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Abstract

This thesis presents a novel approach for solving route and scheduling problems of the

Quadratic Unconstrained Binary Optimization (QUBO) type using a novel quantum

algorithm developed with collaborators at the Centre for Quantum Technologies in Sin-

gapore. The algorithm allows the mapping of classical binary variables to log2(N) + 1

qubits allowing for implementation of industrial level problems in near term quantum

computers. We start the work by attacking a problem from the shipping industry known

as the Vehicle Routing Problem with Time Windows (VRPTW), which we first cast in

QUBO format. We then study how to adapt the qubit efficient algorithm to the prob-

lem at hand for different parameter regimes and constraints and design the relevant

quantum circuits. We run the circuits on simulators first and pick the optimal ones

to implement on real quantum computers on the cloud using superconducting and ion-

based qubits from provided by AWS (IONQ, Riggetti) and IBMQ. We demonstrate that

is possible to solve problem instances of 128 and 3964 classical variables using only 8

and 13 qubits, well beyond capabilities of standard approaches based on the quantum

approximate optimization algorithm (QAOA). We benchmark our results with the stan-

dard binary-to-qubit mappings used in QAOA and standard commercial solvers such

as Gurobi find excellent agreement. Next, we introduce a novel reinforcement learning

(RL) enhancement algorithm that can be used on top of our qubit efficient encoding to

further enhance the quality of solutions obtained. In the final two chapters, we formulate

as QUBO and then solve two more optimization problems from the aviation industry,

namely the Tail Assignment Problem (TAP) and the Flight Gate Assignment (FGA)

to test the effectiveness of the enhanced algorithm in tackling problems up to 25000

classical variables. Our simulator results show that using the enhanced RL pipeline one

can find solutions belonging to the top 1% of the solution space.
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1 Introduction

Quadratic Unconstrained Binary Optimization (QUBO) problems are a thoroughly re-

searched category within optimization problems. Their relevance is underscored by the

ability to reframe numerous industry-specific optimization problems into QUBO format

[1]–[11]. Solving industry relevant optimization problems not only enhances a company’s

resource utilization, but also contributes to environmental sustainability by lowering the

carbon emissions from operations [12]–[14].

The field of quantum computing has recently made strides, leading to the creation

of tools that utilize emerging quantum techniques for finding approximate answers to

QUBO problems [15], [16]. This includes Quantum Annealing (QA) [17], [18] and various

variational methods like the Quantum Approximate Optimization Algorithm (QAOA)

[19]–[24] or parameterized quantum circuits optimized for hardware efficiency [25]–[29].

Nonetheless, the application of these quantum algorithms in real-world industry-scale

problems is hampered by the limitations of current Noisy Intermediate Scale Quantum

(NISQ) devices [15], [30]–[32]. To overcome this, significant effort has been directed

towards reducing the number of binary variables required in solving these problems.

This includes restructuring classical problems to lessen binary variable requirements

[33]–[37], adopting divide-and-conquer strategies to deconstruct problems or quantum

circuits [38]–[51], and employing various qubit encoding techniques [52]–[55], among

other strategies [56]–[62].

Recent advancements in quantum computing have catalyzed the development of inno-
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vative algorithms, significantly enhancing the capability to solve complex combinatorial

optimization problems. These advancements are epitomized by algorithms such as the

Quantum Enhanced Greedy Solver [63], Reinforcement Learning Quantum Local Search

(RL-QLS) [64], and the integration of reinforcement learning with quantum-inspired

algorithms [65].

The Quantum Enhanced Greedy Solver, developed by Dupont et al. [63], represents a

pivotal step in quantum algorithmic design. It utilizes an iterative quantum heuristic op-

timization approach, showing performance on par with classical greedy algorithms even

amidst quantum hardware noise. This algorithm’s implementation on a programmable

superconducting quantum system has demonstrated superior performance compared to

classical counterparts, indicating a clear quantum enhancement in output quality. It

has shown promising results in solving Sherrington-Kirkpatrick Ising spin glass prob-

lems, thus opening new avenues in the quantum computing field for addressing complex

optimization tasks.

In the domain of quantum local search, the work by Liu et al. [64] introduces the

RL-QLS approach. This method enhances the efficiency of Quantum Local Search by

training a reinforcement learning agent for improved sub-problem selection, beyond ran-

dom selection. The integration of RL techniques with NISQ algorithms demonstrates the

RL agent’s effectiveness in boosting the average approximation ratio for fully-connected

random Ising problems. This research signifies a promising direction for merging RL

into quantum computing, thereby enhancing the performance of optimization tasks.

Furthermore, the work by Beloborodov et al. [65] discusses the application of rein-

forcement learning in enhancing quantum-inspired algorithms. Their approach involves a

reinforcement learning agent in conjunction with a quantum-inspired algorithm to solve

the Ising energy minimization problem, equivalent to the Maximum Cut problem. This

integration allows for the sampling of high-quality solutions with a higher probability

and outperforms both baseline heuristics and black-box hyperparameter optimization
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1 Introduction

approaches.

In this thesis, we apply a qubit efficient encoding scheme proposed by Tan et al. [55],

called minimal encoding, to solve variationally optimization problems of industry rele-

vant sizes. In particular we solve 3 optimization problems, namely the Vehicle Routing

Problem with Time Windows (VRPTW), the Tail Assignment Problem (TAP) and the

Gate Assignment Problem (FGA). For VRPTW we used different quantum computers

developed by industry leading companies through the cloud to solve problem instances

of up to 3964 classical variables. Results show the effectiveness of the qubit efficient

encoding scheme in solving large optimization problems in the NISQ era, but also it’s

downside in finding clusters of approximate solutions rather than the global optimum

solution. To further increase the problem sizes we introduce a Reinforcement Learning

(RL) based enhancement of the quality of solutions obtained by the optimization with

minimal encoding. As a consequence, we were able to tackle problems of up to 25000

classical variables using up to 16 qubits in quantum simulators for the quantum circuit

and a single laptop GPU for the RL enhancement algorithm.

This thesis is organized as follows : Background section: We explain the basics of

QUBO and quantum optimization as well as classical and quantum-classical algorithms

for solving optimization problems. Qubit Efficient Route Optimization: This chap-

ter first explains the qubit efficient encoding scheme introduced in [55] and shows how

we can apply it to the Vehicle Routing Problem with Time Windows in order to tackle

larger problem sizes using less qubits in real quantum hardware from three industry

leading companies. We also introduce a reinforcement learning enhancement algorithm

designed to further optimize the solutions found by the quantum optimization part.

Qubit Efficient Optimization for the Tail Assignment Problem: In this chapter

we formulate the TAP as a QUBO based on [1] and explain how we generate TAP in-

stances of specific size. In the last section of this chapter we show results after applying

the RL enhanced pipeline for a plethora of problem sizes and discuss the approximation

12



ratio obtained. Qubit Efficient Optimization for the Flight Gate Assignment

Problem: This chapter explains the problem and formulation as introduced in [66]

and then shows how we can map this problem to a QUBO form. We also explain the

procedure of generating QUBO matrices of specific size and provide details about the

problem instances considered in this work. Then we apply the RL enhanced pipeline to

solve GAS problems and discuss the results. Appendix: This section contains a brief

extrapolation on the resources needed to solve the optimization problems considered in

this thesis using the IBM Cairo quantum computer. Also it provides pseudocodes for

the main algorithms for QUBO optimization that were used in this thesis.
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2 Background

2.1 Quadratic Unconstrained Binary Optimization

Quadratic Unconstrained Binary Optimization (QUBO) is the problem of finding an

assignment x* of n binary variables that is minimal with respect to a cost function

quadratic in the binary variables where

C(x) = xTQx =

n∑
i,j=1

Qi,jxixj (2.1)

is the cost function to be minimized/maximized, x = (x1, . . . , xn)
T is the vector of

unknown decision variables and the optimal solution x* can be expressed as:

x* = arg min
x∈{0,1}n

C(x) = arg max
x∈{0,1}n

−C(x) (2.2)

It is important to note that QUBO problems are unconstrained, namely there are no

constraints on the variables x, although constraints can be enforced as penalty terms in

the cost function.

2.1.1 Mapping of QUBOs to Ising models

QUBO instances can also be mapped into Ising models. Ising models replace the QUBO

binary variables x ∈ {0, 1}n with Ising or spin variables s ∈ {−1, 1}n, such that si =

2xi − 1 for i = 1, . . . , n. The final Ising Hamiltonian, which depends on s is equivalent

14



2.1 Quadratic Unconstrained Binary Optimization

to Eq. (2.1) up to a constant irrelevant to the optimization [67], [68].

To find solutions to the QUBO problem using traditional quantum approaches, the

cost function is first mapped to an Ising Hamiltonian:

Ĥising =
1

4

n∑
i,j=1

Qi,j(1− σ̂(i)z )(1− σ̂(j)z ) (2.3)

where σ̂
(i)
z is the Pauli Z matrix, with eigenvalues −1 and 1, acting on qubit i and Qi,j

are the elements of the QUBO matrix Q. The ground state of Ĥising is a basis state |xi⟩

that corresponds to an exact solution x⃗i of the QUBO problem defined by Q.

Due to its equivalence with Ising models, QUBO represents a class of problems suitable

to be solved using adiabatic quantum computers such as quantum annealers [69].

2.1.2 Overview of some Classical Algorithms for Solving QUBOs

QUBOs, by their very nature, involve the optimization of quadratic functions over a

binary domain. While this might seem straightforward, the combinatorial nature of

these problems makes them inherently challenging [80].

In Table (2.1), we provide a summary of the evolution of classical algorithms used to

solve optimization problems in general. While these algorithms were initially developed

for a broad spectrum of optimization challenges, they have found applicability in the

domain of QUBO problems as well [81]–[90].

It is important to note that Gurobi [91] and CPLEX by IBM [92], two of the state

of the art commercial solvers, are using a combination of Branch and Bound, Dynamic

Programming and Cutting Planes algorithms.
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2 Background

Type Method (Year) Description

Exact Branch and Bound (1966) A systematic method that enumer-
ates candidate solutions via relaxation
problems. Complexity is exponential
with the problem size [70].

Dynamic Programming (1966) Leverages underlying problem struc-
ture for efficient solving [71].

Heuristic Simulated Annealing (1993) Explores solution space by occa-
sionally accepting non-improvements,
guided by a temperature parameter
[72].

Tabu Search (1998) Uses memory structures to explore the
solution space beyond local optima
[73].

Genetic Algorithms (1992) Operates on a population of solutions,
evolving better solutions over itera-
tions [74].

Hybrid Hybrid Genetic Algorithms (2006) Blends genetic algorithms with other
optimization techniques [75].

GRASP (1995) A multi-start metaheuristic combining
solution construction with local search
[76].

Decomposition Lagrangian Relaxation (2001) Uses Lagrange multipliers to relax cer-
tain constraints, making the optimiza-
tion problem more tractable [77].

Iterative Gradient Descent (1993) An optimization algorithm that iter-
atively adjusts variables to minimize
a given function, commonly used for
continuous functions [78].

Cutting Plane Cutting Plane Methods (1960) Refines a problem’s relaxation by
adding linear inequalities [79].

Table 2.1: Classical optimization algorithms.
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2.2 Quantum Adiabatic Optimization

2.2 Quantum Adiabatic Optimization

Quantum Annealing (QA) and the Quantum Adiabatic Algorithm (QAA) are closely

related quantum computational techniques that leverage the principles of quantum me-

chanics to solve optimization problems. At their core, both approaches are grounded in

the quantum adiabatic theorem, which ensures that a quantum system remains in its

ground state during a slow, continuous evolution of its Hamiltonian, provided there is

no crossing (degeneracy) between its eigenstates.

Quantum annealing, primarily utilized for solving combinatorial optimization prob-

lems, begins with a quantum system in a superposition of all possible candidate solutions.

It employs a time-dependent Hamiltonian Ĥ(t) that transitions from an initial simple

Hamiltonian Ĥinit to a final Hamiltonian Ĥfinal encoding the optimization problem. This

gradual evolution allows the system to exploit quantum tunneling, a phenomenon en-

abling it to escape local minima and potentially find the global minimum more efficiently

than classical algorithms. Quantum annealing has shown promise in various fields, in-

cluding optimization, machine learning, finance, and materials science [93]–[96] typically

in machines developed by DWave Inc. [97].

The Quantum Adiabatic Algorithm extends the principle of adiabatic evolution to

solve optimization problems on a quantum computer, forming a subset of Adiabatic

Quantum Computing (AQC). QAA involves evolving from an easily preparable ground

state of an initial Hamiltonian ĤM to the ground state of a final Hamiltonian ĤC,

which represents the solution to the problem. The transition follows a predefined path

described by a transitional Hamiltonian Ĥ(t) = f(t)ĤC + g(t)ĤM , enabling the system

to remain in its instantaneous ground state throughout the evolution.

Both QA and QAA can be implemented on different types of quantum computing

platforms, including specialized annealers and gate-based quantum computers. Gate-

based implementations can discretize the continuous evolution of QAA using the Trotter-
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2 Background

Suzuki formula, allowing for a stepwise approximation of the adiabatic process. This

flexibility underscores the adaptability and potential of adiabatic quantum computation

in addressing complex optimization challenges.

In a study conducted by Crosson et al. [98], numerical simulations of the QAA were

carried out for over 200,000 instances of MAX2-SAT on 20 qubits, each with a unique

optimal solution. For instances where the success probability at T = 100 was less

than 10−4, three strategies were proposed to enhance the success probability. The first

strategy involved running the adiabatic algorithm more rapidly, leading to increased

success probabilities at shorter times for all instances. The second strategy focused

on initializing the system in a random first excited state of the problem Hamiltonian,

resulting in an average success probability close to the upper bound for most challenging

instances. Lastly, the third strategy introduced a random local Hamiltonian into the

middle of the adiabatic path, often boosting the success probability. These strategies

were also tested on the QAA version of the Grover search algorithm, but they did

not yield improvements in the success probability. The authors concluded that these

strategies might be beneficial primarily for exceptionally difficult instances and suggested

testing them on a quantum computer with a higher number of qubits.

