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ABSTRACT

Pancreatic cancer is a highly lethal disease, accounting for many
deaths every year. It is considered as one of the most aggres-
sive types of cancer, and one of the major problems is the lack
of early detection. A patient is diagnosed with pancreatic can-
cer only in advanced stages, when the possibility of developing
a metastases is high. There is no standard procedure to diag-
nose high risk patients, since they remain asymptomatic in the
cancer’s early stages. Surgical resection is regarded as the only
potentially curative treatment, and adjuvant chemotherapy with
gemcitabine or S-1, an oral fluoropyrimidine derivative, is given
after surgery. Therefore, researchers focus on the procedure of
its creation, at a molecular level. There are four major driver
genes for pancreatic cancer: KRAS, CDKN2A, TP53, and SMADg4.
KRAS mutation and alterations in CDKN2A are early events in
pancreatic tumorigenesis.

Recent researches suggest that there is a correlation of some
critical signaling pathways that are activated during pancre-
atic cancer tumorigenesis with the procedure of embryogenesis.
Though, the lack of an analysis that will be able to extract these
genes involved in the pathways suggested, both in pancreatic
cancer patients and embryogenesis samples is crucial. The aim
of this thesis is to apply machine learning methods to find the
biomolecular markers that are deferentially expressed on pan-
creatic cancer patients and correlate them with markers from
embryogenesis. Since these markers are extracted, we will use
them as classifiers on different machine learning methods, to try
and classify if they refer to patient or healthy subjects.

Our thesis contributes a “ 25 gene signature” of biomolecu-
lar markers which are involved in signaling pathways found in
both embryogenesis and pancreatic carcinogenesis, obtained via
feature extraction and feature selection methods. These mark-



ii

ers are used as classifiers for pancreatic cancer classification,
and two machine learning classification models are proposed as
well. The classification models achieved high accuracy levels,
and we support the notion that our “25 gene signature” in its
entirety can play a classification role in discriminating patients
with pancreatic cancer from healthy controls.



It is the same God which worketh all in all.
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INTRODUCTION

Pancreatic cancer continues to be a major unsolved health prob-
lem, despite all the efforts and technological advances in cancer
treatment, which have little impact on disease course. Almost all
patients dignosed with pancreatic cancer develop metastases and
die. Pancreatic cancer arises when exocrine or endocrine cells
in the pancreas, a glandular organ behind the stomach, begin
to multiply out of control and form a mass. These cancerous
cells have the ability to invade other parts of the body.There
are a number of types of pancreatic cancer. The most common,
pancreatic adenocarcinoma (PDAC), accounts for about 95% of
cases, and the term "pancreatic cancer" is sometimes used to refer
only to that type. It also lies among the most aggressive types
of pancreatic cancer, giving survival rates under 10% in its final
stages.

The main factors causing this type of cancer are smoking, age
and some genetic disorders. Yet, little do we know about it’s
primary causes. Advances in molecular biology have, however,
helped us understand deeper the pathogenesis of pancreatic can-
cer. Many patients have mutations of the K-ras oncogene, and
various tumour-suppressor genes are also inactivated. Pancre-
atic ductal adenocarcinoma (PDAC), is characterized by near-
universal mutations in K-ras and frequent deregulation of crucial
embryonic signalling pathways, including the Hedgehog (Hh)
and Wnt-p-catenin cascades. [3] [4]

The main concern with pancreatic cancer is that disease prog-
nosis is extremely poor. Signs and symptoms of the most-common
form of pancreatic cancer may include yellow skin, abdominal
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or back pain, unexplained weight loss, light-colored stools, dark
urine, and loss of appetite. Yet, these symptoms do not seem
to appear in the disease’s early stages, and symptoms that are
specific enough to suggest pancreatic cancer typically do not
develop until the disease has reached an advanced stage. By the
time of diagnosis, pancreatic cancer has often spread to other
parts of the body, thus making it one of the most dangerous and
aggressive types of cancer.

According to latest studies [5], it is suggested that tumors of-
ten display inappropriate activation of signaling pathways which
are essential for embryonic development and tissue homeosta-
sis. Cancer may arise because the developmental programs that
create the dramatic alterations in form and structure in embry-
onic development are potentially corrupted. The cells in our
bodies retain memories of these processes and cancer can occur
on the following years, if imperfections occur in the fidelity of
these pathways. [4] Embryonic development (or embryogenesis)
stands for the procedure by which an embryo forms and devel-
ops. Embryonic development begins with the fertilization of the
egg cell (ovum) by a sperm cell, (spermatozoon). Once fertilized,
the ovum is referred to as a zygote, a single diploid cell. The zy-
gote undergoes multiple mitotic divisions without any significant
growth (a process known as cleavage) and cellular differentiation,
leading to the development of a multicellular embryo.

It is suggested that the requirements of cellular proliferation
and differentiation are considerably similar in the signaling path-
ways that govern embryogenesis and PDAC. These pathways,
which will be analyzed on next chapters, are critical for both em-
bryogenesis and PDAC, and thus have been targeted for cancer
therapy.

It is a great challenge to find new ways to cure pancreatic
cancer, since in only 20% of the cases it is resectable. Therefore,
we focus on finding what causes it, in molecular level. In these
types of studies,when studying cancer types in a molecular level,
the proposed technique is analysis of high dimensional gene
expression microarrays.



1.1 THESIS CONTRIBUTION

Gene expression microarrays are widely used for gene ex-
pression profiling and to study these profiles in human cancers.
Microarray gene expression analysis is a promising method for
studying, classifying and even proposing disease treatment, for
tumor related genes, amongst various types of human cancers.
(5]

Microarray analysis is strongly correlated with machine learn-
ing methods. Various gene extraction, gene selection and classi-
fication methods are proposed in the literature, which focus on
reducing the high dimensional feature space to a lower one, by
removing the irrelevant, redundant and noisy genes, in order to
achieve accurate classification of cancer types [6]. The scientific
fields of data mining, statistical analysis and machine learning,
provide us with a variety of methods and tools for analyzing
microarray datasets, which will be the main field of our study in
this thesis.

1.1 THESIS CONTRIBUTION

As we conclude from above, it appears that there is a correlation
of critical pathways in the process of embryogenesis and pan-
creatic cancer. The aim of this thesis is to extract and evaluate
biomolecular markers from samples of patients with pancreatic
cancer, as well as their correlation with embryogenesis. Imple-
menting machine learning methods, this thesis contributes some
models that have the discrimination ability to identify the genes
involved in these pathways. Furthermore, after the statistical
analysis and the extraction of these markers, some other models
are proposed that suggest classifiers for the diagnosis of disease
at molecular level.

In particular, our analysis implements some machine learn-
ing methods, in R language for statistical computing. Exam-
ined datasets of pancreatic cancer and embryogenesis are high-
dimensional microarray gene expression datasets, and they are
extracted from the platform of Gene Epression Omnibus (GEO)

[7].

3
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After applying some preprocessing on the examined datasets,
we extract the significantly differentially expressed genes (DEG),
in human embryos, PDAC tissue and PDAC peripheral blood
datasets, by implementing feature extraction methods. To visu-
alize these genes, heatmap and clustering is also used. We then
evaluate these markers, examining if they are involved in the
critical pathways suggested above.

Subsequently, some classification machine learning methods
are proposed (as Support Vector Machines and k-Nearest Neigh-
bours) on the extracted genes, in order to use them as predictors
and classify samples as patients or healthy.

Finally, in order to further reduce the number of predictors and
result to a lower dimensional feature space, a feature selection
is implemented, where the used machine learning method is
Support Vector Machines - Recursive Feature Elimination (SVM-
RFE).

1.2 THESIS OVERVIEW

Chapter 2 describes the necessary background for this thesis.
Datasets and machine learning methods used for this thesis are
extensively described. In Chapter 3 the significance of extracting
the correlated molecular markers is discussed, as well as their
matching to the critical pathways proposed, while in Chapter 4
we briefly refer to the related work of others. In Chapter 5 we
describe our work and we present our models implementation
from a technical point of view. In Chapter 6 we present the results
of our proposed models. Finally, in Chapter 7 we discuss the
results of this thesis and in Chapter 8 we suggest some possible
future research enhancements and directions.



THEORETICAL BACKGROUND

2.1 DESCRIPTION OF DATASETS

We decided to work with 12 high-dimensional microarray gene ex-
pression datasets, which are briefly mentioned below. All datasets
were obtained from the Gene Expression Omnibus repository of
the National Center for Biotechnology Information [7], and they
are publicly available.

« Human Embryos. This dataset describes the development
of human embryos from week 4 through 9.

1. Gene Expression Atlas for Human Embryogenesis
(GSE15744) [8]. It contains expression levels of 54,675
RNAs of 18 human embryos samples, 3 samples for
each week.

« PDAC Human Tissue. These datasets contain samples of
human pdac tissue cells vs. normal cells.

1. Integrative Survival-Based Molecular Profiling of Hu-
man Pancreatic Cancer [MRNA] (GSE32676) [9]. It
contains expression levels of 54,675 mRNAs of 25 hu-
man PDAC tumors and 7 non-malignant pancreas
samples.

2. The gene expression of normal pancreatic and PDAC
tisssues (GSE71989) [10]. It contains expression levels
of 54,675 mRNAs of 14 human PDAC tumors and 8
non-malignant pancreas samples.
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3. S100P is a metastasis-associated gene that facilitates
transendothelial migration of pancreatic cancer cells
(GSE19281) [11]. It contains expression levels of (22,283
and 22,645) mRNAs of 4 human PDAC tumors and 3
non-malignant pancreas samples (run on two differ-
ent platforms).

4. Whole-Tissue Gene Expression Study of Pancreatic
Ductal Adenocarcinoma (GSE15471) [12]. It contains
expression levels of 54,675 mRNAs of 36 human PDAC
tumors and 36 non-malignant pancreas samples.

5. Expression data from Mayo Clinic Pancreatic Tumor
and Normal samples (GSE16515) [13]. It contains ex-
pression levels of 54,675 mRNAs of 36 human PDAC
tumors and 16 non-malignant pancreas samples.

6. Microarray gene-expression profiles of 45 matching
pairs of pancreatic tumor and adjacent non-tumor
tissues from 45 patients with pancreatic ductal ade-
nocarcinoma (GSE28735) [14]. It contains expression
levels of 33,297 mRNAs of 45 human PDAC tumors
and 45 non-malignant pancreas samples.

7. Microarray gene-expression profiles of 69 pancreatic
tumors and 61 adjacent non-tumor tissue from pa-
tients with pancreatic ductal adenocarcinoma (GSE62452)
[15]. It contains expression levels of 33,297 mRNAs
of 69 human PDAC tumors and 61 non-malignant
pancreas samples.

« PDAC Human Peripheral Blood. These datasets contain
samples of human pdac peripheral blood cells vs. normal
cells.

1. Expression profiling of PBMC from patients with hep-
atocellular carcinoma (GSE49515) [16]. It contains
expression levels of 54,675 mRNAs of 3 human periph-
eral blood mononuclear cell (PBMC) and 10 normal
samples.
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2. Gene expression data from CD14++ CD16- classical
monocytes from healthy volunteers and patients with
pancreatic ductal adenocarcinoma (GSE60601) [17].
It contains expression levels of 54,675 mRNAs of 9
human peripheral blood mononuclear cell (PBMC)
and 3 normal samples.

3. Blood biomarkers of pancreatic cancer associated di-
abetes identified by peripheral blood-based gene ex-
pression profiles (GSE15932) [18]. It contains expres-
sion levels of 54,675 mRNAs of 8 human peripheral
blood mononuclear cell (PBMC) and 8 normal sam-
ples.

4. Expression data from peripheral blood in pancreatic
ductal adenocarcinoma (PDAC) patients (GSE49641)
[19]. It contains expression levels of 33,297 mRNAs of
18 human peripheral blood mononuclear cell (PBMC)
and 18 normal samples.

All the mentioned datasets are high-dimensional microarray
gene expression datasets. High-density DNA/RNA microarrays,
are able to project thousands of genes simultaneously, producing
the gene expression profiles. [20]. Microarray technology is a
hybridization technique that aims on gene expression profiling or
assessing the genome content of closely related cells or organisms.
It allows monitoring the quantity of mRNA present in a cell, by
collecting it and attaching it to a solid surface. [21]

Over the years, a variety of microarrays and chips has been in-
troduced, with the most important of them being cDNA microar-
rays and GeneChip arrays (oligo arrays), developed at Affymetrix.
[22] These techniques are based on the differential-hybridization
strategy, where the cDNA plaques are replaced with spotted cD-
NAs or oligos, and radioactive labels are replaced with fluorescent
ones. The potential of these methods is their ability to simultane-
ously analyze the expression of mRNAs from thousands of genes
in a single experiment, producing some raw data which will be
further analyzed in a computer environment [1].
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High-density gene expression microarrays use oligonucleotides
containing 25 base pairs used to probe genes. Each gene is rep-
resented by 16-20 pairs of oligonucleotides, forming a probe set.
These pairs contain the perfect match (PM) probes, which are
paired with the mismatch (MM) probes. MM probes are created
by changing the 13th (middle) base of the probe set, in order to
measure non-specific binding. After the RNA samples are labeled
and hybridized, images are produced and alalyzed, resulting to
an intensity value for each probe. These intensities contain in-
formation about the amount of hybridization occurred for each
oligonucleotide probe and they are the final gene expression val-
ues produced by the microarray. [23]. The process is described
in figure 1.

There is a variety of different platforms that can be used with
microarrays. Our datasets run on 4 different GeneChips, [HG —
U133plusy| Affymetrix Human Genome U133 Plus 2.0 Array,
[HuGenelOstvlysp NSG| Affymetrix GeneChip Human Gene
1.0 ST Array, [HG — U133 A] Affymetrix Human Genome U133A
Array and [HG — U133B] Affymetrix Human Genome U133B
Array. All 4 chips are constructed by Affymetrix, and they follow
the in situ oligonucleotide technology type [22]. However, the
gene expression results, and the number of gene expression levels
can be inconsistent due to the different probes these platforms use.
Data inconsistency can also be introduced due to tissue or sample
heterogeneity amongs experiments, different data preprocessing
methods or the different background each sample comes from

[5].

2.2 PREPROCESSING

High dimensional microarray gene expression datasets, produce
raw data which contain the measured intensities and locations
of the hybridized array, the information relating probe pair sets
to locations on the array, and the information relating the probe
sequences to locations on the array. [24] These raw data have
to be preprocessed in order to give us the final gene expression
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Figure 1: The mRNAs that are expressed in the compared cells, are
copied into the complementary DNAs using a reverse tran-
scriptase and they are labelled fluorescently. The produced
complex cDNA probes are used to hybridize to the cDNA
templates or gene-specific oligos, either spotted on a glass
surface or directly synthesized, to yield the expression of thou-
sands of genes simultaneously. Red and green dots represent
the cDNAs only expressed in normal or tumours cells respec-
tively, while the yellow indicates the cDNAs expressed in both
samples[1] .
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values that will be then used for classification, regression, feature
extraction and feature selection.

Preprocessing is an essential process, since the expression lev-
els may suffer from unwanted variation. This variation is often
introduced during sample preparation, construction of the ar-
rays, and arrays processing (labeling,hybridization and scanning).
These sources insert the so called “obscuring variation” , which
has to be removed during the preprocessing stage, since it has
different effects on data and can lead the analysis to misleading
results.

The method used in this analysis for the data preprocessing
stage is the robust multi-array average (RMA), one of the most
commonly and widely used normalization methods. RMA is
a method that is divided in 3 steps: (i) background-correcting,
based on a model using the transformation B(-), (ii) data normal-
ization which normalizes the arrays using quantile normaliza-
tion, and (iii) data summarization which fits a linear model to the
background-corrected, normalized and log, transformed probe
intensities for each probe set. A robust procedure such as median
polish is being used to estimate model parameters, in order to
protect against outlier probes.

RMA has major advantages, compared to other methods, since
is has the smallest standard deviation across replicates and has
the least noise than other measures at lower concentrations. Its
major advantage is noticeable in low expression values, where the
standard deviation is up to 10 times smaller than the other mea-
sures. Overall, RMA achieves greater sensitivity and specificity
in detection of differential expression, providing the researchers
working with GeneChip technology with a powerful tool. [23]

We used two variations of RMA in our analysis, provided by
the dedicated R packages, gcrma and oligo. GCRMA differs from
RMA in the step of background correcting. GCRMA method
adjusts for background intensities in gene expression data which
include optical noise and non-specific binding. It uses probe se-
quence information to estimates the probe affinity to non-specific
binding. It then continues with the steps of normalization and
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summarization as described by rma [24]. The rma analysis pro-
vided by the oligo package, is a similar process, with the main
difference being that it provides support to more platforms that
lack the Mismatch probes (MM probes), since it does not require
them for the background-correction step.

2.3 FEATURE EXTRACTION METHODS

High throughput technologies generally produce large datasets
of gene expression values. Typically, microarrays produce tens
of thousands of gene features while some of the genes appear
in more than one expressions. Furthermore, some datasets may
contain gene expressions extracted from different platforms. A
characteristic of gene expression microarray datasets is the small
amount of patient samples which is significantly smaller than
the number of genes, commonly known as “curse of dimension-
ality”. However, among the large amount of genes, only a small
fraction is related to specific diseases and can be used to extract
information about them. The existence of a large number of
irrelevant features inserts serious problems for machine learning
methods, along with statistical and analytical challenges, since it
strongly affects their computational time and seriously reduces
their classification accuracy. [25]

Thus it is crucial to filter out this large number of irrelevant fea-
tures that are not of interest, and work with smaller datasets con-
taining genes relevant to our analysis. Furthermore, a common
problem in all machine learning methods is the risk of overfitting.
Data overfitting arises when the number of features (classifiers)
is comparatively larger than the number of samples, which is
exactly the case in high throughput gene expression microarray
data, where we have thousands of genes but only less than 100
samples. When data overfitting happens, a decision function
to seperate the training data can be found, but it will perform
poorly when tested in an independent testing dataset[26]. These
challenge can be alleviated by using two types of methods: Fea-
ture Extraction and Feature Selection. The aim of both methods
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is to extract a small subset of features with information useful
to our analysis, in order to reduce processing time and ensure
higher classification accuracy. Feature selection is described in
its dedicated section [27].

Feature Extraction aims to transform a high-dimensional fea-
ture space into a low-dimensional space, in an appropriate way
that the transformed variables contain information on the data
relevant to our analysis, which is otherwise hidden in the large
data set. Both feature extraction and feature selection are data
mining methods. These methods include clustering, basic linear
transforms of the input variables (Principal Component Analy-
sis/Singular Value Decomposition, Linear Discriminant Analysis),
spectral transforms, wavelet transforms or convolution of kernels.
A large number of gene selection and extraction approaches exist,
such as ttest, relief-F, information gain, and Principal Component
Analysis (PCA), Linear Discriminant Analysis, independent com-
ponent analysis (ICA). [20] Data mining can be performed with
machine learning methods or with classical statistical approaches.
In our analysis we are interested in measuring the expression
change of each gene, in two class datasets (pdac-normal).

The most common difference statistical measure used to iden-
tify differentially expressed genes (DEGs) is the log, fold-change.
The log, fold change, is a statistical measure describing how
much an expression is changing between two distinct groups of
samples.

B-A
log, FC = log, T

However, when analyzing high-dimensional datasets, with
much larger number of features than samples, we also expect
a high number of false positive test results. Therefore, another
statistical measure has to be introduced to moderate the num-
ber of falsely called genes. In this analysis, the false discovery
rate (FDR) is used, which was firstly introduced by Benjamini
and Hochberg, as an expected proportion of false positive genes
among all positive genes. The FDR is regulated by raw p-values,
another statistical measure, which are user adjusted in order to
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control the FDR tolerance. The m raw p-values are first ordered
by ascending order, then the adjusted p-values are given by

_ . ., m

p= min {min( "p,,1))

k=j,...m

Differential expression analysis is completed by setting the
FDR to a specific threshold and then calculating the fold change
for each gene. The results of this statistical analysis are displayed
in a matrix, where the significantly differential expressed genes
are ordered by their log, fold change values [28].

