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Abstract 
 

Epilepsy is a common complex neurological disorder characterized by unprovoked 

seizures.  A significant percentage of epileptic patients worldwide do not respond to 

anti-epileptic drugs (AED) and as a result experience recurrent unpredictable seizures 

with increased risks. Epilepsy surgery is proved to be the most effective treatment to 

achieve seizure freedom in that percentage of drug-resistant patients with focal 

epilepsy.  The main principle of epilepsy surgery is the accurate localization and 

resection or disconnection of the Epileptogenic Zone (EZ). Invasive techniques such as 

electrocorticography (ECoG) with high spatiotemporal precision, are crucial in the 

presurgical evaluation, in order to resect accurately the cortical tissues related to 

epileptogenesis. Interictal High Frequency Oscillations (HFO) are promising 

biomarkers in intracranial electroencephalography (iEEG). Recent studies have shown 

that the resection of the tissue generating HFOs may improve presurgical diagnosis 

and surgical outcomes of drug-resistant patients. High-frequency oscillations were 

defined in the Ripple (80–250 Hz) and the Fast Ripple (250–500 Hz) frequency bands. 

The electrode contacts with the highest rate of Ripples co-occurring with Fast Ripples 

designated the HFO area. In the current study, the goal was to investigate the 

association of the different types of interictal HFOs with the seizure onset zone (SOZ), 

resected area, and the surgical seizure outcome (ILAE) in 20 consecutive patients, who 

underwent resective surgery in University Hospital Zurich. We analyzed samples of 

long-term invasive recordings segmented in 5-minute intervals of interictal slow-wave 

sleep. We have developed an event-based machine learning method for automated 

prospective identification of the pathological HFO and the non-pathological HFO area 

using features extracted from interictal iEEG data in clinical settings. Thus, we provide 

a prospective definition of pathological HFOs that are clinically relevant. The proposed 

approach is based on supervised learning algorithms, including SVM and Random 

Forests cross-validated with ten-fold cross-validation and Leave One Patient Out, to 

sort epileptic and non-epileptic events using distinctive features of HFOs. From the 

results, we achieve high performance in detecting the epileptic foci and predicting the 

seizure outcome at the intra-, as well as inter-subject level.  These results corroborate 

findings from previous studies and thus they might enable future prospective 

multicenter studies testing the clinical application of the HFO.
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Περίληψη 
 

Η επιληψία είναι μια συχνή περίπλοκη νευρολογική διαταραχή που χαρακτηρίζεται 

από απρόκλητες κρίσεις. Ένα σημαντικό ποσοστό ασθενών παγκοσμίως πάσχει από 

φαρμακοανθεκτική  επιληψία και ως αποτέλεσμα βιώνει επαναλαμβανόμενες 

απρόβλεπτες κρίσεις με αυξημένους κινδύνους. Η χειρουργική επέμβαση επιληψίας 

έχει αποδειχθεί ότι είναι η πιο αποτελεσματική θεραπεία για την επίτευξη 

παρατεταμένης ελευθερίας κρίσεων σε αυτό το ποσοστό φαρμακοανθετικών ασθενών 

με εστιακή επιληψία. Η κύρια αρχή της χειρουργικής επιληψίας είναι ο ακριβής 

εντοπισμός και η εκτομή ή αποσύνδεση της Επιληπτογενούς Ζώνης (ΕΖ). Επεμβατικές 

τεχνικές, όπως η ηλεκτροκορτικογραφία (ECoG) με υψηλή χωροχρονική ακρίβεια, 

κρίνονται απαραίτητες στην προεγχειρητική αξιολόγηση, προκειμένου να εκτομηθεί 

με ακρίβεια ο ιστός του φλοιού που σχετίζεται με την επιληπτογένεση. Οι μεταξύ 

επιληπτικών κρίσεων Υψίσυχνες Ταλαντώσεις (HFO) αποτελούν έναν πολλά 

υποσχόμενο βιοδείκτη στο ενδοκρανιακό ηλεκτροεγκεφαλογράφημα (iEEG). 

Πρόσφατες μελέτες έχουν δείξει ότι η εκτομή των ιστών που παράγουν HFO μπορεί 

να βελτιώσει την προεγχειρητική διάγνωση και τα χειρουργικά αποτελέσματα 

ασθενών ανθεκτικών σε φαρμακευτική αγωγή. Οι ταλαντώσεις υψηλής συχνότητας 

ορίστηκαν στις ζώνες συχνοτήτων Ripples (80–250 Hz) και Fast Ripples (250–500 

Hz). Οι επαφές των ηλεκτροδίων με τον υψηλότερο ρυθμό Ripples που συμβαίνουν 

ταυτόχρονα με Fast Ripples, ορίζουν την περιοχή HFO. Στην τρέχουσα μελέτη, ο 

στόχος ήταν να διερευνηθεί η συσχέτιση των διαφόρων τύπων μεταξύ επιληπτικών 

κρίσεων HFO με τη ζώνη έναρξης επιληπτικών κρίσεων (SOZ), την περιοχή που 

αφαιρέθηκε και το αποτέλεσμα της χειρουργικής κρίσης (σύμφωνα με την ILAE). Το 

σύνολο δεδομένων αποτελείται από 20 διαδοχικούς ασθενείς που υποβλήθηκαν σε 

χειρουργική επέμβαση επιληψίας στο Πανεπιστημιακό Νοσοκομείο της Ζυρίχης. 

Αναλύσαμε δείγματα μακροχρόνιων επεμβατικών ηχογραφήσεων τμηματοποιημένα 

σε πεντάλεπτα διαστήματα ύπνου αργού κύματος (SWS). Έχουμε αναπτύξει μια 

μέθοδο μηχανικής μάθησης που βασίζεται σε γεγονότα για αυτοματοποιημένη 

ταυτοποίηση της παθολογικής HFO περιοχής και της μη παθολογικής, 

χρησιμοποιώντας χαρακτηριστικά που εξάγονται από interictal δεδομένα iEEG σε 

κλινικά περιβάλλοντα. Έτσι, παρέχουμε έναν ενδεχόμενο ορισμό μιας παθολογικής 

περιοχής κλινικά σημαντικών HFO. Η προτεινόμενη προσέγγιση βασίζεται σε 

εποπτευόμενους αλγόριθμους μάθησης, συμπεριλαμβανομένων των Μηχανών 

Διανυσμάτων Υποστήριξης (SVM) και των Τυχαίων Δασών (Random Forests) που 

διασταυρώνονται με μεθόδους διασταυρούμενης επικύρωσης 10-fold Cross Validation 



 

και Leave-One-Out, για την ταξινόμηση των επιληπτικών και μη επιληπτικών 

συμβάντων χρησιμοποιώντας χαρακτηριστικά των HFO. Από τα αποτελέσματα, 

επιτυγχάνουμε υψηλές επιδόσεις στην ταξινόμηση των παθολογικών HFO εστιών και 

στην πρόβλεψη του αποτελέσματος ελέγχου κρίσεων στον μεμονωμένο ασθενή, καθώς 

και μεταξύ διαφορετικών ασθενών. Αυτά τα αποτελέσματα ενισχύουν ευρήματα από 

προηγούμενες μελέτες και επομένως θα μπορούσαν να οδηγήσουν σε μελλοντικές 

πολυκεντρικές μελέτες που θα δοκιμάζουν την κλινική εφαρμογή των HFO. 
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15 Chapter 1 Introduction 

Chapter 1 Introduction 
 

Neuroscience is an interdisciplinary massively growing domain with biology science at 

its core, that combines other disciplines such as chemistry, computer science, 

mathematics, medicine, engineering, psychology, and philosophy. Because of its wide 

range in scientific areas studying about the nervous system and the brain, neuroscience 

is often referred to in the plural, as Neurosciences. In the past two decades, cutting-

edge technologies have been advanced and neuroscientists achieved many research 

breakthroughs with the help of computational power and computer intelligence. 

Undoubtedly, because of the complexity of the neurobiological systems, there are many 

gates still to be open and questions to be answered about modeling the brain, its 

interpretation and behavior. Some of the major branches of modern neuroscience 

include behavioral, affective, cellular, clinical, cognitive, molecular and computational 

neuroscience [1]. Mathematics, computer science and engineering bring innovations 

in neuroscience research by combining techniques and mechanisms to better 

understand, model, examine, repair or improve neural systems. Also, through 

mathematical modeling can be examined the links between the various brain networks, 

the neural connections and patterns, the processing and tranfer of information [2], [3]. 

Relevant emerging fields that often overlap are neuroimaging, neuroinformatics and 

neurolinguistics. Neuroimaging methods allow us to visualize the brain, its functions 

and its abnormalities and thus identify epileptogenic regions in case of epilepsy [4], 

[5], [6].  

 In order to diagnose neurological pathologies like epilepsy or investigate 

potential neurological abnormalities is important to examine brain physiology through 

mathematical modeling [7]–[9]. The abnormal brain signals that can lead to excessive 

or synchornous electrical activity in epilepsy have a neurophysiological basis and is 

essential to study them at a cellular level. The complexity of human brain is mirrored 

in the different kinds of epilepsies and epileptic seizures. Through computational 

models and experimentation, we can study, simulate and interpret this complexity, 

non-linearity and variability of the nervous system and its pathophysiology [9], [10]. 

As a result, through multidisciplinary laboratory and clinical approaches, scientists 

move each time one step closer to more accurate predictions, better diagnosis and 

treatments. In the case of epilepsy, collaborative neuroscience research is constantly 

developing, by advancing both invasive and non-invasive neuroimaging techniques 

and introducing new potential biomarkers of epileptogenicity.  
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Motivation  
 

As performed in most epilepsy centers, in the pyramid of the presurgical diagnosis of 

epilepsy, there is a significant percentage of patients that do not respond to anti-seizure 

medication [10]. Approximately 20-30% of epileptic patients is diagnosed with drug-

resistant epilepsy and experiences recurrent seizures with increased risks [10]. As a 

result, this target epileptic group has no way of knowing if a seizure will occur in daily 

activities such as driving. For that reason, in the complex case of patients with drug-

resistant focal epilepsy, surgery is suggested and proved to be the most effective 

treatment. The main principle of epilepsy surgery is the accurate localization and 

resection of the Epileptogenic Zone [11]–[13]. A complete resection of the 

Epileptogenic Zone can lead to a seizure-free outcome. In this diploma thesis, we aim 

to investigate the association of the different types of interictal HFOs with the Seizure 

Onset Zone, the Resected Area by the surgeons and the post-surgical seizure outcome 

according to the International League Against Epilepsy (ILAE). 

 However, epilepsy includes complex brain dynamic phenomena, and the actual 

Epileptogenic Zone can only be estimated through other cortical zones that are 

considered to be indicators. Some of these indicators are the High Frequency 

Oscillation Zone, which is our zone of interest in this present thesis, and the Seizure 

Onset Zone, which is considered to be the gold standard of the presurgical evaluation. 

The imporatnce of Seizure Onset Zone in the presurgical evaluation leads to the search 

of new, better and more reliable biomarkers. A biomarker is defined as an objectively 

measured characteristic of a normal or abnormal biologic process [14]. Recent studies 

have shown that the resection of the tissue generating HFOs may improve presurgical 

diagnosis and surgical outcomes of drug-resistant patients [15].  Although High 

Frequency Oscillations are indicators of epileptic activity, they can also be generated 

across different areas of the brain and be physiological oscillations. In order to 

discriminate the SOZ, we need to differentiate the pathological from non-pathological 

HFO, but here are the challenges. There is yet to be found a method to distinguish 

HFOs generated from the epileptogenic Zone and HFOs from other brain areas. 

Epileptologists combine non-invasive and invasive techniques, place implanted 

electrodes and experts rely on long-term intracranial recordings. This is a time-

consuming procedure with inter-rater reliability that needs  manual visual inspection 

(manual annotation of the onset times) and sometimes can lead to failed surgical 

outcomes [16]. 

 Over the last few years, there is an intense research interest in finding a 

combination of signifant relevant HFO features that can be used in all patients, in order 
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to identify automatically more accurately the interictal Seizure Onset Zone[17]. By 

analyzing HFO characteristics in intracranial EEG (iEEG) that constitute 

electrophysiological information, and with respect to the post-surgical outcome, we 

could gain insights into the underlying epileptogenesis in the individual patient, as well 

as between different patients. One of our first goal is to examine if there are statistically 

significant features from our dataset at different domains in order to discriminate 

pathological HFO area and with respect to the seizure outcome. Finally, by proving the 

novelty of the HFO as a biomarker in intracranial EEG with the help of machine 

learning approaches, we could delineate the patient’s Epileptogenic Zone more 

accurately. 

 

 

Related Work 
 

Over the last decade, epilepsy studies proliferate and some of them have led to 

significant breakthroughs in epilepsy treatment. In our work, the target group is 

patients with drug-resistant epilepsy (DRE), also referred as refractory or intractable, 

in which Anti-Epileptic Drugs (ADE) cannot control seizures. Lately, an increasing 

percentage of the research has transferred its focus from Spikes on to the pathological 

High Frequency Oscillations and their close relation to the Epileptogenic Zone, setting 

the establishment of HFO in the clinical routine as a long-term purpose[18]. Up to now, 

there is still no consensus among researchers on how the HFO area should be defined 

and identified in clinical settings. In more detail, there are different approaches based 

on the identification of the clinical Seizure Onset Zone[15], [19], [20]. Some of the most 

interesting machine learning approaches applied with the goal to detect and 

differentiate normal from epileptic brain patterns, demonstrate classifiers with 

algorithms such as SVM, k-NN, Discriminant Analysis, k-Means Clustering, Decision 

Trees, Random Forests, Gaussian Mixture Models, Logistic Regression and Neural 

Networks[16], [21]–[24] [25]. However, the conditions of each study vary (dataset, 

HFO criteria and definition, clinical relevance, validation strategies) and as a result, 

there is no way of knowing which algorithm is preferred based on its performance 

alone. Also, there are different views on determining valuable attributes for HFO Zone, 

in order to be a reliable estimator of the EZ.  

 

 

Contribution and Innovation 
 

In the current thesis, our aim was to explore clinically relevant epileptic and non-
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epileptic HFO events, based on their elecrtophysiology. Ideally, resective surgery 

should remove the entire epileptogenic zone sparing any adjacent cortexes that are not 

part of it [26]. Our feature extraction methods based on the temporal and spatial 

distribution of HFOs and the further prospective classification, provides a distinct 

separation of pathological and non-pathological HFO area. Thus, we determine a 

clinically relevant HFO area with respect to the seizure outcome according to the 

International League Against Epilepsy (ILAE) [27]. We predicted the seizure outcome 

across different types of patients, by evaluating our classifiers with different validation 

strategies. The most important validation strategies were the leave one patient out 

cross validation, where we trained our classification models with the events of all 

patients and the double cross validation in the individual patient. We confirmed that 

the surgery outcome could have been improved with HFO guidance and that the 

delineation of Epileptogenic Zone could have been more accurate by resecting the 

highest-rated HFO channels. In current research techniques, HFO area is determined 

by its persistence in time and by testing against random effects. With this proposed 

event-based approach we might be able to avoid this by checking spectral and 

morphological features of the HFOs on different domains and categories such as 

frequency, time, time-frequency, power, entropy and complexity. The results of our 

classification models suggest that the prospective HFO definition could possibly long-

term contribute in surgical planning. To our best knowledge, in this current thesis, we 

present the first attempt of a methodic structural event-wise classification of 

pathological HFO with respect to the surgical seizure outcome, by extracting 

statistically significant discriminative HFO features. In our dataset, Fast Ripples and 

Ripples (FRandR), which is the simultaneous occurrence of Ripples and Fast Ripples 

appears to be the best indicator of epileptogenesis compared to the other two 

separately. In addition, we observed that in all the patients with Temporal Lobe 

Epilepsy (TLE), the Seizure Onset Zone (SOZ) and HFO area overlap. The patients with 

failed surgical outcomes, where there was a slight overlap or no overlapping between 

Seizure Onset Zone and HFO area, had Extratemporal Lobe Epilepsy (ETE). In 

research, stays obscure in case HFOs are primarily delivered by obsessively changed 

tissue with harmed neuronal networks, or they happen autonomously of pathology as 

an epileptiform sign in SOZ [28].  

 

 

Thesis Outline 
 

In Chapter 2 – Brain Physiology, a review of the theoretical background of the 
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brain anatomy and physiology is presented. It is divided in two main    sections about 

the overview of the nervous system and the brain structure and its compartments. 

Brain physiology is an important prerequisite to understand the human behavior and 

brain functionality, all the building blocks and how they interact, how neurons 

transmit electrochemical signals and how the brain interprets information and 

embodies it to essence. This is translated into brain regions, compartments, lobes, and 

frequency bands (brain waves). In order to study and analyze epilepsy as a neurological 

disease, let alone epilepsy surgery and its practices, it is critical to understand the 

underlying human brain physiology. At the end of this chapter, we present the brain 

waves at the different frequency bands and briefly introduce for the first time to the 

reader the High Frequency Oscillations, that are often called high gamma. 

 In Chapter 3 – Epilepsy & Epilepsy Surgery, we present in detail an 

overview of the different epilepsies and seizures according to the framework of 

International League Against Epilepsy (2017). Secondly, we describe the phases of a 

seizure, as well as the tools and principles used in epilepsy diagnosis. Different imaging 

techniques and their principles are mentioned and differentiated in invasive and non-

invasive, including fMRI , PET, CT, EEG, MEG , ECoG. A different subsection about 

the main attributes of epileptic activity and abnormal waveforms in EEG, is presented 

and includes a detailed description of interictal spikes, the event-related potentials and 

fields and the high frequency oscillations. A comparison of invasive and non-invasive 

techniques, its limitations, and advantages, leads to the conclusion that epilepsy 

surgery is the best treatment choice for the significant drug-resistant percentage of 

patients. In epilepsy surgery, we cannot know We move on to a definition of important 

cortical zones and a thorough understanding of their association with the 

Epileptogenic Zone (EZ) in presurgical evaluation. The Seizure Onset Zone is up to now 

the gold standard and in most studies is being investigated with different approaches. 

High Frequency Oscillation (HFO) Zone, which is our target Zone of interest and often 

overlaps with other estimators of EZ,  appears to improve presurgical diagnosis and 

surgical outcomes of drug-resistant patients in recent studies.  The only way to evaluate 

the success of the epilepsy surgery is by looking at the postsurgical outcome. For that 

reason, we explain the classification of postsurgical outcome according to ILAE. Finally 

we move on to the subsection of intracranial EEG data, where there are also the data 

reading and processing steps on our dataset used in this thesis. There, we present the 

slow wave sleep characteristics in EEG recordings, describe the data ascquisition and 

equipment, the participants and electrode placement and there is also a literature 

comparison between the contribution of scalp-HFO and interictal intracranial HFO for 

epileptogenicity. 
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 In Chapter 4 – Classification of Epileptic Events , all the necessary 

steps for the final separation of the pathological and non-pathological HFO area are 

covered. More specifically, the first part includes a description of HFO types and rates 

in different frequency bands  in our dataset. Also, a formulation of the problem 

hypothesis is displayed with our prospective definition of the HFO area. An HFO 

exploratory analysis and an extensive investigation of the most likely discriminative 

features are performed, with the goal to end up with the optimal subset of features. The 

feature extraction techniques include time domain, frequency domain and time-

frequency domain features. We present all the extracted features tested, based on 

exploratory analysis and a combination of previous research.  

 From the total amount of extracted features, we had to test which of them are 

actually statistically important for all patients. Univariate and multivariate filter-based 

techniques were applied in order to conclude with our final feature vector before the 

classification of the events, including statistical analysis and pearson's rank correlation 

coefficients. The channel selection is based on our hypothesis and problem statement. 

Inside cross-validation, embedded methods to measure the feature importance, as part 

of the learning process during training were applied. Before applying the classification 

algorithms, data preparation is important to avoid bias. 

 After feature selection, our machine learning classification approach based on 

the HFO events is depicted. After, we move on to a brief explanation of the main 

supervised algorithms and the main idea of ensemble learning that were used in this 

thesis, including Support Vector Machines (SVM), k-Nearest Neighbors (kNN), 

Decision Trees and tree-based ensembles such as Random Forest, Bagging and 

Adaptive Boosting (AdaBoost). Finally, we present the results of our binary 

classification problem along with the best-performed validation strategies in the 

individual patient and inter-patient, which where our two experimental scenarios. The 

validation strategies include double nested cross validation with inner 10-fol cross 

validation in the individual patient and leave-one-out cross validation in all the 

patients together. In order to ensure that our model can be generalized, we evaluated 

our results with a classification report and confusion matrices that provide us the most 

important metrics related to our problem. A comparison of the classification 

algorithms is depicted based on their performance in intra-subject and inter-subject 

level. 

 In Chapter 5 – Conclusions & Future Work, we conclude with a 

summary of the overall work, discuss about future steps and how we can advance 

further our research. The results of this proposed approach and its limitations are also 

discussed.  
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Chapter 2 Brain Physiology 
 

Overview of the Nervous System 
 

Nervous System: CNS and PNS 

Starting from the basics of neuroanatomy, the nervous 

system is based on the interaction of the two distinct 

anatomical regions that together form it as a whole, the 

Central Nervous System (CNS) and the Peripheral 

Nervous System (PNS) [29] [30]. The CNS is 

composed of the brain and the spinal cord, which are 

located in the dorsal body cavity and CNS is also 

surrounded by connective membranes, called 

meninges, and by cerebrospinal fluid. Subsequently, 

the brain is surrounded by the cranium, and the spinal 

cord is protected by the vertebrae. The human brain is 

continuous with the spinal cord at the foramen magnum, on average weighs about 1.4 

kg (approximately 2% of total body weight) and offers numerous properties with other 

vertebrate brains, including: the cerebrum, the cerebellum, the brainstem and the 

limbic system[31]. The spinal cord is a long bundle of nerve tissue that runs from the 

base of the skull down to the center of the back, carrying messages between the brain 

and the rest of the body, and having as a result the control of vital functions and human 

senses [32].  

 The PNS is composed of pairs of nerves that branch from the spinal cord and 

the cranial nerves that arise from the brainstem and neuromuscular junctions. In 

addition, the PNS can be divided into different nervous systems, determined by the 

functional areas. Generally, by analyzing the building blocks of the brain, one can 

understand the brain complexity, both in structure and in function. 

 

Figure 1 – Central and Peripheral 
Nervous System: The CNS includes the 
brain and spinal cord, the PNS includes 
nerves (nerve and glia cells) 



 

22 Chapter 2 Brain Physiology 

 

            Figure 1 Neuron Structure (Source: SEER.Cancer[34]) 

Types of Neurons 
 
Although the nervous system is very complex, there are only two main classes of cells 

in the nerve tissue. The actual nerve cell is the neuron, that’s why most of the times 

nerve cells are referred as neurons. A typical neuron is the “conducting” cell that 

transmits impulses and the structural processing unit of the nervous system. The 

second type of cells is neuroglia (sometimes called glial cells). The etymology of this 

word “neuroglia” has a Greek origin and can be translated as “nerve glue”. This special 

type of cells is nonconductive and provide a great support and nourishing system for 

the neurons. In addition, neuroglia are far more numerous than neurons and, unlike 

neurons, are capable of mitosis, the fundamental process of cell division. Summarizing 

these two, neurons play the main information processing role, while the glial cells play 

the supporting and feeding role of the nerve cells.  

 In more detail, neurons are comprised of three main regions: the cell body 

(soma), the dendrites and the axons. They are often called information messengers, as 

they use electrical impulses and chemical signals in the nervous system to transmit 

information between different areas of the brain and between the rest of the nervous 

system, as well. In addition, neurons are highly specialized and amiotic, namely they 

do not go through mitosis and cannot be replaced if damaged. First, their cell body has 

a nucleus with at least one nucleolus, contains all the genetic information and 

synthesizes the cells’ proteins. Dendrites and axons are cytoplasmic extensions, or 

processes, that project from the cell body. More specifically, dendrites, often referred 

as fibers, are usually short and branching like trees, which increases their surface to 

receive signals from other neurons, and thus improves the incoming signal capacity. 

Dendrites are called afferent processes, because they transmit impulses to the neuron’s 

cell body. From each cell body, there is only one axon that projects.  

 Axons that can convey electrical signals with high speeds, may have infrequent 

branches called axon collaterals. Axons and axon collaterals terminate in many short 
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branches or telodendria and the distal ends of the telodendria are slightly enlarged to 

form synaptic bulbs. It is also substantive to highlight the action potentials, which are 

the signals that are transferred to the axons from the cell bodies and they are initiated 

from the initial segment, a trigger region close to the axon hillock. Many axons have 

also in their surrounded area, a segmented, fatty, white substance called myelin or else 

the myelin sheath. Myelin’s role is to protect and electrically insulate fibers, prevent 

depolarisation, as well as to increase the transmission speed of nerve impulses. The 

fibers that are myelinated designate the known “white matter” of the CNS, while cell 

bodies and unmyelinated fibers designate the “gray matter”.  

 

 

 

 

 

 

 

In the PNS, Schwann cells produce myelin. A Schwann cell consists of the cytoplasm, 

a nucleus, and the outer cell membrane that forms a tight covering around the myelin 

and around the axon of the nodes of Ranvier[35]. This specific covering is 

the neurilemma, which plays an important role in the regeneration of the nerve fibers. 

In the CNS, oligodendrocytes produce the myelin, but there is no neurilemma there 

and that explains why fibers within the central nervous system do not regenerate [36]. 

Lastly, at the end point of an axon, we have a division into zones which shape branches 

for the communication of the neighboring nerve cells, called synapses.  

 A synapse is basically a junction that mediates information transfer from one 

neuron to the next to an effector cell [27]. At this point of communication, the firing of 

an action potential in one sending neuron causes the transmission of a signal 

(presynaptic) to another receiving neuron (postsynaptic) making the postsynaptic 

neuron more or less likely to fire its own action potential. 

 
 

Brain Circuits and Electricity 
 
While reading a paragraph -like this one right now- the brain is sending off 

electrochemical signals to interpret and understand the meaning of it. CNS’ main 

organ is made of around 86 billion neurons, connecting and creating networks that 

communicate electrochemically with each other, more specifically by using electrical 

charges and chemicals called ions. As a result, neurons carry an electrochemical 

Figure 2 Cerebral Cortex with Gyri, Sulci, White and Grey Matter 
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charge, and this charge changes, depending on whether the neuron is sending a signal 

or is at rest. In simple words, a brain circuit is basically the path that the electrical 

activity moves and follows from one nerve cell to the other, and eventually can reach 

to an effector organ such as a muscle or a gland, causing ultimately a coordinated 

behavior. A fluid exists inside and between neurons, that contains particles, which are 

atoms or molecules that have a negative or positive charge. At the point when a neuron 

is very still, there are more negative ions inside and more certain particles outside of 

it, giving the neuronal film a negative charge. At the point when cerebrum movement 

happens, positive particles surge in through diverts in the neuronal layer and, when 

the charge gets sufficiently high, the neuron conveys a message to speak with adjacent 

neurons. Because brain activity is caused by electrical charges, that means the brain 

functioning can change in case of electrical stimulations. At the end of a neuron, is a 

very important part called synapses [37]. 

