Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 54-2 (2021) 298-305

Vehicle-Based Trajectory Specification in
Presence of Traffic Lights with Stochastic
Switching Times

P. Typaldos* V. Volakakis* M. Papageorgiou *
I. Papamichail *

* Dynamic Systems & Simulation Laboratory, School of Production
Engineering & Management, Technical University of Crete, 73100,
Chania, Greece
(e-mail: {ptypaldos, vvolakakis, markos, ipapa} @ dssl.tuc.gr).

Abstract: Vehicle-based GLOSA (Green Light Optimal Speed Advisory) systems use informa-
tion about the next switching time of the traffic lights to calculate fuel-efficient position and
velocity profiles for connected vehicles, according to their current state (position and speed).
A stochastic optimal control problem was recently proposed to address the GLOSA problem
in cases where the next switching time is decided in real time and is therefore uncertain in
advance. The corresponding numerical solution via SDP (Stochastic Dynamic Programming)
calls for substantial computational time (few minutes), which excludes problem solution in
the vehicle’s computer in real time. This work considers the same stochastic problem of
optimal trajectory specification for vehicles approaching a signalized junction with traffic signals
operated in real-time (adaptive) mode, due to which the next switching time is stochastic.
However, a modified version of Dynamic Programming, known as Discrete Differential Dynamic
Programming (DDDP), is used for numerical solution of the stochastic optimal control problem.
It is demonstrated, based on a realistic example, that the DDDP algorithm achieves results
equivalent to those obtained with the ordinary SDP algorithm, albeit with significantly better
performance in terms of computational time. Specifically, the solution is typically obtained in
around 1 CPUs, which is real-time feasible and would allow for the DDDP calculations to be
executed in the vehicle’s on-board computer.
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1. INTRODUCTION

In view of cheap energy resources shortage and excessive

or evaluation criterion while developing and deploying
signal control systems (Jamshidnejad et al. (2017)).

environmental pollution, it is essential for transportation
systems to operate with increased fuel efficiency. In the
case of road vehicles, fuel efficiency relates to economic
aspects, as fuel economy means fewer expenses for the
driver; but also to the protection of the environment in
an era of climate crisis. To this end, considerable efforts
in the development and deployment of efficient intelligent
transportation systems (including real-time traffic signals)
lead to reduced congestion and fuel consumption.

Traffic signals guarantee, in the first place, the safe cross-
ing of vehicles at urban junctions in cities around the
world. Clearly, enforcing safety via traffic lights implies
that some vehicles will have to stop in front of a red
light and then accelerate after the traffic light switching
to green, something that affects the fuel consumption of
concerned vehicles. To reduce the resulting vehicle de-
lays and number of stops, several algorithms have been
proposed and deployed over the past decades, aiming at
optimizing the traffic signals operation (Hounsell and Mc-
Donald (2001); Papageorgiou et al. (2003)). In fact, fuel
consumption is increasingly considered as an optimization

Fixed-time signal plans are derived offline for respective
times of day (e.g., morning peak period, off-peak period,
etc.) by use of appropriate optimization tools, based on
historical constant demands; and are applied without
deviations. This implies that switching times of the traffic
lights are always known in advance.

In contrast, real-time (or traffic-responsive or adaptive)
signal control strategies make use of real-time measure-
ments to calculate in real time suitable signal settings.
Depending on the employed signal control strategy, the
control update period may range from one second to one
signal cycle. Clearly, for real-time signals, the next switch-
ing time is not known before the switching decision has
been actually made.

Consider a vehicle approaching a red traffic light at a given
speed. A common dilemma is whether it should maintain
its speed, at the risk of having to stop if the traffic light
is still red at arrival; or whether it should decelerate, as
long as the traffic light is red, at some uncertain pace.
This dilemma of vehicle movement when facing a red
traffic signal may be addressed by appropriately designed
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systems. With recent and emerging advances in vehicle
communications, the current state and timing of a traffic
signal can be transmitted to equipped vehicles (or apps
therein) to enable sensible approaching speed decisions.
Based on this information, it is possible to guide the driver
(or an automated vehicle) all the way to the traffic light
by giving speed advice, which ensures that the vehicle will
cross the traffic signal at green and with minimum fuel
consumption and emissions. Systems (or apps) optimizing
the vehicle approach to traffic lights are often referred to as
Green Light Optimal Speed Advisory (GLOSA) systems
(Stahlmann et al. (2016)).