2.3.1 Heatmaps and Clustering

Heatmaps and clustering are widely used in gene expression
analysis studies, for data visualization and quality control. More
specifically, they are one of the most popular methods used in
high throughput gene expression profiling, as they are produced
by the technology of microarrays. A heatmap is a graphical
representation of the input data in a matrix, where each value is
described by a color.

Heatmaps are used in biomedical engineering to represent the
levels of the gene expression data, across a number of comparable
samples. In a typical gene expression heat map, the y-axis is
assigned to the genes, while the x-axis is assigned to the samples.
A gene expression heatmap, especially when combined with
clustering, can provide the user with very useful insights about
the quality, the distribution, the evolution and the features of the
data, since it visualizes the data by pseudocoloring them from a
predefined color spectrum.

Unsupervised Clustering is the process of grouping a set of
genes or samples together, based on a similarity metric that is
computed for features. Clustering methods aim on grouping the
objects into a predetermined number of group, in way that a spe-
cific function is maximized. Cluster analysis will always produce
the predetermined clusters. The quality of the clustering though,
depends on the algorithm used to produce the current cluster-
ing. Examples of clustering algorithms are the k-mens algorithm,

13
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Farthest First Traversal Algorithm, Density-based clustering and
Expectation Maximization (EM). [27]

Clustering is used to classify sample subtypes, or to identify
outliers in the dataset. The majority of cancer gene expression
datasets contains samples defined by a phenotype: disease and
control groups. In the best case scenario, after the cluster is
complete, the samples should be grouped into two subgroups,
based on their phenotype. Though, many factors could affect the
outcome of the clustering, leading to ambiguous results, and thus
making the clustering a powerful tool to identify novel subtypes.
[29]

Clustering can be applied to samples, genes, or both. We will
be applying clustering only on genes, since we are interested
in grouping the genes and identifying their outliers, and not in
clustering the samples. The algorithm that we used to produce
the clustering, is the k-means algorithm with pearson distances.

The k-means algorithm partitions an input dataset into k-
clusters, a user predefined value. It starts with k random clusters,
and then moves along samples in order to minimize the distance
of each sample to their respective cluster centroid, and maximize
distance between samples. Samples are moved to the cluster
with the shortest relevant distance to the cluster centroid. The
k-means algorithm is repeated a number of times, every time
starting with a random set of initial clusters, until an optimal
cluster solution is obtained. The distances are also recalculated
on each repetition. There are several distance types used with
clustering algorithms, with the most common of them being the
euclidean, manhattan, pearson correlation, eisen cosine correla-
tion, spearman correlation and kendall correlation distance. [27]
We used the pearson correlation distance, as described in [30],
which measures the strength of association between two vari-
ables X and Y. The Pearson coeflicient is defined as the covariance
of X and Y divided by the product of their respective standard
deviations.
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Given vectors x and y, respectively sampling X and Y and each
of length n, the sample Pearson coeffcient 7y, is obtained by
estimating the population covariance and standard deviations
from the samples:

Fay = L(x—x) (yi —7)
© VE(xi—2)VE(yi - )
After the clustering is produced, a dendrogram is also dis-

played, which contains information about the correlation of the
involved genes. A sample heatmap with clustering follows. [29]
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Figure 2: Sample heatmap with clustering. Dendrogram is displayed on
top.

2.4 CLASSIFICATION METHODS

Supervised classification, also referred to as prediction, is de-
fined as the process of developing algorithms in order to classify
the input data to predefined categories. Algorithms have to un-
dergo a training procedure, where they classify the features based
on the samples of a training dataset, and then their accuracy is
evaluated by testing the classifiers on a testing dataset. [27] Clas-
sification methods can be used to diagnose diseases or predict
disease outcomes based on gene expression patters, extracted
from microarray data. [6] Thus, developing reliable and accu-
rate classifiers is essential for successful disease diagnosis and/or
treatment. However, in the space of microarray data, where we
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have a multilevel feature space, the performance of most classi-
fication algorithms is poor, due to the excessive number of the
classifiers. This problem is dealt with feature extraction and fea-
ture selection methods, which are described in their dedicated
sections. Examples of classification methods are Support Vec-
tor Machines, k-Nearest Neighbours, Artificial Neural Networks
(ANNSs), Decision Trees, MLB Neural Networks, Bayesian, CART
classification trees and Random Forrest. [27]

Artificial Neural Networks (ANNs) determine a network struc-
ture and learning parameters, by using various algorithms, which
aim to produce sample weights, by minimizing an objective func-
tion. In each iteration, the estimation is compared to the real
output, and then the local error is derived. This local error is
used to adjust the input vector weights, according to a learning
rule. The training stage is a time consuming process, since it
iteratively trains and tests different networks on an independent
test sample, eventually resulting to the network with the lowest
error rate [31].

Decision Trees (or classification trees) on the other hand, are
mainly used in data mining since they are able to discover hidden
correlations among data. The aim of this method, is to create a
binary tree by dividing the input vectors at each node, based on
an evaluation function. One of the most popular decision trees
method is the classification and regression trees (CART). CARTs
begin by assigning all samples to root object and then they split
each explanatory variable at all possible spliting points. Each
sample is then split into two nodes, according to its corresponding
splitting point. The explanatory variable and split point with the
highest reduction of impurity are selected, and then are splitted
according to the spliting point. The process is repeated until all
nodes are set as parent nodes, and the tree reaches maximum
size. The a tree-pruning is performed by using cross-validation,
in order to result to the best-sized tree [31].

In order to evaluate the performance of the classification meth-
ods, some metrics are examined which give a thorough descrip-
tion about the classification ability of the examined method. The
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most commonly used metrics are accuracy, ROC curve, sensitiv-
ity (true positive rate), specificity (false positive rate) and mean
square error (MSE).

« Accuracy, as the name suggests, is the ratio of the correct
predictions to the total number of input samples, and is
one of the most significant performance metrics.

Number of correct predictions

Total number of samples

Accuracy =

« ROC (Receiver Operating Characteristics) curve, is a curve
that describes the model’s ability to classify the input data
correctly. It is a metric equivalent to accuracy, and it is
sometimes used instead of the latter. Its values range from o
to 1, with 1 being representing the maximum classification
performance.

« Sensitivity or true positive rate, is defined as the ratio of pos-
itive samples that are correctly predicted as positive,with
respect to all positive data samples.

True positive
True positive + False negative

Sensitivity =

« Specificity or false positive rate, is defined as the ratio of
negative samples that are falsely predicted as positive, with
respect to all negative data samples.

False positive

Specificity = — .
pecificity False positive + True negative

« Mean squared error is defined as the average of the squared
difference between the true values and the predicted values.

1Y 9
MSE =+ Z‘i(yj - 9j)
]:

Amongst the various classification algorithms mentioned be-
fore, we decided to work with support vector machines (SVM)
and k-nearest neighbours (KNN), which performed better in our
analysis and are described below.

17
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2.4.1  Support Vector Machines

Support vector machines (SVMs) is the first machine learning
method that we will be using, for the classification process. SVMs
belong to the group of supervised learning methods, and they
can be used both for classification and regression.

Support vector machine is a powerful tool used for two-class
classification and it targeted to be used as a non-linear mapping
of the input vectors into a high-dimensional feature space. It
relies on the idea of finding the maximum geometric margin
between the two classes. One of the simplest types of support
vector machines is linear classification, which attempts to set
a straight line seperating data with two dimensions. A linear
classifier is also reffered to as hyperplane. Various hyperplanes
change achieve the same target, to seperate the two class data,
but only one can achieve the maximum seperation. [27]

The basic principle of the learning procedure in SVM is to
find a hyperplane which will seperate the data into two classes,
and then try to maximize the margin between the two classes
and the seperating hyperplane, whilst ensuring the accuracy of
correct classification. The final binary classifier that is produced,
is called optimal seperationg hyperplane. It does not suffer from
local optima problem, i.e it works without a convex optimization
problem. [20] [31]

SVM was initially designed for binary classifications problems,
with many variations having been introduced for different pur-
poses. [20] In case of linearly seperable data, the principle of
SVM is described as follows. [20] The main goal of the training
phase is to find the linear function :

f(x) =WIX 40

which will be the line that will divide the data and the space to
two different classes according to the condition:

WIX+b>0
WIX+b<0
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These functions define the seperating plane, and the distance
between the two parallel hyperplane equals to: 2/||W||?. This
quantity is reffered to as the classification margin, as described
in figure ??. In order to maximize the classification margin, the
algorithm is required to solved the following optimization prob-
lem:

- minimize 1/2[|W||?

. subjectto Y;( WIX; +b) >1

In case of non-linearly seperable data, SVM will have to work
with more than two dimensions, and therefore will have to map
the data from the input space into a high-dimensional feature
space. The classes will then be seperated by an optimal hyper-
plane. [20] In order to perform this mapping, we will use a
function called a kernel function. The four basic kernel functions
are linear, polynomial, radial basic function (RBF) and sigmoid
and they are described below:

« Linear: K( x;,x;) = xl-Tx]'

« Polynomial: K( x;, x]-) = ( ’)/xl-T, Xj+7) d0>0

» RBF: K( x;,x;) = exp( —vllx;—x;]|*) , v >0

Sigmoid: K( x;, xj) = tanh( y( xiT, xj) +7)

1

where r, d and 7y = 552

are kernel parameters.

For non-linearly separable data, SVM requires the solution of
the following optimization problem:
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- minimize 1/2||WT||2+CY", &

« subjectto Y;( WIX;4+b) >1—&

« ¢ >0

In our approach, we used the RBF Kernel. A radial basis func-
tion is a real valued function, which only depends on the eu-
clidean distance of a sample x; and its center value x;, and a
tuning parameter o. The centers are automatically computed by
the SVM algorithm. The kernel’s goal is to minimize the distance
of each sample x; from its center,which is achieved by calculat-
ing the value weights in each run. The successfulness of SVM
strongly depends on the choice of the kernel function K, and of
course the hyper parameters (¢ is the case of RBF), therefore in
order to adjust optimally these parameters we should perform a
cross-validation procedure. [31]

Figure 3: Maximum margin hyperplanes for SVM divides the plane into
two classes
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2.4.2 K Nearest Neighbours

K Nearest Neighbours (KNN) is the second machine learning
method that we will be using, for the classification process. KNN
belongs to the group of supervised learning methods, and it can
be used for both classification and regression types of problems.
KNN'’s target is to classify the outcome of a query point, by eval-
uating the values of a selected number of its nearest neighbours.
The method estimates the outcome of a given query point, by
finding k examples where their distance from the point is min-
imized (i.e. its neighbours). In case of classification problems,
predictions are based on a majority of voting, while for regression
problems, predections are determined by averaging the outcomes
of the k nearest neighbours. While tuning the model, it is impor-
tant to set the appropriate value of k (i.e. the neighbours taken
into consideration), since it can strongly affect the accuracy of
the predictions. For example, a small number of k will add large
variance to predictions, while a large value of k may lead to a
large model bias. The proper tuning of the k parameter is regu-
lated by integrating a cross validation method, which will find
the optimal k value.

The neighbours of a point are defined by a distance metric that
we set beforehand. The most common is the Euclidean distance,
while others possible metrics are Euclidean squared, City-block,
and Chebychev distances. We will be using the Euclidian dis-
tance in this thesis, which is described by the following equation,
according to Bishop, C. (1995) [32] :

D(x—p) =4/(x—p)2

where x is a query point and p is a case from the sample.

A widely used approach to improve the prediction accuracy
is to introduce distance weights. This approach matches the
closest to the point cases with large values of k. For every near
neighbour, a new set of weights w is defined, where w refers to
the relative closeness of each neighbour with respect to the query
point. Weights are computed according to Bishop, C. (1995) [32] :
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exp(=D(x pi) )

W(x,pi) = ¥ exp( —D(x,p;))

where D( x, p;) is the distance between the query point x and
the ith instance of the sample p. All the weights sum to 1. In
the classification problems, after the calculation of the weights,
the case with the maximum weight wy,,, is set to the output
value of the query point x. K nearest neighbours are able to
achieve high classification accuracy and learn fast, even with a
high-dimensional feature space, like the microarray data. [31]

2.4.3 Cross Validation

In order to validate our classification methods described earlier,
it is necessary to have some test datasets, independent from the
training datasets, that will be used to measure the classification
error. However, since our datasets our significantly limited and
hard to find, it is difficult to obtain independent datasets for
testing, or weeken our training datasets by keeping out some
samples for testing. A technique that will give a solution to this
problem is V-fold cross validation. [27]

The concept behind cross-validation is the same as with a
single holdout validation set, to estimate the model’s predictive
ability and performance on unseen data. It’s basic principle is
that it repeats the experiments multiple times by dividing the
training dataset in "V~ different parts every time, keeping one of
them out for validation and using the others for learning. It does
not require seperate test datasets, and it also does not reduce
the training dataset. The training dataset is partitioned into "V~
smaller datasets, called “folds”. The default number of ”V” is
10. In each repetition, 1 subset is kept out for testing and the
remaining "V-1” are used for training. This procedure is repeated
”V” times, resulting to a bigger test dataset and taking advantage
of the full spectrum of the training dataset. It is worth mentioning
that cross validation does not prevent overfitting in itself, but
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it may help in identifying a case of overfitting caused by the
classification method. [27]

2.4.4 Leave One Out Cross Validation

As mentioned in previous sections, since we are working with
microarray data, the number of samples are usually very small.
Therefore, it is not the best practice to divide our subset our
datasets to training and testing. Instead, the most commonly
used technique to test our classification methods, is “V” fold cross
validation, in it’s most greedy case, called Leave One Out Cross
Validation. [33] In Leave One Out Cross Validation (LOOCV) ,
the number of partitions equals to the number of dataset size
(m). Each testing dataset consists of 1 sample, and each training
dataset contains (m-1) samples, which are used to construct the
classifier which is tested on the leftout sample. By repeating this
process for (m) times, we use all samples as testing data samples,
and we finally come up with m predictions. [20] The performance
of the classifier is then evaluated by the average misclassification
rate:

m

1
EV - E 25( eiz}/i)

i=1

where y; is the true class label, for instance x; , and

_J 0 ifx=y
5(75{/]/1') _{1 l'fx#}/

It is also worth mentioning that the variable selection needs to be
performed on each repetition, with the remaining samples other
than x;, rather than pre-selecting the variables from the complete
dataset and then validate on the test sample. This is important
because the variable selection should rely only on the training
and not the testing dataset. Performing the cross validation with
preselected subset, could lead to misleading results. [33]

23



24

THEORETICAL BACKGROUND

2.5 FEATURE SELECTION METHODS

Feature selection is the process of subseting a dataset with rele-
vant and reduntant features, in order to improve the performance
of the classification methods, regarding accuracy and time to con-
struct the model. [6]1t differs from the feature extraction process,
as it selects a subset from already selected features, thus avoiding
the drawback of the output interpretability. The feature selec-
tion methods are classified as filters, wrappers and embedded,
depending on the methods used to evaluate the feature subsets.

[20]
2.5.1  Filter Methods

Filter methods are widely used on gene ranking, as they have
computational efficiency. They select the best subset by variable
ordering, using variable ranking methods, implementing heuris-
tic methods. They also use a ranking criterion of statistics, in
order to score the variables and define a threshold value, discard-
ing the variables under it. Their main drawback is that they are
independent of the specific required prediction task. That means
that they will select the features even if the latter don’t fit in the
classification model, thus making them unreliable. [6]

2.5.2  Wrapper Methods

Wrapper methods on the other hand, don’t use feature relevant
criteria like the filter methods. Instead, they depend on the per-
formance of classifiers to obtain a feature subset. They use the
predictive accuracy of a data mining method, to determine the fit-
ness of a selected subset, by integrating the data mining method
as a black box. The aim of this method is to find the subset with
the maximum evaluation, by following a trial and error method.
This approach forces the method to execute cross validation on
small datasets in order to find the most accurate estimation, result-
ing in better overall performance. [6] On the downside, wrapper
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methods are very expensive regarding time and computations,
when implemented on high dimensional feature space. [27]

2.5.3 Embedded Methods

The embedded methods were inspired as an attempt to com-
bine the advantages of both filter and wrapper methods. Unlike
the two previous ones, which seperate the feature selection and
training process, the embedded methods integrate the feature
selection methods into the costruction process of the classifier
or regression model. [20] More specifically, embedded methods
incorporate the feature selection as a part of the training process,
while significantly reducing the computational time. The con-
sider both relations between input and ouput features, and also
search for features which allow better local discrimination. They
use the independent statistical criteria used by filter methods, in
order to obtain the optimal subsets of a known group of classi-
fiers. After that, the classification method is used to select the
optimal subset among the group of optimal subsets produced by
the previous step. They can be categorized into three submethods,
namely pruning method, built-in mechanism and regularization
models. In the pruning method, all features are included in the
training process initially, and then the ones with the smaller
correlation coefficient values are recursively removed (pruned),
using an SVM algorithm. In the built-in mechanism method, the
features are selected by some supervised learning algorithms,
in the training phase, while in the regularization method, the
objective functions are used to minimize fitting errors and near
zero regression coefficient features are eliminated.

Various feature selection techniques are suggested in the liter-
ature. LLDA based Recursive Feature Elimination (LLDA-RFE),
kernel-penalized SVM (KP-SVM), discriminative least squares re-
gression (LSR), Support Vector Data Description (SVDD) and Sup-
port Vector Machine - Recursive Feature Elimination (SVM-RFE)
are some of the most significant ones. Feature selection methods
are widely used in microarray data analysis due to their concep-
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tual simplicity. However, as every algorithm, they come with
some drawbacks. During the feature selection process, where
most genes are eliminated, a large amount of information that
is related to these genes is lost, while correlations between vari-
ables are not taken into consideration. These problems can be
overcomed by selecting the optimal subsets according to a quality
criterion instead of filtering out the redundant features. However,
these methods will not perform as well on independent testing
datasets, since they suffer from overfitting, and also implement
some computational heavy algorithms ,which are difficult to in-
tegrate and interpret [6] .

2.5.4 Support Vector Machine - Recursive Feature Elimination

Support Vector Machine - Recursive Feature Elimination (SVM-
RFE) is an embedded feature selection method. SVM-RFE is a
widely used feature selection method specifically designed for
microarray data analysis. The goal of this method is to determine
a small subset of informative features that reduces processing
time and provides higher classification accuracy. SVM-RFE uses
the weight magnitude as ranking criterion. It works by repead-
etly training an SVM classifier, with a subset of features, and
in each iteration heuristically removing the features with the
smaller feature weights. In each iteration, the parameters of the
classification model (SVM) are reestimated, by implementing the
method of cross validation. Also, a linear kernel is often used,
with a proper parameter tuning, in order to achieve better classi-
fication accuracy. [25] An outline of the algorithm is presented
below, in the case of a linear problem.
SVM-RFE Algorithm

1. Inputs:
. Training examples: Xy = [x1, X2, ...Xg, X...x;]T

+ Class labels: y = [y1,yz, o Yis yz]T

2. Initialize:



10.

11.

2.5 FEATURE SELECTION METHODS

« Subset of surviving features s = [1,2, ...1]

« Feature ranked list r = []

. Repeat until s = |]

. Restrict training examples to good feature indices:

X =X40(:s)

. Train the classifier: « = SVM — train( X, y)

Compute the weight vector of dimension length(s):

w = Zﬂkykxk
k

. Compute the ranking criteria: ¢; = (w;) 2, for all i

Find the feature with smallest ranking criterion: f = argmin(c)

. Update feature ranked list: ¥ = [s( f) , 7]

Eliminate the feature with smallest ranking criterion:
s=s(1:f—1,f+1:length(s))

Output: Feature ranked list r.

More than one features can be eliminated in each step, in order
to improve execution speed. [26]
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PROBLEM STATEMENT

Problem statement follows. After the problem, the main points
of our approach and implementation are exhibited as well.