 

 

 

 

 

 

 

 

 

  

 

 

Synaptic transmission triggers the release of several neurotransmitters (such as 

epinephrine, dopamine, acetylcholine), which can in turn cause to the cell membrane 

voltage change. Inhibitory or excitatory activity between the neurons, have synapses as 

entryways. In more detail, synapses pass information through impulses across neurons 

in two ways, inhibitory and excitatory. Inhibitory decreases the chance of the 

subsequent neuron signaling and excitatory increases the chance of the subsequent 

neuron signaling. Synapses can be thought of as converting an electrical signal (the 

action potential) into a chemical signal in the form of neurotransmitter release, and 

then, upon binding of the transmitter to the postsynaptic receptor, switching the signal 

back again into an electrical form, as charged ions flow into or out of the postsynaptic 

neuron. Action potentials are the most important units, that neurons use to 

communicate with each other and occur when the sum total of all of the excitatory and 

Figure 3– Electrical signal in the postsynaptic neuron, caused by the release of 
neurotransmitters and generated by an action potential or spike (source by 
Thomas Splettstoesser/CC BY-SA 4.0) 
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inhibitory inputs makes the neuron’s membrane potential reach around -50 mV, this 

value is called the action potential threshold.  These action potentials are often 

referred as ‘spikes’, because it is like a spike had fired or ‘spiked’. When an action 

potential reaches the presynaptic terminal, it causes neurotransmitter to be released 

from the neuron into the synaptic cleft, a 20–40nm gap between the 

presynaptic axon terminal and the postsynaptic dendrite (often a spine). The 

transmitter, travells across the synaptic cleft and after is being attached to 

neurotransmitter receptors on the postsynaptic side, and depending on the 

neurotransmitter that was released (based on the type of neuron), negative ions ( Cl-) 

or particular positive (such as Na+, K+, Ca+) will travel through channels, that span the 

membrane. 

 

  

 
 
 
 
 
 
 
 
 
 
 

 
  

Neurons are classified based on their functionality, as efferent, afferent, or 

interneurons according to the direction in which they transmit to the CNS impulses. 

Afferent or else sensory neurons carry impulses from peripheral sense receptors to the 

CNS. Afferent often have long dendrites and relatively short axons. On the other hand, 

efferent or else motor neurons usually have long axons, short dendrites and transmit 

impulses from the CNS to effector organs, such as glands and muscles. Last but not 

least, interneurons or else association neurons, are located within the CNS entirely and 

link the afferent and efferent neurons. Interneurons have short dendrites, with either 

a short or long axon. 

 Among the other nerve units, glia cells, there are two main types, namely 

microglia and macroglia [38], [39]. First, microglia are the brain’s immune cells, 

spiderlike phagocytes that dispose of debris, including bacteria and dead brain cells. 

Figure 12.1.1 – Here we can see a neuron that ‘spiked’ 
(action potential) when a combination of all the inhibition 
and excitation makes it reach threshold (source by Alan 
Woodruff/QBI) 
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They also prune synapses. In some cases, such as Alzheimer’s disease, they may 

become hyper-activated and cause too much inflammation. Microglia, play an 

important role in the control of homeostasis, neuronal defense and repair, scar 

formation, and also affect electrical impulses. When respond to an injury, microglia 

cause inflammation as part of the healing process. That is believed to lead to the 

amyloid plaques and other problems associated with the disease. Second, macroglia 

could be divided into three basic categories: oligodendrocytes, Schwann cells, and 

astrocytes. The oligodendrocytes are glia, their flat extensions are wrapped tightly 

around the nerve fibers and by this way, they produce myelin sheaths, which are fatty 

insulating coverings [38]. In turn, in the PNS we have Schwann cells that form the 

myelin sheaths around nerve fibers. Next, the astrocytes are characterized as 

abundant, star-shaped cells. These cells are responsible for nearly half of the neural 

tissue. Ependymal cells are also glial cells that line the central brain cavities, as well as 

the spinal’s cord. The beating of their cilia assists the circulation of the cerebrospinal 

fluid and forms a protective cushion around the CNS. Last but not least, satellite cells 

are cushioning cells, offering various protective mechanisms. 

 

 

Figure 4 Types of glia cells in the nervous system, Blausen.com staff (2014) 

Brain Structure and Brain Compartments 
 

Brain Regions 

Moving on to the brain structure itself, this intricate organ is separated into several 

anatomical and functional regions. First of all, the brain lies within the skull and the 

cranial cavity of the skull and can be divided anatomically into these 3 regions, the 

forebrain, the midbrain (or mesencephalon) and the hindbrain.  
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 The forebrain consists of the cerebrum and the diencephalon (basal ganglia, 

thalamus, hypothalamus). The cerebrum or cortex is the largest part of the human 

brain and divided into two lateral regions, the left and right hemisphere, which are 

connected through a bundle of nerve fibers, called corpus callosum. Each hemisphere 

controls the opposite side of the body, so if a stroke occurs on the left side of the brain, 

then the right arm or leg may be weak or paralyzed. The two hemispheres consist of 

the cerebral cortex, which is an outer shell made up of cell bodies with a gray 

appearance, that’s why it’s called gray matter. The cerebral cortex has a highly 

convoluted topography of sulci/sulcus (grooves or furrows) and gyri/gyrus (bumps or 

ridges). The folding of the brain, and the functionality of gyri and sulci, increases its 

surface area and as a result enables efficiently more cerebral cortex matter to fit inside 

the skull. If it was possible to spread out all of these furrows and ridges, the result 

would be a total cerebral brain surface area of about 2500 cm2 , which is almost the size 

of a pillow case 50x50 cm [40] . 

 

Figure 5 General Regions of the Brain [41] 

 The part of the brain called cerebrum, includes the most significant and vital 

brain functions such as thinking and reasoning, planning and processing, interpreting 

and processing inputs from our senses, such as vision, hearing, taste, touch, and smell. 

Cerebral cortex is the outer layer of cerebrum, is called the cerebral cortex, and in each 

hemisphere, it is traditionally divided into four main lobes - frontal, parietal, occipital 

and temporal. A fifth lobe, the insula or Island of Reil, lies deep within the lateral 

sulcus. Lateral sulcus separates the temporal lobe with the parietal and frontal lobes 

and the central sulcus separates the parietal from the frontal. Corpus callosum 

maintains the commanication between the two hemispheres. Beneath the surface, 

there are large knots of neurons called basal ganglia, which specialize in programming 

and executing motor functions. A characteristic disease example, where ganglia are 

affected is Parkinson, and there patients suffer from uncontrolled movements and 

tremors. In correspondence to the gray matter, the white matter is the inner area where 

there are myelinated fibers that give into this layer the white tint, because of the myelin.  
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 After the forebrain, the midbrain consists of various cranial nerve nuclei, 

tectum, colliculi, tegmentum, and crura cerebi. The hindbrain, sometimes also called 

brainstem, consists of the medulla, pons, cranial nerves, and cerebellum. The 

cerebellum has two hemispheres which have widely folded surfaces and looks like a 

layered, wrinkly coral. Also, Cerebellum, which means ‘little brain’, helps to control 

and regulate fine movements, balance, and posture. If damaged, the cerebellum could 

lead in muscle contractions and loss of equilibrium. Moreover, cerebellum receives 

input from the sensory systems of the spinal cord and other brain areas and finally 

integrates these inputs to fine-tune motor activity.  

 

 Just underneath the midbrain and 

bulbous in shape, the pons (in Latin means 

‘bridge’), connects the rest of the cerebral 

cortex to the brainstem, and constitutes a 

coordination center for signals and 

communications that flow between the spinal 

cord and the two brain hemispheres. The 

cranial nerves of Pons are four and more specifically, the abducens nerve that helps 

coordinate eye movement, the facial nerve for the coordination of movement and 

sensation in the face. Also, the vestibulocochlear nerve, which has the goals of 

processing different sounds and balance maintenance, and then we have the trigeminal 

nerve which is responsible for the coordination of chewing and for carrying carries 

sensory information. 

 The lower part of both the brainstem and hindbrain is the medulla 

oblongata, where the brain transitions to the spinal cord. Medulla is only about 3 cm 

long, and controls autonomic vital functions such as breathing, heart rate, blood 

pressure, and many in voluntary reflexes such as swallowing and sneezing. In addition, 

the medulla oblongata contains both white and grey matter. Some important cranial 

nerves stem from medulla, these are called vagus, glossophalyngeal, accessory nerve 

hypoglossal nerve. All the ascending and descending nerve fibers, pass through the 

medulla. 

 One of the most efficacious CNS components that goes along with the brain, is 

the brainstem. This component is at the low part of the brain and is also the oldest. 

Brainstem is often called the reptilian brain and controls vital autonomic body 

processes, such as breathing, heartbeat,  bladder function and sense of equilibrium.  

 Diencephalon’s components are also important to be inspected and 

evaluated. First, thalamus is located in the central of the brain, between brainstem 
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and cerebrum. This component is made up of a series of nuclei which are responsible 

for the relay of the different sensory signals and since there is a connection between 

the limbic system structures to the anterior nuclei of the thalamus, this part is also 

involved in the regulation of sleep and wakefulness, in learning and memory. Secondly, 

hypothalamus is a small area about the size of an almond, in the center of the brain 

between the pituitary gland and thalamus, that plays an important role in hormone 

production and the maintenance of homeostasis. The pituitary gland is a small gland , 

that is located behind the nose at the base of the brain, in an area called the pituitary 

fossa or Sella turcica, but pituitary is often called the "master gland" as it is responsible 

for the secretion of hormones (growth and development, function of various body 

organs such as kidneys, uterus and other glands such as thyroid). 

 Back to hypothalamus, when it receives a signal from the nervous system, 

then it secretes substances known as neurohormones, that control the secretion of 

pituitary hormones. Moreover, hypothalamus helps to stimulate many important 

processes in the body, such as temperature, thirst, sleep cycles, appetite and weight 

control, sex drive, balancing body fluids, childbirth and others, as it is considered to be 

the link between the nervous system and the endocrine system. For example, if the 

hypothalamus receives a signal related to body temperature, that for example is too 

high, then the body will get a sign to start sweating. If the body temperature is too low, 

then the body will produce heat on its own by shivering. Even smaller than the 

hypothalamus, about the length of a grain of rice, is the pineal gland, tucked between 

the two lobes of the thalamus and involved in regulating functions related to hormones. 

This little area has a shape of a very small pinecone and its objective is to produce the 

important hormone melatonin, that regulates sleep-wake cycles.  

 The hippocampus comes in structure as a pair, one in each hemisphere of 

the brain, just like other structures inside brain. Hippocampus resembles the shape of 

a curvy seahorse and is essentially the memory center of our brains. The connections 

inside hippocampus, lead us to associate memories with various senses. The 

hippocampus plays also a  significant role in spatial orientation, navigation memory 

formation, and also is a part of the brain, where new nerve cells are made from adult 

stem cells. This is known as neurogenesis and is a key brain structure for learning new 

things. 

 Next to the hippocampus, is located another important region called 

amygdalae. The name amygdala refers to its shape that looks like an almond. The left 

and right amygdalae have a central role in human emotional responses. More 

specifically, attaches emotional content to the human memories, such as fear and 

anxiety or pleasure and determines how robustly those memories can be stored. The 
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amygdala has a key role in forming new memories specifically related to fear. Fearful 

memories are able to be formed after only a few repetitions and that is why ‘fear 

learning’ constitutes a popular way to investigate the mechanisms of memory 

formation, consolidation and recall. Memories with strong emotional charge, have a 

greater emotional weight and thus tend to stick.  

 Another important aspect of the brain is the limbic system, which is often 

referred as the brain of emotions. This part is located deep within the brain, 

underneath the cerebral cortex and above the brainstem, constitutes an evolutionarily 

old structure and is involved in our behavioral and emotional responses, especially 

when it comes to survival modes/situations: thirst, feeding, reproduction, caring for 

the young, and arousing fight-or-flight responses. The limbic system’s actions include 

the components of diencephalon (thalamus, hypothalamus), along with the corpus 

callosum, basal ganglia and amygdala. The interconnected group of all the previous 

components is associated with emotional experience, learning and a set of different  

endocrine functions. 

 The brain communicates with the entire body through the spinal cord and 

twelve pairs of cranial nerves. Posterior fossa, is the name of a cavity in the back part 

of the skull which contains the cerebellum, brainstem and the cranial nerves numbered 

from five to twelve. In addition, ten of the twelve pairs of these cranial nerves, originate 

in the brainstem and they are responsible for controling the eyes, hearing and facial 

sensations, how we move different kind of muscles such as the tongue muscles or those 

responsible for moving the neck (swallowing) or face. In the cerebrum one can find the 

cranial nerves that control vision and smell. These nerves are named and numbered 

with their specific functions, as shown in the figure: 

 

 

Figure 6 Nerves and functional parts 

 Meninges consists of three protective tissue layers that cover all the CNS, 

brain and spinal cord. As the brain is housed inside the bony covering called the 

cranium for injury protection, between the brain and the skull exists the meninges, 

which in turn is divided in the dura mater, the arachnoid and the pia mater. Dura mater 

consists of two layers of a nonelastic film or whitish membrane and the second outer 
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layer is called the periosteum. The inner layer, called dura, lines the inside of the entire 

skull and creates little folds or compartments for the protection of the brain parts 

inside. The names of the two special folds of the dura, are falx and tentorium. The falx 

separates the right and left half of the brain and the tentorium separates the upper and 

lower parts of the brain. Then, follows the second layer of the meninges, the arachnoid. 

Arachnoid membrane is thin and delicate, while consists of an  elastic tissue and blood 

vessels of varying sizes, that cover the entire brain. Also, there is a space between the 

two previously mentioned membranes, arachnoid and dura, with the name subdural 

space. After that, the layer of meninges closest to the surface of the brain is called the 

pia mater. This layer is full of blood vessels that can reach so deep into the surface. The 

space that separates the arachnoid and the pia is called the subarachnoid space, where 

the cerebrospinal fluid flows. The pia covers the entire surface of the brain and follows 

the folds of the brain. The major arteries supply the human brain, by providing the pia 

with its blood vessels.  

 

Figure 7 Representative scheme of Meninges 

 Another essential part within the brain and around the brain and spinal cord, 

is the CerebroSpinal Fluid (CSF). CSF is a clear, watery fluid-substance that helps 

to cushion the brain and spinal cord from injury and potential damages, it circulates 

through channels around the CNS, constantly being absorbed and replenished. This 

particular fluid is part of the ventricular system, is produced and secreted in the brain 

within hollow channels, called ventricles. A specialized structure within each ventricle, 

called the choroid plexus, controls the majority of CSF production. Also, the arachnoid 

space is filled with this fluid, while at the same time helps the blood vessels to reach 

the brain. 
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Figure 8 Functional Areas of the Brain (Adapted from Kayt Sukel Dana Foundation) 

Brain Lobes 

A fundamental separation is still made between four lobes: Occipital, Τemporal, 

Parietal, and Frontal. The occipital lobe is located in the rearmost portion of the 

skull. Furthermore, it is the major visual processing center, including important 

functional processes such as orientation or spatial frequency, how we differentiate 

colors and patterns, and perceive motions. The primary visual cortex (V1), receives 

visual information directly from our eyes. This information is relayed to several 

secondary visual processing areas, which interpret distance, location, depth, and 

others. Lastly, because of all these mentioned, occipital lesions are connected with 

agnosia (in colors or movements), hallucinations, as well as blindness. 

 Separated from the frontal lobe by the lateral fissure, the temporal lobe is 

responsible for long-term memory and contains also regions dedicated to processing 

sensory information, extremely important for hearing, recognizing language, 

emotional association and forming visual memories. Likewise, temporal lobe contains 

the primary auditory cortex. The auditory cortex is repsonsible for receiving and 

processing information directly from the ears and secondary areas, too. The left 

temporal cortex helps in the comprehension of languages (reading or hearing), this is 

often called Wernicke’s area, and  Wernicke’s aphasia is a language disorder associated 

with damages to these regions that control language. Moreover, the medial temporal 

lobe (closer to the middle) contains the hippocampus, an improtant brain region 
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strongly related to learning, memory, and emotions. In some certain areas of the 

temporal lobe, the process of complex visual information such as faces or scenes is 

possible. 

 The parietal lobe is behind the frontal lobe, separated by the sulcus and is all 

about integrating information stemming from external sources, as well as internal 

sensory feedback (including touch, temperature, pressure and pain) from skeletal 

muscles, limbs, eyes, otoliths and others. More specifically, because of the processing 

that occurs in the parietal lobe, a human can  discern nearby points that are distinct, 

rather than one object (two-point discrimination). Depending on the brain area, there 

is a different amount of sensory receptors and as a result a different sensitivity. The 

parietal cortex gives us a coherent representation of our surroundings and spatial 

associations (people, objects, distances, environment), by merging all the information 

sources. All the tasks that require the participation or the cooperation of different 

sensors, such as our eyes or hands, are controlled by parietal cortex. Different 

processes (storing information) that parietal cortex coordinates are related to the 

morphology of the surroundings, such as size and shape, or their spatial orientation. 

Parietal cortex if damaged, then a human experiences severe disruptions, especially 

disruptions that have to do with motor behavior. 

 

Figure 9 Brain Lobes 

 The region of the frontal lobe, where most of the conscious thoughts and 

decisions are made, is separated from the parietal lobe by a space area called 

the central sulcus, and from the temporal lobe by the lateral sulcus. The activity 

of frontal lobe is very important, as it allows to connect current actions, project future 

consequences from them and make appropriate decisions. Frontal lobe is related to the 

personality and learning history of a subject, and as a result frontal lesions have been 

shown to cause severe changes in categories such as personality with social behavior 

and action control or taste preferences. Generally, the frontal lobe exists where higher 

executive functions occur, including emotional regulation, reasoning, planning and 



 

34 Chapter 2 Brain Physiology 

problem solving. Also, the frontal cortex, contains most of the neurons that are related 

to dopamine system. More specifically, frontal lobe contains motor areas where 

voluntary movements are controlled (such as walking upstairs or picking up a cup of 

coffee), as well as conscious thought (for example thinking about what to have for 

dinner). The dopamine system controls cognitive processing associated with reward, 

attention, emotional expression, planning, short-term memory and motivation[42].  

 

Brain Parts Functions 

 

Frontal Lobe 

Problem solving, concentration, judgement, inhibition of behavior, 

attention, anticipation, organization, speaking (expressive language), 

emotional expression, mental flexibility, self-monitoring, motor 

planning, behavioral control, initiation, sexual behavior, personality, 

social skills 

 

Temporal Lobe 

Understanding language, information retrieval, memory, hearing, 

learning and awareness, organizing and sequencing 

 

Parietal Lobe 

Sense of touch and pain, smell and taste, spatial perception, reading 

and writing, math calculations, differentiation of size, shape and color 

 

Occipital Lobe 

Processing visual information (color, light), reading (perception, 

recognition) 

 

Cerebellum 

Coordination of voluntary movement, balance and equilibrium, 

attention, emotion regulation 

 

Brain Stem 

Vestibular function, breathing, heart control and heart rate, digestion, 

blood pressure and blood vessel control, consciousness, temperature, 

alertness, sweating, reflexes to seeing and hearing, ability to sleep 

Thalamus Spatial attention, depth perception, consciousness, alertness, sleep 

Basal Ganglia Memory, emotion, coordination of muscle movement 

Spinal Cord Breathing, body temperature, swallowing, digestion, sleep 

 
 Encephalography is one of the oldest and most important tests that can 

facilitate in epilepsy diagnosis and treatment, as well as in other neurological 

disorders. More specifically, EEG can localize where the seizure is originated and aid 

in this way as a workup for possible epilepsy surgery, characterize seizures and 

determine next treatment choices.Some of the key components of studying neural 

oscillations measured with EEG, are frequency, which is the number of oscillations per 

second, power, which is the amount of energy in a frequency band, and phase, which 

is the stage of alignment and synchronization of sources. In reality, the signal (brain 
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signal activity) consists of  underlying base frequencies in differrent bands, which are 

considered to mirror certain affective, cognitive and attentional states of a human. 

Researchers classify the brain waves into the following distinguished bands [49] : Delta 

frequency band – delta waves [1 – 4 Hz], theta frequency band – theta waves [4 – 8 

Hz], alpha frequency band – alpha waves [8 – 12 Hz], beta band – beta waves [13 – 25 

Hz] and gamma frequency band – gamma waves [> 25 Hz].  

 

Brain Frequency Bands 

Delta band [1 - 4 Hz, <4] 

Starting with the Delta band, the delta waves are the slowest brainwaves with the 

highest amplitude in the range [1 – 4 Hz]. Delta oscillations are found most often 

during the stage 3 of slow wave sleep (SWS), sometimes also called non-REM. The 

stronger the delta rhythm, the deeper the sleep. Memory consolidation is very 

important and is related to cycles of sleep. With the help of EEG monitoring, and with 

recordings from deep sleep, we can get insights and analyze the depth of sleep or its 

quality, including sleep disorders, alcoholism and side effects (decrease SWS) and last 

but not least temporal lobe epilepsy. Sleep disorders and many disruptions are often 

connected to certain neurological diseases, in patients with Schizophrenia, Parkinson, 

dementia or epilepsy. In addition, delta waves present more often in the right 

hemisphere with higher frequencies, and more specifically they come from the 

thalamus, but they can also present in the cortex.  

 

Theta band [4 - 8 Hz, 4-7] 

Brain oscillations within the frequency range 4 – 8 Hz are known as theta waves and 

belong to the theta band. Theta waves can be detected from all over cortex, including 

involving frontal , central, parietal areas and medial temporal cortices. Also, in general 

theta is associated with brain processes underlying mental workload or memory  [44]. 

This is due to the fact that theta frequencies are strongly related with mental 

operations, such as attention, focus and information processing, learning and recall. 

Many studies have shown that frontal theta activity is more prominent with increasing 

level difficulty and challenges. For example, in spatial navigation, in real environments 

or in virtual reality, theta frequencies and workload have been proved to get stronger 

in complex levels and mazes or at key landmarks along routes, where the brain needs 

to be focused the most [45].  

 

Alpha band [8 - 12 Hz, 7-12] 

Alpha band, first discovered in 1929 by Burger, is defined within the frequency range 
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of 8 – 12 Hz, where the oscillations are called alpha waves. Alpha waves correlate to 

various functions, such motor and memory. These oscillations are reported to get 

increased during relaxation and rest states, where eyes are closed. In opposite, when 

eyes are open, alpha power is reduced, or suppressed, during mental or physical 

activity. During focused attention and coordination of any stimulus, alpha waves start 

to descrease and this implies probably intellectual activites or  engagement in problem 

[44], [46]. Social, spatial and semantic attention are related to alpha power and in 

research for example, there are many experiments showing that with poor 

performance and distraction, generally alpha power gets higher[47]. Next, in 

meditation studies, alpha band typically reflects relaxation and sensory inhibition and 

there are comparisons in states of experienced and inexperienced meditators, that can 

be differentiated by the alpha [48]. 

 

Beta band [12- 25 Hz, 12-30]  

Frequency oscillations within the 12 – 25 Hz range are commonly referred to as beta 

beta waves. Beta activtiy is generated in posterior and also in frontal region. Higher 

beta power is generally known to be correlated with busy, anxious or active thinking, 

alertness and concentration. Beta power over central cortex (along the motor strip), 

becomes higher when movements are planned or executed, and particularly when 

reaching or grasping requires attention and fine finger movements. Moreover, beta 

frequencies are often monitored during stimulation with extreme stimuli in light or 

sound, psychostimulants modifying levels of alertness and attentional processing. 

Also, in studies, clinical populations such as patients suffering from Parkinson’s, 

Multiple Sclerosis (MS) or other neurodegenerative disorders are compared to age-

matched healthy controls [49]. 

 

Gamma band [above 25 Hz, 30-50] 

Gamma frequencies are still considered to be a part of intense research, as the studies 

have not yet exactly figured out where gamma waves are generated in the brain and 

what exactly their presence reflects in different cases. Future research has to shed light 

and address how gamma frequencies affect the brain procedures better in the following 

years. High frequency oscillations are often called high gamma. Some researchers 

support that gamma serves as a carrier frequency that connects and binds different 

sensory impressions and mirrors theta waves (at the engagement and attention 

phases). Other scientists, argue that gamma is a by-product of other neural processes 

such as movement of the eye, and because of that they are not related to cognitive 

procedures.  
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Chapter 3 Epilepsy & Epilepsy Surgery 
 

Introduction to Epilepsy 
 
Epilepsy is a diverse brain condition described as a tendency to manifest unprovoked 

recurrent seizures in cerebral cortical neurons, by systemic or neurologic insults. 

Epilepsy can start at any age and affect any gender or race, is divided in many different 

types, and is only diagnosed if clinically there is a high chance that the person could 

have more than one seizure episode. Epileptic activity is characterized by bursts of 

uncontrolled electrical activity between nerve cells, sort of like an electrical storm, that 

can cause temporary abnormalities in behaviors, mental functions, muscle tones or 

movements, sensations or states of awareness. Anyone can have a one-off seizure and 

some types of epilepsy last for a limited time before they eventually stop. Nonetheless, 

for many people on a world-wide scale, with incidence approximately 48/100,000 per 

year, epilepsy is a serious life-long condition [51]. A seizure could be highly connected 

with impairment of mental function, disruption of consciousness and disturbance in 

sensation and movement. Uncontrollable jerking, confusion, losing awareness, sense 

of fear, collapsing and strange sensations (i.e. deja-vu) are some of the most common 

epilepsy symptoms [52]. In Drug Resistance Epilepsy (DRE), the treatment choices 

aim to maximize the quality of patients’ life, optimize the long-term seizure control, 

minimize side-effects, maximize adherence and manage co-morbidities. Living with 

severe symptomps of epilepsy means consequences. These consequences can affect the 

every day life of a patient including psychological dysfunction, social stigmatization, 

inability to drive, increased mortality rate. The question that rises here is if the risk of 

uncontrolled epilepsy outweighs the risk of treatment. It is shown through studies that 

after ensuring drug-resistant epilepsy, resective surgery is suggested as the best 

treatment choice. Many different research approaches are ongoing, as with the years 

they dive more into the causes, treatment, and possible therapies for epilepsy. 