In the case of fixed signals and hence prior knowledge
of the next switching time, a corresponding message is
broadcasted by the signal controller. Under these condi-
tions, the problem of how to optimize the approach to
traffic signals has been addressed in different ways. Rule-
based algorithms have been proposed in various works to
produce advisory speeds for vehicles approaching traffic
signals, so as to reduce fuel consumption and emissions
(Katsaros et al. (2011); Sanchez et al. (2006); Ma et al.
(2018)). Optimal control approaches, considering explic-
itly the vehicle kinematics, are, by their nature, more per-
tinent in producing fuel-optimal speed profiles (Lawitzky
et al. (2013); Typaldos et al. (2020a)).

The situation becomes more complicated when real-time
signals with very short (e.g., second-by-second) control
update periods are present, in which case exact prior
knowledge of the next switching time is not available. In
this case, the best available knowledge can be presented
as an estimate (Koukoumidis et al. (2011)) or as a prob-
abilistic distribution for the next switching time within a
short-term future time-window; such a distribution may be
obtained by use of statistics from previous signal operation
(Mahler and Vahidi (2012); Lawitzky et al. (2013)).

In Typaldos et al. (2020a), the problem of producing fuel-
optimal vehicle trajectories for a vehicle approaching a
traffic signal for both cases of known and stochastic switch-
ing times was considered. For the first case, the problem
was formulated as an optimal control problem and was
solved analytically via PMP (Pontryagin’s Maximum Prin-
ciple). Subsequently, the case of stochastic switching time
with known probability distribution was also addressed,
and the problem was cast in the format of a stochastic
optimal control problem, which was solved numerically
using SDP (Stochastic Dynamic Programming). The pro-
posed SDP algorithm may take several minutes to execute,
which implies that the solution is not real-time feasible
and can therefore not be obtained on-board the vehicle,
but must be executed offline, at the infrastructure side,
and be communicated to approaching vehicles according
to their current state.

To substantially reduce the computation time and mem-
ory requirements for the solution of the above-mentioned
stochastic GLOSA problem and enable its solution on-
board the vehicle, it is employed, in the current work,
a Discrete Differential Dynamic Programming (DDDP)
algorithm. DDDP was proposed by Heidari et al. (1971)
for deterministic problems in the context of water re-
sources system optimisation and has been widely used
in that domain to reduce the computational requirements

compared with the standard DP (Dynamic Programming)
algorithm of Bellman (2015). DDDP is an iterative al-
gorithm, whereby each iteration receives a feasible (but
non-optimal) solution trajectory and transforms it to an
enhanced one, to be used in the next iteration. The proce-
dure starts, at the first iteration, with a feasible starting
trajectory provided by the user. Each iteration employs the
conventional DP algorithm to solve the problem within a
strongly reduced state domain (compared to the original
problem’s state domain) around the received state trajec-
tory of the previous iteration. The procedure stops, when,
at some iteration, the received trajectory is found to be
the optimal one, hence it cannot be further enhanced.
It is also possible to reduce the discretisation intervals,
while advancing with the iterations, in order to improve
the solution accuracy. The computational time required for
each iteration is far lower compared to that of the one-shot
full problem solution due to the strongly reduced space
domain considered. Thus, even though we have multiple
successive iterations, the computational time for all of
them may still be significantly lower than for the one-shot
full problem solution.

It should be noted that, in contrast to deterministic op-
timal control problems, stochastic optimal control prob-
lems do not feature a solution trajectory, even for given
initial states, due to the uncertainty of system evolution
created by the stochastic variables. However, in the specific
stochastic problem (stochastic GLOSA) considered here,
such a trajectory is indeed present in the problem solution,
and this allows for application of the DDDP algorithm
despite the stochastic nature of the problem.

The remainder of the paper is organized as follows: in
Section 2, the optimal control problems with known signal
switching time and uncertain signal switching time, as
proposed by Typaldos et al. (2020a), are briefly presented
for completeness, followed by the presentation of the
DDDP algorithm. Demonstration results of the DDDP
algorithms performance and comparison with the one-
shot stochastic GLOSA results, are presented in Section
3. Finally, Section 4 concludes this work, summarising its
contributions.