In conclusion, Quantum Annealing and the Quantum Adiabatic Algorithm represent

significant advancements in quantum computing’s ability to tackle complex optimization

problems. Their development and implementation continue to be a vibrant area of re-

search within the quantum computing community, promising to unlock new possibilities

across various scientific and industrial domains.
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2.3 Quantum Approximate Optimization Algorithm

2.3 Quantum Approximate Optimization Algorithm

The Quantum Approximate Optimization Algorithm (QAOA) is a quantum algorithm

introduced by Farhi et al. [19] for tackling optimization problems. It represents a novel

approach combining quantum computing and classical optimization techniques. The

algorithm operates in a hybrid quantum-classical fashion, where the quantum computer

is used to prepare states that encode possible solutions, and a classical computer is used

for optimization.

Layer 1 Layer Measure

O
ptim

ization

Variational parameters

Figure 2.1: Optimization procedure for the QAOA. All qubits start from a superposition
after applying Hadamard gates to all. Operators U(C, γ) (red) and U(B, β)
(purple) are being applied for each layer of QAOA. At the end we measure all
the qubits in the computational basis, calculate the mean value of the cost
operator and optimize this quantity over all variational parameters using a
classical optimization algorithm.

The core of QAOA is a parameterized quantum circuit with p ≥ 1 layers as seen in

figure (2.1). This circuit consists of two types of unitary operators applied repeatedly in
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2 Background

alternation: The problem unitary U(C, γ), which encodes the problem’s cost function

C. The cost function is a function of the angle γ and is defined as U(C, γ) = e−iγC . The

mixing unitary U(B, β), which provides quantum exploration of the solution space. It

depends on the angle β and is typically defined as a series of X-rotations U(B, β) = e−iβB,

where B is a sum of Pauli-X operators.

The performance of QAOA depends on the depth of the circuit (number of repetitions

of the unitaries), with higher depths generally providing better approximations to the

optimal solution. Various modifications and extensions to the standard QAOA have

been proposed to enhance its performance and applicability.

In the original QAOA paper, the authors discuss the relation to QAA described in

section (2.2) with QAOA. Especially they mention that as QAA is proven to converge if

given enough time, QAOA can approximate this scenario by applying the two operators

U(C, γ) and U(B, β) where the sum of the angles is the total runtime using a large

number of layers, perhaps exponentially large in the system size. Although, there are also

some key differences that the authors argue, like the fact that in QAOA as p grows the

approximation gets better while this is not always the case for the QAA (we kindly refer

the reader to citations within the original QAOA paper for a more detailed discussion

on this).

QAOA has been applied to a range of combinatorial problems as described in this very

helpful survey [99]. Its hybrid quantum-classical nature makes it particularly suitable

for near-term quantum computers. QAOA stands as a significant development in quan-

tum algorithms, showing potential for solving complex optimization problems that are

challenging for classical computers. Its ongoing development and refinement continue to

be an active area of research in quantum computing.
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2.4 Variational Quantum Eigensolver

2.4 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) is often recognized as the algorithm that

initiated the exploration of Variational Quantum Algorithms (VQAs) [100], [101]. The

VQE represents a groundbreaking quantum algorithm that combines the capabilities of

both quantum and classical computing to address the challenge of determining eigen-

values for a given Hamiltonian operator initially introduced by Peruzzo et al. [100].

It showcased its prowess in tackling quantum chemistry problems by utilizing a hybrid

system that integrates a photonic quantum processor with a classical computer. Subse-

quent advancements by McClean et al. [102] further refined and solidified its theoretical

underpinnings. The VQE allows for the probabilistic measurement of observables over

certain classes of parameterized approximate wavefunctions, which can neither be sam-

pled from nor have their properties computed efficiently (e.g. in polynomial time) on

conventional devices as the system size gets large [103].

The VQE algorithm relies on a parametrized quantum circuit, often referred to as an

ansatz, defined by a set of parameters denoted as θ. The optimization of these ansatz

parameters is a systematic process, aiming to find the best possible solution through the

application of the variational principle on a quantum computer. This entire variational

process can be symbolized by a unitary gate U(θ). The ansatz operates on the initial

state of an N-qubit quantum circuit, commonly chosen as the ground state |0⟩, resulting

in an output state U(θ) |ψ0⟩ = |ψ(θ)⟩.

From this setup, it becomes evident that U(θ) |ψ0⟩ represents a normalized wave

function, enabling the formulation of the optimization problem as follows:

λ = min
θ
⟨ψ0|U †(θ)ĤU(θ) |ψ0⟩ (2.4)

This state undergoes iterative optimization by adjusting the parameters θ to find the

optimal parameter set, θ∗, ultimately determining the optimized expectation value:
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λmin = E0 ≈ ⟨ψ(θ)| Ĥ |ψ(θ)⟩ (2.5)

VQAs draw inspiration from the variational principle of quantum mechanics. This

principle seeks to determine the lowest expectation value of a specific observable, often

the ground state energy, using a trial wave function. The uniqueness of the trial wave

function lies in its parametrization, which can adapt to fit a general wave function to

the system and identify the least expectation value. With a Hamiltonian Ĥ and a trial

wave function |ψ⟩, the ground state energy E0 is constrained by:

E0 ≤
⟨ψ| Ĥ |ψ⟩
⟨ψ|ψ⟩

(2.6)

Within this context, VQAs aim to tailor the parametrization of |ψ⟩ to minimize the

Hamiltonian’s expectation value. The process entails refining an ansatz by successively

enhancing its initial trial wave function and parameter set. Usually, the parameter ini-

tialization occurs randomly within a reasonable scope, considering the quantum system.

Determining the right ansatz is challenging, with multiple strategies based on the sys-

tem’s Hamiltonian and the nature of the problem. For instance, in quantum chemistry,

discerning a helium atom’s ground state requires an ansatz formed from two hydrogen

atom wave functions, which is further refined. Another popular method is the hardware-

efficient ansatz shown in figure (2.2)1, built using one and two-qubit gates native to the

hardware. Its merits lie in its reduced circuit depth and adaptability, making it suitable

for diverse problems. This flexibility in crafting an ansatz for a variational task facili-

tates the adoption of quantum computers. They can represent Hamiltonians as unitary

operations, and the amalgamation of these operations helps craft an easily adjustable

ansatz wave function using the Bloch sphere rotation angles.

The concept of combining quantum and classical computers to handle different aspects

1Throughout this thesis we are using the hardware efficient ansatz as a parametrized quantum circuit
for all problems solved.
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2.4 Variational Quantum Eigensolver

Figure 2.2: Hardware efficient variational ansatz. Each circuit begins with a layer of
Hadamard gates followed by L repetitions of CNOT gates and single qubit
Y (θi) rotations. The circuit is measured in the computational basis to esti-
mate the respective cost functions, and a classical optimizer is used to update
the variational parameters θ⃗.

of a complex problem is known as hybrid quantum-classical computing and forms the

core of any VQA [102].

Furthermore, this hybrid approach proves particularly valuable in numerous use cases,

especially with NISQ devices, as quantum computers are less efficient and fault-tolerant

than their classical counterparts for certain tasks, such as parameter optimization. Con-

sequently, the computational load is distributed between the two systems to maximize

overall performance. In this hybrid regime, the task of fine-tuning the parameters is

outsourced to classical computers, which subsequently relay the optimized values to the

quantum computer for eigenvalue calculations. The classical computer computes the

new parameters through optimization techniques, typically based on gradient descent,

which calculates a hyperplane of error or deviation from the ideal solution to locate a

minimum point that signifies the highest model accuracy.

It’s important to note, however, that hybrid computing is not always the most ef-

ficient solution, as some algorithms exhibit greater power when exclusively relying on

quantum hardware, as demonstrated by Magann et al. [104]. Kandala et al. [105] uti-

lized a medium-sized quantum computer to optimize Hamiltonian problems involving
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up to six qubits and over one hundred Pauli terms. They successfully determined the

ground-state energy for molecules like BEH2 . Their approach involved a VQE, the

efficient preparation of trial states tailored to the available quantum processor interac-

tions, and a robust stochastic optimization algorithm. Their results shed light on the

requirements for scaling the method to larger systems and bridging the gap between

high-performance computing problems and their implementation on quantum hardware.

Recent variations of VQE have also been proposed to effectively address combinatorial

optimization problems [29], [106].

2.4.1 Barren Plateaus

When dealing with parametrized quantum circuits like VQE and QAOA during training,

a significant obstacle emerges concerning the landscape of the cost function. Specifically,

for certain sets of parametrized quantum circuits, the cost function landscape can ap-

pear quite flat. This flatness implies that the gradients associated with the adjustable

parameters become exceedingly small as the number of qubits increases, leading to a

stagnation of the optimization process. This phenomenon is commonly referred to as

the barren plateaus problem [107], wherein the gradient of the cost function with respect

to any parameter exponentially diminishes as the number of qubits grows. In more for-

mal terms, a cost function C(θ) exhibits barren plateaus if, for all trainable parameters

θi ∈ θ, the variance of the partial derivative of the cost function decreases exponentially

with respect to the number n of qubits:

Varθ[∂iC(θ)] ≤ F (n) (2.7)

where F (n) ∈ O(b−n) for a constant b > 1. Equation (2.7) indicates that, on average,

the gradient of the cost function becomes exponentially small. According to Chebyshev’s

inequality, the likelihood of the partial derivative ∂iC(θ) deviating from its average
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2.4 Variational Quantum Eigensolver

value (which is zero) by more than a specified constant c, with c > 0, is bounded by

Varθ[∂iC(θ)], expressed as:

Pr[|∂iC(θ)| ≥ c] ≤
1

c2
Varθ[∂iC(θ)] (2.8)

2.4.2 Parameter Shift Rule for Quantum Circuits

The parameter shift rule [108] is a crucial technique for calculating gradients in quantum

circuits, especially in the context of variational quantum algorithms. This rule addresses

the challenge of computing derivatives of quantum expectation values with respect to

gate parameters.

Consider a quantum circuit with a parameterized gate U(θ) = e−iθH , where θ is the

parameter and H is a Hermitian operator. The expectation value of an observable O in

the state prepared by this circuit is given by:

⟨O⟩(θ) = ⟨ψ|U †(θ)OU(θ)|ψ⟩, (2.9)

where |ψ⟩ is the initial state of the system.

The gradient of ⟨O⟩(θ) with respect to θ can be estimated using the parameter shift

rule. This rule states that for a gate of the form U(θ) = e−iθH , where H2 = I (the

identity operator), the derivative of the expectation value can be expressed as:

d⟨O⟩
dθ

=
⟨O⟩(θ + π/2)− ⟨O⟩(θ − π/2)

2
. (2.10)

The parameter shift rule allows for the estimation of gradients without the need for

finite difference methods, which can be less accurate and more resource-intensive. This is

particularly beneficial in quantum computing, where resources (such as qubits and gate

operations) are limited and costly. By applying this rule, gradients can be calculated

efficiently, enabling more effective optimization in variational quantum algorithms.
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While the parameter shift rule is powerful, it has limitations. It assumes that H2 = I,

which is not true for all Hermitian operators. Generalizations of this rule exist for more

complex cases, involving shifts by different angles and potentially more terms in the

gradient estimation formula.
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3 Qubit Efficient Route Optimization

3.1 Introduction

We start off by formulating the VRPTW using a greedy heuristic introduced in [2]. We

acknowledge discussion with Dimitar Trenev and Stuart Harwood from [2] who kindly

agreed on explaining their paper to us and helped us formulate the VRPTW instances

covered in this thesis. After formulating the problem, we show how we can map it to

a QUBO using the traditional encoding scheme of mapping one qubit to one classical

variable, and how we map it using the minimal encoding. Then we compare these

two encoding schemes in small problem instances of nc = 8, 16 classical variables using

real quantum hardware. To further advance the robustness of the encoding scheme, we

employ it to larger problem instances of nc = 128, 3964 classical variables using only up

to 13 qubits and we compare results with the classical commercial solver Gurobi.

Lastly, we introduce a reinforcement learning algorithm that can be used after the

qubit efficient algorithm to further enhance the quality of solutions obtained allowing us

to solve even bigger problem instance of up to 26000 classical variables using up to 16

qubits and a single laptop GPU.

3.2 Qubit Efficient Quantum Algorithms for the Vehicle

Routing Problem

3.2.1 Vehicle Routing Problems with Time Windows

Vehicle Routing Problems (VRP) are a well explored and widely applicable family of

problems within logistics and operations and are a generalized form of the well-known

Travelling Salesman Problem (TSP) [109]. The overarching goal of these problems is to

manage and dispatch a fleet of vehicles to complete a set of deliveries or service customers

while trying to minimize a total cost. Many variations of this problem exist, oftentimes

seeking to maximize profits or minimize travel costs [12], [110].
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3.2 Qubit Efficient Quantum Algorithms for the Vehicle Routing Problem

The Vehicle Routing Problem with Time Windows (VRPTW) is a VRP variant that

enforces time windows within which individual deliveries must be made [111]–[113].

Reference [2] provides 3 different methods of mapping the VRPTW to a QUBO, of which

we will follow the denser, route-based formulation, requiring fewer binary variables for

the same number of destinations as the other formulations.

A problem instance is characterized by a network of nodes N . This set consists of

N nodes representing different customers and an additional 0th node, d to serve as the

”depot” node, which must be the initial departure point and final destination for all

vehicles v ∈ V. Nodes are connected by directed arcs, (i, j) ∈ E , each of which has an

associated cost cij . These costs are frequently functions of the travel distance or travel

time between two nodes, but other measures can also be used. The problem may be

specified further by assigning each non-depot node a demand level. For the sake of this

work, all vehicles are assumed to be homogeneous both in speed and capacity.

Each node i has an associated time window [ai, bi] and can only be serviced after time

ai and before time bi (although we may permit vehicles to arrive earlier and wait until

ai). The depot can be treated as having a time window of [0,+∞] and the effective

arrival time at node ip+1 is given by Tip+1 = max{aip+1 , Tip + tip,ip+1}.

According to this route-based formulation, valid solutions to the problem instance will

inform whether or not a route should be travelled. We define a route r as an ordered

sequence of P nodes (i1, i2, ..., iP ) for a vehicle to travel to. To satisfy the requirement

that vehicles must start and end at the depot, we require that i1 = iP = d. In order

for a route to be considered valid, it must be composed entirely of valid segments:

(ip, ip+1) ∈ E ∀ 1 ≤ p ≤ P − 1.

