in the simulation was 1000 vehicles.

Next, we apply the proposed V2G/G2V mechanism, and the charging and dis-

charging of specific vehicles is rescheduled. This has the effect of reducing demand

at some peak time intervals, and increasing to some non-peak. The reprogrammed

consumption profile is such that the production of renewable energy is better uti-

lized. The result of the algorithm using the data of the sample day of Figure 5-4 is

shown in Figure 5-5. As we can see, during peak intervals, demand decreases and is

shifted to non-peak intervals. Importantly, the increase in non-peak is not enough so

as demand to exceed the levels of production. Also, the size of the aggregate demand

without V2G/G2V applied, is equal to the size of the rescheduled demand as in the

results from the V2G/G2V application, meaning that no vehicle has remained with

a charge that is lower than the levels desired, despite the involvement of some of
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them in the mechanism.

In addition, the cost of microgrid’s consumption dropped from e4,941.52 to

e4,868.34, resulting in a profit of e73.18, or 1.4% of the initial cost. It is also

worth mentioning that part of this amount was given back to the end-users as a

payment for the electricity they supplied by discharging their batteries.

5.3.1 Simulation over a one-year time horizon

In this part, we run the daily simulations for 365 days, and observe the average indices

over the year. Figure 5-6 shows the average initial consumption, reprogrammed

consumption curves and renewable generation levels. As we can see, consumption

curves generally vary, depending on whether the initial consumption is higher or

lower than the total output. Exceptions are the time intervals 18-24, where due to

the scheduling horizon length (24 hours) and the particular set of data, it is not

possible to find suitable later non-peak intervals to transfer the consumption to.

This issue can be solved easily, either by increasing the scheduling horizon, or by

executing the algorithm twice a day, in partially overlapping periods of time. In any

case, however, in the “final” time horizon, this phenomenon will still be displayed. A

more detailed view of the original and reprogrammed vehicle consumption is given in

Figure 5-7. Regarding the microgrid’s total energy costs i.e., the required funds for

importing energy from the Smart Grid during the 365 days of V2G/G2V application,

it decreased from e1,951,125 to e1,932,206, resulting in a profit of e18,919 in total,

a decrease of 0.9%. The average profit per day is e51.83.

Turning now to the gains of vehicle owners in their total, with average values per

participation, the results are shown in Table 5.1: As we can see, EV owners that
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Figure 5-6: Daily mean and standard deviation values from the 365 days simulation.

0 5 10 15 20 25
0

500

1000

1500

2000

2500

Time Intervals (Hours of Day)

E
ne

rg
y 

(k
W

h)

 

 

Total Demand (EV)

Rescheduled Total Demand (EV)

Figure 5-7: Daily mean and standard deviation from EV demand values of the 365
days simulation.
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Table 5.1: V2G participations—energy from batteries only.

No. of participations (daily avg.) 44588 (122.15)
Avg. reservation price of accepted offers in euros 0.082
Avg. rescheduled load per participation in kWh 6.89
Avg. profit per participation in euros (percentage of daily cost) 0.56 (0.01%)
Total profit for 365 days in euros 25.302,07
Total cost of shifted demand in euros 3.073,15
Actual profit for EVs in euros 22.228,91
Profit percentage wrt. initial cost 1.29%

Table 5.2: Imports and exports of energy.

Initial levels Levels with V2G/G2V Diff. (%)
Avg daily imports from SG (kWh) 42.706,38 42.116,73 -1.38
Avg daily microgrid renewable excess (kWh) 6.942,17 6.352,53 -8.49
Yearly energy imported from SG (kWh) 15.587.830 15.372.610 -1.38
Yearly daily microgrid renewable excess (kWh) 2.533.894 2.318.673 -8.49

participated in V2G, managed to achieve significant monetary gains, by rescheduling

only 6.89 kWh per participation on average.

Next, regarding results of the imports and exports of electricity, we present the

values before, and after the implementation of the V2G / G2V algorithm; Figure 5-

8 shows the input levels (time intervals for which the curve is greater than zero)

and the output (time intervals for which the curve lies below zero). Note that after

the implementation of V2G / G2V, the difference is closer to zero, reflecting the

balancing between consumption and production levels of renewable. This results in

a more efficient absorption of renewable energy, and in reductions of imports from

external networks. Cumulative results for the 365 days simulation are shown in

Table 5.2.
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Figure 5-8: Typical daily imbalance curve during the year.

Finally, we note that the average time for the algorithm to run for one day is 0.41

seconds.

5.3.2 EV reservation prices sensitivity test

In this simulation setting, we add a factor (termed as reservation price offset) to

the cost of each vehicle owner so that we can observe the earnings of the microgrid

based on this change. Specifically, in subsequent iterations, we add to each agent’s

reservation price 5 (each electric vehicle, every hour of the day) a value starting at -

0.06 and reaching up to +0.025, with a 0.005 increment per iteration. The results are

shown in Figure 5-9. As a matter of fact, the lower the owner costs, the greater the

cost savings for the microgrid regulator’s perspective. However, if reservation prices

5Recall that an agent’s reservation price is the price the EV owner charges for providing one
kilowatthour of energy from the EV’s battery to the microgrid.
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Figure 5-9: Daily microgrid gain vs. EV reservation prices offset.

rise significantly i.e., as we move to the right on the x-axis, then Smart Grid input

is more advantageous, and none of the EV’s batteries are selected for discharging.

Moreover, we observe that although reservation prices may significantly increase

after some point, a profit still exists. This (much smaller) profit is generated by the

application of the G2V part of the mechanism, i.e. shifting demand of EVs at later

time intervals when renewable generation is in abundance.
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Figure 5-10: Average time for the calculation of daily consumption rescheduling as
the number of incorporated EVs rises.
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Finally, Figure 5-10 shows the average time in seconds for running the proposed

V2G/G2V algorithm. We can see that the algorithm scales well (less than two

minutes) for rescheduling the daily consumption patterns even when one million EVs

are present in the microgrid.

5.3.3 Performance comparison

Here, we compare the performance of the proposed V2G/G2V algorithm with an

already existing charging/discharging optimization method found in literature, that

of [87]. This method, termed as V2G/G2V-OPT, formulates the problem using

mathematical programming, and assumes an iterative procedure where each EV op-

timizes a day-ahead its charging/discharging curve based on a virtual price signal.

Note that this virtual price is not related to the actual individual costs of EV owners,

and is based on the difference between the locally produced renewable energy and

the imports from the Smart Grid. As renewable excess increases among time inter-

vals, the virtual price gets lower, guiding this way EVs to discharge during intervals

with higher virtual prices, and to charge when these are lower. In this experimental

setting, due to the fact that according to V2G/G2V-OPT each EV solves an op-

timization problem—one per iteration until the algorithm converges, and that our

simulations were executed on a single computer, we drop the number of EVs to 30,

50, and 100, respectively, in order to allow the simulations to complete within a

reasonable time frame. Results are shown in Table 5.3.

As we can see, both approaches manage to reduce microgrid energy imports from

the Smart Grid and to increase the utilization of locally generated renewable energy,

performing better as participating EVs increase in numbers. We can also see that the
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Table 5.3: Shifting performance of the most active participants per consumer class
and coalition formation method, over 100 days.

Measure Num. of EVs V2G/G2V V2G/G2V-OPT
Average reduction in 30 0.05 0.46

microgrid daily imports 50 0.16 1.00
from Smart Grid (%) 100 0.37 1.86
Average reduction in 30 0.07 0.72

microgrid daily renewable 50 0.33 1.99
energy excess (%) 100 0.74 3.75
Average microgrid 30 1.02 -890.00
daily gains from 50 1.01 -1411.00
rescheduling (e) 100 2.38 -2848.88

Average execution time per EV (sec) 7.2 · 10−5 5.07

V2G/G2V-OPT method is more effective with respect to these two measures. How-

ever, this performance improvement comes with an increased cost for the microgrid

side, as result from the rescheduling. This is natural, since V2G/G2V-OPT does not

account for EV reservation prices at all. On the contrary, our V2G/G2V algorithm

effectively constraints negative microgrid gains, and guarantees that there will be

profit from the rescheduling operations, both for the EV side, and as concerns the

microgrid regulator as well. Additionally, V2G/G2V is significantly faster than its

V2G/G2V-OPT alternative, indicating that it can incorporate really large numbers

of EVs without requiring strong computational power from the EV side. Note that,

although centralized by formulation, V2G/G2V can be executed in a decentralized

fashion as well, using e.g. a blockchain-oriented protocol as proposed in Chapter 4.
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5.4 Conclusions

In this chapter, we studied the incorporation of a V2G / G2V mechanism for EVs in

DSM, which helps to balance demand and production from renewable energy sources

in day-ahead planning in smart electricity networks. The algorithm asks drivers to

state the vehicle’s connection / disconnection schedule, as well as a personal energy

reservation price for discharging batteries and providing power to the grid. After

checking relevant limitations, such as the duration of each vehicle’s electrical connec-

tion, the cost of discharging, the energy costs from external imports, and the next

day’s demand and production forecasts, vehicle batteries either delay their charging,

or offer part of their stored energy to the grid. This results to increased use of the

microgrid’s renewable resources, and to reduction in imports from external energy

sources. Upon participation, the owners of EVs are rewarded, without impacting the

comfort of using the vehicle. Results from an experimental simulation process based

on real-world datasets, showed the benefits of using V2G/G2V mechanisms with re-

spect to both monetary and environmental concerns, since renewable self-production

is better utilized.



Chapter 6

Machine Learning for Enhanced

Cooperative Performance

In order for agent cooperatives to be functional, efficient, and profitable, they need

to take business decisions regarding which members to include in consumption shift-

ing coalitions, from a very large set of available end-users. These decisions naturally

depend on the abilities (e.g., electricity production or consumption reduction capaci-

ties) of individual agents. These abilities need to be either monitored by some central

cooperative-managing agent, or need to be truthfully and accurately communicated

to it. However, it is clear that in the large and dynamically changing scene of the

Smart Grid, trust between selfish agents is not implied, and must be guaranteed.

As extensively mentioned in this dissertation already, mechanism design and related

approaches attempt to build trust among cooperative members, via providing them

with the incentives to truthfully and accurately report their intended future actions,

along with their corresponding uncertainty regarding those actions [7, 40, 96, 155].

207
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Unfortunately, even if participating agents are perfectly truthful regarding their abil-

ities and corresponding uncertainty, their reports and estimates can still be highly

inaccurate. This can be due to, for example, communication problems, malfunc-

tioning equipment, or prejudiced beliefs and private assumptions—e.g., a truthful

reporting agent might be overly pessimistic or optimistic.

As a result, monitoring the performance of individuals and correctly predicting

their future contributing potential is of utmost importance to a cooperative or an or-

ganization relying on the services of selfish, distributed, autonomous agents. To this

end, several approaches try to explicitly estimate agent electricity consumption and

production amounts, by incorporating prediction models that rely on agent geograph-

ical location and weather forecasts, or the processing of macroeconomic data [84, 136].

Although their results are promising, such methods cannot immediately predict the

actual behaviour of a specific agent, which might be motivated by private knowledge

or business concerns, neither do they account for errors due to equipment malfunc-

tion. By contrast, this chapter proposes the application of generic prediction meth-

ods, which are nevertheless able to adapt to a specific agent’s behaviour regarding

the promised and final consumption shifting actions. These techniques could also

be used to assess the reliability of the stated preferences and constraints of the EV

drivers that were used as input in the coalition formation algorithm of the previous

chapter (though we did not employ them in that context of this thesis).

In more detail, the techniques presented in this chapter are incorporated within

the effective mechanism of Chapter 3, that promotes the formation of agent coop-

eratives for power consumption shifting. Taking that specific model for granted,

we now showcase the use of machine learning methods to keep track of the pa-
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rameters that best describe agent behaviour, and effectively estimate actual future

agent performance. These techniques are able to not only fit the dynamics of the

processes governing agent performance, but can also imbibe the potential errors of

electricity metering or information transmission devices. In particular, we adopt the

Histogram Filter (HF) [189], a method that estimates the underlying distribution of

agent behavior using past occurrences, and three regression techniques, i.e. Gaus-

sian Processes for regression (GP) [144], k-Nearest Neighbours Regression (k-NN),

and Kernel Regression (KR) [63, 75], which receive as input agent stated estimates

regarding their future behavior, and regress using past observed occurrences to pro-

vide a prediction. These predictions represent the future actual actions of agents

that participate by large numbers in cooperatives and offer electricity demand man-

agement services. Broad user involvement in electricity demand shifting is crucial,

because during peak times the amounts of load required to be shifted or curtailed by

the power grid is in general quite larger than the total demand of a single consumer.

Thus, in order to gather enough shifting capacity, the cooperative must consider as

many candidates for participation as possible.

