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ABSTRACT

Pancreatic cancer is a highly lethal disease, accounting for many

deaths every year. It is considered as one of the most aggres-

sive types of cancer, and one of the major problems is the lack

of early detection. A patient is diagnosed with pancreatic can-

cer only in advanced stages, when the possibility of developing

a metastases is high. There is no standard procedure to diag-

nose high risk patients, since they remain asymptomatic in the

cancer’s early stages. Surgical resection is regarded as the only

potentially curative treatment, and adjuvant chemotherapy with

gemcitabine or S-1, an oral �uoropyrimidine derivative, is given

after surgery. Therefore, researchers focus on the procedure of

its creation, at a molecular level. There are four major driver

genes for pancreatic cancer: KRAS, CDKN2A, TP53, and SMAD4.

KRAS mutation and alterations in CDKN2A are early events in

pancreatic tumorigenesis.

Recent researches suggest that there is a correlation of some

critical signaling pathways that are activated during pancre-

atic cancer tumorigenesis with the procedure of embryogenesis.

Though, the lack of an analysis that will be able to extract these

genes involved in the pathways suggested, both in pancreatic

cancer patients and embryogenesis samples is crucial. The aim

of this thesis is to apply machine learning methods to �nd the

biomolecular markers that are deferentially expressed on pan-

creatic cancer patients and correlate them with markers from

embryogenesis. Since these markers are extracted, we will use

them as classi�ers on di�erent machine learning methods, to try

and classify if they refer to patient or healthy subjects.

Our thesis contributes a “ 25 gene signature” of biomolecu-

lar markers which are involved in signaling pathways found in

both embryogenesis and pancreatic carcinogenesis, obtained via

feature extraction and feature selection methods. These mark-
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ers are used as classi�ers for pancreatic cancer classi�cation,

and two machine learning classi�cation models are proposed as

well. The classi�cation models achieved high accuracy levels,

and we support the notion that our “25 gene signature” in its

entirety can play a classi�cation role in discriminating patients

with pancreatic cancer from healthy controls.



It is the same God which worketh all in all.
—A Corinthians 12:6
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1

I N TRODUCT ION

Pancreatic cancer continues to be a major unsolved health prob-

lem, despite all the e�orts and technological advances in cancer

treatment, which have little impact on disease course. Almost all

patients dignosed with pancreatic cancer develop metastases and

die. Pancreatic cancer arises when exocrine or endocrine cells

in the pancreas, a glandular organ behind the stomach, begin

to multiply out of control and form a mass. These cancerous

cells have the ability to invade other parts of the body.There

are a number of types of pancreatic cancer. The most common,

pancreatic adenocarcinoma (PDAC), accounts for about 95% of

cases, and the term "pancreatic cancer" is sometimes used to refer

only to that type. It also lies among the most aggressive types

of pancreatic cancer, giving survival rates under 10% in its �nal

stages.

The main factors causing this type of cancer are smoking, age

and some genetic disorders. Yet, little do we know about it’s

primary causes. Advances in molecular biology have, however,

helped us understand deeper the pathogenesis of pancreatic can-

cer. Many patients have mutations of the K-ras oncogene, and

various tumour-suppressor genes are also inactivated. Pancre-

atic ductal adenocarcinoma (PDAC), is characterized by near-

universal mutations in K-ras and frequent deregulation of crucial

embryonic signalling pathways, including the Hedgehog (Hh)

and Wnt–β-catenin cascades. [3] [4]

The main concern with pancreatic cancer is that disease prog-

nosis is extremely poor. Signs and symptoms of the most-common

form of pancreatic cancer may include yellow skin, abdominal

1



2 introduction

or back pain, unexplained weight loss, light-colored stools, dark

urine, and loss of appetite. Yet, these symptoms do not seem

to appear in the disease’s early stages, and symptoms that are

speci�c enough to suggest pancreatic cancer typically do not

develop until the disease has reached an advanced stage. By the

time of diagnosis, pancreatic cancer has often spread to other

parts of the body, thus making it one of the most dangerous and

aggressive types of cancer.

According to latest studies [5], it is suggested that tumors of-

ten display inappropriate activation of signaling pathways which

are essential for embryonic development and tissue homeosta-

sis. Cancer may arise because the developmental programs that

create the dramatic alterations in form and structure in embry-

onic development are potentially corrupted. The cells in our

bodies retain memories of these processes and cancer can occur

on the following years, if imperfections occur in the �delity of

these pathways. [4] Embryonic development (or embryogenesis)

stands for the procedure by which an embryo forms and devel-

ops. Embryonic development begins with the fertilization of the

egg cell (ovum) by a sperm cell, (spermatozoon). Once fertilized,

the ovum is referred to as a zygote, a single diploid cell. The zy-

gote undergoes multiple mitotic divisions without any signi�cant

growth (a process known as cleavage) and cellular di�erentiation,

leading to the development of a multicellular embryo.

It is suggested that the requirements of cellular proliferation

and di�erentiation are considerably similar in the signaling path-

ways that govern embryogenesis and PDAC. These pathways,

which will be analyzed on next chapters, are critical for both em-

bryogenesis and PDAC, and thus have been targeted for cancer

therapy.

It is a great challenge to �nd new ways to cure pancreatic

cancer, since in only 20% of the cases it is resectable. Therefore,

we focus on �nding what causes it, in molecular level. In these

types of studies,when studying cancer types in a molecular level,

the proposed technique is analysis of high dimensional gene

expression microarrays.
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Gene expression microarrays are widely used for gene ex-

pression pro�ling and to study these pro�les in human cancers.

Microarray gene expression analysis is a promising method for

studying, classifying and even proposing disease treatment, for

tumor related genes, amongst various types of human cancers.

[5]

Microarray analysis is strongly correlated with machine learn-

ing methods. Various gene extraction, gene selection and classi-

�cation methods are proposed in the literature, which focus on

reducing the high dimensional feature space to a lower one, by

removing the irrelevant, redundant and noisy genes, in order to

achieve accurate classi�cation of cancer types [6]. The scienti�c

�elds of data mining, statistical analysis and machine learning,

provide us with a variety of methods and tools for analyzing

microarray datasets, which will be the main �eld of our study in

this thesis.

1.1 thesis contribution

As we conclude from above, it appears that there is a correlation

of critical pathways in the process of embryogenesis and pan-

creatic cancer. The aim of this thesis is to extract and evaluate

biomolecular markers from samples of patients with pancreatic

cancer, as well as their correlation with embryogenesis. Imple-

menting machine learning methods, this thesis contributes some

models that have the discrimination ability to identify the genes

involved in these pathways. Furthermore, after the statistical

analysis and the extraction of these markers, some other models

are proposed that suggest classi�ers for the diagnosis of disease

at molecular level.

In particular, our analysis implements some machine learn-

ing methods, in R language for statistical computing. Exam-

ined datasets of pancreatic cancer and embryogenesis are high-

dimensional microarray gene expression datasets, and they are

extracted from the platform of Gene Epression Omnibus (GEO)

[7].
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After applying some preprocessing on the examined datasets,

we extract the signi�cantly di�erentially expressed genes (DEG),

in human embryos, PDAC tissue and PDAC peripheral blood

datasets, by implementing feature extraction methods. To visu-

alize these genes, heatmap and clustering is also used. We then

evaluate these markers, examining if they are involved in the

critical pathways suggested above.

Subsequently, some classi�cation machine learning methods

are proposed (as Support Vector Machines and k-Nearest Neigh-

bours) on the extracted genes, in order to use them as predictors

and classify samples as patients or healthy.

Finally, in order to further reduce the number of predictors and

result to a lower dimensional feature space, a feature selection

is implemented, where the used machine learning method is

Support Vector Machines - Recursive Feature Elimination (SVM-

RFE).

1.2 thesis overview

Chapter 2 describes the necessary background for this thesis.

Datasets and machine learning methods used for this thesis are

extensively described. In Chapter 3 the signi�cance of extracting

the correlated molecular markers is discussed, as well as their

matching to the critical pathways proposed, while in Chapter 4

we brie�y refer to the related work of others. In Chapter 5 we

describe our work and we present our models implementation

from a technical point of view. In Chapter 6 we present the results

of our proposed models. Finally, in Chapter 7 we discuss the

results of this thesis and in Chapter 8 we suggest some possible

future research enhancements and directions.



2

THEORET ICAL BACKGROUND

2.1 description of datasets

We decided to work with 12 high-dimensional microarray gene ex-

pression datasets, which are brie�y mentioned below. All datasets

were obtained from the Gene Expression Omnibus repository of

the National Center for Biotechnology Information [7], and they

are publicly available.

• Human Embryos. This dataset describes the development

of human embryos from week 4 through 9.

1. Gene Expression Atlas for Human Embryogenesis

(GSE15744) [8]. It contains expression levels of 54,675

RNAs of 18 human embryos samples, 3 samples for

each week.

• PDAC Human Tissue. These datasets contain samples of

human pdac tissue cells vs. normal cells.

1. Integrative Survival-Based Molecular Pro�ling of Hu-

man Pancreatic Cancer [mRNA] (GSE32676) [9]. It

contains expression levels of 54,675 mRNAs of 25 hu-

man PDAC tumors and 7 non-malignant pancreas

samples.

2. The gene expression of normal pancreatic and PDAC

tisssues (GSE71989) [10]. It contains expression levels

of 54,675 mRNAs of 14 human PDAC tumors and 8

non-malignant pancreas samples.

5
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3. S100P is a metastasis-associated gene that facilitates

transendothelial migration of pancreatic cancer cells

(GSE19281) [11]. It contains expression levels of (22,283

and 22,645) mRNAs of 4 human PDAC tumors and 3

non-malignant pancreas samples (run on two di�er-

ent platforms).

4. Whole-Tissue Gene Expression Study of Pancreatic

Ductal Adenocarcinoma (GSE15471) [12]. It contains

expression levels of 54,675 mRNAs of 36 human PDAC

tumors and 36 non-malignant pancreas samples.

5. Expression data from Mayo Clinic Pancreatic Tumor

and Normal samples (GSE16515) [13]. It contains ex-

pression levels of 54,675 mRNAs of 36 human PDAC

tumors and 16 non-malignant pancreas samples.

6. Microarray gene-expression pro�les of 45 matching

pairs of pancreatic tumor and adjacent non-tumor

tissues from 45 patients with pancreatic ductal ade-

nocarcinoma (GSE28735) [14]. It contains expression

levels of 33,297 mRNAs of 45 human PDAC tumors

and 45 non-malignant pancreas samples.

7. Microarray gene-expression pro�les of 69 pancreatic

tumors and 61 adjacent non-tumor tissue from pa-

tients with pancreatic ductal adenocarcinoma (GSE62452)

[15]. It contains expression levels of 33,297 mRNAs

of 69 human PDAC tumors and 61 non-malignant

pancreas samples.

• PDAC Human Peripheral Blood. These datasets contain

samples of human pdac peripheral blood cells vs. normal

cells.

1. Expression pro�ling of PBMC from patients with hep-

atocellular carcinoma (GSE49515) [16]. It contains

expression levels of 54,675 mRNAs of 3 human periph-

eral blood mononuclear cell (PBMC) and 10 normal

samples.
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2. Gene expression data from CD14++ CD16- classical

monocytes from healthy volunteers and patients with

pancreatic ductal adenocarcinoma (GSE60601) [17].

It contains expression levels of 54,675 mRNAs of 9

human peripheral blood mononuclear cell (PBMC)

and 3 normal samples.

3. Blood biomarkers of pancreatic cancer associated di-

abetes identi�ed by peripheral blood-based gene ex-

pression pro�les (GSE15932) [18]. It contains expres-

sion levels of 54,675 mRNAs of 8 human peripheral

blood mononuclear cell (PBMC) and 8 normal sam-

ples.

4. Expression data from peripheral blood in pancreatic

ductal adenocarcinoma (PDAC) patients (GSE49641)

[19]. It contains expression levels of 33,297 mRNAs of

18 human peripheral blood mononuclear cell (PBMC)

and 18 normal samples.

All the mentioned datasets are high-dimensional microarray

gene expression datasets. High-density DNA/RNA microarrays,

are able to project thousands of genes simultaneously, producing

the gene expression pro�les. [20]. Microarray technology is a

hybridization technique that aims on gene expression pro�ling or

assessing the genome content of closely related cells or organisms.

It allows monitoring the quantity of mRNA present in a cell, by

collecting it and attaching it to a solid surface. [21]

Over the years, a variety of microarrays and chips has been in-

troduced, with the most important of them being cDNA microar-

rays and GeneChip arrays (oligo arrays), developed at A�ymetrix.

[22] These techniques are based on the di�erential-hybridization

strategy, where the cDNA plaques are replaced with spotted cD-

NAs or oligos, and radioactive labels are replaced with �uorescent

ones. The potential of these methods is their ability to simultane-

ously analyze the expression of mRNAs from thousands of genes

in a single experiment, producing some raw data which will be

further analyzed in a computer environment [1].
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High-density gene expression microarrays use oligonucleotides

containing 25 base pairs used to probe genes. Each gene is rep-

resented by 16-20 pairs of oligonucleotides, forming a probe set.

These pairs contain the perfect match (PM) probes, which are

paired with the mismatch (MM) probes. MM probes are created

by changing the 13th (middle) base of the probe set, in order to

measure non-speci�c binding. After the RNA samples are labeled

and hybridized, images are produced and alalyzed, resulting to

an intensity value for each probe. These intensities contain in-

formation about the amount of hybridization occurred for each

oligonucleotide probe and they are the �nal gene expression val-

ues produced by the microarray. [23]. The process is described

in �gure 1.

There is a variety of di�erent platforms that can be used with

microarrays. Our datasets run on 4 di�erent GeneChips, [HG−
U133Plus2] A�ymetrix Human Genome U133 Plus 2.0 Array,

[HuGene10stv1HsENSG] A�ymetrix GeneChip Human Gene

1.0 ST Array, [HG−U133A] A�ymetrix Human Genome U133A

Array and [HG−U133B] A�ymetrix Human Genome U133B

Array. All 4 chips are constructed by A�ymetrix, and they follow

the in situ oligonucleotide technology type [22]. However, the

gene expression results, and the number of gene expression levels

can be inconsistent due to the di�erent probes these platforms use.

Data inconsistency can also be introduced due to tissue or sample

heterogeneity amongs experiments, di�erent data preprocessing

methods or the di�erent background each sample comes from

[5].