We must also ensure that the arrival time Tip for any given node p along route i,

must not exceed the upper limit of that node’s time window, i.e. Tip ≤ bip∀p. This set

R containing all valid routes defines the size of the problem. For a route r ∈ R with

sequence (i1, i2, ..., iP ), we can calculate a route cost cr =
∑P−1

p=1 cip,ip+1 . We also define
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Figure 3.1: Mapping of a simple 4 route VRPTW optimization problem to a quantum de-

vice using complete (or full) and minimal encoding. a) Graph of the original
optimization problem. Each node in the graph is associated with a location
id and a time window. b) After obtaining the set of feasible routes [2], we
generate the optimization problem by assigning a binary variable to every
route. c) Visual representation of the full encoding, showing a mapping of a
binary variable to a single qubit on the quantum device. The optimal quan-
tum state using this encoding is a single basis state, which is the ground
state of the Ising Hamiltonian representing the problem. d) Visual repre-
sentation of the minimal encoding using 3 qubits to represent this 4-route
VRPTW problem by mapping the binary variables to basis states spanned
by the qubits. The optimal quantum state using this encoding scheme is
now a superposition of the register qubits followed by the appropriate value
of the ancilla qubit, as shown for the optimal classical solution in (b).
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a value δi,r which is equal to 1 if node i lies in route r and 0 otherwise. This allows

us to express the objective of our VRPTW in terms of a vector x⃗, containing decision

variables xr corresponding to each route r:

min
x⃗

R∑
r

crxr, xr ∈ {0, 1} ∀ r ∈ R (3.1)

s.t.

R∑
r

δirxr = 1, ∀ i ∈ N (3.2)

where xr is a binary variable that has value 1 if route r is to be travelled, and 0 if

not. The linear equality constraint (3.2) ensures that all nodes in the network are visited

exactly once within our optimal solution. As an additional optional constraint, it may

be desirable to set the number of used vehicles to some fixed value V . This is achieved

with the additional condition:
R∑
r

δ0rxr = V

where we have used the nomenclature of δ0,r referring to the inclusion of the depot node

in route r. This is included purely for illustrative purposes, as all valid routes must

include the depot node and therefore δ0,r = 1 ∀ r ∈ R.

A toy example of the VRPTW problem with 14 destinations without constraints on the

number of vehicles is shown in figure (3.1)a. In this example, we show the destinations

being grouped into 4 routes, with each route starting and ending at the depot. This can

be done using a classical heuristic or otherwise, to remove routes that do not respect the

time windows or unallowed routes due to other constraints (e.g. untraversable paths,

long travel time between nodes, etc). Figure (3.1)b shows how we set up the VRPTW by

assigning a binary variable to each route and figures (3.1)c & d shows the full (standard

encoding used to map binary variables to qubits) and minimal encoding respectively.

For an instance of VRPTW specified by valid routes R, the optimal route for fully
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Number of routes
Number of
locations

Number of classical
variables

Number of qubits
using minimal encoding

11 13 11 5

16 14 16 5

128 23 128 8

687 33 687 11

1285 39 1285 12

3964 63 3964 13

6081 80 6081 14

9644 110 9644 15

14095 148 14095 15

20565 200 20565 16

25382 242 25832 16

Table 3.1: Information for all the VRPTW instances covered. These instances were
created using the heuristic proposed in [2]. The number of locations includes
demand, supply and dummy nodes.

connected problems with N nodes rapidly becomes computationally infeasible, with

potential routes scaling as Rmax =
∑N

i=1
N !

(N−i)! . In real-world scenarios, full connectivity

may not always be present, and R≪ Rmax.

To convert the route set into a QUBO problem, the classical optimization cost function

is expanded with penalty terms to represent constraints, resulting in a new unconstrained

cost function:

min
x⃗

∑
r∈R

crxr + ρ
∑
i∈N

(∑
r∈R

δirxr − 1

)2

(3.3)

where ρ is a positive penalty coefficient, ensuring violations are penalized. The above

equation can be written in matrix form as follows:

min
x⃗
c⃗⊤x⃗+ ρx⃗⊤δ⊤δx⃗− 2ρ(⃗1⊤δ)x⃗+ ρN (3.4)

By setting matrix Q = diag(c⃗) + ρδ⊤δ − diag(2ρ1⃗⊤δ), where diag(c⃗) denotes a matrix

with c⃗ in its diagonal, we arrive at the definition of a QUBO problem in (2.1).
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3.2.2 Systematic Encoding of Binary Variables

The encoding scheme in [55] starts off by dividing the nc classical variables within the

QUBO problem into subgroups of na variables. na qubits are then used to represent

the values of the binary variables within those subgroups, and the basis states of nr =

log2(
nc
na
) register qubits are used as addresses to denote which subgroup should take on

the values that the ancilla qubits represent. The smallest possible subgroup allowed

consists of only one classical variable per subgroup where na = 1. We refer to this

grouping as the minimal encoding. The largest possible subgroup allowed is when the

subgroup consists of all the classical variables, i.e. na = nc, in which case only one

possible subgroup exists and no register qubits are needed i.e. nq = na = nc. We refer

to this as the full encoding and is the one-to-one qubit to variable mapping typically

used in the standard approaches described above.

Minimal Encoding

The parametrized quantum state can be expressed as

∣∣∣ψme(θ⃗)
〉
=

nc∑
k=1

βk(θ⃗)[ak(θ⃗) |0⟩a + bk(θ⃗) |1⟩a]⊗ |ϕk⟩r (3.5)

where {|0⟩a,|1⟩a} refer to the quantum state of the na = 1 qubit and {|ϕk⟩r} refer to

the quantum state of the register qubits. To derive the cost function for the minimal

encoding, we start from a QUBO cost function that also takes into the account the

probability of sampling a bitstring x⃗i :

Cx =
2nc∑
i=1

x⃗i
⊤Qx⃗iP (x⃗i) (3.6)

However, the probability P (x⃗i) of obtaining a particular bitstring x⃗i is now calculated

differently using the state given in (3.5).
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From this state, we can construct a probability distribution using the coefficients to

obtain the probability of sampling a bitstring x⃗ from the state. This can be done by

letting the probability of the kth binary variable in x⃗ being xk = 0 and xk = 1 be

P (xk = 0) = |ak(θ⃗)|2 and P (xk = 1) = |bk(θ⃗)|2 respectively. This gives the total

probability P (x⃗i) of obtaining a particular bitstring x⃗i as

P (x⃗i)θ⃗ =

nc∏
k=1

|bk(θ⃗)|2 (3.7)

=

nc∏
k=1

P (xk)θ⃗ (3.8)

for a given set of θ⃗. To obtain a classical bitstring post optimization, coefficients of the

optimal quantum state
∣∣∣ψme(θ⃗opt)

〉
are estimated using nshots number of shots to obtain

the bi(θ⃗opt) coefficients in eq.(3.5), from which we can construct the probability distri-

bution above. Multiple classical solutions x⃗ can then be sampled from this probability

distribution by assigning the kth bit in each classical solution to be xk = 1 with a prob-

ability of P (xk = 1) = |bk|2 and xk = 0 with probability P (xk = 1) = 1− |bk|2 = |ak|2.

The minimal encoding allows us to reduce the number of qubits required for a problem

with nc classical variables to nq = 1+log2(nc) qubits, the largest reduction possible using

the encoding scheme.

To estimate the cost function for optimization using the encoding scheme, it is possible

to use the variational cost function in Eq. (3.6) by measuring the output state of the

quantum circuit, constructing the probability distribution in Eq. (3.8) as described

above, and then sampling multiple classical solutions. P (x⃗i) in Eq.(3.6) is estimated by

calculating the fraction of each unique sample x⃗i obtained, over all samples. However,

this results in a slight classical overhead at each optimization step as the quantum state

is used to construct a probability distribution to sample classical solutions to estimate

eq. (3.6).
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By substituting the probability distribution
∏nc

k=1 P (xk) into P (x⃗i) in Eq.(3.6), we can

obtain a cost function that directly depends on the coefficients in our minimal encoding

quantum state (3.5). When expressed in the form of projectors, this becomes:

Cme(θ⃗) =

nc∑
k ̸=l

Akl

⟨P̂ 1
k ⟩θ⃗⟨P̂

1
l ⟩θ⃗

⟨P̂k⟩θ⃗⟨P̂l⟩θ⃗
+

nc∑
k=1

Akk

⟨P̂ 1
k ⟩θ⃗
⟨P̂k⟩θ⃗

(3.9)

=

nc∑
k ̸=l

Akl|bk|2θ⃗|bl|
2
θ⃗
+

nc∑
k=1

Akk|bk|2θ⃗ (3.10)

which is the minimal encoding cost function as described in [55]. The projectors P̂k =

|ϕk⟩ ⟨ϕk|r are projectors over the register basis states |ϕk⟩r and P̂ 1
k = |1⟩ ⟨1|a ⊗ P̂k

are projectors over the states where the ancilla is in the |1⟩a state. This removes the

need to reconstruct classical bitstrings x⃗i to evaluate multiple values of x⃗i
⊤Ax⃗i at each

optimization step.

This minimal encoding cost function is a sum over n2c number of terms, compared

to regular encoding approaches that minimize
〈
ĤIsing

〉
. Evaluating

〈
ĤIsing

〉
requires

summing over a maximum of 2nc terms in the limit of nshots → ∞, or at most nshots

number of terms if nshots < 2nc shots are used.

For small number of shots used to estimate (3.9), some of the register states may not be

measured, leading to ⟨P̂k⟩θ⃗ = 0 in the denominator. Intuitively, this can be interpreted

as not having any information on whether to assign the kth bit to be xk = 0 or xk = 1

(with their respective probabilities). In such cases, we manually set
⟨P̂ 1

k ⟩θ⃗
⟨P̂k⟩θ⃗

= 0.5. This

is interpreted as randomly guessing the value of the kth bit to be 0 or 1 with a 50%

probability.

The minimal encoding, while being able to exponentially reduce the number of qubits

required to find solutions to a QUBO problem, comes at a cost of being able to capture

classical correlations between the binary variables during sampling. This can be seen

from Eq. (3.8) which, for fixed θ⃗ describes a probability distribution of multiple indepen-
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dent variables where the outcome of sampling the kth bit is independent of the outcome

of sampling another bit. During optimization however, these marginal probabilities de-

pend on the same set of variational parameters, θ⃗, when using the ansatz in figure (2.2).

Adjusting θ⃗ to change P (xk = 1) for the kth bit may affect the value P (xl = 1) of

the lth bit. Regardless, unless the optimal state is able to produce P (xk = 1) = 0 or

P (xk = 1) = 1 exactly, it is difficult for the minimal encoding state to produce a sharply

peaked distribution around the optimal distribution.

Another trade-off of the minimal encoding is the number of shots needed to properly

characterize a classical solution. In traditional mappings of 1 qubit to a binary variable,

each measurement of the quantum circuit yields a single solution x⃗. For the minimal

encoding, multiple shots are needed to properly characterize the |bk|2 coefficients in the

optimal quantum state. For large problem sizes, this can result in large number of shots,

especially if the corresponding register probabilities, |βk|2 are very small. Failure to

measure these probabilities results in the issues mentioned above, where the values of

certain bits have to be guessed, resulting in poorer solutions.

Full Encoding

Problems solved using the full encoding scheme will have each classical variable mapped

to its own qubit. The full encoded quantum state is given by

∣∣∣ψc(θ⃗)
〉
= Ûc(θ⃗) |ψ0⟩ =

2nc∑
i=1

αi(θ⃗) |xi⟩ , (3.11)

where Ûc(θ⃗) is the unitary evolution implemented on the quantum computer and the

probability of sampling the ith solution is given by the |αi(θ⃗)|2. The cost function is

calculated according to (3.6). Each measurement of the circuit results in a basis state

that represents a specific bitstring xi, whose cost is equal to Cfe = x⃗i
TQx⃗i.
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3.3 Implementation of real quantum computers on the cloud

Cloud quantum computing merges quantum computing and cloud technology, offering

remote access to quantum processors via the internet, thus eliminating the need for per-

sonal, expensive quantum hardware. This union transforms the accessibility model of

quantum computing, making it more feasible for a wider array of users, thereby pro-

moting a more diverse innovation and scalability in the field. However, it also faces

challenges such as limited quantum resources, data security concerns, and the technical

complexity of quantum algorithms. Despite these obstacles, cloud quantum computing

is vital for progress in quantum technologies, with significant contributions from major

platforms like IBM Quantum Experience [114], Amazon Braket [115], Google Quantum

AI [116], Microsoft Azure Quantum [117], and IonQ [118], each providing various tools

and access to different quantum systems. These platforms are pivotal in advancing re-

search, developing quantum applications, and preparing for the future of computation,

making cloud quantum computing a cornerstone of the impending technological revolu-

tion. We acknowledge support from CQT at NUS for accessing IBM and AWS quantum

devices and performing experiments.

IBM and Rigetti use superconducting qubits [119], which operate by creating and ma-

nipulating superconducting circuits at extremely low temperatures to maintain quantum

coherence. IonQ on the other hand, employs trapped ion technology, using individual

ions as qubits and manipulating them with lasers [120]. The performance of these qubits

can be characterized by parameters such as coherence times (T1 and T2), and fidelities

1 for single and two-qubit operations.

• T1 - The energy relaxation time, or the time it takes for a qubit to decay from its

excited state to its ground state.

• T2 - The dephasing time, or the time over which a qubit loses its phase information.

1Qubit fidelity is a measure of accuracy and reliability of a qubit or a quantum operation
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• Qubit number - The total number of qubits in the system.

Quantum
Device

Technology Qubits
T1
(µs)

T2
(µs)

Fidelity
% Single
Qubit

Fidelity
% Two
Qubit

IBM
Cairo

Superconducting 27 91.91 102.32 99.9924 99.998

IBM
Guadalupe

Superconducting 16 N/A N/A N/A N/A

IonQ
Aria-1

Trapped Ion 21 107 106 99.95 99.6

IonQ
Harmony

Trapped Ion 11 107 106 99.6 97.3

Rigetti
AspenM2

Superconducting 80 31 18 99.8 91.3

Table 3.2: Specifications of various quantum devices including technology, qubit number,
coherence times, and average fidelity for single and two qubit operations.