The methods that we adopt here are very generic, and have wide areas of appli-

cation. Their employment in the power consumption shifting domain ensures that

member agents can be ranked by the cooperative according to their perceived con-

sumption shifting capabilities; and thus untruthful or inaccurate agent statements

regarding their capacity and corresponding uncertainty will not be able to jeopar-

dize the stability and effectiveness of the overall mechanism governing the cooperative

business decisions (e.g., which agents to select for consumption shifting at a given

point in time). This is key for the economic viability of any such cooperative.
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To the best of our knowledge, ours is the first work to use filtering and regres-

sion methods for assessing the performance of autonomous, economically-minded

agents participating in Smart Grid cooperatives or other such entities. Our simu-

lations demonstrate that employing any of the methods tested leads to improved

performance in the consumption shifting domain, when compared to the “baseline”

mechanism of Chapter 3 that makes no use of such prediction tools. Specifically,

when using these enhancements, the cooperative achieves higher overall electricity

consumption reductions; and enjoys financial rewards that are higher than those

generated by the baseline algorithm.

All methods appear to be able to provide reasonable predictions regarding the

actual performance of individual agents, given the agents’ stated intended actions

and related uncertainty. As such, the efficiency of these machine learning methods is

not restricted in the demand management and peak-trimming domains, but they can

arguably be readily employed to monitor the trustworthiness of electricity producers’

statements regarding their intended actions. Additionally, the aggregation of the

individual agent values by the cooperative has certain advantages. Apart from the

fact that the Grid has to deal with a single entity instead of hundreds, or thousands

(individual agent numbers), we also showcase the high prediction accuracy in the

aggregate cooperative forecasts, despite the presence of inaccuracies in the individual

agent predictions. In a nutshell, our results indicate that the techniques examined in

this chapter are strong candidates for monitoring and predicting the trustworthiness

of selfish agents in the Smart Grid. We thus believe they deserve to be further

evaluated in this direction, since they can bring tangible benefits to business entities

operating in this domain. Figure 6-1 summarizes the combined scientific domain and
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Figure 6-1: Overview of the scientific fields, and our contribution in Chapter 6.

contribution.

The rest of the chapter is structured as follows. Section 6.1 describes past related

work. Section 6.2 describes the adopted methods and their application to our problem

in detail. Section 6.3 presents our simulations on a large, real-world dataset, and the

experimental results. Finally, Section 6.4 concludes.

Parts of the research described in this chapter appeared originally in [8] and

in [13].

6.1 Related Work

Here, we briefly review some work on machine learning methods that are used to

make predictions in Smart Grid settings. To begin, there is a number of past studies
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incorporating methods for forecasting the electricity demand in power networks. For

example, in [151], authors employ Support Vector Regression to forecast building

consumption in an urban energy management setting. Artificial Neural Networks

(ANN) are reported by [206] to also be appropriate for forecasting electricity de-

mand, however they require fine-tuning procedures, which might not be easy to

perform in some cases. The work of [30] presents an algorithm to predict the usage

of household appliances, and therefore the demand of the household in a real-word

setting. The authors of [174] investigate the impact of measurement aggregation in

the prediction accuracy of two demand forecasting methods, the Holt-Winters, and

the Seasonal Naïve. In our work, we predict the future shifting behavior of agents that

form cooperatives and participate in a DSM scheme. Agents interact with the Grid

collectively, thus aggregation of future statements regarding shifting actions comes

natural; and by also adding machine learning approaches for prediction we come up

with results of high precision. As our experimental results show, although individual

forecasts might not be very accurate and precise, the aggregate load finally shifted

by a cooperative is very close to the expected value.

Approaches for forecasting the production of electricity have also been examined

in the past. For example, the work of [170] combines machine learning techniques and

weather forecasts to predict the output of solar power generators. Authors in [188]

also predict the output of photovoltaic (PV) panels using an ANN with input the

current and past power measurements, as well as the air and panel temperatures.

The approach of [37] uses autoregressive time-series to model the probability density

function of a PV’s production levels. Machine learning techniques have been used in

the realistic Smart Grid market simulator ‘powerTAC’ [90] as well. Specifically, the
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work of [34] incorporates Gaussian Processes (GP) to predict electricity demand; and

the approach of [46] uses ANNs, Decision Trees, and Linear Regression to predict

prices in the wholesale market. Supervised machine learning has been applied for

predicting the levels of user comfort when altering the usage patterns of devices,

in order to seamlessly achieve more energy efficient operation [104]. A comparison

of the performance of three approaches is presented, a Support Vector Machine, an

ANN, and a Naive Bayes, and results show that even with small numbers of training

samples, high overall accuracy can be achieved.

A system for predicting the output of renewable energy resources is proposed in

the work of [136]. Authors utilize non-linear approximation components to offer a

low-cost web-based tool for forecasting the production levels of wind turbines and

photovoltaic generators.

The work of [44] deals with the problem of estimating the actual electricity de-

mand, during DR procedures. Estimating the actual demand during DR is not so

straightforward as estimating the baseline demand, due to lack of historical data, and

due to the concept drift that is implied, i.e. two different consumption strategies,

during baseline and during DR. So, authors examine ways to effectively estimate

these values, by comparing some simple averaging of historical measures methods.

The performance produces low error levels, however, authors argue for an ensemble

prediction method that adapts accordingly.

In our work here, we enhance the scheme presented in Chapter 3, by proposing

four distinct prediction techniques that predict the power consumption shifting efforts

of participating agents. When an agent shifts some load, its prior statements and

final actions are monitored, and a corresponding model is induced. Then, instead of
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only taking individual statements into account, the learned model is used to better

predict individual agent and cooperative action quality, and thus, improve monetary

benefits and general performance.

6.2 Method Description

To begin, we denote the actual amount of load reduced by rthi . In general, it can be

assumed to be provided by a transformation of the stated r̂thi amount:

rthi = αir̂
th
i (6.1)

with the (observed) ‘accuracy factor’ αi corresponding to a random variable charac-

terizing the accuracy of the statement regarding the promised shifting amount. This

variable follows some unknown probability distribution.

Let σ̂i denote the stated variance of agent’s i relative error between stated and

final actions;1 the objective of our work in this section is to find a regression function

f such that f(σ̂i) is a ‘good approximation’ of the ‘accuracy factor’ αi, i.e., α̃i = f(σ̂i)

and αi are close in some sense. We can then use this estimate to obtain our trusted

index r∗i,th as follows:

r∗i,th = α̃ir̂
th
i

Given all underlying uncertainty, an individual agent’s final behaviour most likely

corresponds to a complex, non-linear function of its past behaviour. This is translated

1Recall from the previous section that σ̂i models the uncertainty regarding the reduction capacity
of each agent i.
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into a highly non-linear (unknown) function f in our regression model α̃i = f(σ̂i).

We choose to test four different approaches that are able to provide an estimate ãi,

given σ̂i and a set of T past observations D = {(σ̂−T
i , α−T

i ), . . . , (σ̂−1
i , α−1

i )}: (i) the

Histogram Filter (HF) [189], (ii) an approach utilizing a Gaussian Process (GP) [144],

(iii) one using k-Nearest Neighbours (k-NN) regression [63], and (iv) one using Kernel

Regression (KR) [75]. These methods are chosen among others due to their ability to

fit any relationship, either linear or non-linear, between the variables of the model.

Additionally, k-NN and KR are (weakly) universally consistent methods; in words, as

the size of the dataset increases, the precision of the estimates increases as well [75].

Here, we must note that these methods require an adequate amount of historical

data collected, in order to obtain enough information to create reasonable predictions.

To this purpose, the conservative estimate can be employed at first, and then get

replaced by one of the proposed methods once enough data is available.

The GP uses historically observed pairs of agent statements and final actions

values to fit normal distributions for the underlying random variables for each state-

ment value. The HF ignores user stated uncertainty over the performance and takes

into account only past observations for its predictions. On the other hand, the rest

of the chosen methods assume that final actions are functions of user stated uncer-

tainty, and perform accordingly. All four methods are generic, with very wide areas

of application. Moreover, not only are they able to fit the dynamics of the processes

governing agent performance, but can also imbibe the potential errors of electricity

metering or information transmission devices. Here we employ them to enhance the

performance of our energy consumption shifting mechanism. By so doing, more ac-

curate agent rankings can be obtained, and inaccurate statements will not be able
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to jeopardize the stability and effectiveness of the mechanism. We now describe

methods that we examine, and their application to our setting in detail.

6.2.1 Histogram filter

Assume that for each of the agents, the accuracy factor αi is bounded below and

above by Li and Ui respectively, i.e., αt
i ∈ [Li, Ui], for all t ∈ {1, 2, . . . }. Histogram

filters partition the interval [Li, Ui] into a set of K disjoint bins [lik, u
i
k] such that:

[Li, Ui] = ∪K
k=1[l

i
k, u

i
k]

The HF uses a histogram to map a probability pk to each of the K bins [lik, ui
k]. The

value of each pk depends on the frequency of the observations in the range of bin k.

With this approach, agent forecasts σ̂i are completely ignored and only past

observations of αi are taken into account. Every time an agent participates in a

consumption shifting coalition, its actions are monitored and stored. A histogram

is calculated over the set of available observations. Then, according to each bin’s

height, a colored roulette wheel is constructed that can be sampled to obtain the

most probable ranges of αi, i.e. the more frequent values appear in a bin the more

probable its range is selected. So, we sample the corresponding roulette wheel, and

come up with a specific bin. The final α̃i estimate is another sample from a uniform

distribution normalized to have range equal to that of the bin obtained, i.e.:

α̃i ∼ U(lik, ui
k)
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The advantage of HF is that it requires no prior knowledge about the form of the

distribution that αi follows, and adapts effectively to all kinds of non-linearities [189].

On the other hand, it needs a number of measurements before it starts working

accurately and performance might be unacceptable in initial stages with no actual

measurements. Another drawback is that if the distribution changes over time, the

length of a history window must be re-set, in order to get rid of expired measurements

interference. Also, it does not take into account the observed error standard deviation

σ̂i that is, the agent-stated confidence.

6.2.2 Gaussian process filter

Here we describe the application of Gaussian processes for probabilistic regression,

to construct a regressor that is used for monitoring and prediction purposes.2 Given

a set of training samples, D = {(xj, yj), j = 1, ..., n} (xj inputs and yj noisy outputs)

we need to predict the value of y∗ for an input vector x∗. We assume the following

model:

yj = f(xj) + ϵj, where ϵj ∼ N (0, σ2
noise)

with σ2
noise the variance noise.

GP regression is a Bayesian approach that assumes a priori that function values

follow: p(f|x1,x2, ...,xn) = N (0, K) where f = [f1, f2, ..., fn]
T is the vector of latent

function values, fj = f(xj) and K is the covariance matrix that is computed by
2Note that in a previous short paper [8], we also explored the use of GP-UKF, an unscented

Kalman filter combined with Gaussian process regression. However, in order to exploit the full
power of that technique, in reality one needs to have access to a realistic model of the stochastic
dependencies among the past σ̂i agent statements. Without such a model, one cannot observe
significant differences between using GP-UKF and GP alone.
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a covariance function Kjk = k(xj,xk). The joint GP prior and the independent

likelihood are both Gaussian with mean and variance as follows:

GPµ(x∗,D) = K∗,f (Kf,f + σ2
noiseI)

−1y (6.2a)

GPσ(x∗,D) = K∗,∗ −K∗,f (Kf,f + σ2
noiseI)

−1Kf,∗ (6.2b)

GPs also require value assignments to the vector θ = [W σf σnoise] that contains

the hyperparameters, with W holding the distance measure of each input in its

diagonal, σf being the variance of the input and σnoise the variance of the process

noise. We can find the optimal values for θ by maximizing the log likelihood:

θmax = arg max
θ

{log(p(y|X, θ))} (6.3)

In our application setting, x∗ is the reported agent confidence σ̂i for the interval

under examination, and D = {(σ̂−T
i , α−T

i ), . . . , (σ̂−1
i , α−1

i )} the T pairs of past agent

values. Finally, the estimate of future agent behavior can be calculated by:

α̃i = GPµ(σ̂i,D) + uτ (6.4)

with noise uτ following N (0, GPσ(σ̂i,D)). Note that this approach takes into ac-

count agent statements regarding their uncertainty, σ̂i, thus incorporates more prior

information than the HF approach. Also, the matrix inversion due to the term

(Kf,f +σ2
noiseI)

−1 results to a cubic computational complexity in order to obtain the

predictions.
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6.2.3 k-nearest neighbours regression

Nearest Neighbor methods are among the simplest of all machine learning algorithms.

The idea is to memorize the training set and then to predict the value on any new

input instance on the basis of the values of its closest neighbors in the training

set [63].

More formally, let D = {(xj, yj), j = 1, ..., n} be a sequence of training examples.

For each x, let π1(x), . . . , πn(x) be a reordering of {x1, . . . , xn} according to their

distance from x, d(x, xi); d is any distance(metric) function. That is, for all i < n,

d(x, xπi(x)) ≤ d(x, xπi+1(x))

For a number k, the k-NN rule for regression is defined as follows:

• Input: a training set D = {(xj, yj), j = 1, ..., n} and a query point x

• Output: return fk-NN(x) =
1
k

∑k
l=1 yπl(x)

As previously for the GP, here, the query point x is the reported agents’ confi-

dence σ̂i for the interval under examination, and D = {(σ̂−T
i , α−T

i ), . . . , (σ̂−1
i , α−1

i )}

consists of the T pairs of past agent values. Let π1(σ̂i), . . . , πT (σ̂i) be a reordering

of {σ̂−T
i , . . . , σ̂−1

i } according to their distance d(σ̂i, σ̂
−t
i ) = |σ̂i − σ−t

i | from the target

point σ̂i.