3.1 PANCREATIC CANCER AND EMBRYOGENESIS

Pancreatic cancer begins when abnormal cells in the pancreas
grow and divide out of control and form a tumor. The pancreas is
a gland located deep in the abdomen, between the stomach and
the spine. It makes enzymes that help digestion and hormones
that control blood-sugar levels. Organs, like the pancreas, are
made up of cells. Normally, cells divide to form new cells as the
body needs them. When cells get old, they die, and new cells
take their place. Sometimes this process breaks. New cells form
when the body does not need them, or old cells do not die. The
extra cells may form a mass of tissue called a tumor. A malignant
tumor is called cancer. The cells grow out of control and can
spread to other tissues and organs. A tumor is formed when
DNA is subjected to changes. These changes happen according
to some biological pathways. There are many types of biological
pathways. Among the most well-known are pathways involved
in metabolism, in the regulation of genes and in the transmission
of signals.

Signal transduction pathways move a signal from a cell’s ex-
terior to its interior. Different cells are able to receive specific
signals through structures on their surface called receptors. After
interacting with these receptors, the signal travels into the cell,
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where its message is transmitted by specialized proteins that trig-
ger a specific reaction in the cell. For example, a chemical signal
from outside the cell might direct the cell to produce a particular
protein inside the cell. In turn, that protein may be a signal that
prompts the cell to move, or to replicate. Identifying what genes,
proteins and other molecules are involved in a biological pathway
can provide clues about what goes wrong when a disease strikes.
Consequently, biological pathways are a significant field of study,
to identify the cause of pdac and/or other types of cancer.

Embryogenesis, on the other hand, is a complex process that
occurs during the first eight weeks after fertilization. The main
idea is that a single cell is being transformed to an organism
with a multi-level body plan. During these weeks, the embryo is
undergoing some significant procedures, driven by some crucial
signaling pathways. According to latest studies, there is a high
relevance of the signaling pathways activated during embryo-
genesis, with those that cause pancreatic cancer, if the later get
corrupted. That causes a major problem, since the cells retain
memories of these processes, giving a high possibility of cancer
to arise, if imperfections appear in these processes. [4]

3.2 GENE EXPRESSION ANALYSIS AND CANCER CLASSIFI-
CATION

The lack of an analysis that will extract the genes involved in
these processes and the correlated genes that are activated during
embryogenesis and pancreatic cancer early stages, is a fact. It
is of great interest to find some methods that will be able to do
statistical analysis of the gene expression levels, and find the ones
that are significantly differentiated. These process can be done
by using mRNA gene expression microarray analysis. Analysis
of mRNA gene expression is widely used to compare patterns
of gene expression between cells or tissues of different kinds
and under different conditions, for example between normal and
cancer cells.
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An important problem that arises is the huge number of genes
included in the original datasets, as they are extracted from differ-
ent platforms. This huge number of genes can affect the outcome
of our work, as most of them are irrelevent to analysis, and it also
inserts latency and worse accuracy to our prediction systems.
Thus, it is crucial to filter out the genes that are not of interest,
with data mining techniques, and work with smaller datasets that
will contain genes relevant to our analysis. [27]

So the first goal of this thesis is to find the over/under expressed
genes and consequently reduce the high-dimensional feature
space, by applying feature extraction methods on various pdac
and human embryos datasets. Subsequently, a cross-validation
of the proposed pathways with the significant differentially ex-
pressed genes (DEG) will be performed.

The second goal of our analysis is to perform a classification
of pancreatic cancer samples, based on the genes extracted from
the feature extraction step. The proposed classification machine
learning methods will be used in this step, with the extracted gene
expression levels as classifiers. In order to impove the accuracy
and the computational time of the classification algorithms, a
feature selection will be performed as a last step.

No such study has been proposed yet, that will analyze the
significant genes that participate in the signaling pathways of
embryogenesis and pancreatic cancer, and this thesis comes to
add to the literature an implementation of this process. Com-
monly used techniques in the fields of data mining, statistical
analysis, machine learning on classification, feature extraction
and feature selection will be implemented on gene expression
microarray datasets, in an attempt to better identify and classify
the incurable problem of pancreatic cancer in a molecular level.
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RELATED WORK

The are a lot of independent, focused on different cancer types
related studies that are worth mentioning. Yet, there are no
similar studies that focus on the analysis of pancreatic cancer
gene expression data and their correlation with the process of
embryogenesis. Some of the most important studies regarding
pancreatic cancer classification, feature extraction and feature
selection techniques are mentioned in this section.

Wazir Muhammad et al [?], developed an artificial neural net-
work (ANN) trained on various cancerous datasets, with pan-
creatic cancer patients among them. They focused on cancer
prediction by incorporating features extracted from different can-
cer datasets to the neural network, and achieved high accuracy
prediction.

Sarfaraz Hussein et al [34], proposed a deep learning approach,
implementing both supervised and unsupervised learning meth-
ods, for lung and pancreatic cancer classification. They presented
a framework for tumour determination with 3D screening based
graph regularized sparse Multi-Task Learning (MTL), which can
be used to obtain discriminative features for medical image anal-
ysis.

Eric Shadt et al [35], focused on developing some algorithms
for performing feature extraction and normalization of high-
density microarray gene expression datasets, in order to increase
the sensitivity and specificity of detecting the presence of genes,
and/or if they are marked as differentially expressed. They de-
veloped some feature extraction and normalization algorithms
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for the analysis of gene expression array data, and they achieved
improved computation of gene intensities and expression ratios.

Terrence s. Furey et al [36], developed a new way to analyze
high-dimensional microarray data, using SVMs. Their analysis
involved classification of the tissue samples, and an review of
the data for mislabeled or ambiguous tissue results. After com-
putational analysis, the mislabeled tissue samples were detected,
and perfect classification of tissues was achieved (but without
high confidence), upon correction and removal of the mistaken
outliers.

Chris Ding et al, [37], proposed a minimum redundancy - max-
imum relevance feature selection implementation. The selected
genes cover the feature space is a more balanced way, while
capturing broader characteristics of phenotypes. Improvements
were observed among 4 machine learning methods (Naive Bayes,
Linear discriminant analysis, Logistic regression, and Support
vector machines), that were used for cancer classification.

Isabelle Guyon et al, [26] also proposed a new feature selection
method, based on support vector machines - recursive feature
elimination. The managed to yield better classification perfor-
mance and biological relevance to cancer type. They improved
significantly the baseline method which makes implicit orthog-
onality assumptions, and managed to verify the biological rele-
vance of the selected genes by SVMs with cancer diagnosis.



OUR APPROACH

5.1 WORKFLOW OVERVIEW

This thesis contributes an analysis of pancreatic cancer gene ex-
pression microarray data, along with their correlation with data
from human embryos. Common machine learning methods will
be used, in an attempt for data mining (feature extraction/feature
selection) and cancer classification, on gene expression microar-
ray datasets.

The main tool used in this study is the R project, a language
and environment for statistical computing and graphics [38]. R
provides the user with a command line (cli), without any graphical
user interface (GUI). The user communicates with the software
via R scripts, or simple commands. A workspace is also available,
where all variables and data are stored, in an .Rdata file. R also
provides a package manager, from where the user can install
packages which include various implemented functions, in order
to use different functionality. Packages are downloaded from
repositories, and can be installed and used locally. In our analysis,
we downloaded and used functions from the packages: gcrma,
oligo, dplyr, limma, gplots and caret. Some sample scripts used
in our analysis are described in Appendix A 4.

The steps of our analysis are mentioned below. Each step is
described in detail, in their dedicated sections.

1. Data acquisition from GEO database.

2. Data preprocessing.
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. Feature extraction.

3
4. Data visualization with heat maps / clustering.
5. Cancer classification.

6

. Feature selection.

Microarray
Datasets

Preprocessing

(rma log2)
Feature Heat /
Extraction Clea 1map
(fold change) ustering
VI ldati Feature Extraction
Cross Validation validation
(LOocCV)
Classification
(SVMIKNN) Cross Validation
(10-Fold)
Feature
Selection
(SVM-RFE)

Figure 4: Workflow chart

5.2 ANALYSIS OF DATASETS

We will work with high dimensional gene expression microarray
datasets in our study. All datasets are obtained from the GEO
database [7]. 12 datasets will be used in total, with 11 of them con-
taining gene expression levels from human tissue and peripheral
blood of patients with pancreatic cancer, and 1 of them containing
gene expression levels from the development of human embryos
from week 4 through 9. They have run on 4 different Affymetrix
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GeneChips® : GPL570, GPL96, GPL97 and GPL6244. [22]. Figure
5 gives an overview of the used datasets.

Contibutors | Sample | GEO | _Plafiorn | Tumour | Normal

Yi et al (2009) Human GSE15744 GPL570 4th-9th week (18 samples)
Embryos

Donahue et al (2011 GSE32676  GPL570 25 7
Schmittgen et al (2015) GSE71989  GPL570 14

Chelala et al (2009) GSE19281  GPL96,GPLY7 4 3
Badea et al (2009) 5?5(32 GSE15471  GPL570 36 36
Pei et al (2009) GSE16515  GPL570 36 16
Hussain et al (2011) GSE28735  GPL6244 45 45
Hussain et al (2014) GSE62452  GPL6244 69 61
Hui (2013) GSE49515  GPL570 3 10
Cook et al (2014) Pdac  Gsgs0s01  GPL570 9 3
WU (2009) e, GSEIS932  GPLSTO 8 8
Caba et al (2013) GSE49641  GPL6244 18 18

Figure 5: Overview of datasets

1. GSE15744 - Human embryos. This dataset contains gene
expression levels of 3 embryos for each of the 4th, 5th, 6th,
7th, 8th, and 9th week of human embryonic development.
The experiment run on GPL570 Affymetrix GeneChip®
which contains 54,675 gene expression levels.

2. GSE32676 - Pdac tissue. This dataset contains samples from
tumour tissue of 25 patients with pancreatic cancer (pdac)
and 7 control (non-malignant) samples. The tissue samples
come from early stage pdac patients. The experiment run
on GPL570 Affymetrix GeneChip® which contains 54,675
gene expression levels.

3. GSE71989 - Pdac tissue. This dataset contains samples from
tumour tissue of 14 patients with pancreatic cancer (pdac)
and 8 control (non-malignant) samples. The tissue samples
come from advanced stage pdac patients. The experiment
run on GPL570 Affymetrix GeneChip® which contains
54,675 gene expression levels.
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. GSE19281 - Pdac tissue. This dataset contains various

disease samples from tumour tissues. We have selected
4 pancreatic cancer (pdac) samples and 3 normal (non-
malignant) pancreas samples. All samples run on two dif-
ferent Affymetrix GeneChips®, GPL96 and GPL97, which
contain 22,283 and 22,645 gene expression levels respec-
tively. The samples where combined, resulting to 44,928
gene expression levels.

. GSE15471 - Pdac tissue. This dataset contains samples

from tumour tissue of 36 patients with pancreatic cancer
(pdac) and 36 control (non-malignant) samples. The sam-
ples were obtained at the time of surgery from resected pan-
creas patients. The experiment run on GPL570 Affymetrix
GeneChip® which contains 54,675 gene expression levels.

. GSE16515 - Pdac tissue. This dataset contains samples from

tumour tissue of 36 patients with pancreatic cancer (pdac)
and 16 control (non-malignant) samples. The experiment
run on GPL570 Affymetrix GeneChip® which contains
54,675 gene expression levels.

. GSE28735 - Pdac tissue. This dataset contains samples from

tumour tissue of 45 patients with pancreatic cancer (pdac)
and 45 control (non-malignant) samples. The experiment
run on GPL6244 Affymetrix GeneChip® which contains
33,297 gene expression levels.

. GSE62452 - Pdac tissue. This dataset contains samples

from tumour tissue of 69 patients with pancreatic cancer
(pdac) and 61 adjacent control (non-malignant) samples.
The experiment run on GPL6244 Affymetrix GeneChip®
which contains 33,297 gene expression levels.

. GSE49515 - Pdac peripheral blood. This dataset contains

samples from Peripheral blood mononuclear cell (PBMC)
of 3 patients with pancreatic cancer (pdac) and 10 control
(non-malignant) samples. The experiment run on GPL570
Affymetrix GeneChip® which contains 54,675 gene expres-
sion levels.
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10. GSE60601 - Pdac peripheral blood. This dataset contains
samples from Peripheral blood mononuclear cell (PBMC) of
9 patients with pancreatic cancer (pdac) and 3 control (non-
malignant) samples. Classical CD14++ CD16- monocytes
were isolated from the peripheral blood of healthy volun-
teers and patients with pancreatic ductal adenocarcinoma.
The experiment run on GPL570 Affymetrix GeneChip®
which contains 54,675 gene expression levels.

11. GSE15932 - Pdac peripheral blood. This dataset contains
samples pancreatic cancer-associated diabetes mellitus. We
only used the pancreatic cancer-without diabetes mellitus
samples, from Peripheral blood mononuclear cell (PBMC)
of 8 patients with pancreatic cancer (pdac) and 8 control
(non-malignant) samples. The experiment run on GPL570
Affymetrix GeneChip® which contains 54,675 gene expres-
sion levels.

12. GSE49641 - Pdac peripheral blood. This dataset contains
samples from Peripheral blood mononuclear cell (PBMC)
of 18 patients with pancreatic cancer (pdac) and 18 control
(non-malignant) samples. 18 patients with unresectable
PDAC were recruited. Instead of extracting tumour tissue,
(PBMC) was obtained for study purposes. The experiment
run on GPL6244 Affymetrix GeneChip® which contains
33,297 gene expression levels.

Four of these datasets are used for the process of feature ex-
traction, while all of the pancreatic cancer datasets are used for
the classfication process, as shown in figure 6.



42

OUR APPROACH

|_Dataset _|_sample | _Type __

GSE19281

GSE15471

GES16515

GSE32676 PDAC Tissue

GSE71989

GSE28735 Classification

GSE15744 Human
Embryos

GSE32676 PDAC Tissue GSE62452
Feature GSE49515

GSE71989 PDAC Tissue  Exfraction  ~cr 0, PDAC Per.

GSE49515 PDAC Per. GSE15932 Blood
Blood GSE49641

Figure 6: Feature extraction/Classification datasets

We obtain the raw data for each dataset. The raw data come
in a .zip format, which contains the CEL files regarding each
sample. A CEL file is a data file created by Affymetrix DNA
microarray image analysis software. It contains the data extracted
from the probes on an Affymetrix GeneChip®. However, the
gene expression levels are raw values, as extracted by the each
platform, which need to be preprocessed in order to be further
analyzed. The preprocessing step follows.

5.3 PREPROCESSING

Raw gene expression microarray data, contain information about
the measured intensities and probe locations on the microarray:.
However, in order to obtain the gene expression values that will
be used later in our analysis, a preprocessing stage is required.
Each obtained dataset is also available with preprocessed values,
where different methods or R packages have been used i.e quan-
tile normalization, global scaling etc. Yet, we cannot use these
normalized expression levels, since the have not been normalized
with the same methods, thus they cannot be compared. Instead,
we apply robust multi-array average (RMA) on all datasets, a
widely used normalization method on microarray gene expres-
sion data. RMA works in three steps: it background corrects, in
normalizes using quantile normalization and it [og; transforms.
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We preprocess our data using the package gcrma (R/Biocon-
ductor) [39]. However, GCRMA does not support GPL6244 since
the mismatch probes are missing on this platform. Package oligo
(R/Bioconductor) [40] comes of use in this case, since it does
not require the presence of mismatch probes, and is able to
background correct the gene expression levels without them.
Therefore, we used both gcrma and oligo packages, repeating
the preprocessing stage for datasets that ran on GPL570 and
GPL96,GPLg7 Affymetrix GeneChips®.

RMA starts with background correction of the gene expression
values. Instead of storing proble intensities, the probe affinities
are computed and stored. Each probe affinity is computed by ob-
taining the base-position profiles from nonspecific binding data,
where the base-position profiles refer to the contribution of each
base type at each position along the probe. Subsequently a quan-
tile normalization of the data is taking place, followed by a log>
transformation. Gene expression data are l0gy transformed, in
order to model proportional chances rather than additive changes,
which is typically more biologically relevant [39]. Log transforma-
tion has also the advantage of producing a continuous spectrum
of values.

After preprocessing of the data is complete, we proceed with
feature extraction techniques.

5.4 FEATURE EXTRACTION

Feature extraction is a necessary step in microarray gene ex-
pression dataset analysis, and the first of our two goals for this
thesis. It aims on reducing the high-dimensional feature space to
a lower one, by filtering out all the irrelevant to the analysis fea-
tures. Statistical methods are widely used on feature extraction in
microarray datasets, and especially the identification of differen-
tially expressed genes (DEGs). We will perform a DEGs analysis
on our datasets, and then confirm the results by visualizing the
extracted genes with heatmaps and clustering.
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5.4.1 Differentially Expressed Genes Analysis

Identification of differentially expressed genes is commonly per-
formed with the statistical measure logy fold change. It measures
how much an expression is changing between two distinct groups,
pdac and normal in our case. Fold change is examined along with
the false discovery rate (FDR), which is tuned by the p-value.

The datasets that will be used in the feature extraction pro-
cess are two pdac tissue datasets (GSE32676 and GSE71989), one
peripheral blood dataset (GSE49515) and the human embryos
dataset (GSE15744). All the used functions are provided by the
limma (R/Bioconductor) package[41].

We start off by loading the normalized data, for each of the
three pdac datasets. We then create two factor levels (pdac and
normal) for our model. A linear model is then fit on each gene
given a series of arrays, using the function ImFit. Contrasts are
created for all the levels, which express the difference of the
two factors (pdac-normal), by using the function makeContrasts.
We then compute moderated t-statistics, moderated F-statistic
and log, fold change of the differential expressed values, by the
empirical Bayes moderation of the standard errors towards a
common value, using the function eBayes.

After we have calculated log, fold change for all gene expres-
sion levels, we sort the genes by their log, fold change (Ifc) values
in an descending order. We also take into consideration the false
discovery rate (FDR), which is an important statistical measure
that will filter out the falsely DEG called genes. We adjust the
FDR by the Benjamini and Hochberg method (BH). FDR is regu-
lated by the p-value, which we set to 0.01, or 1% FDR tolerance.
That means that genes with FDR > 1% , which are probably con-
sidered as DEG, are filtered out making the feature extraction
process more accurate. We examine the genes with Ifc > 2 (2log»
fold change). P-value and Ilfc attributes are passed to the topTable
function, which returns the 2/0g, fold change genes for each of
the three pdac datasets.
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Thing differ for the human embryos dataset (GSE15744), where
we have more than two factor levels. This particular dataset con-
tains 3 human embryos samples for each of the weeks 4 through
9 of embryonic development. Thus, we examine the progress of
the gene expression levels, and we need a factor level for each
week compared to its next i.e week 4-week 5, week 5-week 6 etc.
Subsequently, we follow the same steps as in the pdac datasets.

5.4.2 Heatmaps/Clustering

In order to confirm the validity of our DEGs, we proceed with
data visualization. Heatmaps and clustering are a widely used
method for gene expression data visualization, since they point
out the expression level differences and combine the genes in
clusters, giving the user the ability to extract useful information
about the quality and the characteristics of the input data.

We use the functions hclust and heatmap.z, provided by the R
package gplots[42]. We start by calculating the clusters of the
input data, where the pearson distance is used to calculate the
distances between genes. We then set the number of clusters that
we want our data divided in, by cutting the clustering tree to a
specific height. Pseudocoloring follows, where all gene expres-
sions are matched in a red-green spectrum, with red referring to
the overexpressed values and green to the underexpressed ones.
The heatmap is finally drawn by using the heatmap.2 function. A
dendrogram is also displayed, showing the correlations between
genes that led to the current clustering. We create the heatmaps
of the 4 datasets used for the feature extraction, from which we
assess the produced DEGs. The mentioned heatmaps are under
section 6.1.

5.4.3 Extracted Genes

The last step in the feature extraction process is to combine the
DEGs extracted from all 4 examined datasets. We conclude to
the final list of DEGs for the gcrma analysis, by examining the
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intersection of the datasets, as described in the VENN diagram
below.