 

Overview of Epilepsies & Seizures  
 
What makes epilepsy even more complex, is the fact that comes in different syndromes 

with a broad prism of symptoms which arise from different brain areas [7], [53], [54] 

.As a result, this disorder can affect people in different ways, but is characterized by the 

uncontrolled excessive activity of either part or all of the Central Neural System. 

Formerly, used to be classified into 3 main categories as grand mal epilepsy 

(generalized tonic-clonic), petit mal epilepsy (absence epilepsy) and focal epilepsy, 
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based on how the abnormal brain activity is generated.  However, the most recent 

classification of seizures and epilepsies was the International League Against Epilepsy 

(ILAE), 2017, which was published in March 2017. This new classification lists some 

new seizure types and is better organized with a clear elucidation of new terminologies.  

Figure 10 Framework for classification of the epilepsies. *Denotes onset of seizure (by Epilepsia ILAE) 

 

 

In this current classification by ILAE, the clinical features of epilepsy are categorized 

into these 3 levels: the seizures, the epilepsies, and the epilepsy syndromes. Also, 

epilepsy is declared now as a disease and a curable one, rather than a neurological 

disorder. Sometimes it can be resolved after 10 years of being seizure-free with the last 

5 years without medications, or the patient for epilepsy syndromes that have to do with 

age, is not in danger anymore [55] . At the start, the clinician needs to classify according 

to the type of seizure and then the classification of patient’s epilepsy type follows. When 

epilepsy seizure and epilepsy type is in the same entity, then diagnosis and epilepsy 

management can be easier, because in epilepsy drugs are used according to the 

classifications of the seizure types and sometimes they can be more effective. 

 Seizures based on the onset Zone are classified into focal onset, generalized 

onset, and unknown onset. Sometimes and mostly at the first epileptic seizures, 

classification according to the seizure type is the first diagnosis, if there are no available 

imaging diagnostic tools or access. In other cases, there may simply be too little 

available information for a higher-level diagnosis, such as when a patient has reported 
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only a single seizure. When a seizure appears to result from abnormal activity in just 

one area of the brain and affects only a part of the brain, it is called focal (partial) 

seizure. However, a focal seizure can turn often into a generalized seizure. Focal 

seizures are divided into seizures without loss of consciousness and into seizures with 

impaired awareness. Simple partial seizures can alter sometimes emotions or change 

the way a patient looks, feels, tastes or hears (without to lose their consciousness). 

Other possible symptoms may be involuntary jerking in body parts, such in an arm or 

leg, spontaneous sensory symptoms such as tingling, dizziness and flashing lights. On 

the other side, complex partial seizures, involve most of the times loss or at least a 

change of consciousness or awareness. During such a seizure, the patient may stare 

into space with no response to the environment or perform abnormal activities and 

repetitive movements (i.e. chewing,rubbing, swallowing). Status epilepticus consists of 

a dangerous seizure that lasts at least five minutes or by more seizures that occur 

without a complete recovery of interictal consciousness between the seizures. This 

specific kind of seizure is a life-threatening medical emergency that requires 

immediate medical attention. Not infrequently, the symptoms of a focal seizure may 

be confused with other brain disorders (migraines and mental illness), that is why 

testing and thorough examination are considered necessary for a clear diagnosis. 

 Generalized seizures appear to involve all areas of the brain and are further 

separated into motor (tonic-clonic, clonic, tonic, myoclonic, myoclonic-tonic-clonic, 

atonic, epileptic spasm) and non-motor (myoclonic, typical, atypical, eyelid 

myoclonia). Absence seizures, previously known as petit mal seizures, often occur in 

children and are characterized by staring into space or subtle body movements, such 

as eye blinking, lip smacking or rhythmic limb movement. These seizures may occur in 

clusters and cause a brief loss of awareness. Next, clonic seizures are associated with 

repeated or rhythmic, jerking muscle movements and usually affect the neck, face and 

arms. Moving on to tonic-clonic seizures, previously known as grand mal seizures, 

these are the most dramatic type of epileptic seizure and can cause an abrupt loss of 

consciousness, body stiffening and shaking, and sometimes loss of bladder control or 

tongue biting. Tonic seizures cause stiffening of your muscles, usually affect muscles 

in back, arms and legs and may cause a fall. Atonic seizures, also known as drop 

seizures, cause a loss of muscle control, which may cause a sudden collapse or fall 

down. Last but not least, myoclonic seizures usually appear as sudden brief jerks or 

twitches of arms and legs. 

 As shown in the diagram 10, the epilepsy syndromes are defined by the 

epilepsy types, which in turn are defined by the previously analysed seizure types. 

Until now, there are no approved ILAE epilepsy syndromes. But normally, syndromes 
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are defined again by focal and generalized seizures, by etiology, and by whether it is 

idiopathic or symptomatic. Focal epilepsy is characterized by focal seizures, that could 

start from any local brain part or deeper structures of brainstem. Most often focal 

epilepsy has to do with organic lesions from brain injuries, functional abnormalities 

(for example tumors) or infections. The abnormal electrical activity can spread to 

adjacent brain areas a few millimetres or centimetres away and then maybe it could 

become genralized. Generalized epilepsy consists of abnormal discharges throughout 

all the areas of the cerebral cortex or deep parts of cerebrum and brainstem. General 

seizures could affect the spinal cord, causing tonic seizures with either sudden or 

rhythmic muscle contractions. In addition, there is the combined epilepsy type that 

includes both generalized and focal seizures. Last but not least the unknown type (not 

yet known) exists and this term declares the patient’s epilepsy, but it is not possible to 

denote (insufficient clinical information or normal EEG) whether it is focal, 

generalized, or combined focal and generalized. 

 In the ILAE classification figure 10, one can also notice the entity of 

comorbidities. Comorbidities range in type and severity (for example learning 

disabilities, intellectual disabilities, behavioral problems, psychiatric spectrum 

disorders, cerebral palsy) and are often associated with epilepsies. Just like etiology, it 

is necessary for every patient, that the presence of comorbidities be considered at each 

stage of epilepsy classification. These two sections, co-morbidities and etiology, have 

an important role to raise and increase awareness and to enable early identification, 

diagnosis, and better management. 

 

The Stages of a Seizure  

To every epileptic seizure episode, there are some phases that need to be cleared out 

and shortly according to Epilepsy Foundation are referred to as preictal, ictal, 

interictal and postictal. Firstly, preictal or else prodrome stage, is referred to the 

time before the actual seizure. Preictal can last from minutes to days and the feeling of 

this can vary from patient to patient. Not every patient experience something at this 

stage of a seizure and for those who experience it is considered to be subjective. 

Approximately 20% of individuals with epilepsy experience this stage [56]. Often, 

people that experience this stage, describe it as a warning or a strange state. Many 

people have an aura before a seizure and this realistically may cause nausea, tremor, 

headache, weird feelings such as confusion, irritability, anger or mood disturbances, a 

sense of déjà vu or others [57]. Technically, an aura was used to be described as a 

simple partial seizure and is the earliest epileptiform sign. An aura can remain 

localized or progress to other brain areas with the person’s awareness becoming 
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impaired to varying degrees. Sometimes, an aura can also spread to both brain 

hemispheres and then it can become a secondarily generalized seizure within seconds 

to minutes [58] . That is why sometimes the aura is characterized as an early ictal, for 

those people with epilepsy that experience it. 

 Then sometimes follows the middle ictal phase, which is basically the actual 

seizure. During ictal, there will be actual physical changes in the patient’s body that 

again vary from patient to patient, as this is the time that abnormal electrical 

discharges happen. If the person having the epileptic seizure, happened to be 

monitored by an EEG system during this phase, a neurologist could see all the 

cardiovascular and metabolic changes, and determine the point of seizure’s origin and 

as result the type of seizure. This stage is different for every person living with epilepsy 

and causes a variety of symptoms. Some of these symptoms include memory lapses, 

drooling, twitching, eye or head movement in one direction, inability to respond and 

to control the bladder or the bowel, pupil dilation, tremors, vision loss or blurring, 

hearing loss, difficulty breathing, chewing or lip-smacking, arm or leg stiffening. 

 Moving on to the next stage, interictal is the time between seizures. A lot of 

people, including more than half of all people with Temporal Lobe Epilepsy, have 

recurrent seizures and suffer from emotional disturbances between them. The effects 

of interictal stage range from mild fear to pathological levels of anxiety and depression. 

Sadly, anxiety disorders, interictal panic attacks and depression that are by far the most 

common in relevant epilepsy types, are in cases difficult to be controlled.  

 At last, the postictal or co-interictal, is the final phase and is described as the 

recovery period after an epileptic episode. In most cases can last from 5 to 30 minutes, 

but it can also last hours (or days) and vary quite a bit, partly depending on the 

intensity, duration and severity of the seizure, as well as the specific seizure type itself 

(brain region affected). Quite often, many people cannot remember anything that 

happened during the seizure. Among other things, postictal might leave the person 

feeling tired and/or bewildered, confused, with hypertension, nausea, drowsiness, 

headache or migraine, body soreness, an agitated behavior or altered consciousness 

and other disorienting symptoms. Sometimes symptoms from this phase can help 

doctors diagnose the starting origin of the seizure, too.  
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Figure 12.1.1 – Ictal electroencephalogram showing a regional right frontal seizure discharge (maximum at 

electrode F4) in a patient with right-sided lateral frontal lobe epilepsy. Source by Handbook of Clinical 
Neurology, 2012 Christoph Baumgartner, Susanne Pirker 

 

Epilepsy Diagnosis and Imaging Techniques  
May epilepsy be one of the most common brain conditions and highly correlated with 

unpredicted seizures, but there are also other disorders that can be confused with 

epilepsy. For that reason, accurate epilepsy diagnosis is critical and requires many 

thorough steps of testing and examination. The evaluation includes a neurological 

exam, blood tests and tests to monitor and detect possible brain abnormalities. A 

neurological exam by a neurologist, includes questions about medical history (e.g. 

indication of hereditary predisposition or triggers by psychological problems) and 

neurological tests for behavior, senses (sensory testing), cranial nerves, motor abilities 

(muscle function), mental status and functions (memory tests, simple math 

calculations), coordination (walking in a straight line), reflexes (knee jerk, plantar 

reflex to test abnormalities in the voluntary control of muscles), gait and station. After 

that, the neurologist often gathers and suggests additional information such as blood 

tests (for example shortly after an epileptic seizure, increased levels of prolactin can be 

detected in blood or low glucose levels) and imaging tests. 

 The main goal of these brain imaging tests, are to monitor and detect brain 

abnormalities and to determine problematic areas. One can record brain 

abnormalities, with electrodes attached on the scalp that are able to capture electric 

activity from deep structures of the brain with high temporal resolution. So as to 

increase the levels of certainty and accuracy of the medical report, doctors often 

combine EEG/MEG with MRI scans, called Magnetic Resonance Imaging (MRI) and 

functional MRI that have high spatial resolution. These brain scans can further 



 

43 Chapter 3 Epilepsy & Epilepsy Surgery 

facilitate, since they could find brain regions with lesions or injuries that could possibly 

trigger brain abnormalities or seizures. In many cases, the doctor could also order a 

computed tomography (CT) scan of the brain or a Positron Emission Tomography 

(PET) to identify areas that maybe are indicative epileptic postictal markers. The PET 

scan is more supplementary to the scan results of Single Photon Emission Computed 

Tomography (SPECT).  

 

FMRI 

Functional magnetic resonance imaging, or f-MRI, is one of the most widely known 

technology for recording neural activity, by detecting changes on brain regions 

associated with blood flow and not by recording the neurons’ activity. More precisely, 

the active regions require more oxygenated blood, and so despite being indirect, fMRI 

allows scientists to infer activity patterns of neurons. When a brain area is more active, 

then it consumes more oxygen and to meet this increased demand, blood flow 

increases to the active area. FMRI can produce activation maps showing which parts 

of the brain are involved in a particular mental process, it is non-invasive, doesn’t 

involve radiation, it has high spatial resolution, but not the high temporal resolution 

of an EEG [59]. Therefore, this neuroimaging technique has become a stable of 

neuroscience research the last decades, even though it does have some significant 

limitations, that scientists continue to research ways to surpass and improve for 

example the spatial and temporal resolution. Connecting f-MRI to epilepsy, some 

major applications include the localization of task-correlated language and memory 

function, the localization of ictal and paroxysmal phenomena and presurgical planning 

for the localization of epileptic brain functions [60]. FMRI provides comparable results 

to intracarotid amobarbital testing, in language lateralization and promising memory 

lateralization[6], [61].  

 

Figure 12.1.1 – (a) MRI Scanner Cutaway (b) MRI Scanner Gradient Magnets (MRI: A Guided Tour, 2015) 
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Computed Tomography (CT) 

Computed Tomography or else CT is a technique based on the measured attenuation 

of X-rays with uniform and specific energies, that are emitted by an external source 

beam [62]. The emitter and the detector both placed on the opposite site, rotate around 

the patient during scanning. Given the known attenuation coefficient of tissues in the 

body, 3-dimensional anatomical images can be constructed [63]. Each time the X-ray 

source completes one full rotation, the CT computer constructs a 2D image slice of the 

patient. The thickness of the tissue that is presented in each image slice can vary 

depending on the CT scanner with an average range of 1-10 millimeters. After a full 

slice is shaped, then the motorized bed is moved forward incrementally into the gantry 

for the process to continue for another sclice, until we reach to the desired slices. 

 

Positron emission tomography (PET) 

Position Emission Tomography or else PET is a nuclear imaging technique based on 

gamma rays caused by decaying radionuclides that are inside the body. With this brain 

imaging technique, one can monitor metabolic activity like glucose levels of neurons 

during cognitive activity. In a PET scan, the patient lies on a table that slides into the 

middle of the scanner and receives a short half-lived radiopharmaceutical (produced 

by a cyclotron) and the most widely used radiopharmaceutical is called FDG [5], [64] . 

In addition, because FDG is a positron-emitting compound and does not stay ‘alive’ for 

a long time, radiation exposure is from several chest rays. As the positrons encounter 

electrons within the body, gamma rays are produced. FDG-PET is most commonly 

used in oncology, cardiology or in neurology to diagnose various neurological 

conditions and disorders. Within the PET scanner, rings of detectors containing special 

crystals produce light when they are struck by a gamma ray[64]. The  electronics of the 

scanner record detected gamma rays and map an image of the area, where the 

radiopharmaceutical has stayed. The radiopharmaceutical contains a chemical 

commonly used by the body as glucose and PET enables to see the location of these 

metabolic processes. For example, we can see if we combine a radioisotope with 

glucose, where glucose is used in the brain the most, the heart muscle or in a tumor.  

 It is also important to be noted, that while PET scans are more robust towards 

artifacts, they do not have the  high time resolution of EEG. In contrast with CT and 

MRI, PET shows metabolic activity or function and physiology [5]. In hybrid PET/CT 

scanners, the density map based on the CT allows  to result in increased image quality 

[65]. Finally, SPECT scanner integrates CT and a radioactive tracer, has a similar use 

to PET and offers accurate localization in 3D space. 
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Figure 11 A combination of the PET and CT imaging systems for anatomic imaging [66] 

 

Electroencephalography (EEG)  

One of the most important brain imaging technology until today, that first applied to 

humans by neurologist Hans Burger (Jung & Berger,1979), is called EEG or else 

electroencephalography. Electrical brain activity was at first attempted to be recorded 

by using galvanometers. This technology consists the ancestor of modern EEG, since 

the galvanometers led to the invention of electrometers and consequently of the 

electrodes. Proceeding to the digital era and moving from paper to digital data, 

scientists decided to transform EEG signals in digital form and analyze, interpret and 

process it with higher computing power. The digitization procedure for the EEG, 

requires sampling, quantization, encoding devices and signal processing tools 

embedded in the computer systems. The bandwidth of EEG is limited to 100 Hz thus 

200 samples per second (according to Nyquist criterion) but in some applications it is 

feasible to record even at 2000 samples per second. In modern EEG setups the 

representation of each sample is performed with 16 bits maintaining thus the 

diagnostic information in an accurate and high level.  

 Nowadays, the most common systems for EEG placement have been provided 

by the American Encephalographic Society (10-20 system) and Oostenveld & 

Praamstra ( 10-5 system). In the 10-20 system, electrodes are placed according to the 

name at 10% and 20% along the longitude and latitude lines[67]. Nasion referred as 

Nz is marked between the eyes at the top of the nose and Inion referred as Iz is marked 

at the back of the head. Often the measurement is taken across the top of the head, 
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from Ns to Iz. Also other important parts are the left and right pre-auricular points that 

can be felt by the fingers as depressions just anterior to the ears when the mouth is 

open and closed.  The vertical line that connects Nz and Iz, as well as the horizontal 

line connecting left and right pre-auricular points, is divided into ten equal sections. 

Moreover, in the 10-20 system, electrode names derive from their location and begin 

with one or two letters, due to their placement in the brain regions (Fp = pre-frontal, 

F = frontal, P = parietal, O = occipital, T = temporal, C = central). Each electrode name 

has a number or letter at the end of the word, indicating the distance to the midline. 

Also, odd numbers are for the left hemisphere and even for the right. The electrode 

placement at the midline is labeled with the letter Z from zero. The larger are the 

numbers, the greater distances they indicate from the midline. For example in the 

following representation of the system, the electrode labeled as Fz is placed in the 

Frontal lobe over the midline and the electrode labeled as T6 is placed in the Temporal 

lobe over the right hemisphere and farther from the midline. 

 

Figure 12 The 10-20 system in EEG (Source: Wikipedia) 

EEG recordings are particularly well-suited to studies that examine functional or 

effective connectivity and research, where high temporal resolution is essential [68]. 

EEG is used to record electrical brain activity in a non-invasive way and is also a 

painless recording technique. EEG practitioners, simply place carefully at the scalp 

surface the EEG electrodes and record. Although, there are cases, where invasive 

electroencephalography, that requires craniotomy for the placing of sensors, cannot be 

avoided (intracranial EEG). One of the most significant benefits of EEG technique, is 

its high time resolution that can take hundreds to thousands of snapshots from 

multiple electrodes (ranging from 10 to 500+ electrodes depending on the 

experiment), within a single second. Since the electrical brain signals are small, the 

recorded data is digitized and sent to an amplifier. Once the data amplification is 

finished, EEG record can be displayed as a time series of voltage values. EEG Channels 

are the digital signals recorded by the amplifiers and is important to distinguish them 
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from the sensors (electrodes). Channels consist of two electrodes whose activity is 

referenced to another more distant electrode to form the signal (referential montages). 

Some things that are important for an EEG system are the number and quality of the 

electrodes, the digitization and sampling rate of the amplifier and as a consequence, 

the quality of the final recording.  

 Regardless of whether it's neural activity, the applauding of a group or an 

earthquake, these phenomens happen due to synchronization of wave patterns. If 

postsynaptic pottentials happen simultaneously, rythmically and in sychrhony for 

countless neurons, then, at some point, they summarize, tune and produce an electric 

field, which is quickly continued through cerebrum tissue and the skull. In the end, one 

can measure it from the scalp.  This is very similar to an audience that starts to applaud. 

At first every individual in the crowd applauds in their own way, making white noise. 

After a brief time, the crowd gets synchronized by applauding with the same rythm. 

This synchronized applauding is a lot stronger than the repetitive sound 

 This is very similar to an audience that starts to applaud. At first every person 

in the audience claps with their own rhythm, causing white noise, without any 

observable rhythmic pattern. After a short while, however, the audience gets in sync 

(clapping in the same rhythm). This synchronized clapping is much louder than the 

white noise [67], [69], [70].  

 

Magnetoencephalography (MEG) 

In 1972 David Cohen developed a new modality for measuring the brain activity, by 

means of detecting magnetic fields generated by neural currents, that is known as 

Magnetoencephalography (MEG). MEG has some advantages over both EEG and 

fMRI. More specifically, MEG has a very high temporal resolution, a good spatial 

resolution and often captures much better than EEG (deeper). Furthermore, MEG is 

housed inside a magnetically room, to attenuate the external magnetic noise and MEG 

fields pass through the head without any distortion. This is a significant advantage of 

MEG over electroencephalography. FMRI signals compared to MEG, reflect indirectly 

the brain activity by measuring the oxygenation of blood flow near the active neurons. 

Magnetoencephalography is most sensitive to activity originating in sulci, provides 

temporal brain characteristics much more precisely (in the range of sub milliseconds), 

whereas fMRI performs poorly in temporal information. Lastly, MEG scanners 

(require superconducting quantum interference sensors – SQUID) are large, 

stationary and very expensive, as their range is of femto-tesla to pico-tesla. They also 

require heavy technical maintenance and training resources. Connecting MEG with 

epilepsy condition and epilepsy surgery, this technique could be useful in detecting  
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where the seizures were generated and showing the exact location or in mapping of the 

functioning areas near lesions, such as tumors and as a result help in resective surgery. 

For patients who had undergone surgery, MEG could show if a further surgery is 

required, providing the required information easily and non-invasively. Summing up, 

EEG has a spatial resolution of centimeters and limited below cortical surface, fMRI 

has a spatial resolution of millimeters and is not limited to cortical areas, whereas MEG 

has a spatial resolution of millimeters at cortex, but is less precise for deep sources.  

 

 

Figure 13 Comparison of Invasive and Non-Invasive Techniques 

 

 
Figure 14 Example of ECoG, electrode placement on patient 14 in our dataset. One can see that on the cortical 

surface are placed after craniotomy a combination of subdural strips, grids and one depth electrode. The 
electrode placement is according to the findings of the non-invasive presurgical evaluation. 

 

Electrocorticography (ECoG) 

Almost similar to EEG’s way of working, Electrocorticography (ECoG) measures the 

combined oscillatory activity of millions of neurons, but with a significant difference. 

In contrast with EEG, ECoG is invasive, requires insertion of the electrode array 

under the scalp, and therefore requires craniotomy. For this reason, ECoG is only 
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suitable for patients already scheduled to udergo surgery that involves craniotomy. In 

addition, ECoG gives significantly improved localization of the activity source, as well 

as the recording of higher frequency electrical activity. Both of these advantages of 

ECoG are key factors to presurgical epilepsy evaluation. ECoG is considered to be the 

best way of assessing the abnormalities in refractory epilepsy, is established in 

presurgical planning, and plays an important part in surgical guidance. 

 

Figure 15 Invasive ECoG records electrical activity from the cerebral cortex, Source:  Wikipedia  

 The invasive method mentioned above can be performed either during 

surgery, called intraoperative ECoG, or outside of surgery, called extraoperative 

ECoG. In epilepsy surgery, the goal is to remove the epileptogenic tissue without 

causing neurological damage to other brain structures. For that reason, the precise 

identification and localization of the Epileptogenic Zone plays a critical role in the 

surgical outcome. ECoG is often combined with a functional cortical simulation 

mapping tool, also known as Direct Cortical Electrical Simulation (DCES), in order to 

preserve the functional areas of the patient safe. Functional mapping allows the patient 

to interact with the surgeons, therefore he is under local anesthesia rather than general. 

Important functional areas (eloquent cortex) include sensory processing, speech, 

motor coordination and somatosensory integration. During surgery, the implanted 

electrodes can monitor the epileptic activity of the tissue and aid the surgeons to ensure 

that the pathological region is resected. Sometimes though, additional surgeries may 

be necessary to completely eradicate epileptic activity and eliminate seizures. 

As for the extraoperative ECoG, it is considered again after ensuring that the patient 

needs to undergo epilepsy surgery (and as a result skull opening). First, an MRI is 

performed to demonstrate where is the abnormal epileptogenic lesion, in combination 

and support by EEG recordings and pathological evidence. Once the epileptogenic 
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lesion has been identified, then extraoperative ECoG may be applied to determine 

more precisely the location and extent of the lesion in relation with the other indicators 

of the EZ. The traditional scalp-EEG in this case is not precise enough to provide 

sufficent data for the localization of the epileptogenic tissue. Additionally, 

extraoperative ECoG is used to localize important functional areas, vital to be 

preserved during epilepsy surgery[71].  

In the last decades, combined with neuroimaging and computational tools, human 

electrocorticography has become increasingly more amenable for research studies and 

its popularity trend among neuroscientists is on a steady rise[72].  ECoG data can 

provide guidance and insights that no other non-invasive technique can offer in 

intractable epilepsy. 

 

 

Figure 16 Abnormal Electrical Activity (Source: Johns Hopkins Medicine) 

 

Epileptic Activity and Abnormal Waveforms 
 
Epileptic seizures are often unpredictable and appear frequently or at specific patterns, 

that are still being investigated. In any EEG recording is highly important to be able to 

detect the abnormal waveforms, which include epileptiform and non-epileptiform 

abnormalities. If we want to identify abnormal waveforms in EEG and recognize 

artifacts, a basic understanding of the normal EEG patterns and benign variants in 

various physiological states and in a variety of adults and children, is needed.  

 

Interictal Spikes 

Clinical epileptic seizures contain often only a small proportion of all the brain 

abnormalities, which includes subclinical seizures, interictal spikes, bursts and high-

frequency oscillations. Interictal spikes are actually the bursts from a group of 

neurons that had synchronized and resutls  in an electrical paroxysmal discharge.  The 
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spikes are very brief and fast waves, and are generated by the synchronous discharges 

of a group of neurons in a region called epileptic focus. Their name comes from their 

shape on the encephalography, where they really stand out comparing to other marks 

and shapes. Each spike normally lasts less than 80ms and are often followed by slow 

delta waves. Sometimes, sharp waves can also be seen in recordings and these happen 

over 80-200 milliseconds. Not all interictal spikes or sharp waves are associated with 

seizures. These spikes associated with epilepsy, known also as Interictal Epileptiform 

Discharges (IED) are used to diagnose epilepsy, localize the EZ and provide a further 

insight on the epileptic pathological areas.  

 

Evoked/Event -Related   Potentials   and   Fields 

ERPs or Event related potentials measured by means of electroencephalography 

(EEG), are actually small fluctuations as direct response to a stimulus (of a specific 

sensory, cognitive or motor event). The magnetoencephalography’s equivalent of ERP 

is called event-related field or else ERF.  The evoked potentials and induced potentials 

are subtypes of ERP’s. In more detail, evoked potentials (EP) are an electrical triggered 

potential in following a stimulus recorded/seen in spontaneous EEG and is not time-

locked to the event. So, the primary derivatives of the traditional, non-invasive scalp 

EEG are evoked potentials and event-related potentials. Time-locked/event-related 

potentials (ERP) are measured by brain responses that are a direct result of stimulus 

presentation and are time-locked to the event. In general, ERPs provide a noninvasive 

way to evaluate brain functionality and are useful for checking the sensory pathways 

and for detecting brain dysfunctions or abnormalities. Regarding the Event Related 

Fields (ERFs) they share the same principles with the ERPs, but the difference is on 

the record of summed postsynaptic magnetic fields, which serve complementary to the 

ERPs for the diagnostic tests. 