Table 2 (3.2) shows specifics about the quantum computers we used via cloud in order

to solve VRPTW instances with sizes shown in (3.1). We observe that Rigetti AspenM2

has the highest number of qubits and the lowest T1 and T2 which means that running

deep circuits with many layers is prohibited. Although, IBM Cairo which uses the same

superconducting technology has higher T1 and T2 times compared with AspenM2, still,

is order of magnitudes behind compared with the ion technology. Since ions are trapped

atoms it is expected to have longer decoherence times as long as they don’t fall out

of the trap. Ion technology also offers all to all qubit connectivity in contrast with the

superconducting technology which has a fixed architecture. We must also note that IBM

has the highest average fidelity which is very useful since we want our qubit operations

to have as less errors as possible. In figure (3.2) we show an example of a 5 qubit ion

trap and the architecture of the superconducting IBM Cairo quantum machine. Using

lasers in the ion technology, one can manipulate pairs of qubits independently, while in

2As of 2024 IBM Guadalupe has been deprecated from the IBM quantum-ecosystem and its details are
not available. For the IBM Cairo quantum machine a more detailed practical analysis can be found
in the appendix (7.1).
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3.3 Implementation of real quantum computers on the cloud

a) 5 qubit ion trap b) IBM Cairo qubit architecture

Figure 3.2: Different state of the art quantum computer architectures. a) Diagram of a
5 qubit ion trap. Ions are trapped by the electrodes and laser beams are used
to perform quantum transormations on the ions. b) Qubit architecture of
the IBM Cairo machine. Nodes are actual physical qubits in the machine and
edges represent a two qubit operation between qubits. Purple color shows
higher T1 times for the qubits and higher controlled-not gate errors for the
edges.

the IBM Cairo architecture we can perform two qubit operations only between qubits

that are connected with an edge.

Overall, quantum machines are still in the NISQ era and the current fidelity of qubit

operations does not allow their scalability. Even if we only consider the single and two

qubit fidelity shown here, having a quantum computer with 1000 qubits would result

in a machine that only produces noise. Nevertheless, the technology behind quantum

computers is an active area of research and progress is being made everyday.

3.3.1 Solving VRPTW Using Different Cloud Quantum Computers

Each problem is set up with a basic variational ansatz with L = 4 layers of the gates

exemplified in figure (2.2). We used ADAM [121], a gradient based classical optimizer,

to find the optimal parameters for our circuit. During each iteration, the parameter shift

rule [122] was used to calculate the gradient of each parameter. The final parameters

were used to run optimal circuits using a noise-free simulator in Pennylane [123] and,

depending on the problem sizes, on the cairo or guadalupe quantum backends from

IBMQ [114], the Aspen-M2 quantum backend from Rigetti via the AWS Braket [115],

and on the Harmony and Aria-1 quantum backends from IonQ [118]. In all problem
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3 Qubit Efficient Route Optimization

instances for both the minimal and full encoding case, 20 randomly seeded starting

points, θ⃗init, were used. 10 classical solutions were sampled from the post-optimization

quantum state for a total of 200 classical solutions per problem instance, and compared

according to a cumulative distribution of their normalized cost function value:

Cnorm =
C(θ⃗)− Cmin

Cmax − Cmin
(3.12)

where Cmin and Cmax are the minimum and maximum cost function values associated

with the problem instances, found using Gurobi [91]. Classical solutions were drawn

from the minimal encoding quantum state as described in section (3.2.2). In the case of

full encoded quantum states, to obtain the probability distribution of the solutions we

simply measure the quantum circuit in the computational basis. By doing so, we are

able to compare these two encoding techniques based on the classical solutions obtained

from each method and their associated costs for each VRPTW instance.

Comparison of Minimal Encoding with Full Encoding Scheme

The optimization process and the derived approximate solutions for the smaller prob-

lem sizes with nc = 11, 16 are displayed in figures (3.3) and (3.4) respectively. The

optimization utilized varying numbers of shots, nshots, based on the problem size and

were evaluated against results obtained with full access to the statevector, essentially

nshots → ∞. For these smaller problem sizes, the number of shots needed to achieve

a solution comparable to statevector simulation is within the reach of current quantum

technology. ADAM, with an adequate number of shots, achieves comparable solution

quality in both minimal and full encoding scenarios, even though minimal encoding uses

fewer qubits.

When considering classical solutions derived from quantum states from IBMQ quan-

tum backends, they consistently performed better than those from IonQ and Rigetti
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3.3 Implementation of real quantum computers on the cloud

backends in both minimal and full encoding scenarios. Furthermore, figures (3.3) and

(3.4) show that IonQ devices yield higher quality solutions for the fully encoded cases

as opposed to the minimally encoded ones. However, due to scheduling constraints,

instances with fewer qubits, like those in minimal encoding, were run on Harmony in-

stead of Aria-1 qpu, and additional analysis is needed to understand these performance

differences for IonQ backends.

Figure (3.5) compares the distribution of classical solutions from minimal and full

encodings for both the 11R and 16R instances, using IBMQ quantum devices, given

their similarity to simulated outcomes.

In both 11R and 16R scenarios, a significant number of classical solutions from both

encoding methods resulted in similar quality solutions across all optimization attempts.

However, the minimal encoding state showed a more concentrated clustering of sampled

solutions compared to the full encoding. In specific problems like the VRPTW instances

here, this is attributed to the minimal encoding state converging to a state that has a

high probability of yielding a single, low-cost solution. Sampling classical solutions from

this final state as per (3.8) often results in this favorable solution. Nevertheless, the

inability to capture classical correlations in the minimal encoding means that solutions

with poor cost function values can still be sampled with a nonzero probability.

In contrast, in the full encoding scenario, a good cost function value indicates the

maximization of multiple viable solutions with low costs, ideally centering on the optimal

solution. Therefore, sampling from such a post-optimized state in full encoding is more

likely to yield other solutions with close cost function values.
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3 Qubit Efficient Route Optimization

Figure 3.3: Comparison between a nc = 11 route optimization instance, using full and
minimal encoding. a, c) Convergence graphs for the full encoding and min-
imal encoding schemes with nshots = 1000, 10000, and nshots → ∞. Shaded
regions show the deviation of the normalized cost function values per opti-
mizer iteration. b, d) Cumulative distribution of classical solutions obtained
post optimization using full and minimal encoding respectively. Black curves
show the distribution of Cnorm values of all 2nc classical solutions. Blue curves
show classical bitstrings obtained using nshots = 10000 shots from simulator.
Orange, green, and red curves show the classical bitstrings obtained using
the optimal parameters from optimization, on IBMQ, IonQ, and on Riggeti
quantum backends. Insets show the zoomed version close to Cnorm = 0.
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3.3 Implementation of real quantum computers on the cloud

Figure 3.4: Comparison between the full encoding and minimal encoding for a nc =
16 route problem, using nq = 16 qubits for the full encoding and nq = 5
qubits for the minimal encoding. a, c) Optimization runs over 20 starting
points. Shaded region shows minimum and maximum value of the 20 runs
obtained at each optimization iteration. b, d) Cumulative distribution of
bitstrings obtained using nshots = 10000 shots on a simulator (blue) , IBMQ
(orange), IonQ (green), Riggeti (red) quantum backends compared with the
distribution of all possible cost function values (black). Inset shows zoomed
in versions of the cumulative distributions close to Cnorm = 0.

43



3 Qubit Efficient Route Optimization

Figure 3.5: Distribution of solutions obtained using the minimal (stars) and full encod-
ing (triangles) for a) nc = 11 and b) nc = 16 for 20 different optimization
runs from the IBMQ backends. For each optimization run, the final quantum
state is prepared on the IBMQ backends according to the optimized param-
eters, and 10 classical solutions are sampled for the full encoding and for the
minimal encoding. In both the 11R and 16R instances, the minimal encoding
is able to produce classical solutions of similar quality while maintaining a
tighter spread in terms of cost function values.
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3.3 Implementation of real quantum computers on the cloud

Finding Solutions to VRPTW Problems using Minimal Encoding

To advance the capability of quantum devices in solving larger industry-relevant prob-

lems, we implemented the minimal encoding method to approximate solutions for VRPTW

problems with nc = 128 and nc = 3964 classical variables. This required nq = log(128)+

1 = 8 qubits for the former and nq = ⌈log(3964)⌉ + 1 = 13 qubits for the latter, where

⌈·⌉ represents the ceiling function. The instance with 128 routes, shown in Fig. (3.6)

(a-c), achieved reasonable solutions with a shot count similar to the smaller 11 and 16

route instances. However, for the 3964 route instance, as depicted in Fig. (3.6)d, the

necessary resources for adequate solutions increased significantly, with the number of

shots limiting solution quality.

The solutions from the IBMQ quantum backends for these larger instances, shown in

Figures (3.6)b,e, align with those from noise-free simulations. Nonetheless, as indicated

in the inset axes of these figures, neither of the larger problem instances reached the

exact optimal solution.

Looking at the outcomes for smaller problems in Fig. (3.3) and Fig. (3.4), the solutions

from the IBMQ backends were markedly better than those from the IonQ devices using

minimal encoding.

For the 3964-route instance, the minimal encoding state has 212 = 4096 register states,

but only 3964 are allocated to individual routes. Given only nshots = 1000, many register

states remain unmeasured, necessitating manual setting of
⟨P̂ 1

k ⟩θ⃗
⟨P̂k⟩θ⃗

= 0.5 for several terms

in (3.9). Consequently, many register states went unmeasured, forcing assumptions

about the inclusion of various routes in the solution, leading to overall lower quality

solutions. Increasing the shot count to nshots = 10, 000 showed a reduction in the cost

function value due to more register states being measured. Yet, with the quantum state

comprising 213 = 8192 basis vectors in the computational basis, 10,000 shots proved

insufficient for accurately characterizing all associated coefficients. It’s presumed that

larger instances like this would require more shots, a hypothesis not investigated in this
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Figure 3.6: Optimization runs, cumulative distribution and distribution of solutions us-
ing minimal encoding for the nc = 128 instance using nq = 8 qubits and
nc = 3964 instance using nq = 13 qubits. a,d) Optimization runs over 20
starting points. b,e) Cumulative distribution of solutions obtained using
minimal encoding. Black dotted curves represents the cumulative distribu-
tion of 4×108 randomly generated solutions. Blue, orange, and green curves
display the cumulative distribution of solutions obtained using minimal en-
coding with nmeas = 10000 shots on a noise free simulation and on IBMQ,
IonQ quantum backends respectively. c,f) Distribution of solutions obtained
from the minimal encoding state used to find approximate solutions to the
nc = 128R and nc = 3964R problem instances. The final parameters from
each of the 20 starting points are used to produce the final quantum state
using the devices offered by IBMQ, and 10 classical solutions were sampled
from each state according to (3.8).

study due to budgetary constraints.

In figure (3.6)c, for the 128R instance, we notice that the classical solutions derived

from the optimized minimal encoding state are more dispersed, indicating less than opti-

mal convergence. Despite this, the final state still yields bitstrings with low cost function

values. For the 3964R instance, as shown in figure (3.6)f, there’s a more concentrated

clustering of solutions. However, several initial starting points did not converge satisfac-

torily.
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3.4 Reinforcement Learning Based Enhancement of the

Quality of Solutions

We present here a novel approach to enhance the quality of solutions generated by the

qubit efficient algorithm presented earlier, exploiting RL to improve the quality of gener-

ated bitstrings. The latter is particularly important in large problems of industrial value.

The applicability of this algorithm to large QUBO matrices stems from the inclusion of

a GPU to handle time-consuming computations, namely large matrix multiplications,

as shown in figure (3.7). 3

QUBO
MATRIX

CPU/QPU

GPU Enhanced
Reinforcement Learning Search

Cost function
ADAM

Optimizer

Updating

Minimal Encoding
4 classical variables

3 Qubits

Exploration Exploitation Reward System
Leaderboard

time

Median
Average 99th

 percentile

Rewards for each bit

Softmax

Sample

UCB scores for each bit

Flip the bit with the
maximum UCB score

Efficient matrix operations

Scalability for large problems

Cost calculated via

estimation

Figure 3.7: Pipeline of the reinforcement learning enhanced algorithm. Minimal en-
coding is used to transform large QUBO problems into a NISQ compatible
format in order to use ADAM optimizer to obtain promising candidate solu-
tions. The GPU enhanced reinforcement learning algorithm further enhances
the quality of solution obtained by the qubit efficient algorithm.

3Unfortunately, at the time of writing this thesis, the classical simulation of the qubit efficient algorithm
is done in a CPU rather than a GPU. This is because many GPU compatible quantum simulators
require Linux distributions rather than Windows as they are still developing. Although, this issue
can be addressed by sandboxing the algorithm’s codebase into a Linux environment.
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The first phase (top row in figure (3.7)) of the algorithm utilizes a VQA with a qubit

efficient encoding proposed in [55]. This approach significantly reduces the number of

required qubits, achieving a logarithmic reduction relative to the number of classical

variables. The qubit efficient algorithm is optimized using an iterative process, typically

employing the ADAM optimizer [121], to find high-quality initial solutions as described

in section (3.3.1). These solutions serve as the starting point for the subsequent rein-

forcement learning algorithm.

Following the quantum optimization, the algorithm transitions into the second phase

(bottom row in figure (3.7)), which involves the reinforcement learning algorithm. The

RL search is divided into two segments, exploration and exploitation, each allocated

some portion of the total RL algorithm time. Since initial solutions are given by an

optimized quantum circuit, we choose to benefit exploitation more than exploration.

As this algorithm falls under the category of heuristic approximate algorithms, we have

parameterize the two main phases by their execution time. This allows the algorithm

to be more versatile in terms of applicability to various problem sizes since the user can

choose the balance between performance and time-to-solution. In appendix section (7.1),

we present an extrapolation on the resources that we need to solve QUBO problems of

sizes relevant to industry using the qubit efficient algorithm on the IBM Cairo 27-qubit

machine. There we have calculated the time it take for a single ADAM optimization

step of the quantum circuit, based on information from the IBM’s library qiskit [124],

without accounting for the time to connect to the quantum computer through the API.

Also, using the errors for the IBM Cairo quantum computer summarized in section (3.3),

one could simulate how this algorithm work using this quantum machine by introducing

a noise model to the classical simulator and adjusting the optimization time to be the

same as optimizing in the actual device.
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The reinforcement learning method is designed for enhancing the quality of solutions

obtained from the qubit efficient algorithm. It intricately merges softmax-based ex-

ploration with Upper Confidence Bound (UCB) based exploitation, offering a robust

solution-seeking mechanism. In this work we are using the terms exploration and ex-

ploitation to address the fact that in the exploration phase the agent is allowed to flip

multiple bits of the bitstring solution per iteration, while in the exploitation phase the

agent always change one bit per iteration.