DEGs in pdac
peripheral blood

DEGs in
human
embryos

DEGs in pdac
fissue

Figure 7: VENN diagram for extracted DEGs in gcrma analysis

« human embryos N pdac tissue N pdac per. blood : 2 DEGs
« human embryos N pdac tissue : 55 DEGs

« human embryos N pdac per. blood : 2 DEGs

« pdac tissue N pdac per. blood : 17 DEGs

The final list of the extracted DEGs that we will use for the
classification and feature selection methods, emerges from the
combination of the 4 gene sets described above, which gives us
a total of 76 DEGs. The same process is followed for the oligo
analysis, which gives us a list of 31 DEGs.

With the process of feature extraction we have managed to
reduce the high-dimensional feature space (of 50,000) genes to a
lower one (of 100 genes), by filtering out the irrelevant to our
analysis genes. The next step is to filter our datasets with the
extracted lists of DEGs and keep the genes that will be used as
predictors for the classification process. Since the experiments
that produced our datasets have run on 4 different platforms,
each one with a different number of genes, a problem that arises
is that some genes are not present in all 4 platforms. Two DEGs
included in the list of 76 genes (for the gcrma analysis),were
not present on both GPL570, GPL96 and GPL97. Also two DEGs



5.4 FEATURE EXTRACTION 47

included in the list of 31 genes (for the oligo analysis) were not
present on both GPL570, GPL96, GPL97 and GPL6244. Therefore,
we exclude these 4 genes from our lists, and we proceed in the
cancer classification methods with 74 and 29 DEGs respectively.
These excluded genes that are not present in all platforms, are

marked with red color in the following tables.

213338_at
212667_at
219087_at
202311_s_at
204320_at
202310_s_at
37892_at
203325_s_at
212489_at
210809_s_at
213125_at
204439_at
203083_at
212865_s_at
219454 _at
201105_at
201324_at
221841_s_at
218730_s_at
210139_s_at

202202_s_at
209335_at
205883_at
217430_x_at
204345_at
212097_at
202177_at
205848_at
217525_at
216248 s_at
204823_at
214844 s_at
207191_s_at
205352_at
215388_s_at
212187_x_at
213241_at
203186_s_at
211896_s_at
209651 _at

205422_s_at
209116_x_at
217232_x_at
205098_at
215101_s_at
202435_s_at
206254_at
200645_s_at
206698_at
201939 _at
212077_at
208891_at
214974 x_at
213817_at
225664_at
232231_at
231766_s_at
226237_at
226930_at
222722_at

226769_at
228750_at
231879_at
224396_s_at
222453 _at
231579_s_at
226932_at
222895_s_at
223278 _at
223062_s_at
228195_at
228245 _s_at
229778 _at
238439_at
1556821 _x_at
1555778_a_at

Figure 8: 76 DEGs as extracted from the gcrma analysis. The genes are

described by their probe set identifiers on gpls7o platform

(see also figure 55, 61, 62 of Appendix A.3).
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219087_at 211696_x_at 206254_at
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Figure 9: 31 DEGs as extracted from the oligo analysis. The genes are
described by their probe set identifiers on gpls70 platform
(see also figure 56, 63, 64 of Appendix A.3).

These extracted differentially expressed genes, are genes that
are activated during the process of embryogenesis, and are also
significantly transformed in pancreatic cancer patients. This
analysis of examining the correlation of DEGs between pdac
patients and human embryos, can lead us to conclusions about
the genes that are involved in the common signaling pathways
of embryogenesis and pancreatic cancer.

5.5 CLASSIFICATION

Pancreatic cancer classification is the second of our two goals for
this thesis. In this step, we will try to classify the subjects into
two classes, patient and healthy, based on the DEGs which will
serve as classifiers. Various classification methods for microarray
gene expression data are proposed in the literature, with some
of them achieving high accuracy levels. After experimenting
with different algorithms, like artificial neural networks, decision
trees, deep learning and random forrest, we decided to work
with support vector machines (SVM) and k-nearest neighbours
(KNN), since they performed better on our data. We will also use
leave one out cross validation (LOOCV) to calculate the accuracy
of our classifiers. The LOOCV procedure involves keeping a
sample out of the training dataset, building the decision function
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“Dolaset | Sample | Type |

GSE19281

GSE15471 )

GSE16515 fissue

GSE32676 Training GSE71989

GSE49515 GSE28735 Tissue
GSE60601  Per. Blood GSE62452

GSE15932 GSE49641  Per. Blood

Figure 10: Datasets used for training and testing

according to the remaining samples, and then testing on the
removed sample. The process is repeated until all samples are
kept out for testing, and the classification accuracy of the model
is derived by averaging the classification rate of all repetitions.

These classification methods will be applied to 11 different two
class (binary) microarray gene expression datasets. We divide
the datasets to training and testing ones, according to figure 10.
The features that will be used as classifiers for our models, are
the DEGs genes extracted from the feature extraction step. We
will perform a two class classification, where the two classes are
patient and healthy.

We begin by creating the training datasets for the gcrma anal-
ysis. GSE19281, GSE32676, GSE15471 and GSE16515 are combined
to create the tissue training dataset. GSE49515, GSE60601 and
GSE15932 on the other hand, are composing the peripheral blood
training dataset. The training and testing datasets for the gcrma
analysis are described in figure 11. A binary variable Patient is
also added to both training and testing datasets, which describes
the quality of the samples.

0 ,Healthy

Patient = { 1 , Patient

This variable divides the data into two classes, based on which
the classification will be performed.
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Dataset No. of No. of No. of (+/-)
classes | features | samples

Tissue training 163 101/62
Tissue testing 2 74 22 14/8
Per. Blood training 41 20/21

Figure 11: Training and testing datasets for the gcrma analysis. The
positive class refers to patient subjects

We use the package caret (classification and regression train-
ing) [43], which provides us with the models and the functions
for our classification methods. After the datasets are prepared for
the classification process, we set the resampling process using
the function trainControl. We use the leave one out cross vali-
dation (LOOCV) as the resampling process, in order to estimate
our algorithms’ ability without further dividing the already small
sampled datasets to training and testing ones.

5.5.1 Support Vector Machine

The first classification algorithm that we will use, which is widely
used for cancer classification in microarray data, is the support
vector machines (SVM). It typically follows these steps:

1. A hyperplane that seperates the data in two classes is found.

2. The algorithm runs recursively in order to maximize the
margin between the data and the hyperplane.

3. The mapping of the input data to the high-dimensional
feature space is performed by a kernel function.

4. The kernel function is tuned by kernel parameters.

5. The tuning parameters are optimized by the process of
cross-validation.

6. After the optimal tuning parameters are derived, class pre-
dictions are made for all samples.
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7. Total accuracy level is estimated by computing the average
classification rate from all repetitions.

We consider the RBF kernel as our kernel function. The optimal
parameters C and ¢ are found through cross validation. We use
a grid search, where a set of default values are predefined for
the two variables. Pairs of (C, ) are tried in each step, and the
optimal one with the best cross-validation accuracy is selected.
Typical values for C and o are C = (0.75,0.9,1,1.1,1.25 ) and
c = (0.01,0.015,0.2 ). The grid of parameters C and o is
passed to the function train, along this the training dataset, the
training method (in our case SVM with RBF) and the train control
method which in our case is the LOOCV. Class predictors are built
through a repetitive process, where the optimal set of parameters
is selected and the final accuracy level is estimated by averaging
the classification rates from all repetitions of the cross validation
process.

Class predictors are built, which leads us to the testing part,
where we evaluate our model’s classification ability. Function
predict extracts the predictions and class probabilities from the
trained model, on a testing dataset. We first validate our model on
the training data, and then on the testing tissue data (GSE71989).
Confusion matrix gives us the classification results, by calculating
a cross-tabulation of observed and predicted classes with associ-
ated statistics, containing information about various metrics that
evaluate our models. The results of all the classification methods
for the different training datasets, are presented and discussed in
chapter 6.

Subsequently, before we proceed with peripheral blood datasets
classification, we make a second attempt with pdac tissue datasets.
This time, we shuffle the training dataset, and we keep out the
10% of the samples for testing, while the other 90% is used for
training. This is a confirmation step in order to further evaluate
our model’s classification ability.

We continue with the pdac peripheral blood datasets. GSE495135,
GSE60601 and GSE15932 are combined to create the peripheral
blood training dataset. In the gcrma analysis we will only test on
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the training dataset, since the two testing datasets have run on
the not supported by gcrma, GPL6244 platform. The exact same
process is followed in both shuffled tissue and pdac peripheral
blood datasets, as in pdac tissue SVM classification, with the
results being presented in chapter 6.

5.5.2 K Nearest Neighbours

The second classification algorithm that we will use, which is
also widely used for cancer classification in microarray data, is
the k nearest neighbours (KNN). It typically follows these steps:

1. Find k samples where their distance from a query point are
minimized (i.e its neighbours).

2. The k parameter is set by the user, and it represents the
number of the neighbours that will be examined.

3. The k parameter is decided by a cross validation method,
among a user defined set of values, since it strongly affects
the classification ability of the algorithm.

4. Distance weights are calculated for every neighbour, where
w refers to the relative closeness of the sample with respect
to the query point.

5. The maximun weight is set to the output value of the query
point x.

6. The outcome of the query point is predicted by averaging
the outcomes of the k nearest neighbors.

We use the Euclidean distance as the distance metric between
each query point and its neighbours. The goal of this classifica-
tion method is to find the appropriate number of neighbours, and
predict the outcome of each sample by averaging the outcomes
of its neighbours. Thus, it is crucial to find the correct neigh-
bours, which give the best classification accuracy. This process is
performed by using the LOOCV method, which is defined in the
trainControl function, similar to the SVM method. We then fit the
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knn model by using the train function, where we set the method
to knn and the train control to LOOCV. The last attribute that
needs to be passed in the train function, is the k parameter, which
will tune the algorithm. There are two ways to tune an algorithm
in the caret R package. The first one is by defining a tuneGrid,
as we did in the SVM tuning, and the second one is by allowing
the method to tune it automatically. This can be done by setting
the tuneLength variable to a number, which indicates the number
of different values to try for the k parameter. We set a relatively
large number of tuneLength = 20, so as to let the algorithm try 20
different values for k, in each repetition of the cross validation
process. TuneLength makes a guess of what values to try, by
using random selection to find the optimal model parameters.
The model is trained, with the cross validation method, and the
final classification accuracy is estimated by averaging the class
prediction rates of each model run.

Similarly to the process of the SVM classification, we validate
our model via the functions predict and confusionMatrix. KNN
classification was performed both for pdac tissue and peripheral
blood datasets. The model’s classification ability is discussed in
chapter 6.

The exact same process of SVM and KNN classification, was
followed for the oligo analysis. The only difference is the exam-
ined datasets, since this analysis also supports (among others)
the GPL6244 Affymetrix GeneChip®. Thus, three more datasets
have been added in this analysis, which will be used for testing.
We also decided not to use GSE71989, which was used for tissue
testing in the gcrma analysis, and only use the two new datasets
for tissue testing. The training and testing datasets for the oligo
analysis are described in figure 12.
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Dataset No. of No. of No. of (+/-)
classes | features | samples

Tissue training 163 101/62
Tissue testing 5 o 220 114/106
Per. Blood training 41 20/21
Per. Blood testing 36 18/18

Figure 12: Training and testing datasets for the oligo analysis. The
positive class refers to patient subjects

The two classification methods (SVM and KNN) were tuned
as in the gcrma analysis, while LOOCV was used as a cross
validation method as well. All the oligo classification results,
along with their comparison to the gcrma analysis, are discussed
in chapter 6.

5.6 FEATURE SELECTION

Feature selection is the final step of our analysis. From a clini-
cal perspective, the examination of redundant gene expression
levels, may not improve clinical decisions, but result to larger
medical examination costs needlessly. Feature extraction and
feature selection methods aim on deriving a gene signature from
a minimum number of genes, which are highly related with the
examined disease. These methods also result to higher accuracy
in classification and prediction algorithms [25]. Thus, we con-
clude our analysis by implementing a feature selection method,
from which we expect to derive a gene signature with the least
possible number of genes.

We perform the feature selection by using the algorithm of
support vector machines - recursive feature elimination (SVM-
RFE), which was specifically designed for microarray data. SVM-
RFE belongs to the category of the embedded feature selection
methods. It incorporates the feature selection (recursive feature
elimination) as a part of the training process (support vector
machines). More specifically, it aims on determining a smaller
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than the input dataset, of equally informative/significant features.
SVM-REE also uses the weight magnitude as a ranking criterion.
It typically follows these steps:

1. Start with the full input dataset.

2. Train an SVM classifier based on the full dataset features
and assign ranking weights to all features.

3. In every run, remove heuristically a specific number of
features (set by the user), which have the smaller weights.

4. Recursively repeat the process with the subset of features.

5. Cross validate the classifiers by repeating the experiment
k-times.

6. Select the optimal subset of features, which results to the
best classification accuracy.

We implement the SVM-RFE process only for the gcrma analy-
sis. We begin by creating the training datasets, for the pdac tissue
and peripheral blood. The datasets used for the feature selection
process are described in figure 13. The binary variable Patient is
also added to these datasets, which will divide the samples in two
classes. SVM is used in combination with the RBF kernel, and the
tuning of the kernel is set by a tuning grid, similarly to the SVM
model used in the classification section. We work with 10-fold
cross validation for this algorithm, and we set each experiment
to be repeated 5 times in order to eliminate statistical variations,
since the LOOCYV increases significantly the time complexity of
our algorithm.

Another parameter that has to be set beforehand, is the num-
ber of redundant features that we want to be removed in each
iteration. We set that number equal to 5, which means that in
every repetition of each fold the features with the worse weight
vector will be recursively reduced by 5, until all features are re-
moved. Then the optimal subset is selected for each repetition.
The average classification rate of the 5 repetitions is computed,
which produces the v-fold classification rate. In each run, the
dataset is partitioned in 10 partitions, where the 9 are used for
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| Dataset | _Sample | _Type _

GSE19281

GSE15471

GSE16515

GSE32676 Training
GSE49515

GSE60601  Per. Blood

GSE15932

GSE71989 Tissue Testing

Tissue

Figure 13: Datasets used for SVM-RFE training and testing

training and 1 for testing (10-fold cross validation). A feature
weight vector is learned, based on the training dataset, and the
top-ranked features are fed into SVM, while recording the classi-
fication accuracy. After the 10-fold cross validation process, the
final classification accuracy rate for the model is computed from
the average rates of all 10 folds. The last parameter that needs
to be set is the rfeControl. This parameter defines the way that
the feature elimination will be performed. We set this parameter
to caretFuncs, a package of helper functions that take over the
backwards feature selection process.

The process of SVM-RFE is performed by the caret function rfe.
This function simultaneously calculates the SVM classifiers and
proceeds with the recursive feature elimination, according to a
cross validation method. In our case, the input parameters for the
rfe function are the tissue training dataset, the trainControl (10-
fold CV), the redundant sizes (5 in each step), the rfeControl (the
caretFuncs that will perform the backwards feature elimination),
the training method (SVM with RBF kernel), and the SVM tuning
grid that is responsible for the tuning of the SVM parameters C
and 0.

After the training is complete, we result with an optimal subset
of features, that also achieve high classification accuracy. The
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optimal variables found for pdac tissue are 35 genes, extracted
from the initial dataset of 74 genes. The 35 genes are listed in
figure 14. The next step is to test our SVM classifiers after the RFE
process, namely the 35 optimal genes. We test the classification
ability of our predictors on both the training dataset and on
GSE71989 which is used for testing. The procedure followed for
the testing is identical to the one used in the SVM classification
section.

The same steps are followed for the SVM-RFE process on the
pdac peripheral blood datasets. The training dataset is also used
for testing in this case, since we do not have more independent
testing datasets in the gcrma analysis. The feature selection
process results to 65 optimal variables, presented in figure 15, a
subset slightly smaller than the original set of 74 features. The
results of both pdac tissue and peripheral blood SVM-RFE models
are presented and discussed in chapter 6.

223278_at 202310_s_at 205422_s_at
204320_at 213338_at 232231_at
203083_at 214974 _x_at 238439 _at
37892_at 213125_at 219087_at
210809_s_at 229778_at 209651_at
226237_at 200665_s_at 215101_s_at
212489_at 231879_at 231579_s_at
225664 _at 226930_at 204439_at
231766_s_at 203186_s_at 212077_at
202311_s_at 201106_at 201939_at
204345_at 207191 _s_at 202177_at
203325_s_at 223062_s_at

Figure 14: SVM-RFE optimal feature selection subset on pdac tissue
datasets (35 genes) (see also figure 57, 65, 66 of Appendix
A.3).
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203083_at 228245_s_at 213241_at 211896_s_at
222895_s_at 206698_at 226932_at 219087 _at
209651 _at 229778 _at 205422 s_at 221841 _s_at
217430_x_at  212667_at 204823_at 216248 _s_at
212187 _x_at 214974 _x_at 217525_at 203325_s_at
205352_at 202435_s_at 202202_s_at 228750_at
208891 _at 232231_at 213338_at 204320_at
202177 _at 223062_s_at 212489_at 209335_at
212097 _at 200665_s_at 226930_at 231879_at
205098_at 228195_at 202310_s_at 37892_at
201105_at 204345_at 238439_at 231766_s_at
213125_at 215388_s_at 226237_at 214844 _s_at

231579 _s_at 218730_s_at 224396_s_at 222722 _at
206254 _at 212865_s_at 207191_s_at 223278_at

210139_s_at 201939_at 219454 _at
212077 _at 215101_s_at 202311_s_at
205883_at 213817_at 226769_at

Figure 15: SVM-RFE optimal feature selection subset on pdac periph-
eral blood datasets (65 genes) (see also figure 58, 67, 68 of
Appendix A.3).
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5.7 IDENTIFICATION OF POTENTIAL PANCREATIC CANCER
BIOMARKERS

Pancreatic cancer is one of the most dangerous cancer types, and
accounts for many deaths every year. The only curative option is
the complete surgical resection, a difficult surgical procedure that
only 15% of the patients can undergo. Thus, scientific research is
focused on the early diagnosis and prognosis of pancreatic cancer
(pdac), a critical step in impoving the survival rates. Yet, early
diagnosis is difficult and currently inadequate, since patients
remain asymptomic until the cancer has reached advanced stages.
Furthermore, specific symptoms that are associated with pdac
are not yet discovered [44].

In an attempt on improving diagnosis and prognosis of pan-
creatic cancer, scientists study it in a molecular level, where
potential biomolecular markers are examined that could indicate
the presence of the disease. These markers contain information
that could be useful for early cancer detection, since they distin-
guish different tumour types from normal cells. Potential tumour
biomarkers are extracted from analysis of gene expression data.
Systematic analysis of gene expression levels of tumour data can
reveal novel tumour markers and associate them with different
tumour types. Suboptimal markers can also be combined in order
to yield higher sensitivity and specificity.

Several potential proteins and markers have been identified as
pancreatic cancer markers, using gene expression array analysis.
Their combination can lead to adequate sensitivity and specificity
levels for cancer classification and diagnosis. Yet, in order to
reach safe conclusions about the validity of these markers, further
validation is applied in large scale studies. [44]

In our approach, we examined pdac tissue datasets, from where
we extracted some potential pancreatic cancer biomarkers. Tu-
mour markers have contributed to pancreatic cancer treatment, as
they are used to monitor the disease progression during chemother-
apy or reccurance after surgery. However, they are not effective
in early disease detection, since the elevated tumour marker lev-
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els indicate the high concentration of cancer cells. In addition,
the resection of pancreatic tissue is not an easy procedure, and
can not be performed in a regular basis for disease prognosis.
Thus, it is crucial to find non-invasive, fast and cost-effective
methods, that will contribute in early prognosis and diagnosis of
pancreatic cancer.

Fortunatly, a large number of biomarkers can be also found in
the serum, making gene expression analysis on blood datasets
an attractive field of study. Serum tumour biomarkers are sub-
stances produced by tumour cells, which are released into the
bloodstream. The measurement of these markers is relatively
simple and inexpensive to perform, compared to the invasive
methods of pancreatic tissue resection, since it only requires
blood extraction. Blood extraction is a non-invasive process, fast,
safe to collect, containing widely readable information and can
be applied to large populations. Transcriptomic or metabolomic
biomarkers, which are collected from the serum (blood or saliva
samples), are used for disease diagnosis and prognosis [2]. CEA3
is used as a prognostic marker for various cancer types, though
it lacks the required sensitivity and specificity for a presymp-
tomatic marker. CA19-9 is considered the best pancreatic cancer
marker found in the serum, despite the fact that it also has limited
sensiticity and specificity levels [45].