The estimate fk-NN(σ̂i) in calculated as the average of the k nearest values of

α
−πl(σ̂i)
i as

α̃i =
1

k

k∑
l=1

α
−πl(x)
i (6.5)
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The main computational load in the calculation of fk-NN(σ̂i) is the calculation of

distances between the query point σ̂i and all samples σ̂t−
i , t = {1, . . . , T} in the

training set D. We discuss the choice of k in the experimental section. We just

mention that for the k-NN to perform well in practice the fraction k
T

should tend

to 0. In words, k
T

→ 0 implies that the samples in the training set and the size

of the neighborhood are such, that local changes in the distribution of σ̂i’s can be

effectively captured by k-NN.

The graph of the function fk-NN(·) is “bumpy”, since fk-NN(x) is discontinuous

in x. To see this, consider the simple case of a dataset D with n pairs (xj, yj)

of scalar values. As we move from a query point x from left to right, the k-nearest

neighborhood remains constant, until a point xi to the right of x becomes closer than

the furthest point xi′ in the neighborhood to the left of x, at which time xi replaces

xi′ . The average in 1
k

∑k
l=1 yπl(x) changes in a discrete way, leading to discontinuous

fk-NN(x).

6.2.4 Kernel regression

Now, the discontinuity of fk-NN(x) can be tackled. Rather than give equal weights to

all points in the neighborhood of point x, we can assign weights that die off smoothly

with distance from x. This is the approach taken in the so-called Nadaraya-Watson

(NW) kernel weighted regression, presented in [75]. Specifically, continuing with the

same set up as in k-NN regression, i.e., a set of training samples D and a query point
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x ∈ Rd, in kernel regression we consider the weighted average of the form

fNW(x) =

∑n
i=1Kh(

x−xi

h
)yi∑n

i=1Kh(
x−xi

h
)

(6.6)

where Kh : Rd → R is the kernel function, and h > 0 a bandwidth.

There are a number of details that one has to attend to in practice when using

the kernel regression approach:

• The bandwidth h has to be determined. Large h implies lower variance (av-

erage over more observations), but higher bias (we essentially assume the true

function to be constant within the window).

• The observation weights induced by the kernel; there are many choices for

Kh(·), some of them having bounded support (for example the Epanechnikov

kernel or the tri-cude function) and others not (for example the Gaussian ker-

nel) [63].

As in k-NN, the query point in this section x is the reported agents’ confidence

σ̂i for the interval under examination, and D = {(σ̂−T
i , α−T

i ), . . . , (σ̂−1
i , α−1

i )} consists

of the T pairs of past agent values. The estimate fNW(σ̂i) in calculated as:

fNW(σ̂i) =

∑T
t=1Kh(

σ̂i−σ̂−t
i

h
)α−t

i∑T
t=1 Kh(

σ̂i−σ̂−t
i

h
)

(6.7)

The main computational cost in kernel regression is the calculation of distances

between the query point σ̂i and all samples σ̂−t
i , t ∈ {1, . . . , T} in the training set

D.
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6.3 Experimental Evaluation

In this section we conduct extensive simulations of our scheme on the real-world con-

sumption patterns of the dataset used in Section 3.6.1. We compare the results of the

collective consumption shifting procedure, when employing the proposed techniques

for monitoring and prediction.

Agent statements and final shifting actions

We need a model to describe how (i) the agent statements on their uncertainty

regarding shifting capacities at th occur; and (ii) their actual, final shifting actions

occur. To this end, we define four agent classes; the first one, denoted as UU,

describes the most uncertain setting where participants have equal probability to

state any σ̂i value, and also equal probability to deliver any αi, that is both variables

follow a uniform distribution, and are independent. The second one, denoted as BB,

describes the realistic case where agents are mainly confident about their statements,

and also have a high probability to deliver what they promised. In the BB class, the

stated error standard deviation σ̂i and the observed αi accuracy factor follow two

Beta distributions, B(1, 5) and B(4, 2) respectively. We choose Beta distributions

primarily because they are very good at representing and updating probabilistic

beliefs regarding potential behaviours, as also manifested by their widespread use

for simulating behaviours and uncertainties related to real world scenarios (see, e.g.,

the work of [96]). The use of the particular two aforementioned Betas corresponds

to error statements having a low mean of = 1
6

(i.e., to agents stating high certainty),

whereas the final observed accuracy factor is closer to 1 (implying increased actual
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Figure 6-2: Probability density functions of agent behaviors.

performance effectiveness).

The third agent class is the GG, where consumers might or might not follow stated

forecasts, so αi and σ̂i, although independent, both follow the same Gaussian—i.e.,

the N (0.5, 0.15) distribution.

Finally, the last agent behavior class that we consider is the 1-G, which is the

only case where agent statements and final actions are not independent. In particu-

lar, agent statements σ̂i are sampled from a Gaussian distribution, i.e. N (0.5, 0.15),

however, the αis are calculated by subtracting the σ̂i from 1. In this way, we model

a specific underlying relationship between agent statements and final actions. The

distributions that we use in our evaluation are depicted in Fig. 6-2. Table 6.1 sum-

marizes the parameters and distributions associated with every class of agents be-

haviour.

We believe that BB and GG sufficiently capture two realistic, highly plausible

scenarios of agent behaviour. Of course, the underlying models of agents behaviour



224 CHAPTER 6. ML FOR ENHANCED PERFORMANCE

Table 6.1: Behavioural classes of the scheme participants used in the simulation.

Class Parameter Distribution

UU σ̂i U(0, 1)
αi U(0, 1)

BB σ̂i B(1, 5)
αi B(4, 2)

GG σ̂i N (0.5, 0.15)
αi N (0.5, 0.15)

1-G σ̂i N (0.5, 0.15)
αi 1−N (0.5, 0.15)

could follow any other distribution as well, this is why we also incorporate the UU

and 1-G agent behavior.3 However, these behavioural classes are less interesting since

their behaviour is easier to predict; and, moreover, they are likely in practice, as (i)

in realistic settings, errors do occur, while (ii) if predictions are highly inaccurate,

the agents would most probably be acting upon them already, to avoid penalties. In

the following, we simulate five scenarios where we change the agent behavior classes

for each case.

6.3.1 Evaluation of monitoring techniques

To begin, we provide some details regarding the implementation of the simulations,

which were conducted in Matlab, using a 3GHz CPU, and 4GB of RAM. The HF

approach is taylor made for our needs, using standard Matlab methods. For the GP

implementation, the GPML Toolbox [149] was used, with a composite mean function

(sum of linear and constant), isotropic Matern covariance, and Gaussian likelihood.

3For instance, in [8], the classes of accurate and inaccurate predictors were also introduced.
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The k-NN method was a custom implementation using the euclidean distance, and

k =
√
n, where n = 100 the number of past samples. Finally, the KR method is

custom made as well, using h = 1 as parameter value, and the exponential kernel.

To test-evaluate the performance of the HF and GP techniques, we first applied

them on a single agent of the BB class, trained over 1000 past value couples that were

generated using the same distributions as in the simulation. Figures 6-3 and 6-4 show

the outcomes for the HF and GP, respectively. We can observe that although the

HF does not take into account agent σ̂i statements, it fits well to the real underlying

distribution.4
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Figure 6-3: Histogram with 8 bins and corresponding roulette wheel.

The GP, on the contrary, does take agent commitments into account. As we can
4Recall that in the BB setting, the σ̂i, αi values are statistically independent.
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Figure 6-4: GP fits. Illustration of GP training for two non-linear cases.

observe in Figure 6-4a, the GP fit an arbitrary noisy non-linear scenario, proving

that non-linearities can be handled. Fig. 6-4b presents the trained variances and

means for a typical agent participating in the cooperative shifting process for the

setting where σ̂ and αi follow B(1, 5) and B(4, 2) respectively. In this case, there

is no function of a specific known form for the Gaussian process to approximate,

as the points are both random variables following different distributions. Despite

that, GP has converged to some relationship between input and output values. We

can infer that this estimated complex function is meaningful, by the fact that most

‘test points’ fall within the shaded area representing the GP output variance; the

‘test points’ plotted in this case are random σ̂i, αi values, sampled by the B(1, 5) and

B(4, 2) respectively. Thus, GP is apparently able to produce meaningful predictions,

even when the relationships between variables are governed by some highly complex

function. We can observe that the main mass of the observations is in the upper
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left quadrant (E[σ̂i] ≈ 0.16 and E[αi] ≈ 0.66) and that the trained means are close

to that area. Note that because B(1, 5) gives very low to zero probability for σ̂

values between 0.7 and 1, the number of corresponding training points is very low,

so uncertainty in that region is very high. This is not an issue though, as GP is not

likely to be asked to provide predictions in that range.
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(a) Illustrating the k-NN and KR capabili-
ties: fitting an arbitrary non-linear function.
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(b) Fitting the BB behavioural class of our
simulation scenario.

Figure 6-5: k-NN and KR fits. Illustration of the regression functions for two non-
linear cases, with k =

√
n for the k-NN and h = 1 for the KR.

Similarly, we test the two remaining methods, k-NN, and KR. As we can see in

Figure 6-5, both methods are able to converge to a regression model that is quite close

to the real values of the non-linear function, and of the distribution generating αis

respectively, quite close to what the GP did. Also, here, we illustrate the ‘bumpiness’

effect of the k-NN approach, and the smoother outcome of the KR, as discussed in

Sections 6.2.3, and 6.2.4. It is clear for the case of Figure 6-5a that KR tends to fit

the function better, while the k-NN tends to over-fit the given data.
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Figure 6-6: HF, GP, k-NN, and KR prediction examples for the various agent be-
havior scenarios.

To continue with the methods evaluation, we conduct some initial experiments to

provide further intuition regarding each method’s performance. Initially, we sample

50 (σ̂i, αi) pairs for each of the behavior scenarios of Table 6.1 and consider these

to be the past observations. Next, we employ the four proposed techniques one by

one, and use them to obtain our predictions. Results are shown in Fig. 6-6. As we

can see, for the first behavioral class (UU), the predictions α̃i of our methods fall

quite far from the test points (asterisks). This is expected, however, since there is

no actual model that correlates past values of αi and σ̂i—both variables are sampled

from a uniform distribution. Additionally, as we will be explaining in the following

section, the individual inaccuracies have less impact when the values are aggregated,
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e.g. when a large set of agents shift their electricity consumption in a coordinated

fashion.

Regarding the two following behavioral classes BB, and GG, there is no direct

connection between agent statements and final actions, but each are sampled from

specific distributions, i.e. B(1, 5), B(4, 2), and N (0.5, 0.15). Thus, the main mass of

the historical values, as well as the predictions, are concentrated around the mean

values of the distributions. Lastly, when tested on the fourth behavioral class 1-G, all

methods apart from the HF achieve very high precision. Recall that the HF does not

take into account σ̂i, hence, since in this case σ̂i and αi are not independent, valuable

information is not incorporated, and the predictions are off the actual occurrences.

Regarding the rest of the methods, they all take as input agent statements σ̂i, and

are able to “fit” the underlying model quite well.

We now proceed to examine how these prediction techniques can be used to en-

hance the performance of an agent cooperative that offers electricity consumption

shifting services. The shifting of consumption is such, that can make the aggre-

gate demand curve smoother, or alter the consumption levels during specific time

intervals, so that renewable generation levels are matched more effectively.

6.3.2 Experiments with agents of the same behavior

In this part, we run one 100-days simulation per agent behavioral class, and report the

performance of the various methods when the individual predictions are aggregated

in the cooperative electricity consumption shifting scenario. For training, we used 100

(σ̂i, αi) couples generated from the corresponding distributions; these were considered

to be the historical values. We compare the results to those accrued when using
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“conservative” estimates for performance prediction. The Conservative, HF, GP,

k-NN, and KR estimates are calculated as described in Section 6.2.

The average final gain of the cooperative from the shifting operations, as well

as the accuracy of each of the methods between the expected and actually shifted

load, are shown in Table 6.2. As we can see, the performance of GP, k-NN, and KR

Table 6.2: Average daily gain (e) and accuracy in aggregate amount of kWh shifted
(%), from 100 days simulations, one for each agent behavior class.

Conserv. HF GP k-NN KR
e % e % e % e % e %

UU 37.37 80.25 37.00 79.82 57.84 97.71 57.97 97.97 58.64 98.86
BB 32.36 78.46 54.92 95.10 59.59 99.76 59.34 99.58 59.39 99.60
GG 55.63 94.34 52.57 94.15 60.37 98.91 60.78 99.34 60.81 99.41
1-G 47.51 89.46 53.68 94.67 58.82 99.65 58.21 99.38 59.23 99.79

methods is consistently very good, reaching accuracy higher than 97%, for all agent

behavioral classes. Also, the HF approach also performs well—accuracy higher than

94%, except for the case of UU agent behaviors, where it drops significantly. Overall,

all methods perform much better than the Conservative estimation approach, for all

agent behaviors, apart from the GG case, where Conservative also achieves high

precision.