 

High Frequency Oscillations (HFO) 

In recent years, with the high manufacturing electrophysiological systems and setups, 

the recording of electrical potentials with high spatiotemporal resolution is possible. 

After the gamma band, there are even higher in frequency brain waves, faster than ~80 

Hz, and they are generated by neuronal cells.  In older studies, researchers used to refer 

to these oscillations as high gamma or just high frequency oscillations. Nowadays, high 

frequency oscillations or else HFO have become a new promising biomarker of 

epileptogenic zone and are also associated in many studies with pathophysiology of the 

brain, psychiatric disorders and psychotic episodes, such as in schizophrenia.  

 High Frequency Oscillations are actually brain signals with sinusoidal-like 
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morphology of high frequency (>80 Hz), recorded by EEG or ECOG due to the 

transient local field potential -LFP. HFO studies and definitions vary, but shortly in 

most cases HFOs have a frequency range of 80-500 Hz and are classified into two 

subtypes, Ripples (80-250 Hz) and Fast Ripples (250-500 Hz). There are also some 

sub-bands that are often called low gamma band (30-80 Hz), high gamma band (80-

150 Hz) that overlaps with the Ripple band and some recent epilepsy studies have also 

named oscillations >600 Hz as very high frequency oscillations (VHFO). VHFOs are 

further classified into very-fast ripples (500-1000 Hz) and ultra-fast Ripples (1000-

2000 Hz)[73]. 

 Pathological High Frequency Oscillations are arguably one of the strongest 

candidates that marks neuronal hyperexcitability [28], [74], [75]. They are considered 

to be generated in the seizure onset zone (SOZ), or in the first-propagation zone. 

Analysis of HFOs may accelerate the identification and narrow down the location of 

the seizure-onset area compared to the routine EEG analysis of interictal and ictal 

epileptic activities. While physiological HFOs maybe express the summated 

synchronous inhibitory postsynaptic potentials (IPSP) generated by interneuronal cell 

subpopulations and their discharges, epileptic pathological HFOs might reflect the 

field potentials which are formed by the activity from clusters with bursting pyramidal 

cells, generating population spikes, and decreased inhibitory interneuron firing. For 

this reason, pathological HFOs may be a new biomarker of SOZ [76].  

 However, there is up to no “uniform definition” of pathological HFOs. Even 

though HFOs have been discovered more than two decades ago, there are still many 

questions about their biomarker-utility in clinical practice and about their relationship 

with the epileptogenic zone. Until now, multiple studies and approaches have been 

sought to distinguish non-pathological and pathological HFOs. The nature of the 

problem lies in the overlapping frequency range that these two types of HFOs can 

occur. In terms of duration, amplitude, and frequency, there exists a large overlap 

between physiological and pathological ripples found in normal and in epileptic 

conditions. In severe cases of epilepsy, HFOs is considered to be an important 

interictal indicator of focal epileptogenic zones and have been also used to localize such 

areas clinically [59], [60]. It is worth highlighting, that the removal of HFO-generating 

areas led to improved surgical outcomes [77]–[79] [80] [81]. Thus, HFOs seem to be 

reasonably suitable markers of the epileptogenic zone. Potentially HFOs can be 

investigated as biomarkers to mark and predict the epileptogenesis, to link the severity 

of epilepsy, to predict the occurrence of seizures, and to evaluate the outcome of a 

medical or surgical treatment. 

 Many studies have analyzed the relationship between the SOZ and HFO 
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occurrence and the correlation between removal of HFO generating tissue and 

postsurgical seizure freedom. Without doubt, HFOs have been proved useful to 

delineate the SOZ -seizure onset zone and to validate the application of 

excitability. However, some studies cast also some doubt on the precision with which 

HFO can delineate the epileptic tissue [82]. In order to provide broadly applicable, 

clinically useful predictors, non-invasive recording techniques would have to be 

established. For example, the use of HFO biomarkers in conjunction with behavioral 

state, and/or other EEG biomarkers such as interictal spikes, may combined together 

prove to be useful to optimize the predictive efficacy of HFOs [14]. In addition, high-

sampling rate MEG systems might constitute a promising candidate method to test the 

validity of HFOs as biomarkers in human epilepsy [83], [84]. Up to now, HFO analysis 

is not included in the clinical practice as a part of presurgical evaluation. 

 

Epilepsy Treatment  
 

After a concrete epilepsy diagnosis, epilepsy treatment follows and addresses different 

ways of enhancing the patient’s quality of life, by eliminating seizures and 

abnormalities. The key choices of treating epilepsy can be listed as follows: Anti-

Epileptic Drugs (AED), Vagus Nerve Stimulation, Ketogenic Diet, Epilepsy Surgery and 

Deep Brain Stimulation (DBS) [54], [12], [37]. The anti-epileptic drugs are modifying 

chemicals for the brain excessive electrical activity, that can reduce the number of 

seizures and in many cases even eliminate them (according to studies, AEDs control 

seizures in about 70% of the cases when taken strictly as prescribed). It is worth-noting 

that drugs do not cure epilepsy, but they can often control seizures efficiently. Vagus 

Nerve Stimulation is a procedure that includes a device implantation, that stimulates 

vagus nerves with electrical impulses and helps to prevent seizures. This specific device 

is surgically placed under the skin on the chest and electrically stimulates the nerves 

that run through the neck, preventing irregular electrical activity. Nevertheless, it 

requires maintenance and is also an expensive invasive method, which renders it as a 

second choice. Ketogenic Diet is a high fat, low carbohydrate protein diet, suitable 

mostly for limited seizure types (mostly myoclonic seizures) and more than half of 

patients that fail to be treated by medication benefit from it. During this diet, the body 

is forced to use fat for energy instead of glucose, a process called ketosis. Last but not 

least, deep brain stimulation (DBS) may be used as a surgical treatment (electrode 

implantation), for drug-resistant patients that cannot have resective epilepsy surgery. 

Now if medication can’t decrease the number of seizures, surgery is the next option, 

especially in severe cases with brain-tumors or injuries. Resective epilepsy surgery 
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involves removing the part of the brain where seizures originate. One surgical plan for 

example is the resection of the temporal lobe, in a procedure known as temporal 

lobectomy, and often can be very effective leading to seizure freedom. After surgery, 

some people are able to cut down on AEDs and increase a lot their life quality. 

Although, there are risks to any surgery, including a bad reaction to anesthesia, 

bleeding, infection or cognitive changes.  

 

Epilepsy Surgery 

According to Epilepsy Foundation, at least 30-40% of people with epilepsy continue to 

have seizures despite optimal treatment with AED. Only 44% of people taking seizure 

medications reported being seizure-free, so that leads to the option of surgery as a way 

of controlling the seizures. Epilepsy Surgery is applied to eliminate the seizures to 

drug-resistant patients and there is a good medical evidence of its effectiveness and 

safety. By taking out the seizure foci in the brain, epilepsy surgery can, in most cases, 

successfully and safely reduce or stop seizures. Around 70% of people, who have 

temporal lobe surgery become seizure-free, and for a further 20% their seizures are 

reduced. Around 50% of people, who have temporal lobe surgery are still seizure-free 

10 years after their surgery, but most of these people will still take their Anti-Seizure 

Medication (ASM) for some time. If the seizures cannot be controlled and after 

adequate trials of different medication (two or three), then surgery evaluation should 

be brought early to the table [81].  

There are many different types of epilepsy surgery, which involve either the resection 

of tissues associated with epileptogenesis (resective surgery) or with pathways to treat 

seizures focal or generalized. Technology has improved tremendously the ability to 

detect where seizures begin in the brain. The ultimate goal is to split the connection 

pathway between the hemispheres to cut down the flow of abnormal activity from one 

part to another. A significant step of the overall evaluation by the neurosurgeons, is the 

presurgical evaluation, which aims at detecting the actual region of epileptogenesis, 

using intracranial electrodes with craniotomy, invasive ECoG. Of course, EEG or MEG 

tests precede, give the first insights and guide the next steps for future operation. Some 

of the different surgeries for different epilepsies, include Focal Resection that is 

branched into Temporal Lobe and Extratemporal Resection (frontal, parietal and 

occipital), Laser Interstitial Thermal Therapy, Multiple Subpial Transections, 

Lesionectomy, Corpus Callosotomy, Anatomical or Functional Hemispherectomy, 

Stereotactic Radiosurgery and Neurostimulation Device Implantations (Vagus Nerve 

Stimulation-VNS, Responsive Neurostimulation-RNS and Deep Brain Stimulation-

DBS). The brain surgery for epilepsy, aims at removing the epileptic foci by stopping 
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the abnormal activity, while preserving at the same time the vital eloquent cortex. 

Neurologists call eloquent cortex, the brain regions that if resected will cause severe 

neurological damage, such as paralysis, loss of linguistic ability or  loss of 

somatosensory processing. 

 One essential part to mention for this research work, is the predefined and 

modified from the ILAE classification outcome in respect to the epileptic seizures 

following epilepsy surgery [85]. According to ILAE, there are 6 different postsurgical 

outcomes, where starting from ILAE 1 is the completely seizure-free outcome with no 

auras. ILAE 2 includes only auras and no other seizures after surgery. Moving on to 

worse outcomes, ILAE 3 and further, where there are still seizures after surgery and 

the patient can have from one to three seizure days per year, including or not auras if 

is classified with ILAE 3. The worst outcomes after surgery can be ILAE 5 or 6 where 

the patients can have daily seizures or auras or even worse, more than 100% increase 

of baseline seizures or auras daily. Surgery outcomes with patients still suffering from 

recurrent disabling seizures (with no seizure reduction), are typically considered as 

failures.  Consequently, re-evaluation and re-operation may be considered, in a 

selected group of patients with an unfavorable postsurgical outcome. 

 

OUTCOME  
CLASS ILAE 

 
CONTROL OF SEIZURES 

1 Completely seizure free (no auras) 
2 Only auras; no other seizures 
3 One to three seizure days per year (+auras) 
4 Four to 12 seizure days per year (+auras) 
5 Daily seizures (+auras) 

6 More than 100% increase of baseline seizure  
days (+auras) 

 

Figure 17 Epilepsy outcome classification according to ILAE classification with respect to epileptic seizures following 
epilepsy surgery 

 
As the surgical success rate rises, there are two epilepsy types worth mentioning, as 

they are often associated with surgical treatment, when there is also in the table drug-

resistancy. The patients of this thesis iEEG study have also these types of epilepsy, were 

drug-resistant and all underwent surgery epilepsy. The two types of epilepsy are called 

Temporal Lobe Epilepsy and Extratemporal Lobe Epilepsy and are presented in more 

detail below: 

 

 

Temporal Lobe Epilepsy (TLE) 
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TLE or else Temporal Lobe Epilepsy is the most common form of focal epilepsy, 

characterized by recurrent, unprovoked focal seizures that originate in the temporal 

lobe of the brain, and usually last about one or two minutes[86], [87]. Focal Seizures 

in TLE start or involve in one or both temporal lobes in the brain. Shortly, there are 

two types of TLE, the Mesial temporal lobe epilepsy (MTLE), that involves 

the medial or internal structures of the temporal lobe and the neocortical or lateral 

temporal lobe epilepsy that involves the outer part of the temporal lobe. In the MTLE 

epilepsy, that accounts for almost 80% of all the temporal lobe seizures, seizures often 

begin in the hippocampus or in its surrounding area. Most of the time the cause of TLE 

is unknown and some possible causes may be previous prolonged febrile seizures brain 

injuries or head traumas. aware seizures, such as auras and focal impaired awareness 

seizures. MTLE is often associated with abnormalities on MRI scans. One of the most 

common MRI findings is scarring in the temporal lobe and is called hippocampal 

sclerosis. It may look like the hippocampus on one side, or both, has shrunk or is 

smaller. When the MRI is abnormal, seizures often do not stop with anti-epileptic 

drugs. In this case, epilepsy surgery is the next best option for many patients.  

 

Extratemporal Lobe Epilepsy (ETE or ETLE) 

Another important and more diverse seizure type is called Extratemporal Lobe 

Epilepsy, characterized by its extratemporal seizures, namely seizures that can happen 

outside of the temporal lobe, originating in the parietal, frontal or occipital lobes, or 

even more than one lobe. They have a wide spectrum of semiological presentation 

depending on the site of origin and they can be further divided and analyzed. Often 

when extratemporal seizures happen in more than one lobe, then extratemporal 

cortical resection is a surgery approach to resect, or cut away, brain tissue that contains 

the seizure focus.  

 

Epileptogenic Zone (EZ) in Epilepsy Surgery 

The epileptogenic zone (EZ) is a theoretical construct defined as the minimum amount 

of cortex to produce seizure freedom and consists of five conceptual cortical abnormal 

'zones': symptomatogenic, irritative, seizure-onset, structurally abnormal 

(epileptogenic lesion) and functional deficit. A succesful epilepsy surgery requires a 

comprehensive preoperative evaluation for the definition of the Epileptogenic Zone. 

Shortly, EZ is the area of the cortex responsible for the generation of habitual seizures 

and ideally should be resected in order to achieve seizure freedom. However, there is 

no diagnostic modality able to unambiguously delineate this zone and the surgery’s 

objective strongly requires a precise and successful identification and delineation of it 



 

57 Chapter 3 Epilepsy & Epilepsy Surgery 

[13].Until now, the only way to evaluate the epilepsy surgery is by examining the 

postsurgical outcome. If after surgery, the patient is seizure free with minimal or no 

functional deficits, then that means the EZ has been correctly identified and resected 

with no damage to the functionally relevant eloquent cortex. Because of its importance, 

there is still active research for the establishment of EZ markers that can precisely 

determine it. Some of the indicators of the EZ are the following cortical zones, that can 

estimate the EZ through diagnostic tests and systemic xamination. 

 Starting with the Seizure Onset Zone or else SOZ, it is the area of the cortex 

from which clinical seizures are generated. SOZ is considered to be the best clinical 

estimate of EZ that doctors can give, and it is removed in the majority of surgeries, as 

opposed to the actual epileptogenic zone which can be evaluated only post-surgically. 

Nevertheless, the seizure onset zone is also a zone difficult to identify because of the 

clinical seizures’ nature. Clinical seizures are unpredictable and often difficult to be 

monitored and captured completely in EEG recordings. Because of all these, the 

identification of the entire SOZ is not often precise, deviates from EZ and its removal 

still leads to a significant percentage of unsuccessful surgical outcomes. To sum up, 

SOZ and EZ are regarded as two different concepts and in some cases the full resection 

of actual SOZ does not lead to seizure-freedom, in contrast with the EZ where its full 

resection always leads to seizure-freedom. 

 Another important zone for the estimation of the EZ is the Irritative Zone 

(IZ), which is defined by the localization of interictal epileptiform discharges or else 

IEDs (known as spikes) that occur more frequently than seizures. The manifestation of 

IEDs can be detrimental to cognitive function in epilepsy syndromes[88], [89]. The 

big advantage of the IZ is that it can be evaluated during the interictal period 

independently from the occurrence of seizures. This reduces the recording time, the 

associated cost and the discomfort of patients. Nevertheless, the irritative zone is often 

more widespread than the actual EZ, and for that reason is proved to be less specific 

[90]. Respectively, because in IZ there are IEDs or else spikes, spikes are proved to be 

less specific than HFOs in HFO Zone. Furthermore, the presence of an epileptogenic 

lesion close to the irritative zone or the SOZ provides an additional marker. Finally, 

Functional Deficit Zone (FDZ) is the area of the cortex with a normal functionality 

between seizures. This zone can be defined by  a number of examinations and testings, 

such as neurological and neuropsychological examination  and functional 

neuroimaging such as SPECT and PET. 

Last but not least, High Frequency Oscillation Zone, which is our target zone of 

interest has been recently added in the research scope. From the figure 17 we can 

observe a clear correlation between the occurrence of HFO zone and the SOZ, as it is 
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been proved in many cases. In multiple studies it has been proved, that there is a spatial 

association of HFO with EZ. Some of the studies have also shown that the resection of 

the tissue generating HFO may help presurgical diagnosis and improve the surgical 

outcomes of drug-resistant patients. Despite all that, it remains challenging to 

translate HFOs as epileptogenic biomarkers into the clinical routine. One of the major 

problems that remains, is to detect and localize HFO with MEG or EEG that are 

conventional non-invasive methods. 

 
 

 

Figure 18 Schematic representation of the overlapping cortical zones in epilepsy [13]  

 

Intracranial Data  
 

Intracranial EEG (iEEG), also known as electrocorticography (ECoG) using subdural 

grid electrodes or stereotactic EEG (sEEG) using depth electrodes, is a type of 

electrophysiological monitoring that is blossoming in various fields of human 

neurosciences. Pioneered in the early 1950s by Wilder Penfield and Herbert Jasper, 

this technique uses electrodes placed directly on the exposed surface of the brain in 

contrast to conventional EEG that monitors the activity from outside the skull. When 

the EEG recordings are obtained with intracranial electrodes, we refer to it 

as intracranial EEG (iEEG) either in the form of electrocorticography (ECoG) using 

strips or grids of electrodes implanted in the subdural space), or stereotactic-

EEG (sEEG) using wires of electrodes penetrating the brain and targeting pre-defined 

deeper sites (e.g., hippocampus) without open craniotomy[64], [46]. Intracranial EEG 
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involves the surgical implantation of electrodes and is most often used for the mapping 

of epileptic foci (areas of focused seizure activity) prior to surgical interventions, when 

AED fail to work. For decades iEEG used to be applied in animal studies, in recent 

years human iEEG provides new encouraging possibilities for examining human 

cognition [72]. 

 In intracranial EEG recordings we can observe fluctuations through the 

implanted electrodes in the voltage of ionic currents produced by neurons. Generally, 

the sensors of electroencephalography are the electrodes, which form a linking bridge 

between the brain and the acquisition system. More specifically, in iEEG recordings, 

electrodes are the physical transducers that perform the analogue recording and are 

connected to amplifiers, which not only amplify, but also filter the iEEG activity. 

Intracranial data can be used to study high frequency oscillations and gamma-band 

responses. 

 One of the main advantages of iEEG is that it permits direct recording of 

electrical neurological activity on the exposed cortex, at the individual cell or cellular 

cluster-level. Other brain imaging techniques, such as fMRI or PET, rely upon signals 

from the biproducts of neural activity (for example blood oxygen level dependent-

BOLD-signal in fMRI). A second advantage of iEEG is the extremely high 

spatiotemporal resolution that offers, as well as the high signal to noise ratio-SNR. This 

can be examined in contrast to conventional scalp EEG, which has low spatial accuracy 

due to physiological barriers outside the skull. According to studies, iEEG can provide 

neurological data on the millimeter scale in terms of localization and at the millisecond 

scale can capture temporal-related activity [91].  

In contrast to EEG, the iEEG mainly provides recordings that contain local field 

potentials (LFP). The cortical field potential (CFP), a recording of the activity of a local 

population of neurons, LFP, which is the direct measurement of a single or much 

smaller group of neurons and the intracranial event-related potentials (iERP) are the 

primary derivatives of iEEG[92]. In conclusion, intracranial EEG can provide help to 

understand the nature of functional activity between different regions of the brain, as 

well as brain networks, and determine causality through neural electrical stimulation.  

 

Intracranial High Frequency Oscillations (HFO) 

In iEEG recording there are two different types of intracranial electrodes that record 

HFOs, microelectrodes and macroelectrodes (depth or subdural) [93]. High 

Frequency Oscillations are transient LFP oscillations [94] and they can be similarly 

detected with microelectrodes, with surface area 150 μm2 [95] and clinical 

macroelectrodes with surface area: 1-10 mm2 [96]. Thus, the features of HFOs are 
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related to the type of recording electrode. The EEG must be sampled above 4 times of 

the interest upper frequency, in order to form the wave shape [97]. To record HFOs 

including fast ripples as high as 500 Hz, a sample frequency of 2 000 Hz or above 

should be attained and an amplifier with wide bandwidth 0.1–500 Hz. A referential 

montage of epidural reference is used during the recording far from the suspected 

epileptogenic zone [98]. Recording HFOs with bipolar montages are also 

recommended as they can neutralize the artifacts carried by two adjacent electrodes 

[99]. After the EEG signal is filtered at the 80-250Hz Ripple band (Ripple events) and 

at the 250-500 Hz Fast Ripple band (Fast Ripple events). Mainly, only events including 

at least 4 continuous oscillations are regarded as HFOs. Events that are separated by 

at least two non-HFO oscillations , are considered to be two different events [100]. 

 In epilepsy surgery, there are many studies that have proved the spatial 

association between the HFO and the EZ and report that the removal of HFO Zone can 

lead to better surgical outcomes for drug-resistant adults and children [101]. 

Frequency spectrum analysis above 80 Hz is helpful to improve the accuracy of 

preoperative evaluation. In a study including patients with TLE and ETE epilepsy, it is 

shown that better surgical outcomes are correlated with the removal of HFO Zone in 

the whole cohort in the TLE group, but not in the ETE group [100]. Patients with good 

outcomes (ILAE classes 1–3) had significantly higher Ripple ratio between resected 

and non-resected contacts than patients with poor outcomes (ILAE classes 4–6).  

 High Frequency Oscillations are proposed progressively as a new biomarker of 

epileptogenicity, as their association and efficiency have been proven in both focal 

epilepsy and symptomatic generalized epilepsy studies. However, there are also still 

different views and debates. A few studies suggest that physiological and pathological 

HFOs largely overlap in regions and frequencies [102].  

 In conclusion, the establishment and application of HFOs as a biomarker is 

pending, as there are still disagreeing studies. In the future, with the improvement of 

imaging techniques, the localizing value of pathological HFOs for epileptic foci will be 

higher and there is hope for advancing the understanding of the pathophysiology of 

epilepsy better with HFOs. The main problem lies on the inability of current techniques 

to distinguish epileptic pathological HFOs from physiological HFOs. Thus, even 

though HFOs are surely a reliable marker of pathological brain activities and networks, 

their application and adaptation as a biomarker of SOZ in clinical practice is still foggy. 

 

Electroencephalographic characteristics of Slow Wave Sleep (SWS) 
By means of electroencephalographic (EEG) recordings, sleep comprises different 

stages that occur in a characteristic sequence in normal subjects. Deep sleep or else 
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Slow-Wave Sleep (SWS) follows the stage II sleep, which is the deepest phase of non-

rapid eye movement (non-REM) sleep and is characterized by delta waves measured 

by electroencephalography. During the first hour of sleep, the recordings show the beta 

activity, which is characterized as the waking state (Awake state) with the eyes open 

and by high-frequency and low amplitude activity (15–60 Hz, ~30 μV). When the 

frequency starts to decrease into 4-8Hz and the amplitude starts to increase (50-100 

μV), then the stage I of non-REM sleep follows with the theta waves. Descent into stage 

II non-REM sleep is characterized by 10–15 Hz oscillations (50–150 μV) called 

spindles, which occur periodically and last for a few seconds at about 10-12 Hz, 

generally 1 or 2 seconds and arise because of the interactions between thalamic and 

cortical neurons.  Then, the Stage III non-REM sleep follows and is characterized by 

slower waves at 2–4 Hz (100–150 μV). During slow wave sleep dreaming and 

sleepwalking can occur. Moving on to the Stage IV sleep or deep sleep (1 – 4 Hz), this 

phase is defined by the characteristic slow waves with high amplitude at 0.5–2 Hz 

(100–200 μV), also known as delta waves. Delta waves are polymorphic, semirhythmic 

waves accounting for at least 20% of the EEG activity in sleep stages III and IV (slow 

wave activity or else SWA). Together sleep stage III and IV are known as the slow-wave 

sleep (SWS), that is characterized by relative body immobility, is maximal in young 

years and markedly decreases with the age (the elderly may not show SWA at all during 

many nights of sleep). After reaching this level of deep sleep (last stage of non-REM 

sleep), the sequence reverses itself and a period of rapid eye movement sleep, or REM 

sleep, ensues. On average, four additional periods of REM sleep usually occur, each 

having longer durations. From the first stage of drowsiness (awake state) to the deepest 

sleep stage IV, all the sleep sequence usually lasts about an hour in a normal 

subject[103]. 

 

Figure 19 Sleep Stage Sequence in EEG recordings, from Sinauer Associates Neuroscience 2nd edition 
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Data Acquisition and equipment in iEEG  

Between EEG and iEEG, the second provides a higher spatial resolution at millimeter 

scale, a frequency bandwidth of up to 200Hz or higher (which makes ECoG more 

suitable for dealing with high gamma band than EEG), and higher signal-to-noise 

ratio. Nevertheless, iEEG has an invasive nature and that means limitation to 

generalizability of the findings, as most often only patient groups with serious 

pathology may be sampled, such as in epilepsy. Because iEEG studies are mostly 

carried out on epileptic patients, the regions studied frequently mirror the focal areas, 

the temporal and frontal lobes. Because the research takes place in a hospital, the 

ability to carry out elaborate research paradigms is often more complicated and 

limited, trials must be timed according to the participant’s condition and length of time 

since the implantation of the electrodes. Consequently, researchers may not be able to 

meticulously plan for subject participation in the same way that one can with other 

studies with conventional EEG recordings for example. As a result, obtaining iEEG 

data is time consuming and relative research includes often fewer participants than 

studies with traditional EEG. An additional challenge for the quality and the value of 

the experiments is the clinical environment itself, for example if it is a hospital setting 

or a university EEG lab. Comparing again iEEG and EEG, iEEG is clearly more rare 

and requires the involvement of trained clinicians, as well as access to a neurologist to 

determine where seizure activity has occurred. Moreover, there is  a chance that 

participants may be distracted by sounds and events outside of the researcher’s control 

and that has consequences. Different kinds of iEEG recordings exist based on the type 

of electrode used and its method of placement. As mentioned before, when the 

electrical activity in the brain is measured by using subdural grid or strip electrodes, 

then is called electrocorticography (ECoG) and in case of depth electrodes is calles 

stereotactic EEG (sEEG). Sometimes, there are cases where a combination of different 

types of electrodes may be used and may be necessary. Two main data acquisition and 

processing systems for iEEG are the Micromed system, which is an audio-video iEEG 

monitoring system for sEEG, and the Neuralynx System. 