Thus, we considered the examination of peripheral blood datasets
a crucial step in our analysis, in order to suggest some potential
biomarkers, that could be used for prognosis and diagnosis of
pancreatic cancer. The biomarkers and their application in the
clinical setting is summarized in figure 16.
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Figure 16: Biomarkers of pancreatic cancer and clinical applications [2]

In order to result to reliable potential biomarkers, we cross-
examined the extracted markers from both pdac tissue and pe-
ripheral blood. The initial list of the extracted DEGs (for the
germa and the oligo analysis) was compared to the optimal sub-
sets of tissue and peripheral blood from the process of SVM-RFE,
and their intersection was considered. The two following VENN
diagrams contain the mentioned genes.

35
76 gcrma tissue

opt.vVar.

Figure 17: VENN diagram for extracted DEGs in gcrma analysis, com-
pared to the optimal subsets from SVM-RFE
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65
blood
opt.Var.

35
fissue
opt.Var.

31 oligo

Figure 18: VENN diagram for extracted DEGs in oligo analysis, com-
pared to the optimal subsets from SVM-RFE

+ 76-DEGs gcrma list N pdac tissue optimal subset variables
M pdac per. blood optimal subset variables : 31 DEGs

« 31-DEGs oligo list N pdac tissue optimal subset variables
M pdac per. blood optimal subset variables : 10 DEGs

We conclude in 41 DEGs that could be potential pancreatic
cancer biomarkers. These markers can both serve as classification,
prognosis and diagnosis markers, since they are extracted from
both pdac tissue and peripheral blood datasets. Their biological
content is discussed in the following section.

5.8 BIOLOGICAL CONTENT

As depicted in the Venn diagrams of figures 17 and 18, the core
circles represent the 31 DEGs and the 10 DEGs resulted from the
intersection of gcrma-analysis or oligo-analysis and the SVM-RFE
optimal subsets respectively.

In order to gain insight into the biological role of these DEGs,
we needed to perform a mapping of probe set identifiers to HUGO
Gene Nomenclature (HGNC) symbols and a functional enrich-
ment analysis (figures 59, 60, 69, 70, 71, 72 of Appendix A.3).
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First of all, the probe set identifiers from these 41 candidates
were mapped to HGNC symbols by using the WebGestalt platform
(a popular tool for the interpretation of gene lists derived from
high-dimensional data analysis), as shown in figures 59 and 60 of
Appendix A.3 [46]. More specifically, in figure 59, it is illustrated
that 30 probe set identifiers correspond to 25 unique gene symbols,
whereas one probe set identifier could not be mapped to any
known gene symbol. Also, in figure 6o, it is illustrated that 10
probe set identifiers correspond to 9 unique gene symbols. As
one can observe, there is an overlap of the probe set identifiers
and their mapped HGNC symbols of the 10 DEGs of the gcrma-
intersection with the 31 DEGs of the oligo-intersection, i.e. the
10 common DEGs is a subset of the 31 common DEGs. Thus,
the mapping of the probe set identifiers and the HGNC symbol
assignment reduced the list of 41 potential cancer biomarkers
obtained in the previous step to twenty five known genes, as
shown in figure 19.

25 unique intersection DEGs

TMEM]158, ASPN, FNDCI1, CXCL5, PSATI, SPARC, PLK2, CALDI, SPX, RUNX2,
OLFML2B, THBS2, LGALSI, GAS6, ISLR, TIMP2, TGFBIIl, ITGBLI, GJB2,
ANKRD?22, COLIAI, COL5A1, COL1141, COL1241, COL16A41, AL359062

Figure 19: The list of 25 unique known genes described by their HGNC
symbols. The nine overlapping genes between gcrma-
intersection and oligo-intersection are red highlighted. The
unknown gene is blue highlighted.

Then, as a second step, to identify the biological processes (BP)
and pathways in which these intersection DEGs were involved,
we further analyzed the list of 25 genes at the functional level, by
performing Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG) and Reactome pathway enrichment analy-
ses using the WebGestalt online tool [47]. A p-value < 0.01 was
considered significant. Gene overrepresentation analysis (ORA)
resulted in enriched GO-biological processes and pathways as
illustrated in figures 20 and 21 respectively.
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GO enrichment of 25 intersection DEGs

GO-Biological Processes (p value < 0.01)
Gene Set Description P Value
GO:0043062 extracellular structure izati 2.55E-09
G0:0007492 endoderm development 3.9249E-06
G0:0031589 cell-substrate adhesion 6.6854E-06
GO:0061448 connective tissue development 0.000036258
GO:0007369 gastrulation 0.00011671
GO:0001503 ossification 0.00017795
GO:0060348 bone development 0.00022678
GO:0048705 skeletal system morphogenesis 0.0003553
GO:0048706 embryonic skeletal system development 0.00080405
G0:0042476 odontogenesis 0.00082287
GO:0002576 platelet degranulation 0.00084197
G0:0001101 response to acid chemical 0.0013183
GO:0031214 biomineral tissue development 0.0013619
GO:0050954 sensory perception of mechanical stimulus 0.0017287
GO:0048545 response to steroid hormone 0.0023343
GO:0043583 ear development 0.003644
GO:0009743 response to carbohydrate 0.0043058
G0:0033627 cell adhesion mediated by integrin 0.0043937
GO:0071559 response to transforming growth factor beta 0.0050366
GO:0031667 response to nutrient levels 0.0051237
G0:0001525 angiogenesis 0.0052754
G0:2000147 positive regulation of cell motility 0.0055086
G0:0090596 sensory organ morphogenesis 0.0057741
G0:0034109 homotypic cell-cell adhesion 0.005909
G0:0090287 regulation of cellular response to growth factor stimulus 0.0061661
G0:0032963 collagen metabolic process 0.0090069
G0:0007229 integrin-mediated signaling pathway 0.0097342
GO:0007568 aging 0.0097911
GO:1901342 regulation of vasculature development 0.010693
25 intersection DEGs using the WebGestalt online platform.

Figure 20: GO enrichment analysis in the category of biological process-
no redundant of 25 intersection DEGs using the WebGestalt
online platform.

thway enrichment of 25 intersection DEGs

KEGG (p value < 0.01)
Gene Set Description P Value
hsa04974 Protein digestion and absorption 6.0999E-06
hsa04512 [ECM-receptor interaction 0.0061414
hsa00750 |Vitamin B6 metabolism 0.008807
(p value < 0.01)
Gene Set Description P Value
R-HSA-8948216 |Collagen chain trimerization 137E-10
R-HSA-1474244|Extracellular matrix organization 141E-09
R-HSA-1442490 |Collagen degradation 1.42E-09
R-HSA-1650814 | Collagen biosynthesis and modifying enzymes 1.88E-09
R-HSA-1474228 | Degradation of the extracellular matrix [4.17€-09
R-HSA-1474290 |Collagen formation 1.14E-08
R-HSA-2022090 [Assembly of collagen fibrils and other multimeric structures __|7.92E-08
R-HSA-3000178 |ECM proteoglycans 0.000011023
R-HSA-216083 _|Integrin cell surface interactions 0.000017207
R-HSA-8874081 |MET activates PTK2 signaling 0.000022871
R-HSA-8875678 | MET promotes cell motility 0.000059256
R-HSA-8941332 |RUNX2 regulates genes involved in cell migration 0.000094882
R-HSA-3000171 |Non-integrin membrane-ECM interactions 0.00017682
R-HSA-6806834 |Signaling by MET 0.00041984
R-HSA-8940973 [RUNX2 regulates osteoblast differentiation 0.00091841
R-HSA-3000170 |Syndecan interactions 0.001164
R-HSA-76002 _|Platelet activation, signaling and aggregation 0001314
R-HSA-8678166 regulation by RUNX2 00014533
R-HSA-8941326 [RUNX2 regulates bone development 00016355
R-HSA-114608 _|Platelet 0.0017468
R-HSA-76005 _|Response to elevated platelet cytosolic Ca2 + 00019478
R-HSA-2175782 |Binding and Uptake of Ligands by Scavenger Receptors 0.0028071
R-HSA-186797 _|Signaling by PDGF 00052923
R-HSA-190704 |0 of connexins into connexons 00056748
R-HSA-190827 _[Transport of connexins along the secretory pathway 0.0056748
R-HSA-3000497 |Scavenging by Class H Receptors 00075596
RUNX2 regulates genes involved in differentiation of myeloid
R-HSA-8941333 00075596
cells
R-HSA-8941284_|RUNX2 regulates chondrocyte maturation 0.009441
R-HSA-9006934 |Signaling by Receptor Tyrosine Kinases 0.0095292

Figure 21: Pathway (KEGG, Reactome) enrichment analysis of 25 inter-
section DEGs using the WebGestalt online platform.
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Our analysis revealed core processes and signaling pathways
that are altered in pancreatic cancer subjects compared to healthy
subjects (figures 20, 21), some of which may be critical in human
embryogenesis [48], [49], [50]. As shown in figure 20, enriched
BP functions were integrin-mediated processes, angiogenesis
and developmental processes such as endoderm development.
Furthermore, as demonstrated in figure 21, pathway enrichment
results showed that the 25 intersection DEGs were significantly
enriched in ECM and immune system (e.g. scavenger receptors)
associated pathways as well as signal transduction (e.g. signaling
by receptor tyrosine kinases, signaling by PDGF) and metabolic
pathways (e.g. Vitamin B6 metabolism).

To facilitate comprehension of the enrichment results in the
context of cancer, we conducted further analysis of the 25 in-
tersection DEGs by utilizing the Cancer Hallmarks Analytics
Tool (CHAT) [51]. CHAT was employed to reveal the involve-
ment of the 25 intersection DEGs in the biological processes lead-
ing to pancreatic cancer according to the following ten current
hallmarks of cancer: Sustaining proliferative signaling, Evad-
ing growth suppressors, Avoiding immune destruction, Enabling
replicative immortality, Tumor-promoting inflammation, Acti-
vating Invasion and metastasis, Inducing angiogenesis, Genomic
instability and mutation, Resisting cell death, Deregulating cellu-
lar energetic.

By using each of the 25 intersection DEGs as search term,
CHAT yielded one or several hallmarks to 22 of these genes, as
presented in table 22.

Moreover, we used CHAT to analyze PubMed literature on
pancreatic cancer in relation to each gene of the 25 intersection
DEGs. CHAT automatic literature analysis revealed that TIMP2,
GAS6, CXCL5, and SPARC studies have a hallmark profile more
similar to that of pancreatic cancer, as illustrated in figures 23-26.
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Hallmarks of Candidate Markers involved in the Biological Processes
Cancer (NPMI)
o 16 genes
Sustaining ASPN (0.012), RUNX2 (0.165), COL1A1 (0.082), COL12A1 (0.095),
proliferative COL11AL1 (0.025), THBS2 (0.015), LGALS1 (0.073), COL16A1 (0.152),
signaling GASG (0.177), TIMP2 (0.093), TGFBIII (0.115), CXCL5 (0.126),
PSATI (0.142), SPARC (0.14), PLK2 (0.158), CALDI (0.125)
13 genes
Inducing RUNX2 (0.142), COL1A1 (0.054), COL12A1 (0.106),

COL11A1 (0.055), COL5A1 (0.008), THBS2 (0.15), LGALSI (0.126).

anglogenests GAS6 (0.076), TIMP2 (0.183), CXCL5 (0.214), SPARC (0.218),
PLK? (0.051), SPX (0.014)

Activating L 12 genes

N0 ASPN (0.026), RUNX2 (0.094), COL11A1 (0.103), THBS2 (0.069),

oy LGALSI (0.064), GAS6 (0.091), TIMP2 (0.168), TGEBII1 (0.107),

CXCL5 (0.146), PSATI (0.101), SPARC (0.161), CALDI (0.142)

Genomic 12 genes
RUNX2 (0.098), COL1A1 (0.182), COL12A1 (0.066),

instability and COL11A1 (0.204), COLSAI (0.177), THBS2 (0.024), LGALSI (0.084),
mutation ISLR (0.072), GIB2 (0.371), PSATI (0.096), PLK? (0.108), SPX (0.072)
10 genes

Resisting cell RUNX2 (0.019), ENDC1 (0.202), THBS2 (0.011), LGALS1 (0.112),

death GAS6 (0.162), TIMP2 (0.009), CXCLS5 (0.04), SPARC (0.066),
PLK2 (0.131), CALDI (0.08)

Tumor- 9 genes _ .

promoting RUNX2 (0.01), COLIAL (0.024), LGALS1 (0.054), GAS6 (0.106),

I ] TIMP2 (0.065), CXCL5 (0.191), PSATI (0.026), SPARC (0.042),

inflammation

SPX (0.134)
8 genes
RUNX2 (0.072), COL5A1 (0.035), GAS6 (0.042), CXCL5 (0.035),

Evading growth

SUPPLESSOrS PSATI (0.062), SPARC (0.069), PLK2 (0.121), SPX (0.08)
Deregulating 6 genes e',“s, s "
L ) COLIAI (0.08), GAS6 (0.037), CXCLS5 (0.031), PSATI (0.209),
& SPARC (0.069), SPX (0.045)

Enabling 5 genes
replicative RUNX2 (0.083), COL1AI (0.058), TIMP2 (0.065), PSATI (0.193),
immortality SPARC (0.087)
Avoiding
H— 4 genes

; LGALS] (0.085), GAS6 (0.008), CXCL5 (0.073), ANKRD22 (0.205)
destruction

Figure 22: Classification of 25 putative markers according to the hall-
marks of cancer (data shown as NPMI; normalized point-
wise mutual information). The nine overlapping genes be-
tween germa-intersection and oligo-intersection are red high-

lighted.
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Pancreatic Cancer (59595) TIMP2 (927)

002 003 004 005 006 007 008

Figure 23: Pancreatic cancer and TIMP2 (data shown as CPROB; condi-
tional probability).

Pancreatic Cancer (59595) GASE (1905)

Figure 24: Pancreatic cancer and GAS6 (data shown as CPROB; condi-
tional probability).

Pancreatic Cancer (59595) CXCL5 (1037)

Figure 25: Pancreatic cancer and CXCLj5 (data shown as CPROB; condi-
tional probability).
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Pancreatic Cancer (53595) SPARC (5876)

Figure 26: Pancreatic cancer and SPARC (data shown as CPROB; condi-
tional probability).

Even with poor knowledge about the directly interrelation of
the 25 intersection DEGs with pancreatic cancer as well as with
embryogenesis, we can consider them as potential classifiers of
PDAC based on:

« the significant BP processes and pathways highlighted here
[52],

« the Cancer Hallmarks and associated molecular pathways
underlying the mechanisms involved [53], and

« the abundance of collagens in the 25 intersection DEGs
and the role of the ECM in PDAC [54].

The 25 intersection DEGs represent a list of putative biomark-
ers, whereas TIMP2, GAS6, CXCL5, and SPARC can be considered
as the most promising biomarkers that could be easily validated
experimentally in peripheral blood.
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RESULTS

In this chapter we present and discuss the results from the steps
of feature extraction, cancer classification and feature selection.

6.1 FEATURE EXTRACTION

Microarray gene expression datasets, suffer from the “curse of
dimensionality”, as already discussed in chapter 2. Thus, feature
extraction methods are applied, in order to avoid the issues that
a high dimensional feature space introduces. The differentially
expressed genes (DEGs) are examined in 4 human embryos, pdac
tissue and pdac peripheral blood datasets. We consider the DEGs
as the genes with expression values of /0gyFoldChange > 2 and
FDR < 1%. The lists of the DEGs extracted by each of the 4
datasets, are cross-examined and combined to result to our final
feature space.

In order to evaluate the feature extraction method and confirm
that the extracted DEGs are indeed significantly differentially
expressed, we visualize our data by creating a heatmap with gene
clustering, of the extracted DEGs. We present the gcrma analysis
heatmaps in this section, while the oligo analysis corresponding
heatmaps are presented in Appendix A.1. The heatmaps of the 4
examined datasets are listed and discussed below.

Heatmap 27 describes the DEGs on the human embryos dataset.
The genes are divided in clusters, which are represented by the
side left colors. We can distinguish two major clusters, where
the genes with common expression level are divided. The upper
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Figure 27: K-means clustering with pearson distances heatmap of DEGs
screened on the basis of logpfold change > 2 and FDR < o0.01.
Notes: GSE15744 human embryos data with 74 DEGs vs
18 samples for 6 weeks of embryonic development (3 sam-
ples/week). Red indicates that the expression of genes is
relatively upregulated, green indicates that the expression
of genes is relatively downregulated.
Abbreviation: DEGs, differentially expressed genes

cluster contains genes that are downregulated in early weeks
(week 4 and 5) and upregulated in later weeks (week 8 and 9),
while the opposite happens in the lower cluster of genes. We
observe a progression of gene expression levels over the weeks,
which is an expected characteristic, as the embryo develops. The
heatmap also confirms the validatity of the extracted DEGs for
this dataset.

Heatmap 28 contains the DEGs on the first of the two pdac
tissue examined datasets (GSE32676). This dataset contains sam-
ples from early stage pancreatic cancer patients, were the gene
expression levels are not significantly differentiated. The infor-
mation extracted from this heatmap is quite ambiguous, however
this is an expected result and does not imply false validity of the
extracted DEGs.

Heatmap 29 on the other hand, contains the DEGs on the
second of the two pdac tissue examined datasets (GSE71989).
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Figure 28: K-means clustering with pearson distances heatmap of DEGs
screened on the basis of logrfold change > 2 and FDR < o.01.
Notes: GSE32676 pdac tissue data with 74 DEGs vs 32 pdac
patient and healthy samples. Red indicates that the expres-
sion of genes is relatively upregulated, green indicates that
the expression of genes is relatively downregulated.
Abbreviation: DEGs, differentially expressed genes

Things are quite clear in this dataset, and useful information
can be extracted from the heatmap. We observe 2 major clusters
of genes, which are significantly differentiated between the 2
classes (pdac-normal). This heatmap confirms the quality of the
input data, since GSE71989 refers to advanced stage pdac tissue
samples, where we expect more significant differences in gene
expression levels.

The last of the 4 datasets used in the feature extraction pro-
cess is described by heatmap 30, which contains the DEGs of
the peripheral blood dataset (GSE49515). We can confirm the
differences in the expression levels between the two classes in
this dataset as well. GSE49515 contains similar expression levels
for some genes. The Pearson distances are close to zero for these
genes and they cannot be displayed in the heatmap, thus they
are left empty. The 5 produced clusters give us useful insights
for the DEGs and confirm their validity.
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Figure 29: K-means clustering with pearson distances heatmap of DEGs
screened on the basis of logpfold change > 2 and FDR < o0.01.
Notes: GSE71989 pdac tissue data with 74 DEGs vs 22 pdac
patient and healthy samples. Red indicates that the expres-
sion of genes is relatively upregulated, green indicates that
the expression of genes is relatively downregulated.
Abbreviation: DEGs, differentially expressed genes
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Figure 30: K-means clustering with pearson distances heatmap of DEGs
screened on the basis of logpfold change > 2 and FDR < o.01.
Notes: GSE49515 pdac peripheral blood data with 74 DEGs vs
13 pdac patient and healthy samples. Red indicates that the
expression of genes is relatively upregulated, green indicates
that the expression of genes is relatively downregulated.
Abbreviation: DEGs, differentially expressed genes
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6.2 CLASSIFICATION

The cancer classification results are presented in this section.
After confirming the validity of the 74 extracted DEGs, we use
them as classifiers for our machine learning classification meth-
ods. Firstly, heatmaps of the training and testing datasets are
presented. Subsequently, some validation metrics for our classifi-
cation models are examined, and the results are presented and
discussed in tables and charts.