The average daily gain of the cooperative is strongly related with the accuracy

of the performance prediction methods, as it can be clearly seen from the numerical

results; the more accurate the predictions regarding the aggregate performance, the

higher the gain that the cooperative receives. Note that each simulated day generates

different agent demand values and variable shifting capabilities, according to each
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agent’s contract type. This is why, e.g. KR achieves higher gain for the GG case than

for BB and 1-G, despite the fact that it achieved slightly lower precision. Also, here

we validate the result from the work of [174], i.e. when aggregating the potentially

not accurate individual forecasts to a single cooperative estimate, the accuracy of

the aggregate prediction is very high. This happens because the differences in the

individual predictions and the actual realized actions are canceled out among each

other; while some agents might over-perform wrt. their initial statements, it is highly

probable that some others will under-perform, helping reduce the error gap induced

by the pessimistic participants.

6.3.3 Trial with mixed agent behavior classes

In the last experimental setting, we assume all aforementioned agent behavioral

classes to be present in the same 100-days scenario, which is simulated 10 times.

Specifically, agents are assigned one of the four behavioral classes with equal proba-

bility at the beginning of each of the ten trials of 100 days, and are governed by this

particular behavior throughout each of the simulations.5 The numerical results are

presented in Table 6.3, where we present the means and standard deviations of the

daily final cooperative gains that are achieved, the expected and actual reduction

during the peak intervals, the accuracy of each method and the percentage of the

trimmed peak demand, as well as the daily average reducing coalition sizes, and the

elapsed time for the generation of the predictions.

All four methods generate actual cooperative gain values that are quite higher
5Note that although the distributions that describe the actions of an individual remain the same

for every day of each simulation, the actual values change, since every day they are resampled.
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than the value achieved when using the Conservative approach. Regarding the daily

average expected size of the reduced load, we observe that all evaluated methods

provide almost identical results. However, this is not the case when we examine the

final size of the load actually reduced by the cooperative. Here, it is obvious that

GP, k-NN, and KR achieve final reduction values that are very close to the expected

levels, reaching accuracy of 99% and above. The same hold for the percentage of

the peak demand trimmed, i.e. the quantity of load that is above the threshold τ .

We can see that the incorporation of the regression methods for the prediction of

agent actions helps trim almost the whole amount of peak demand, i.e. more than

97%, in contrast to the Conservative and HF approach, which trim 84% and 91%

respectively.

Another important performance indicator is the required time in seconds needed

for the predictions to be generated. The numerical results indicate that the fastest

method, with the significant difference of the order of hundreds of times faster than

GP, is the k-NN approach. The HF and KR are also quite fast, especially when

compared to the GP approach. This happens, as discussed in Section 6.2, because

GP requires the inversion of a large matrix, which is a quite complex and time

consuming operation. However, since the scheme that we adopt is based on day-

ahead planning and is not real-time, there is enough time to execute GP to generate

models for all of the 7954 agents that participate in the setting.

Finally, we can observe that k-NN employs the largest number of participating

agents on average, on a daily basis. In the cooperative electricity consumption shift-

ing setting this is quite important, as we need participants to come in large numbers,

since this has positive impacts in the stability of the cooperative’s performance. Also,
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Table 6.3: Average results from an 100 days simulation scenario including all agent
accuracy classes.

Conserv. HF GP k-NN KR

Actual Coop. Gain (e/day)
µ 39.77 49.11 57.18 57.41 57.61
σ 12.95 14.99 15.73 15.88 15.78

Expected Reduction (kWh/day)
µ 1332.291 1333.079 1334.746 1334.605 1334.708
σ 373.471 373.321 372.935 373.212 373.127

Final Reduction (kWh/day)
µ 1113.266 1219.697 1322.723 1327.406 1331.412
σ 326.037 354.558 375.141 378.918 376.991

Accuracy (%) µ 83.56 91.49 99.09 99.46 99.75

Peak Demand Trimmed (%)
µ 82.54 90.28 97.34 97.41 97.76
σ 4.82 4.62 2.66 2.77 2.53

Avg. Reducing Coalition Size
µ 296.05 357.38 382.19 389.09 385.79
σ 90.23 111.28 114.45 116.42 115.15

Estimation Time (sec) µ - 1.56 444.03 0.006 0.44

the aggregation of a large number of participants leads to better accuracy and more

effective demand shifting operations.

Summarizing, the evaluation demonstrates that KR is potentially the most ef-

fective of the prediction techniques examined by all aspects, with both GP, and

k-NN producing cooperative results that are very close to each other, regardless of

the behavior model by which each individual agent is described. This is best illus-

trated by the better performance with respect to prediction accuracy, and the nearly

perfect effectiveness in terms of peak load trimmed. Recall that for the HF, agent

forecasts are not taken into account, so potentially important information is ignored.

Intuitively, GP, k-NN, and KR can effectively learn and adapt to the underlying

model that relates agent forecasts and final actions, thus enabling the cooperative

to choose reducing coalitions that often deliver what they promised. HF, however,

exhibits a strong performance also. Thus, in a nutshell, our results indicate that
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all techniques examined are strong candidates for predicting the accuracy of selfish

agent statements in Smart Grid consumer cooperatives.

6.4 Conclusions and Future Work

In this chapter we presented four different methods for monitoring and predicting

agent actions in a power consumption shifting scheme, a Histogram Filter, a Gaus-

sian Processes regression method, a k-Nearest Neighbours, and a Kernel Regression

approach, to recognize possible underlying relationships between agent forecasts and

final actions in a cooperative electricity consumption shifting scheme. The methods

outperform the formerly used method wrt. prediction accuracy—and financial gains

generated. Our techniques are generic and can be integrated within different types of

systems (e.g., they can be used for monitoring the accuracy of electricity production

statements). Also, the computation time is reasonable even when the number of

participants comes in the order of thousands. This is the first time these methods

are applied in the electricity consumption shifting domain; and the potential value

of this work to any real-world enterprise operating in the Smart Grid can be very

high. Similar techniques can also be used to monitor the behavior of EV drivers,

managing this way to predict the time intervals of EV connection/disconnection to

chargers more accurately. To apply the proposed scheme in the real world, it is

imperative that smart metering equipment is available for each of the participating

agents, so that to be able to measure consumption and reductions with precision.

Moreover, the presence of devices or applications with intuitive interfaces, is key for

the effective performance monitoring at the user side.



Chapter 7

Supporting RES Cooperatives and

Aiding the End Users

In the previous chapters, we described the game theoretic and machine learning

tools behind DSM mechanisms that can be used to engage end-users to participate

in coordinated electricity consumption shifting actions, in order to better utilize

renewable energy sources, and effectively balance demand and supply. In the current

chapter, we take all the aforementioned tools for granted, and present a system

architecture for DSM services based on the Internet of Things (IoT) paradigm—a

concept that is expected to drive the next industrial revolution in the following years.

Additionally, we design a serious game [152] and implement two different versions

of Graphical User Interfaces (GUI), which are employed to test the effectiveness

of DSM incentive types and data visualization techniques on human users. In the

proposed serious game, players aim to maximize their economic and social revenues

by accepting or not DSM actions that their home energy management agent suggests,

235
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after accounting for the pricing mechanism and the user preferences. Finally, we

devise a methodology for statistically analyzing the effectiveness of DSM schemes

and energy efficiency (EE) interventions in general. Since interconnected devices

and smart meters produce large quantities of data, it is desirable to propose ways

for effectively manipulating them. Also, statistical analysis can be used to evaluate

implemented DSM and EE interventions. The work presented in this chapter, along

with the methods of the previous chapters, integrates our approach to offer readily

applicable and complete large-scale DSM solutions, whose incorporation in modern

electricity grids can benefit multiple stakeholders.

In most cases, IoT approaches follow a service-based architecture [15]. The pro-

vided services can be categorized into three distinctive yet interdependent types,

which all can be combined to deliver other, more complex applications:

i services that capture properties of the physical world and provide raw or slightly

processed measurements (sensing services);

ii services that process the acquired measurements and provide the inferred results

(processing services);

iii services that enable certain actions, based on these results (actuating services).

Thus, IoT applications involve distributed sensor networks at various scales, e.g.

over the human body, small indoor areas (such as a house), or even world-scale

outdoor areas. In any case, they are interconnected with other distributed services,

possibly located on a cloud infrastructure. Their purpose is to process the measure-

ments gathered and autonomously extract results, i.e. without the need of human



237

intervention. Upon processing, some actuation elements may be triggered as well.

Such services are offered to a variety of users and can be combined to provide other,

more complex, services and applications, via IoT services marketplaces. To achieve

this, they must be easily discoverable and interconnectable by developers using the

IoT ecosystem, and, more importantly, they should be able to be deployed and

executed on a cloud infrastructure [98].

In the energy sector in particular, during the recent years, utility companies and

DSOs around the world, and specifically in most European and North American

countries, have started replacing old consumption meters, with new, smarter ones.

These smart meters allow the real-time monitoring of energy consumption and pro-

vide the opportunity to use energy more efficiently and when it is available from RES.

Furthermore, there is a huge proliferation of mobile devices, which are connected to

the internet – moving towards the Internet of Things (IoT). Even household devices

will be connected in the next few years, e.g. the fridge will report online and in real

time its status and its energy consumption [164]. Thus, Internet of Things involves

technologies that will enable the development of large-scale and distributed complex

services, such as DSM mechanisms that is our main concern in this thesis. These

services can deliver any game-theoretic or decision theoretic approach for managing

energy consumption.

In the scope of a past research project,1 we designed a specialized Graphical User

Interface (GUI), that complements the work of this thesis, i.e. explicitly provides

the means for the DSM mechanism to interact with the end-user that participates

in DSM. The GUI was presented to real users in a form of a serious game, where

1http://iot.synaisthisi.iit.demokritos.gr

http://iot.synaisthisi.iit.demokritos.gr
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groups of energy consumers were asked to plan (a day-ahead) the rescheduling of their

consumption, and receive rewards, either social, or economic/monetary. The goal of

this set of trials was to test whether specific incentive types and data visualization

techniques are more suitable to convince the end-user to participate into DSM.

Additionally, in this chapter, we describe a data analysis procedure to evaluate

the actual performance of such services, which can be used by real world energy

cooperatives. The results from the trials and the analysis show that indeed some

approaches are more effective than others in engaging the end-user and in achieving

demand reduction. The work described in this chapter completes the multiagent

DSM approach that is presented in this thesis, and can be used as a guideline for the

development and application of large scale, real-world DSM solutions. The contribu-

tions of this chapter and the combined scientific fields are also shown in Figure 7-1.

This chapter is structured as follows: In Section 7.1 we review past work regarding

decision theoretic optimization approaches for electricity demand rescheduling. Be-

ing modular and IoT-based, our architecture approach can incorporate any method

as the optimization module. Section 7.2 presents the system architecture for deliv-

ering large-scale DSM services. Section 7.3 thoroughly describes the proposed GUI

and some results from the real-world trials. Section 7.4 describes the methodology

for analysis of EE measures effectiveness. Finally, Section 7.5 concludes this chapter.

Parts of the research described in this chapter appeared originally in [12], in [50],

and in [14].
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Figure 7-1: Overview of the scientific fields, and our contributions in Chapter 7.

7.1 Related Work

We now provide a brief review of a few methods that rely on decision theoretic

optimization for managing the energy consumption in residences and other energy

consuming buildings. The high-level architecture we describe in the following sec-

tion is such, that allows the incorporation of any energy consumption management

method to serve as the agent optimizer. To begin, Logenthiran et al. [108] present a

heuristic evolutionary algorithm to implement a generalized, day-ahead DSM strat-

egy that optimizes the consumption schedule of shiftable devices according to specific

objectives (economic, environmental, etc.). Then, when a device is enabled, it ei-

ther turns on if this occurs within its operation timeframe dictated by the optimized

schedule, or simply does not turn on and notifies the user about the time of its future
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availability.

Then, [107] formulates an appliances scheduling problem that accounts for energy

costs and consumer preferences in a residential smart grid, and solves it using a

distributed subgradient method. The objective is to reduce the demand’s Peak-to-

Average (PAR) ratio. Intuitively, a reduced PAR corresponds to a reduction of peak

demand, contributing to system efficiency and reliability. In [91] a generic DSM

model is introduced, which also aims to minimize PAR, costs, and the waiting time

of electrical appliances from households, industries, and commercial buildings. Here,

a multi-objective fitness function is optimized by a genetic algorithm. To optimize for

multiple users, however, every single user must share electricity consumption-related

information with all others. This raises privacy concerns, and induces security risks

for the buildings’ residents.