2.2 preprocessing

High dimensional microarray gene expression datasets, produce

raw data which contain the measured intensities and locations

of the hybridized array, the information relating probe pair sets

to locations on the array, and the information relating the probe

sequences to locations on the array. [24] These raw data have

to be preprocessed in order to give us the �nal gene expression
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Figure 1: The mRNAs that are expressed in the compared cells, are

copied into the complementary DNAs using a reverse tran-

scriptase and they are labelled �uorescently. The produced

complex cDNA probes are used to hybridize to the cDNA

templates or gene-speci�c oligos, either spotted on a glass

surface or directly synthesized, to yield the expression of thou-

sands of genes simultaneously. Red and green dots represent

the cDNAs only expressed in normal or tumours cells respec-

tively, while the yellow indicates the cDNAs expressed in both

samples[1] .
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values that will be then used for classi�cation, regression, feature

extraction and feature selection.

Preprocessing is an essential process, since the expression lev-

els may su�er from unwanted variation. This variation is often

introduced during sample preparation, construction of the ar-

rays, and arrays processing (labeling,hybridization and scanning).

These sources insert the so called “obscuring variation” , which

has to be removed during the preprocessing stage, since it has

di�erent e�ects on data and can lead the analysis to misleading

results.

The method used in this analysis for the data preprocessing

stage is the robust multi-array average (RMA), one of the most

commonly and widely used normalization methods. RMA is

a method that is divided in 3 steps: (i) background-correcting,

based on a model using the transformation B(·), (ii) data normal-

ization which normalizes the arrays using quantile normaliza-

tion, and (iii) data summarization which �ts a linear model to the

background-corrected, normalized and log2 transformed probe

intensities for each probe set. A robust procedure such as median

polish is being used to estimate model parameters, in order to

protect against outlier probes.

RMA has major advantages, compared to other methods, since

is has the smallest standard deviation across replicates and has

the least noise than other measures at lower concentrations. Its

major advantage is noticeable in low expression values, where the

standard deviation is up to 10 times smaller than the other mea-

sures. Overall, RMA achieves greater sensitivity and speci�city

in detection of di�erential expression, providing the researchers

working with GeneChip technology with a powerful tool. [23]

We used two variations of RMA in our analysis, provided by

the dedicated R packages, gcrma and oligo. GCRMA di�ers from

RMA in the step of background correcting. GCRMA method

adjusts for background intensities in gene expression data which

include optical noise and non-speci�c binding. It uses probe se-

quence information to estimates the probe a�nity to non-speci�c

binding. It then continues with the steps of normalization and
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summarization as described by rma [24]. The rma analysis pro-

vided by the oligo package, is a similar process, with the main

di�erence being that it provides support to more platforms that

lack the Mismatch probes (MM probes), since it does not require

them for the background-correction step.

2.3 feature extraction methods

High throughput technologies generally produce large datasets

of gene expression values. Typically, microarrays produce tens

of thousands of gene features while some of the genes appear

in more than one expressions. Furthermore, some datasets may

contain gene expressions extracted from di�erent platforms. A

characteristic of gene expression microarray datasets is the small

amount of patient samples which is signi�cantly smaller than

the number of genes, commonly known as “curse of dimension-

ality”. However, among the large amount of genes, only a small

fraction is related to speci�c diseases and can be used to extract

information about them. The existence of a large number of

irrelevant features inserts serious problems for machine learning

methods, along with statistical and analytical challenges, since it

strongly a�ects their computational time and seriously reduces

their classi�cation accuracy. [25]

Thus it is crucial to �lter out this large number of irrelevant fea-

tures that are not of interest, and work with smaller datasets con-

taining genes relevant to our analysis. Furthermore, a common

problem in all machine learning methods is the risk of over�tting.

Data over�tting arises when the number of features (classi�ers)

is comparatively larger than the number of samples, which is

exactly the case in high throughput gene expression microarray

data, where we have thousands of genes but only less than 100

samples. When data over�tting happens, a decision function

to seperate the training data can be found, but it will perform

poorly when tested in an independent testing dataset[26]. These

challenge can be alleviated by using two types of methods: Fea-

ture Extraction and Feature Selection. The aim of both methods
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is to extract a small subset of features with information useful

to our analysis, in order to reduce processing time and ensure

higher classi�cation accuracy. Feature selection is described in

its dedicated section [27].

Feature Extraction aims to transform a high-dimensional fea-

ture space into a low-dimensional space, in an appropriate way

that the transformed variables contain information on the data

relevant to our analysis, which is otherwise hidden in the large

data set. Both feature extraction and feature selection are data

mining methods. These methods include clustering, basic linear

transforms of the input variables (Principal Component Analy-

sis/Singular Value Decomposition, Linear Discriminant Analysis),

spectral transforms, wavelet transforms or convolution of kernels.

A large number of gene selection and extraction approaches exist,

such as ttest, relief-F, information gain, and Principal Component

Analysis (PCA), Linear Discriminant Analysis, independent com-

ponent analysis (ICA). [20] Data mining can be performed with

machine learning methods or with classical statistical approaches.

In our analysis we are interested in measuring the expression

change of each gene, in two class datasets (pdac-normal).

The most common di�erence statistical measure used to iden-

tify di�erentially expressed genes (DEGs) is the log2 fold-change.

The log2 fold change, is a statistical measure describing how

much an expression is changing between two distinct groups of

samples.

log2 FC = log2
B− A

A

However, when analyzing high-dimensional datasets, with

much larger number of features than samples, we also expect

a high number of false positive test results. Therefore, another

statistical measure has to be introduced to moderate the num-

ber of falsely called genes. In this analysis, the false discovery

rate (FDR) is used, which was �rstly introduced by Benjamini

and Hochberg, as an expected proportion of false positive genes

among all positive genes. The FDR is regulated by raw p-values,

another statistical measure, which are user adjusted in order to
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control the FDR tolerance. The m raw p-values are �rst ordered

by ascending order, then the adjusted p-values are given by

p̄ = min
k=j,...,m

{min(
m
k

prk , 1) }

Di�erential expression analysis is completed by setting the

FDR to a speci�c threshold and then calculating the fold change

for each gene. The results of this statistical analysis are displayed

in a matrix, where the signi�cantly di�erential expressed genes

are ordered by their log2 fold change values [28].

2.3.1 Heatmaps and Clustering

Heatmaps and clustering are widely used in gene expression

analysis studies, for data visualization and quality control. More

speci�cally, they are one of the most popular methods used in

high throughput gene expression pro�ling, as they are produced

by the technology of microarrays. A heatmap is a graphical

representation of the input data in a matrix, where each value is

described by a color.

Heatmaps are used in biomedical engineering to represent the

levels of the gene expression data, across a number of comparable

samples. In a typical gene expression heat map, the y-axis is

assigned to the genes, while the x-axis is assigned to the samples.

A gene expression heatmap, especially when combined with

clustering, can provide the user with very useful insights about

the quality, the distribution, the evolution and the features of the

data, since it visualizes the data by pseudocoloring them from a

prede�ned color spectrum.

Unsupervised Clustering is the process of grouping a set of

genes or samples together, based on a similarity metric that is

computed for features. Clustering methods aim on grouping the

objects into a predetermined number of group, in way that a spe-

ci�c function is maximized. Cluster analysis will always produce

the predetermined clusters. The quality of the clustering though,

depends on the algorithm used to produce the current cluster-

ing. Examples of clustering algorithms are the k-mens algorithm,
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Farthest First Traversal Algorithm, Density-based clustering and

Expectation Maximization (EM). [27]

Clustering is used to classify sample subtypes, or to identify

outliers in the dataset. The majority of cancer gene expression

datasets contains samples de�ned by a phenotype: disease and

control groups. In the best case scenario, after the cluster is

complete, the samples should be grouped into two subgroups,

based on their phenotype. Though, many factors could a�ect the

outcome of the clustering, leading to ambiguous results, and thus

making the clustering a powerful tool to identify novel subtypes.

[29]

Clustering can be applied to samples, genes, or both. We will

be applying clustering only on genes, since we are interested

in grouping the genes and identifying their outliers, and not in

clustering the samples. The algorithm that we used to produce

the clustering, is the k-means algorithm with pearson distances.

The k-means algorithm partitions an input dataset into k-

clusters, a user prede�ned value. It starts with k random clusters,

and then moves along samples in order to minimize the distance

of each sample to their respective cluster centroid, and maximize

distance between samples. Samples are moved to the cluster

with the shortest relevant distance to the cluster centroid. The

k-means algorithm is repeated a number of times, every time

starting with a random set of initial clusters, until an optimal

cluster solution is obtained. The distances are also recalculated

on each repetition. There are several distance types used with

clustering algorithms, with the most common of them being the

euclidean, manhattan, pearson correlation, eisen cosine correla-

tion, spearman correlation and kendall correlation distance. [27]

We used the pearson correlation distance, as described in [30],

which measures the strength of association between two vari-

ables X and Y. The Pearson coe�cient is de�ned as the covariance

of X and Y divided by the product of their respective standard

deviations.

ρX,Y =
cov(X, Y)

σXσY
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Given vectors x and y, respectively sampling X and Y and each

of length n, the sample Pearson coe�cient rx,y is obtained by

estimating the population covariance and standard deviations

from the samples:

rx,y =
∑( xi − x̄) ( yi − ȳ)√

∑( xi − x̄)2
√

∑( yi − ȳ)2

After the clustering is produced, a dendrogram is also dis-

played, which contains information about the correlation of the

involved genes. A sample heatmap with clustering follows. [29]

Figure 2: Sample heatmap with clustering. Dendrogram is displayed on

top.

2.4 classification methods

Supervised classi�cation, also referred to as prediction, is de-

�ned as the process of developing algorithms in order to classify

the input data to prede�ned categories. Algorithms have to un-

dergo a training procedure, where they classify the features based

on the samples of a training dataset, and then their accuracy is

evaluated by testing the classi�ers on a testing dataset. [27] Clas-

si�cation methods can be used to diagnose diseases or predict

disease outcomes based on gene expression patters, extracted

from microarray data. [6] Thus, developing reliable and accu-

rate classi�ers is essential for successful disease diagnosis and/or

treatment. However, in the space of microarray data, where we
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have a multilevel feature space, the performance of most classi-

�cation algorithms is poor, due to the excessive number of the

classi�ers. This problem is dealt with feature extraction and fea-

ture selection methods, which are described in their dedicated

sections. Examples of classi�cation methods are Support Vec-

tor Machines, k-Nearest Neighbours, Arti�cial Neural Networks

(ANNs), Decision Trees, MLB Neural Networks, Bayesian, CART

classi�cation trees and Random Forrest. [27]

Arti�cial Neural Networks (ANNs) determine a network struc-

ture and learning parameters, by using various algorithms, which

aim to produce sample weights, by minimizing an objective func-

tion. In each iteration, the estimation is compared to the real

output, and then the local error is derived. This local error is

used to adjust the input vector weights, according to a learning

rule. The training stage is a time consuming process, since it

iteratively trains and tests di�erent networks on an independent

test sample, eventually resulting to the network with the lowest

error rate [31].

Decision Trees (or classi�cation trees) on the other hand, are

mainly used in data mining since they are able to discover hidden

correlations among data. The aim of this method, is to create a

binary tree by dividing the input vectors at each node, based on

an evaluation function. One of the most popular decision trees

method is the classi�cation and regression trees (CART). CARTs

begin by assigning all samples to root object and then they split

each explanatory variable at all possible spliting points. Each

sample is then split into two nodes, according to its corresponding

splitting point. The explanatory variable and split point with the

highest reduction of impurity are selected, and then are splitted

according to the spliting point. The process is repeated until all

nodes are set as parent nodes, and the tree reaches maximum

size. The a tree-pruning is performed by using cross-validation,

in order to result to the best-sized tree [31].

In order to evaluate the performance of the classi�cation meth-

ods, some metrics are examined which give a thorough descrip-

tion about the classi�cation ability of the examined method. The
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most commonly used metrics are accuracy, ROC curve, sensitiv-

ity (true positive rate), speci�city (false positive rate) and mean

square error (MSE).

• Accuracy, as the name suggests, is the ratio of the correct

predictions to the total number of input samples, and is

one of the most signi�cant performance metrics.

Accuracy =
Number o f correct predictions

Total number o f samples

• ROC (Receiver Operating Characteristics) curve, is a curve

that describes the model’s ability to classify the input data

correctly. It is a metric equivalent to accuracy, and it is

sometimes used instead of the latter. Its values range from 0

to 1, with 1 being representing the maximum classi�cation

performance.

• Sensitivity or true positive rate, is de�ned as the ratio of pos-

itive samples that are correctly predicted as positive,with

respect to all positive data samples.

Sensitivity =
True positive

True positive + False negative

• Speci�city or false positive rate, is de�ned as the ratio of

negative samples that are falsely predicted as positive, with

respect to all negative data samples.

Speci f icity =
False positive

False positive + True negative

• Mean squared error is de�ned as the average of the squared

di�erence between the true values and the predicted values.

MSE =
1
N

N

∑
j=1

( yj − ȳj)
2

Amongst the various classi�cation algorithms mentioned be-

fore, we decided to work with support vector machines (SVM)

and k-nearest neighbours (KNN), which performed better in our

analysis and are described below.
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2.4.1 Support Vector Machines

Support vector machines (SVMs) is the �rst machine learning

method that we will be using, for the classi�cation process. SVMs

belong to the group of supervised learning methods, and they

can be used both for classi�cation and regression.

Support vector machine is a powerful tool used for two-class

classi�cation and it targeted to be used as a non-linear mapping

of the input vectors into a high-dimensional feature space. It

relies on the idea of �nding the maximum geometric margin

between the two classes. One of the simplest types of support

vector machines is linear classi�cation, which attempts to set

a straight line seperating data with two dimensions. A linear

classi�er is also re�ered to as hyperplane. Various hyperplanes

change achieve the same target, to seperate the two class data,

but only one can achieve the maximum seperation. [27]

The basic principle of the learning procedure in SVM is to

�nd a hyperplane which will seperate the data into two classes,

and then try to maximize the margin between the two classes

and the seperating hyperplane, whilst ensuring the accuracy of

correct classi�cation. The �nal binary classi�er that is produced,

is called optimal seperationg hyperplane. It does not su�er from

local optima problem, i.e it works without a convex optimization

problem. [20] [31]

SVM was initially designed for binary classi�cations problems,

with many variations having been introduced for di�erent pur-

poses. [20] In case of linearly seperable data, the principle of

SVM is described as follows. [20] The main goal of the training

phase is to �nd the linear function :

f ( x) = WTX + b

which will be the line that will divide the data and the space to

two di�erent classes according to the condition:

WTX + b > 0

WTX + b < 0
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These functions de�ne the seperating plane, and the distance

between the two parallel hyperplane equals to: 2/‖W‖2
. This

quantity is re�ered to as the classi�cation margin, as described

in �gure ??. In order to maximize the classi�cation margin, the

algorithm is required to solved the following optimization prob-

lem:

• minimize 1/2‖W‖2

• subject to Yi( WTXi + b) ≥ 1

In case of non-linearly seperable data, SVM will have to work

with more than two dimensions, and therefore will have to map

the data from the input space into a high-dimensional feature

space. The classes will then be seperated by an optimal hyper-

plane. [20] In order to perform this mapping, we will use a

function called a kernel function. The four basic kernel functions

are linear, polynomial, radial basic function (RBF) and sigmoid

and they are described below:

• Linear: K( xi, xj) = xT
i xj

• Polynomial: K( xi, xj) = ( γxT
i , xj + r) d, γ > 0

• RBF: K( xi, xj) = exp( −γ‖xi − xj‖2) , γ > 0

• Sigmoid: K( xi, xj) = tanh( γ( xT
i , xj) + r)

where r, d and γ = 1
2σ2 are kernel parameters.