3.4.1 Reward system

The rescaled rank reward system [65] used in the RL algorithm operates through a

structured process designed to enhance solution quality over time. This reward system

is designed to encourage the agent to flip bits that previously lead to worst solutions

while also not flipping bits that have lead to good solutions. The rescaled rank reward

for a single bit xi from the bitstring solution is :

Ri(xi) =


− q

100 if xT
i Qxi < Cq

1− q
100 otherwise

where Cq is the q-th percentile of previous solution qualities and xi is a bitstring where

the i-th bit has been flipped. The reward for finding a solution with lower cost than the

q-th percentile is negative and the reward for worse solutions is positive. Although this

is counter intuitive 4, our goal is to transform these rewards into probabilities that we

will use to flip these bits, so we want bits that previously led to worse solutions to be

flipped more often.

Initially, the system evaluates the quality of the current solution using equation (2.1).

Then, the algorithm moves to calculate a rescaled rank reward for the current solution.

This step is critical as it involves comparing the current solution’s quality against a

backdrop of historical solution qualities. Specifically, the algorithm uses the quality at

4Because all the optimization problems here are minimization problems.
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the q-th percentile from these historical data as a benchmark. This percentile-based

comparison helps in normalizing rewards across different scales of solution qualities, en-

suring that the reward reflects how the current solution stands relative to past attempts

rather than just its absolute quality. Lastly, the algorithm updates the rewards for the

actions that led to the current solution, such as flipping a bit in a binary optimization

problem. This updated reward is not arbitrary but is directly influenced by the rescaled

rank reward calculated in the previous step allowing the agent to effectively guide the

search process.

3.4.2 Softmax-Based Exploration

The softmax function with a given input vector of rewards r and a temperature parameter

T , serves to convert the rescaled rank reward values into a probability distribution that

will be used to sample a new bitstring. This process involves transforming each reward

element Ri(xi) into a probability pi. The transformation formula is such that pi is

calculated by exponentiating the difference between Ri(xi) and the maximum reward

value in r, divided by T , and then normalizing this value across all elements to ensure

that the sum of probabilities pi equals 1 as shown below :

pi =
e(Ri(xi)−max(r))/T∑n
j=1 e

(Ri(xj)−max(r))/T

The role of max r, the maximum reward value, is pivotal in this calculation as it serves

as a reference point for scaling the rewards, ensuring that the exponentiation does not

lead to disproportionately large values for higher rewards. The temperature parameter

T acts as a crucial control lever in this process. It moderates the distribution’s entropy,

where a higher T leads to a more evenly spread probability distribution, encouraging

exploration of a broader range of solutions. Conversely, a lower T results in a distribution

that is more concentrated around the highest rewards.
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After calculating this probability distribution, the algorithm employs it to sample

a bitstring for the subsequent iteration. It does so by iterating through the current

bitstring and use the softmax probabilities to flip each bit. As a consequence, high

rewards are transformed through the softmax function to high probabilities of flipping

each bit. The use of the softmax function in this manner is instrumental in navigating

the solution space efficiently, guiding the search process towards better solutions by

dynamically adjusting the probability of flipping a bit.

3.4.3 UCB-Based Exploitation

Following the phase of softmax exploration, the algorithm progresses to a UCB (Upper

Confidence Bound)-based method for enhanced exploitation. The UCB score for bit i,

denoted as UCBi, is calculated as:

UCBi =
Ri(xi)

Ni + ϵ
+

√
2 ln(N)

Ni + ϵ

In this calculation, the term Ri(xi)
Ni+ϵ determines the mean reward per flip for bit i, assessing

its average performance. Concurrently,
√

2 ln(N)
Ni+ϵ measures the uncertainty or the latent

potential for enhancement by flipping bit i. This component incentivizes the exploration

of bits that have been less engaged, while still acknowledging and leveraging the historical

rewards, thereby striking a balance between the exploitation of well-performing bits and

the exploration of underutilized ones. This nuanced approach ensures the algorithm

dynamically explores and exploits the solution space, optimizing for better outcomes

through informed decision-making.

At each iteration this algorithm will flip the bit with the highest UCB score in order to

obtain a new bitstring solution. This means that the algorithm will change one bit per

iteration and try to construct the optimal solution this way, resulting in more iterations

as the problem size grows.
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3.4.4 Comparison of Minimal Encoding with and without RL Enhancement

Below we compare the solution quality obtained using the minimal encoding scheme with

and without the reinforcement learning enhancement algorithm. We extract the minimal

encoding solutions as described in section (3.3) using a classical simulator to perform 20

optimization runs per problem instance, with different starting angles of the variational

quantum circuit. Then we input the best angles found and sample 10 solutions per

problem instance using the IBM Cairo and IBM Guadalupe quantum devices for the

128R and 3964R VRPTW instances respectively. For each optimization run, we feed the

best solution found from the qubit efficient algorithm from the two quantum computers

to the reinforcement learning algorithm to enhance its quality.
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Figure 3.8: Comparison of the normalized cost function obtained using minimal encod-
ing with and without the reinforcement learning enhancement algorithm. 20
optimization runs were performed on classical simulators and the best an-
gles found were used on quantum devices in order to sample 10 solutions
per optimization run (blue stars). The reinforcement learning algorithm is
then used to enhance the quality of the best solution from each optimization
run (orange circles). a) Results for the 128R VRPTW instance, b) Results
for the 3964R VRPTW instance. In both figures we observe that the re-
inforcement learning algorithm enhances the quality of solutions and also
that different starting solutions from the minimal encoding scheme leads to
different improved solutions. The inset axis in the 3964R figure is used to
show the difference in scale of using the reinforcement learning enhancement
algorithm.
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In figure (3.8) we observe that better starting solutions for the reinforcement learning

enhancer don’t necessarily yield better improvements. For example in figure (3.8)a,

optimization run 16 has a better starting solution compared to optimization run 15,

but the enhanced solution in optimization run 15 is better than the one in optimization

run 16. The reinforcement learning algorithm is designed such that, it won’t flip bits

of the bitstring solution that have lead to a better solution quality. With this in mind,

different starting solutions will lead to different paths of flipping bits and therefore

different enhanced solutions obtained. Looking at the inset axis of figure (3.8)b, we

found that enhanced solutions for the 3964R problem instance fall inside the 1e−6 scale

of the normalized cost function value while minimal encoding solution are in the order

of 1e− 4.

Overall, we found that random sampling results in a normalized cost function value

of approximately 0.3 (see dashed black line in figures (3.6) b & e). The qubit efficient

algorithm is able to produce better than random solutions and closer to the optimal

solution up to a relative gap. The RL enhancement is able to further shorten the gap

between the proposed solution and the optimal one.

3.4.5 Solving Large Scale VRTPW Problems using the RL Enhanced

Optimizer

Here we present results of the reinforcement learning enhanced optimizer for all problem

sizes shown in table (3.1). We slightly change the metric from previous figures, where

now we plot the approximation ratio defined by

α =
Cmax − Cx

Cmax − Cmin
= 1− Cnorm (3.13)

and it’s highest value is equal to 1 when Cx = Cmin. In order to find Cmin for the

approximation ratio we have used the student version of the Gurobi commercial solver

53



3 Qubit Efficient Route Optimization

Classical
variables

Qubits using
minimal
encoding

Time for
classical

simulator of
the qubit
efficient

algorithm (s)

Time for RL
enhancement

(s)

Avg
approximation

ratio (%)

687 11 60 1 99.99

1285 12 80 1.2 99.99

3964 13 120 6 99.99

6081 14 200 11 99.99

9644 15 360 25 99.99

14095 15 600 60 99.99

20565 16 1000 300 99.99

25382 16 2000 500 99.99

Table 3.3: Details on the usage of the reinforcement learning enhanced optimizer. The
number of classical variables of each VRPTW instance is the same as the
number of routes. The time displayed here is in seconds and it is divided to
classical simulator time (CPU) and reinforcement learning enhancement time
(GPU). The overall time to solution is calculated by adding these two times
and the translation of time to iterations can be seen in figure (3.10).

with a time limit of 10 hours for all problem instances.

Table (3.3) shows the runtime of the overall reinforcement learning enhanced algorithm

to achieve an approximation ratio α ≥ 0.9999. The time for quantum simulation also

includes QUBO matrix handling and processing, like estimating the cost function (3.10)

and estimating the probability distribution from (3.8). The maximum number of qubits

used for these instances is 16, which results in a quantum state of 216 = 65536 basis

states. In order for the qubit efficient algorithm to estimate the cost function value we

have used 10000 shots. As mentioned in [55], this number of shots limits the accuracy

of the minimal encoding scheme in estimating the cost function in equation (3.5) and

one should expect even more errors when moving this encoding scheme to real noisy

quantum hardware.

In figure (3.9) we show collective results for 20 optimization runs per problem instance

of the VRPTW. For each problem size we plot the average approximation ratio found as
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well as its minimum and maximum values. We obtain near optimal solution quality for

every problem instance while the deviation from the mean is in the order of the solution

quality indicating that the reinforcement learning enhanced algorithm converged in all

optimization runs. More, we see that as the problem size grows the approximation ratio

becomes better which is counterintuitive. That is because different iterations were used

during the optimization of VRPTW instances with different size in order to keep the

approximation ratio consistent.

Figure 3.9: Performance of the reinforcement learning enhanced optimizer for various
problem sizes of the VRPTW. For each problem instance 20 optimization
runs were performed. Error bars denote the minimum and maximum ap-
proximation ratios obtained during the optimization runs, while the circle in
each line shows the median approximation ratio obtained.

Figure (3.10) shows the progress of the approximation ratio during an optimization

run for each problem instance considered here. The inset axis shows the optimization
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done using the minimal encoding scheme, where we observe that minimal encoding alone

produced approximation ratios bigger than 0.9 for smaller problem instances (1285 &

3964 routes). Optimization using the minimal encoding becomes more difficult as the

problem size grows, with the optimization of the biggest 25382 routes problem getting

stuck at approximation ratio equal to 0.8. As the problem size grows, the reinforcement

learning algorithm requires more iterations in order to converge to a solution with α ≥

0.9999. We also plot the average approximation ratio of random sampling among all

VRPTW instances considered, where we sample 4× 106 random solutions for VRPTW

instances with less than 10000 classical variables and 4×108 random solutions for larger

VRPTW instances, and then take the average.

The trend shown in this figure shows a sub-linear complexity of the number of it-

erations with the problem size in order for the algorithm to converge. Although it is

evident that the search of the reinforcement learning algorithm depends on the scale

of the problem and also in the cost function landscape. Because the algorithm is more

focused on changing one bit per iteration in order to find better solutions, it progresses

by doing small adjustments in the current solution and obtains a better solution by a

small fraction.
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Figure 3.10: Progress of the approximation ratio for every VRPTW instance during op-
timization of the reinforcement learning enhanced optimizer. Optimization
runs for different VRPTW problem sizes are showed with different color.
Inset axis shows the optimization part of the algorithm that uses minimal
encoding while the main plot captures iterations from the reinforcement
learning part of the main algorithm. The black dotted line shows the aver-
age approximation ratio obtained by random sampling amongst all VRPTW
instances.
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Assignment Problem

4.1 Introduction

In this chapter, we delve into the intricate world of the Tail Assignment Problem (TAP),

an essential optimization challenge in the airline industry. The formulation of TAP as

a QUBO problem has been expertly proposed by Vikst̊al et al. [1]. This innovative

approach allows for the application of the qubit efficient encoding technique, as detailed

by Tan et al. [55]. Using this method, we demonstrate the ability to tackle TAP

instances involving up to 26,000 classical variables, utilizing as few as 16 qubits and a

single laptop GPU. We further explore the creation of synthetic instances, demonstrating

the process of translating these instances into a QUBO framework. The chapter also

discusses the performance of a reinforcement learning enhanced optimizer. We focus

on the average approximation ratio across various problem sizes and offer insights into

the specific contributions of the qubit efficient encoding and the reinforcement learning

component of the algorithm.
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4.2 Tail Assignment Problem

Airlines face a range of complex, large-scale planning challenges every day that involve

coordinating various resources including passengers, crew, aircraft, maintenance, and

ground staff. The standard planning procedure for airlines is carried out in stages, be-

ginning with the development of a flight schedule, followed by various steps for planning

aircraft and crew assignments. These tasks all involve large-scale optimization with dis-

tinct goals, yet they share the common objectives of maximizing profits, ensuring safety,

enhancing crew satisfaction, and reducing the risk of operational disruptions. Addition-

ally, airlines must comply with a myriad of intricate regulatory, operational, and quality

standards [125].

One specific aspect of fleet planning is the tail assignment problem, which entails

deciding which particular aircraft, identified by its tail number, will fly each scheduled

flight. A route is defined as a series of flights consecutively performed by the same

aircraft. To be viable, a route must meet various criteria. For instance, there must be

sufficient buffer time between an aircraft’s arrival and the subsequent departure of its

next flight—this is known as the minimum turn time. This turn time varies based on

factors such as the flight’s nature (domestic or international), the airport, the time of day,

and even the particular characteristics of the aircraft. Additionally, certain aircraft may

be subject to destination restrictions that prevent them from flying to particular airports,

often due to limitations such as insufficient engine power for shorter runways. There are

also curfew restrictions, which typically prevent loud aircraft from flying during night

hours, particularly at airports located near city centers. Lastly, routes must comply with

maintenance needs, both immediate and long-term, ensuring aircraft are scheduled for

maintenance stops at equipped airports with enough time allocated for necessary work

to be carried out.

The formulation of the Tail Assignment Problem (TAP) comes from [1], where the
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authors have successfully applied the QAOA to solve TAP instances of 8,15 and 25

routes using 8, 15 and 25 qubits respectively. In particular they reduced the TAP

to a feasibility version with a unique solution and showed that as the layers of the

QAOA circuit increases, QAOA is able to find the unique solution with close to unit

probability. Here we use the same feasibility formulation with a unique solution and

apply the minimal encoding scheme with the reinforcement learning enhanced algorithm

to tackle problem sizes of up to 26000 classical variables using 16 qubits and a single

laptop GPU.

Let us denote by F the collection of all flights, by T the collection of tails (aircraft

identifiers), and by R the ensemble of permissible routes. Let the cost associated with

a route r from the set R be represented by cr, and let Cf stand for the cost incurred

from not assigning flight f . The cost of a route might reflect its resilience to operational

disruptions, the expenditure on fuel, or an amalgam of multiple factors [1]. Define the

binary indicator afr as 1 if flight f is included in route r, and 0 otherwise. Similarly, let

btr be 1 if tail t is deployed for route r, and 0 otherwise. The decision variable xr takes

the value 1 if route r is selected for use in the plan, and 0 if not. The variables uf and vt

are assigned 1 if flight f is omitted or tail t remains idle, respectively, and 0 otherwise.