In the work of [56], a distributed multi-agent optimization is proposed, for the

automatic rescheduling of domestic loads, using ant colony system optimization. Al-

though metaheuristics are appropriate for solving the highly complex problem of

domestic load rescheduling, this approach does not deal with the problem of reward

sharing of the cooperative profits, nor for the end-user related flexibility (shifting)

costs, both big issues that have impact on user engagement, which is the key for

effective DSM schemes. Also, very important Grid constraints are not taken into

account and their consideration is left as future work. The work of [176] explicitly

takes into account user preferences regarding the time intervals of shifting, and pro-

poses a genetic algorithm to minimize domestic electricity bills. User preferences

are modelled as soft and hard constraints, however, here too, few are mentioned re-

garding Grid’s incentives and economics. More importantly, this approach does not
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promote cooperative action, which, as we have stressed in the previous chapters of

this thesis, is crucial for DSM schemes to be effective and to have positive impacts.

In general, automatized appliance operation schedules prescribed by optimiza-

tion methods like the ones above, restrains the consumer’s ability to directly con-

trol consumption tasks. By contrast, MD approaches such as ours aim to guide

consumers towards efficient consumption schedules—while allowing them to choose

themselves whether they will contribute in DSM or not, explicitly presenting them

with participation-associated gains and losses.

Another work, that of [112] studies ways of providing the incentives for reliable

demand response. Participants choose to participate in a two-period mechanism, by

initially expressing their intentions—that is, costs and delivery probability values,

and then are rewarded, or penalized, according to their final delivery. In [17], matters

regarding autonomous agents and their interactions with humans are studied. More

specifically, authors design and test an agent for electricity tariff switching, with the

ultimate goal to choose the best energy tariff, taking into account user and electricity

production uncertainties, as well as user comfortability and incentives regarding the

interaction with the agent. Authors consider two tariffs, one for standard power

generation which is constant, and a second for wind generation that varies with time.

In order to choose a particular tariff, the agent must predict the user consumption

and the tariff from wind power, which are both subject to uncertainties. Thus, the

“Tariffagent” monitors and predicts electricity usage, predicts the energy output of

wind powered plants, and provides the necessary interfaces in order to interact with

the user in a comfortable, trustful, and non-intrusive way.

In [78] a study on the acceptance of monitoring technologies in contemporary
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urban places is presented. The questionnaire that was answered by 127 humans of

a wide age range, had a medical monitoring context. In short, participants were

negative against surveillance technologies (microphone, camera, position), with the

least worse being the positioning system, and age is not related to acceptance, neither

is gender. On the contrary, health is related to acceptance, with the ill people being

more negative to monitoring technologies. Correlating with the place of surveillance,

participants were more positive of being monitored in public places, rather that in

private.

In our work, we monitor participants power consumption shifting actions. Since

the residential sector is expected to have large impact on demand shifting schemes, it

is crucial to study the acceptance of monitoring techniques on such context. Indeed,

there is a need for such schemes to not be intrusive on privacy issues and thus have

a deterrent effect, as we must maintain participation at high levels in order for the

scheme to be effective.

The works of [59, 116, 101] study ways of providing incentives to users through

gamification techniques and reward mechanisms. Rodden et. al [157] study consumer

responses when faced against future energy infrastructures. Making one step further,

we build a smart EMS paradigm that is ready to be deployed in real residences, and

present it to human subjects. In our work, we provide different incentives for achiev-

ing the same goal —to obtain a “greener” consumption profile. We test these two

games with real human users and compare the incentive categories with respect to

their effectiveness, i.e. making users willing to participate. In [68] authors address

the reaction of smart houses when introduced to time-based electricity tariffs. They

develop and validate a model for smart households that are billed according to time-
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based prices. The simulation model consist of a generation component and a schedul-

ing one. Regarding the smart scheduling part, first authors identify and classify the

appliances that can be shifted. More specifically, washing machines, dishwashers and

dryers are considered of semi-automatic control —as consumer interaction is needed,

e.g. the dishwasher must be loaded. Another class is fully-automatically controlled

loads, such as storage water and space heating, freezers, refrigerators, etc. Finally,

non-shiftable loads include stove, lighting, electronics, among others, and their use

requires energy consumption at the very time it is requested. The best time for start-

ing an appliance is determined by the solution of an optimization problem. However,

as authors themselves state, this scheme is vulnerable to avalanche/herding effects.

This particular household modelling is also used in the PowerTAC competition.

Now, the most appropriate architecture type for our proposed system to follow,

is an IoT-based architecture [132]. According to this approach, each simpler module

of a complex applications is virtualized as a cloud service, and specific protocols that

allow the dynamic interconnection of such services are available [92, 72]. Examples

include publish/subscribe protocols [28], ubiquitous data access methods [124], ser-

vice composition tools [180], etc. IoT-based architectures have already been proposed

in the literature for industrial environments [191], smart cities [64], healthcare [69],

and safety and security settings [86], however, IoT-oriented DSM approaches is still

an open field for research [61, 167]. Regarding the energy management domain, the

work of [166] proposes an HVAC2 optimization approach that is based on IoT for

services interconnection, and considers both variable energy prices and user prefer-

ences and comfort. Another work, that of [201], presents guidelines for designing

2Heating-Ventilation and Air Condition
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energy monitoring and consumption management systems for intelligent buildings

incorporating IoT technologies. Our approach, apart from the individual building

energy management and consumption optimization modules, we also assume an ex-

ternal DSM mechanism module that is used to drive collective consumption shifting

and aggregate the actions of agent cooperatives.

7.2 System Architecture for DSM services in an

IoT Ecosystem

The proposed system architecture is shown in Figure 7-2. We assume that there is

a DSM mechanism service implemented on an Internet-of-Things platform (e.g., the

ones proposed in the previous chapters of this dissertation) that can take into ac-

count forecasts of electricity production and consumption levels a day-ahead. Along

with the predictions, the mechanism module also collects data regarding the con-

sumption profiles of the individual consumers, and then sends feedback and rewards

to the agents in the house that represent them. Typical IoT platforms provide ef-

fective ways to manage the information flow between multiple services, regardless

of their physical position and communication protocol. Executed on a machine in-

side the house, a device controller also exists that is able to turn on or off electrical

appliances. The controller sends data about the consumption of these appliances

to a monitoring module, that in turn stores the data into a storage infrastructure.

Additionally, a GUI module exists that runs in parallel with the agent (indicated

as demand scheduler/optimizer) and is used to communicate user preferences and
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Figure 7-2: IoT based architecture for large-scale DSM mechanisms.
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commitments. The optimizer is responsible for handling the external signals, user

preferences, and forecasts regarding future home consumption. We assume, as it is

common in IoT approaches [77], that the different services (modules) communicate

with publish/subscribe protocols,3 allowing this way their dynamic interconnection.

By incorporating this kind of modular IoT architecture we can easily replace each

component with another that has similar functionality though implemented differ-

ently, giving the opportunity to the solution provider to choose appropriate proce-

dures and methods, according to each use-case. This fact overcomes the limitations

found on other, application-specific approaches.

7.3 A Serious Game for Demand Shifting

Using the proposed architecture, we developed a serious gaming approach that was

used to test whether energy monitoring GUIs can effectively incentivize users to

become more aware energy consumers, and to encourage them to use green energy.

Specifically, we developed two versions of an Energy Saving Game, that is used

to present to the player the same GUI used by the autonomous agent managing

the consumption in the residences that would participate in DSM. The data used

during these games and the offered interaction are the same: the difference is in

the visualization and incentives. One version, termed as the economic game, is

based on economic information and links the user’s consumption data with pricing

schemes which offer lower prices at times when abundant “green” energy is available,

visualizing how the proposed suggestions affect the energy bill and highlighting the

3See, e.g., the MQTT protocol (http://mqtt.org).

http://mqtt.org
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consequent savings. The other version, termed as the social game, relies on social

features and emphasizes the competition with other users, rewarding the player with

respective amounts of virtual, “green” coins for each DSM suggestion realized.

The general interface used for both games is composed of several individual linked

visualizations designed to inform, incentivize, and facilitate communication between

the user and the agent module. Within each GUI version we include a number of

coordinated views along with aspects of both pragmatic and aesthetic information

visualization to ensure that:

(a) we are informing users

(b) we persuade them to follow incentivized actions

(c) we allow them to effectively and intuitively make selections and provide feedback

to the system

Though some visualizations in the social and economic interfaces are the same,

there are small context-driven differences within each module, which highlight the

most relevant information to each game, as we detail later on.

For participating in the contest, first, human users assumed that they were located

inside their house, and that at some time of the day (a configuration that can be

personalized for each case), the agent consulted them for the residence’s future (e.g.

a day-ahead) consumption rescheduling possibilities. Participants should consider

their own preferences and decide whether they would shift specific tasks at different

hours of the day, where renewable production is higher, i.e. accept or reject the

agent’s proposals for a period of 10 days for each GUI incentive type. Finally, they
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(a) Social interface. (b) Economic interface.

Figure 7-3: The two different interfaces.

were also asked to fill in a questionnaire regarding their experience with the energy

saving GUI. The two GUI versions of the prototype design are shown in Figure 7-3.

7.3.1 Game controls

As every video game, ours has specific game controls i.e., methods to interact with the

player. The interactive components are the “All”, “Agents temperature preference”,

and “Suggestions” boxes in the top left corner. These serve as the primary mode

for user input and contain both aesthetic and pragmatic features. The first, the

suggestions box in the upper left corner, is the most detailed of the three components

and presents the proposed shifted tasks, the original time the user has been predicted

to complete the tasks, the suggested shifted times to complete the tasks, the duration

of the tasks, the watts used by the tasks, and, in the case of the economic game, the

old and new prices resulting from accepted shifts. In addition, for ease of use, we give

the option to always accept particular tasks. The “Always Accept” box minimizes

user interaction and makes the process less invasive while the pictographs allow the
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user to more quickly process information. In addition, the visual coins serve as a

motivating feature used to sway the user toward a “green” scheduling decision. The

second, the “Agent’s temperature preference” box, contains a slider allowing the

user to switch the heating (in the form of an average target temperature) between

the agent proposed temperature (marked with a red arrow) and the user’s preferred

temperature (marked with a black stickman). The third of these, the “All button”

in the very left corner, gives the user the option to quickly select all suggestions if

he or she desires, and the “I’m done” button ends the input session and delivers the

final results to the multi-agent module. Combined, these three visual components

provide information in an aesthetic and persuasive manner.

7.3.2 Game feedback

The next important visual, the bar chart/line graph in the lower left corner, con-

tains both pragmatic and aesthetic properties designed to inform the user while also

persuading him to make “green” or “economic” decisions. In addition, it serves as a

complementary visualization to the first three input mechanisms where the user can

better understand and explore the consequences of choosing a particular schedule.

More specifically, the bar graphs show the average (the aggregated consumption di-

vided by the number of households) of the predicted consumption for the next 24

hours, the green bars correspond to the average of consumed green energy and the

gray bars correspond to the conventionally produced, non-renewable energy. The

yellow line projected over these bars shows the predicted user’s consumption for the

next 24 hours, before taking into account any shifting or heating reduction, and the

purple line shows the predicted consumption after the changes caused by accepted
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suggestions. Furthermore, each point is marked with a different color to indicate the

quality of the user’s consumption at each hour. The green color indicates a good

consumption pattern, black indicates an average consumption pattern and red indi-

cates a poor consumption pattern. This visualization is pragmatic in the sense that

it clearly communicates important technical information and aesthetic in the sense

that the colors and design of the layout are chosen specifically to encourage the user

to follow a green rather than dirty scheme. Also, this visualization supports the user

in his decision making process, as the purple line showing predicted consumption is

dynamically updated every time the user selects different combinations of accepted

suggestions. Thus, the user can test a variety of combinations before making his

final selection.

The remaining components on the right provide summaries that give the user a

better idea of where he stands within both the current round and entire game. In

the upper-middle part of the window a stylized man carrying a money bag provides

information about the effectiveness of accepted suggestions in the form of the number

of earned green coins in the social game and money saved for the next day in the

economic game. The box under the man with the coin describes the differences

before and after shifts as well as the number of green coins or money he has saved.

The “Demand Scheduler” box on the right provides a friendly greeting and a record

of the day of the year, and the “Leader Board” in the social game and “Economic

Board” in the economic game each give the user a better idea of how she compares

to her “competitors”. Lastly, the red timer at the top provides an indication of the

amount of time that remains.

Summarizing, each of the visualizations work together to inform users, persuade
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them to follow incentivized actions, and allow them to effectively make selections and

understand their actions. The games were implemented as web applications, based

on Java Servlets and using JavaScript, JQuery and Jqplot to obtain the necessary

dynamism during the interaction—such as the changes in the consumption levels by

accepting suggestions.