For non-linearly separable data, SVM requires the solution of

the following optimization problem:
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• minimize 1/2‖WT‖2 + C ∑n
i=1 ξi

• subject to Yi( WTXi + b) ≥ 1− ξi

• ξi ≥ 0

In our approach, we used the RBF Kernel. A radial basis func-

tion is a real valued function, which only depends on the eu-

clidean distance of a sample xi and its center value xj, and a

tuning parameter σ. The centers are automatically computed by

the SVM algorithm. The kernel’s goal is to minimize the distance

of each sample xi from its center,which is achieved by calculat-

ing the value weights in each run. The successfulness of SVM

strongly depends on the choice of the kernel function K, and of

course the hyper parameters (σ is the case of RBF), therefore in

order to adjust optimally these parameters we should perform a

cross-validation procedure. [31]

Figure 3: Maximum margin hyperplanes for SVM divides the plane into

two classes
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2.4.2 K Nearest Neighbours

K Nearest Neighbours (KNN) is the second machine learning

method that we will be using, for the classi�cation process. KNN

belongs to the group of supervised learning methods, and it can

be used for both classi�cation and regression types of problems.

KNN’s target is to classify the outcome of a query point, by eval-

uating the values of a selected number of its nearest neighbours.

The method estimates the outcome of a given query point, by

�nding k examples where their distance from the point is min-

imized (i.e. its neighbours). In case of classi�cation problems,

predictions are based on a majority of voting, while for regression

problems, predections are determined by averaging the outcomes

of the k nearest neighbours. While tuning the model, it is impor-

tant to set the appropriate value of k (i.e. the neighbours taken

into consideration), since it can strongly a�ect the accuracy of

the predictions. For example, a small number of k will add large

variance to predictions, while a large value of k may lead to a

large model bias. The proper tuning of the k parameter is regu-

lated by integrating a cross validation method, which will �nd

the optimal k value.

The neighbours of a point are de�ned by a distance metric that

we set beforehand. The most common is the Euclidean distance,

while others possible metrics are Euclidean squared, City-block,

and Chebychev distances. We will be using the Euclidian dis-

tance in this thesis, which is described by the following equation,

according to Bishop, C. (1995) [32] :

D( x− p) =
√
( x− p) 2

where x is a query point and p is a case from the sample.

A widely used approach to improve the prediction accuracy

is to introduce distance weights. This approach matches the

closest to the point cases with large values of k. For every near

neighbour, a new set of weights w is de�ned, where w refers to

the relative closeness of each neighbour with respect to the query

point. Weights are computed according to Bishop, C. (1995) [32] :
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W( x, pi) =
exp( −D( x, pi) )

∑k
i=1 exp( −D( x, pi) )

where D( x, pi) is the distance between the query point x and

the ith instance of the sample p. All the weights sum to 1. In

the classi�cation problems, after the calculation of the weights,

the case with the maximum weight wmax is set to the output

value of the query point x. K nearest neighbours are able to

achieve high classi�cation accuracy and learn fast, even with a

high-dimensional feature space, like the microarray data. [31]

2.4.3 Cross Validation

In order to validate our classi�cation methods described earlier,

it is necessary to have some test datasets, independent from the

training datasets, that will be used to measure the classi�cation

error. However, since our datasets our signi�cantly limited and

hard to �nd, it is di�cult to obtain independent datasets for

testing, or weeken our training datasets by keeping out some

samples for testing. A technique that will give a solution to this

problem is V-fold cross validation. [27]

The concept behind cross-validation is the same as with a

single holdout validation set, to estimate the model’s predictive

ability and performance on unseen data. It’s basic principle is

that it repeats the experiments multiple times by dividing the

training dataset in ”V” di�erent parts every time, keeping one of

them out for validation and using the others for learning. It does

not require seperate test datasets, and it also does not reduce

the training dataset. The training dataset is partitioned into ”V”

smaller datasets, called ”folds”. The default number of ”V” is

10. In each repetition, 1 subset is kept out for testing and the

remaining ”V-1” are used for training. This procedure is repeated

”V” times, resulting to a bigger test dataset and taking advantage

of the full spectrum of the training dataset. It is worth mentioning

that cross validation does not prevent over�tting in itself, but
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it may help in identifying a case of over�tting caused by the

classi�cation method. [27]

2.4.4 Leave One Out Cross Validation

As mentioned in previous sections, since we are working with

microarray data, the number of samples are usually very small.

Therefore, it is not the best practice to divide our subset our

datasets to training and testing. Instead, the most commonly

used technique to test our classi�cation methods, is “V” fold cross

validation, in it’s most greedy case, called Leave One Out Cross

Validation. [33] In Leave One Out Cross Validation (LOOCV) ,

the number of partitions equals to the number of dataset size

(m). Each testing dataset consists of 1 sample, and each training

dataset contains (m-1) samples, which are used to construct the

classi�er which is tested on the leftout sample. By repeating this

process for (m) times, we use all samples as testing data samples,

and we �nally come up with m predictions. [20] The performance

of the classi�er is then evaluated by the average misclassi�cation

rate:

Er =
1
m

m

∑
i=1

δ( ei, yi)

where yi is the true class label, for instance xi , and

δ( xi, yi) =

{
0 i f x = y
1 i f x 6= y

It is also worth mentioning that the variable selection needs to be

performed on each repetition, with the remaining samples other

than xi, rather than pre-selecting the variables from the complete

dataset and then validate on the test sample. This is important

because the variable selection should rely only on the training

and not the testing dataset. Performing the cross validation with

preselected subset, could lead to misleading results. [33]
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2.5 feature selection methods

Feature selection is the process of subseting a dataset with rele-

vant and reduntant features, in order to improve the performance

of the classi�cation methods, regarding accuracy and time to con-

struct the model. [6]It di�ers from the feature extraction process,

as it selects a subset from already selected features, thus avoiding

the drawback of the output interpretability. The feature selec-

tion methods are classi�ed as �lters, wrappers and embedded,

depending on the methods used to evaluate the feature subsets.

[20]

2.5.1 Filter Methods

Filter methods are widely used on gene ranking, as they have

computational e�ciency. They select the best subset by variable

ordering, using variable ranking methods, implementing heuris-

tic methods. They also use a ranking criterion of statistics, in

order to score the variables and de�ne a threshold value, discard-

ing the variables under it. Their main drawback is that they are

independent of the speci�c required prediction task. That means

that they will select the features even if the latter don’t �t in the

classi�cation model, thus making them unreliable. [6]

2.5.2 Wrapper Methods

Wrapper methods on the other hand, don’t use feature relevant

criteria like the �lter methods. Instead, they depend on the per-

formance of classi�ers to obtain a feature subset. They use the

predictive accuracy of a data mining method, to determine the �t-

ness of a selected subset, by integrating the data mining method

as a black box. The aim of this method is to �nd the subset with

the maximum evaluation, by following a trial and error method.

This approach forces the method to execute cross validation on

small datasets in order to �nd the most accurate estimation, result-

ing in better overall performance. [6] On the downside, wrapper
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methods are very expensive regarding time and computations,

when implemented on high dimensional feature space. [27]

2.5.3 Embedded Methods

The embedded methods were inspired as an attempt to com-

bine the advantages of both �lter and wrapper methods. Unlike

the two previous ones, which seperate the feature selection and

training process, the embedded methods integrate the feature

selection methods into the costruction process of the classi�er

or regression model. [20] More speci�cally, embedded methods

incorporate the feature selection as a part of the training process,

while signi�cantly reducing the computational time. The con-

sider both relations between input and ouput features, and also

search for features which allow better local discrimination. They

use the independent statistical criteria used by �lter methods, in

order to obtain the optimal subsets of a known group of classi-

�ers. After that, the classi�cation method is used to select the

optimal subset among the group of optimal subsets produced by

the previous step. They can be categorized into three submethods,

namely pruning method, built-in mechanism and regularization

models. In the pruning method, all features are included in the

training process initially, and then the ones with the smaller

correlation coe�cient values are recursively removed (pruned),

using an SVM algorithm. In the built-in mechanism method, the

features are selected by some supervised learning algorithms,

in the training phase, while in the regularization method, the

objective functions are used to minimize �tting errors and near

zero regression coe�cient features are eliminated.

Various feature selection techniques are suggested in the liter-

ature. LLDA based Recursive Feature Elimination (LLDA-RFE),

kernel-penalized SVM (KP-SVM), discriminative least squares re-

gression (LSR), Support Vector Data Description (SVDD) and Sup-

port Vector Machine - Recursive Feature Elimination (SVM-RFE)

are some of the most signi�cant ones. Feature selection methods

are widely used in microarray data analysis due to their concep-
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tual simplicity. However, as every algorithm, they come with

some drawbacks. During the feature selection process, where

most genes are eliminated, a large amount of information that

is related to these genes is lost, while correlations between vari-

ables are not taken into consideration. These problems can be

overcomed by selecting the optimal subsets according to a quality

criterion instead of �ltering out the redundant features. However,

these methods will not perform as well on independent testing

datasets, since they su�er from over�tting, and also implement

some computational heavy algorithms ,which are di�cult to in-

tegrate and interpret [6] .

2.5.4 Support Vector Machine - Recursive Feature Elimination

Support Vector Machine - Recursive Feature Elimination (SVM-

RFE) is an embedded feature selection method. SVM-RFE is a

widely used feature selection method speci�cally designed for

microarray data analysis. The goal of this method is to determine

a small subset of informative features that reduces processing

time and provides higher classi�cation accuracy. SVM-RFE uses

the weight magnitude as ranking criterion. It works by repead-

etly training an SVM classi�er, with a subset of features, and

in each iteration heuristically removing the features with the

smaller feature weights. In each iteration, the parameters of the

classi�cation model (SVM) are reestimated, by implementing the

method of cross validation. Also, a linear kernel is often used,

with a proper parameter tuning, in order to achieve better classi-

�cation accuracy. [25] An outline of the algorithm is presented

below, in the case of a linear problem.

SVM-RFE Algorithm

1. Inputs:

• Training examples: X0 = [x1, x2, ...xk, x...xl]
T

• Class labels: y = [y1, y2, ..., yk, yl]
T

2. Initialize:
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• Subset of surviving features s = [1, 2, ...n]

• Feature ranked list r = []

3. Repeat until s = []

4. Restrict training examples to good feature indices:

X = X + 0( :, s)

5. Train the classi�er: α = SVM− train( X, y)

6. Compute the weight vector of dimension length(s):

w = ∑
k

akykxk

7. Compute the ranking criteria: ci = ( wi)
2

, for all i

8. Find the feature with smallest ranking criterion: f = argmin(c)

9. Update feature ranked list: r = [s( f ) , r]

10. Eliminate the feature with smallest ranking criterion:

s = s( 1 : f − 1, f + 1 : length( s) )

11. Output: Feature ranked list r.

More than one features can be eliminated in each step, in order

to improve execution speed. [26]
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PROBLEM STATEMEN T

Problem statement follows. After the problem, the main points

of our approach and implementation are exhibited as well.

3.1 pancreatic cancer and embryogenesis

Pancreatic cancer begins when abnormal cells in the pancreas

grow and divide out of control and form a tumor. The pancreas is

a gland located deep in the abdomen, between the stomach and

the spine. It makes enzymes that help digestion and hormones

that control blood-sugar levels. Organs, like the pancreas, are

made up of cells. Normally, cells divide to form new cells as the

body needs them. When cells get old, they die, and new cells

take their place. Sometimes this process breaks. New cells form

when the body does not need them, or old cells do not die. The

extra cells may form a mass of tissue called a tumor. A malignant

tumor is called cancer. The cells grow out of control and can

spread to other tissues and organs. A tumor is formed when

DNA is subjected to changes. These changes happen according

to some biological pathways. There are many types of biological

pathways. Among the most well-known are pathways involved

in metabolism, in the regulation of genes and in the transmission

of signals.

Signal transduction pathways move a signal from a cell’s ex-

terior to its interior. Di�erent cells are able to receive speci�c

signals through structures on their surface called receptors. After

interacting with these receptors, the signal travels into the cell,

31



32 problem statement

where its message is transmitted by specialized proteins that trig-

ger a speci�c reaction in the cell. For example, a chemical signal

from outside the cell might direct the cell to produce a particular

protein inside the cell. In turn, that protein may be a signal that

prompts the cell to move, or to replicate. Identifying what genes,

proteins and other molecules are involved in a biological pathway

can provide clues about what goes wrong when a disease strikes.

Consequently, biological pathways are a signi�cant �eld of study,

to identify the cause of pdac and/or other types of cancer.

Embryogenesis, on the other hand, is a complex process that

occurs during the �rst eight weeks after fertilization. The main

idea is that a single cell is being transformed to an organism

with a multi-level body plan. During these weeks, the embryo is

undergoing some signi�cant procedures, driven by some crucial

signaling pathways. According to latest studies, there is a high

relevance of the signaling pathways activated during embryo-

genesis, with those that cause pancreatic cancer, if the later get

corrupted. That causes a major problem, since the cells retain

memories of these processes, giving a high possibility of cancer

to arise, if imperfections appear in these processes. [4]

3.2 gene expression analysis and cancer classifi-

cation

The lack of an analysis that will extract the genes involved in

these processes and the correlated genes that are activated during

embryogenesis and pancreatic cancer early stages, is a fact. It

is of great interest to �nd some methods that will be able to do

statistical analysis of the gene expression levels, and �nd the ones

that are signi�cantly di�erentiated. These process can be done

by using mRNA gene expression microarray analysis. Analysis

of mRNA gene expression is widely used to compare patterns

of gene expression between cells or tissues of di�erent kinds

and under di�erent conditions, for example between normal and

cancer cells.
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An important problem that arises is the huge number of genes

included in the original datasets, as they are extracted from di�er-

ent platforms. This huge number of genes can a�ect the outcome

of our work, as most of them are irrelevent to analysis, and it also

inserts latency and worse accuracy to our prediction systems.