The tail assignment problem can thus be expressed as the following optimization

problem [1]:

min
r∈R

∑
r∈R

crxr +
∑
f∈F

Cfuf (4.1a)

subject to
∑
r∈R

afrxr + uf = 1, ∀f ∈ F , (4.1b)

∑
r∈R

btrxr + vt = 1, ∀t ∈ T , (4.1c)

xr, uf , vt ∈ {0, 1}. (4.1d)
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The aim specified in (4.1a) is to minimize the aggregate expenses of the employed

routes, with the requirement (4.1b) guaranteeing that every flight is allocated to one

and only one route, and condition (4.1c) ascertaining that each tail is allocated no more

than once. Leaving a flight unassigned carries a cost denoted by Cf , which is generally

significant relative to the costs of assigning routes. There are no penalties for tails that

are not in use.

Our focus is shifted to the decision variant of the tail-assignment task [1], which aims

to identify any solution that fulfills the necessary conditions without considering the

costs cr. This allows us to exclude the uf variables from our model. Additionally, we

assign a unique initial flight to each aircraft, thus eliminating the need for constraints

in Eq. (4.1c). This variant, known as the exact-cover problem, is acknowledged as

NP-complete and can be depicted as the subsequent optimization problem:

minimize 0 (4.2a)

subject to
∑
r∈R

afrxr = 1, ∀f ∈ F , (4.2b)

xr ∈ {0, 1}, (4.2c)

where the minimization over 0 serves as a placeholder to indicate that this frame-

work originates from the tail-assignment problem, wherein we disregard the costs in Eq.

(4.1a). Despite these reductions, the exact-cover problem remains highly pertinent for

the analysis of tail-assignment since numerous airlines, such as Air France, view the

tail-assignment issue predominantly as a problem of feasibility [126].

To derive the QUBO matrix for the feasibility version of the TAP let’s consider the cost

function for the tail-assignment problem first. We form the cost function by converting

the unique constraint in Eq. (4.2b) to a penalty term that is added to the cost function.

Using the cost function C(x) below, we observe that, when the cost is equal to 0, the
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constraint in Eq. (4.2b) is satisfied.

C(x) =

|F |∑
f=1

 |R|∑
r=1

afrxr − 1

2

.

Expanding the square, we get:

C(x) =

|F |∑
f=1

 |R|∑
r=1

αfrxr

2

− 2

|R|∑
r=1

αfrxr + 1

 .

Since x2r = xr and α2
fr = αfr for binary values,

C(x) =

|F |∑
f=1

 |R|∑
r=1

αfrxr +

|R|∑
r=1

|R|∑
r′ ̸=r

2αfrαfr′xrxr′ −
|R|∑
r=1

2αfrxr + 1

 =

|R|∑
r=1

|R|∑
r′ ̸=r

|F |∑
f=1

2αfrαfr′xrxr′ −
|R|∑
r=1

|F |∑
f=1

αfrxr + |F |

The complete QUBO matrix is then:

Q =



Q11 Q12 · · · Q1|R|

Q21 Q22 · · · Q2|R|
...

...
. . .

...

Q|R|1 Q|R|2 · · · Q|R||R|


Where the diagonal terms Qrr and the off-diagonal terms Qrr′ are given by:

Qrr = −
|F |∑
f=1

αfr,

Qrr′ = 2

|F |∑
f=1

afrafr′ , for r ̸= r′.
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4.3 Instance Generation

In the TAP, we consider a predefined number of routes, nr, and flights, nf . Each route

and flight is uniquely identified, with routes potentially consisting of different sets of

flights. The synthetic data generation for TAP involves dividing the total number of

routes into sets, each containing an adjustable fraction of the total flights representing

the variability that would occur in a real world scenario.

The aim is to create a scenario where there exists a unique optimal solution for the

problem. For this reason we first generate the solution routes by filling a predefined

number of routes until all flights are served. This unique solution is represented by

a binary string with a specific number of ones. The remaining routes are filled with

randomly selected flights. It’s important to note that randomly filling the rest of the

routes can result in near optimal solution with high overlap with the optimal one, thus

making the optimization procedure hard.

4.4 Using the RL Enhanced Optimizer to Tackle Large TAP

The reduced TAP considered here is purely an assignment problem and can be seen as

an Exact Cover problem [1]. This means that the optimal solution will include routes

that have no overlapping flights and each overlapping flight will raise the value of the

cost function as seen in Eq. (4.2). This results in a cost function landscape with many

local minima.

After creating the QUBO matrix Q discussed in section (4.2), we use the parametrized

quantum state from eq. (3.5) represented by a hardware efficient ansatz (2.2) with

4 layers and 10000 measurement shots. This allows us to estimate the cost function

using eq. (3.10) by substituting matrix A with the current QUBO matrix Q and thus

take advantage of the qubit efficient encoding scheme from [55] in order to fit big TAP

instances into quantum circuits with a small number of qubits.
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Routes Flights
Classical
variables

Qubits
using

minimal
encoding

Time for
classical
simulator

of the qubit
efficient
algorithm

(s)

Time for RL
enhancement

(s)

Avg.
approxima-
tion ratio

(%)

1000 2000 1000 11 60 20 99.97

6000 12000 6000 14 200 40 99.91

11000 22000 11000 15 500 120 99.7

16000 32000 16000 15 600 300 99.7

21000 42000 21000 16 2000 600 99.5

26000 52000 26000 16 2500 900 99.05

Table 4.1: Detailed information for all the TAP instances considered. The number of
classical variables is the same as the number of routes and the number of
qubits using minimal encoding follows a logarithmic reduction when com-
pared with the number of classical variables, as mentioned in section (3.2.2).
The quantum simulator time refer to the CPU time it took for the optimiza-
tion part with minimal encoding to produce good initial solutions and the
reinforcement learning enhancement time refers to the GPU time it took the
algorithm to produce near optimal solutions. The average approximation ra-
tio per problem instance is calculated using data from 20 optimization runs
per problem instance.

The resources needed to obtain average approximation ratios α ≥ 0.99 are shown

in table (4.1). We must note that the time for the classical simulator using a CPU

also includes matrix operations for equations (3.8) and (3.10) of the minimal encoding

part. This was also the most time consuming part of the minimal encoding algorithm,

since running the classical simulator for less than 20 qubits is very fast in state of the

art simulators. We used the hardware efficient ansatz (2.2) with 10000 shots for all

problem instances. For problem instances requiring more than 14 qubits 10000 shots are

not enough to accurately estimate the cost function and as we discuss in the previous

section some bits of the sampled solution will be assigned randomly. Our goal is to use

the RL enhanced optimizer to overcome this problem.
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4.4 Using the RL Enhanced Optimizer to Tackle Large TAP

Figure 4.1: Performance of the reinforcement learning enhanced optimizer for various
problem sizes of the TAP. For each problem instance 20 optimization runs
were performed. Error bars denote the minimum and maximum approxima-
tion ratios obtained during the optimization runs, while the circle in each
line shows the median approximation ratio obtained.

To showcase the effectiveness of the RL enhanced algorithm we perform 20 optimiza-

tion runs per problem instance and plot the average approximation ratio as well as

the minimum and maximum values obtained through these optimization runs in figure

(4.1). For each optimization run, we first use the qubit efficient algorithm to find some

initial solutions, we sort them by their cost function values, and then we use the RL

enhanced algorithm to refine the solution with the minimum cost function value. We

observe that if we give the algorithm enough computation time we can obtain an average

approximation ratio a ≥ 0.99 for all TAP instances.
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4 Qubit Efficient Optimization for the Tail Assignment Problem

For the smaller TAP instance considered in this work, namely the one with 1000

classical variables the maximum approximation ratio obtained from the 20 optimization

runs is equal to one, indicating that the RL enhanced optimizer found the exact same

solution as the Gurobi commercial solver. As the problem size grows the deviation of

the mean approximation ratio from the extreme values also raises. This is due to the

fact that this formulation of the TAP results in a single optimal solution. Other near

optimal solutions have high overlap with the optimal solution due to eq. (4.2) of the

cost function making the optimization procedure harder due to the resulting landscape.

Figure (4.2) below shows the optimization process during a single optimization run

for all TAP instances. The inset axis shows the performance of the minimal encoding

scheme in finding good initial solutions and compares them with the approximation ratio

obtained from random sampling which is approximate equal to 0.72. To calculate the

average random approximation ratio we are using 4× 106 random solutions for problem

sizes with less than 10000 classical variables and 4 × 108 random solutions for problem

sizes with more than 10000 classical variables.

We observe that minimal encoding alone can produce better than random solutions for

all the TAP instances, but as the problem size grows the optimization progress becomes

flat indicating that the qubit efficient algorithm got stuck at local minima. The progress

of the RL enhancement algorithm shown in the main plot, starts off from the solutions

found by the qubit efficient algorithm, and then refines these solutions in order to achieve

a better cost function value. The whole optimization process is smooth and does not

have many fluctuations, indicating the effectiveness of the UCB exploitation part of the

algorithm to obtain better solutions changing one bit of the whole solution per iteration.
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Figure 4.2: Optimization procedure for each TAP instance. The inset axis shows the
progression of the minimal encoding algorithm, the black dashed line denotes
the average random approximation ratio for the TAP instances. The main
axis focuses on the progression of the approximation ratio during the RL
enhancement of the minimal encoding solution. Each color denotes separate
problem instances.

67



5 Qubit Efficient Optimization for the

Flight Gate Assignment Problem

5.1 Introduction

Following the exploration of the Tail Assignment Problem, this chapter shifts focus to

another critical optimization challenge in the aviation sector: the Flight Gate Assignment

Problem (FGA). Stollenwerk et al. [66] have adeptly formulated the FGA as a QUBO,

paving the way for innovative problem-solving strategies. This formulation permits the

use of the qubit efficient encoding technique, as outlined by Tan et al. [55], enabling us

to address FGA instances with up to 21,000 classical variables using a mere 16 qubits

and a single laptop GPU. This chapter offers an insightful look into the generation

of synthetic FGA instances, aligning closely with the mathematical structure of the

problem and detailing the conversion process to a QUBO format. A critical part of

this exploration is the assessment of a reinforcement learning enhanced optimizer. We

evaluate its effectiveness by measuring the average approximation ratio across different

scales of the problem.

68



5.2 Flight Gate Assignment Problem

5.2 Flight Gate Assignment Problem

The flight gate assignment (FGA) problem is a well-studied problem in the field of

airport operations and optimization [66], [127]. It involves assigning a set of flights to

available gates, taking into consideration factors such as transfer passengers, flight times,

and buffer times between flights. The goal is to find an assignment of flights to gates in

the airport such that the total transit time of all passengers in the airport is minimized.

In [66] the authors used a quantum annealing machine to solve the FGA problem for a

medium size airport company, although due to the increased connectivity of the problem,

the embedding to the quantum annealing machine is restricted. This allowed the authors

to solve instances of up to 84 classical variables. Authors of [127] used a VQE variant

to solve the FGA problem. Their biggest problem size consists of 18 classical variables

using 18 qubits. In this work we consider the FGA problem sizes shown in table (5.2),

with the biggest FGA instance consisting of 20961 classical variables using 16 qubits for

the minimal encoding.

The goal of the FGA is to determine the best way to allocate flights to gates at an

airport. While there are various ways to measure the success of such an allocation,

our primary concern is to reduce the overall time passengers spend transiting within

the airport. We categorize passengers into three groups: those arriving on a flight and

exiting the airport from their arrival gate, those entering the airport through security

and walking to their departure gate, and those in transit who arrive at one gate and

need to walk to another for their connecting flight.

The mathematical formulation of the FGA problem is essential for understanding the

problem’s structure and constraints. By representing the problem mathematically, we

can apply optimization techniques to find the best solution. The formulation provided

below is a mixed-integer linear programming (MILP) model1, which is a powerful tool

1We kindly refer the reader to [128], where the authors combine MILP and QUBO formulations for
solving the Job Shop Scheduling problem in a quantum annealing machine.
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for solving combinatorial optimization problems. However, solving MILP problems can

be computationally expensive, especially for large instances.

Symbol Description

F Set of flights.

G Set of gates.

ndep(f) Number of departing passengers for flight f .

narr(f) Number of arriving passengers for flight f .

n(f1, f2) Number of transfer passengers between flights f1 and f2.

tarr(g) Arrival time at gate g.

tdep(g) Departure time from gate g.

t(g1, g2) Transfer time between gates g1 and g2.

tin(f), tout(f) Arrival and departure times of flight f , respectively.

tbuf Buffer time between two flights at the same gate.

Table 5.1: Symbols and their descriptions for the flight gate assignment problem.

To formulate the FGA problem, we follow the formulation outlined in [66]. We begin

by defining our decision variables, constraints, and objective function. The decision

variables represent the choices we need to make, the constraints ensure that our choices

are valid, and the objective function quantifies the quality of our choices.

The core decision in the FGA problem is the assignment of flights to gates. To

represent this, we introduce a binary decision variable x(f, g) for each flight f and gate

g. The value of x(f, g) will be 1 if flight f is assigned to gate g and 0 otherwise.

x(f, g) =


1 if flight f is assigned to gate g

0 otherwise

(5.1)

The primary goal is to minimize the total transit time of passengers. This includes

the time taken by arriving passengers to exit the airport, the time taken by departing

passengers to board their flights, and the transfer time for transit passengers moving

between gates. The objective function aggregates these times, weighted by the number

of passengers affected.
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In this formulation two constraints are present :

1. Assignment Constraint: Every flight must be assigned to exactly one gate.

This ensures that all flights are catered for in the solution.

2. Occupancy Constraint: Two flights that overlap in time cannot be assigned to

the same gate. This ensures that there are no scheduling conflicts at any gate.

With these components, we can now express the FGA problem as an MILP:

Minimize:

Cost =
∑
f∈F

∑
g∈G

narr(f) · tarr(g) · x(f, g) +
∑
f∈F

∑
g∈G

ndep(f) · tdep(g) · x(f, g) (5.2)

+
∑
f1∈F

∑
f2∈F

∑
g1∈G

∑
g2∈G

n(f1, f2) · t(g1, g2) · x(f1, g1) · x(f2, g2) (5.3)

Subject to:

Assignment Constraint:
∑
g∈G

x(f, g) = 1 ∀f ∈ F (5.4)

Occupancy Constraint: x(f1, g) + x(f2, g) ≤ 1 ∀f1, f2 ∈ F, g ∈ G (5.5)

if f1 and f2 overlap

This MILP formulation provides a comprehensive representation of the FGA problem,

capturing the complexities and nuances of flight gate assignments in a structured manner

suitable for optimization.