7.3.3 The game with economic incentives

Figure 7-3b shows the interface for the economic version of the game. As mentioned

before, the economic game focuses on the amount of money that can be saved by

following the proposed suggestions, rather than focusing on the amount of green en-

ergy used. Consequently, there are several small differences in the sub-visualizations

between the two though. For example, the suggestion table provides the old price

and the new price, i.e. the amount of money corresponding to the job in the original

time and the amount of money due in the case of shifting, in addition to the other

categories shown in the social interface. Furthermore, the bar of coins is propor-

tional to the difference between the old price and new price rather than the amount

of “green” energy used and the money bag shows the total amount of money saved

by accepting suggestions related to the heating and shiftable appliances. Next to the

graph, the user can visualize the before-shifting total price, the after-shifting total

price and a projection of savings for the year that would come up after always ac-

cepting this suggestion. In the right column of the page, under the demand scheduler

information, projections for the year are shown, including the cost of non-shiftable

appliances, the total projected cost for the year, the total projected cost after shifting

(including heat shifting) and the total projected savings.
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7.3.4 The game with social incentives

In the social game, the emphasis is placed on the comparison and the “green” com-

petition among friends rather than monetary savings. A gain in terms of green coins

is associated with each of the suggestions by the mechanism. Thus, in this interface

type there is no information about the pricing and the money icons are substituted

by green coin icons. To engage the user and motivate him or her to be “greener”,

a leader board is shown in the right column of the interface. This way, the user is

able to compare her consumption with that of her friends’, using the earned green

coins as the means for this comparison. Furthermore, the money bag contains the

total coins that can be earned with accepted suggestions, including both heating and

shiftable appliances, whilst the box beside the graph gives this information only for

the shiftable ones.

7.3.5 Results from trials with real users

In this set of experiments we offered the opportunity to 50 actual humans to play the

energy saving game. The population included ages from 25 to 55, and participants

education levels ranged, from undergraduate students to post doctoral researchers.

Divided into ten groups of five persons, participants were asked to play each one of the

two games, one after the other, for a simulation time of 15 days4. Each participant

was assigned to a specific simulated house, and was asked to act as if the agent was

controlling and suggesting the schedules of his own electrical appliances. After the

end of the two consecutive games that would allow us to assess the effectiveness of

4Note that each consecutive group played the two games in different order.
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the two different incentive types, they were also asked to fill in a questionnaire, in

order to share with us their experience and provide some valuable feedback.

The first indicator measured from these experiments is the suggestion acceptance

ratio, and its value is 69.1%, indicating that the agents proposals are accepted in

their majority by the subjects. More specifically, for the social game the measure

was 69.8%, whereas for the economic one it was 68.4%, namely the different type

of game did not affect incentives significantly. In addition, the total hourly average

consumption was initially 16758.99Wh, where the total consumption after the accep-

tance of agents heating optimization suggestions was 15172.92Wh for the social and

15441.71Wh for the economic. The total consumption during a typical day is shown

in Figure 7-4. We can see that by participating in the scheme via the GUI, aggregate

consumption can be effectively reduced and rescheduled. Judging from the figure,

we can observe a slight differentiation between the two incentives effectiveness, with

the social performing slightly better. Also, the amount of consumption shifted or

curtailed indicates that our approach follows the right path.

For every game round, and both game types, the most accepted agent suggestions

were those about water heating and washing machines, including also clothes dryers

and dishwashers. On the other hand, the least accepted suggestions regarded cooking

appliances. In particular, Table 7.1 holds the acceptance ratios for the shifting of

appliances’ consumption in each of the two games.

The experiment with the real users helped answer specific questions regarding

the effectiveness of the proposed system, and we now proceed to analyze the results

from the questionnaire. Note that the ranking was made in the scale of 1 to 5.



254 CHAPTER 7. SUPPORTING RESCOOPS AND AIDING END USERS

Table 7.1: Acceptance ratio over shifting different appliances per type of game.

Appliance GameType Acceptance Ratio

Clothes Dryer Economic 77.2%
Social 82.1%

Cooker Economic 58.7%
Social 58.0%

Dish Washer Economic 70.6%
Social 81.0%

Oven Economic 53.2%
Social 53.8%

Washing Machine Economic 79.4%
Social 74.4%

WaterHeater Economic 71.3%
Social 69.4%
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Figure 7-4: Typical day of the game rounds.
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How good was the energy saving system in general? The feedback regarding

the ease of use of the system indicated that in general the system was perceived as

easy, with an average rating of 3.78.

Were the agents optimized suggestions of any use? The set of questions

regarding the usefulness of the agents suggestions gave a mean of 3.56, indicating

that the suggestions were quite useful to the participants.

Is the social aspect of the game incentivizing? The feedback of the players

showed that the social aspect of the game can provide adequate incentives, with an

average rating of 3.29.

Is the economic aspect of the game incentivizing? The rating regarding

the economic part of the game gave an average ranking of 4.18, indicating that the

economic incentives are most preferable for DSM operations.

Which of the above two gamified aspects induced more demand reschedul-

ing actions? Judging from the participants answers, although most seem to be

willing to participate in DSM and energy saving operations, there is a small prefer-

ence towards economic incentives, rather social, “green” ones. Note that this slightly

contradicts the observed incentive effectiveness that was shown by the game results

to be better for the social type.

We can conclude that both incentive types proved to be quite effective in inducing

DSM participation; green energy usability and system stability are effectively pro-

moted. Although human feedback showed a preference towards the economic type,
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the social type proved by the numerical results to be slightly more effective.

7.4 Creating Methodologies for Analyzing Data

from Real-World RES Cooperatives

The design of a data analysis methodology, in order to conduct a statistical analysis

of energy-related data, is a complex process that requires significant technical exper-

tise. Such analyses could be used, for example, to get a better understanding on the

broader impact of DSM schemes, but also other energy efficiency interventions, and

their influence in the behavior and the energy savings of end users. Also, since avail-

able data from IoT devices and smart meters may be highly heterogeneous and large

in size, a fact that makes the management and analysis harder, the definition of data

collection and analysis methodologies becomes necessary. Then, based on the results

of such processes, policy advises can be given; best practices for energy efficiency can

be highlighted; and new business models that accommodate energy savings can be

created. In the scope of an ongoing EU, H2020 project,5 we collaborated with real

world cooperatives to test the performance of specific energy efficiency measures and

techniques that were applied to actual energy consumers to reduce their demand,

in both the residential and commercial sectors. For the purposes of this research

project we devised a specific methodology for the gathering and the analysis of real

consumption data, and for the assessment regarding the effectiveness of each energy

efficiency measure.

Now, there are many adjustments required in order to reach the optimum bal-
5http://rescoop.eu

http://rescoop.eu
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ance between reliability, accuracy and significance. In this section, we outline the

methodological approach.

The proposed methodology of analysis consists of the following steps:

1. Identification of the current state of the data from the REScoops under exam-

ination.

2. Consideration of a common data format and inventory-related issues.

3. Receiving the datasets

4. Completion of the datasets missing values from additional third party sources

or by using regression techniques.

5. Analyze the development of the average monthly and yearly consumption for

all cooperatives and separate all possible variables that might influence the

decrease in consumption (climate, change in habits, etc.).

6. Validate the decrease in average consumption levels.

7. Check whether there is a decrease in usage of conventionally produced energy

(from non-renewable resources).

In order to validate the decrease in average consumption levels, we must first

divide the sample population into different groups, based on whether specific energy

efficiency interventions have been applied or not, and other factors of similarity

(e.g. contract type, number of residents, etc.). Then, we obtain the kernel density

estimates of the underlying distributions, and check if the mean and variance values
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of those distributions differ significantly. To determine whether the difference is

significant, the p-value and analysis of variance (ANOVA) methods [55] were used.

The proposed methodology was applied on data originating from 7 REScoops

located in different European countries. Briefly, results suggest:

i Specific energy efficiency interventions can be effective in driving reductions in

end-users energy consumption.

ii Joining a REScoop leads to more than 20% reductions in energy demand.

iii Subscribing to consumption monitoring and savings suggestions software plat-

forms results to approximately 35% consumption reduction.

iv REScoop members significantly contribute to energy conservation and to the

reduction of harmful gases emissions (a projection given analysis results estimates

these savings as approximately 1,500 tons of CO2 per month).

For more information regarding the REScoop Plus project, and a thorough analysis

of the results, the reader can refer to [12], [50], and [142].

7.5 Conclusions

In this chapter we presented an IoT service-oriented system architecture that can

be used by implementations of large-scale DSM that incorporate large numbers of

end-users, which have control over their electricity consumption. We also developed

and tested two GUI versions with real users, one that promoted economic incentives,

and one with more social-oriented ones. Results from questionnaires suggest that
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such GUIs can be effective in promoting renewable energy usage to the consumers.

Finally, we devised a statistical analysis methodology to access the effectiveness of

various energy efficiency measures that are applied all around Europe by renewable

energy sources cooperatives and their members. The positive environmental impact

of such energy efficiency interventions is shown in many cases.
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Chapter 8

Conclusions

In this dissertation we presented a multi-level approach for delivering effective large-

scale cooperative Demand-Side Management (DSM) solutions in real-world Smart

Grid environments. Balancing demand and supply, although imperative for the stable

operation of the electricity grid, is a quite difficult task in cases where the output of

renewable generators is intermittent and influenced by factors that cannot be directly

controlled, for example, weather conditions that drive solar and wind generators’

output levels. In such cases, DSM techniques i.e., the altering of energy consumption

patterns in time, can be applied so that renewable energy is efficiently utilized.

The issue with DSM is that, frequently, along with the electrical appliances de-

mand profile, changes are required in the daily routine of human end users as well.

For such requests to be accepted though, additional incentives must be provided to

the end users, and sophisticated mechanisms must be designed, so that user engage-

ment and energy efficiency is promoted. Our approach advances the state-of-the-art

in many ways. The results demonstrate that it can be readily applied in large, real-

261
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world environments; deliver monetary gains to participants; lead to increased Grid

stability; and help achieve better utilization of renewable energy.

This final thesis chapter is organized as follows. Section 8.1 reviews each previous

chapter, highlighting their most important points. Then, in Section 8.2 we provide

possible extensions of our research, and state and discuss open questions related to

this thesis.

8.1 Summary

Throughout this dissertation, we introduced the reader to the DSM problem, set

the theoretical background and motivation behind our work, and proposed detailed

solutions for each problem part. In the beginning, we addressed cooperatives of

consumers for large-scale and effective demand shifting. We presented a mechanism

for the coordination of profitable shifting actions to promote participation for in-

dividually rational agents. We stressed the fact that formulating the problem as a

multi-agent system is more natural, since we try to engage a large number of indi-

viduals, rather than a centralized and inflexible system of homogenized population,

as a large number of past approaches for DSM do. Additionally, our work promotes

massive participation from the end-user side, and applies personalized incentives, ac-

cording to the behavior, capabilities, and performance of each agent. The proposed

mechanism allows even the participation of agents, which have increased related

shifting costs that would normally forbid them from participating in DSM. Then,

we combined a cryptocurrency protocol with coalition formation and reward sharing

methods to also promote prosumer cooperatives in DSM. Participation in our mecha-
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nism ensures increased prosumer profits from the selling of energy, and reduced costs

for consumption. Specific participant selection and reward sharing methods promote

engagement and the effective use of renewable energy sources. Additionally, to incor-

porate electric vehicles in DSM, we proposed a new V2G/G2V algorithm. Electric

vehicles are expected to invade the automobile market in the near future, a fact

that will most probably disrupt electricity grids. Our EVs-incorporating DSM al-

gorithm can be employed in a small or a larger scale, and, apart from shifting the

charging of connected EVs, it can also make use of existing (stored) energy in the

vehicles batteries in order to reduce electricity imports from external markets, and

effectively manage energy produced by (local) renewable generators. Furthermore,

we proposed the application of machine learning methods to monitor and predict

DSM participation behavior, delivering this way even more effective DSM mecha-

nisms. Finally, we researched implementation architectures for DSM services, and

statistical analysis methodologies for validating the changes (decrease) in consump-

tion from non-renewable, legacy generation systems as a result of energy efficiency

interventions.

For each of the proposed approaches, we conducted extensive simulations on

datasets originating from the real-world. Numerical results indicate that the incor-

poration of our methods can lead to significant gains for DSM participants, promote

truthfulness and engagement, increase the Grid stability between supply and de-

mand, and make better use of renewable energy generators. What is left, is to

deploy such approaches in large-scale real-world settings, and also test the influence

of specific factors related to real-world power systems, such as reactive power, losses

induced by physical distance, etc.
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In more detail, in Chapter 3, we presented a readilly applicable framework for

large-scale cooperative electricity consumption shifting, to promote the proactive

balancing of the demand curve. Our proposed shifting scheme promotes agent effi-

ciency in the face of uncertainty, achieved via the use of effective coalition formation

methods we developed. The employment of the CRPS strictly proper scoring rule

allows the calculation of personalized prices according to the participation efficiency

the cooperative and each agent. Furthermore, our mechanism is equipped with in-

ternal pricing schemes that employ gain transfers within a cooperative, to make it

worthwhile for individuals to participate in shifting operations and thus guarantee

the scheme’s effectiveness and profitability. The proposed mechanism comes with

desirable theoretical properties, specifically individual rationality, truthfulness, and

(weak) budget balancedness. Extensive simulations based on real consumption data,

and demonstrated experimentally the effectiveness of our methods. The results of

our experiments confirm that our methods could bring tangible benefits to energy co-

operatives and other Smart Grid business entities. Our model can easily be adapted

in the future to also include more social and behavioral aspects of the users. Then,

we could study the stability of the formed coalitions in this augmented setting.