Thus, it is crucial to �lter out the genes that are not of interest,

with data mining techniques, and work with smaller datasets that

will contain genes relevant to our analysis. [27]

So the �rst goal of this thesis is to �nd the over/under expressed

genes and consequently reduce the high-dimensional feature

space, by applying feature extraction methods on various pdac

and human embryos datasets. Subsequently, a cross-validation

of the proposed pathways with the signi�cant di�erentially ex-

pressed genes (DEG) will be performed.

The second goal of our analysis is to perform a classi�cation

of pancreatic cancer samples, based on the genes extracted from

the feature extraction step. The proposed classi�cation machine

learning methods will be used in this step, with the extracted gene

expression levels as classi�ers. In order to impove the accuracy

and the computational time of the classi�cation algorithms, a

feature selection will be performed as a last step.

No such study has been proposed yet, that will analyze the

signi�cant genes that participate in the signaling pathways of

embryogenesis and pancreatic cancer, and this thesis comes to

add to the literature an implementation of this process. Com-

monly used techniques in the �elds of data mining, statistical

analysis, machine learning on classi�cation, feature extraction

and feature selection will be implemented on gene expression

microarray datasets, in an attempt to better identify and classify

the incurable problem of pancreatic cancer in a molecular level.
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RELATED WORK

The are a lot of independent, focused on di�erent cancer types

related studies that are worth mentioning. Yet, there are no

similar studies that focus on the analysis of pancreatic cancer

gene expression data and their correlation with the process of

embryogenesis. Some of the most important studies regarding

pancreatic cancer classi�cation, feature extraction and feature

selection techniques are mentioned in this section.

Wazir Muhammad et al [?], developed an arti�cial neural net-

work (ANN) trained on various cancerous datasets, with pan-

creatic cancer patients among them. They focused on cancer

prediction by incorporating features extracted from di�erent can-

cer datasets to the neural network, and achieved high accuracy

prediction.

Sarfaraz Hussein et al [34], proposed a deep learning approach,

implementing both supervised and unsupervised learning meth-

ods, for lung and pancreatic cancer classi�cation. They presented

a framework for tumour determination with 3D screening based

graph regularized sparse Multi-Task Learning (MTL), which can

be used to obtain discriminative features for medical image anal-

ysis.

Eric Shadt et al [35], focused on developing some algorithms

for performing feature extraction and normalization of high-

density microarray gene expression datasets, in order to increase

the sensitivity and speci�city of detecting the presence of genes,

and/or if they are marked as di�erentially expressed. They de-

veloped some feature extraction and normalization algorithms

35
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for the analysis of gene expression array data, and they achieved

improved computation of gene intensities and expression ratios.

Terrence s. Furey et al [36], developed a new way to analyze

high-dimensional microarray data, using SVMs. Their analysis

involved classi�cation of the tissue samples, and an review of

the data for mislabeled or ambiguous tissue results. After com-

putational analysis, the mislabeled tissue samples were detected,

and perfect classi�cation of tissues was achieved (but without

high con�dence), upon correction and removal of the mistaken

outliers.

Chris Ding et al, [37], proposed a minimum redundancy - max-

imum relevance feature selection implementation. The selected

genes cover the feature space is a more balanced way, while

capturing broader characteristics of phenotypes. Improvements

were observed among 4 machine learning methods (Naive Bayes,

Linear discriminant analysis, Logistic regression, and Support

vector machines), that were used for cancer classi�cation.

Isabelle Guyon et al, [26] also proposed a new feature selection

method, based on support vector machines - recursive feature

elimination. The managed to yield better classi�cation perfor-

mance and biological relevance to cancer type. They improved

signi�cantly the baseline method which makes implicit orthog-

onality assumptions, and managed to verify the biological rele-

vance of the selected genes by SVMs with cancer diagnosis.
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OUR APPROACH

5.1 workflow overview

This thesis contributes an analysis of pancreatic cancer gene ex-

pression microarray data, along with their correlation with data

from human embryos. Common machine learning methods will

be used, in an attempt for data mining (feature extraction/feature

selection) and cancer classi�cation, on gene expression microar-

ray datasets.

The main tool used in this study is the R project, a language

and environment for statistical computing and graphics [38]. R

provides the user with a command line (cli), without any graphical

user interface (GUI). The user communicates with the software

via R scripts, or simple commands. A workspace is also available,

where all variables and data are stored, in an .Rdata �le. R also

provides a package manager, from where the user can install

packages which include various implemented functions, in order

to use di�erent functionality. Packages are downloaded from

repositories, and can be installed and used locally. In our analysis,

we downloaded and used functions from the packages: gcrma,

oligo, dplyr, limma, gplots and caret. Some sample scripts used

in our analysis are described in Appendix A.4.

The steps of our analysis are mentioned below. Each step is

described in detail, in their dedicated sections.

1. Data acquisition from GEO database.

2. Data preprocessing.

37
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3. Feature extraction.

4. Data visualization with heat maps / clustering.

5. Cancer classi�cation.

6. Feature selection.

Figure 4: Work�ow chart

5.2 analysis of datasets

We will work with high dimensional gene expression microarray

datasets in our study. All datasets are obtained from the GEO

database [7]. 12 datasets will be used in total, with 11 of them con-

taining gene expression levels from human tissue and peripheral

blood of patients with pancreatic cancer, and 1 of them containing

gene expression levels from the development of human embryos

from week 4 through 9. They have run on 4 di�erent A�ymetrix
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GeneChips® : GPL570, GPL96, GPL97 and GPL6244. [22]. Figure

5 gives an overview of the used datasets.

Figure 5: Overview of datasets

1. GSE15744 - Human embryos. This dataset contains gene

expression levels of 3 embryos for each of the 4th, 5th, 6th,

7th, 8th, and 9th week of human embryonic development.

The experiment run on GPL570 A�ymetrix GeneChip®

which contains 54,675 gene expression levels.

2. GSE32676 - Pdac tissue. This dataset contains samples from

tumour tissue of 25 patients with pancreatic cancer (pdac)

and 7 control (non-malignant) samples. The tissue samples

come from early stage pdac patients. The experiment run

on GPL570 A�ymetrix GeneChip® which contains 54,675

gene expression levels.

3. GSE71989 - Pdac tissue. This dataset contains samples from

tumour tissue of 14 patients with pancreatic cancer (pdac)

and 8 control (non-malignant) samples. The tissue samples

come from advanced stage pdac patients. The experiment

run on GPL570 A�ymetrix GeneChip® which contains

54,675 gene expression levels.
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4. GSE19281 - Pdac tissue. This dataset contains various

disease samples from tumour tissues. We have selected

4 pancreatic cancer (pdac) samples and 3 normal (non-

malignant) pancreas samples. All samples run on two dif-

ferent A�ymetrix GeneChips®, GPL96 and GPL97, which

contain 22,283 and 22,645 gene expression levels respec-

tively. The samples where combined, resulting to 44,928

gene expression levels.

5. GSE15471 - Pdac tissue. This dataset contains samples

from tumour tissue of 36 patients with pancreatic cancer

(pdac) and 36 control (non-malignant) samples. The sam-

ples were obtained at the time of surgery from resected pan-

creas patients. The experiment run on GPL570 A�ymetrix

GeneChip® which contains 54,675 gene expression levels.

6. GSE16515 - Pdac tissue. This dataset contains samples from

tumour tissue of 36 patients with pancreatic cancer (pdac)

and 16 control (non-malignant) samples. The experiment

run on GPL570 A�ymetrix GeneChip® which contains

54,675 gene expression levels.

7. GSE28735 - Pdac tissue. This dataset contains samples from

tumour tissue of 45 patients with pancreatic cancer (pdac)

and 45 control (non-malignant) samples. The experiment

run on GPL6244 A�ymetrix GeneChip® which contains

33,297 gene expression levels.

8. GSE62452 - Pdac tissue. This dataset contains samples

from tumour tissue of 69 patients with pancreatic cancer

(pdac) and 61 adjacent control (non-malignant) samples.

The experiment run on GPL6244 A�ymetrix GeneChip®

which contains 33,297 gene expression levels.

9. GSE49515 - Pdac peripheral blood. This dataset contains

samples from Peripheral blood mononuclear cell (PBMC)

of 3 patients with pancreatic cancer (pdac) and 10 control

(non-malignant) samples. The experiment run on GPL570

A�ymetrix GeneChip® which contains 54,675 gene expres-

sion levels.
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10. GSE60601 - Pdac peripheral blood. This dataset contains

samples from Peripheral blood mononuclear cell (PBMC) of

9 patients with pancreatic cancer (pdac) and 3 control (non-

malignant) samples. Classical CD14++ CD16- monocytes

were isolated from the peripheral blood of healthy volun-

teers and patients with pancreatic ductal adenocarcinoma.

The experiment run on GPL570 A�ymetrix GeneChip®

which contains 54,675 gene expression levels.

11. GSE15932 - Pdac peripheral blood. This dataset contains

samples pancreatic cancer-associated diabetes mellitus. We

only used the pancreatic cancer-without diabetes mellitus

samples, from Peripheral blood mononuclear cell (PBMC)

of 8 patients with pancreatic cancer (pdac) and 8 control

(non-malignant) samples. The experiment run on GPL570

A�ymetrix GeneChip® which contains 54,675 gene expres-

sion levels.

12. GSE49641 - Pdac peripheral blood. This dataset contains

samples from Peripheral blood mononuclear cell (PBMC)

of 18 patients with pancreatic cancer (pdac) and 18 control

(non-malignant) samples. 18 patients with unresectable

PDAC were recruited. Instead of extracting tumour tissue,

(PBMC) was obtained for study purposes. The experiment

run on GPL6244 A�ymetrix GeneChip® which contains

33,297 gene expression levels.

Four of these datasets are used for the process of feature ex-

traction, while all of the pancreatic cancer datasets are used for

the class�cation process, as shown in �gure 6.
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Figure 6: Feature extraction/Classi�cation datasets

We obtain the raw data for each dataset. The raw data come

in a .zip format, which contains the CEL �les regarding each

sample. A CEL �le is a data �le created by A�ymetrix DNA

microarray image analysis software. It contains the data extracted

from the probes on an A�ymetrix GeneChip®. However, the

gene expression levels are raw values, as extracted by the each

platform, which need to be preprocessed in order to be further

analyzed. The preprocessing step follows.

5.3 preprocessing

Raw gene expression microarray data, contain information about

the measured intensities and probe locations on the microarray.

However, in order to obtain the gene expression values that will

be used later in our analysis, a preprocessing stage is required.

Each obtained dataset is also available with preprocessed values,

where di�erent methods or R packages have been used i.e quan-

tile normalization, global scaling etc. Yet, we cannot use these

normalized expression levels, since the have not been normalized

with the same methods, thus they cannot be compared. Instead,

we apply robust multi-array average (RMA) on all datasets, a

widely used normalization method on microarray gene expres-

sion data. RMA works in three steps: it background corrects, in

normalizes using quantile normalization and it log2 transforms.



5.4 feature extraction 43

We preprocess our data using the package gcrma (R/Biocon-

ductor) [39]. However, GCRMA does not support GPL6244 since

the mismatch probes are missing on this platform. Package oligo

(R/Bioconductor) [40] comes of use in this case, since it does

not require the presence of mismatch probes, and is able to

background correct the gene expression levels without them.

Therefore, we used both gcrma and oligo packages, repeating

the preprocessing stage for datasets that ran on GPL570 and

GPL96,GPL97 A�ymetrix GeneChips®.

RMA starts with background correction of the gene expression

values. Instead of storing proble intensities, the probe a�nities

are computed and stored. Each probe a�nity is computed by ob-

taining the base-position pro�les from nonspeci�c binding data,

where the base-position pro�les refer to the contribution of each

base type at each position along the probe. Subsequently a quan-

tile normalization of the data is taking place, followed by a log2
transformation. Gene expression data are log2 transformed, in

order to model proportional chances rather than additive changes,

which is typically more biologically relevant [39]. Log transforma-

tion has also the advantage of producing a continuous spectrum

of values.

After preprocessing of the data is complete, we proceed with

feature extraction techniques.

5.4 feature extraction

Feature extraction is a necessary step in microarray gene ex-

pression dataset analysis, and the �rst of our two goals for this

thesis. It aims on reducing the high-dimensional feature space to

a lower one, by �ltering out all the irrelevant to the analysis fea-

tures. Statistical methods are widely used on feature extraction in

microarray datasets, and especially the identi�cation of di�eren-

tially expressed genes (DEGs). We will perform a DEGs analysis

on our datasets, and then con�rm the results by visualizing the

extracted genes with heatmaps and clustering.
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5.4.1 Di�erentially Expressed Genes Analysis

Identi�cation of di�erentially expressed genes is commonly per-

formed with the statistical measure log2 fold change. It measures

how much an expression is changing between two distinct groups,

pdac and normal in our case. Fold change is examined along with

the false discovery rate (FDR), which is tuned by the p-value.

The datasets that will be used in the feature extraction pro-

cess are two pdac tissue datasets (GSE32676 and GSE71989), one

peripheral blood dataset (GSE49515) and the human embryos

dataset (GSE15744). All the used functions are provided by the

limma (R/Bioconductor) package[41].

We start o� by loading the normalized data, for each of the

three pdac datasets. We then create two factor levels (pdac and

normal) for our model. A linear model is then �t on each gene

given a series of arrays, using the function lmFit. Contrasts are

created for all the levels, which express the di�erence of the

two factors (pdac-normal), by using the function makeContrasts.
We then compute moderated t-statistics, moderated F-statistic

and log2 fold change of the di�erential expressed values, by the

empirical Bayes moderation of the standard errors towards a

common value, using the function eBayes.

After we have calculated log2 fold change for all gene expres-

sion levels, we sort the genes by their log2 fold change (lfc) values

in an descending order. We also take into consideration the false

discovery rate (FDR), which is an important statistical measure

that will �lter out the falsely DEG called genes. We adjust the

FDR by the Benjamini and Hochberg method (BH). FDR is regu-

lated by the p-value, which we set to 0.01, or 1% FDR tolerance.