 

Software   

About the analysis software packages, many of the available iEEG systems come with 

software packages with varying levels of detailed descriptions implemented and with 

different preprocessing tools. There are several free and commercially available 

software packages that run on MATLAB, R or Python platforms and offer alternative 

implementations of data analysis tools. In this thesis project, MATLAB is the dominant 

software used for the iEEG data preprocessing and processing, analysis, and 
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visualization. MATLAB is a high-level programming environment, easy to use and 

access large amounts of data and because the most widely used iEEG analysis packages 

are MATLAB based (for example most commonly knowns are Fieldtrip or EEGLAB), 

the ieeg dataset and the largest part of the implementation was completed here. With 

these packages it is easy to inspect and compare results from different subjects, 

compute and customize plots of data, that can be exported as pixel-based image files 

(.jpg, .bmp, .png, .tiff), vector files (.eps), or movies, which can be used to make 

presentations and publication-quality figures. Because of the high sampling rate of 

IEEG data, iEEG include generally much larger files than most of the 

electrophysiological data acquisition systems. As a result, processing iEEG files means 

that a good amount of RAM is needed. After reading the data in MATLAB memory, a 

common procedure that was also followed in this thesis, is the downsampling to reduce 

the sampling rate. Downsampling contributes to subsequent analyses run much faster 

and facilitates by doing the analysis with less RAM.  

 

Data Reading and Processing 

In this thesis, the dataset used was from a paper published in 2017 by Fedele T, Burnos 

S, Boran E, Krayenbühl N, Hilfiker P, Grunwald T, Sarnthein J . The basic motivation 

for using and experimenting with this dataset and behind the whole thesis, is that HFO 

are recognized as a potential biomarker for the SOZ. However, a remaining challenge 

is the prospective classification of epileptogenic tissue samples by individual electrode 

contacts. The University Hospital Zurich [18] provided to us the dataset and contains 

samples of long-term invasive recordings iEEG from 20 consecutive individual 

patients, who subsequently underwent epilepsy surgery. From each night recording, 

there are up to six sample intervals and each interval contains five minutes of interictal 

slow-wave sleep. IEEG recordings were made using subdural strip and grid electrodes, 

as well as depth electrodes, according to the findings of the non-invasive presurgical 

evaluation. HFOs were defined prospectively by a previously validated, automated 

algorithm in the Ripple (R, 80-250 Hz) and the Fast Ripple (FR, 250-500 Hz) 

frequency band. The HFO detector was generated and validated on datasets from the 

Montreal Neurological Institute (Burnos et al., 2016). In the sample intervals we 

detected high frequency oscillations (HFO) and the start and ending times of these 

events are included in the data set. The contacts with the highest rate of Ripples co-

occurring with FR over several five-minute time intervals, finally designated the HFO 

area.  

 According to the paper’s results of Fedele et al. 2017, the HFO area was fully 

included in the resected area in all 13 patients, who achieved seizure freedom 
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(specificity 100%) and in 3 patients where seizures reoccurred (negative predictive 

value 81%). On the other side, the HFO area was only partially resected in 4 patients 

suffering from recurrent seizures (positive predictive value 100%, sensitivity 57%). The 

clinical relevance of the HFO area was validated in the individual patient with an 

automated procedure. Thus, the resection of the prospectively defined HFO area 

proved to be highly specific and reproducible in 13/13 patients with seizure freedom, 

while it may have improved the outcome in 4/7 patients with recurrent seizures. 

Although, the neurophysiological mechanisms underlying pathological HFO still await 

clarification and more extensive research. 

 

Participants and Electrode Placement 

The total number of individual patients shaping the dataset is 20 and they all 

subsequently underwent epilepsy surgery. Subdural strips, grid electrodes, and depth 

electrodes were placed according to the findings of the non-invasive presurgical 

evaluation, depending on the individual patient’s pathology and type of epilepsy. The 

age of the patients ranges from 17 to 52 years old. About the epilepsy type, 9/20 

patients have TLE and 11/20 have ETE epilepsy. The outcome results for the patients 

after surgery are as follows: 65% completely seizure free and 35% with seizures. In 

more detail 13/20 are completely seizure free with ILAE 1, 2/7 still have seizures with 

ILAE 3, 4/7 with ILAE 5 and 1/7 with ILAE 6. 

 

Figure 20 Table of Patients, adapted from [15] 

 

 About the placement of electrodes, in TLE patients were implanted bilaterally into the 

amygdala (labels AL, AR), the entorhinal cortex (ECL, ECR), anterior hippocampus 
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(AHL, AHR) and the posterior hippocampus (PHL, PHR), depth electrodes (1.3 mm 

diameter, 8 contacts of 1.6 mm length, spacing between contacts centres 5 mm, 

ADTech®). On the other hand, in ETE patients, a combination of depth and subdural 

grid, and strip electrodes (contact diameter 4 mm with a 2.3 mm exposure, spacing 

between contact centers 10 mm, ADTech®) was placed after craniotomy. Two typical 

examples of the placement of the electrodes in the epileptic patient are illustrated 

schematically in the following figures . Post-implantation MR images were used to 

locate each contact anatomically along the electrode trajectory. 

 

Figure 21 Patient - Electrode placement, strips, grids, depth 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data Acquisition and Selection 

The intracranial data was acquired at 4000 Hz sampling frequency with an ATLAS 

recording Neuralynx system (0.5-1000 Hz pass-band, Neuralynx) and down-sampled 

to 2000 Hz for HFO analysis. Neuralynx system uses an acquisition software called 

Cheetah. Also, Neuralynx system outputs its own proprietary file formats and its 

standard setting is for each individual channel to create a separate file. These channel 

files are written into a ‘dataset directory’ and the files therein are able to be read 

concurrently. The Fieldtrip toolbox contains reading functions that work with these file 

types. Here http://www.fieldtriptoolbox.org/getting_started/neuralynx/ one can find 

the listing of the exact functions. In addition, scalp EEG were recorded according to 

the 10-20 system, with minor adaptations in order to avoid the surgical scalp lesions, 

Figure 22 Patient - Electrode placement, only depth electrodes 

http://www.fieldtriptoolbox.org/getting_started/neuralynx/
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and the submental electromyogram (EMG). The iEEG was recorded against a common 

intracranial reference and then transformed to bipolar channels for further analysis. 

About the bipolar montage, each channel represents the potential difference between 

two adjacent active electrodes and the entire montage consists of a series of such 

channels. Basically, it consists of a display in which each channel connects adjacent 

electrodes from anterior to posterior in two lines, essentially covering the parasagittal 

and temporal areas bilaterally. Moreover, for every patient for each night recording 

were selected up to six intervals of interictal slow-wave sleep and with duration 5 

minutes per interval. The number of nights and the number of intervals vary across 

patients. Sleep scoring was performed based on scalp EEG, electrooculogram, EMG 

and video recordings. The selection of intervals was carefully done and they were at 

least three hours apart from epileptic seizures, in order to eliminate the influence of 

seizure activity on the analysis. Also, all the electrode contacts, where electrical 

stimulation evoked motor or language responses were excluded from the dataset.  
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Chapter 4 Classification of Epileptic Events 
 

Feature Extraction and Feature Selection 
 
 

A prospective definition of HFO area 
In this thesis work and according to [15], so as to facilitate the HFO analysis, a 

definition of HFOs was proposed, with the purpose of providing a prospective 

definition of a clinically relevant HFO. In more detail, the focus goes to the electrode 

contacts with the HFO rate exceeding the 95% percentile of the HFO distribution and 

on ripples co-occurring with the fast ripples or else FR, thus creating a new entity called 

Fast Ripples and Ripples or else called FRandR. The designated HFO area consists of 

FRandR and the resected by the surgeon’s channels. The evaluation of the clinical 

relevance of the final defined HFO, was done by comparing the resected area (RA) with 

the HFO area and combining the experts markings with the highest-rated HFO 

channels and then by predicting the seizure outcome in the individual patient. The aim 

of this HFO definition was not to outperform the visual markings, but to evaluate 

whether the HFO area was included in the resection area and to quantify the predictive 

value of the HFO area with respect to the seizure outcome. It is worth noting, that HFO 

analysis isn't expected or intended to replace surgical planning or the surgeons’ 

decisions, but that it might provide an insightful value in difficult or ambiguous cases. 

 

 

Different types of HFO  
In the following figures we can see some example events of different HFO bands, where 

the raw and filtered signal are presented. Specifically, from top to bottom, all the HFO 

bands are illustrated. On top there is the raw signal, in the middle the filtered R band 

and on bottom the filtered FR band. The most important part of the data, where the 

focus goes in this thesis work, is the red line on the FR band, that marks the FRandR 

area. FRandR band designates the HFO area in this thesis and consists of the contacts 

with the highest rates of Ripples co-occurring with Fast Ripples over five-minute time 

intervals of interictal slow wave sleep. Thus, the red line in each event marks the 

simultaneous occurrence of R and FR, that creates the new band called FRandR. High 

Frequency Oscillations are short-lasting field potentials, that are both ictal and 

interictal phenomena and it is confirmed that are connected to normal non-

Exploratory

HFO analysis

Feature 
Selection

Classification Validation Evaluation
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pathological as well as pathological brain functions. HFOs often have at least 4 peaks, 

a mean duration of ~30 ms, an amplitude of ~5μV in ripple band and ~1μV in fast 

ripple band. 

It is also worth highlighting that there are different types and shapes of HFOs. Spikes 

are another established interictal marker for epilepsy up to 70 Hz, that is not 

completely independent of HFOs as they often occur at the same time and at the same 

brain areas. Quite often, we come across instances, where HFOs are riding spikes, 

sometimes it is visible in the unfiltered raw signal and sometimes is not. Fast ripples 

are thought to reflect population spikes from synchronous bursting cells. Sometimes, 

the HFO amplitude is irregular due to the filter effect of the sharp spike. In recent 

studies it has been concluded that HFOs can contribute to the understanding of 

epilepsy beyond the contribution of individual spikes in individual patients. In 

addition, there are also independent HFOs with no co-occurring spikes. According to 

some recent studies, all three kinds of HFOs can become in the future valuable 

biomarkers for identifying the EZ. In the following figures , we can see these basic 

different cases in our detected HFO events of slow wave sleep: 
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HFO Rates in R, FR and FRandR bands 
In the following figures are presented the computation of the HFO rates per channel of 

some characteristic patients/cases. On top of every patient is the postsurgical outcome 

ILAE, that as previously referred ranges from 1 to 6, starting from the best-case 

scenario that is seizure-free outcome ILAE 1, continuing to ILAE 3 that is recurrent 

seizures, and finishing to 5 and 6 that are the worst postsurgical cases. Every rate has 

been computed in number of events to minutes per channel. Out of all the HFO events 

detected in different channels, the channels with the HFO rate exceeding the 95% 

percentile of the HFO distribution, defines eventually the HFO area and these HFO 

channels are highlighted in green. In red colour are highlighted the channels that were 

resected by the surgeons in each individual patient. The red channels form the resected 

area for each patient. 

  According to these validation tables of channel rates and comparing them to 

the postoperative results regarding the class of ILAE, green HFO area is a subset of the 
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red resected area in most of the cases. In all the patients who achieved full seizure 

freedom, 13 out of 20 patients, the surgeons had removed areas including the HFO 

areas related to the channels with the highest FRandR event rates, 13 patients with 

fully resected HFO area out of the 13 seizure-free patients. In some cases, though with 

recurrent seizures post-surgically, the detected HFO area that is studied and 

considered to be epileptogenic, was not removed or was partially removed in 4 out of 7 

patients with recurrent seizures. In these 3 cases left, at least the HFO areas and 

guidance were consistent with the routine surgical planning. Therefore, the role of 

HFOs proves to be crucial as an indicator in this dataset, and mostly with the focus on 

FRandR. Ripples and Fast Ripples separately were also studied, but proved to be less 

specific than FRandR.  

 

Feature Extraction from HFO events 
The process of feature extraction includes unveiling hidden characteristic information 

about the input filtered signal events in FRandR band and its behavior of its sources. 

HFO events as observations are far too voluminous to be modeled directly by 

predicting modeling algorithms, such as classification. By reducing the dimensionality 

of these detected events with millions of attributes at first, the result is a much smaller 

set of characteristics, that are not redundant or strongly correlated with each other and 

can be more easily modeled. By identifying relevant features, the insight gets larger 

into the nature of the corresponding classification problem. At first, it was the HFO 

detection and second, and most importantly for this work, the classification of the 

distinctive features that determine the pathological HFO area and the non-

pathological. 

 The first steps before the feature extraction attempts, are related to the 

construction of the feature vector. The HFO events that were detected in every interval 

and in every night for each patient, are timeseries that need to be prepared as time 

segments with their own starting and ending point. At the start, an array based on the 

number of the detected events and the size of the maximum detected event in duration 

was constructed and after by cropping, any event was prepared and accessible for the 

feature computation. The rows of the feature vector are the isolated HFO events, and 

the columns are the features. At the first attempts, the feature vector contained some 

basic waveform characteristics, such as the amplitude, the mean, the median, the 

variance, the standard deviation, and the duration of the detected events. Moreover, 

some of the most basic features that describe HFOs are the negative or positive peaks 

and their maximum or minimum values, as well as the peak-to-peak amplitude. Peak-

to-peak amplitude expresses the change between the peak, that is the highest 
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amplitude value, and the trough, that is the lowest amplitude value, which can be 

negative. However, these basic descriptors are not enough, because we need more 

information to differentiate among different shapes of HFOs. 

 HFO shapes and patterns, differ depending on the frequency band, Ripples 

(80-250Hz) and Fast Ripples (250-500Hz). This variety of HFO shapes, demands an 

extensive investigation of the most likely discriminative features. It is worth noting, 

that often there is a co-occurrence between spikes and HFOs, and in the same brain 

areas. Sometimes HFOs are even visible riding the spikes in the unfiltered raw signal, 

but not always. There are also completely independent HFOs with no co-occurring 

spikes. A lot of studies investigating the interaction of both biomarkers, suggest that 

spikes can be grouped into spikes with and without HFOs co-occurring, and that spikes 

with HFOs may be more closely related to epileptogenicity than spikes without [104].  

 Other insightful features of spikes and HFOs, that are used to describe their 

distributions, are kurtosis, skewness, energy, Renyi entropy, Log-Energy entropy, 

Wavelet coefficients, median frequency in terms of the sampling rate, mean frequency, 

interquartile range, in terms of the sampling rate, number of peaks, average 

prominence of peaks, average width of peaks, and others. Other methods that have 

been tested in extracting features from intracranial EEG include Fourier Transform 

(TF) and Wavelet Transform (WT). All these features and methods of extraction were 

investigated in our case, some of which were rejected at the final feature selection. 

 Interquartile range in descriptive statistics expresses the middle half of the 

distribution. We can measure it by subtracting the Q1 value, which is the 1st quartile or 

25th percentile, from the Q3 value, which is the 3rd  quartile or 75th percentile of the 

distribution . 

 Kurtosis measures the tail-heaviness of the distribution and is defined as 

follows in the following equation. It is used to measure the outliers present in the 

distribution. The kurtosis of a normal distribution is 3, distributions that are more 

outlier-prone than the normal distribution have kurtosis greater than 3, and less 

outlier-prone have kurtosis less than 3.  

𝑘 =
𝐸 (𝜒−𝜇)4

𝜎4   

where μ is the mean of x, σ is the standard deviation of x, and E(t) represents the 

expected value of the quantity t.  

The kurtosis function computes a sample version of this population value. For that 

reason, tends to differ from the population kurtosis by a systematic amount based on 

the sample size and this kurtosis systematic bias needs to be corrected. The bias-

corrected kurtosis depends on the sample size n of every detected event and is 
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computed as in the following equations: 

𝑘1 =
1

𝑛
∑ (𝜒𝑖−𝜒̅)4𝑛

𝑖=1

    (
1

𝑛
 ∑ (𝜒𝑖−𝜒̅)2𝑛

𝑖=1 )
2   

 

𝑘0 =
(𝑛−1) ((𝑛+1)𝑘1−3(𝑛−1))

(𝑛−2) (𝑛−3)
 + 3 ,  n > 4 

 

 Skewness is a measure of the asymmetry of the data around the sample mean 

and is defined as follows in the following equation (*). In a normal distribution or in 

any perfectly symmetric distribution, the skewness is zero. If skewness is positive, the 

data spreads out more to the right of the mean than to the left. If skewness is negative, 

the data spreads out more to the left.  

𝑠 =
𝐸 (𝜒−𝜇)3

𝜎3    

where μ is the mean of x, σ is the standard deviation of x, and E(t) represents the 

expected value of the quantity t.  

The bias-corrected skewness depends on the sample size n of every detected event and 

is computed as in the following equations: 

𝑠1 =
1

𝑛
∑ (𝜒𝑖−𝜒̅)3𝑛

𝑖=1

    (√
1

𝑛
 ∑ (𝜒𝑖−𝜒̅)2𝑛

𝑖=1 )

3   

𝑠0 =
√𝑛 (𝑛−1) 

(𝑛−2) 
𝑠1   ,  n > 3  

 

Another four exploratory features based on the HFO Peaks were tested. These 

features could offer a topological view on different types of HFO and may help explore 

also new features of complex data through a geometrical perspective. More specifically, 

we extracted the number of peaks, the average prominence of the peaks, the 

average width of the peaks and finally the average value of the peaks. We 

approached the number of peaks by identifying local maxima. The prominence of a 

peak measures how much the peak stands out due to its location relative to other 

neighboring sample points (surrounding signal baseline). It is defined as the vertical 

distance between the peak and its lowest contour line. In order to find the number of 

peaks in the detected events, and knowing that HFO shape has at least 4 peaks in 

general, we mark as peaks the local maxima of the input signal. In order to make a 

better estimate of the number of peaks  in the cycle of an HFO duration, we restrict in 

time the peak-to-peak separation based on its standard deviation (threshold).  
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Figure 23 Values and Locations of Peaks in HFO, 

 in this example (Local Maxima), number of Peaks =11 

 

 
 

Figure 24 Values and Locations of Restricted Peaks in HFO, 

time restricted the peak-to-peak separation based on its standard deviation, number of peaks = 5 

 

 

 Entropy measures for epilepsy are used to quantify in a statistical sense, 

the diversity, irregularity, or uncertainty in an EEG signal. Τhe lower the 

approximate entropy, the greater the information obtained by a system, and as a result 

the greater is the statistical independence, as the signal appears to be more regular or 

repetitive. Random or irregular signals tend to have higher values for 

approximate entropy. Renyi entropy, which generalizes Shannon Entropy and min-

Entropy, is a measure of randomness. Renyi Entropy is generalizing the Kullback–

Leibler divergence, that according to it is being quantified how different is a probability 
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distribution from another. In other words, it is related to the Shannon entropy or else 

Relative entropy, where the maximum entropy corresponds to distributions that have 

identical quantities of information. Smaller values of entropy indicate repeatability 

in a signal and higher values indicate irregularity.  

HR(X) =
1

1 − 𝛼
 𝑙𝑜𝑔 ∑ 𝑝𝑖

𝛼𝑛
𝑖=1  ,  

where α≥0 and α≠1, alpha is a bias parameter, and the Shannon entropy is recovered 

in the limit as α→1 (Kullback–Leibler divergence), X= {xi: i=1, ⋯, N} with ∑ 𝑝𝑖
𝑛
𝑖=1 =  1, 

is a discrete probability distribution (PDF) with N the number of possible states of the 

system under study. In the discrete case, we define a “normalized” Shannon entropy 

(0≤H≤1) as follows: 

HS(X) =
𝑆[𝑃]

𝑆𝑚𝑎𝑥
=

{− ∑ 𝑝𝑖  𝑙𝑜𝑔(𝑝𝑖)𝑛
𝑖=1 }

𝑆𝑚𝑎𝑥
 ,  

where given a continuous PDF, f(x) with x∈Δ⊂R and∫Δf(x)dx =1, associated Shannon 

Entropy S is defined as S[f] = −∫Δf(x)log(f(x)) dx .    

 

 As temporal features, Hjorth parameters are used often in the analysis of 

electroencephalography, and they are normalised slope descriptors. These parameters 

are known as Activity, Mobility and Complexity. Activity is also known as the variance 

of the signal or else the mean power. In this feature extraction, we computed the 

mobility and the complexity, as the variance had previously been tested as a basic 

descriptor. Firstly, Mobility represents the mean frequency or else the proportion of 

standard deviation of power spectrum.  

Mobility(x) = √
𝑣𝑎𝑟(𝑥́)

𝑣𝑎𝑟(𝑥)
  

Secondly, Complexity expresses the change of mobility that is translated as frequency 

change. The parameter compares the signal's similarity to a pure sin wave, where the 

value converges to 1 if the signal is more similar. 

 

Complexity(x) =
   𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥́)  

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)
   

 

 Fractal dimension (FD) is a measure of a signal’s complexity and self-

similarity in the time domain. A fractal is a subset of Euclidean space with a fractal 

dimension, that strictly exceeds its topological dimension (FD is a non-integer 

dimension of a geometric object). In fractal geometry, the Higuchi dimension is an 

approximate value for the box-counting dimension of the graph of a real-valued 

timeseries. In biomedical signals, fractal dimension analysis is applied often, when the 

waveforms are considered geometric figures. The FD number lies in the interval 
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between 1 and 2. Generally, higher self-similarity and complexity result in higher FD. 

Higuchi’s algorithm (1988) was applied to EEG signal and was demonstrated to be the 

most appropriate for electrophysiological data. Fractal dimension as mentioned works 

directly in the time domain. Higuchi’s FD works even in the case of short signal 

segments, like the detected HFO events, and is computationally fast. Important step of 

the algorithm is the selection of the maximal scale Kmax, that in our case was 

computed based on the maximum duration of all the detected events (Kmax ~=40).  

D =
   𝑑 𝑙𝑜𝑔(𝐿(𝑘))  

 𝑑 𝑙𝑜𝑔(𝑘)
  

 

Hurst Exponent is directed related to fractal dimension and is another measure 

useful to timeseries, often referred as the “index of independence” of the predictability 

of the signal. It is a scalar between 0 and 1 which measures long-range correlations of 

a timeseries. A value of H between 0.5 and 1 indicates a time series with long-term 

positive autocorrelation, meaning both that a low value in the series will probably be 

followed by another low value, and that the values a long time into the future will also 

tend to be low and vice versa (predictability). On the other side, a value H between 0 – 

0.5 indicates a time series that switches between high and low values in adjacent pairs, 

meaning that a single high value will probably be followed by a low value, and that the 

value after that will tend to be high, with this tendency to switch between high and low 

values, lasting a long time[105]. 

 

Continuous Wavelet Transform measures the similarity between the signal and a 

Wavelet Function. One of the key powers of wavelet transform is that given any general 

function, it can be transformed into an infinite set of wavelets. Discrete Wavelet 

Transform allows the analysis of a signal in a specific segment, in our case isolated 

detected epileptic events. The procedure consists of expressing a continuous signal to 

expand coefficients of the internal product between the segment part and a mother 

wavelet function. As a result, the wavelet transform’s discretization changes from a 

continuous mapping to a finite set of values. This process is done by changing the 

integral in the definition by an approximation with summations. Hence, the 

discretization represents the signal in terms of elementary functions accompanied by 

coefficients. The mother wavelet functions include a set of scale functions. The parent 

functions represent the fine details of the signal, while the scale functions calculate an 

approximation. Thus, considering the above, a function or signal can be described as a 

summation of wavelet functions and scale functions. A signal can be decomposed into 

various levels from the time domain to the frequency domain in wavelet analysis. The 
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decomposition is done from the detail coefficients as well as the approximation 

coefficients. The upper level of the tree in wavelet decomposition represents the 

temporal representation. As the decomposition levels increase, an increase in the 

compensation in the time–frequency resolution is obtained. In the last level of the tree 

the representation of the signal frequency is described.  

At the end, the Feature Vector was proved to be optimal through is comprised of 12 

features for each detected HFO event and thus its dimensionality varies based on the 

size of the detected events and the recordings of each. After the construction of the 

feature vector for each individual patient, we can proceed to the HFO classification. In 

conclusion, the main aim of feature extraction is to end up with fewer features that can 

summarize and capture the same information, without leading the following 

classification model to underfitting.   

 

Channel Selection  

Before feature selection methods, precedes the important channel selection 

procedure, which is determined by the classification problem statement, and its value 

is assigned to the key clinical assumption. Our motivation to solve the classification 

problem was to delineate the epileptogenic zone by classifying the extracted events 

from the channels. By following a reverse-engineering approach, we started 

experimenting based on the ground truth that the surgeons resected channels related 

to epileptogenesis, and these resected channels are colored red and labeled as 1. 

According to the surgeons, all the other channels that weren’t resected should be 

related to the non-epileptic area. This area was colored salmon and labeled as 0. The 

question that arises now is how the channels associated with the highest HFO rates 

should be grouped based on the resective channels. At the start, we grouped them in a 

separate class with the label 2 and were colored green. Some of the first attempts 

included investigating the statical significant differences between the distributions of 

the green channels and the red channels, as well as green channels and salmon 

channels. It is worth noting, that in the majority of patients the green channels are a 

small subset of the red resective channels. As a result, we verified that the distributions 

of the green and red channels are similar, and in consequence, the resected events are 

related to the highest rated HFO events. Because the red and green events followed the 

same distribution, they were grouped together in the final analysis and marked as red 

events, which implies pathology. The aim was to compare their statistical significance 

to the salmon events, that eventually define the non-epileptogenic area. In conclusion, 

the events that correspond to the red channels designate the pathological HFO area or 

else the epileptogenic area (resected + highest HFO rated channels) and the events that 



 

77 

correspond to the salmon channels (remaining channels), designate the non-

pathological HFO area or else the non-epileptogenic area. 
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Feature Selection 

After systematic literature search and exploratory analysis for the feature extraction 

part, the following feature selection methods that have been applied in this work are 

supervised and more specifically filter-based and intrinsic. The goal of the filter-based 

approach for adaptive feature selection was to evaluate the relationship between each 

input variable and the target variable, and then choose the final most suitable input 

variables that will be used in the predictive classification model. Different 

combinations of features were tested in individual patients, but in the end 12 features 

gave the best prediction interpatient in the model. Some of the discriminative features 

were common in all patients. As the number of features increases, the classifier’s 

performance increases as well until we reach the optimal number of features. Adding 

more features based on the same size as the training will then degrade the classifier’s 

performance and this is known as the Hughes Phenomenon or else “The Curse of 

Dimensionality”. The first feature vector after feature extraction, included some 

irrelevant and redundant features, that didn’t result in better predictions, needed longer 

training time and made overall the learning process more difficult. For that reason, we 

moved on first to a univariate filter feature selection, that evaluates each feature 

individually such as the following statistical analysis scheme that we built in Figure 22 

and selected the 12 highest-ranking features based on their final p-values.  
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Figure 25 Statistical Analysis Tree, for the investigation of statistical significance of features 

 

At first, we check if the distributions of each individual feature grouped together form 

a normal distribution or not, by using a Lilliefors Test. In more detail, a Lilliefors 

test, just like the most hypothesis testing approaches, either rejects or accepts the null 

Hypothesis. We reject the hypothesis if the test is significant at the 5% level and that 

means the distribution is normal. The Lilliefors test evaluates the hypothesis that a set 

of data X has a normal distribution with unspecified mean and variance, against the 

alternative hypothesis, where there is not a normal distribution. This test compares the 

empirical distribution of X with normal distribution and same mean and variance as X. 