2. OPTIMAL CONTROL PROBLEMS AND
SOLUTIONS FOR GLOSA WITH KNOWN OR
UNKNOWN SIGNAL SWITCHING TIME

This section describes briefly the GLOSA approaches for
the cases of known or unknown signal switching time,
as proposed by Typaldos et al. (2020a); followed by the
description of the DDDP approach proposed in this paper.

2.1 Known Signal Switching Time

Consider a vehicle traveling from an initial state xy =
[z0,v0]T, with ¢ being a given initial position and vy
a given initial speed of the vehicle; with the purpose to
reach a fixed final state x. = [7¢,v.]T within a free
(but weighted) time horizon t., with z. and v, being the
vehicle’s final position and speed, respectively. Between
the initial and final positions, there is a traffic signal, and
hence the additional restriction that the vehicle cannot
pass through the traffic signal’s position z; before the
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known time t;, which is the time that the traffic light
turns green from red. The implicit assumption here is
that a red light is active when the vehicle appears on the
link (at time 0), but a generalisation, which includes the
case where the vehicle appears when the traffic light is
green, is given in Typaldos et al. (2020a). The objective
of the vehicle is to appropriately adjust its acceleration
(control variable), so as to minimize fuel consumption,
while satisfying the initial and final conditions x(¢ and .,
as well as the intermediate (traffic signal) constraint.

The minimization problem outlined above is formulated as
an optimal control problem, which accounts for the vehicle
kinematics via the following state equations:

i=wv (1)
v=a (2)

where a is the vehicle acceleration which assumes the
role of the control variable. The objective criterion to be
minimized reads

te
J=w~te—|—}/ a’dt (3)
2 Jo

In addition, the green-light constraint, tg > t;, must
be fulfilled, where tg is the time at which the vehicle
crosses from the signal position z1, that is, z(ts) = ;.
Note that the utilized acceleration cost term a? in the
cost criterion was demonstrated in an earlier study to
be an excellent proxy for deriving fuel-minimizing vehicle
trajectories Typaldos et al. (2020b). Note also that the
final time t. is free, but penalized with the parameter
w. For higher values of w, the resulting t. will be lower
and vice versa. This, consequently, affects the acceleration
cost, which, depending on higher or lower w value, will
also have increased or decreased values (for more details
see Typaldos et al. (2020a)). If necessary, upper and lower
bounds may be applied to speed v and acceleration a.

The solution of this problem was addressed in Typaldos
et al. (2020a) and can be obtained analytically using sym-
bolic differentiation tools. Thus, the numerical solution of
the deterministic GLOSA problem, for a specific problem
instance, takes only fractions of a second of computation
time and can be executed in real time on-board for each
approaching vehicle.

For a given junction, the final state is the same for any
initial vehicle state &g and any switching time ¢;. There-
fore, the optimal value of criterion (3) of the deterministic
GLOSA problem depends on these variables and is de-
noted Jj,(xo,t1) for later use.

2.2 Uncertain Signal Switching Time Problem

The traffic light switching time may be subject to short-
term decisions in dependence of the prevailing traffic
conditions in cases of real-time signals. In such cases,
we typically have minimum and maximum admissible
switching times; hence, based on statistics from past signal
switching activity, we may derive a probability distribution
of switching times within the admissible time-window of
possible signal switching times. Thus, the problem can
be cast in the format of a stochastic optimal control
problem, which may be solved numerically using SDP
techniques. To this end, the analytical solution of the

deterministic GLOSA optimal control problem is used
within the stochastic approach, as will be explained in this
section (for more details see Typaldos et al. (2020a)).

For the SDP algorithm (Bertsekas (1995)), the discrete-
time version of the vehicle kinematics, with time step T,

is considered, as follows:
1
z(k+1) = z(k) + v(k)T + 5a(k)T2 (4)

v(k +1) = v(k) + a(k)T (5)

where z(k),v(k) correspond to the vehicle position and
speed at discrete times k = 0,1,... (where kT = t),
while the control variable a(k) reflects the acceleration
that remains constant over each time period k. The state
and control variables are bounded within the following
feasible regions

II:(k') eX = [wmiruxmax] (6)
Cl(k) elU = [a:min; arnax} (7)

with min, Lmax and Gmin, Gmax being the lower and upper
bounds of the states and acceleration, respectively. The
traffic light’s discrete switching time k7 is not known, but
it is assumed that a known range kpmin < k1 < kmax of
possible switching times exists, with knyin and kpa.x being
the minimum and maximum possible switching times.