That means that genes with FDR > 1% , which are probably con-

sidered as DEG, are �ltered out making the feature extraction

process more accurate. We examine the genes with lfc > 2 ( 2log2
fold change). P-value and lfc attributes are passed to the topTable
function, which returns the 2log2 fold change genes for each of

the three pdac datasets.
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Thing di�er for the human embryos dataset (GSE15744), where

we have more than two factor levels. This particular dataset con-

tains 3 human embryos samples for each of the weeks 4 through

9 of embryonic development. Thus, we examine the progress of

the gene expression levels, and we need a factor level for each

week compared to its next i.e week 4-week 5, week 5-week 6 etc.

Subsequently, we follow the same steps as in the pdac datasets.

5.4.2 Heatmaps/Clustering

In order to con�rm the validity of our DEGs, we proceed with

data visualization. Heatmaps and clustering are a widely used

method for gene expression data visualization, since they point

out the expression level di�erences and combine the genes in

clusters, giving the user the ability to extract useful information

about the quality and the characteristics of the input data.

We use the functions hclust and heatmap.2, provided by the R

package gplots[42]. We start by calculating the clusters of the

input data, where the pearson distance is used to calculate the

distances between genes. We then set the number of clusters that

we want our data divided in, by cutting the clustering tree to a

speci�c height. Pseudocoloring follows, where all gene expres-

sions are matched in a red-green spectrum, with red referring to

the overexpressed values and green to the underexpressed ones.

The heatmap is �nally drawn by using the heatmap.2 function. A

dendrogram is also displayed, showing the correlations between

genes that led to the current clustering. We create the heatmaps

of the 4 datasets used for the feature extraction, from which we

assess the produced DEGs. The mentioned heatmaps are under

section 6.1.

5.4.3 Extracted Genes

The last step in the feature extraction process is to combine the

DEGs extracted from all 4 examined datasets. We conclude to

the �nal list of DEGs for the gcrma analysis, by examining the
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intersection of the datasets, as described in the VENN diagram

below.

Figure 7: VENN diagram for extracted DEGs in gcrma analysis

• human embryos ∩ pdac tissue ∩ pdac per. blood : 2 DEGs

• human embryos ∩ pdac tissue : 55 DEGs

• human embryos ∩ pdac per. blood : 2 DEGs

• pdac tissue ∩ pdac per. blood : 17 DEGs

The �nal list of the extracted DEGs that we will use for the

classi�cation and feature selection methods, emerges from the

combination of the 4 gene sets described above, which gives us

a total of 76 DEGs. The same process is followed for the oligo

analysis, which gives us a list of 31 DEGs.

With the process of feature extraction we have managed to

reduce the high-dimensional feature space (of 50,000) genes to a

lower one (of 100 genes), by �ltering out the irrelevant to our

analysis genes. The next step is to �lter our datasets with the

extracted lists of DEGs and keep the genes that will be used as

predictors for the classi�cation process. Since the experiments

that produced our datasets have run on 4 di�erent platforms,

each one with a di�erent number of genes, a problem that arises

is that some genes are not present in all 4 platforms. Two DEGs

included in the list of 76 genes (for the gcrma analysis),were

not present on both GPL570, GPL96 and GPL97. Also two DEGs
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included in the list of 31 genes (for the oligo analysis) were not

present on both GPL570, GPL96, GPL97 and GPL6244. Therefore,

we exclude these 4 genes from our lists, and we proceed in the

cancer classi�cation methods with 74 and 29 DEGs respectively.

These excluded genes that are not present in all platforms, are

marked with red color in the following tables.

Figure 8: 76 DEGs as extracted from the gcrma analysis. The genes are

described by their probe set identi�ers on gpl570 platform

(see also �gure 55, 61, 62 of Appendix A.3).
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Figure 9: 31 DEGs as extracted from the oligo analysis. The genes are

described by their probe set identi�ers on gpl570 platform

(see also �gure 56, 63, 64 of Appendix A.3).

These extracted di�erentially expressed genes, are genes that

are activated during the process of embryogenesis, and are also

signi�cantly transformed in pancreatic cancer patients. This

analysis of examining the correlation of DEGs between pdac

patients and human embryos, can lead us to conclusions about

the genes that are involved in the common signaling pathways

of embryogenesis and pancreatic cancer.

5.5 classification

Pancreatic cancer classi�cation is the second of our two goals for

this thesis. In this step, we will try to classify the subjects into

two classes, patient and healthy, based on the DEGs which will

serve as classi�ers. Various classi�cation methods for microarray

gene expression data are proposed in the literature, with some

of them achieving high accuracy levels. After experimenting

with di�erent algorithms, like arti�cial neural networks, decision

trees, deep learning and random forrest, we decided to work

with support vector machines (SVM) and k-nearest neighbours

(KNN), since they performed better on our data. We will also use

leave one out cross validation (LOOCV) to calculate the accuracy

of our classi�ers. The LOOCV procedure involves keeping a

sample out of the training dataset, building the decision function
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Figure 10: Datasets used for training and testing

according to the remaining samples, and then testing on the

removed sample. The process is repeated until all samples are

kept out for testing, and the classi�cation accuracy of the model

is derived by averaging the classi�cation rate of all repetitions.

These classi�cation methods will be applied to 11 di�erent two

class (binary) microarray gene expression datasets. We divide

the datasets to training and testing ones, according to �gure 10.

The features that will be used as classi�ers for our models, are

the DEGs genes extracted from the feature extraction step. We

will perform a two class classi�cation, where the two classes are

patient and healthy.

We begin by creating the training datasets for the gcrma anal-

ysis. GSE19281, GSE32676, GSE15471 and GSE16515 are combined

to create the tissue training dataset. GSE49515, GSE60601 and

GSE15932 on the other hand, are composing the peripheral blood

training dataset. The training and testing datasets for the gcrma

analysis are described in �gure 11. A binary variable Patient is

also added to both training and testing datasets, which describes

the quality of the samples.

Patient =
{

0 , Healthy
1 , Patient

This variable divides the data into two classes, based on which

the classi�cation will be performed.
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Figure 11: Training and testing datasets for the gcrma analysis. The

positive class refers to patient subjects

We use the package caret (classi�cation and regression train-

ing) [43], which provides us with the models and the functions

for our classi�cation methods. After the datasets are prepared for

the classi�cation process, we set the resampling process using

the function trainControl. We use the leave one out cross vali-

dation (LOOCV) as the resampling process, in order to estimate

our algorithms’ ability without further dividing the already small

sampled datasets to training and testing ones.

5.5.1 Support Vector Machine

The �rst classi�cation algorithm that we will use, which is widely

used for cancer classi�cation in microarray data, is the support

vector machines (SVM). It typically follows these steps:

1. A hyperplane that seperates the data in two classes is found.

2. The algorithm runs recursively in order to maximize the

margin between the data and the hyperplane.

3. The mapping of the input data to the high-dimensional

feature space is performed by a kernel function.

4. The kernel function is tuned by kernel parameters.

5. The tuning parameters are optimized by the process of

cross-validation.

6. After the optimal tuning parameters are derived, class pre-

dictions are made for all samples.
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7. Total accuracy level is estimated by computing the average

classi�cation rate from all repetitions.

We consider the RBF kernel as our kernel function. The optimal

parameters C and σ are found through cross validation. We use

a grid search, where a set of default values are prede�ned for

the two variables. Pairs of (C, σ) are tried in each step, and the

optimal one with the best cross-validation accuracy is selected.

Typical values for C and σ are C = (0.75, 0.9, 1, 1.1, 1.25 ) and

σ = (0.01, 0.015, 0.2 ). The grid of parameters C and σ is

passed to the function train, along this the training dataset, the

training method (in our case SVM with RBF) and the train control

method which in our case is the LOOCV. Class predictors are built

through a repetitive process, where the optimal set of parameters

is selected and the �nal accuracy level is estimated by averaging

the classi�cation rates from all repetitions of the cross validation

process.

Class predictors are built, which leads us to the testing part,

where we evaluate our model’s classi�cation ability. Function

predict extracts the predictions and class probabilities from the

trained model, on a testing dataset. We �rst validate our model on

the training data, and then on the testing tissue data (GSE71989).

Confusion matrix gives us the classi�cation results, by calculating

a cross-tabulation of observed and predicted classes with associ-

ated statistics, containing information about various metrics that

evaluate our models. The results of all the classi�cation methods

for the di�erent training datasets, are presented and discussed in

chapter 6.

Subsequently, before we proceed with peripheral blood datasets

classi�cation, we make a second attempt with pdac tissue datasets.

This time, we shu�e the training dataset, and we keep out the

10% of the samples for testing, while the other 90% is used for

training. This is a con�rmation step in order to further evaluate

our model’s classi�cation ability.

We continue with the pdac peripheral blood datasets. GSE49515,
GSE60601 and GSE15932 are combined to create the peripheral

blood training dataset. In the gcrma analysis we will only test on



52 our approach

the training dataset, since the two testing datasets have run on

the not supported by gcrma, GPL6244 platform. The exact same

process is followed in both shu�ed tissue and pdac peripheral

blood datasets, as in pdac tissue SVM classi�cation, with the

results being presented in chapter 6.

5.5.2 K Nearest Neighbours

The second classi�cation algorithm that we will use, which is

also widely used for cancer classi�cation in microarray data, is

the k nearest neighbours (KNN). It typically follows these steps:

1. Find k samples where their distance from a query point are

minimized (i.e its neighbours).

2. The k parameter is set by the user, and it represents the

number of the neighbours that will be examined.

3. The k parameter is decided by a cross validation method,

among a user de�ned set of values, since it strongly a�ects

the classi�cation ability of the algorithm.

4. Distance weights are calculated for every neighbour, where

w refers to the relative closeness of the sample with respect

to the query point.

5. The maximun weight is set to the output value of the query

point x.

6. The outcome of the query point is predicted by averaging

the outcomes of the k nearest neighbors.

We use the Euclidean distance as the distance metric between

each query point and its neighbours. The goal of this classi�ca-

tion method is to �nd the appropriate number of neighbours, and

predict the outcome of each sample by averaging the outcomes

of its neighbours. Thus, it is crucial to �nd the correct neigh-

bours, which give the best classi�cation accuracy. This process is

performed by using the LOOCV method, which is de�ned in the

trainControl function, similar to the SVM method. We then �t the
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knn model by using the train function, where we set the method

to knn and the train control to LOOCV. The last attribute that

needs to be passed in the train function, is the k parameter, which

will tune the algorithm. There are two ways to tune an algorithm

in the caret R package. The �rst one is by de�ning a tuneGrid,

as we did in the SVM tuning, and the second one is by allowing

the method to tune it automatically. This can be done by setting

the tuneLength variable to a number, which indicates the number

of di�erent values to try for the k parameter. We set a relatively

large number of tuneLength = 20, so as to let the algorithm try 20

di�erent values for k, in each repetition of the cross validation

process. TuneLength makes a guess of what values to try, by

using random selection to �nd the optimal model parameters.

The model is trained, with the cross validation method, and the

�nal classi�cation accuracy is estimated by averaging the class

prediction rates of each model run.

Similarly to the process of the SVM classi�cation, we validate

our model via the functions predict and confusionMatrix. KNN

classi�cation was performed both for pdac tissue and peripheral

blood datasets. The model’s classi�cation ability is discussed in

chapter 6.

The exact same process of SVM and KNN classi�cation, was

followed for the oligo analysis. The only di�erence is the exam-

ined datasets, since this analysis also supports (among others)

the GPL6244 A�ymetrix GeneChip®. Thus, three more datasets

have been added in this analysis, which will be used for testing.

We also decided not to use GSE71989, which was used for tissue

testing in the gcrma analysis, and only use the two new datasets

for tissue testing. The training and testing datasets for the oligo

analysis are described in �gure 12.
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Figure 12: Training and testing datasets for the oligo analysis. The

positive class refers to patient subjects

The two classi�cation methods (SVM and KNN) were tuned

as in the gcrma analysis, while LOOCV was used as a cross

validation method as well. All the oligo classi�cation results,

along with their comparison to the gcrma analysis, are discussed

in chapter 6.

5.6 feature selection

Feature selection is the �nal step of our analysis. From a clini-

cal perspective, the examination of redundant gene expression

levels, may not improve clinical decisions, but result to larger

medical examination costs needlessly. Feature extraction and

feature selection methods aim on deriving a gene signature from

a minimum number of genes, which are highly related with the

examined disease. These methods also result to higher accuracy

in classi�cation and prediction algorithms [25]. Thus, we con-

clude our analysis by implementing a feature selection method,

from which we expect to derive a gene signature with the least

possible number of genes.

We perform the feature selection by using the algorithm of

support vector machines - recursive feature elimination (SVM-

RFE), which was speci�cally designed for microarray data. SVM-

RFE belongs to the category of the embedded feature selection

methods. It incorporates the feature selection (recursive feature

elimination) as a part of the training process (support vector

machines). More speci�cally, it aims on determining a smaller
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than the input dataset, of equally informative/signi�cant features.

SVM-RFE also uses the weight magnitude as a ranking criterion.

It typically follows these steps:

1. Start with the full input dataset.

2. Train an SVM classi�er based on the full dataset features

and assign ranking weights to all features.

3. In every run, remove heuristically a speci�c number of

features (set by the user), which have the smaller weights.

4. Recursively repeat the process with the subset of features.

5. Cross validate the classi�ers by repeating the experiment

k-times.

6. Select the optimal subset of features, which results to the

best classi�cation accuracy.

We implement the SVM-RFE process only for the gcrma analy-

sis. We begin by creating the training datasets, for the pdac tissue

and peripheral blood. The datasets used for the feature selection

process are described in �gure 13. The binary variable Patient is

also added to these datasets, which will divide the samples in two

classes. SVM is used in combination with the RBF kernel, and the

tuning of the kernel is set by a tuning grid, similarly to the SVM

model used in the classi�cation section. We work with 10-fold

cross validation for this algorithm, and we set each experiment

to be repeated 5 times in order to eliminate statistical variations,

since the LOOCV increases signi�cantly the time complexity of

our algorithm.

Another parameter that has to be set beforehand, is the num-

ber of redundant features that we want to be removed in each

iteration. We set that number equal to 5, which means that in

every repetition of each fold the features with the worse weight

vector will be recursively reduced by 5, until all features are re-

moved. Then the optimal subset is selected for each repetition.

The average classi�cation rate of the 5 repetitions is computed,

which produces the v-fold classi�cation rate. In each run, the

dataset is partitioned in 10 partitions, where the 9 are used for
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Figure 13: Datasets used for SVM-RFE training and testing

training and 1 for testing (10-fold cross validation). A feature

weight vector is learned, based on the training dataset, and the

top-ranked features are fed into SVM, while recording the classi-

�cation accuracy. After the 10-fold cross validation process, the

�nal classi�cation accuracy rate for the model is computed from

the average rates of all 10 folds. The last parameter that needs

to be set is the rfeControl. This parameter de�nes the way that

the feature elimination will be performed. We set this parameter

to caretFuncs, a package of helper functions that take over the

backwards feature selection process.