Converting our MILP model to a QUBO formulation allows us to leverage quantum

computing to potentially find solutions more efficiently. The process of conversion in-

volves representing the objective function and constraints as a quadratic function of

binary variables.
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The cost function provided in the MILP model is already quadratic due to the terms

x(f1, g1) · x(f2, g2). This can be directly incorporated into the QUBO matrix Q. The

QUBO model can be represented as shown in eq. (2.1) where x is a binary vector

representing our decision variables, and Q is a matrix encoding the objective function

and constraints.

To ensure that our constraints from the MILP model are satisfied in the QUBO

formulation, we introduce penalty terms to the objective function.

1. Assignment Constraint: The constraint ensures that each flight is assigned to

exactly one gate. In the QUBO formulation, we can penalize violations of this constraint

by adding a large penalty term P to the objective function for each violation:

P
∑
f∈F

1−
∑
g∈G

x(f, g)

2

(5.6)

2. Occupancy Constraint: This constraint ensures that two flights that overlap in

time do not get assigned to the same gate. We penalize these violations by adding a

penalty term to the objective function:

P
∑

f1,f2∈F,g∈G
x(f1, g) · x(f2, g) (5.7)

Where f1 and f2 overlap.

Combining the objective function and the penalty terms for the constraints, we obtain

the final QUBO formulation:

C(x) = xTQx+ P
∑
f∈F

1−
∑
g∈G

x(f, g)

2

+ P
∑

f1,f2∈F,g∈G
x(f1, g) · x(f2, g) (5.8)

Choosing an appropriate value for the penalty term P is the bottleneck of using such

an approach to formulating QUBO problems. The penalty term alone should separate
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clearly solutions that don’t satisfy the constraints from those solutions that satisfy the

constraints. For this reason, P is typically chosen to be larger than the maximum value of

the cost function Cmax. The matrix Q can be constructed by identifying the coefficients

of the quadratic terms in the objective function.

Constructing the Q matrix for the FGA problem involves capturing the coefficients of

the quadratic and linear terms in the objective function. In practice, constructing the

Q matrix involves iterating over all pairs of binary variables, determining the coefficient

of their product in the objective function, and setting the corresponding entry in the Q

matrix.

1. Objective Function: From the MILP model, the quadratic terms in the objective

function are:

n(f1, f2) · t(g1, g2) · x(f1, g1) · x(f2, g2)

For each pair of flights f1, f2 and gates g1, g2, the coefficient of x(f1, g1) · x(f2, g2)

is n(f1, f2) · t(g1, g2). This coefficient will be an entry in the Q matrix.

2. Penalty Terms: For the assignment constraint, the quadratic penalty term is:

P
∑
f∈F

1−
∑
g∈G

x(f, g)

2

Expanding the square, we get terms like x(f, g1) · x(f, g2) with a coefficient of P

when g1 ̸= g2 and a coefficient of −2P for the term x(f, g)2 (but since x(f, g)2 =

x(f, g) for binary variables, it’s effectively a linear term).

For the occupancy constraint, the quadratic penalty term is:

P
∑

f1,f2∈F,g∈G
x(f1, g) · x(f2, g)

Here, the coefficient of x(f1, g) · x(f2, g) is P .
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3. Constructing Q: The Q matrix is constructed such that Qij (the entry in the ith

row and jth column) is the coefficient of the product of the corresponding binary

variables in the objective function.

For example, if the binary variables are ordered as x(f1, g1), x(f1, g2), . . . , x(f2, g1), . . .,

then the entry Qij is the coefficient of x(fi, gj) · x(fk, gl) in the objective function.

Given the above terms, the Q matrix will have entries from the original objective

function and the penalty terms. Specifically:

• Qij will have the value n(f1, f2) · t(g1, g2) for the terms from the original

objective function.

• Qij will have the value P or −2P for the terms from the penalty.

5.3 Instance generation

For the flight gate assignment problem our goal is to minimize the total transit time of

passengers moving to/from gates, while also assigning all flights to gates so that flights

do not overlap in the arrival/departure time window. The creation of the QUBO matrix

for solving the flight gate assignment problem involves generating synthetic data that

simulates real-world scenarios of flight schedules and gate assignments. This process

is crucial for formulating the optimization problem in a manner that can be addressed

using quantum computing techniques.

A set of flights and gates are considered, represented by F and G respectively. The

number of flights, nf , and the number of gates, ng, are predefined parameters. Each

flight and gate is assigned a unique identifier. For each flight, the number of arriving

and departing passengers is randomly generated to simulate the variability in passenger

load. This is crucial for computing the cost associated with passenger transfers and

gate assignments. A key aspect of the problem is the handling of transfer passengers. A

transfer probability, Ptr, is defined to model the likelihood that passengers need to trans-
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Figure 5.1: Duration of the time that each flight needs to spend to the airport after
arriving and before departing from the airport, sorted by ascending arrival
time. Here we consider a small example of 14 flights spending some time in
the airport (60 minutes) during a period of 1 day (1440 minutes). The start
of each bar represents the flights’ arrival time at the airport and the end of
each bar shows the departure time of the marked flight. Flights that have
overlapping duration windows should not be assigned to the same gate.

fer between any two flights. This probability is used to randomly generate the number

of transfer passengers between each pair of flights, introducing a layer of complexity to

the gate assignment problem.

Each flight is assigned a random arrival and departure time within a 24-hour period,

ensuring that the flight schedules are distributed throughout the day. Additionally, a

buffer time is included to account for the time required to prepare a gate for the next

flight. Along this buffer time, each aircraft need to spend some time in the airport

for maintenance or waiting the passengers to board and more. Figure (5.1) shows the

time that the aircraft operating the assigned flight spends in the airport regardless the

gate that it will be assigned. Each bar denotes the total time that the indexed flight is
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spending in the airport while the start of that bar can be viewed as the arrival time (the

time that the flight arrives in the airport) and the end of the bar as the departure time

(the time that the flight leaves the airport to perform the actual flight).

Optimal assignment Gate 1

Gate 1Flight 1

Gate 5

Gate 3

Gate 1

Gate 4

Gate 4

Gate 2

Gate 2

Gate 2

Gate 1

Gate 1

Flight 0

Flight 2

Flight 3

Flight 4

Flight 5

Flight 7

Flight 8

Flight 9

Flight 10

Flight 11

Flight 12

Gate 2 Gate 2Flight 6 Flight 13

a) b)

F13

F10 F12

F0 F7

F11

F3F8

F5 F4

F9
F2

F1

F6

Flights

Overlapping time of
stay at the airport

F13

F10 F12

F0 F7

F11

F3F8

F5 F4

F9
F2

F1

F6

Figure 5.2: a) Overlapping graph for an example flight gate assignment problem of 14
flights and 5 gates. Nodes represents flights and an edge exists between two
flights that have overlapping time windows. Since we want two overlapping
flights not to be assigned in the same gate, we can color the nodes such that
two connecting nodes have different colors, and obtain an optimal assignment
of flight to gates with not overlapping time windows. b) Assignment schedule
of flight to gates for this small example.

The QUBO matrix is then formulated based on the synthetic data. Each element of

the matrix corresponds to a binary variable representing the assignment of a particular

flight to a specific gate.

In order to visualize the problem we create a flight overlapping graph as shown in figure

(5.2) where we connect flights that have overlapping time window of arrival/departure

plus a buffer time for staying in the gate as seen in equation (5.8). Then, the optimal

solution would be to assign gates (colors) to flights (nodes) such that no connecting

nodes will have the same color and also minimize the total transit time of passengers.
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5.4 RL Enhanced Optimization for Large FGA Problems

In this section, we present results for solving FGA instances shown in table (5.2). The

pipeline of the RL enhanced algorithm is shown in figure (3.7) where we first use the

minimal encoding scheme to obtain some good initial solutions and then use the RL

enhanced algorithm to refine upon those solutions. Times for the classical simulator and

reinforcement learning enhancement are chosen empirically by testing its performance

and choose the ones that lead to an average approximation ratio α ≥ 0.999. Since the

data for the FGA instances are synthetically created and the solution to the problem

is unknown a-priori, we are using the commercial solver Gurobi [91] with an academic

license and a time limit of 10 hours, after which we use the solution obtained to calculate

Cmin in the eq. (3.13) for the approximation ratio.

Flights Gates
Classical
variables

Qubits
using

minimal
encoding

Time for
classical
simulator

of the qubit
efficient
algorithm

(s)

Time for
RL en-

hancement
(s)

Avg.
approxima-
tion ratio

(%)

55 14 770 11 60 2 99.98

88 22 1936 12 80 4 99.99

165 33 5445 14 120 8 99.98

201 36 7236 14 200 15 99.98

331 38 12578 15 1000 60 99.98

411 51 20961 16 2000 500 99.99

Table 5.2: Detailed information for all the FGA instances considered. The number of
classical variables is the product of the number of flights and the number of
gates. Time for classical simulator (seconds) refers to the time that we run the
optimization using the minimal encoding scheme to produce initial solutions
in a CPU machine. Time for reinforcement learning enhancement refers to
the given GPU runtime of this algorithm to refine those initial solutions. The
average approximation ratio obtained using data from 20 optimization runs
using minimal encoding sequentially with the RL enhancement algorithm.
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5 Qubit Efficient Optimization for the Flight Gate Assignment Problem

After obtaining the QUBO matrix Q for the FGA problem, one can set up the qubit

efficient optimization algorithm using the minimal encoding scheme by preparing the

quantum state in (3.5) using a hardware efficient ansatz shown in figure (2.2) with

10000 measurement shots. Sampling from this quantum state at each optimization step

allows us to estimate and minimize the cost function in (3.10) using ADAM optimizer.

After the optimization is done we can use coefficients bi( ⃗θopt) in order to sample multiple

solutions of the original FGA problem.

Using our qubit efficient encoding scheme we were able to fit FGA instances of 20961

classical variables to classical simulators using 16 qubits. Although, since we want to

estimate the probability distribution in eq. (3.8) over 216 = 65536 probability ampli-

tudes, 10000 shots is surely not enough. Amplitudes that are not measured will result

in division with zero in eq. (3.9), therefore we address this issue by randomly assigning

bits whose position registers is not measured sacrificing the overall accuracy of our algo-

rithm. Consequently, in the limit of the qubit count going to infinity this technique could

approximate a totally randomize sampling algorithm, evident also from eq. (3.8) which

described a probability distribution of statistically independent variables. To address

this issue we apply the RL enhancement algorithm after the quantum optimization to

further enhance the quality of solutions obtained. This classical post-processing step is

designed to run on a single laptop GPU2 for faster computations.

Overall, for all FGA instances considered here, we were able to obtain solutions with

quality comparable with this obtained from the commercial solver Gurobi. Combining

the qubit efficient algorithm with the RL enhancement algorithm could offer a new way

to address large scale QUBO problems in the NISQ era.

2Although this can be extended to multiple GPUs by leveraging the fact that using the best varia-
tional angles from the qubit efficient algorithm we can sample multiple solutions and use the RL
enhancement algorithm to refine these solutions in parallel GPUs.
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5.4 RL Enhanced Optimization for Large FGA Problems

Figure 5.3: Approximation ratio for flight gate assignment problems of up to 20961 clas-
sical variables using the reinforcement learning enhanced optimizer and min-
imal encoding with 16 qubits. 20 optimization runs were performed and we
plot the median approximation ratio (circle) as well as the minimum and
maximum values found as error bars.

Figure (5.3) shows the average approximation ratio obtained using the RL enhanced

optimizer shown in fig. (3.7) for all FGA instances considered here. For each FGA

instance we perform 20 different optimization runs using different initial variational

angles for the qubit efficient algorithm. For each optimization run we first use the

minimal encoding scheme to approximate the cost function in eq. (3.10) and then we

use the ADAM optimizer in order to find the variational angles that minimize this cost

function. Then we use the best variational angles to run the classical simulator and use

the probability distribution from (3.8) to sample 10 solutions per optimization run.
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5 Qubit Efficient Optimization for the Flight Gate Assignment Problem

For each optimization run, we sort these 10 solutions based on their cost function

values using equation (2.1) and then choose the one with the lowest cost function value

to be given as input to the reinforcement learning enhancement algorithm. After running

the RL algorithm for a predefined time (seconds) shown in table (5.2), we obtain one

final post-processed solution for each optimization run3, resulting in 20 final solutions

per problem instance and plot the average approximation ratio.

The average approximation ratio for all FGA instances display small deviation from

the mean, indicating that for each problem instance and for each of the 20 optimization

runs the RL enhanced optimizer converged satisfactorily. Solutions obtained from the

RL enhanced optimizer have a high overlap with those obtained from Gurobi, although

none of them is the same as the approximation ratio is less than one. For the two bigger

FGA instances, namely the ones with 12578 and 20961 classical variables the deviation

from the mean appears to be very small. This indicates that for all the optimization

runs the RL enhanced optimizer converged to solutions nearly identical in terms of cost

function value, starting from 20 different solutions4.

Results for a single optimization run are shown in figure (5.4) where we plot the qubit

efficient optimization part as well as the reinforcement learning part. The main plot

shows the evolution of the approximation ratio using the RL enhanced algorithm. The

inset axis shows the optimization procedure using the minimal encoding scheme and

compares with random sampling. For the random sampling we are using 4×106 random

solutions for problem sizes with less than 10000 classical variables and 4 × 108 random

solutions for problem sizes with more than 10000 classical variables. We observe that as

the problem size grows, minimal encoding produces better than random solutions but is

susceptible to barren plateaus as the approximation ratio produced during optimization

becomes flat.

3Appendix section (7.2) shows the pseudocodes for the qubit efficient and the RL enhanced algorithms.
4Since in the quantum optimization part we have fixed the number of measurement shots to 10000 we
are bound to randomly assigning bits in the proposed solution.
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5.4 RL Enhanced Optimization for Large FGA Problems

Iterations

A
pp

ro
xi

m
at

io
n 

ra
tio

Minimal encoding

770 Variables
1936 Variables
5445 Variables

7236 Variables
12578 Variables
20961 Variables

Random

Figure 5.4: Optimization progress for all FGA problem instances. The main plot focuses
on iterations performed by the reinforcement learning algorithm in order to
enhance the quality of solutions from the minimal encoding scheme. The
inset axis shows the performance of the minimal encoding scheme during
optimization and is compared with an average approximation ratio obtained
through random sampling.
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6 Conclusion and Future Work

This thesis has presented a quantum-classical approach for addressing large-scale Quadratic

Unconstrained Binary Optimization (QUBO) problems. The proposed reinforcement

learning enhanced algorithm integrates qubit efficient encoding with advanced compu-

tational strategies, offering a novel pathway in the realm of quantum computing. This

duality of quantum and classical techniques has demonstrated significant promise in deal-

ing with complex optimization challenges, as evidenced by its application to real-world

problems in routing and scheduling.