For proper problem formulation, a virtual state z(k)
is introduced, that reflects formally the stochasticity of
traffic light switching

#(k+1)
#(0)

(8)

(k) - 2(k)
1

where z(k) is a binary stochastic variable defined as

2(k) = {?

with (8) and (9), the virtual state Z(k) is either equal to 1,
if the traffic light has not yet switched until time k£ — 1; or
equal to 0 if switching occurred at time k or earlier. The
virtual state Z is assumed measurable, which means that
the system knows at each time kT if switching has taken
place or not within the last time period [(k — 1)T, k7).

if traffic light switches at time k& + 1
else

(9)

The stochastic variable z(k) is independent of its previous
values and takes values according to a time-dependent
probability distribution p(z|k). Based on the statistics of
previous signal switching activity, availability of an a-priori
discrete probability distribution P(k), kmin < k1 < Kmax
is assumed, for signal switching within the time-window,
where ZZ:};‘min P(k) = 1. Since no switching takes place
for k < kpin — 1, we have

p(0lk) =0 for k < kpyin — 1. (10)
For k > Fkmin, the probability distribution p(z|k), is
obtained by use of “crop-and-scale”, meaning that the a-
priori probabilities of previous time steps, where switching
did not take place, are distributed analogously to increase
the probabilities of the remaining discrete times within

the time-window (Lawitzky et al. (2013)). As shown by
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Typaldos et al. (2020a), this update may be done by use
of the following crop-and-scale formula that applies for
kmin < k < kmax — 1 and for any a-priori distribution P(k)

P(k+1)
Yokms ) P(k)

where the term in brackets reflects the crop-and-scale
update.

p(O0[k) = (11)

The cost criterion of the stochastic problem is the same as
in the deterministic case (3). However, in the stochastic
case, the exact value of the criterion depends on the
stochastic variable’s realization, and therefore we consider
minimisation of the expected value

J—E{w.te+;/tea2dt}
0

where the expectation refers to the stochastic variable
z(k),k = 0,...,kmax — 1. Note that, when the switching
time becomes known at time ki, while the vehicle is at
state z(k1), the problem instantly becomes a deterministic
GLOSA problem, and the corresponding optimal cost-to-
go is Jjo[x(k1), k1], which will be denoted as the “escape
cost”.

(12)

To obtain a formally proper cost criterion, the stochastic
variable z(k) and the virtual variable Z(k) introduced
earlier are used, and, as shown by Typaldos et al. (2020a),
this yields the objective function in the required form, as
follows

Emax—1 1
JzE{aé(k) > [ZG(k)2+
k=0 (13)

[1 = 2(k)]Jpgle(k), a(k), k + 1]] }
Equations (4)-(13) constitute an ordinary stochastic opti-
mal control problem (Bertsekas (1995)). Denoting the cor-

responding optimal cost-to-go function by V{x(k), Z(k), k],
the recursive Bellman equation for 0 < k < k. — 1 reads

Vix(k),@(k), k] =

{E{;a(k)Q = 2B Th el k), a(k), k + 1]

= min
a(k)eU

+V[m(lc+1),95(k)z(k),k+1]}} (14)

= min
a(k)eU

+[1—p(0|k)] - V[x(k+1),1,k + 1]}

{ Jath? 4 00OIR) - Tpgla(), ).+ 1

with boundary condition V[x(kmax), 1, kmax] = 0.
2.8 Discrete SDP Numerical Solution Algorithm

For the numerical solution of the stochastic problem, using
the SDP algorithm, the state and control variables must
be discretised. As the discretization level has a significant
impact on computational time and memory requirements,

but also on the accuracy of the computed solution, an
appropriate trade-off should be specified between reason-
able computation requirements versus achievable solution
quality.

For the discretization, the discrete time interval, T is set
equal to 1 s, which is a reasonable choice for the problem
at hand. Then, a general discretization interval A for
the problem variables is assumed, and the discretization
interval of acceleration is set Aa = A. From (5), the
discretization interval of speed assumes the same value
(Av = Aa = A). Likewise, in view of (4), the discretiza-
tion interval for the position is

Az — %A-TZ. (15)

Based on these settings, it was shown in Typaldos et al.
(2020a) that, if x(k),v(k),a(k) are discrete points, then
xz(k+ 1) and v(k + 1) resulting from (4) and (5) are also
discrete points.