The process of SVM-RFE is performed by the caret function rfe.
This function simultaneously calculates the SVM classi�ers and

proceeds with the recursive feature elimination, according to a

cross validation method. In our case, the input parameters for the

rfe function are the tissue training dataset, the trainControl (10-

fold CV), the redundant sizes (5 in each step), the rfeControl (the

caretFuncs that will perform the backwards feature elimination),

the training method (SVM with RBF kernel), and the SVM tuning

grid that is responsible for the tuning of the SVM parameters C
and σ.

After the training is complete, we result with an optimal subset

of features, that also achieve high classi�cation accuracy. The
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optimal variables found for pdac tissue are 35 genes, extracted

from the initial dataset of 74 genes. The 35 genes are listed in

�gure 14. The next step is to test our SVM classi�ers after the RFE

process, namely the 35 optimal genes. We test the classi�cation

ability of our predictors on both the training dataset and on

GSE71989 which is used for testing. The procedure followed for

the testing is identical to the one used in the SVM classi�cation

section.

The same steps are followed for the SVM-RFE process on the

pdac peripheral blood datasets. The training dataset is also used

for testing in this case, since we do not have more independent

testing datasets in the gcrma analysis. The feature selection

process results to 65 optimal variables, presented in �gure 15, a

subset slightly smaller than the original set of 74 features. The

results of both pdac tissue and peripheral blood SVM-RFE models

are presented and discussed in chapter 6.

Figure 14: SVM-RFE optimal feature selection subset on pdac tissue

datasets (35 genes) (see also �gure 57, 65, 66 of Appendix

A.3).
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Figure 15: SVM-RFE optimal feature selection subset on pdac periph-

eral blood datasets (65 genes) (see also �gure 58, 67, 68 of

Appendix A.3).
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5.7 identification of potential pancreatic cancer

biomarkers

Pancreatic cancer is one of the most dangerous cancer types, and

accounts for many deaths every year. The only curative option is

the complete surgical resection, a di�cult surgical procedure that

only 15% of the patients can undergo. Thus, scienti�c research is

focused on the early diagnosis and prognosis of pancreatic cancer

(pdac), a critical step in impoving the survival rates. Yet, early

diagnosis is di�cult and currently inadequate, since patients

remain asymptomic until the cancer has reached advanced stages.

Furthermore, speci�c symptoms that are associated with pdac

are not yet discovered [44].

In an attempt on improving diagnosis and prognosis of pan-

creatic cancer, scientists study it in a molecular level, where

potential biomolecular markers are examined that could indicate

the presence of the disease. These markers contain information

that could be useful for early cancer detection, since they distin-

guish di�erent tumour types from normal cells. Potential tumour

biomarkers are extracted from analysis of gene expression data.

Systematic analysis of gene expression levels of tumour data can

reveal novel tumour markers and associate them with di�erent

tumour types. Suboptimal markers can also be combined in order

to yield higher sensitivity and speci�city.

Several potential proteins and markers have been identi�ed as

pancreatic cancer markers, using gene expression array analysis.

Their combination can lead to adequate sensitivity and speci�city

levels for cancer classi�cation and diagnosis. Yet, in order to

reach safe conclusions about the validity of these markers, further

validation is applied in large scale studies. [44]

In our approach, we examined pdac tissue datasets, from where

we extracted some potential pancreatic cancer biomarkers. Tu-

mour markers have contributed to pancreatic cancer treatment, as

they are used to monitor the disease progression during chemother-

apy or reccurance after surgery. However, they are not e�ective

in early disease detection, since the elevated tumour marker lev-
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els indicate the high concentration of cancer cells. In addition,

the resection of pancreatic tissue is not an easy procedure, and

can not be performed in a regular basis for disease prognosis.

Thus, it is crucial to �nd non-invasive, fast and cost-e�ective

methods, that will contribute in early prognosis and diagnosis of

pancreatic cancer.

Fortunatly, a large number of biomarkers can be also found in

the serum, making gene expression analysis on blood datasets

an attractive �eld of study. Serum tumour biomarkers are sub-

stances produced by tumour cells, which are released into the

bloodstream. The measurement of these markers is relatively

simple and inexpensive to perform, compared to the invasive

methods of pancreatic tissue resection, since it only requires

blood extraction. Blood extraction is a non-invasive process, fast,

safe to collect, containing widely readable information and can

be applied to large populations. Transcriptomic or metabolomic

biomarkers, which are collected from the serum (blood or saliva

samples), are used for disease diagnosis and prognosis [2]. CEA3

is used as a prognostic marker for various cancer types, though

it lacks the required sensitivity and speci�city for a presymp-

tomatic marker. CA19-9 is considered the best pancreatic cancer

marker found in the serum, despite the fact that it also has limited

sensiticity and speci�city levels [45].

Thus, we considered the examination of peripheral blood datasets

a crucial step in our analysis, in order to suggest some potential

biomarkers, that could be used for prognosis and diagnosis of

pancreatic cancer. The biomarkers and their application in the

clinical setting is summarized in �gure 16.
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Figure 16: Biomarkers of pancreatic cancer and clinical applications [2]

In order to result to reliable potential biomarkers, we cross-

examined the extracted markers from both pdac tissue and pe-

ripheral blood. The initial list of the extracted DEGs (for the

gcrma and the oligo analysis) was compared to the optimal sub-

sets of tissue and peripheral blood from the process of SVM-RFE,

and their intersection was considered. The two following VENN

diagrams contain the mentioned genes.

Figure 17: VENN diagram for extracted DEGs in gcrma analysis, com-

pared to the optimal subsets from SVM-RFE
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Figure 18: VENN diagram for extracted DEGs in oligo analysis, com-

pared to the optimal subsets from SVM-RFE

• 76-DEGs gcrma list ∩ pdac tissue optimal subset variables

∩ pdac per. blood optimal subset variables : 31 DEGs

• 31-DEGs oligo list ∩ pdac tissue optimal subset variables

∩ pdac per. blood optimal subset variables : 10 DEGs

We conclude in 41 DEGs that could be potential pancreatic

cancer biomarkers. These markers can both serve as classi�cation,

prognosis and diagnosis markers, since they are extracted from

both pdac tissue and peripheral blood datasets. Their biological

content is discussed in the following section.

5.8 biological content

As depicted in the Venn diagrams of �gures 17 and 18, the core

circles represent the 31 DEGs and the 10 DEGs resulted from the

intersection of gcrma-analysis or oligo-analysis and the SVM-RFE

optimal subsets respectively.

In order to gain insight into the biological role of these DEGs,

we needed to perform a mapping of probe set identi�ers to HUGO

Gene Nomenclature (HGNC) symbols and a functional enrich-

ment analysis (�gures 59, 60, 69, 70, 71, 72 of Appendix A.3).
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First of all, the probe set identi�ers from these 41 candidates

were mapped to HGNC symbols by using the WebGestalt platform

(a popular tool for the interpretation of gene lists derived from

high-dimensional data analysis), as shown in �gures 59 and 60 of

Appendix A.3 [46]. More speci�cally, in �gure 59, it is illustrated

that 30 probe set identi�ers correspond to 25 unique gene symbols,

whereas one probe set identi�er could not be mapped to any

known gene symbol. Also, in �gure 60, it is illustrated that 10

probe set identi�ers correspond to 9 unique gene symbols. As

one can observe, there is an overlap of the probe set identi�ers

and their mapped HGNC symbols of the 10 DEGs of the gcrma-

intersection with the 31 DEGs of the oligo-intersection, i.e. the

10 common DEGs is a subset of the 31 common DEGs. Thus,

the mapping of the probe set identi�ers and the HGNC symbol

assignment reduced the list of 41 potential cancer biomarkers

obtained in the previous step to twenty �ve known genes, as

shown in �gure 19.

Figure 19: The list of 25 unique known genes described by their HGNC

symbols. The nine overlapping genes between gcrma-

intersection and oligo-intersection are red highlighted. The

unknown gene is blue highlighted.

Then, as a second step, to identify the biological processes (BP)

and pathways in which these intersection DEGs were involved,

we further analyzed the list of 25 genes at the functional level, by

performing Gene Ontology (GO), Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Reactome pathway enrichment analy-

ses using the WebGestalt online tool [47]. A p-value ≤ 0.01 was

considered signi�cant. Gene overrepresentation analysis (ORA)

resulted in enriched GO-biological processes and pathways as

illustrated in �gures 20 and 21 respectively.
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Figure 20: GO enrichment analysis in the category of biological process-

no redundant of 25 intersection DEGs using the WebGestalt

online platform.

Figure 21: Pathway (KEGG, Reactome) enrichment analysis of 25 inter-

section DEGs using the WebGestalt online platform.
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Our analysis revealed core processes and signaling pathways

that are altered in pancreatic cancer subjects compared to healthy

subjects (�gures 20, 21), some of which may be critical in human

embryogenesis [48], [49], [50]. As shown in �gure 20, enriched

BP functions were integrin-mediated processes, angiogenesis

and developmental processes such as endoderm development.

Furthermore, as demonstrated in �gure 21, pathway enrichment

results showed that the 25 intersection DEGs were signi�cantly

enriched in ECM and immune system (e.g. scavenger receptors)

associated pathways as well as signal transduction (e.g. signaling

by receptor tyrosine kinases, signaling by PDGF) and metabolic

pathways (e.g. Vitamin B6 metabolism).

To facilitate comprehension of the enrichment results in the

context of cancer, we conducted further analysis of the 25 in-

tersection DEGs by utilizing the Cancer Hallmarks Analytics

Tool (CHAT) [51]. CHAT was employed to reveal the involve-

ment of the 25 intersection DEGs in the biological processes lead-

ing to pancreatic cancer according to the following ten current

hallmarks of cancer: Sustaining proliferative signaling, Evad-

ing growth suppressors, Avoiding immune destruction, Enabling

replicative immortality, Tumor-promoting in�ammation, Acti-

vating Invasion and metastasis, Inducing angiogenesis, Genomic

instability and mutation, Resisting cell death, Deregulating cellu-

lar energetic.

By using each of the 25 intersection DEGs as search term,

CHAT yielded one or several hallmarks to 22 of these genes, as

presented in table 22.

Moreover, we used CHAT to analyze PubMed literature on

pancreatic cancer in relation to each gene of the 25 intersection

DEGs. CHAT automatic literature analysis revealed that TIMP2,

GAS6, CXCL5, and SPARC studies have a hallmark pro�le more

similar to that of pancreatic cancer, as illustrated in �gures 23-26.
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Figure 22: Classi�cation of 25 putative markers according to the hall-

marks of cancer (data shown as NPMI; normalized point-

wise mutual information). The nine overlapping genes be-

tween gcrma-intersection and oligo-intersection are red high-

lighted.
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Figure 23: Pancreatic cancer and TIMP2 (data shown as CPROB; condi-

tional probability).

Figure 24: Pancreatic cancer and GAS6 (data shown as CPROB; condi-

tional probability).

Figure 25: Pancreatic cancer and CXCL5 (data shown as CPROB; condi-

tional probability).
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Figure 26: Pancreatic cancer and SPARC (data shown as CPROB; condi-

tional probability).

Even with poor knowledge about the directly interrelation of

the 25 intersection DEGs with pancreatic cancer as well as with

embryogenesis, we can consider them as potential classi�ers of

PDAC based on:

• the signi�cant BP processes and pathways highlighted here

[52],

• the Cancer Hallmarks and associated molecular pathways

underlying the mechanisms involved [53], and

• the abundance of collagens in the 25 intersection DEGs

and the role of the ECM in PDAC [54].

The 25 intersection DEGs represent a list of putative biomark-

ers, whereas TIMP2, GAS6, CXCL5, and SPARC can be considered

as the most promising biomarkers that could be easily validated

experimentally in peripheral blood.
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RE SULT S

In this chapter we present and discuss the results from the steps

of feature extraction, cancer classi�cation and feature selection.

6.1 feature extraction

Microarray gene expression datasets, su�er from the “curse of

dimensionality”, as already discussed in chapter 2. Thus, feature

extraction methods are applied, in order to avoid the issues that

a high dimensional feature space introduces. The di�erentially

expressed genes (DEGs) are examined in 4 human embryos, pdac

tissue and pdac peripheral blood datasets. We consider the DEGs

as the genes with expression values of log2FoldChange > 2 and

FDR < 1%. The lists of the DEGs extracted by each of the 4

datasets, are cross-examined and combined to result to our �nal

feature space.

In order to evaluate the feature extraction method and con�rm

that the extracted DEGs are indeed signi�cantly di�erentially

expressed, we visualize our data by creating a heatmap with gene

clustering, of the extracted DEGs. We present the gcrma analysis

heatmaps in this section, while the oligo analysis corresponding

heatmaps are presented in Appendix A.1. The heatmaps of the 4

examined datasets are listed and discussed below.

Heatmap 27 describes the DEGs on the human embryos dataset.

The genes are divided in clusters, which are represented by the

side left colors. We can distinguish two major clusters, where

the genes with common expression level are divided. The upper

71
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Figure 27: K-means clustering with pearson distances heatmap of DEGs

screened on the basis of log2fold change > 2 and FDR < 0.01.

Notes: GSE15744 human embryos data with 74 DEGs vs

18 samples for 6 weeks of embryonic development (3 sam-

ples/week). Red indicates that the expression of genes is

relatively upregulated, green indicates that the expression

of genes is relatively downregulated.

Abbreviation: DEGs, di�erentially expressed genes

cluster contains genes that are downregulated in early weeks

(week 4 and 5) and upregulated in later weeks (week 8 and 9),

while the opposite happens in the lower cluster of genes. We

observe a progression of gene expression levels over the weeks,

which is an expected characteristic, as the embryo develops. The

heatmap also con�rms the validatity of the extracted DEGs for

this dataset.

Heatmap 28 contains the DEGs on the �rst of the two pdac

tissue examined datasets (GSE32676). This dataset contains sam-

ples from early stage pancreatic cancer patients, were the gene

expression levels are not signi�cantly di�erentiated. The infor-

mation extracted from this heatmap is quite ambiguous, however

this is an expected result and does not imply false validity of the

extracted DEGs.

Heatmap 29 on the other hand, contains the DEGs on the

second of the two pdac tissue examined datasets (GSE71989).
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Figure 28: K-means clustering with pearson distances heatmap of DEGs

screened on the basis of log2fold change > 2 and FDR < 0.01.