We applied a qubit efficient encoding scheme from [55] to drastically reduce the num-

ber of qubits needed, in order to tackle large QUBO problems. The downside of this

technique is that the number of shots needed to accurately characterize the quantum

state and thus the approximated cost function scales exponentially with the number of

qubits. To address this issue we perform an additional RL-based post processing step in

order to enhance the quality of solutions obtained by this scheme. This RL algorithm

is designed to run on GPUs for better performance and it is based on an exploration-

exploitation process.

We demonstrate the applicability of the RL enhanced optimizer in 3 optimization

problems (vehicle routing problem with time windows, tail assignment problem and

flight gate assignment problem) from industry which can be mapped to QUBO format.

For certain problem sizes of the routing problem, we apply the qubit efficient encoding

scheme to obtain solutions from real quantum computers through the cloud and enhance
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upon these solution using the RL algorithm. Furthermore, we increase the problem

size for all optimization problems to nearly 25,000 classical variables and use quantum

simulators alongside a single laptop GPU to approximately solve them and compare the

quality of solutions obtained with those obtained from a commercial solver. Comparing

the approximation ratios for the 3 problems we find that the tail assignment problem has

the lowest. This is because the tail assignment problem inherently has a unique optimal

solution and due to eq. (4.2) other non optimal solutions may have a large overlap with

the optimal solution. 1

Future work may involve leveraging high-performance computing clusters to scale the

algorithm for tackling even larger and more complex problems relevant to industry. The

use of high-performance clusters is expected to significantly enhance computational ca-

pabilities, allowing for more extensive and intricate computations that are currently

beyond reach. This progression will enable the exploration of new frontiers in optimiza-

tion problems, particularly those with substantial industrial relevance. For example,

instead of refining one solution, one could use the RL enhancement algorithm in parallel

to enhance the full cluster of solutions sampled using the minimal encoding scheme.

Another interesting avenue, will be to study the relevant gap between the proposed

solutions of the minimal encoding and the optimal solution. Connecting this gap with the

probability to sample a solution could provide upper bounds in the accuracy of the overall

algorithm. It is important to note that this probability is parameterized by the angles

of the quantum circuit at hand and encodes independent classical variables. One has to

use another encoding also proposed by Tan et al. [55] to encode correlations between

classical variables in this probability but using more qubits than minimal encoding.

1If the optimal solution contains some routes and we delete one route, the resulting solution will have
a large overlap with the optimal solution and a little difference in the cost function.
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7 Appendix

7.1 Practical Analysis of IBM Cairo Device Used In Our

Implementation

Cloud quantum computing represents a significant shift in computational power, uti-

lizing quantum computing to enhance information processing. By integrating quantum

computing with cloud technology, it becomes widely accessible, allowing the provision

of quantum computing services via the internet. Users can remotely access quantum

processors and conduct computations without the need for direct ownership or mainte-

nance of costly hardware. Cloud quantum computing is pivotal for advancing quantum

technologies, enabling practical experimentation with quantum algorithms, application

development, and contributing to the quantum computing field. Companies, including

IBM Quantum Experience [114], Amazon Braket [115], Google Quantum AI [116], Mi-

crosoft Azure Quantum [117], and IonQ [118], have developed advanced cloud quantum

computing platforms, each offering unique resources and tools.

This section presents an analysis of the performance of a hardware efficient quantum

circuit (2.2) when executed on the 27-qubit IBM Cairo quantum device we used for our

results in chapter (3.2.1). The analysis is based on three key metrics :

1. Execution time of the hardware efficient ansatz including the gradient estimation

time using the parameter shift rule described at section (2.4.2)
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7.1 Practical Analysis of IBM Cairo Device Used In Our Implementation

2. The number of gates of the hardware efficient ansatz and the resulting number of

gates after translating the quantum circuit to the native quantum hardware

3. The memory it takes to classically store QUBO matrices as well as quantum states

In order to gather the data for this analysis we used the official Qiskit libary provided

by IBM [129] and namely the Properties package which holds the properties of each gate.

For the quantum circuit at hand we are using a hardware efficient ansatz as shown in

Fig. (2.2) with 4 layers.

7.1.1 Run Time Analysis

Figure (7.1) shows the total run times for hardware efficient quantum circuits with

varying numbers of qubits, ranging from 11 to 27 qubits. The total run time is given by

tr = ttr + numshots × te + numshots × tgc (7.1)

where ttr is the time it takes for the transpilation of the quantum circuit, which refers

to the time it takes to transform the given quantum circuit to native quantum gates that

respect the architecture of the IBM Cairo quantum device. numshots×te refers to the time

it takes to run the transpiled quantum circuit numshots times where numshots = 10000,

and te is the single execution time of the transpiled quantum circuit. numshots × tgc

refers to the time it takes to estimate the gradients using the parameter shift rule as

shown in section (2.4.2). Essentially, since we have to execute the quantum circuit 2

more times to estimate the gradients, one with the angles shifted by π
2 and one with the

angles shifted by −π
2 , the gradient execution time tgc = 2te.

Overall in Fig. (7.1), the total run time can be seen as the height of the bar for each

qubit count, where ttr can be seen with light-blue color, numshots × te with dark-blue

color and numshots × tgc with blue color. The summation of these times can give us an
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Figure 7.1: Total run time of hardware-efficient quantum circuits on the IBM Cairo
device including the gradient estimation time using the parameter shift rule.
The transpilation time refers to the time it takes to convert the hardware
efficient ansatz into native gates with respect to the IBM Cairo device. The
execution time and gradient calculation time, using the parameter shift rule
to estimate the gradients, are scaled up to reflect realistic experiments where
we want to measure the quantum circuit using 10000 shots.

essence of how much time it would take to run a single iteration of the qubit efficient

algorithm for each number of qubits 1.

7.1.2 Gate Count Before and After Transpilation

Quantum circuits designed for execution on the IBM Cairo quantum device undergo a

process known as transpilation. This process adapts the circuit to the specific architec-

ture and native gate set of the quantum computer. The IBM Cairo device, which utilizes

a superconducting qubit architecture, supports a specific set of native gates.

1Note here that we have excluded the time to estimate the cost function in eq. (3.10) since this can be
done in a CPU/GPU machine rather than a QPU.
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7.1 Practical Analysis of IBM Cairo Device Used In Our Implementation

Figure 7.2: Comparison of gate counts before and after transpilation for a hardware
efficient ansatz comprising of 4 layers on the Cairo device.

The transpilation process decomposes the high-level gates of a hardware-efficient

ansatz into these native gates. The primary gate types used after transpilation include:

• U1, U2, U3 Gates: These represent general single-qubit rotation gates. The U1

gate is a rotation around the Z-axis, U2 is a general single-qubit rotation with one

parameter, and U3 is the most general form of a single-qubit rotation with three

parameters.

• SX Gate (or
√
X Gate): This gate performs a π/2 rotation around the X-axis

on the Bloch sphere. It is also known as the square root of the Pauli-X gate.

• X Gate: Also known as the Pauli-X gate, this gate performs a π rotation around

the X-axis. It functions as a NOT gate in quantum computing.

• CNOT Gate (Controlled-NOT Gate): Essential for creating entanglement,

this gate flips the state of the target qubit if the control qubit is in the state |1⟩.

• Idle Gates or Delays: These gates are used for synchronization or for waiting.
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The transpiler in Qiskit, IBM’s quantum computing framework, optimizes the circuit

for the Cairo device’s connectivity and gate fidelities. It aims to minimize the gate count

and circuit depth to reduce the impact of noise and decoherence. The transpilation

process involves merging, commuting, or canceling gates where possible to reduce the

complexity of the final circuit and ensure adaptability to the hardware’s limitations and

characteristics. Figure (7.2) illustrates the number of gates in the quantum circuits both

before and after transpilation.

7.1.3 Memory Usage Analysis

In the context of implementing the qubit efficient algorithm, two critical factors con-

tribute significantly to memory usage: the representation of the quantum state and the

QUBO matrix. The quantum state memory grows exponentially with the number of

qubits due to the need to represent the state vector of a quantum system, while the

memory required to store the QUBO matrix, representing the problem to be solved,

grows with the square of the number of classical variables encoded by the qubits.

The memory required to store a quantum state, where each coefficient is a complex

number (requiring two floats), is given by:

Quantum State Memory (bytes) = 2n × 16

where n is the number of qubits and we assume 64-bit (8-byte) precision.

For 18 qubits, the quantum state and QUBO matrix memory requirements are calcu-

lated as follows:

The quantum state memory for 18 qubits is given by:

Quantum State Memory = 218 × 16 bytes = 262144× 16 bytes = 4194304 bytes
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Converting this to gigabytes:

Quantum State Memory =
4194304

10243
GB ≈ 4.00 MB

To calculate the memory requirements for holding a QUBO matrix of size N , we con-

sider using the minimal encoding from [55] in order to calculate the number of classical

variables N .

The memory required for a QUBO matrix of size N × N , where each element is a

single float, is given by:

QUBO Matrix Memory (bytes) = N2 × 8

Table (7.1) summarizes the memory requirements for quantum states and QUBO

matrices for various numbers of qubits. Storing such matrices in their entirety is not

feasible with current conventional computing resources. For instance, a QUBO matrix

for a system with 18 qubits, serving 130 thousan variables, requires approximately 128

GB of memory, and the requirement grows exponentially with more qubits.

A significant observation is that QUBO matrices for many practical problems are

sparse, meaning most of their elements are zero. This sparsity arises because not all

variables in a QUBO problem interact with each other. Leveraging this sparsity can

drastically reduce the memory and computational requirements. There are several tech-

niques to exploit the sparsity of QUBO matrices:

• Sparse Matrix Representations: Instead of storing every element of the matrix,

sparse matrix formats store only the non-zero elements and their indices. This

approach can lead to significant reductions in memory usage.

• Distributed Computing: Large QUBO matrices can be partitioned and dis-

tributed across multiple computational nodes.
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Number of Qubits
using Minimal Encoding

Number of
Classical Variables

Quantum State
Memory

QUBO Matrix
Memory

11 1024 0.03 MB 8 MB
12 2048 0.06 MB 32 MB
13 4096 0.12 MB 128 MB
14 8192 0.25 MB 512 MB
15 16384 0.50 MB 2 GB
16 32768 1.00 MB 8 GB
17 65536 2.00 MB 32 GB
18 131072 4.00 MB 128 GB
19 262144 8.00 MB 512 GB
20 524288 16.00 MB 2 TB
21 1048576 32.00 MB 8 TB
22 2097152 64.00 MB 32 TB
23 4194304 128.00 MB 128 TB
24 8388608 256.00 MB 512 TB
25 16777216 512.00 MB 2048 TB

Table 7.1: Memory requirements for quantum states and QUBO matrices. The first
column shows the number of qubits of the quantum system while the seconds
column shows the number of classical variables that we can handle using the
minimal encoding scheme. As mentioned in [55] the relationship of number of
qubits and number of classical variables using the minimal encoding scheme
is given by Number of Classical Variables = 2Number of qubits−1

GPUs and other specialized hardware architectures offer parallel processing capabil-

ities that are particularly effective for handling large, sparse matrices. By performing

multiple operations simultaneously, GPUs can significantly accelerate the computation

of QUBO matrices and related algorithms.

7.2 Pseudocode for Main Algorithms

Algorithm (1) shows the optimization step used in variational quantum circuits. Given

an optimizer 2 and a set of variational angles 3, the algorithm performs an optimization

step to minimize the cost function associated with the quantum circuit. The updated

2Throughout this thesis we are using the ADAM optimizer.
3We choose to start with random initial angles.
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variational angles and the new cost are returned, which are then used in further iterations

of the optimization process. The cost function is calculated using eq. (3.10) as we are

using minimal encoding throughout this thesis [55].

Algorithm 1 Optimizer Step

Require: Optimizer opt, Variational angles θ⃗
Ensure: New variational angles θ⃗, New cost opt cost
1: θ⃗, opt cost← opt.step and cost(cost function, θ⃗)
2: return θ⃗, opt cost

Algorithm (2) outlines the full pipeline of the reinforcement learning enhanced opti-

mizer shown in (3.7) for solving QUBO problems. It initializes the quantum circuit and

performs optimization using the minimal encoding scheme as describes in section (3.2.2).

After the optimization, it samples bitstrings from the VQA and applies the reinforce-

ment learning enhancement algorithm to each bitstring, aiming to enhance the quality

of the solutions. The best bitstring and cost found over the iterations are returned.

Algorithm 2 Reinforcement Learning Enhanced Optimizer

Require: QUBO matrix, QUBO Constant, Number of layers , Number of bitstrings to
sample, Optimizer time, RL algorithm time, Number of cycles, Initial temperature,
Verbosity

1: Initialize quantum circuit parameters: nqq, n layers
2: Check and set computing device (CPU or GPU)
3: Configure quantum device or simulator
4: Initialize optimizer and variational angles θ⃗
5: for Number of cycles do
6: Optimize VQA for Optimizer time
7: Sample candidate solutions from VQA
8: Apply RL enhancement on each solution for RL algorithm time / number of

solutions
9: Record best cost and best solution

10: end for
11: return best solution, best cost

Algorithm (3) describes the reinforcement learning enhancement algorithm. It is ap-

plied to enhance the quality of solutions obtained from the quantum optimization part.
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The algorithm iteratively explores and exploits the solution space using softmax for ex-

ploration and UCB for exploitation, adjusting the state based on rewards and counts,

as explained in section (3.4). The best state and cost found within the given time limit

are returned.

Algorithm 3 Reinforcement Learning Enhancement Algorithm

Require: Initial solution, QUBO matrix, QUBO constant, time limit, temperature
Initialize rewards, counts, and best solution
while within time limit do

if in exploration phase then
Calculate flip probabilities using softmax
Flip multiple bits based on probabilities

else
Calculate UCB scores for each bit
Flip the bit with highest UCB score

end if
Update current solution, rewards, and counts
Adjust temperature

end while
return best solution, best cost
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