It is now straightforward to apply the discrete SDP algo-
rithm to obtain an optimal closed-loop control law a(k)* =
R[x(k), k], which for any given vehicle state x(k) € X
and time k, delivers the optimal acceleration a(k)*. The
SDP algorithmic steps are summarized below. Note that
the algorithm needs to consider only the case Z(k) = 1,
therefore any arguments pertaining to Z(k) are suppressed
for convenience.

The SDP algorithm is described as follows:
Vix(kmax)s kmax)] < 0 V& (kmax) € X
for each k = kpax — 1,...,0 do

for each discrete state (k) € X do
for each discrete control a(k) € U do
Calculate z(k 4+ 1),v(k + 1)
if z(k+1) ¢ X then
J[x(k), a(k), k] + oo

continue
end if
Jx(k), a(k), k] < a(k)?+
p(0lk) - Jpelz(k), al(k), k]+
[1—p(0|k)] - V]e(k+1),k+1]
end for

V{x(k), k] + min J[z(k), a(k),k] Va(k) e U
Rlz(k), k] = a(k)" « arg min {J{@(k), a(k), K},

with a(k)* the optimal control of point [x(k), k]
end for
end for

As mentioned, this algorithm delivers an optimal control
law a(k)* = R[x(k), k] for the full state domain X . Note
that general stochastic optimal control problems do not
possess a solution trajectory for specific initial states x,
because the state evolution is uncertain in presence of
the stochastic variables. However, in the specific GLOSA
problem addressed here, the evolution of the vehicle state
(4), (5) is not affected by the stochastic variable z(k),
which concerns only the signal switching time. Thus, for a
given initial state, i.e. vehicle position and speed at time 0,
the optimal control law may be used to produce an optimal
vehicle trajectory that the vehicle should pursue; until the
signal switching actually occurs, in which case the vehicle
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should instantly behave according to the deterministic
GLOSA solution.

2.4 Discrete Differential Dynamic Programming

The major disadvantage of the discrete (S)DP algorithm
is the high computation time required for the numeri-
cal solution of the optimal control problem. To address
this weakness, several modified DP algorithms have been
proposed, which lead to reduction of the computational
effort; and one of them is the DDDP algorithm, proposed
in Heidari et al. (1971) for deterministic optimal control
problems. The method can nevertheless be applied here,
because an optimal vehicle trajectory may be derived
for the stochastic GLOSA problem, despite its stochastic
character.

As already mentioned, DDDP is an iterative algorithm,
calling for a feasible starting state trajectory to be speci-
fied externally. Each iteration [ receives a feasible (but non-
optimal) state trajectory £(!~1 (k), and transforms it to an
enhanced one ) (k), to be used in the next iteration. To
this end, each iteration solves a discrete SDP problem by
use of the standard SDP algorithm presented above. What
changes at each iteration [ is the considered state domain
X! = {z(k) | [z(k) —2(-V(k)| < AL Aa(k) € X},
which is a strongly reduced subdomain of the original state
domain X in (6). In other words, the discretized SDP
problem is solved in each iteration [ within a corridor with

width A(Cl) around the received state trajectory =1 (k)
of the previous iteration, to produce a solution trajectory
x® (k) for use in the next iteration. The corridor width

Ag), as well as the discretisation intervals Aa® Ax®,
can vary in each iteration, typically at a decreasing rate.
The procedure stops when termination criterion is satis-
fied.

In the proposed GLOSA application, the starting trajec-
tory for the first iteration of DDDP is the optimal solution
of the deterministic GLOSA problem, assuming the “pes-
simistic” case where the traffic light will switch from red
to green at the latest possible time, that is, at k1 = kpax,
so as to cover the whole time range and be not too far
from the stochastic optimal trajectory; see Typaldos et al.
(2020a). The discretisation intervals Aa(®), Az for the
first iteration are also given. The intervals are reduced
by half, each time there is no solution improvement at
two subsequent iterations. The corridor width is taken
as A(Cl) = (C - Aa®), where C = [C,,C,] are constant
given values specifying the state corridor width. Thus, the
corridor’s initial width is defined through the chosen values
for C and Aa®. In the following iterations, whenever the
discrete interval is reduced, there is an analogous reduction
of the corridor width. Consequently, we have a constant
number of feasible discrete points in all iterations, which
facilitates the algorithm’s fine-tuning so as to improve its
computational efficiency. Note that, C, and C, values
may differ, as the magnitude of the two respective state
variables differs.