Notes: GSE32676 pdac tissue data with 74 DEGs vs 32 pdac

patient and healthy samples. Red indicates that the expres-

sion of genes is relatively upregulated, green indicates that

the expression of genes is relatively downregulated.

Abbreviation: DEGs, di�erentially expressed genes

Things are quite clear in this dataset, and useful information

can be extracted from the heatmap. We observe 2 major clusters

of genes, which are signi�cantly di�erentiated between the 2

classes (pdac-normal). This heatmap con�rms the quality of the

input data, since GSE71989 refers to advanced stage pdac tissue

samples, where we expect more signi�cant di�erences in gene

expression levels.

The last of the 4 datasets used in the feature extraction pro-

cess is described by heatmap 30, which contains the DEGs of

the peripheral blood dataset (GSE49515). We can con�rm the

di�erences in the expression levels between the two classes in

this dataset as well. GSE49515 contains similar expression levels

for some genes. The Pearson distances are close to zero for these

genes and they cannot be displayed in the heatmap, thus they

are left empty. The 5 produced clusters give us useful insights

for the DEGs and con�rm their validity.
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Figure 29: K-means clustering with pearson distances heatmap of DEGs

screened on the basis of log2fold change > 2 and FDR < 0.01.

Notes: GSE71989 pdac tissue data with 74 DEGs vs 22 pdac

patient and healthy samples. Red indicates that the expres-

sion of genes is relatively upregulated, green indicates that

the expression of genes is relatively downregulated.

Abbreviation: DEGs, di�erentially expressed genes

Figure 30: K-means clustering with pearson distances heatmap of DEGs

screened on the basis of log2fold change > 2 and FDR < 0.01.

Notes: GSE49515 pdac peripheral blood data with 74 DEGs vs

13 pdac patient and healthy samples. Red indicates that the

expression of genes is relatively upregulated, green indicates

that the expression of genes is relatively downregulated.

Abbreviation: DEGs, di�erentially expressed genes
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6.2 classification

The cancer classi�cation results are presented in this section.

After con�rming the validity of the 74 extracted DEGs, we use

them as classi�ers for our machine learning classi�cation meth-

ods. Firstly, heatmaps of the training and testing datasets are

presented. Subsequently, some validation metrics for our classi�-

cation models are examined, and the results are presented and

discussed in tables and charts.

6.2.1 Heatmaps

The feature extraction process for the gcrma analysis, concluded

in 74 DEGs, which synthesize the classi�cation models’ feature

space. We visualize these genes with heatmaps and clustering

for the training and testing datasets of the classi�cation process.

Examining these heatmaps is an non-trivial procedure, since it

can provide us with useful information about the quality of our

classi�ers.

Heatmap 31 contains the DEGs on the training pdac tissue

dataset used for SVM and KNN. This dataset is created from the

combination of 4 di�erent datasets, with di�erent expression

levels. Thus, we donnot expect to observe signi�cant expression

level di�erences. On the contrary, these smoothly spread inten-

sities can result to better training of the models, since they will

have better discrimination ability for tough classi�cation deci-

sions. The genes are divided in 4 clusters, where we can observe

similar, non-signi�cant di�erences in expression levels.

Heatmap 32 on the other hand, contains the DEGs on GSE71989,

which is used as the testing pdac tissue dataset for our models.

This dataset contains advanced stage pdac tissue samples, where

the di�erences in expression levels are signi�cant. We use this

dataset for testing, since the classes are more distinct, which can

result to better classi�cation predictions. Therefore, we expect

high classi�cation accuracy on the testing dataset, due to the

large class distances. The genes are divided in 2 major clusters,
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where we can observe the signi�cant di�erences between the

two classes.

Figure 31: Pdac tissue training dataset heatmap containing data with

74 DEGs vs 163 pdac patient and healthy samples

Figure 32: Pdac tissue testing dataset heatmap containing data with 74

DEGs vs 22 pdac patient and healthy samples

Finally, we examine heatmap 33, which contains the DEGs on

the pdac peripheral blood training dataset. The training dataset is

created by the combination of 3 di�erent datasets, which di�erent

genes expression levels. That results to an ambiguous heatmap,
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since we cannot classify the samples into two classes by clustering

them. However, this is not necessarily bad, because the short

distance between the two classes, can lead us to models with

better classi�cation ability. The genes are divided in 4 clusters,

which expose the di�erence between the expression levels of

di�erent datasets, rather than the di�erence between the two

classes.

Figure 33: Pdac peripheral blood training dataset heatmap containing

data with 74 DEGs vs 41 pdac patient and healthy samples

6.2.2 Cancer classi�cation rates

We have used 11 pdac datasets for the cancer classi�cation sec-

tion. Pdac tissue and peripheral blood datasets were examined

seperately. The datasets where divided in training and testing,

and leave one out cross validation was used. The training datasets

were fed into two classi�cation algorithms, support vector ma-

chines (SVM) and k-nearest neighbours (KNN). After the train-

ing stage, the models were tested on both training and testing

datasets. Three signi�cant metrics were used for the evaluation

of our models: accuracy, sensitivity and speci�city. Accuracy

refers to the ability of the models to classify correctly the samples.

Sensitivity, or true positive rate, is a metric that expresses the

ratio of the correctly predicted positive samples, with respect
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to all positive samples. Speci�city on the other hand, or false

positive rate, describes the ratio of the falsely predicted positive

samples (which are negative), with respect to all negative samples.

These three metrics are estimated on all classi�cation attempts,

and they are presented in table 34. A comparison of the two

algorithms is also presented in plot 35.

Figure 34: SVM and KNN Classi�cation metrics on various cancer classi-

�cation attempts. 74 DEGs were used as classi�ers on binary

class data

Figure 35: SVM and KNN comparison of accuracy rates on cancer classi-

�cation attempts.74 DEGs were used as classi�ers on binary

class data
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From the evaluation of the experimental results, we end up

with the following observations:

• Both SVM and KNN perform exceptionally on pdac tissue

and peripheral blood data. Accuracy rates of more than

90% are achieved, which indicates the high classi�cation

ability of our models. Good cancer classi�cation is achieved,

based on the 74 DEGs which are used as classi�ers.

• Both SVM and KNN perform even better on independent

pdac tissue testing data, where the accuracy rates exceeded

95%. This happens due to the �tness of our testing data,

which have large class distances, as they are obtained from

advanced stage pdac patients. That is also the reason why

relatively lower accuracy rates are achieved in the train-

ing data, where the class distances are smaller (see also

heatmap 31).

• SVM generally performs better than the KNN in all experi-

ments. Especially in pdac peripheral blood training dataset,

SVM manages to classify all samples correctly, while KNN

achieves 85% accuracy rate.

• Slightly lower accuracy levels are observed in the shu�ed

and split tissue training dataset, where KNN also performs

better on testing data. The lower accuracy rates are inde-

pendent of the shu�ing of the dataset. Worse classi�cation

happens in this dataset, due to the smaller amount of clas-

si�ers, since only 90% of the training dataset was used for

training and 10% was used for testing. The shu�ing of the

dataset would not a�ect the classi�cation process either-

way, since the data are cross validated with the leave one

out cross validation method (LOOCV), where all samples

are used as testing data, independently of their position.

• The computational time of both algorithms was signi�-

cantly low. SVM run for about 20 seconds, while KNN

needed about 12 seconds to �nish. Despite the fact that
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LOOCV was used (which increases the time complexity as

it cross validates the training process for N times, where

N is the number of features), the running time was kept

low. That happens due to the grid on parameter tuning,

where speci�c values were tried, and the length of func-

tion tuneLength which was set to small values. The small

number of samples and features also contributed in the low

time complexity of each method.

• Sensitivity and speci�city are two good metrics that show

us on which data class the algorithms su�er more and score

worse classi�cation rates. Sensitivity is lower in most cases,

which indicates that our methods manage to better classify

the data of the negative class (patient subjects) as patients,

but achieve worse classi�cation results when classifying

positive class data (healthy subjects) as healthy.

• Lastly, no over�tting was observed, since our methods

achieved high classi�cation rates. This happens due to

the feature extraction process, where the redundant and

irrelevant to the classi�cation features that introduce data

over�tting were successfully removed.

We also present the classi�cation results for the oligo analysis.

We decided to proceed with this analysis, in order to integrate

2 more pdac tissue and 1 peripheral blood datasets, which are

used for testing. The same steps were followed, with the same

parameter tuning and cross validation method. The step of tissue

shu�ing was skipped. The corresponding heatmaps are listed

in Appendix A.2. The results are presented in table 36, and a

comparative plot of the two classi�cation methods follows 37.

The results are discussed afterwards.
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Figure 36: SVM and KNN Classi�cation metrics on various cancer clas-

si�cation attempts (oligo analysis). 29 DEGs were used as

classi�ers on binary class data

Figure 37: SVM and KNN comparison of accuracy rates on cancer clas-

si�cation attempts (oligo analysis). 29 DEGs were used as

classi�ers on binary class data

From the evaluation of the experimental results, we observe

that our methods performed exceptionally on both pdac tissue

and peripheral blood training datasets. High classi�cation rates

were expected, since the datasets were the same as in the gcrma

analysis, with the di�erence that the classi�ers were 29 DEGs

instead of 74. The negative conclusion that arises from this anal-

ysis, is the non-�tness of the testing datasets. Both in pdac tissue
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and peripheral blood testing datasets, low accuracy rates were

observed. Especially in the pdac peripheral blood testing dataset,

the classi�cation rate was below 50%, which can lead to two

conclusions: Either our models are unsuccessful, or the testing

data are not suitable for testing with these models. Having tested

our models in various experiments, where accuracy rates of over

90% were achieved, we conclude that the testing data from the

platform GPL6244 are not suitable for our models, thus we don-

not proceed with further analysis or discussion for the oligo

implementation.

6.3 feature selection

The feature selection results are presented in this section. After

performing the cancer classi�cation with SVM and KNN with 74

DEGs as classi�ers, we attempt to extract a smaller gene signa-

ture, by implementing a widely used feature selection method,

support vector machines - recursive feature elimination (SVM-

RFE). Firstly, heatmaps of the training and testing datasets are

presented. Subsequently, we evaluate our models by examining

some validation metrics, which are presented and discussed in

tables and charts.

6.3.1 Heatmaps

The feature selection process is performed on the 74 DEGs pdac

tissue and peripheral blood training datasets. The SVM-RFE

process provides us with the optimal variable subsets for pdac

tissue and peripheral blood. The 3 following heatmaps describe

these datasets, which are in fact subsets of the heatmaps presented

in the classi�cation step. Thus, the comments on these heatmaps

will not be repeated in this section, and they can be found under

section 6.2.1. Heatmap 38 refers to the pdac tissue training dataset,

heatmap 39 refers to the pdac tissue testing dataset and heatmap

40 refers to the pdac peripheral blood training dataset.
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Figure 38: Pdac tissue training dataset used for SVM-RFE heatmap con-

taining data with 35 DEGs (optimal subset) vs 163 pdac pa-

tient and healthy samples

Figure 39: Pdac tissue testing dataset used for SVM-RFE heatmap con-

taining data with 35 DEGs (optimal subset) vs 22 pdac patient

and healthy samples



84 results

Figure 40: Pdac peripheral blood training dataset used for SVM-RFE

heatmap containing data with 65 DEGs (optimal subset) vs

41 pdac patient and healthy samples

6.3.2 Cancer classi�cation rates

We have used 8 pdac datasets for the feature selection. Pdac

tissue and peripheral blood datasets were examined seperately.

The training datasets are the same as in the step of cancer clas-

si�cation. We only used 1 dataset for pdac tissue testing. 10

fold cross validation was used as a validation method, instead

of LOOCV. SVM-RFE is a time-consuming process, with higher

time complexity than SVM or KNN. That happens because the

recursive feature elimination works with a prede�ned number

of predictors which will be removed in each step. In order to

acquire the optimal subset, the SVM classi�ers are trained and

cross validated in each iteration of the RFE, until all features

are eliminated. This process can result to high computational

costs, which led us to use 10-fold CV instead of LOOCV. Accuracy,

sensitivity and speci�city are the metrics that will evaluate the

performance of our models, and they are presented in table 41.

Moreover, the classi�cation rates from the folds of 10-fold CV

are presented in table 42. Furthermore, the accuracy rates of all

the examined subsets which led to the optimal subsets for pdac
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tissue and peripheral blood datasets, are presented in table 43,

along with chart 44 and chart 45. Finally, a comparison of the

accuracy rates of SVM, KNN and SVM-RFE methods is presented

in plot 46.

Figure 41: SVM RFE metrics on various feature selection attempts. 35

DEGs for pdac tissue and 65 DEGs for pdac peripheral blood

datasets were used as classi�ers on binary class data

Figure 42: 10-Fold CV classi�cation rates for the optimal features sub-

sets (35 DEGs for pdac tissue and 65 DEGs for pdac peripheral

blood datasets).
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Figure 43: SVM-RFE feature subset accuracy levels

Figure 44: SVM-RFE optimal variables subset of 35 DEGs for pdac tissue

datasets
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Figure 45: SVM-RFE optimal variables subset of 65 DEGs for pdac pe-

ripheral blood datasets

Figure 46: SVM, KNN and SVM-RFE comparison of accuracy rates on

cancer classi�cation attempts. Di�erent number of DEGs

were used as classi�ers on binary class data

From the evaluation of the experimental results and the pre-

sented plots, we result to the following observations:
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• The SVM-RFE achieves great classi�cation rates ( >85%).

That means that the SVM classi�ers, built on the subsets

of the 35 and 65 DEGs for pdac tissue and peripheral blood

respectively, have high classi�cation ability. Thus, we can

conclude that the feature selection process is successful,

since it manages to �lter out the redundant classi�ers, with-

out undermining the models’ accuracy levels.

• Sensitivity is slightly worse than speci�city, which indi-

cates that our models tend to classify the data of the positive

class (healthy subjects) as healthy, with worse accuracy.

• Regarding the 10-fold CV classi�cation rates, ROC was used

instead of accuracy. The 10-fold CV rates are regarding the

optimal subset of DEGs, 35 for pdac tissue and 65 for pdac

peripheral blood, where the average classi�cation rate is

also calculated. The average classi�cation rate di�ers from

the extracted classi�cation rate for the training dataset,

since the �rst one refers to 1 fold each time, while the

second refers to the whole dataset. Each fold was repeated 5

times, where each fold value is the average of the 5 repeats.

• Table 43 contains the accuracy levels of each subset, which

leads us to the select the optimal one for pdac tissue and

peripheral blood. Here we mention that the number of

reduced features in each iteration is predi�ned, and it is

independent of their feature weights. Thus, the optimal

subset is selected between some prede�ned values that we

set beforehand, and not based on the exact number of the

best classi�ers.