The idea is similar to the Kolmogorov-Smirnov test, but it adjusts a the point where 

the parameters of the normal distribution are estimated from X rather than specified 

in advance.  

𝐷̇ = 𝑚𝑎𝑥
𝑥

|𝐹 ̂(𝑥)  −  𝐺(𝑥)| , 

where 𝐹 ̂refers to the empirical cumulative distribution function of the sample data set 

and 𝐺 is the cumulative distribution function of the hypothesized distribution with the 

estimated parameters equal to the sample parameters (sample mean and standard 

deviation). 

By setting in our statistical analysis tree the threshold parameter alpha as a significance 

level at α=0.05, then a p-value < 0.05 is considered significant and a p-value>=0.05 is 

considered not significant. Therefore, our accepted rate of type-I errors in this decision 
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strategic approach is 0.05. The smaller the p-value, the stronger the evidence to reject 

the null hypothesis. When the distribution is not normal, we follow a non-parametric 

approach, the Wilcoxon rank-sum Test. The Wilcoxon rank-sum test is a common 

nonparametric test, sometimes also called Mann Whitney U test, and is used often as 

an alternative of a t-test for independent populations. More specifically, it is applied to 

compare the outcomes between two independent sample groups and if they have been 

derived from the same population, by comparing the medians of the two groups. The 

procedure for the test involves pooling the observations from the two samples into one 

combined sample, keeping track of which sample each observation comes from, and 

then ranking lowest to highest respectively, from 1 to (n1+n2). The R1 and R2 indicate 

the sums of the ranks in groups 1 and 2. The test statistic for the Wilcoxon rank sum 

Test is denoted as U and is the smaller of U1 and U2. The null and two-sided 

hypotheses, as well as the U statistics are stated as follows: 

 

Null hypothesis 

H0: The two populations are equal. 

Alternative hypothesis  

Ha: The two populations are not equal. 

 

𝑈1 = 𝑛1𝑛2  +
𝑛1(𝑛1+1) 

2
 − 𝑅1    

𝑈2 = 𝑛1𝑛2  +
𝑛2(𝑛2+1) 

2
 −  𝑅2  ,  

where U = U1 if U1 > U2 and U = U2 if  U1 < U2  

 

If the distribution is normal, then we check first the variances of the two discrete 

feature distributions depending on the event label, by using a two-sample F-test. The 

two-sample F-test determines if the variances of the two sets are equal. The test 

statistic F is calculated as the ratio of the two sample standard deviations of the groups 

S1 and S2. The further this ratio deviates from 1, the more likely we are to reject the null 

hypothesis. Under the null hypothesis, the test statistic F has a F-distribution with 

numerator degrees of freedom equal to (N1 – 1) and denominator degrees of freedom 

equal to (N2 – 1), where N1 and N2 are the sample sizes of the two data sets. The 

Degrees of Freedom in two samples tests, are calculated as (N1 + N2) – 2. By comparing 

the F-statistic value to the f-table value where α=0.05, then if the f-table value is 

smaller than the calculated value, we reject the null hypothesis of this test. The 

hypotheses and the F test statistic are shown below: 
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Null hypothesis  

H0: 𝑆1
2=𝑆2

2  

Alternative hypothesis 

Ha: 𝑆1
2>𝑆2

2 (one-tailed),    reject H0 if the observed F > Fα  

Ha: 𝑆1
2 ≠ 𝑆2

2 (two-tailed),   reject H0 if the observed F > Fα/2. 

F = 
𝑆1

2

𝑆2
2  ,   assuming   𝑆1

2> 𝑆2
2 

 

At the final step, we proceed to a parametric test, a two-sample T-test based on the 

equality of the variances. When the variances are unequal, we test if the null 

hypothesis, that the two data groups are from populations with equal means, is rejected 

or not, without assuming the populations also have equal variances. In the case where 

it is assumed that the two data samples are from populations with equal variances, the 

test statistic under the null hypothesis has Student's t distribution with n + m – 

2 degrees of freedom, and the sample standard deviations are replaced by the pooled 

standard deviation Seq. In the case where it is not assumed that the two data samples 

are from populations with equal variances, the test statistic under the null hypothesis 

has an approximate Student's t distribution with a number of degrees of freedom given 

by Satterthwaite's approximation. This subtype test which is an adaptation of Student’s 

T-test, with the unequal variances, is sometimes called Welch’s T-test. The T-test 

statistic is stated in general as follows: 

t =  
𝑥̅ − 𝑦̅

√𝑆𝑥
2

𝑛
 + 

𝑆𝑦
2

𝑚

  , 

Seq  = √
(𝑛  − 1)𝑆𝑥

2 + (𝑚  − 1)𝑆𝑦
2

𝑛 + 𝑚  − 2
  , 

where the means are 𝑥̅  𝑎𝑛𝑑 𝑦̅ , the sample standard deviations are 𝑆𝑥
2 𝑎𝑛𝑑 𝑆𝑦

2, the 

pooled standard deviation when the variances are equal Seq, and the sample sizes of the 

groups are n and m.  For the final p-values, the Bonferroni correction was applied. This 

correction adjusts probability (p) values because of the increased risk of a type I error 

when making multiple statistical tests. In our case, the statistical tree includes 3 tests. 

The Bonferroni correction simply takes the standard cut-off points for a significant p-

value and divides them by the number of tests that were performed. After that a “new” 

cut-off point p-value is created. In the following table is presented a ranking summary 

of the HFO feature values based on the final p-values of the previously explained 

statistical analysis tree: 
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No. Category Feature Ranking p-value 

1 Time Domain Duration 4(2.69e-106) 

2 Time Domain-

Amplitude  

Peak-to-peak 7(1.07e-39) 

3 Time Domain-

Amplitude 

Max 5(1.43e-68) 

4 Time Domain-

Amplitude 

Min 11(3.40e-18) 

5 Frequency Domain Mean Frequency 16(4.74e-09) 

6 Frequency Domain Median Frequency 13(5.46e-14) 

7 Time Domain-

Statistics 

Standard Deviation 10(3.31e-18) 

8 Frequency SNR 18(1.8527e-2) 

9 Frequency Domain - 

Energy 

Energy FFT 3(3.24e-140) 

10 Time-Frequency 

Domain 

Power Estimate 

(PSD) 

12(3.31e-15) 

11 Frequency Domain -

Entropy 

Renyi Entropy 1(7.59e-151) 

12 Frequency Domain -

Entropy 

Log-Energy Entropy 2(5.35e-145) 

13 Frequency Domain -

Entropy 

Shannon Entropy 6(4.20e-57) 

14 Time Domain-

Statistics 

Kurtosis 9(1.3321e-25) 

15 Time Domain-

Statistics 

Skewness 8(8.89e-34) 

16 Time Domain-

Complexity 

Hjorth Mobility 17(7.137e-06) 

17 Time Domain-

Complexity 

Hjorth Complexity 14(3.182e-11) 

18 Time Domain-

Complexity 

Higuchi Fractal 

Dimension 

20(3.674e-1) 

19 Time Domain-

Complexity 

Hurst Exponent 19(1.071e-1) 

20 Time Domain- Interquartile range 15(6.68e-25) 



 

83 

Statistics 

 

The existence of correlated features in isolation makes it possible to select important, 

but redundant features too. The obvious consequences of this issue are that too many 

features are chosen and, as a result, collinearity problems arise. To avoid collinearity, 

we moved on to a multivariate feature selection approach, such as the following 

correlation filter method that is shown below by using Pearson’s correlation 

coefficients. Multivariate filter methods evaluate the entire feature space, test the 

relation amongst all features in the vector and identify the most correlated. In this 

figure, we can see depicted the most correlated features of two optimal subsets of 

features for all patients. We can see the positive correlation between max and peak-to-

peak features or between entropies. Also, some interesting correlations are the 

negative correlation of min and peak-to-peak value, as well as the positive correlation 

between power and max values. 

 

 

 

The Pearson correlation coefficients is a popular statistical measure, used to 

summarize the strength of the linear relationship between two data variables, which 

can vary between 1 and -1. The coefficient returns a value between -1 and 1 range, 

representing the limits of correlation from full negative to a full positive correlation. 

When the values of one variable increase as the values of another increase, then there 

is a positive correlation or else values between 0 and 1. On the other side, when the 

values of one variable decrease as the values of another increase, that means negative 

correlation or values between 0 and -1. The value must be interpreted, where often a 

value above 0.5 or below -0.5 indicates a notable correlation and the other below values 
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suggests a less important correlation. A zero value means no linear correlation between 

the two variables. The value of the Pearson correlation coefficient is measured as in the 

following equation and is presented in a heatmap correlation of coefficients: 

 

𝑅xy =
∑ (𝜒𝑖−𝜒̅)(𝑦𝑖−𝑦̅)𝑛

𝑖=1

√∑ (𝜒𝑖−𝜒̅)2𝑛
𝑖=1     √∑ (𝑦𝑖−𝑦̅)2𝑛

𝑖=1   
   

  𝑅xy =
1

𝛮−1
 ∑ (

𝑋𝑖−𝜇𝑥

𝜎𝑥 
) (

𝑌𝑖−𝜇𝑦

𝜎𝑦 
)𝑛

𝑖=1  = 
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
 , 

 

where μx and σx are the mean and standard deviation of X, respectively, 

and μ
y
 and σ

y
 are the mean and standard deviation of Y.  The need for the two data 

samples to have Gaussian or Gaussian-like distribution. 

These filter feature selection methods, statistical and correlation, were applied before 

the classification of the events. Inside the cross-validation we used intrinsic or else 

embedded methods to measure the feature importance, as part of the learning process 

during training, on decision trees. The selected intrinsic method for Feature 

Importance was based on the Gini Impurity Index. Before moving on to the classifiers, 

feature normalization is required as the features have different ranges and is important 

to avoid bias. Normalization, also known as Min-Max scaling, is a scaling technique in 

which values are shifted and rescaled, so that they end up ranging between 0 and 1. 

Standardization is another feature scaling technique, where the values are centered 

around the mean with a unit standard deviation. Except SVM, K-nearest Neighborhood 

is also a distance-based machine learning algorithm, that is strongly affected by the 

range of the features and as a result feature scaling helps the classifier to perform better 

and faster. With standardization, the means of the attributes become zero and the 

resultant distribution has a unit standard deviation. 

 

Machine Learning Classification Approach 
 
 

Event-based Classification  
 
In this classification problem, our goal is to categorize into two classes the normal and 

abnormal events related to the epileptogenesis. As defined previously, the HFO events 

that correspond to the red channels designate the pathological HFO area or else the 

epileptogenic area (resected + highest HFO rated channels) and the events that 

correspond to the salmon channels (remaining channels), designate the non-

pathological HFO area or else the non-epileptogenic area. By solving this classification 
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problem, we differentiate the epileptic HFOs to the non-epileptic, identify the clinical 

SOZ and prove that by adding the highest HFO rated events into the epileptic area 

marked by the experts, we achieve very good results in predicting the seizure freedom 

not only intra-patient but also amongst all patients and subsets of them.  Our reverse 

engineering approach on the classification problem, led us to apply and experiment 

amongst different supervised machine learning algorithms. All classifiers have been 

applied to normalized features. The first algorithms in the list were SVM and kNN, 

which had similar mediocre performance, then tree-based ensembles were tested and 

succesfully increased the overall performance. The performance metrics of the 

proposed method were accuracy, specificity, sensitivity, recall and F1-score. Also, 

confusion matrixes are presented to explore the trade-off between different kinds of 

misclassification. Both the assessment of the classifier’s report and the feature 

selection procedure were conducted following a double Cross Validation intra-subject.  

To ensure the robustness and generalization in the inter-subject case with the 20 

patients, we implemented model optimization and the best cross validation strategy 

that followed according to its performance was the Leave One Out Cross Validation 

(Leave One Patient Out). 
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Support Vector Machines 

 

First on the algorithms’ list was to test how an SVM classifier performs with different 

kernels. The quality of the features is highly important and largely determines the SVM 

classification performance results. Support Vector Machines (SVM) is one of the 

most popular machine learning algorithms with a rigorous theoretical foundation, 

commonly used for classification and regression analysis [106], [107]. In the literature, 

SVM has been widely used on EEG data for training predictive models. An SVM 

classifier, usually separates a given set of binary labelled training data and a 

hyperplane that is maximally distant from it, by finding the maximum margin. In its 

simplest form, an SVM is a linear classifier with a line as hyperplane, that is selected 

as the best separator between two classes, for example either class 1 epileptic HFO area 

or class 1 non-epileptic area salmon events. However, there are many cases (including 

ours), that the data are not linearly separable and the SVM needs to be solved non-

linearly by using kernel tricks (mapping the feature set to a new space that the 

separation between classes becomes clearer), and then we can improve its performance 

by tuning optimization parameters[108]. A practical advantage of SVM is that even 

with high-dimensional data, different kernels can be plugged into the same learning 

machinery and studied independently of it. The best decision boundary and thus the 

optimal hyperplane is obtained by maximizing the margin between the different 

feature sets of the class. Margin is the distance between the hyperplane and the closest 

pattern (called support vectors) in each data class as shown in this figure 24: 

   

 
Figure 26 The core idea of SVM classifier (Source: Wikipedia) 

The goal of the algorithm is to choose a separating hyperplane (𝑤 ⋅ 𝑥𝑖 + 𝑏) = 0 which 

maximizes the interval between hyperplanes H1 (𝑤 ⋅ 𝑥𝑖 + 𝑏) = −1 and H2 (𝑤 ⋅ 𝑥𝑖 +

𝑏) = 1. This goal is implemented by assuming that all the training data satisfy the 

following restrictions:  
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𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 (5), 

where yi is the corresponding requested value. If yi = 1 then this means that 𝑥𝑖 belongs 

to class 1 and if yi = -1 then it belongs to class 2. Τhe distance of doted hyperplane H1 

from the beginning of the vector is | 𝑏 | + 1
‖𝑤‖⁄  and respectively the distance of H2 

from the beginning of the vector is | 𝑏 | − 1
‖𝑤‖⁄ . So, the distance between H1 and H2 

is 2 ⁄ ‖𝑤‖ and the goal is to find the optimal pair that gives the maximum space by 

minimizing the quantity ‖𝑤‖ considering the previous restrictions. This problem is 

followed by the Lagrange formulation. Given the Lagrange positive multipliers for any 

inequality constraint the Lagrange formulation and the primal problem consist of: 

𝐿𝑝 =
1

2
‖𝑤‖2 − ∑ 𝛼𝑖𝑖 [𝑦𝑖(𝑤𝑥𝑖 − 𝑏) − 1]  

𝑚𝑖𝑛
𝑤,𝑏

{𝑚𝑎𝑥
𝛼𝑖

𝐿𝑝}  

where 𝛼𝑖 are Lagrange multipliers ∀𝛼𝑖 ≥ 0. 

After substituting the Karush-Kuhn-Tucker conditions (Gale 1951) into the primal 

Lagrangian, we derive the dual Lagrangian 𝐿𝐷 and maximize it, subject to the following 

constraints : 

𝐿𝐷 =  ∑ 𝛼𝑖𝑖  −  
1

2
𝑤(𝛼)𝑤(𝛼)  

𝑤(𝛼) = ∑ 𝛼𝑖 𝑦𝑖𝑥𝑖𝑖    

𝑚𝑎𝑥
𝛼𝑖

𝐿𝐷  subject to  𝛼𝑖 ≥ 0, ∑ 𝛼𝑖𝑖 𝑦𝑖 = 0 

Those points i for which the equation 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1  holds are called support 

vectors. After training the support vector machine and deriving Lagrange multipliers 

(they are equal to 0 for non-support vectors) one can classify by the vector of 

parameters χ using the classification rule. Given a new data point x in the classifier, a 

label is assigned to it according to its relationship to the decision boundary and the 

corresponding function: 

 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(< 𝑤, 𝜑(𝑥) > −𝑏) 

The SVMs can also be easily generalized to special linear cases by adding into the 

equation (5) slack variables 𝜉𝑖 and tuning the restrictions with a new cost parameter C. 

The new parameter C characterizes the generalization of the classifier. Then we have: 

 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 −  𝜉𝑖 ,  𝜉𝑖 ≥ 0 ∀i. 

By working in a similar way to the first case, we solve the problem where the new 

restrictions are slightly different given C: 

0 ≤ 𝛼𝑖 ≤ 𝐶 

∑ 𝛼𝑖𝑖 𝑦𝑖 = 0 

It is worth noting that all the training vectors appear in the dual 𝐿𝐷 only as scalar 
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products. This means that we can apply various kernel functions Φ to transform all the 

data into a high dimensional Hilbert feature space and use linear algorithms there: 

Φ: RN → H ,  K(𝑥, 𝑥 ) = 𝛷(𝑥) ⋅ 𝛷(𝑥). 

Some basic and commonly used kernel functions are linear, polynomial, RBF, sigmoid, 

and mathematically represented as follows:  

▪ Klinear (x1, x2) =  𝑥1
𝑇𝑥2 , 

▪ Kpolynomial (x1, x2) = (𝑥1
𝑇𝑥2  +  1)𝑑 , d: polynomial order  

▪ Ksigmoid (x1, x2) =𝑡𝑎𝑛ℎ(𝛾𝑥1
𝑇𝑥2 +  𝐶) 

▪ KRBF (x1, x2) = 𝑒
−

‖𝑋1 − 𝑋2‖2

2𝜎2  =𝑒(−𝛾‖𝑋1 − 𝑋2‖2),  γ =
1

2𝜎2 

 
Figure 27 non-linearly separable data on the left, and after the kernel trick on the right the data is linearly separable 
in the feature space obtained by the kernel (source Wikipedia) 

When the data is non-linearly separable, which happens in most of the real-world data 

problems, then we choose to allow some margin violation, because is better to have a 

larger margin, even though some constraints are being violated. This approach is a 

soft-margin SVM. In this case, some datapoints will be in the incorrect side of the 

hyperplane misclassified. The loss of a misclassified point is called a slack variable and 

is added to the primal problem that we had for hard margin SVM. The slack variables 

add flexibility for misclassification in the classifier and is the main difference between 

hard and soft margin. A new regularization parameter C is measuring the tradeoff 

between minimizing the misclassification error and maximizing the margin. 

Practically, the important tuning parameters by the user are the gamma and C. The 

parameter gamma is related to how spread is the decision region, and the parameter C 

expresses the penalty for misclassifying a data point. Logarithmic scale values are 

usually used as a search area for gamma and by grid-searching C takes power of 10 

values. A large value of C results in a low bias and high variance (soft margin) leading 

to underfitting, whereas a small value of C in a higher bias and lower variance (hard 

margin) leading to overfitting. 
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Figure 28 Hard Margin Vs Soft Margin source by Donthi Suraj 

In this work, two main non-linear SVM classifiers were applied, one with a sigmoid 

kernel and one with a radial basis function (RBF). The input feature vector is already 

normalized but is recommended to be scaled with respect to a feature before being 

applied to the kernel function. When the absolute values of some features are very large 

or range widely, their inner product can be dominant in the kernel calculation. To 

prevent this from happening, we use a kernel scale in the RBF case that helps also to 

maintain the information. The RBF kernel function computes the similarity between 

data points. In the RBF kernel type, ‘σ’ is the variance and main width hyperparameter, 

and ||X₁ - X₂|| is the Euclidean distance (L₂-norm) between two points X₁, X₂. Gamma 

parameter is inversely proportional to σ and can be seen as the inverse of the radius of 

influence of samples selected by the model as support vectors. It is evident from the 

kernel type, that the width of the region of similarity changes as σ changes. Finding the 

right σ for a given dataset is crucial and can be done by using hyperparameter tuning 

techniques like grid search cross validation. The gamma parameter defines how far the 

influence of a single training example reaches, with low gamma values meaning ‘far’ 

and high values ‘close’. When gamma is very small, the model is too constrained and 

cannot capture the complexity or “shape” of the data. 

C is a trade-off between training error and the flatness of the solution. The larger C is 

the less the final training error will be, but usually increases the time needed for 

training, too. By increasing C too much, we risk losing the generalization properties of 

the classifier, because it will try to fit as best as possible all the training points. The goal 

is to find a C that keeps the training error small, but also generalizes well. In MATLAB, 

we can easily find the optimal hyperparameters of our model, that minimize the cross-

validation loss, by using Bayesian optimization. The sigmoid kernel function was 

tested with different gamma values, but the results were not as good as with the radial 

basis function, especially intrasubject.  For the implementation of SVM algorithms, we 

utilized those offered by the Statistics and Machine Learning Toolbox in MATLAB 

https://towardsdatascience.com/support-vector-machines-dual-formulation-quadratic-programming-sequential-minimal-optimization-57f4387ce4dd?source=post_page-----57f4387ce4dd--------------------------------
https://towardsdatascience.com/support-vector-machines-dual-formulation-quadratic-programming-sequential-minimal-optimization-57f4387ce4dd?source=post_page-----57f4387ce4dd--------------------------------
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software environment. 

 
 
k- Nearest Neighborhood 
 
Another fundamental algorithm in supervised machine 

learning is the distance-based k-Nearest Neighborhood 

(k-NN), used both for regression and classification 

purposes. This non-parametric algorithm calculates the 

distances between the test data and all the training 

points in order to predict correctly its class. There are 

many distance metrics available for k-NN classification 

except euclidean distance with different effects, such as correlation, Minkowsky, Chi 

square, Manhattan (also known as city block), Mahalanobis, Cosine, Hamming, and 

others. In k-NN classifier, k is the number of the nearest neighbors that are used to 

classify new points and is a tuning parameter that requires testing and validation. After 

setting the k number, the k-nearest neirhbors of the test data are found and the test 

data is classified by a plurality vote of its neighbors. Generally, odd values of k are 

preferred to avoid confusion between two classes and a common way of finding an 

approximate default value of k is to square root the total number of data points in the 

dataset. K-NN requires feature scaling, because distance measures are sensitive to 

magnitudes and with the scaling all the features are weighted equally. This classifier 

works by classifying the new data points based on the similarity measure of the earlier 

stored data.  

 

 

Decision Trees  

 

A decision tree is a non-parametric modelling approach that goes from observations 

about an item to conclusions about the item’s target values, that are represented as 

decisions in its leaves. Decision trees learn from data to approximate a sine curve in a 

tree structure with condition states and if-then-else decision rules. The 

term classification and regression trees (CART)  is an umbrella term used to refer to 

either of the above procedures, classification or regression and it was first introduced 

in 1984 [109]. For the classification trees, each leaf of a tree is labeled with a class or a 

probability distribution, signifying that the data has been classified into a certain 

subset of class. A decision tree is built by splitting the source set of data, constituting 

the root node of the tree into subsets—which constitute the successor children-nodes. 



 

91 

The deeper a tree goes, the more complex the decision rules are, and the model becomes 

fitter.  

The splitting, which is a process of partitioning the data, is based on a set of splitting 

criteria based on classification features. The concept of constructing decision trees 

usually works top-down, by selecting a variable at each step that best splits the set of 

items. There are different algorithms that use different metrics for measuring the best 

splitting procedure. Generally, they measure the homogeneity of the target variable, 

and they provide a different metric for the quality of split. Two of the most common 

metrics are Gini impurity and Information Gain. In decision trees, “impurity” is a score 

used when deciding to split a node. The most common impurities are the Gini Impurity 

and Shannon Entropy. An improvement on the Gini impurity is known as “Gini 

importance” while an improvement on the Entropy is the Information Gain. 

Some of the advantages of decision trees are that are interpretable and easy to 

understand, they can handle both numerical and categorical data, handle non-linear 

parameters efficiently and work fast. However, decision trees tend to overfit and lose 

their generalization capabilities, especially when they are particularly deep. Finally, 

they are not suitable for large data sizes, because one tree may grow complex and lead 

to overfitting. For that reason and to overcome the drawbacks of decision trees, 

Random Forest is often recommended, because RF is not relied on a single tree. 

Another common feature selection technique that we used is feature importance 

ranking from tree-based models. The feature importances are essentially the way of the 

individual trees to improve in the splitting criterion and process. In other words, it is 

how much the score “impurity” was improved when splitting the tree using that specific 

variable. These methods can be used to rank features and then select a subset of them. 

However, the feature importances should be used properly, as they suffer from biases 

and sometimes present an unexpected behavior regarding highly correlated 

features. Regardless of how strong and fast they are, the random forest feature 

importances are biased when features that have different and a lot of categories exist 

in the vector. Besides, if two features are highly correlated, both of their scores largely 

decrease, regardless of the quality of the features.  
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Ensemble learning 
 
Ensemble systems or else ensembles are obtained by combining multiple diverse 

models, such as multiple classifier systems in our classification problem. One of the 

first questions that arise at complex classification concepts are related to the selection 

of the most appropriate classifier given our data. Ensemble systems can be often – just 

like in our case- surprisingly effective and useful when dealing with lack of adequate 

data (intra-patient) or with large volumes of data (inter-patient). The core idea of 

ensemble learning can be interpreted by looking into our daily lives. When we take 

advice and opinions from multiple experts before taking a final decision about a 

medical procedure, when we read different reviews from multiple sources before a 

purchase, when we evaluate job profiles from their references, then we follow the 

ensemble learning strategy. By combining all the individual decisions of several experts 

instead of one, at the end we are able to take an optimal decision without being biased 

or irrational. Therefore, ensemble methodology imitates our need to seek several 

opinions before making a crucial decision [110]. In applied machine learning, 

ensembles are strategically generated and combined to improve the model’s 

performance, by minimizing the likelihood of an unfortunate poor model selection.  