Next, in Chapter 4, we presented a cooperative consumption shifting scheme that

employs a distributed cryptocurrency mechanism for the decentralized coordination

of prosumer shifting actions. This special purpose cryptocurrency is combined with

CRPS to incentivize electricity prosumers to offer decentralized and coordinated

DSM services, and also to allow personalized rewarding. We formulated the problem

of coordinated cooperative prosumer consumption shifting, and introduced theorems

that guarantee accuracy and effectiveness in the shifting procedure. To validate
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reductions as a result of mechanism participation in real-world settings, the mea-

surements from smart meters must be profiled. Also, we proposed and analyzed

contributor selection and reward sharing methods which incentivize truthfulness,

guarantee increased profits from the trading of electricity, and help flatten electric-

ity demand curve, as well as the dynamic energy prices. Results from simulation

experiments show that the application of our method leads to more balanced local

demand and renewable supply, as well as increased gains for the prosumers that

participate in the DSM scheme.

Continuing, in Chapter 5, we proposed an algorithm for the incorporation of

a V2G / G2V mechanism for EVs in DSM. The algorithm requires the drivers to

state the vehicle’s connection / disconnection schedule, as well as a personal energy

reservation price for discharging batteries and providing power to the grid. Then,

it checks all relevant limitations, such as the duration of each vehicle’s electrical

connection, the cost of discharging, the energy costs from external imports, and the

next day’s demand and production forecasts. As a result, vehicle batteries either

delay their charging, or offer part of their stored energy to the grid. This results

to increased use of the local renewable resources and to reduction in imports from

external energy sources. Results from an experimental simulation process based

on real-world datasets, showed the benefits of using V2G/G2V mechanisms with

respect to both monetary and environmental concerns. Further extensions could

include mathematical programming formulations that can effectively balance both

the costs of the DSO manager, and that of the EV drivers as well.

In Chapter 6, we provided an enhancement of the proposed DSM schemes, which

incorporates Machine Learning methods to monitor and predict user behavior re-
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garding DSM participation. The proposed methods include a Histogram Filter, a

Gaussian Processes regression method, a k-Nearest Neighbours, and a Kernel Regres-

sion approach, which are used to recognize possible underlying relationships between

agent forecasts and final actions in a cooperative electricity consumption shifting

scheme. The techniques greatly improve the performance of cooperative shifting ac-

tions, with some achieving more than 95% accuracy between the promised and the

actual load shifted in total by the participants. Also, the computation time was

reasonable, even when the number of participants comes in the order of thousands.

To apply the proposed scheme in the real world, it is imperative that smart meter-

ing equipment is available for each of the participating agents, so that to be able

to measure consumption and reductions with precision. Also, the evolution of the

participants behavior after long periods of contributions could also be studied. To

this goal, real-world behavioral data should be collected and used, a task that, un-

fortunately, is quite difficult due to privacy regulations and user unwillingness. The

techniques could be employed for predicting the intervals of EV connection and dis-

connection to chargers as well. However, such predictions can be easily be performed

by the drivers according to their daily routines or professional schedules, making the

application of such prediction techniques obsolete.

Finally, in Chapter 7 of this dissertation, we discussed additional notions that

make our work complete, such as the proposal of a service-oriented architecture for

the implementation of large-scale DSM that can incorporate large numbers of end-

users, intuitive graphical user interfaces that promote specific types of incentives,

and a statistical analysis methodology to validate changes in consumption behavior of

real-world REScoop members. We also note that, the software suite that has already
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been developed to be used in our experiments, can be offered as a commercial solution

to various types of companies for the analysis of energy markets, the identification

and the planning of profitable DSM opportunities, consulting services, etc. Our

theoretical model is such, that it can be incorporated to describe most electricity

markets, that include different types of actors and electricity loads.

8.2 Future Work and Research Directions

The mechanisms investigated in this thesis were shown to be effective through simu-

lations. Regardless, it is imperative to actually deploy them in the real-world. This

could be done in collaboration with utility companies or energy cooperatives that are

currently operating worldwide in various locations in the globe. Due to the threat-

ened disruption of the electricity grid due to increased RES integration, Grid regula-

tors and experts are proposing new business models and alternative pricing schemes

that will deliver the so-called 3Ds; i.e., decentralization, de-carbonization, and digi-

tization [175]. The DSM schemes proposed in Chapters 3 and 4 of this dissertation

make effective use of ICT (Information and Communication Technology) tools, pro-

mote decentralization; the use of renewable energy sources (de-carbonization); and,

most importantly, offer personalized incentives to drive active participation on the

end-user side. Although many approaches have been proposed to deliver energy

usage optimization, only a few will finally be accepted for real-world implementa-

tions; apart from the economic aspects, adopted in the analysis of Chapters 3 and 4,

the social aspects must be also taken into account. This fact generates new research

questions e.g. how can ICT tools be used to increase users’ social revenues from DSM
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and how DSM actions can influence users reputation in the community. One first

step towards this direction was given by the serious game and in the interactive GUI

that we designed and tested in Chapter 7.3 (promoting digitization). However, this

domain though should be researched in more depth. For example, our work could be

extended in the directions given by [16, 18, 169], for applications in the real-world

that could also incorporate appropriate AI techniques to make user experience easier

and more convenient.

Social and economic incentives are also reinforced by open business models [45].

Cooperatives like the ones promoted in this dissertation have the ability to rapidly

expand since they connect members directly, and the need for advertising expenses

vanishes, which is not the case for conventional businesses where such costs are quite

high. For this, however, many legislation restrictions still exist, since electricity

(most probably rightfully) is considered in most countries as a public good. Thus,

additional regulations will be needed for the implementation of Grid-oriented open

businesses.

Now, although incentive compatible mechanisms are a requirement to drive user

engagement, a detail that is crucial for both centralized and decentralized approaches

and should gather attention in future work, is how to drive participation accuracy.

The availability of EV batteries and storage equipment, as well as the shifting capa-

bilities of end users, constitute the flexibility of demand, which is the actual resource

that must be managed and should be accurately modelled for each use case. Mostly,

this can be achieved with the incorporation of non-intrusive performance and be-

havior monitoring tools. However, the extent of behavior monitoring data and their

storage is a strong counterincentive for participation by residential users. Knowing
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if and when each resident is present in the house, or if and when a vehicle is parked

at a specific location can be manipulated in unethical ways from non-trusted and

malicious third-parties. A potential answer to the privacy concerns is the aggrega-

tion of individual values to represent larger clusters of the population in the form of

statistical values, making this way impossible to reconstruct the original private data

from which these values came from. Also, the feature of anonymization that is intro-

duced by the use of cryptocurrency can also help to the privacy aspects. Then, one

could build behavior models using techniques as those presented in Chapter 6, and

more accurately predict the resource amounts that should be managed, and produce

effective suggestions and usage schedules.

An interesting extension of our work would be to study the stability of the formed

coalitions, when confronted with others, of different nature, e.g. following the direc-

tions of [82] for coalitions of energy store and renewable generators. It is interesting

to assess the impact on the market when such coalitions exist, e.g. the changes in

dynamic prices and incentives in general. Then, multi-objective indices should be

examined when forming the coalitions, extending the coalition formation methods

of Chapters 3, 4, and 5, and also provide near-optimality guarantees. The schemes

presented in this dissertation can also be applied in settings that include the inter-

action of multiple cooperatives. In such cases it would be interesting to investigate

how contributors would select in which cooperative to participate in, and how coop-

eratives form their participation incentives. This would most probably highlight the

existence of different agent idiosyncrasy types, e.g. ones that are more economically

minded, others being more environmental sensitive, and so on. To this end, future

work should devise a realistic model defining possible stochastic dependencies (or
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“transitions”) among past stated forecasts of the agents based on their types, and

operate upon it with Machine Learning techniques, for improved monitoring ability.

In addition, methods for automatically clustering and re-clustering consumers with

respect to inferred preferences should be developed.

Furthermore, it would be very interesting to investigate how incentivization

schemes such as the ones in this thesis alter over time the baseline behavior of

participants; This raises the question of where and when baseline and incentivized

behaviors converge.

Moreover, we are in the process of designing a new architecture for a multi-

agent system that aggregates demand flexibility, which includes specific MD tools to

incentivize participants to be truthful. In this setting, agents that represent either

small residencies or large companies, do not necessarily trust each other, and, what

is more, might not even have the ability to directly interconnect and coordinate.

Thus, there is a need for a trusted central manager to effectively aggregate private

individual flexibility estimates and use them to offer demand flexibility services. The

simulations will be based on a new dataset that originates from a real-world company.

Applications to open problems in different fields, other than Smart Grids

Our work can be also deployed in alternative application areas, where large numbers

of end users create demand for limited resources. This, in a way, has been formu-

lated by [199] as Prediction of Use (POU) games, where consumers aggregate their

demand in a group buying scheme, and reduce the deviation between stated (fore-

casted) and actual final actions. Applications can be found in the cloud computing

field, since it contains the problem of allocating limited resources to end-users that



8.2. FUTURE WORK AND RESEARCH DIRECTIONS 271

have an increasing demand. Computational resources in a cloud infrastructure are

fixed, but their utilization varies across time intervals—just as energy demand and

productions imbalances do in our case—and the balancing of tasks is required for

achieving energy efficient operation and increased quality of service. In this domain,

however, the shifting constraints and capabilities are different than in the electricity

grid domain, and potentially different incentivization schemes are required. Unlike

the everyday activities of users, computational tasks could be paused or postponed

with minimum impact in the service quality. What is more challenging, is the fog

computing domain, where the physical equipment is not owned by a specific company

or corporation, but provided by multiple, smaller-scale, individuals or companies. In

this setting, a plethora of additional constraints must be taken into account, which do

not describe mere computational capabilities of homogeneous equipment, but rather

differing usage policies, prices, and service availability. Interestingly, literature from

the cloud computing field has already cited our work see, e.g., [178, 207].

Another, even more promising area for extending our research is the allocation

of the resources of IoT services. The vast number of services (sensors, processors,

actuators) that are interconnected and available for use in many combinations and

in complex applications, makes it extremely hard to manage and allocate them to

requests. Moreover, since in the IoT setting such services are owned and managed

by many and different parties (companies, individuals, etc.), it would be interesting

to propose the formation of “IoT services cooperatives” composed of multiple (rela-

tively small) individuals, and employ methods such the ones proposed here to make

them profitable and effective. Here again, balancing between demand and supply is

required, and the reward redistribution must be based on the quality of service, the
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probability of failure, the duration of usage, and so on.

Furthermore, schemes such as the ones we propose in this dissertation can be

readily incorporated in crowdsourcing and crowdfunding applications [162]. Here,

cooperatives offer funds, goods, and services, instead of creating demand as in the

Smart Grid application. In recent approaches crowdfunding is augmented with pre-

diction markets [41]. This can also be supported by our schemes, and includes

the problem of selecting the right participants based on their promises and com-

mitments, as well. The incorporation of coalition formation techniques, the CRPS

and other strictly proper scoring rules, and our proposed reward sharing methods,

could guarantee that agents are incentivized to be accurate and effective in deliver-

ing crowdsourced tasks. Also the incorporation of cryptocurrency protocols enables

the regulation-free and instant funding of proposals, and provides guarantees against

fraud and malpractice.

At the same time, there also exist open philosophical challenges regarding the

applications of MAS and AI methods, such as in the artificial social intelligence

(ASI) and man-machine collaboration fields [171]. Particularly ASI is considered to

be a revolutionary approach that is expected to advance the field of sociology [115].

Artificial Intelligence methods are employed to analyze behavior and predict user

reactions in social media and marketing. When it comes to man-machine collabo-

ration, more critical processes are offered, such as search and rescue during natural

disasters [148], industrial handling operations [99], car driving [42], and many more.

In such applications, human and taskforce abilities are greatly enhanced with the

help of advanced computation methods and robotics. The fast formation of coali-

tions using approaches such as those described in Chapters 3 and 4, also enhanced
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by the behavior monitoring and prediction techniques presented in Chapter 6, could

be useful for effectively managing emergency situations. Also, personalized reward-

ing schemes such as those presented in Chapters 3, 4, and 5, could be employed to

engage individuals into taking action for the common good e.g., for promoting social

services, volunteering, etc. There, participants are rewarded according to how much

their individual actions contribute to the common goal. Each collective action has

an impact that creates a reward, which varies given the current demand and supply

levels of that given service. The collective reward can then be redistributed to the

actors according to their marginal contribution impact with respect to that of the

others. In more complex cases, forecasts of contribution could be also incorporated,

along with scoring rules to rank their accuracy.

On a final note, this dissertation has, broadly, made contribution towards the

development of autonomous agents that take decisions to serve goals of humans.