• SVM-RFE is a time demanding process, since it has greater

time complexity than a simple classi�cation algorithm, de-

manding some minutes to run. That is an expected observa-

tion, and it is also the reason why we have chosen 10-fold

CV over LOOCV.

• Finally, the comparative plot between SVM, KNN and SVM-

RFE shows that our feature selection method performed
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similarly the two classi�cation methods, achieving high

accuracy rates on both pdac tissue and peripheral blood

datasets. Thus, we conclude that SVM-RFE �ltered out the

correct redundant features, and overall was a successful

process that provided us with a smaller gene signature.
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CONCLUS IONS

Microarray gene expression analysis is a useful tool in bioinfor-

matics and is widely used for gene expression pro�ling, especially

in human cancer studies. According to recent studies [5], there

is a correlation of some signaling pathways that participate in

pancreatic cancer tumorigenesis, with the ones activated during

the process of embryogenesis.

In our analysis, the signi�cant genes activated in both pan-

creatic cancer (pdac) and human embryos datasets are cross-

examined and a list of the signi�cantly involved in these path-

ways genes is extracted. These genes are later used for pancreatic

cancer classi�cation. This thesis aims to propose a gene signa-

ture for genes involved in both processes, and to contribute some

machine learning models that will be used for pancreatic cancer

classi�cation. Our goal is to con�rm this existing theory that

associates pancreatic cancer with embryogenesis, by suggesting

the involved genes, and to add some pancreatic cancer classi�ca-

tion methods to the literature, in an attempt to improve cancer

identi�cation and classi�cation in a molecular level.

Based on the results of our analysis, we can conclude the

following:

• The correlation of di�erentially expressed genes (DEGs)

between pdac and human embryos datasets is con�rmed.

The extracted DEGs were cross-validated in pdac tissue,

pdac peripheral blood and human embryos datasets and

heatmaps of those genes were plotted. These heatmaps of

the 74 extracted DEGs highlighted both the signi�cance of

91
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the genes in each dataset, and the correlation in the expres-

sion levels progression between the examined datasets.

• The feature extraction process, where we implemented sta-

tistical methods to extract the DEGs, resulted in good dis-

crimination of the signi�cant features. The extracted genes

that were characterized as signi�cant, were con�rmed as

DEGs by the heatmaps on each dataset. This process of

data mining gives us useful insights on which genes are

activated during pancreatic cancer and embryogenesis. A

gene signature is extracted, which can be interpreted bio-

logically to identify the examined biomolecular signaling

pathways.

• Furthermore, the feature extraction process was a prereq-

uisite for the cancer classi�cation methods, since it �ltered

out all the redundant and irrelevant to the analysis features.

A lower feature space with only features associated with

the analysis, results to higher and more accurate classi�ca-

tion rates.

• Cancer classi�cation methods used to classify the two class

data into patient or healthy subjects, also performed well.

They managed to classify independent testing data of pdac

and healthy subjects with high accuracy rates, based on

the extracted DEGs which were used as classi�ers. The

proposed models of SVM and KNN algorithms, can be used

on more independent testing data in order to classify future

subjects as patients or healthy. The extracted features can

be added to the literature as pancreatic cancer classi�ers or

predictors, in the attempt of improving cancer classi�cation

and prediction.

• The feature selection method (SVM-RFE) also achieved

high classi�cation accuracy and managed to �lter out more

redundant features. A smaller gene signature was extracted,

which is desirable, since the lower dimensional feature
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space can improve the accuracy and computational time of

future cancer classi�cation/prediction methods.

• Finally, we emphasize on the signi�cance of a good prepro-

cessing analysis for microarray data. The preprocessing

performed by oligo was not as e�cient as the one by gcrma.

It identi�ed less genes as di�erentially expressed, and was

unsuccessful on cancer classi�cation for independent test-

ing data.

Concerning the biological evaluation, the enriched biologi-

cal processes and pathways that assigned to the 25 intersection

genes are important with respect to di�erent aspects of pancre-

atic carcinogenesis and to some crucial events of embryogenesis.

Moreover, we support the notion that our “25 gene signature” in

its entirety can play a classi�cation role in discriminating patients

with pancreatic cancer from healthy controls, and we emphasize

the role of TIMP2, GAS6, CXCL5, and SPARC as potent predictors.

Overall, we conclude this thesis by adding the gene signa-

ture of the signi�cantly involved genes in the common signaling

pathways between pancreatic cancer and embryogenesis to the

literature. We also propose two cancer classi�cation models,

hoping to contribute to the e�orts made in achieving better clas-

si�cation and prediction of the incurable disease of pancreatic

cancer.
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F U T URE WORK

A signi�cant amount of work can be done in cancer classi�cation

at a molecular level using microarray gene expression analysis.

The three independent major steps that were followed in this

thesis, can be implemented with di�erent approaches.

The process of feature extraction can be implemented by vari-

ous data mining techniques proposed in the literature. It would

be a good practice for future studies to focus on extracting the

di�erentially expressed genes with di�erent data mining meth-

ods, on di�erent datasets, and cross-validate their �ndings with

the ones proposed in this thesis. This would strongly suggest

the validity of these markers, which could be used as a reliable

criterion for cancer classi�cation and prediction. Feature selec-

tion could also concern future researchers, since various feature

selection methods are proposed in the literature, which could

result to better subsetting of the extracted features.

Di�erent classi�cation methods can also be a subject of future

studies. Widely used algorithms on cancer classi�cation can be

trained on the proposed features, in order to possibly achieve

better classi�cation rates and evaluate the quality of the features.

Arti�cial neural networks, random forest and deep learning are

related with cancer classi�cation and prediction, and their evalu-

ation on the proposed features could be a future subject of study.

Di�erent datasets can also be tested as another evaluation metric

for the quality of extracted genes.

Finally, this study can be extended by using the proposed

classi�ers as predictors in machine learning methods used for

95
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cancer prediction. Independent pancreas tissue and peripheral

blood samples can be used as testing datasets for cancer prediction

methods with the described predictors. Future research is needed

to achieve better pancreatic cancer prediction, and this study

could be a major step towards this goal.
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a.1 feature extraction heatmaps

The heatmaps of each of the 4 datasets used for the feature ex-

traction process are presented in this section. These heatmaps

contain only the extracted genes of each dataset instead of all 76

extracted features.

Figure 47: Human embryos heatmap (GSE15744) containing data with

234 own extracted DEGs vs 18 human embryos samples

i
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Figure 48: Pdac tissue heatmap (GSE32676) containing data with 151

own extracted DEGs vs 32 pdac patient and healthy samples

Figure 49: Pdac tissue heatmap (GSE71989) containing data with 2642

own extracted DEGs vs 22 pdac patient and healthy samples
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Figure 50: Pdac peripheral blood heatmap (GSE49515) containing data

with 74 own extracted DEGs vs 13 pdac patient and healthy

samples



iv appendix chapter

a.2 classification heatmaps on oligo analysis

The training and testing datasets for SVM and KNN classi�cation

are presented in this section.

Figure 51: Pdac tissue training dataset heatmap containing data with

29 DEGs vs 163 pdac patient and healthy samples (oligo

analysis)

Figure 52: Pdac tissue testing dataset heatmap containing data with

29 DEGs vs 220 pdac patient and healthy samples (oligo

analysis)
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Figure 53: Pdac peripheral blood training dataset heatmap containing

data with 29 DEGs vs 41 pdac patient and healthy samples

(oligo analysis)

Figure 54: Pdac peripheral blood testing dataset heatmap containing

data with 29 DEGs vs 36 pdac patient and healthy samples

(oligo analysis)
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a.3 gene lists and their annotation

Figure 55: 76 DEGs as extracted from the gcrma analysis. The genes

are described by their gene symbols using WebGestalt 2013.

Identi�ers in yellow background were mapped to multiple

gene symbols or could not be mapped to any gene symbol
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Figure 56: 31 DEGs as extracted from the oligo analysis. The genes

are described by their gene symbols using WebGestalt 2013.

Identi�ers in yellow background could not be mapped to any

gene symbol
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Figure 57: 35 genes as selected from SVM-RFE optimal feature selection

subset on pdac tissue datasets. The genes are described by

their gene symbols using WebGestalt 2013. Identi�ers in

yellow background could not be mapped to any gene symbol
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Figure 58: 65 genes as selected from SVM-RFE optimal feature selection

subset on pdac blood datasets. The genes are described by

their gene symbols using WebGestalt 2013. Identi�ers in

yellow background could not be mapped to any gene symbol
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Figure 59: 31 genes as extracted from the intersection of the subset

of gcrma analysis, and the optimal subsets from SVM-RFE

(tissue and blood). The genes are described by their gene

symbols using WebGestalt 2013. Identi�er in yellow back-

ground could not be mapped to any gene symbol

Figure 60: 10 genes as extracted from the intersection of the subset of

oligo analysis, and the optimal subsets from SVM-RFE (tissue

and blood). The genes are described by their gene symbols

using WebGestalt 2013
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Figure 61: a) Gene Ontology (GO) annotation in the category of biolog-

ical process-no redundant of 76 DEGs as extracted from the

gcrma analysis
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Figure 62: b) Pathway annotation (KEGG, Reactome) of 76 DEGs as

extracted from the gcrma analysis
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Figure 63: a) Gene Ontology (GO) annotation in the category of biolog-

ical process-no redundant of 31 DEGs as extracted from the

oligo analysis

Figure 64: b) Pathway annotation (KEGG, Reactome) of 31 DEGs as

extracted from the oligo analysis
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Figure 65: a) Gene Ontology (GO) annotation in the category of biolog-

ical process-no redundant of 35 gene list as selected from

SVM-RFE optimal feature selection subset on pdac tissue

datasets
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Figure 66: b) Pathway annotation (KEGG, Reactome) of 35 gene list as

selected from SVM-RFE optimal feature selection subset on

pdac tissue datasets
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Figure 67: a) Gene Ontology (GO) annotation in the category of biolog-

ical process-no redundant of 65 gene list as selected from

SVM-RFE optimal feature selection subset on pdac blood

datasets
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Figure 68: b) Pathway annotation (KEGG, Reactome) of 65 gene list as

selected from SVM-RFE optimal feature selection subset on

pdac blood datasets
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Figure 69: a) Gene Ontology (GO) annotation in the category of biologi-

cal process-no redundant of 31 common gene list as extracted

from the intersection of the gcrma analysis subset, and the

optimal SVM-RFE (tissue and blood) subsets
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Figure 70: b) Pathway annotation (KEGG, Reactome) of 31 common

gene list as extracted from the intersection of the gcrma

analysis subset, and the optimal SVM-RFE (tissue and blood)

subsets

Figure 71: a) Gene Ontology (GO) annotation in the category of biologi-

cal process-no redundant of 10 common gene list as extracted

from the intersection of the oligo analysis subset, and the

SVM-RFE (tissue and blood) optimal subsets
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Figure 72: b) Pathway annotation (KEGG, Reactome) of 10 common

gene list as extracted from the intersection of the oligo anal-

ysis subset, and the SVM-RFE (tissue and blood) optimal

subsets

a.4 sample r scripts

Some sample R scripts are included in this section, describing the

main steps we followed in our analysis.

Listing A.1: Feature extraction on pdac dataset

cl = ifelse ( grepl ( "NORMAL", colnames(input), �xed=TRUE

), ’Normal’, ’PDAC’)

f = factor( cl , levels=c("PDAC","Normal"))

design = model.matrix(~0+f)

colnames(design) = c( "PDAC","Normal")

data. �t = lmFit ( input , design)

contrast .matrix = makeContrasts(PDAC−Normal,levels=
design)

data. �t . con = contrasts . �t (data. �t , contrast .matrix)

data. �t . eb = eBayes(data. �t . con)

tab = topTable (data. �t . eb, adjust .method="BH", sort.by =

"logFC", p.value =0.01, number=Inf, lfc =2)

Listing A.2: SVM Training

trctrl <− trainControl (method = ’LOOCV’,classProbs =

TRUE, verboseIter = TRUE,summaryFunction =

twoClassSummary)

#SVM RADIAL
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svmRadialgrid <− expand.grid(sigma = c (.01, .015, 0.2) ,C
= c (0.75, 0.9, 1, 1.1, 1.25) )

svmRadial <− train( Patient ~ . ,data = training ,method

= ’svmRadial’ , metric = "ROC",trControl = trctrl ,

tuneGrid=svmRadialgrid,verbose = FALSE)

#SVM RADIAL PREDICTION
results <− predict(svmRadial, newdata=training)

svm_training_prediction <− confusionMatrix( results ,

training $Patient )

Listing A.3: KNN Training

#K NEAREST NEIGHBORS
knn_�t <− train( Patient ~ . ,data = training ,method = ’

knn’,metric = "ROC",trControl = trctrl , tuneLength =

20)

#K NEAREST NEIGHBORS PREDICTION
results <− predict(knn_�t , newdata=training)

knn_training_prediction <− confusionMatrix( results ,

training $Patient )

Listing A.4: Feature Selection process (SVM-RFE)

svmRadialgrid <− expand.grid(sigma = c (.01, .015, 0.2) ,C
= c (0.75, 0.9, 1, 1.1, 1.25) )

trctrl <− trainControl (method = ’repeatedcv ’ ,number=10,

repeats=5,classProbs = TRUE,verboseIter = TRUE,

summaryFunction = twoClassSummary)

control <− rfeControl( functions=caretFuncs ,number=5)

prediction <− rfe( training [,1:74], training [,75],

trControl = trctrl , sizes =c
(5,10,20,25,30,35,40,45,50,55,60,65,70) , rfeControl=

control,method = "svmRadial" ,tuneGrid = svmRadialgrid ,

verbose = TRUE)

results <− predict(prediction , newdata=training)

svm_training_prediction <− confusionMatrix( results $pred,

training $Patient )
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Listing A.5: Sample Heatmap construction

input<−read.table("example.txt " , header = TRUE, sep = " "

, dec = " . " )

hr <− hclust(as . dist (1−cor(t(input ) , method="pearson")) ,

method="complete")

mycl <− cutree(hr , h=max(hr$height)/1.8)

mycolhc <− rainbow(length(unique(mycl)), start=0.1, end
=0.9)

mycolhc<− mycolhc[as.vector(mycl)]

mycol <− colorpanel (512, "green" , "red" )

hm<−heatmap.2(as.matrix(input), Rowv=as.dendrogram(hr),

Colv="FALSE", col=mycol,

scale="row", density. info="none", trace="none",

RowSideColors=mycolhc,

margins =c (12,9) , main="Sample Heatmap with Clustering")
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