6.2.1 Heatmaps

The feature extraction process for the gcrma analysis, concluded
in 74 DEGs, which synthesize the classification models’ feature
space. We visualize these genes with heatmaps and clustering
for the training and testing datasets of the classification process.
Examining these heatmaps is an non-trivial procedure, since it
can provide us with useful information about the quality of our
classifiers.

Heatmap 31 contains the DEGs on the training pdac tissue
dataset used for SVM and KNN. This dataset is created from the
combination of 4 different datasets, with different expression
levels. Thus, we donnot expect to observe significant expression
level differences. On the contrary, these smoothly spread inten-
sities can result to better training of the models, since they will
have better discrimination ability for tough classification deci-
sions. The genes are divided in 4 clusters, where we can observe
similar, non-significant differences in expression levels.

Heatmap 32 on the other hand, contains the DEGs on GSE71989,
which is used as the testing pdac tissue dataset for our models.
This dataset contains advanced stage pdac tissue samples, where
the differences in expression levels are significant. We use this
dataset for testing, since the classes are more distinct, which can
result to better classification predictions. Therefore, we expect
high classification accuracy on the testing dataset, due to the
large class distances. The genes are divided in 2 major clusters,
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where we can observe the significant differences between the
two classes.

Color Key
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Figure 31: Pdac tissue training dataset heatmap containing data with
74 DEGs vs 163 pdac patient and healthy samples
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Figure 32: Pdac tissue testing dataset heatmap containing data with 74
DEGs vs 22 pdac patient and healthy samples

Finally, we examine heatmap 33, which contains the DEGs on
the pdac peripheral blood training dataset. The training dataset is
created by the combination of 3 different datasets, which different
genes expression levels. That results to an ambiguous heatmap,
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since we cannot classify the samples into two classes by clustering
them. However, this is not necessarily bad, because the short
distance between the two classes, can lead us to models with
better classification ability. The genes are divided in 4 clusters,
which expose the difference between the expression levels of
different datasets, rather than the difference between the two
classes.

Color Key
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Figure 33: Pdac peripheral blood training dataset heatmap containing
data with 74 DEGs vs 41 pdac patient and healthy samples

6.2.2 Cancer classification rates

We have used 11 pdac datasets for the cancer classification sec-
tion. Pdac tissue and peripheral blood datasets were examined
seperately. The datasets where divided in training and testing,
and leave one out cross validation was used. The training datasets
were fed into two classification algorithms, support vector ma-
chines (SVM) and k-nearest neighbours (KNN). After the train-
ing stage, the models were tested on both training and testing
datasets. Three significant metrics were used for the evaluation
of our models: accuracy, sensitivity and specificity. Accuracy
refers to the ability of the models to classify correctly the samples.
Sensitivity, or true positive rate, is a metric that expresses the
ratio of the correctly predicted positive samples, with respect
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to all positive samples. Specificity on the other hand, or false
positive rate, describes the ratio of the falsely predicted positive
samples (which are negative), with respect to all negative samples.
These three metrics are estimated on all classification attempts,
and they are presented in table 34. A comparison of the two
algorithms is also presented in plot 35.

SVM KNN SVM KNN SVM KNN

Tissue fraining 0.9202 0.8957 0.8548 0.8387 0.9604 0.9307
Tissue testing 0.9545 0.9545 1.0000 1.0000 0.9286 0.9286
Tissue fraining shuffled  0.9252 0.8980 0.8644 0.8644 0.9659 0.9205
Tissue testing shuffled  0.8750 0.9375 0.6667 1.0000 0.9231 0.9231
Per. Blood fraining 1.0000 0.8537 1.0000 0.8571 1.0000 0.8500

Figure 34: SVM and KNN Classification metrics on various cancer classi-
fication attempts. 74 DEGs were used as classifiers on binary
class data

GCRMA Accuracy rates (%)

TISSUE TRAINING TISSUE TESTING TISSUE TRAINING TISSUE TESTING PER. BLOOD
SHUFFLED SHUFFLED TRAINING
mSVM = KNN

Figure 35: SVM and KNN comparison of accuracy rates on cancer classi-
fication attempts.74 DEGs were used as classifiers on binary
class data
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From the evaluation of the experimental results, we end up
with the following observations:

« Both SVM and KNN perform exceptionally on pdac tissue
and peripheral blood data. Accuracy rates of more than
90% are achieved, which indicates the high classification
ability of our models. Good cancer classification is achieved,
based on the 74 DEGs which are used as classifiers.

« Both SVM and KNN perform even better on independent
pdac tissue testing data, where the accuracy rates exceeded
95%. This happens due to the fitness of our testing data,
which have large class distances, as they are obtained from
advanced stage pdac patients. That is also the reason why
relatively lower accuracy rates are achieved in the train-
ing data, where the class distances are smaller (see also
heatmap 31).

« SVM generally performs better than the KNN in all experi-
ments. Especially in pdac peripheral blood training dataset,
SVM manages to classify all samples correctly, while KNN
achieves 85% accuracy rate.

« Slightly lower accuracy levels are observed in the shuffled
and split tissue training dataset, where KNN also performs
better on testing data. The lower accuracy rates are inde-
pendent of the shuffling of the dataset. Worse classification
happens in this dataset, due to the smaller amount of clas-
sifiers, since only 90% of the training dataset was used for
training and 10% was used for testing. The shuffling of the
dataset would not affect the classification process either-
way, since the data are cross validated with the leave one
out cross validation method (LOOCV), where all samples
are used as testing data, independently of their position.

« The computational time of both algorithms was signifi-
cantly low. SVM run for about 20 seconds, while KNN
needed about 12 seconds to finish. Despite the fact that
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LOOCV was used (which increases the time complexity as
it cross validates the training process for N times, where
N is the number of features), the running time was kept
low. That happens due to the grid on parameter tuning,
where specific values were tried, and the length of func-
tion tuneLength which was set to small values. The small
number of samples and features also contributed in the low
time complexity of each method.

« Sensitivity and specificity are two good metrics that show
us on which data class the algorithms suffer more and score
worse classification rates. Sensitivity is lower in most cases,
which indicates that our methods manage to better classify
the data of the negative class (patient subjects) as patients,
but achieve worse classification results when classifying
positive class data (healthy subjects) as healthy.

« Lastly, no overfitting was observed, since our methods
achieved high classification rates. This happens due to
the feature extraction process, where the redundant and
irrelevant to the classification features that introduce data
overfitting were successfully removed.

We also present the classification results for the oligo analysis.
We decided to proceed with this analysis, in order to integrate
2 more pdac tissue and 1 peripheral blood datasets, which are
used for testing. The same steps were followed, with the same
parameter tuning and cross validation method. The step of tissue
shuffling was skipped. The corresponding heatmaps are listed
in Appendix A.2. The results are presented in table 36, and a
comparative plot of the two classification methods follows 37.
The results are discussed afterwards.
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speciicty
SVM KNN SVM KNN SVM KNN

Tissue training 0.9202 0.8712 0.8871 0.7581 0.9406 0.9406
Tissue testing 0.6681 0.6681 0.4056 0.4056 0.9122 0.9122
Per. Blood training  0.9756 0.8537 0.9524 0.8571 1.0000 0.8500
Per. Blood testing  0.4722 0.4722 0.0000 0.0000 0.9444 0.9444

Figure 36: SVM and KNN Classification metrics on various cancer clas-
sification attempts (oligo analysis). 29 DEGs were used as
classifiers on binary class data

OLIGO Accuracy rates (%)

TISSUE TRAINING TISSUE TESTING PER. BLOOD TRAINING PER. BLOOD TESTING
mSVM mKNN

Figure 37: SVM and KNN comparison of accuracy rates on cancer clas-
sification attempts (oligo analysis). 29 DEGs were used as
classifiers on binary class data

From the evaluation of the experimental results, we observe
that our methods performed exceptionally on both pdac tissue
and peripheral blood training datasets. High classification rates
were expected, since the datasets were the same as in the gcrma
analysis, with the difference that the classifiers were 29 DEGs
instead of 74. The negative conclusion that arises from this anal-
ysis, is the non-fitness of the testing datasets. Both in pdac tissue
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and peripheral blood testing datasets, low accuracy rates were
observed. Especially in the pdac peripheral blood testing dataset,
the classification rate was below 50%, which can lead to two
conclusions: Either our models are unsuccessful, or the testing
data are not suitable for testing with these models. Having tested
our models in various experiments, where accuracy rates of over
90% were achieved, we conclude that the testing data from the
platform GPL6244 are not suitable for our models, thus we don-
not proceed with further analysis or discussion for the oligo
implementation.

6.3 FEATURE SELECTION

The feature selection results are presented in this section. After
performing the cancer classification with SVM and KNN with 74
DEGs as classifiers, we attempt to extract a smaller gene signa-
ture, by implementing a widely used feature selection method,
support vector machines - recursive feature elimination (SVM-
RFE). Firstly, heatmaps of the training and testing datasets are
presented. Subsequently, we evaluate our models by examining
some validation metrics, which are presented and discussed in
tables and charts.

6.3.1 Heatmaps

The feature selection process is performed on the 74 DEGs pdac
tissue and peripheral blood training datasets. The SVM-RFE
process provides us with the optimal variable subsets for pdac
tissue and peripheral blood. The 3 following heatmaps describe
these datasets, which are in fact subsets of the heatmaps presented
in the classification step. Thus, the comments on these heatmaps
will not be repeated in this section, and they can be found under
section 6.2.1. Heatmap 38 refers to the pdac tissue training dataset,
heatmap 39 refers to the pdac tissue testing dataset and heatmap
40 refers to the pdac peripheral blood training dataset.
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Figure 38: Pdac tissue training dataset used for SVM-RFE heatmap con-
taining data with 35 DEGs (optimal subset) vs 163 pdac pa-
tient and healthy samples

TISSUE RFE TESTING DATASET 22 SAMPLES - 35 GENES

Figure 39: Pdac tissue testing dataset used for SVM-RFE heatmap con-
taining data with 35 DEGs (optimal subset) vs 22 pdac patient
and healthy samples
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BLOOD TRAINING DATASET 41 SAMPLES - 65 GENES

Figure 40: Pdac peripheral blood training dataset used for SVM-RFE
heatmap containing data with 65 DEGs (optimal subset) vs
41 pdac patient and healthy samples

6.3.2 Cancer classification rates

We have used 8 pdac datasets for the feature selection. Pdac
tissue and peripheral blood datasets were examined seperately.
The training datasets are the same as in the step of cancer clas-
sification. We only used 1 dataset for pdac tissue testing. 10
fold cross validation was used as a validation method, instead
of LOOCV. SVM-RFE is a time-consuming process, with higher
time complexity than SVM or KNN. That happens because the
recursive feature elimination works with a predefined number
of predictors which will be removed in each step. In order to
acquire the optimal subset, the SVM classifiers are trained and
cross validated in each iteration of the RFE, until all features
are eliminated. This process can result to high computational
costs, which led us to use 10-fold CV instead of LOOCV. Accuracy,
sensitivity and specificity are the metrics that will evaluate the
performance of our models, and they are presented in table 41.
Moreover, the classification rates from the folds of 10-fold CV
are presented in table 42. Furthermore, the accuracy rates of all
the examined subsets which led to the optimal subsets for pdac
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tissue and peripheral blood datasets, are presented in table 43,
along with chart 44 and chart 45. Finally, a comparison of the
accuracy rates of SVM, KNN and SVM-RFE methods is presented

in plot 46.

Tissue training 0.8896 0.8065 0.9406
Tissue testing 0.9545 1.0000 0.9286
Per. Blood training 0.8537 0.8095 0.9000

Figure 41: SVM RFE metrics on various feature selection attempts. 35
DEGs for pdac tissue and 65 DEGs for pdac peripheral blood
datasets were used as classifiers on binary class data

10-FOLD CV SVM-RFE
Tissue Blood
1 0.91190476 0.9200
2 0.87666666 0.900
3 0.94575758 0.9200
4 0.95238096 1.000
5 0.9304329 0.800
6 0.96870132 0.68333334
7 0.96333332 0.73333334
8 0.96809524 0.750
7 0.970 0.950
10 0.95060608 0.900

Total
classification 0.943787882 0.851666668

Rate (average)

Figure 42: 10-Fold CV classification rates for the optimal features sub-
sets (35 DEGs for pdac tissue and 65 DEGs for pdac peripheral
blood datasets).
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Figure 44: SVM-RFE optimal variables subset of 35 DEGs for pdac tissue

Figure 43: SVM-REFE feature subset accuracy levels

Variables

S
10
20
25
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35
40
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50
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40
65
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Tissue

0.8260
0.8256
0.8230
0.8063
0.8296
0.8362
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0.8181
0.8069
0.7989
0.7719
0.7885
0.771¢9

Peripheral
Blood

0.5866
0.6165
0.7239
0.6906
0.6428
0.7372
0.7497
0.6454
0.5664
0.7043
0.6452
0.7782
0.6613
0.6657
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Figure 45: SVM-RFE optimal variables subset of 65 DEGs for pdac pe-
ripheral blood datasets

SVM vs KNN vs SVM-RFE Accuracy rates (%)

TISSUE TRAINING

TISSUE TESTING PER. BLOOD TRAINING

mSVM mKNN = SVM-RFE

Figure 46: SVM, KNN and SVM-RFE comparison of accuracy rates on
cancer classification attempts. Different number of DEGs
were used as classifiers on binary class data

From the evaluation of the experimental results and the pre-
sented plots, we result to the following observations:
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« The SVM-RFE achieves great classification rates ( >85%).

That means that the SVM classifiers, built on the subsets
of the 35 and 65 DEGs for pdac tissue and peripheral blood
respectively, have high classification ability. Thus, we can
conclude that the feature selection process is successful,
since it manages to filter out the redundant classifiers, with-
out undermining the models’ accuracy levels.

Sensitivity is slightly worse than specificity, which indi-
cates that our models tend to classify the data of the positive
class (healthy subjects) as healthy, with worse accuracy.

Regarding the 10-fold CV classification rates, ROC was used
instead of accuracy. The 10-fold CV rates are regarding the
optimal subset of DEGs, 35 for pdac tissue and 65 for pdac
peripheral blood, where the average classification rate is
also calculated. The average classification rate differs from
the extracted classification rate for the training dataset,
since the first one refers to 1 fold each time, while the
second refers to the whole dataset. Each fold was repeated 5
times, where each fold value is the average of the 5 repeats.

Table 43 contains the accuracy levels of each subset, which
leads us to the select the optimal one for pdac tissue and
peripheral blood. Here we mention that the number of
reduced features in each iteration is predifined, and it is
independent of their feature weights. Thus, the optimal
subset is selected between some predefined values that we
set beforehand, and not based on the exact number of the
best classifiers.

SVM-RFE is a time demanding process, since it has greater
time complexity than a simple classification algorithm, de-
manding some minutes to run. That is an expected observa-
tion, and it is also the reason why we have chosen 10-fold
CV over LOOCV.

Finally, the comparative plot between SVM, KNN and SVM-
RFE shows that our feature selection method performed
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similarly the two classification methods, achieving high
accuracy rates on both pdac tissue and peripheral blood
datasets. Thus, we conclude that SVM-RFE filtered out the
correct redundant features, and overall was a successful
process that provided us with a smaller gene signature.
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CONCLUSIONS

Microarray gene expression analysis is a useful tool in bioinfor-
matics and is widely used for gene expression profiling, especially
in human cancer studies. According to recent studies [5], there
is a correlation of some signaling pathways that participate in
pancreatic cancer tumorigenesis, with the ones activated during
the process of embryogenesis.

In our analysis, the significant genes activated in both pan-
creatic cancer (pdac) and human embryos datasets are cross-
examined and a list of the significantly involved in these path-
ways genes is extracted. These genes are later used for pancreatic
cancer classification. This thesis aims to propose a gene signa-
ture for genes involved in both processes, and to contribute some
machine learning models that will be used for pancreatic cancer
classification. Our goal is to confirm this existing theory that
associates pancreatic cancer with embryogenesis, by suggesting
the involved genes, and to add some pancreatic cancer classifica-
tion methods to the literature, in an attempt to improve cancer
identification and classification in a molecular level.

Based on the results of our analysis, we can conclude the
following:

« The correlation of differentially expressed genes (DEGs)
between pdac and human embryos datasets is confirmed.
The extracted DEGs were cross-validated in pdac tissue,
pdac peripheral blood and human embryos datasets and
heatmaps of those genes were plotted. These heatmaps of
the 74 extracted DEGs highlighted both the significance of
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the genes in each dataset, and the correlation in the expres-
sion levels progression between the examined datasets.

The feature extraction process, where we implemented sta-
tistical methods to extract the DEGs, resulted in good dis-
crimination of the significant features. The extracted genes
that were characterized as significant, were confirmed as
DEGs by the heatmaps on each dataset. This process of
data mining gives us useful insights on which genes are
activated during pancreatic cancer and embryogenesis. A
gene signature is extracted, which can be interpreted bio-
logically to identify the examined biomolecular signaling
pathways.

Furthermore, the feature extraction process was a prereq-
uisite for the cancer classification methods, since it filtered
out all the redundant and irrelevant to the analysis features.
A lower feature space with only features associated with
the analysis, results to higher and more accurate classifica-
tion rates.

Cancer classification methods used to classify the two class
data into patient or healthy subjects, also performed well.
They managed to classify independent testing data of pdac
and healthy subjects with high accuracy rates, based on
the extracted DEGs which were used as classifiers. The
proposed models of SVM and KNN algorithms, can be used
on more independent testing data in order to classify future
subjects as patients or healthy. The extracted features can
be added to the literature as pancreatic cancer classifiers or
predictors, in the attempt of improving cancer classification
and prediction.

The feature selection method (SVM-RFE) also achieved
high classification accuracy and managed to filter out more
redundant features. A smaller gene signature was extracted,
which is desirable, since the lower dimensional feature
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space can improve the accuracy and computational time of
future cancer classification/prediction methods.

« Finally, we emphasize on the significance of a good prepro-
cessing analysis for microarray data. The preprocessing
performed by oligo was not as efficient as the one by gcrma.
It identified less genes as differentially expressed, and was
unsuccessful on cancer classification for independent test-
ing data.

Concerning the biological evaluation, the enriched biologi-
cal processes and pathways that assigned to the 25 intersection
genes are important with respect to different aspects of pancre-
atic carcinogenesis and to some crucial events of embryogenesis.
Moreover, we support the notion that our “25 gene signature” in
its entirety can play a classification role in discriminating patients
with pancreatic cancer from healthy controls, and we emphasize
the role of TIMP2, GAS6, CXCL5, and SPARC as potent predictors.

Overall, we conclude this thesis by adding the gene signa-
ture of the significantly involved genes in the common signaling
pathways between pancreatic cancer and embryogenesis to the
literature. We also propose two cancer classification models,
hoping to contribute to the efforts made in achieving better clas-
sification and prediction of the incurable disease of pancreatic
cancer.
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FUTURE WORK

A significant amount of work can be done in cancer classification
at a molecular level using microarray gene expression analysis.
The three independent major steps that were followed in this
thesis, can be implemented with different approaches.

The process of feature extraction can be implemented by vari-
ous data mining techniques proposed in the literature. It would
be a good practice for future studies to focus on extracting the
differentially expressed genes with different data mining meth-
ods, on different datasets, and cross-validate their findings with
the ones proposed in this thesis. This would strongly suggest
the validity of these markers, which could be used as a reliable
criterion for cancer classification and prediction. Feature selec-
tion could also concern future researchers, since various feature
selection methods are proposed in the literature, which could
result to better subsetting of the extracted features.

Different classification methods can also be a subject of future
studies. Widely used algorithms on cancer classification can be
trained on the proposed features, in order to possibly achieve
better classification rates and evaluate the quality of the features.
Artificial neural networks, random forest and deep learning are
related with cancer classification and prediction, and their evalu-
ation on the proposed features could be a future subject of study.
Different datasets can also be tested as another evaluation metric
for the quality of extracted genes.

Finally, this study can be extended by using the proposed
classifiers as predictors in machine learning methods used for
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cancer prediction. Independent pancreas tissue and peripheral
blood samples can be used as testing datasets for cancer prediction
methods with the described predictors. Future research is needed
to achieve better pancreatic cancer prediction, and this study
could be a major step towards this goal.
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APPENDIX CHAPTER

A.1 FEATURE EXTRACTION HEATMAPS

The heatmaps of each of the 4 datasets used for the feature ex-
traction process are presented in this section. These heatmaps
contain only the extracted genes of each dataset instead of all 76
extracted features.