 
Random Forests 
Random Forest as an ensemble learning algorithm, is used for both regression and 

classification purposes. Trees used for regression and trees used for classification have 

some similarities , however they also have some differences, such as the splitting 

procedure (how to split). A random forest is simply a collection of decision trees whose 

results are aggregated into one final result. Every individual decision tree is 

constructed using a bootstrap version of the training data. The original training data is 

randomly sampled-with-replacement generating small subsets of data, known as 

bootstrap samples. Then these bootstrap samples are fed as training data to many 

Figure 29 Combining classifiers with 
different decision boundaries reduce 
error (Source Scholarpedia). 
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decision trees of large depths. Each of these decision trees is trained separately on these 

bootstrap samples. This aggregation of decision trees is called the Random Forest 

ensemble. Prediction of new samples is made through a majority voting system 

between trees, where the class that has collected the most votes from all the decision 

trees, becomes the final prediction outcome of the model. While the RF is inherently 

stochastic, it is considered to be robust to noise and remains resistant to overfitting. 

This concept is also known as Bagging or Bootstrap Aggregation. The fundamental 

difference of Bagging and general Random Forests is that in Random forests only a 

subset of features is selected at random out of the total. The best split feature from the 

subset is used to split each node in a tree, unlike in the method of bagging where all 

features are considered for splitting each node. Finally, out of bag score is a way of 

validating the RF model and is computed as the number of correctly predicted rows 

from the out of bag sample. The error rate in the “out of bag” samples of all trees in the 

forest is the estimate of the generalization error of the final model. An interesting 

aspect of Random Forest is that it can be also utilized for feature importance during 

training by using the Gini impurity index. The Gini index is a measure of node 

impurity. This impurity criterion is non-parametric. For a binary split, the Gini index 

of a t node can be calculated as follows:  

𝐺(𝑡) =  1 − ∑ 𝑝(𝑗)22
𝑗=1  , 

where 𝑝 is the frequency of each 𝑗 class passing though that node. A node with just one 

class (a pure node) has zero Gini index, otherwise the Gini index is positive. The 

specific feature is important in partitioning data into two separate classes, if the Gini 

index is low (here, target is pathological HFO, and control is non pathological HFO). 

More specifically, a tree with structure T that is trained on a learning sample of size 𝑁, 

has a goal to identify at each t node, a split 𝑠𝑡 for which the sample 𝑁𝑡  that pass through 

the node, is split into two child nodes 𝑡𝑅 and 𝑡𝐿 by maximizing the decrease that follows: 

𝛥𝐺(𝑠, 𝑡) =  𝐺(𝑡) −  𝑝𝐿 𝐺(𝑡𝐿 ) −  𝑝𝑅𝐺(𝑡𝑅) ,  

where 𝑝𝐿 =  𝑁𝑡𝐿 /𝑁𝑡  , 𝑝𝑅 =  𝑁𝑡𝑅 /𝑁𝑡  . By adding all the weighted decreases of all t 

nodes using a specific feature and with 𝑋𝑚 averaged over all trees, one can obtain the 

mean decrease in Gini (MDG) index as follows: 

𝑀𝐷𝐺(𝑋𝑚) =  
1

𝑁𝑇 
∑  ∑ 𝑝(𝑡)𝛥𝐺(𝑠, 𝑡)𝑡𝜖𝑇:𝑢(𝑠𝑡)=𝑋𝑚𝑇   

where 𝑝(𝑡) = 𝑁𝑡 /𝑁 , NT is the number of trees in the forest, and 𝑢(𝑠𝑡) is the feature 

used in the split of t node. MDG index reflects the average of a variable’s total decrease 

in node impurity, weighted by the proportion of samples reaching that node across all 

trees of the ensemble model.  

In this work, we estimated the MDG index for different subsets of features across many 
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independent runs of the RF model. It is performed feature selection during training, 

and we average the results to eliminate the stochastic nature of the algorithm, so as to 

ensure a stable feature ranking. In every run we keep up to 5 features, with the highest 

MDG indices, that are considered to be the most important features. When two or more 

models with feature ranking subsets are tied in terms of performance, we choose the 

model with the fewer features. In the current work,  

For our computations, we used the MATLAB Toolbox Statistics and Machine Learning 

that offers two main objects that support bootstrap aggregation (bagging – bagged 

trees) TreeBagger and ClassificationBaggedEnsemble. The number of predictors-trees 

in the “forest” was set to 100 and the parameter concerning the number of features 

analyzed at each node to find the best split was set equal to the square root of the 

number of features. Similar approaches are followed by other studies [61, 62, 66]. 

 
Figure 30 Simplified RF Classification (Source: Medium). A RF Classifier consists of numerous decision trees. Every 
decision tree has a root node, decision nodes and leaves. The leaf node is the final output-product of each tree. 

The final prediction of Random Forests follows a majority voting system.) 

 

Bagging and Boosting 

Bootstrapping and Aggregation combined, form one ensemble model technique called 

Bagging. This technique was first proposed by Breiman (1996a,1996b). According to 

Wikpedia, Breiman's Random Forest algorithm is "Breiman's 'bagging' idea and 

random selection of features." This bagging idea is actually performed as a step within 

the Random Forest algorithm. In bagging, all features are considered for splitting a 

node, unlike in Random forests, where only a subset of features is selected at random 

out of the total and the best split feature from the subset is used to split each node in a 

decision tree. The main goal of this general technique that can be used in various 
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problem settings (both with classification and regression), is to reduce the variance 

and therefore improve tree-based predictions. The idea of bagged trees is relatively 

easy to understand. Given a sample dataset, many bootsrtapped subsamples are 

pulled. A Decision Tree is formed on each of the bootstrapped subsamples. Then, a 

prediction is applied to each bootstrap sample and finally the results are aggregated 

(in case of classification simple voting system and in case of regression by averaging). 

In the final total prediction the variance will be reduced due to the Bagging’s principle 

of averaging.  

Boosting is another ensemble approach close to bagging, but with a basic difference. 

In bagging, the models run in parallel and are independent on each other whereas in 

boosting the models run in sequence and depend on the previous models. This is the 

model’s key way of learning from previous mistakes. In contrast with bagging (simple 

averaging or voting system for the overall prediction), boosting weights each training 

example by how incorrectly was missclasified in an iterative procedure. An interesting 

aspect of boosting is the ability to track Therefore, boosting set of algorithms is 

generally less affected by overfitting. Boosting algorithms often use weak learners (i.e. 

low accurate classifiers) with the purpose to finally create a powerful “committee”, a 

strong learner (i.e highly accurate classifier). A common weak learner often used in 

boosting is a two node tree (one level), called stump. One of the most popular boosting 

techniques, suitable for binary classification that was also used in this work, is Adaptive 

Boosting, referred as AdaBoost algorithm. 

 

 

 

 

 

 

 

 

 

 

 

AdaBoost  

Adaptive Boosting (AdaBoost) algorithm was first developed and proposed by Freund 

and Schapire (1996). Boosting is considered one of the most competitive and powerful 

machine learning ideas conceived during 1990s. For that reason, AdaBoost gained very 

quickly a massive popularity. Adaptive means that the algorithm uses multiple 

Figure 31 Framework for Ensemble Learning by 
MathWorks [113] 

Figure 32 Example of A Weak 
Learner: Stump (Source: Wikipedia) 
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iterations to generate a single composite strong learner. There are two main versions 

of Adaboost and in this work we used AdaBoost.M1 from Statistics and Machine 

Learning Toolbox in MATLAB. AdaBoost.M1 is in general preferred in binary 

classification problems, whereas AdaBoost.M2 in multiclass classification. Adaptive 

Boosting uses very shallow trees, often with one level referred as stumps. The order of 

stumps is very useful and important in AdaBoost. 

Initially, the algorithm starts by selecting randomly a training subset. On iteration, 

AdaBoost model is being trained by selecting each time the train set based  on the 

accurate prediction of the previous training. In that way, the model is actually 

practicing self-learning. Then, it assigns the heigher weight to wrong classified 

observations, in oder to give to these observations in the next iteration high probability 

for classification. This is done by assigning also the weight to the trained classifier in 

each iteration according to the accuracy of the classifier.The higher weight goes to the 

more accurate classifier. All these steps are iterating until the complete training set fits 

without any error or in  most cases until reached the maximum number of estimators 

(hyperparameter). Finally, AdaBoost performs classification by “voting” across all of 

the learning-built models. The algorithmic steps of AdaBoost are further explained in 

[112] and performed comprehensively in the following frame: 

 
Figure 33 AdaBoost algorithmic steps  

 

Experimental Scenarios, Results and Evaluation  
 

Evaluation Metrics and Techniques  
For the evaluation of our results, we need to choose important metrics to ensure that 

our models are robust and can be generalized. The following performance metrics and 

validation strategies were applied in this work: 

 
Classification Report 
Some of the most important performance metrics are Accuracy, Sensitivity 

(sometimes called Recall), Specificity, Precision and F1 score. In our binary 
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classification problem, we define the statistical measures as follows: 

 
▪ Sensitivity (Recall) = 

𝑇𝑃

(𝑇𝑃+𝐹𝑁)
    

 

▪ Specificity = 
𝑇𝑁

(𝑇𝑁+𝐹𝑃)
    

 

▪ Precision (PPV or Positive Predicted Value) =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
   

 

▪ Accuracy = 
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
     

 

▪ F1 Score = 
2 Precision ×Recall

 (Precision+Recall)
 

 

▪ NPV (Negative Predictive Value) = 
𝑇𝑁

(𝑇𝑁+𝐹𝑁)
   

 
 

Where in our binary problem we have two conditions P, which is the positive condition 

that means non-epileptic event and N, which is the negative condition that means 

epileptic event. As a result, we have the True Positives (TP), which is the number of 

cases correctly identified as non-epileptic, False Positives (FP), which is the number of 

cases incorrectly identified as epileptic, True Negatives (TN), which is the number of 

cases correctly identified as epileptic and False Negatives (FN), which is the number of 

cases incorrectly identified as non-epileptic. False Positives are often called type 1 

Error (e.g. we predicted that an event is epileptic, while it’s not actually) and False 

Negatives called type 2 Error (we predicted that an event is non-epileptic, while it is 

actually). Accuracy shows us overall how often our classifier predicts correctly. 

Precision shows us from all the cases that we have predicted as positive, how many 

were actually positive. F1-score is a useful metric, that represents the harmonic mean 

between precision and sensitivity, when a model has high precision and low sensitivity 

or vice versa, because it gives a more comparable balanced result in the classification 

report. 

 
Confusion Matrix 

The confusion matrix gives us a representative visualization of the classifier’s 

performance and it is widely used in many domains. In the table, each row represents 

the instances in an actual class, while each column represents the instances in a 

predicted class or vice versa. In our problem, sensitivity measures the proportion of 

true positives in the detection of events of interest, and specificity measures the 

proportion of true negatives. In the context of HFO event classification, sensitivity 

measures the proportion of actual non-epileptic HFOs correctly classified, and 

specificity measures the proportion of correctly classifying the epileptic HFOs. An 
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example of a confusion matrix layout with the evaluation metrics that we described 

before, it is shown in the following table. 

 

 

 

Validation Strategies 

 

Scenario 1 (Individual patient) 

In the first scenario we demonstrate a nested cross-validation or else double 

cross validation that was necessary to overcome the problem of overfitting in our 

training dataset. In the training of an individual patient, the dataset available is 

imbalanced in many cases, including different seizure outcomes. More specifically, we 

avoided overfitting by splitting in the outer loop our dataset not randomly, but in a way 

that maintains the same distribution in each subset. This is a stratified split 80/20 and 

is called stratification method or stratified sampling, where the target variable is used 

to control the sampling process. The 80% will be the training dataset, which will be 

used in the inner loop as the new full dataset, and the 20% will remain unseen in the 

outer loop as test dataset that will be used in the final step. By using stratified 10-

fold cross-validation in the inner loop, we ensure that the proportion of positive to 

negative examples found in the original distribution is respected in all the folds. In the 

inner loop at every fold of 10-fold CV we train multiple machine learning  algorithms, 

such as SVM, k-NN, Random Forests. During the training of Random Forests, we get 

also the rankings from feature importance based on Mean Decrease Gini (MDG) index 

and it shows a great amount of redundancy inherent to the dataset. In the end of the 

10-fold CV, we get the best model and make with it the prediction in the outer loop 

with the unseen test data. In the outer loop we evaluate the model’s performance, while 

in the inner loop the classification procedure is being optimized (different supervised 

ML models). As a final result, the estimation of the final performance of our model 

with this technique remains unbiased and the selected features are more likely to be 

generalizable in case of unseen data. 

The graphical representation of the double cross validation strategy with the inner 10-
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fold CV applied in our experiments, are shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS SCENARIO 1 

 
PATIENT 2   ILAE 1 
#EPILEPTIC=855   #NON-EPILEPTIC=252 
Metrics Naïve Bayes SVM Bagging 
Accuracy 76,55% 86,72% ± 0.3 95,75% ± 0.1 
Sensitivity - 97,19% ± 0.3 98,12% ± 0.2 
Specificity - 51,19% ± 0.6 87,69% ± 0.2 
Precision - 87,10% ± 0.3 96,43% ± 0.1 
F1 Score - 91,87% ± 0.4 97,27% ± 0.1 

 

Figure 34 Nested (Double) Cross Validation 
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PATIENT  10   ILAE 1 
#EPILEPTIC=123   #NON-EPILEPTIC=46 
Metrics Naïve Bayes SVM Bagging 
Accuracy 70,58% 86,98% ± 0.3 92,89% ± 0.1 
Sensitivity - 97,56% ± 0.1 98,37% ± 0.1 
Specificity - 58,69% ± 0.2 78,26% ± 0.15 
Precision - 86,33% ± 0.2 92,36% ± 0.1 
F1 Score - 91,60% ± 0.15 95,27% ± 0.15 

 
 

PATIENT 8   ILAE 3 
#EPILEPTIC=273    #NON- EPILEPTIC=192 
Metrics Naïve Bayes SVM Bagging 
Accuracy 59,57% 92,90% ± 0.2 97,41% ± 0.1 
Sensitivity - 96,33% ± 0.1 97,43% ± 0.1 
Specificity - 88,02% ± 0.3 97,39% ± 0.05 
Precision - 91,95% ± 0.2 98,15% ± 0.05 
F1 Score - 94,09% ± 0.1 97,79% ± 0.1 

 
 

PATIENT 9   ILAE 5 
#EPILEPTIC =1110   #NON- EPILEPTIC=318 
Metrics Naïve Bayes SVM Bagging 
Accuracy 78,47% 87,39% ± 0.2 94,39% ± 0.1 
Sensitivity - 98,01% ± 0.3 98,82% ± 0.05 
Specificity - 50,31% ± 0.5 78,93% ± 0.15 
Precision - 87,31% ± 0.3 94,24% ± 0.1 
F1 Score - 92,35% ± 0.3 96,48% ± 0.1 

 
 

PATIENT 19   ILAE 6 
#EPILEPTIC=747   #NON-EPILEPTIC=1326 
Metrics Naïve Bayes SVM Bagging 
Accuracy 65,11% 77,95% ± 0.3 91,31% ± 0.1 
Sensitivity - 52,20% ± 0.5 82,06% ± 0.2 
Specificity - 79,59% ± 0.3 96,53% ± 0.15 
Precision - 52,20% ± 0.5 93,01% ± 0.1 
F1 Score - 63,05% ± 0.3 87,19% ± 0.15 

 

PATIENT WITH  ILAE 6 
TOP FEATURES SCORES 
Kurtosis 0.0521 

 
Duration 0.0220 

 
Min 0.0122 

 
Power 0.0054  

 
Skewness 0.0037 
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Figure 35 ROC Curves in intra-subject prediction 

 
  
 

Scenario 2 (All patients - LOPO) 

In the current scenario, we use another validation strategy based on Leave One Out 

Cross Validation (LOOCV), which is the most robust way to test a model that contains 

data on a participant level. LOOCV is normally recommended to validate models built 

on smaller datasets where a standard test/train split may introduce significant bias 

into the model. After investigating intra-subject our dataset and all 20 patients 

separately, we move on to the overall classification of all patients with all the events. 

Leave-one-patient-out cross validation (LOPO CV) is a cross validation approach that 

utilizes each individual person as a “test” set. It is a specific type of k-fold cross 

validation, where the number of folds, k, is equal to the number of patients in the 

dataset. In each iteration for 20 patients, the model needs to train on 19 patients and 

is tested on the “left out” patient. As a result, the training size each time is consisted of 

the events from 19 patients and the test size of the events of one left-out patient, that 

becomes the test-subject. At the end, in order to assess the performance metrics of the 

entire model, we average all the performance reports for each leave one out subject. 

 We decided to apply a LOOCV in all patients, with a feature vector having 

averagely a size greater than 180.000 (num of observations) x 12 (num of features)  in 

each iteration. The reason is that we wanted to make our model generalizable and 

because we had previously observed variations between some individual patients. 

However, LOPO is also the most computationally expensive amongst validation 

strategies with very low training speed in the overall process (In our case for 20 

patients the training needs around 18 hours). Obviously, the training is slower, not just 
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because of the validation strategy, but also because of the classifiers dealing with a 

larger dataset. In the following results, we can see also the ranking of features (top 5 

features for each subset) from the embedded feature importance-based selection. The 

final feature set is derived from internal feature rank after multiple iterations. For the 

Random Forest, the features selected repeatedly in the internal are used in the external 

validation. 

Figure 36 Leave One Patient Out (LOPO CV)

 

RESULTS SCENARIO 2 
 

PATIENTS WITH  ILAE 1 

TOP FEATURES SCORES 

Renyi Entropy 0.0523 
 

Peak-to-peak 0.0324 
 

Log-Energy 
Entropy 

0.03032  

Kurtosis 0.0234  

Duration 0.0089 

PATIENTS WITH  ILAE 3 
TOP FEATURES SCORES 
Max 0.04724 

 
Power 0.0316  

 
Duration 0.0182  

 
Renyi Entropy 0.0065  

 
Log-Energy 
Entropy 

0.0021 
 

PATIENTS WITH    ILAE 5 
TOP FEATURES SCORES 
Max 0.0852 

 
Power 0.0728  

 
Duration 0.0480  

 
Renyi Entropy 0.0024  
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Average Leave One Patient Out CV    
#EPILEPTIC=90174     #NON-EPILEPTIC=97040 

Metrics SVM k-NN Bagging AdaBoost 

Accuracy 67,12% ± 0.2 71,92% ± 0.1 95,92% ± 0.3 95,92% ± 0.3 
Sensitivity 68,46% ± 0.3 75,01% ± 0.2 96,00% ± 0.3 96,01% ± 0.3 
Specificity 63,24% ± 0.3 66,32% ± 0.3 95,79% ± 0.2 95,70% ± 0.2 
Precision 84,10% ± 0.2 79,92% ± 0.1 97,32% ± 0.3 97,23% ± 0.3 
F1 Score 75,47% ± 0.2 70,39% ± 0.2 95,89% ± 0.3 95,85% ± 0.3 

 
 

 
 
 
 
 
 
 
 
 

Log-Energy 
Entropy 

0.0022 
 PATIENTS WITH    ILAE 6 

TOP FEATURES SCORES 
Max 0.0521 

 
Power 0.0220  

 
Duration 0.0122 

 
Renyi Entropy 0.0054 

 
Log-Energy 
Entropy 

0.0037 
 

ACTUAL VALUES 

P
R

E
D

IC
T

E
D

 V
A

L
U

E
S SVM 0 (non-epileptic) 1 (epileptic) 

0
 

51.61%  
(TP) 

94771 

8.57%  
(FP) 

17923 

1
 

22.35%  
(FN) 

43720 

17.45%  
(TN) 

30800 
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ADAboost LOPOCV 

ACTUAL VALUES 

P
R

E
D

IC
T

E
D

 V
A

L
U

E
S Bagging 0 (non-epileptic) 1 (epileptic) 

0
 

58.56%  
(TP) 

109640 

2.3%  
(FP) 
4558 

1
 

1.62%  
(FN) 
3054 

37.37%  
(TN) 

69962 
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k-NN LOPOCV 

 
 

 

ACTUAL VALUES 

P
R

E
D

IC
T

E
D

 V
A

L
U

E
S AdaBoost 0 (non-epileptic) 1 (epileptic) 

0
 

58.56% 
(TP) 

109520 

1.7% 
(FP) 
3174 

1
 

2.4% 
(FN) 
4492 

37.37% 
(TN) 

70028 

ACTUAL VALUES 
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Figure 37 Out Of Bag Error in Bagging RF, expresses the misclassification probability during training 

 
 

 

 

 

 

 

Hyperparameter Tuning 

For each classifier, an iterative approach was followed in order to tune our model with 

the best set of optimal hyperparameters during training. By grid searching, we tried to 

find this optimal combination of hyperparameters. At first, we checked several default 

and proposed parameters in order to reject the less important, and then a 10-fold CV 

was performed, so as to select the best set of parameters that define the best model. In 

the literature, both SVM and tree-based algorithms are proposed with good results in 

dealing with intracranial data, but yet there is no way of knowing which is the best 

classifier in all cases, as it strongly depends on the datasets (and nature of the 

problem).  

 

P
R

E
D

IC
T

E
D

 V
A

L
U

E
S k-NN 0 (non-epileptic) 1 (epileptic) 

0
 

48.04%  
(TP) 

90014 

12.11%  
(FP) 

22680 
1

 
15.00%  

(FN) 
29959 

24.80%  
(TN) 

44561 
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Figure 38  COMPARISON TABLE OF ALGORITHMS 

 
1 In the training process, 𝑛 is the number of training samples, p is the number of features and 𝑛𝑡𝑟𝑒𝑒𝑠  is 

the number of trees  

Algorithms Hyperparameters (Tuning) Training1 Comparison 

 

SVM  

(Non-linear) 

▪ Kernel Function 

▪ Gamma 

▪ C  

        

       Very Slow 

O(𝑛2p+𝑛3) 

Generally good 

performance, but 

difficult to train 

inter-subject 

where the 

dataset is big   

 

k-NN 

▪ Distance function 

▪ K 

 

Moderate 

Mediocre 

performance, 

interpretable 

 

 

Decision Trees 

▪ Max features 

▪ Split criterion 

▪ Min samples leaf 

▪ Min samples split 

 

 

Moderate 

O(𝑛2p) 

 
Good performance, 
prone to overfitting 

 

 

Random Forests  

(Bagging) 

▪ Max features 

▪ Split criterion 

▪ Min samples leaf 

▪ N estimators 

 

 

   Slow 

O(𝑛2p 𝑛𝑡𝑟𝑒𝑒𝑠) 

High performance 

intra-subject and 

inter-subject 

(medium and big 

datasets) 

 

 

Boosting 

▪ Max features 

▪ Min samples leaf 

▪ N estimators 

▪ Learning rate 

 

 

   Slow 

High 

performance 

intra-subject and 

inter-subject 

(medium and big 

datasets) 
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Chapter 5 Conclusions & Future Work 
Drug-resistant patients constitute a significant percentage of clinical epilepsy, having 

the greatest burden of epilepsy-related disabilities. The best treatment choice for these 

complex cases is resective surgery. Multiple studies, have shown that HFO Zone is 

spatially associated with the Epileptogenic Zone and with HFO guidance in surgical 

treatment, we could increase the rate of seizure-free outcomes. Despite the 

encouraging findings over the last few years, there are still challenges and limitations 

for the establishment of HFOs as epileptogenic biomarkers to the clinical practice. 

Epileptic phenomena are dynamic and complex. There is also still a major barrier in 

detecting and localizing epileptic HFOs with non-invasive techniques, such as 

traditional scalp-EEG or MEG.  Scalp-HFOs could be considered long-term indicators 

and might help in future identification of the Seizure Onset Zone in a larger group of 

epileptic patients. The main purpose of this thesis was to investigate HFO 

morphological characteristcs, provide a distinct separation of pathological from non-

pathological HFO and thus determine a clinically relevant HFO area. Up to now, the 

current techniques determine HFO area by its persistence in time and by testing 

against random effects. With this approach we might be able to avoid this by checking 

HFO's spectral and morphological features. Our results in the present work, indicate 

that the proposed machine learning approach with the HFO extracted features and 

their event-based classification, delineates succesfully and precisely the epileptogenic 

zone in the individual patient. Moreover, we validated that the co-occurrence of 

Ripples and Fast Ripples designated the pathological HFO area with higher 

performance, than Ripples and Fast Ripples separately. HFO analysis showed that the 

HFO Zone is critical for the seizure outcome whether it is within the Seizure Onset 

Zone or outside. This prospective automated HFO definition proved to be reproducible 

in all patients, even in the most difficult ones according to their seizure outcome. With 

the current techniques, mostly drug-resistant patients that need to undergo epilepsy 

surgery may profit from the benefit of HFO as a biomarker in iEEG.  

As for future steps,  we suggest to make our classification models more generalizable 

by training and evaluating with a larger sufficient dataset and different epileptic cases. 

We could also apply different feature selection techniques and test deep learning 

approaches, for example transfer learning or Convolutional Neural Networks for 

improving HFO detection. A comparison between the efficiency of event-level and 

channel-wise HFO characterization would be also useful. Moreover, further 

experimentation and analysis of the electrophysiological content of the HFOs could 
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lead to better insights in relation with other cortical zones that are estimators of the 

Epileptogenic Zone. Finally, an important prerequisite for the establishment of HFOs 

in the clinical routine is more multicentre studies and research trials. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

110 Chapter 5 Conclusions & Future Work 

References 
[1] “About Neuroscience,” Department of Neuroscience. https://neuro.georgetown.edu/about-

neuroscience/  
[2] “Computational Neuroscience in Epilepsy - 1st Edition.” 

https://www.elsevier.com/books/computational-neuroscience-in-epilepsy/soltesz/978-0-
12-373649-9  

[3] D. Sterratt, B. Graham, A. Gillies, and D. Willshaw, Principles of Computational Modelling in 
Neuroscience. Cambridge: Cambridge University Press, 2011. doi: 
10.1017/CBO9780511975899. 

[4] V. Lai, H. K. Mak, A. W. Y. Yung, W. Y. Ho, and K. N. Hung, “Neuroimaging techniques in 
epilepsy,” Hong Kong Med. J. Xianggang Yi Xue Za Zhi, vol. 16, no. 4, pp. 292–298, Aug. 2010. 

[5] C. Juhász and F. John, “Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-
lesional pediatric epilepsy,” Seizure, vol. 77, pp. 15–28, Apr. 2020, doi: 
10.1016/j.seizure.2019.05.008. 

[6] B. E. Youngerman, A. V. Save, and G. M. McKhann, “Magnetic Resonance Imaging-Guided 
Laser Interstitial Thermal Therapy for Epilepsy: Systematic Review of Technique, 
Indications, and Outcomes,” Neurosurgery, vol. 86, no. 4, pp. E366–E382, Apr. 2020, doi: 
10.1093/neuros/nyz556. 