However, we should remember that science and technology can be used for unethical

purposes as well, with one of the most dangerous possibilities being the design and

deployment of autonomous weapons [179]. This purpose, among others, requires

that the machine would take life-changing (probably life-taking) decisions for hu-

mans, allowing this way for potentially unexpected errors to occur, and removing

the responsibility of the human decision maker. Despite the fact that it is nearly

impossible to define decision models that are “universally fair”, there would no one

to take the blame in cases where that would be required. Thus, it is imperative to

debate advanced AI and MAS applications and solutions, targeting to build trust

regarding technology and providers, given the substantiality of privacy concerns,

and other ethical issues. Although it is not currently clear how this can be per-
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formed, it could be possible that an ex-post auditing system regarding autonomous

agents decisions and actualized operations is employed. The evaluation should be

performed by experts, and society itself. Guidelines for developing “ethical” solu-

tions are given in the 23 Asilomar principles by the Future of Life institute.1 These

are categorized into Research Issues, Ethics and Values, and Longer-term Issues,

with the leading concepts being transparency, privacy, responsibility, and common

good. Future developments and applications should definitely take these principles

into consideration, in order to guarantee a better and sustainable future for human

societies.

1https://futureoflife.org/ai-principles/

https://futureoflife.org/ai-principles/


Appendix A

Datasets Used in the Simulations

For the end users consumption dataset used in chapters 3,4, and 6, we were based

on real consumption values provided by the Hellenic Public Power Company. Using

this data we retrieved the D̄d
i,x average daily consumption of each consumer i of type

x, calculated over the entire 2012 year—and then estimated its Dt
i,x consumption per

each t time-interval. We note that the highest bill amount is paid by agricultural

customers—whom, however, we do not include in the simulated shifting cooperative,

due to their practically non-existing load-shifting ability, as we will be explaining

below. The second highest amount is charged to industrial customers, and the lowest

to the residential ones.

For the additional consumption dataset from industries located in India (used in

Chapter 3), we were provided directly with the mean and the variances of the hourly

consumption for 36 different cases. Using these values we sampled the daily hourly

consumption of 4968 agents. The initial values of the 36 industrial sites were the

exact same as in the experiments of [96].

275
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A.1 Agent shifting capacities

The participants’ shifting capacities are not provided by our dataset. Therefore, we

derive the values of agent shifting capacities based on their type as follows. First, we

used the publicly available typical ranges of shiftable load percentages,1 as summa-

rized in Table A.1. Thus, the shifting load percentage at th of any particular agent

of a particular type, was sampled from the uniform distribution corresponding to

the ranges typical for its type (appearing in Table A.1). Each participant’s shifting

capacity at th, was then calculated as the product of its type’s corresponding per-

centage and its overall consumption at th. The shifting capacities thus estimated,

are the ones reported by the agents as their r̂thi amounts.

Table A.1: Consumption contract types and their shifting capacities (as percentages
of their total demand).

Type Percentage of shiftable load
Residential up to 80%2

Commercial up to 27%3

Agricultural 0%
Municipal 0%

Public up to 27%4

Industrial up to 90%5

Public Law Entity 0%

1Examples of shiftable loads for residential consumers include those associated with water
heaters, washing machines, dishwashers, and floor heating [160].

2http://www.eea.europa.eu/data-and-maps/figures/households-energy-consumption-by-end-uses-4
3http://www.eia.gov/analysis/studies/demand/miscelectric/pdf/miscelectric.pdf
4http://www.enerintown.org/download.ashx?f=EnerInTown_Report.pdf
5The 90% shifting capacity might be optimistic for many industries; however, it is realistic for cer-

tain others (as reported, e.g., in http://info.ornl.gov/sites/publications/files/Pub45942.
pdf). Moreover, this number corresponds to an estimate derived given observed consumption be-

http://www.eea.europa.eu/data-and-maps/figures/households-energy-consumption-by-end-uses-4
http://www.eia.gov/analysis/studies/demand/miscelectric/pdf/miscelectric.pdf
http://www.enerintown.org/download.ashx?f=EnerInTown_Report.pdf
http://info.ornl.gov/sites/publications/files/Pub45942.pdf
http://info.ornl.gov/sites/publications/files/Pub45942.pdf
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Note that not all consumer types have loads available for shifting. Agricultural

consumption for example, mainly consist of pumps whose consumption could be

shiftable only if additional infrastructure is installed. Also, municipal consumption

mainly consists of street lighting, which is also a non-shiftable load category too.

Finally, public law entities have a very tiny overall contribution. Thus, we choose

not to include agricultural, municipal, and public law entities in the shifting scheme.

Given this, the total number of the cooperative participants is 7376; i.e., the sum of

residential, commercial, industrial, and public buildings consumers.

A.2 Agent statements and final shifting actions in

the setting of Chapter 3

We need a model to describe how (i) the agent statements on their uncertainty

regarding shifting capacities at th occur; and (ii) their actual, final shifting actions

occur. To this end, we define two main agent classes; the first one, denoted as BB,

describes the realistic case where agents are mainly confident about their statements,

and also have a high probability to deliver what they promised. In the BB class,

the stated error standard deviation σ̂ and the observed αi accuracy factor follow two

Beta distributions, B(1, 5) and B(4, 2) respectively, which are depicted in Fig. A-1.

We choose Beta distributions primarily because they very good at representing and

updating probabilistic beliefs regarding potential behaviours, as also manifested by

their widespread use for simulating behaviours and uncertainties related to real world

haviour in the (very small) industrial dataset used in [7, 96]. We also note that in our dataset the
industrial consumption is a very small percentage of the total consumption (see Table 3.2).
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scenarios (see, e.g., [43, 83, 96]).

The use of the particular two aforementioned Betas corresponds to error state-

ments having a low mean of = 1
6

(i.e., to agents stating high certainty), whereas the

final observed accuracy factor is closer to 1 (implying increased actual performance

effectiveness). The second agent class is the uncertain predictors, UP, where con-

sumers might or might not follow stated forecasts, so αi and σ̂i both follow the same

normal distribution with a slightly raised variance—i.e., the N (0.5, 0.15) distribu-

tion depicted in Fig. A-1. Table A.2 summarizes the parameters and distributions

associated with BB and UP agents behaviour. About 50% of the participants in

our setting belong to the BB class, with the rest being UP agents (since agents are

assigned to a specific class with 50% probability). BB and UP sufficiently capture

two realistic, highly plausible scenarios of agent behaviour. Of course, the underlying

models of agents behaviour could follow any other distribution as well.6

Table A.2: Behavioural classes of the scheme participants.

Class Parameter Distribution

BB σ̂ B(1, 5)
αi B(4, 2)

UP σ̂ N (0.5, 0.15)
αi N (0.5, 0.15)

6For instance, in [8], the classes of accurate and inaccurate predictors were also introduced.
However, these behavioural classes are less interesting since their behaviour is easier to predict;
and, moreover, they are less likely in practice, since (i) in realistic settings, errors do occur, while
(ii) if predictions are highly inaccurate, the agents would most probably be acting upon them
already, to avoid penalties.
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Figure A-1: Probability density functions of agent behaviors.

A.3 Shifting costs

In the absence of actual real world data, we determine the agents shifting costs via

the use of certain probability distributions. We use Beta distributions for the same

reasons outlined above, and due to the fact that their support is in [0, 1]: shifting costs

are not likely to be negative, and the value 1 is too large to be assumed as a realistic

shifting cost—as it would mean that the consumer would require a compensation of

1 e/kWh for shifting, which is not realistic. We now proceed to explain in detail the

way we generate the costs for each category that is eligible for the shifting operations.

Residential For this consumer type, shifting costs are initialized according to the

following procedure. First, the following must hold, in order for a consumer not to

diverge from its baseline consumption without participating in our scheme:

costt
h→tl

i > phigh − plow
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Figure A-2: Probability density function of B(0.20865, 3.76572).

costt
h→tl

i > 0.0155 (A.1)

Thus, we choose a beta distribution [83], B(0.20865, 3.76572), which has µ ≈ 0.0525

and σ ≈ 0.1. The pdf is shown in Fig. A-2. The mean of this distribution is thus set

to a value which is greater than the 0.0155 cost required by Eq. (A.1), and lower (but

not much) than the pmax
g price—thus ensuring that there exists a substantial number

of agents that would be willing to participate in the shifting efforts (assuming they

can form coalitions that shift substantial consumption quantities), given the better

prices granted by the Grid.7

To calculate the actual shifting costs for each residential participant, we obtain

two samples from the aforementioned Beta distribution, a higher and a lower one

that constitute the means of two distinct Beta distributions, each with σ = 0.01.
7This is a rather plausible scenario, since the Grid would most likely make an effort to offer

prices that would be appealing to the participants. Moreover, after sampling the distribution, we
add 0.0156 to all values to place them in the correct range—a process that results to a sample mean
that is actually higher than pmax

g .
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The distribution with the higher mean is used for shifts from intervals with baseline

agent consumption above the agent’s daily average to others below. Intuitively, it

is difficult for an agent that has “abnormally high” consumption at some tj to shift

to other tl’s (because the abnormally high consumption most probably means that

she “is obliged to” consume at tj). The Beta with the lower mean is sampled for all

other shifting operations—that is, for shifting from an interval with lower baseline

than the agent’s daily average to higher or lower, and for shifting from an interval

with baseline consumption higher than the average to an interval with baseline also

higher than the average. Finally, the costs for shifting to a peak time interval, from

any other interval, are set to +∞ for all agents.

Commercial For the commercial shifting costs generation, we adopt the follow-

ing process. First, we take three samples from our Beta, and randomly assign the

individuals in the commercial population to one of three cost types (with equal prob-

ability): (a) low cost (with costs derived by a Beta with the lower sampled valued),

(b) medium cost (with costs derived by a Beta whose mean is the centre of the inter-

val between the lower and the higher sampled value), and (c) high cost (with costs

derived by a Beta whose mean is the higher value sample).

Then, we define the cost scaling factor sftcost for an interval t, which is inversely

proportional to a consumption scaling factor sft:

sftcost = 1/sft

with sft describing the ratio between the hourly demand of a particular consumer
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type, and the mean daily demand for that type (in this case, the commercial one).

Intuitively, if a commercial consumer consumes much less than its daily mean at a

particular interval t, then it could be the case that its business is actually slow or

even closed at t—and thus shifting consumption to t is more problematic (implying

a higher cost scaling factor for that interval).

Now, according to the non-peak time interval t that the consumer shifts to, we

multiply the cost type-associated Beta mean with the scaling factor sf t
cost for t, and

then sample a Beta whose mean is the resulting number, and has σ = 0.01.

Public Exactly as the commercial.

Industrial The same as the commercial, but no scaling factors apply; every interval

is a sample from a beta distribution with the mean of the corresponding cost type.

There are three different types: low, medium, and high cost, exactly as above.

In Figure A-3 we present the actual agent shifting cost model generated from the

aforementioned procedures. Specifically, Fig. A-3a is a histogram of the distribution

of average-per-agent daily shifting cost values. We can observe that the larger mass

is concentrated close to the minimum eligible shifting cost value, but many agents

with higher average values also exist. Figure A-3b illustrates the actual shifting cost

values sampled for all agents over the course of a typical day, sorted in ascending

order with respect to the cost values sampled. Note that the shifting cost values

spread smoothly across the [0, 1] interval.
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(a) Average daily agent shifting costs.
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(b) Sorted shifting cost values.

Figure A-3: Model of agent costs.

A.4 Renewable energy sources production levels

For the purposes of the simulations performed in Chapters 4 and 5, we fitted normal

distributions on real-world measurements from a renewable energy park located in

Spain. The particular park is called Sotavento Galicia, and is equipped with both

photovoltaic and wind generators.8

To build the models for the renewable generators that were used in our exper-

iments, we calculated the typical hourly values from the measurements collected

during the year 2012. Then, by sampling normal distributions described by resulting

means and variances, we managed to retrieve realistic hourly renewable production

values.

8http://www.sotaventogalicia.com

http://www.sotaventogalicia.com


284 APPENDIX A. DATASETS USED IN THE SIMULATIONS

A.5 Electric vehicles demand levels

For the purposes of the simulation experiments executed in the scope of Chapter 5,

consumption models of electric vehicles were required. The Customer-Led Network

Revolution project 9 provides hourly and monthly EV consumption measurements

that were collected from May of 2013 until July of 2014.

Now, due to the fact that the consumption of each EV is constrained by the charg-

ing rate and battery capacity, obtaining samples from normal distributions with the

resulting means and variances from the dataset values would not be appropriate.

On the contrary, without loss of generality, we assume fixed battery capacities (240

kWh) and charging rates (up to 86.4 kW per hour), and use the measured values to

infer each EV’s time of connection. During intervals of higher mean EV consump-

tion, the probability of an EV connecting to a charger is higher. Thus, the original

dataset’s consumption distributions were used to only sample the time of connection

of an electric vehicle, and not to indicate the demand levels; these were determined

according to the state of charge (SOC) of each battery, and the target SOC value

that the driver requested upon disconnection. These resulted by sampling a beta dis-

tribution B(1, 5) and a normal distribution N (0.5, 0.1), respectively. The duration of

a vehicles connection to the charger was sampled by a uniform random distribution,

that generates a random integer between 1 and 10 (hours). For the original demand

curves, the batteries charge immediately upon connection until the target SOC is

reached. When the V2G/G2V algorithm is applied, charging and discharging can be

shifted to any time interval that the vehicle has an uninterrupted connection.

9http://www.networkrevolution.co.uk/resources/project-data/

http://www.networkrevolution.co.uk/resources/project-data/
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