GSE15744 234 HUMAN EMBRYOS

_WEEK T CEL

GSMIDIATE WEEK 4 CEL
GSM304436 WEEK_4 CEL
GSMIP4S00 WEEK 4 CEL
M0 WEEK 5 CEL
GSM3B4S03 WEEK 5 CEL
GSMI4E05 WEEK 5 CEL
GSMINEDT WEEK 6 CEL
GSMI04509 WEEK 6 CEL
GSMI4SH1_ WEEK B CEL
CSMIBASIE WEEK 7 CEL
GSMI94519_ WEEK B CEL
GSMINMEZ1 WEEK BCEL

GsMa0454
CsManesT

Figure 47: Human embryos heatmap (GSE15744) containing data with
234 own extracted DEGs vs 18 human embryos samples

CSMIB4573 WEEK B CEL

GSMI94525 WEEK 9 CEL

GSMIEZT VEEK 0 CEL

GSMI04529 WEEK_9.CEL
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Color Key
- ‘GSE32676 PDAC (151 OWN SIG GENES)
2 0 2

Figure 48: Pdac tissue heatmap (GSE32676) containing data with 151
own extracted DEGs vs 32 pdac patient and healthy samples
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Figure 49: Pdac tissue heatmap (GSE71989) containing data with 2642
own extracted DEGs vs 22 pdac patient and healthy samples
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Color Key
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Figure 50: Pdac peripheral blood heatmap (GSE49515) containing data
with 74 own extracted DEGs vs 13 pdac patient and healthy
samples
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A.2 CLASSIFICATION HEATMAPS ON OLIGO ANALYSIS

The training and testing datasets for SVM and KNN classification
are presented in this section.

Color Key
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Figure 51: Pdac tissue training dataset heatmap containing data with
29 DEGs vs 163 pdac patient and healthy samples (oligo
analysis)

Color Key
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Figure 52: Pdac tissue testing dataset heatmap containing data with
29 DEGs vs 220 pdac patient and healthy samples (oligo
analysis)
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Color Key

BLOOD TRAINING DATASET 41 SAMPLES - 20 GENES

- A

Figure 53: Pdac peripheral blood training dataset heatmap containing
data with 29 DEGs vs 41 pdac patient and healthy samples
(oligo analysis)

BLOOD TESTING DATASET 36 SAMPLES - 29 GENES

Il l

Figure 54: Pdac peripheral blood testing dataset heatmap containing
data with 29 DEGs vs 36 pdac patient and healthy samples
(oligo analysis)
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A.3 GENE LISTS AND THEIR ANNOTATION

1 76 DEGs - germa analysis
2 |Probe Set Identifier Gene Symbol
3 [213338 at TMEM158
4 |212667_at SPARC
5 219087 at Aspn

6 202311 s at COL1AL
7 |20a320 at coua
8 |202310 5 at COL1AL
9 |s7802 at couia
10 |203325_5_at coLsaL
il coLsal
12| POSTN
13 OLFML2E
4] IFa4L
15 THBES2
16 | coL1aa1
7 EGFLS
18| LGALST
19 EMP1
2| KLF&

21 oGN
2] PMP22
2 Lamas
2| DCN

25 87815
26 COL1AL
7 coL1sAL
28 cavi

2 Gase
30 Gas2

El OLFMLL
32| NR&A2
33 NAVS
3] DOKS
35 ISLR

36 | SERPINIL
37 CFH /// CFHRL
33| PTGDS
39 PLXNCL
40| 510084
41 DCN
4] TGFB1IL
4 ITGBLL
| HBB

45 HBB

46 CCR1

47 oxas
48 cvp181
49 EGF

50 SPARC
51 XK

52 | PLK2

53 caLDL
54 DUSPE
55 oxas
56 | 1RAK3
57 coLi2a1
58 | RUNX2
59 coLi2a1
60 | coLsa1
61 FNDCL
62 | oGN

63 FIBIN
64| A1693516
65 coLi2a1
66 AsPN
&7 CYBRDL
68 TiMP2
2] ssPN

0 BCL11B
7 Gis2
72| PSATL
73 228195 at Caorfas
74 228245 5 at LOC100508445 /// LOCT28715 //{ OVOS [/ OVOS2
75 |229778_at c120r39
76 | 238439 _at ANKRD22
77 | 1556821 x_at DLEU2
78 1555778 a _at POSTH

Figure 55: 76 DEGs as extracted from the gcrma analysis. The genes
are described by their gene symbols using WebGestalt 2013.
Identifiers in yellow background were mapped to multiple
gene symbols or could not be mapped to any gene symbol
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1 31 DEGs - oligo analysis
2 |Probe Set Identifier Gene Symbol
3 |219087 at ASPN

4 222722 at OGN

5 |223395 at ABI3BP

6 1226930 at FNDCL
7 (22439 s at ASPN

8 |206439 at EPYC

9 |204439 at IF144L

10 |232090_at LOC100128178
11222088 s at AA778684
12 202855 s at SLC16A3
13 200665 _s_at SPARC
14211696 x at HBB

15 217232 x at HBB

16 202917 5 at 510048
17 |229778_at C120rf39
18212077 at caLDL
19 214974 x_at oxcLs

20 223062 5 _at PSATL
21 (213338 at TMEM158
22212667 at SPARC
23 /201939 at PLK2

24 1556821 x_at DLEU2

25 206254 at EGF

26 215101 s at CxcLs

27 202435 s at CYp1B1
28 (213817 at IRAK3

29 216233 at D163

30 39402 at 118
31214074 s at CTTN

32 209116 x at HBB

33 |228750_at AI693516

vii

Figure 56: 31 DEGs as extracted from the oligo analysis. The genes
are described by their gene symbols using WebGestalt 2013.
Identifiers in yellow background could not be mapped to any
gene symbol
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35 Genes - SVM-RFE model on
1 PDAC tissue datasets
2 |Probe Set Identifier Gene Symbol
3 [223278 at G182
4 204320 at COL11A1
5 |203083 at THBS2
6 |37892 at COL11A1
7 |210809 s at POSTN
8 [226237 at (AL359062
9 |212489 at CcoLsAL
10 | 225664 at COL12A1
11231766 5_at COL12A1
12 |202311_s_at COL1A1
13 204345 _at COL16A1
14203325 s at CcoLsAL
15 202310 5 at coL1AL
16 213338 at TMEM158
17 214974 x_at CxcLs
18213125 at OLFML2B
19229778 at C120rf29
20 | 200665 _5_at SPARC
21231879 at COL12A1
22 |226930_at FNDCL
23 203186 5 at 510044
24 |201105_at LGALS1
25 207191 s at ISLR
26 223062 5_at PSATL
27 205422 5 at ITGBLL
28232231 at RUNX2
29 238439 at ANKRD22
30 |219087_at ASPN
31209651 at TGFB1IL
32215101 s at CxcLs
33 231579 5 at Tivp2
34204439 at IF144L
35 212077 at cALDL
36 201939 at PLK2
37 |202177 at GASE

Figure 57: 35 genes as selected from SVM-RFE optimal feature selection
subset on pdac tissue datasets. The genes are described by
their gene symbols using WebGestalt 2013. Identifiers in
yellow background could not be mapped to any gene symbol
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65 Genes - SVM-RFE model on
1 PDAC blood datasets
2 |Probe Set Identifier Gene Symbol
3 |203083_at THBS2
4 |222895_s _at BCL11B
5 |209651_at TGFB1I1
6 |217430_x_at coL1A1
7 |212187 x_at PTGDS
8 |205352_at SERPINIL
9 |208891_at DUSP6
10 202177 _at GAS6
11 [212097_at CAV1
12 205098 _at CCR1
13 |201105_at LGALS1
14 (213125_at OLFML2B
15 |231579_s_at TIMP2
16 |206254_at EGF
17 [210139_s_at PMP22
18 |212077_at CALD1L
19 205883 _at ZBTB16
20 |228245_s_at AWS94320
21 |206698_at XK
22 229778_at C12orf39
23 |212667_at SPARC
24 (214974_x_at CXCLS
25 [202435_s_at CYP1B1
26 |232231_at RUNX2
27 |223062_s_at PSAT1
28 | 200665_s_at SPARC
29 (228195_at C2orfa8
30 [204345_at COL16A1
31 |215388_s5_at X56210
32 |218730_s_at OGN
33 [212865_s_at COL14A1
34 201939_at PLK2
35 |215101_s_at CXCLS
36 |213817_at IRAK3
37 [213241_at PLXNC1
38 |226932_at SSPN
39 |205422_s5_at ITGBLL
40 204823_at NAV3
41217525 _at OLFMLL
42 |202202_s_at LAMAS
43 213338 _at TMEM158
44 |212489_at COL5A1
45 |226930_at FNDC1
46 (202310_s_at coL1A1
47 |228439 at ANKRD22
48 (226237 _at AL359062
49224396 s_at ASPN
50 (207191 s_at ISLR
51 (219454 _at EGFL6
52 (202311 _s_at coL1A1
53 226769 _at FIBIN
54 (211896_s_at DCN
55 |219087_at ASPN
56 221841 s_at KLF4
57 216248 s_at NR4A2
58 |203325_s_at COLSA1
59 228750_at AI692516
60 [204320_at COL11A1
61 [209335_at DCN
62 (231879_at coL12A1
53 [37892_at COL11A1
64 |231766_s_at coL12A1
65 (214844 s_at DOKS
66 |222722_at OGN
67 223278 _at GJB2

Figure 58: 65 genes as selected from SVM-RFE optimal feature selection
subset on pdac blood datasets. The genes are described by
their gene symbols using WebGestalt 2013. Identifiers in
yellow background could not be mapped to any gene symbol

ix
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31 Common Genes - gcrma intersection

1

2 |Probe Set Identifier Gene Symbol
3 |213338 at TMEM158
4 |219087_at ASPN

5 |232231 at RUNX2
6 |202311 s at coL1AL
7 |231766_s_at coL12A1
8 |226237 at AL353062
9 |204320 at coL11A1
10202310 s at coL1AL
11(37892 at coL11A1
12203375 s at coLsAL
13212489 at coLsal
14226930 _at FNDC1
15213125 at OLFML28
16 /203083 _at THBS2
17201105 _at LGALSL
18 (231875 at coL12A1
19204345 _at €OL16A1
20 [202177_at GASE
21207191 s at ISLR
22231579 s at TIMP2
23 |209651_at TGFB111
24 (205422 s at ITGBLL
25223278 at 682

26 (215101 s_at cXCLs

27 223062 s_at PSATL

28 |200665_s_at SPARC
29201939 at PLK2

30 [212077_at €ALD1
31229778 at €120rf39
32 |214974 x_at excLs

33 [238439 at ANKRD22

Figure 59: 31 genes as extracted from the intersection of the subset
of gcrma analysis, and the optimal subsets from SVM-RFE
(tissue and blood). The genes are described by their gene
symbols using WebGestalt 2013. Identifier in yellow back-
ground could not be mapped to any gene symbol

1 10 Common Genes - oligo intersection
2 |Probe Set Identifier Gene Symbol
3 |219087 at ASPN

4 |226930 at FNDC1

5 |229778 at C120rf39

6 (212077 at CALDL

7 (214974 x_at cxcls

8 |223062 s_at PSATL

9 (213338 at TMEM158
10201939 at PLK2
11200665 _s_at SPARC
12215101 5 at cxcls

Figure 60: 10 genes as extracted from the intersection of the subset of
oligo analysis, and the optimal subsets from SVM-REFE (tissue
and blood). The genes are described by their gene symbols
using WebGestalt 2013
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A.3 GENE LISTS AND THEIR ANNOTATION

76 DEGs - gcrma analysis

2 A. Gene Ontology-Biological Process-noRedundant (p value <0.01)

3 Gene Set Description P Value FDR

4 |G0:0043062 extracellular structure organization 6.77E-13 5.76E-10
5 |GO:0031589 cell-substrate adhesion 0.000028516 0.012119
6 |GO:0061448 connective tissue development 0.000052885 0.01468
7 |GO:0001525 angiogenesis 0.000069084 0.01468
8 |G0:2001057 reactive nitrogen species metabolic process 0.00014525 0.022887
g |GO:0007492 endoderm development 0.00016156 0.022887
10 | GO:0090287 regulation of cellular response to growth factor stimulus |0.00035822 0.036278
11 |GO:0007162 negative regulation of cell adhesion 0.00036646 0.036278
12 |GO:0001503 ossification 0.00042177 0.036278
13 | GO:2000147 positive regulation of cell motility 0.0004381 0.036278
14 |GO:0007369 gastrulation 0.000456948 0.036278
15 |GO:0048545 response to steroid hormane 0.00055122 0.039045
16 | GO:0060348 baone development 0.0010246 0.061377
17 |GO:1801342 requlation of vasculature development 0.0010311 0.061377
18 | GO.0046677 response to antibiotic 0.0010831 0.061377
19 | GO:0042476 odontogenesis 0.0012186 0.062737
20 | GO:0002576 platelet degranulation 0.0012547 0.062737
21 | GO:0048705 skeletal system morphogenesis 0.0017261 0.072016
22 |GO:0010975 regulation of neuron projection development 0.0017906 0.078016
23 |GO:0071559 response to transforming growth factor beta 0.0018592 0.079016
24 |G0:0033627 cell adhesion mediated by integrin 0.0019629 0.079452
25 GO:0031214 biomineral tissue development 0.0023098 0.089244
26 | GO.0034109 homotypic cell-cell adhesion 0.0030289 0.10922
27 |GO:0060759 regulation of response to cytokine stimulus 0.0031185 0.10922
28 | GO:0045785 positive regulation of cell adhesion 0.0032122 0.10922
29 |G0:0090130 tissue migration 0.0039234 0.12827
30 | GO:.0009791 post-embryonic development 0.0043934 0.13831
31 |GO:0006979 response to oxidative stress 0.0050997 0.1547
32 | GO:1901654 response to ketone 0.0052781 0.1547
33 | GO:0198738 cell-cell signaling by wnt 0.0069594 0.18565
34 |GO:0070371 ERK1 and ERK2 cascade 0.0070817 0.18565
35 |GO:0009612 response to mechanical stimulus 0.0072516 0.18565
36 | GO:0002237 response to molecule of bacterial origin 0.0074563 0.18565
37 GO:0045444 fat cell differentiation 0.007622 0.18565
38 |GO:0001101 response to acid chemical 0.0076442 0.18565
39 GO:0003014 renal system process 0.0085091 0.20091
40 |GO:1901652 response to peptide 0.0090961 0.20609
41 |GO:0061564 axon development 0.0093596 0.20609
42 |G0:0002521 leukocyte differentiation 0.0099032 0.20609
43 |G0:0048880 sensory system development 0.010042 0.20609
44 |GO:0002931 response to ischemia 0.010122 0.20609
45 |GO:0009636 response to toxic substance 0.010183 0.20609%
46 |G0:0045995 regulation of embryonic development 0.011193 021211
47 |GO:0048706 embryonic skeletal system development 0.011193 021211
48 |G0:0032355 response to estradiol 0.011437 021211
49 |GO:0051098 regulation of binding 0.011479 021211

Figure 61: a) Gene Ontology (GO) annotation in the category of biolog-

ical process-no redundant of 76 DEGs as extracted from the

germa analysis
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52 76 DEGSs - gcrma analysis

53 B. Pathways

54 KEGG (p value £0.05)

55 | Gene Set Description P Value FDR

56 |hsa04974 Protein digestion and absorption 0.000021471 0.007064
57 |hsa04510 Focal adhesion 0.00090031 0.1481

58 |hsa04512 ECM-receptor interaction 0.0037938 0.41605
59 |hsa05202 Transcriptional misregulation in cancer 0.0054327 044634
60 |hsa00750 Witamin B6 metabolism 0.023079 1

61 |hsa01521 EGFR tyrosine kinase inhibitor resistance 0.0373 1

62 |hsa04151 PI3K-Akt signaling pathway 0.046215 1

53 Reactome (p value £0.01)

64 |Gene Set Description P Value FDR

65 |R-HSA-8948216  |Collagen chain trimerization 3.21E-10 6.40E-07
66 |R-HSA-1474244  |Extracellular matrix organization 1.20E-09 1.1911E-06
67 |R-HSA-1474228  |Degradation of the extracellular matrix 3.02E-09 2.0034E-06
68 |R-HSA-1442490  |Collagen degradation 4.92E-09 2.4455E-06
69 |R-HSA-1650814  |Collagen biosynthesis and modifying enzymes 6.82E-09 2.7149E-06
70 |R-HSA-1474290  |Collagen formation 5.48E-08 0.000018177

Assembly of collagen fibrils and other multimeric

7 R-H5A-2022090 e 1.29E-07 0.00003676%
72 [R-HSA-3000178 ECM proteoglycans 4.87E-07 0.00012122
73 |R-HSA-8874081  |MET activates PTKZ signaling 5.5081E-06 0.0012179
74 [R-HSA-8875878  |MET promotes cell motility 0.000019712 0.0039241
75 [R-HSA-3000171 MNon-integrin membrane-ECM interactions 0.000084144 0.015222
76 [R-HSA-6806834  |Signaling by MET 0.00026225 0.043489
77 |R-H5A-216083 Integrin cell surface interactions 0.00034736 0.051627
78 [R-H5A-0006934  |Signaling by Receptor Tyrosine Kinases 0.00036321 0.051627
79 [R-HSA-8941332  |RUNX2 regulates genes invalved in cell migration 0.00042639 0.056568
o R-HSA-2173782  |Binding and Uptake of Ligands by Scavenger Receptors |0.00060393 0.075114
81 |R-H5A-114608 Platelet degranulation 0.0016645 0.19485
82 |R-HSA-76005 Response to elevated platelet cytosolic Ca2+ 0.0019138 0.21158

83 [R-HSA-75002 Platelet activation, signaling and aggregation 0.0036441 0.38167
84 |[R-H5A-8340973  |RUNX2 regulates osteoblast differentiation 0.0040368 040166
85 [R-HSA-3000170  |Syndecan interactions 0.0050951 0.48282
86 |[R-HSA-8941326  |RUNX2 regulates bone development 0.0071101 0.64314
87 |R-HSA-5638302  |Signaling by Overexpressed Wild-Type EGFR in Cancer  |0.0079436 0.65866
88 |[R-H5A-5638303  |Inhibition of Signaling by Overexpressed EGFR 0.0073436 0.65866
89 [R-HSA-109582 Hemostasis 0.0104386 0.80865

Figure 62: b) Pathway annotation (KEGG, Reactome) of 76 DEGs as
extracted from the gcrma analysis



A.3 GENE LISTS AND THEIR ANNOTATION

1 31 DEGs - oligo analysis

2 A. Gene Ontology-Biological Pr: dundant (p value £0.01)

3 |Gene Set Description P Value FDR

4 [G0:0006898 receptor-mediated endocytosis 0000053044 0.043665
5 [60:0002237 response to molecule of bacterial arigin 0.00010274 0.043665
6 [G50:2001057 reactive nitrogen species metabolic process 0.00015881 0.044996
7 |60:0015711 organic anion transport 0.00045283 0.006227
8 [G0:0001525 0.00062381 0.008856
9 [GO:0006766 vitamin metabolic process 0.00092118 0.008856
10 [G0:1901342 regulation of vasculature development 00010598 0.098856
11 600046677 response to antibiotic 0001098 0.008856
12 [G0:0010573 vascular endothelial growth factor production 0.0011484 0.098856
13 [G0:0008643 carbohydrate transport 0001163 0.008856
14 600002526 acute Y response 00014680 010531

15 [G0:0045862 positive regulation of proteolysis 0.0014867 010531

16 |G0:0006022 aminoglycan metabalic process 0.00179 011704

17 [G0:0042176 regulation of protein catabolic process 00019632 011918

18 [G0:0051090 regulation of DNA-binding transcription factor activity  [0.0027020 015316