[7] E. H. Reynolds, “Epilepsy and Neuroscience: Evolution and Interaction,” Front. Neuroanat., 
vol. 14, p. 25, 2020, doi: 10.3389/fnana.2020.00025. 

[8] R. A. Stefanescu, R. G. Shivakeshavan, and S. S. Talathi, “Computational models of epilepsy,” 
Seizure, vol. 21, no. 10, pp. 748–759, Dec. 2012, doi: 10.1016/j.seizure.2012.08.012. 

[9] F. Wendling, “Computational models of epileptic activity: a bridge between observation and 
pathophysiological interpretation,” Expert Rev. Neurother., vol. 8, no. 6, pp. 889–896, Jun. 
2008, doi: 10.1586/14737175.8.6.889. 

[10] L. Dalic and M. J. Cook, “Managing drug-resistant epilepsy: challenges and solutions,” 
Neuropsychiatr. Dis. Treat., vol. 12, pp. 2605–2616, Oct. 2016, doi: 10.2147/NDT.S84852. 

[11] M.-C. Picot et al., “Cost-effectiveness analysis of epilepsy surgery in a controlled cohort of 
adult patients with intractable partial epilepsy: A 5-year follow-up study,” Epilepsia, vol. 57, 
no. 10, pp. 1669–1679, Oct. 2016, doi: 10.1111/epi.13492. 

[12] F. Rosenow and H. Lüders, “Presurgical evaluation of epilepsy,” Brain J. Neurol., vol. 124, no. 
Pt 9, pp. 1683–1700, Sep. 2001, doi: 10.1093/brain/124.9.1683. 

[13] E. Tamilia, J. R. Madsen, P. E. Grant, P. L. Pearl, and C. Papadelis, “Current and Emerging 
Potential of Magnetoencephalography in the Detection and Localization of High-Frequency 
Oscillations in Epilepsy,” Front. Neurol., vol. 8, p. 14, 2017, doi: 10.3389/fneur.2017.00014. 

[14] M. Dümpelmann, J. Jacobs, and A. Schulze-Bonhage, “Temporal and spatial characteristics of 
high frequency oscillations as a new biomarker in epilepsy,” Epilepsia, vol. 56, no. 2, pp. 
197–206, 2015, doi: 10.1111/epi.12844. 

[15] T. Fedele et al., “Resection of high frequency oscillations predicts seizure outcome in the 
individual patient,” Sci. Rep., vol. 7, no. 1, p. 13836, Oct. 2017, doi: 10.1038/s41598-017-
13064-1. 

[16] B. Elahian, M. Yeasin, B. Mudigoudar, J. W. Wheless, and A. Babajani-Feremi, “Identifying 
seizure onset zone from electrocorticographic recordings: A machine learning approach 
based on phase locking value,” Seizure, vol. 51, pp. 35–42, Oct. 2017, doi: 
10.1016/j.seizure.2017.07.010. 

[17] Y. Varatharajah et al., “Integrating artificial intelligence with real-time intracranial EEG 
monitoring to automate interictal identification of seizure onset zones in focal epilepsy,” J. 
Neural Eng., vol. 15, no. 4, p. 046035, Aug. 2018, doi: 10.1088/1741-2552/aac960. 

[18] “About HFO Zurich,” HFO Zurich. https://hfozuri.ch/research/ (accessed Oct. 08, 2021). 
[19] D. Lai et al., “Channel-Wise Characterization of High Frequency Oscillations for Automated 

Identification of the Seizure Onset Zone,” IEEE Access, vol. 8, pp. 45531–45543, 2020, doi: 
10.1109/ACCESS.2020.2978290. 

[20] S. Chaibi, Z. Sakka, T. Lajnef, M. Samet, and A. Kachouri, “Automated detection and 
classification of high frequency oscillations (HFOs) in human intracerebral EEG,” Biomed. 
Signal Process. Control, vol. 8, pp. 927–934, Oct. 2013, doi: 10.1016/j.bspc.2013.08.009. 

[21] N. Sciaraffa, M. A. Klados, G. Borghini, G. Di Flumeri, F. Babiloni, and P. Aricò, “Double-Step 
Machine Learning Based Procedure for HFOs Detection and Classification,” Brain Sci., vol. 
10, no. 4, Art. no. 4, Apr. 2020, doi: 10.3390/brainsci10040220. 



 

111 Προσθήκη μιας επικεφαλίδας στο έγγραφό σας 

[22] S. A. Weiss et al., “Localizing epileptogenic regions using high-frequency oscillations and 
machine learning,” Biomark. Med., vol. 13, no. 5, pp. 409–418, doi: 10.2217/bmm-2018-
0335. 

[23] “Multiband entropy-based feature-extraction method for automatic identification of 
epileptic focus based on high-frequency components in interictal iEEG | Scientific Reports.” 
https://www.nature.com/articles/s41598-020-62967-z (accessed Oct. 09, 2021). 

[24] H. Sugondo, A. Suci, and R. Achmad, “Quantitative EEG based on Renyi Entropy for Epileptic 
Classification,” p. 6. 

[25] Y. Zhang et al., Refining epileptogenic high-frequency oscillations using deep learning: a 
reverse engineering approach. 2021. doi: 10.1101/2021.08.31.458385. 

[26] H. O. Lüders, I. Najm, D. Nair, P. Widdess-Walsh, and W. Bingman, “The epileptogenic zone: 
general principles,” Epileptic. Disord., vol. 8, no. 2, pp. 1–9, Sep. 2006. 

[27] “About ILAE // International League Against Epilepsy.” https://www.ilae.org/about-ilae  
[28] J. Jacobs, P. LeVan, C.-É. Châtillon, A. Olivier, F. Dubeau, and J. Gotman, “High frequency 

oscillations in intracranial EEGs mark epileptogenicity rather than lesion type,” Brain J. 
Neurol., vol. 132, no. Pt 4, pp. 1022–1037, Apr. 2009, doi: 10.1093/brain/awn351. 

[29] “A Neurosurgeon’s Overview the Brain’s Anatomy.” https://www.aans.org/). 
[30] “AANS Patient Resources - Neurosurgical Conditions and Treatments.” 

https://www.aans.org/  
[31] “ORGANIZATION OF THE NERVOUS SYSTEM - THE NERVOUS SYSTEM - Medical 

Physiology, 2e Updated Edition: with STUDENT CONSULT Online Access, 2e (MEDICAL 
PHYSIOLOGY (BORON)) 2nd Ed.” https://doctorlib.info/physiology/medical-physiology-
molecular/11.html 

[32] “Neuroanatomy: The Basics,” Dana Foundation. 
https://www.dana.org/article/neuroanatomy-the-basics/  

[34] “Nerve Tissue | SEER Training.” 
https://training.seer.cancer.gov/anatomy/nervous/tissue.html  

[35] “Peripheral nervous system - Queensland Brain Institute - University of Queensland.” 
https://qbi.uq.edu.au/brain/brain-anatomy/peripheral-nervous-system  

[36] “Introduction to the Nervous System | SEER Training.” 
https://training.seer.cancer.gov/anatomy/nervous/  

[37] “Action potentials and synapses,” Nov. 22, 2016. https://qbi.uq.edu.au/brain-
basics/brain/brain-physiology/action-potentials-and-synapses  

[38] “What Are Glial Cells and What Do They Do?” Verywell Health. 
https://www.verywellhealth.com/what-are-glial-cells-and-what-do-they-do-4159734  

[39] “Types of glia,” Nov. 22, 2016. https://qbi.uq.edu.au/brain-basics/brain/brain-
physiology/types-glia 

[40] E. G. Jones and A. Peters, Eds., Cerebral Cortex: Comparative Structure and Evolution of 
Cerebral Cortex, Part II. Springer US, 1990. doi: 10.1007/978-1-4615-3824-0. 

[41] “Lobes of the Brain | Introduction to Psychology.” 
https://courses.lumenlearning.com/waymaker-psychology/chapter/reading-parts-of-the-
brain/ 

[42] “Lobes of the brain,” Dec. 02, 2016. https://qbi.uq.edu.au/brain/brain-anatomy/lobes-
brain  

[43] I. M. Colrain, C. L. Nicholas, and F. C. Baker, “Alcohol and the Sleeping Brain,” Handb. Clin. 
Neurol., vol. 125, pp. 415–431, 2014, doi: 10.1016/B978-0-444-62619-6.00024-0. 

[44] “The Functional Significance of Theta and Upper Alpha Oscillations. - PsycNET.” 
https://psycnet.apa.org/doiLanding?doi=10.1027%2F1618-3169.52.2.99  

[45] B. R. Cornwell, L. L. Johnson, T. Holroyd, F. W. Carver, and C. Grillon, “Human Hippocampal 
and Parahippocampal Theta during Goal-Directed Spatial Navigation Predicts Performance 
on a Virtual Morris Water Maze,” J. Neurosci., vol. 28, no. 23, pp. 5983–5990, Jun. 2008, doi: 
10.1523/JNEUROSCI.5001-07.2008. 

[46] G. Pfurtscheller and A. Aranibar, “Event-related cortical desynchronization detected by 
power measurements of scalp EEG,” Electroencephalogr. Clin. Neurophysiol., vol. 42, no. 6, 
pp. 817–826, Jun. 1977, doi: 10.1016/0013-4694(77)90235-8. 

[47] K. D. Rana and L. M. Vaina, “Functional Roles of 10 Hz Alpha-Band Power Modulating 
Engagement and Disengagement of Cortical Networks in a Complex Visual Motion Task,” 
PLoS ONE, vol. 9, no. 10, p. e107715, Oct. 2014, doi: 10.1371/journal.pone.0107715. 

[48] O. M. Klimecki, S. Leiberg, M. Ricard, and T. Singer, “Differential pattern of functional brain 



 

112 Chapter 5 Conclusions & Future Work 

plasticity after compassion and empathy training,” Soc. Cogn. Affect. Neurosci., vol. 9, no. 6, 
pp. 873–879, Jun. 2014, doi: 10.1093/scan/nst060. 

[49] C. Lainscsek, M. E. Hernandez, J. Weyhenmeyer, T. J. Sejnowski, and H. Poizner, “Non-Linear 
Dynamical Analysis of EEG Time Series Distinguishes Patients with Parkinson’s Disease 
from Healthy Individuals,” Front. Neurol., vol. 4, p. 200, Dec. 2013, doi: 
10.3389/fneur.2013.00200. 

[50] O. Dimigen, M. Valsecchi, W. Sommer, and R. Kliegl, “Human Microsaccade-Related Visual 
Brain Responses,” J. Neurosci. Off. J. Soc. Neurosci., vol. 29, pp. 12321–31, Sep. 2009, doi: 
10.1523/JNEUROSCI.0911-09.2009. 

[51] “Who Gets Epilepsy?” Epilepsy Foundation. https://www.epilepsy.com/learn/about-
epilepsy-basics/who-gets-epilepsy  

[52] “Types of Seizures | Johns Hopkins Medicine.” 
https://www.hopkinsmedicine.org/health/conditions-and-diseases/epilepsy/types-of-
seizures  

[53] “Epilepsy: A Comprehensive Textbook.” https://www.ilae.org/education/books-on-
epilepsy/epilepsy-a-comprehensive-textbook  

[54] “Treating Seizures and Epilepsy,” Epilepsy Foundation. 
https://www.epilepsy.com/learn/treating-seizures-and-epilepsy  

[55] S. T. Sarmast, A. M. Abdullahi, and N. Jahan, “Current Classification of Seizures and 
Epilepsies: Scope, Limitations and Recommendations for Future Action,” Cureus, vol. 12, no. 
9, p. e10549, doi: 10.7759/cureus.10549. 

[56] F. M. C. Besag and M. J. Vasey, “Prodrome in epilepsy,” Epilepsy Behav. EB, vol. 83, pp. 219–
233, Jun. 2018, doi: 10.1016/j.yebeh.2018.03.019. 

[57] “Seizures,” Epilepsy Canada Epilepsi. https://www.epilepsy.ca/seizures  
[58] J. J. Falco-Walter, I. E. Scheffer, and R. S. Fisher, “The new definition and classification of 

seizures and epilepsy,” Epilepsy Res., vol. 139, pp. 73–79, Jan. 2018, doi: 
10.1016/j.eplepsyres.2017.11.015. 

[59] G. H. Glover, “Overview of Functional Magnetic Resonance Imaging,” Neurosurg. Clin. N. Am., 
vol. 22, no. 2, pp. 133–139, Apr. 2011, doi: 10.1016/j.nec.2010.11.001. 

[60] F. Pittau, F. Dubeau, and J. Gotman, “Contribution of EEG/fMRI to the definition of the 
epileptic focus,” Neurology, vol. 78, pp. 1479–87, Apr. 2012, doi: 
10.1212/WNL.0b013e3182553bf7. 

[61] D. Caligari Conti, “Magnetic Resonance Imaging,” Mar. 2016. 
[62] G. D. Rubin, “Computed tomography: revolutionizing the practice of medicine for 40 years,” 

Radiology, vol. 273, no. 2 Suppl, pp. S45-74, Nov. 2014, doi: 10.1148/radiol.14141356. 
[63] “Computed Tomography - an overview | ScienceDirect Topics.” 

https://www.sciencedirect.com/topics/neuroscience/computed-tomography  
[64] H. Health, “Patient Basics: Positron Emission Tomography (PET Scan) | 2 Minute Medicine,” 

Nov. 09, 2014. https://www.2minutemedicine.com/patient-basics-positron-emission-
tomography-pet-scan/  

[65] J. J. Vaquero and P. Kinahan, “Positron Emission Tomography: Current Challenges and 
Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems,” 
Annu. Rev. Biomed. Eng., vol. 17, pp. 385–414, 2015, doi: 10.1146/annurev-bioeng-071114-
040723. 

[66] K. Lameka, M. D. Farwell, and M. Ichise, “Chapter 11 - Positron Emission Tomography,” in 
Handbook of Clinical Neurology, vol. 135, J. C. Masdeu and R. G. González, Eds. Elsevier, 
2016, pp. 209–227. doi: 10.1016/B978-0-444-53485-9.00011-8. 

[67] “EEG (Electroencephalography): The Complete Pocket Guide,” Imotions Publish, Aug. 27, 
2019. https://imotions.com/blog/eeg/  

[68] “Frontiers | Epileptic neuronal networks: methods of identification and clinical relevance. | 
Neurology.” https://www.frontiersin.org/articles/10.3389/fneur.2013.00008/full  

[69] G. Buzsáki, C. A. Anastassiou, and C. Koch, “The origin of extracellular fields and currents — 
EEG, ECoG, LFP and spikes,” Nat. Rev. Neurosci., vol. 13, no. 6, pp. 407–420, Jun. 2012, doi: 
10.1038/nrn3241. 

[70] M. Cohen, “It’s about Time,” Front. Hum. Neurosci., vol. 5, p. 2, 2011, doi: 
10.3389/fnhum.2011.00002. 

[71] A. K. Shah and S. Mittal, “Invasive electroencephalography monitoring: Indications and 
presurgical planning,” Ann. Indian Acad. Neurol., vol. 17, no. Suppl 1, pp. S89–S94, Mar. 
2014, doi: 10.4103/0972-2327.128668. 



 

113 Προσθήκη μιας επικεφαλίδας στο έγγραφό σας 

[72] J. Parvizi and S. Kastner, “Human Intracranial EEG: Promises and Limitations,” Nat. 
Neurosci., vol. 21, no. 4, pp. 474–483, Apr. 2018, doi: 10.1038/s41593-018-0108-2. 

[73] Y. Wang et al., “Expert consensus on clinical applications of high-frequency oscillations in 
epilepsy,” Acta Epileptol., vol. 2, no. 1, p. 8, Jun. 2020, doi: 10.1186/s42494-020-00018-w. 

[74] A. Bragin, C. L. Wilson, J. Almajano, I. Mody, and J. Engel, “High-frequency oscillations after 
status epilepticus: epileptogenesis and seizure genesis,” Epilepsia, vol. 45, no. 9, pp. 1017–
1023, Sep. 2004, doi: 10.1111/j.0013-9580.2004.17004.x. 

[75] “Hippocampal and entorhinal cortex high-frequency oscillations (100--500 Hz) in human 
epileptic brain and in kainic acid--treated rats with chronic seizures - PubMed.” 
https://pubmed.ncbi.nlm.nih.gov/9952257/ (accessed Oct. 08, 2021). 

[76] A. Bragin, S. K. Benassi, F. Kheiri, and J. Engel, “Further evidence that pathologic high-
frequency oscillations are bursts of population spikes derived from recordings of identified 
cells in dentate gyrus,” Epilepsia, vol. 52, no. 1, pp. 45–52, Jan. 2011, doi: 10.1111/j.1528-
1167.2010.02896.x. 

[77] L. P. Andrade-Valenca, F. Dubeau, F. Mari, R. Zelmann, and J. Gotman, “Interictal scalp fast 
oscillations as a marker of the seizure onset zone,” Neurology, vol. 77, no. 6, pp. 524–531, 
Aug. 2011, doi: 10.1212/WNL.0b013e318228bee2. 

[78] “High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-
resistant focal epilepsy.” https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712982/  

[79] S. A. Weiss et al., “Ictal high frequency oscillations distinguish two types of seizure 
territories in humans,” Brain J. Neurol., vol. 136, no. Pt 12, pp. 3796–3808, Dec. 2013, doi: 
10.1093/brain/awt276. 

[80] T. Akiyama et al., “Focal resection of fast ripples on extraoperative intracranial EEG 
improves seizure outcome in pediatric epilepsy,” Epilepsia, vol. 52, no. 10, pp. 1802–1811, 
Oct. 2011, doi: 10.1111/j.1528-1167.2011.03199.x. 

[81] K. Kerber et al., “Differentiation of specific ripple patterns help to identify epileptogenic 
areas for surgical procedures,” Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol., vol. 125, 
Dec. 2013, doi: 10.1016/j.clinph.2013.11.030. 

[82] J. Jacobs et al., “Removing high-frequency oscillations: A prospective multicenter study on 
seizure outcome,” Neurology, vol. 91, no. 11, pp. e1040–e1052, Sep. 2018, doi: 
10.1212/WNL.0000000000006158. 

[83] J. Xiang et al., “Quantification of Interictal Neuromagnetic Activity in Absence Epilepsy with 
Accumulated Source Imaging,” Brain Topogr., vol. 28, no. 6, pp. 904–914, Nov. 2015, doi: 
10.1007/s10548-014-0411-5. 

[84] C. Hatlestad-Hall et al., Source-level EEG and graph theory reveal widespread functional 
network alterations in focal epilepsy. 2020. doi: 10.1101/2020.12.17.20248426. 

[85] I. E. Scheffer et al., “ILAE classification of the epilepsies: Position paper of the ILAE 
Commission for Classification and Terminology,” Epilepsia, vol. 58, no. 4, pp. 512–521, 
2017, doi: 10.1111/epi.13709. 

[86] “Types of Epilepsy Surgery,” Epilepsy Foundation. 
https://www.epilepsy.com/learn/treating-seizures-and-epilepsy/surgery/types-epilepsy-
surgery 

[87] “Temporal Lobe Epilepsy (TLE),” Epilepsy Foundation. 
https://www.epilepsy.com/learn/types-epilepsy-syndromes/temporal-lobe-epilepsy-aka-
tle  

[88] D. Cheng, X. Yan, K. Xu, X. Zhou, and Q. Chen, “The effect of interictal epileptiform discharges 
on cognitive and academic performance in children with idiopathic epilepsy,” BMC Neurol., 
vol. 20, no. 1, p. 233, Jun. 2020, doi: 10.1186/s12883-020-01807-z. 

[89] Y. Lv, Z. Wang, L. Cui, D. Ma, and H. Meng, “Cognitive correlates of interictal epileptiform 
discharges in adult patients with epilepsy in China,” Epilepsy Behav. EB, vol. 29, no. 1, pp. 
205–210, Oct. 2013, doi: 10.1016/j.yebeh.2013.07.014. 

[90] A. Hufnagel, M. Dümpelmann, J. Zentner, O. Schijns, and C. E. Elger, “Clinical relevance of 
quantified intracranial interictal spike activity in presurgical evaluation of epilepsy,” 
Epilepsia, vol. 41, no. 4, pp. 467–478, Apr. 2000, doi: 10.1111/j.1528-1157.2000.tb00191.x. 

[91] A. B. Martin et al., “Temporal dynamics and response modulation across the human visual 
system in a spatial attention task: an ECoG study,” J. Neurosci., Nov. 2018, doi: 
10.1523/JNEUROSCI.1889-18.2018. 

[92] J.-P. Lachaux, N. Axmacher, F. Mormann, E. Halgren, and N. E. Crone, “High-frequency neural 
activity and human cognition: past, present and possible future of intracranial EEG 



 

114 Chapter 5 Conclusions & Future Work 

research,” Prog. Neurobiol., vol. 98, no. 3, pp. 279–301, Sep. 2012, doi: 
10.1016/j.pneurobio.2012.06.008. 

[93] M. Zijlmans, P. Jiruska, R. Zelmann, F. S. S. Leijten, J. G. R. Jefferys, and J. Gotman, “High-
Frequency Oscillations as a New Biomarker in Epilepsy,” Ann. Neurol., vol. 71, no. 2, pp. 
169–178, Feb. 2012, doi: 10.1002/ana.22548. 

[94] A. Bragin, I. Mody, C. L. Wilson, and J. Engel, “Local generation of fast ripples in epileptic 
brain,” J. Neurosci. Off. J. Soc. Neurosci., vol. 22, no. 5, pp. 2012–2021, Mar. 2002. 

[95] G. Buzsáki, “Large-scale recording of neuronal ensembles,” Nat. Neurosci., vol. 7, no. 5, pp. 
446–451, May 2004, doi: 10.1038/nn1233. 

[96] D. Whitmer, G. Worrell, M. Stead, I. K. Lee, and S. Makeig, “Utility of independent component 
analysis for interpretation of intracranial EEG,” Front. Hum. Neurosci., vol. 4, p. 184, 2010, 
doi: 10.3389/fnhum.2010.00184. 

[97] G. A. Worrell et al., “High-frequency oscillations in human temporal lobe: simultaneous 
microwire and clinical macroelectrode recordings,” Brain J. Neurol., vol. 131, no. Pt 4, pp. 
928–937, Apr. 2008, doi: 10.1093/brain/awn006. 

[98] J. Jacobs et al., “Value of electrical stimulation and high frequency oscillations (80-500 Hz) 
in identifying epileptogenic areas during intracranial EEG recordings,” Epilepsia, vol. 51, no. 
4, pp. 573–582, Apr. 2010, doi: 10.1111/j.1528-1167.2009.02389.x. 

[99] L. Menendez de la Prida, R. J. Staba, and J. A. Dian, “Conundrums of high-frequency 
oscillations (80-800 Hz) in the epileptic brain,” J. Clin. Neurophysiol. Off. Publ. Am. 
Electroencephalogr. Soc., vol. 32, no. 3, pp. 207–219, Jun. 2015, doi: 
10.1097/WNP.0000000000000150. 

[100] J. Jacobs et al., “High-frequency electroencephalographic oscillations correlate with 
outcome of epilepsy surgery,” Ann. Neurol., vol. 67, no. 2, pp. 209–220, Feb. 2010, doi: 
10.1002/ana.21847. 

[101] J. Y. Wu, R. Sankar, J. T. Lerner, J. H. Matsumoto, H. V. Vinters, and G. W. Mathern, “Removing 
interictal fast ripples on electrocorticography linked with seizure freedom in children,” 
Neurology, vol. 75, no. 19, pp. 1686–1694, Nov. 2010, doi: 
10.1212/WNL.0b013e3181fc27d0. 

[102] M. A. van ’t Klooster et al., “Tailoring epilepsy surgery with fast ripples in the intraoperative 
electrocorticogram,” Ann. Neurol., vol. 81, no. 5, pp. 664–676, May 2017, doi: 
10.1002/ana.24928. 

[103] D. Purves et al., “Stages of Sleep,” Neurosci. 2nd Ed., 2001 Available: 
https://www.ncbi.nlm.nih.gov/books/NBK10996/ 

[104] J. Jacobs et al., “High-frequency oscillations (HFOs) in clinical epilepsy,” Prog. Neurobiol., 
vol. 98, no. 3, pp. 302–315, Sep. 2012, doi: 10.1016/j.pneurobio.2012.03.001. 

[105] “(PDF) Fractal dimension analysis of spatio-temporal patterns using image processing and 
nonlinear time-series analysis | Debasmita Banerjee και Amit Kumar Jha - Academia.edu.” 
https://www.academia.edu/49026671/Fractal_dimension_analysis_of_spatio_temporal_pa
tterns_using_image_processing_and_nonlinear_time_series_analysis 

[106] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin 
classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory, 
1992, pp. 144–152. 

[107] “Theoretical foundations of the potential function method in pattern recognition learning. | 
BibSonomy.” 
https://www.bibsonomy.org/bibtex/22d5200f2631a82c1ccb33db90ee38d10/naufraghi  

[108] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, 
Regularization, Optimization, and Beyond. Cambridge, MA, USA: MIT Press, 2001. 

[109] D. H. Moore II, “Classification and regression trees, by Leo Breiman, Jerome H. Friedman, 
Richard A. Olshen, and Charles J. Stone. Brooks/Cole Publishing, Monterey, 1984,358 
pages,” Cytometry, vol. 8, no. 5, pp. 534–535, 1987, doi: 10.1002/cyto.990080516. 

[110] “Pattern Classification Using Ensemble Methods | Series in Machine Perception and 
Artificial Intelligence.” https://www.worldscientific.com/worldscibooks/10.1142/7238  

[112] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, 
Inference, and Prediction, Second Edition (Springer Series in Statistics). 2009 

 


	Abstract
	Περίληψη
	Acknowledgements
	Table of Contents
	List of Figures
	Chapter 1 Introduction
	Motivation
	Related Work
	Contribution and Innovation
	Thesis Outline

	Chapter 2 Brain Physiology
	Overview of the Nervous System
	Brain Structure and Brain Compartments

	Chapter 3 Epilepsy & Epilepsy Surgery
	Introduction to Epilepsy
	Overview of Epilepsies & Seizures
	Epilepsy Diagnosis and Imaging Techniques
	Epileptic Activity and Abnormal Waveforms
	Epilepsy Treatment
	Intracranial Data

	Chapter 4 Classification of Epileptic Events
	Feature Extraction and Feature Selection
	Machine Learning Classification Approach
	Experimental Scenarios, Results and Evaluation

	Chapter 5 Conclusions & Future Work
	References