The admissible control region U (see (7)) is kept the same
at each iteration, although many related state transitions
cannot be considered in view of the reduced state variables
domain. The algorithm terminates whenever there is no

improvement of the produced solution trajectory even
after a reduction of the discretisation intervals; or when
the Aa®) value becomes less than 0.125, which was found
in Typaldos et al. (2020a) to lead to sufficiently accurate
results.

It should be noted that there is no general guarantee
that the DDDP iterations will actually converge to the
full-domain SDP solution. In particular, if the state sub-
domains Xg) considered in the iterations are too small,
the obtained DDDP solution may actually differ from the
SDP solution. On the other hand, if the state sub-domains
are selected large, the required number of iterations may
decrease, but the computation time required to find the
solution at each iteration increases accordingly. In conclu-
sion, some fine-tuning regarding the size of sub-domains is
necessary to ensure convergence to the SDP solution with
minimum overall (all iterations) computation time.

3. RESULTS

In this section, some results using the proposed DDDP ap-
proach are presented. Several scenarios have been tested,
with different initial and final conditions, different switch-
ing windows and different probability distributions. In
these scenarios, different situations occur, such as cases
where the vehicle needs to accelerate or decelerate before
or after crossing the traffic signal; or cases where the
vehicle is even forced to fully stop and wait until the traffic
light’s switch from red to green.

One scenario will be presented here (more results and
scenarios are being considered in ongoing work) with the
following initial and final conditions: g = 0m, vg = 5m/s,
e = 220m, ve = 11m/s and w = 0.1. The traffic light
position is: 1 = 150 m. The states and control bounds are
set t0 [Tmin, Tmax] = [0, 150] m, [Umin, Umax] = [0, 16] m/s,
[@min, Gmax] = [—3,3] m/s?, respectively. The time step T'
is 1 s and the switching time range for the traffic light
is [kmin, Kmax] = [10,30] with uniform a-priori probability
distribution. For the initial discretization, Aa = Av = 0.5
is used, which leads to Az = 0.25m and the initial corridor
width is set C' = [20, 4], i.e. we have C,, = 5-C,,. The choice
of the initial discretization and corridor width value will
be justified later in this section.

Fig. 1 and 2 display the optimal state (speed) and con-
trol (acceleration) trajectories over each iteration of the
DDDP algorithm. Note that, position trajectories are not
included, as the difference of those trajectories, at each
iteration, is small and barely visible. Specifically, in each

iteration we consider a corridor Ag) = [-C - AP, C -

Aa(”] around the respective received state trajectories,
which cannot of course extend out of the full state bounds.

In both Fig. 1 and 2, the dashed blue lines represent, for
each iteration, the received trajectory, the solid orange
lines represent the optimal trajectories derived, and the
red dashed lines reflect the corresponding corridor bounds.
It can be observed from Figs. 1-2 that, starting with
the initial chosen discretization, the first DDDP iteration
improves the initial trajectory, leading to a better solution,
which is optimal within the considered sub-domain. In the
second iteration, no further improvement can be achieved,
which means that, with the current discretization values,
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Fig. 1. Received (blue dashed line) and optimal (orange

line) acceleration trajectories of DDDP algorithm in
each iteration.

the best achievable solution has been reached. By reducing
the discretization at the 3" iteration, a reduction in the
corridor width is observed, but the number of discrete
points remains the same. This reduction enables further
improvement of the solution, and the procedure continuous
until the termination criterion is fulfilled. Table 1 contains
the values of the objective function for each iteration of
the DDDP algorithm, assuming Aa = 0.5 and C = [20, 4],
where the choice of these values will be explained in the
following.

Table 1. Optimal cost evolution and descretiza-
tion change in each iteration of DDDP algo-

rithm.
Iter. Aa = Av Az Cost
1 0.5 0.25 1.357
2 0.5 0.25 1.357
3 0.25 0.125 1.223
4 0.25 0.125 1.223
5 0.125 0.0625 1.175
6 0.125 0.0625 1.175

In table 2, the results of DDDP for different initial corridor
C and discretization Aa values are presented. It can be
seen that, for all presented discretization values, as the
corridor’s width is increased, a reduction of the number of
DDDP iterations is observed. This behaviour is expected,
as the bigger corridors, i.e. bigger admissible regions, lead
to potentially better solutions at each iteration, and hence
to fewer iterations to reach the original SDP problem’s
optimal solution. On the other hand, despite the decrease
on the number of iterations, the overall computation time
is increased due to the higher computation time required
at each iteration, which in turn, is due to more feasible
discrete state points included. Moreover, for very small
values of C, it is noticed that DDDP could not converge to
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Fig. 2. Received (blue dashed line) and optimal (orange
line) speed trajectories of DDDP algorithm in each

iteration. The corridor Ag) is marked with red dashed
lines.

the best possible solution when the termination criterion is
fulfilled, due to the extremely limited state space. Based on
these observations, the selection of the values C' = [20, 4]
and Aa = 0.5 seems to be a reasonable choice, and this
choice was found to lead to similar results also in several
other scenarios, not presented here.

Table 2. Performance of DDDP algorithm in
terms of CPU-time and optimal cost for differ-
ent initial values of C' and Aa.

Aa =1.0 Aa =0.5
C, TIter. CPU time (s) Cost | Iter. CPU time (s) Cost
2 19 0.648 1.199 20 0.612 1.193
3 19 1.296 1.177 8 0.552 1.175
4 15 1.655 1.175 6 0.692 1.175
5 12 1.839 1.175 6 1.052 1.175
6 10 2.298 1.175 6 1.451 1.175

Aa = 0.25 Aa = 0.125
Cy Tter. CPU time (s) Cost | Iter. CPU time (s) Cost
2 10 0.326 1.193 5 0.280 1.193
3 6 0.469 1.179 5 0.443 1.179
4 7 0.867 1.175 5 0.762 1.175
5 6 1.111 1.175 4 0.885 1.175
6 5 1.291 1.175 3 0.967 1.175

The accuracy of the DDDP algorithm compared to the
full one-shot SDP solution is assessed in Fig. 3. In this
figure, the optimal state (speed) and control (acceleration)
trajectories (orange lines), in the first, middle and last
DDDP iterations are contrasted to the corresponding
optimal trajectories derived from the full-range SDP (blue
dashed lines) with a discretisation of Aa = 0.125. It
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Fig. 3. Optimal acceleration and speed trajectories (orange
line) of three DDDP iterations, compared with cor-
responding optimal trajectories of the one-shot SDP
(blue dashed line).

can be seen that DDDP, starting in the first iteration
with the initial trajectory derived from the “pessimistic”
deterministic GLOSA problem, manages to converge at
the exact same optimal solution as the full-range SDP.
The obtained optimal cost of both approaches is 1.17517,
while the computation time difference is remarkable, as
the one-shot SDP needs 613.86 s to obtain the solution,
while DDDP needs only 0.69 s. More importantly, this
big reduction in computation time enables the DDDP
algorithm to be executable in real time, even in an MPC
(Model Predictive Control) mode, on the vehicle side,
similarly to the deterministic GLOSA.

4. CONCLUSIONS

The current work is an extension of a previous work (Ty-
paldos et al. (2020a)), where a stochastic GLOSA method-
ology was developed, by optimizing, using SDP techniques,
the vehicle kinematic trajectories subject to the intermedi-
ate stochastic traffic signal switching constraint and with
a fixed final state. In the present extension, a Discrete
Differential Dynamic Programming algorithm (DDDP) al-
gorithm was developed, which solves the original SDP
problem iteratively, each time considering a reduced state
space. Demonstration results demonstrate that the DDDP
algorithm strongly outperforms, by a factor of 1:1000 the
full-range SDP in terms of computation time. This enables
the DDDP algorithm to be executable in real time on-
board approaching vehicles, even in a model predictive
control (MPC) mode.

Current and future work is focused on:

e Generalization of the current GLOSA problem by
considering uncertain switching times for both green
and red phases.

e Solving the SDP problem with a different modified
iterative DP algorithm, in an attempt to further
reduce the computational time.
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