19 [G0:0050000 leukocyte migration 0.0030833 0.15954

20 [G0:0003012 muscle system process 0.0031907 0.15954

21 (602000147 pasitive regulation of cell motility 0.0055086 0.24958

22 [G0:0009636 respanse to toxic substance 0.0057487 0.24958

23 [G0:0032602 chemokine production 0.006057 0.24958

24 600072503 reactive oxygen species metabalic process 00061661 0.24958

25 [G0:0090130 tissue migration 0.0081262 031397
26 |50:0060326 cell chemotaxis 0.0086063 0.31806

Figure 63: a) Gene Ontology (GO) annotation in the category of biolog-
ical process-no redundant of 31 DEGs as extracted from the

oligo analysis

29 31 DEGs - oligo analysis

20 B. Pathways

31 KEGG (p value <0.05)

32 | Gene Set Description P Value FDR
33 |h5a04657 IL-17 signaling pathway 000037905 0.12471
34 [h5a00750 vitamin B6 metabolism 00096044 0.52664
35 [h5aD4668 [ TINF signaling pathway 0012883 0.60552
36 |hsaD4068 FoxO signaling pathway 001822 0.74928
37 |hsa01523 Antifolate resistance 004872 0.99974
8 Reactome (p value <0.01)

35 Gene Set Description P Value FDR
40 |R-H5A-2173732  [Binding and Uptake of Ligands by Scavenger Receptars |0.000045876 0091203
41 |R-H5A-2168830  |Scavenging of heme from plasma 000021193 0.21087
42 |R-H5A-139200  |Cellular hexose transport 0,00056599 037544
43 |R-H5A-5638302  |Signaling by Overexpressed Wild-Type EGFR in Cancer  |0.0034033 1

44 |R-H5A-5638303  [Inhibition of Signaling by Overexpressed EGFR 00034083 1

45 |R-H5A-5653656 | Vesicle-mediated transport 00042656 1

46 |R-HSA-212713  |EGFR interacts with C-gamma 00051083 1

47 |R-HSA-1251932  |PLCG1 events in ERBE2 signaling 00068056 1

48 |R-H5A-3000497  |Scavenging by Class H Receptors 00068056 1

49 |R-H5A-3000178  |ECM proteaglycans 00072667 1

50 |R-H5A-425407  |SLC-mediated transmembrane transpart 00078785 1

51 |R-HSA-5660668 |CLEC pathway 0010192 1

52 |R-H35A-433602  |Proton-coupled manocarboxylate transport 0010192 1

52 |R-H34-6709980  |Metal sequestration by antimicrabial proteins 0010192 1

Figure 64: b) Pathway annotation (KEGG, Reactome) of 31 DEGs as
extracted from the oligo analysis
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1 35 Genes - SVM-RFE model on PDAC tissue datasets

2 A. Gene Ontology-Biological Process-noRedundant (p value £0.01)

3 Gene Set Description P Value FDR

4 |GO0043062 extracellular structure organization 4.21E-10 3.58E-07
5 |GO:0031589 cell-substrate adhesion 9.07E-07 0.00038566
6 |GO:0007492 endoderm development 6.7109E-06 0.0019014
7 |GO:0061448 connective tissue development 0.000070008  |0.014877
8 | GO:0007369 gastrulation 0.00019631 0.033373
g |GO:0001503 ossification 0.0003375 0.046075
10 |GO:0060348 bone development 0.00037944 0.046075
11 |GO:0048705 skeletal system morphogenesis 0.00059201 0.039588
12 |GOW071559 response ta transforming growth factor beta 0.00063093 0.059588
13 |GO:0031667 response to nutrient levels 0.0011183 0.069933
14 |GO:0048706 embryonic skeletal system development 0.0011789 0.069933
15 |GO:0032355 response to estradiol 0.0012063 0.069933
16 | GO0042476 odontogenesis 0.0012063 0.069933
17 |GO:2000147 positive regulation of cell motility 0.0012254 0.069933
18 |GO:0002576 platelet degranulation 0.0012341 0.069933
19 |GO:0071774 response to fibroblast growth factor 0.0017008 0.090357
20 |GO0031214 biomineral tissue development 0.0019893 0.099466
21 |GO:0001101 response to acid chemical 0.0021623 010211
22 |GO:0050954 sensory perception of mechanical stimulus 0.0025201 011274
23 |GO:0048545 response to steroid hormone 0.0037947 0.16127
24 |GO:0009612 response to mechanical stimulus 0.0049348 019974
25 |GO:0043583 ear development 0.0052736 0.20375
26 |GO:0033627 cell adhesion mediated by integrin 0.0056565 020904
27 |GO:0009743 response to carbohydrate 0.0062193 0.22027
28 |GO0034109 homotypic cell-cell adhesion 0.0075961 0.25083
29 |GO:0090596 sensory organ morphogenesis 0.0083092 0.25083
30 |GO:0034612 response to tumor necrosis factar 0.0084004 025083
31 |GO:0001525 angiogenesis 0.0084415 0.25083
32 |GOW0090287 regulation of cellular response to growth factor stimulus 0.0088653 0.25083
33 |GO:0007162 negative regulation of cell adhesion 0.0089601 0.25083
34 |GO:.000724% |-kappaB kinase/NF-kappaB signaling 0.0091514 025083
35 |GO:0060485 mesenchyme development 0.009443 0.25083
36 |GO:0032963 collagen metabolic process 0.011549 0.29748

Figure 65: a) Gene Ontology (GO) annotation in the category of biolog-
ical process-no redundant of 35 gene list as selected from
SVM-RFE optimal feature selection subset on pdac tissue
datasets



A.3 GENE LISTS AND THEIR ANNOTATION

35 Genes - SVM-RFE model on PDAC tissue datasets

39
40 B. Pathways
4 KEGG (p value < 0.05)
42 |Gene Set Description P Value FDR
43 |hsa04974 Protein digestion and absorption 6.0999E-06 0.0020069
44 |hsa04512 ECM-receptor interaction 0.0061414 0.96583
45 |hsa00750 Vitamin B& metabolism 0.008807 0.96583
46 |hsa04510 Focal adhesion 0.033163 1
a7 Reactome (p value £0.01)
4g | Gene Set Description P Value FDR
49 [R-HSA-8948216 | Collagen chain trimerization 1.37E-10 2.72E-07
50 |R-HSA-1474244  |Extracellular matrix organization 1.41E-09 9.37E-07
51 |R-HSA-1442490 |Collagen degradation 1.42E-09 9.37E-07
52 |R-HSA-1650814 |Collagen biosynthesis and modifying enzymes 1.88E-09 9.37E-07
53 |R-HSA-1474228 |Degradation of the extracellular matrix 417E-09 1.6600E-06
54 |R-HSA-1474290 |Collagen formation 1.14E-08 3,7942E-06
55 |R-HSA-2022000 |Assembly of collagen fibrils and other multimeric structures 7.92E-08 0.000022505
56 |R-HSA-3000178 |ECM proteoglycans 0.000011023 0.002742
57 |R-HSA-216083 Integrin cell surface interactions 0.000017207  (0.0038047
58 |[R-HSA-8874081 |MET activates PTK2 signaling 0.000022871 0.0045512
59 |R-HSA-8875878 |MET promotes cell motility 0.000059256  (0.01072
60 |R-HSA-8941332  |RUMX2Z regulates genes involved in cell migration 0.000094882  (0.015735
61 [R-HSA-3000171  |Mon-integrin membrane-ECM interactions 0.00017682 0.027067
62 [R-HSA-6806834 |Signaling by MET 0.00041984 0.059678
63 |R-HSA-8040073  |RUMXZ regulates osteoblast differentiation 0.00091841 0.12184
64 |R-HSA-3000170 |Syndecan interactions 0.001164 0.14477
65 |R-H5A-76002 Platelet activation, signaling and aggregation 0.001314 0.15382
66 [R-HSA-8878166 |Transcriptional regulation by RUNX2 0.0014533 0.16067
67 |R-HSA-8041326 |RUMXZ regulates bone development 0.0016355 0.1713
68 [R-HSA-114608 Platelet degranulation 0.0017463 0.17381
69 |R-H5A-76005 Response to elevated platelet cytosolic Caz+ 0.0013478 0.18458
70 [R-HSA-2173782 |Binding and Uptake of Ligands by Scavenger Receptors 0.0028071 0.25391
71 |R-HSA-186797 Signaling by PDGF 0.0052923 0.45172
72 |R-HSA-190704  |Cligomerization of connexins into connexans 0.0056743 0.45172
73 |[R-HSA-190827  |Transport of connexins along the secretory pathway 0.0056748 0.45172
74 [R-HSA-3000497 |Scavenging by Class H Receptors 0.0075596 0.55717
R RUNX2 regulates genes involved in differentiation of myeloid 0TS s
75 cells
76 |[R-HSA-8941284 |RUNX2 regulates chondrocyte maturation 0.009441 0.6539
77 |[R-H5A-0006934  |Signaling by Receptor Tyrosine Kinases 0.0095292 0.6539

Figure 66: b) Pathway annotation (KEGG, Reactome) of 35 gene list as
selected from SVM-RFE optimal feature selection subset on

pdac tissue datasets
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1 65 Genes - SVM-RFE model on PDAC blood datasets

2 A. Gene Ontol iological Pre dundant (p value £0.01)

3 |Gene Set Description P Value FDR

4 [GO:0043062 extracellular structure organization 1.84E-11 1.56E-08
5 [GO:0061448 connective tissue development 0.000021351 [0.0063318
6 |GO:0001525 0.000022347 00063318
7 [GO:0031589 cell-substrate adhesion 0.000089277  [0.016088
8 |GO:0007402 endoderm development 0.000094637 0016088
9 [GO:0090287 regulation of cellular respanse to growth factar stimulus 0.00016805  0.021592
10 GO:0001503 ossffication 000017781 0021592
11 GO:0048545 respanse to steroid hormone 0.00023401  [0.023328
12 |GO:0007360 gastrulation 0000247 0023328
13 GO:1901342 regulation of vasculature development 0.00049389  [0.041981
14 |GO:0060348 bane development 0000546 0042191
15 |GO:0042476 000072779 [0.047817
16 |GO:0002576 platelet degranulation 0.00074968  [0.047817
17 GO:0010975 regulation of neuron projection development 0.00078758  [0.047817
18 | GO:0048705 skeletal system mor 0.00002006  [0.052031
19|GO:2000147 positive regulation of cell motility 0.00007941  [0.052031
20 |GO:0033627 cell adhesion mediated by integrin 0.0013236 0063077
21GO:0031214 biomineral tissue development 0.0013919 0063077
22 |GO:0007162 negative regulation of cell adhesion 0.00141 0063077
23 |GO:0045785 positive regulation of cell adhesion 00015875 0065947
24 |GO:2001057 reactive nitrogen species metabolic pracess 0.0016203 0065947
25 | GO:0060759 regulation of response to cytokine stimulus 0.0018882 0072955
26 G0:0090130 tissue migration 0.0021518 0079525
27 G0:0009791 post-embryonic development 0.0020853 010573
28 GO:1901654 response to ketone 0.0032265 01097
29 |GO:0046677 response to antibiotic 0.0034625 011121
30 GO:0198738 cell-cell signaling by wnt 0.0035326 011121
31 GO:0070371 ERK1 and ERK2 cascade 0.0030538 012003
32 |GO:0002237 respanse to molecule of bacterial arigin 0.0041637 012103
33 |GO:0001101 response to acid chemical 0.0042715 012103
34 GO1901652 respanse to peptide 0.0046662 012382
35 | GO:0045444 fat cell differentiation 0.0046953 012382
36 GO:0061564 axon development 0004807 012382
37 |GO:0002521 leukogyte differentiation 00050981 012745
38 |G0:0043380 sensary system development 0.0056604 013747
39 GO:0051098 regulation of binding 00064999 015347
40 |GO:0042176 regulation of protein catabolic process 0.0067227 015444
41 |GO:0071559 respanse to transforming growth factor beta 0.0072760 015752
42 | GO:0001667 ameboidal-type cell migration 00075861 015752
43 |GO:0045905 regulation of embryonic development 00077007 015752
44 GO:0048706 embryonic skeletal system development 0.0077007 015752
45 |GO:0002031 response to ischemia 00077832 015752
46 [GO:0045165 cell fate 00085054 016813
47 |GO:0001818 negative regulation of cytokine production 0.0093542 018071

Figure 67: a) Gene Ontology (GO) annotation in the category of biolog-
ical process-no redundant of 65 gene list as selected from
SVM-REFE optimal feature selection subset on pdac blood
datasets



A.3 GENE LISTS AND THEIR ANNOTATION

65 Genes - SVM-RFE model on PDAC blood datasets

50

51 B. Pathways

52 KEGG (p value < 0.05)

53 Gene Set Description P Value FDR

54 |hsa04974 Protein digestion and absorption 0.000014876  |0.0048942
55 hsa04510 Focal adhesion 0.00063908 0.10513
56 |hsa04512 ECM-receptor interaction 0.0030851 0.33833
57 |hsa05202 Transcriptional misrequlation in cancer 0.0041726 0.3432

58 hsa00750 Vitamin B& metabolism 0.021502 1

59 hsa03221 Acute myeloid leukemia 0.023418 1

60 |hsa05165 Human papillomavirus infection 0.032043 1

61 |hsa01521 EGFR tyrosine kinase inhibitor resistance 0.032686 1

62 |hsa04151 PI3K-Akt signaling pathway 0.03674% 1

63 Reactome (p value < 0.01)

g4 Gene Set Description P Value FDR

65 R-H5A-8948216  |Collagen chain trimerization 1.85E-10 3.68E-07
66 |[R-HSA-1474244  |BExtracellular matrix organization 4.57E-10 4.55E-07
67 |R-HSA-1474228 Degradation of the extracellular matrix 1.48E-09 8.85E-07
68 |R-HSA-1442490  |Collagen degradation 2.84E-09 1.4142E-06
69 |[R-H5A-1630814  |Collagen biosynthesis and modifying enzymes 3.95E-09 1.5712E-06
70 |R-HSA-1474290 | Collagen formation 3.19€-03 0.00001058
71 |[R-H5A-2022090  |Assembly of collagen fibrils and other multimeric structures |8.15E-08 0.000023178
72 |R-HSA-3000178 ECM proteaglycans 3.08E-07 0.000076694
73 |R-HSA-8874081 MET activates PTK2 signaling 4.0716E-06 0.00090028
74 |R-HSA-8875878 MET promates cell matility 0.000014613  [0.002907%
75 R-HSA-3000171 Non-integrin membrane-ECM interactions 0.00006261 0.011327
76 |R-HSA-5806834 Signaling by MET 0.00019602 0.032464
77 R-H5A-0006934  |Signaling by Receptor Tyrosine Kinases 0.00021208 0.032464
78 |R-H5A-216083 Integrin cell surface interactions 0.00025999% 0.036955
79 |R-H5A-8941332 RUNX2 regulates genes involved in cell migration 0.00036738 0.048732
80 |R-HSA-114508 Platelet degranulation 0.0012582 0.15649
81 |R-HSA-76005 Respanse to elevated platelet cytosalic Caz+ 0.0014482 0.16953

82 |R-H5A-76002 Platelet activation, signaling and aggregation 0.0026193 0.28963

83 |R-H5A-8240873 RUNX2 regulates osteoblast differentiation 0.0034886 0.36539
84 |R-HSA-3000170 Syndecan interactions 0.0044058 0.43837
85 |R-H5A-8041326  [RUNX2 regulates bone development 0.0061538 0.58315
86 |R-H5A-5638302 Signaling by Overexpressed Wild-Type EGFR in Cancer 0.0073773 0.63820
87 |R-H5A-5638303 Inhibition of Signaling by Overexpressed EGFR 0.0073773 0.63829
88 |R-HSA-8878166  [Transcriptional regulation by RUNX2 0.0099484 0.75798
89 |R-HS5A-3560782  |Diseases associated with glycosaminoglycan metabolism 0.0099632 0.75798

90 |R-H5A-2173782 Binding and Uptake of Ligands by Scavenger Receptors 0.010437 0.75798

Figure 68: b) Pathway annotation (KEGG, Reactome) of 65 gene list as
selected from SVM-RFE optimal feature selection subset on

pdac blood datasets
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. 31 Common Genes - gcrma intersection

2 A. Gene Ontology-Biological Process-noRedundant (p value <0.01)

3 |Gene Set Description P Value FDR

4 |G0:0043062 extracellular structure organization 2.55E-09 2.1674E-06
5 |G0:0007482 endoderm development 3.8240E-06 0.0016681
6 [GO:0031589 cell-substrate adhesion 6.6854E-06 0.0018942
7 [GO:0061448 connective tissue development 0.000036258  |0.0077048
8 |GO:0007369 gastrulation 0.00011671 0.01984
9 (G0:0001503 ossification 0.00017795 0.025209
10 |GO:0060348 bane development 0.00022678 0.027537
11 |GO:0048705 skeletal system morphogenesis 0.0003553 0.03775
12 |GO:0048706 embryonic skeletal system development 0.00080405 0.065061
13 |GO:0042476 odontogenesis 0.00082287 0.065061
14 |GO:0002576 platelet degranulation 0.00084197 0.065061
15 |GO:0001101 response to acid chemical 0.0013183 0.089048
16 |GO:0031214 biomineral tissue development 0.0013619 0.089048
17 |GO:0050854 sensory perception of mechanical stimulus 0.0017287 0.10495
18 |GO:0048545 response to steroid hormone 0.0023343 0.13228
19 |GO:0043583 ear development 0.003644 0.19359
20 |GO:0009743 response to carbohydrate 0.0043058 0.20748
21 |GO:0033627 cell adhesion mediated by integrin 0.0043937 0.20748
22 |GO:0071559 response to transforming growth factor beta 0.0030366 0.20928
23 |GO:0031667 response to nutrient levels 0.0051237 0.20928
24 |GO:0001525 angiogenesis 0.0052754 0.20928
25 |G0:2000147 positive regulation of cell motility 0.0055086 0.20028
26 |GO:0090536 sensory organ morphogenesis 0.0057741 0.20928
27 |GO:0034109 homatypic cell-cell adhesion 0.005909 0.20928
28 |GO:0090287 regulation of cellular response to growth factor stimulus 0.0061661 0.20065
29 |GO:0032363 collagen metabolic process 0.0080069 0.29446
30 |GO:0007229 integrin-mediated signaling pathway 0.0097342 0.29723
31 |GO:0007568 aging 0.0097911 0.20723
32 |GO:1901342 regulation of vasculature development 0.010693 0.3109

Figure 69: a) Gene Ontology (GO) annotation in the category of biologi-
cal process-no redundant of 31 common gene list as extracted
from the intersection of the gcrma analysis subset, and the
optimal SVM-REFE (tissue and blood) subsets



A.3 GENE LISTS AND THEIR ANNOTATION

31 Common Genes - gcrma intersection

35

26 B. Pathways

37 KEGG (p value < 0.05)

35 | Gene Set Description P Value FDR

39 |hsa04374 Protein digestion and absorption 6.0999E-06 0.0020069
40 |hsa04512 ECM-receptor interaction 0.0061414 0.96583
41 |hsa00750 Vitamin Bé metabolism 0.008807 0.96583
42 |hsa04510 Focal adhesion 0.033163 1

43 Reactome (p value =0.01)

44 | Gene Set Description P Value FDR

45 |R-HSA-8948216 |Collagen chain trimerization 1.37E-10 2,72E-07
46 |R-HSA-1474244 |Extracellular matrix organization 1.41E-09 9.37E-07
47 |R-HSA-1442490 |Collagen degradation 1.42E-09 9.37E-07
48 |R-H5A-1650814 |Collagen biosynthesis and modifying enzymes 1.88E-09 9.37E-07
49 [R-HSA-1474228 |Degradation of the extracellular matrix 4.17E-08 1.6609E-06
50 |R-HSA-1474290 |Collagen formation 1.14E-08 3.7942E-06
51 |R-HSA-2022090 [Assembly of collagen fibrils and other multimeric structures |7.92E-08 0.000022505
52 |R-HSA-3000178 [ECM proteoglycans 0.000011023  |0.002742
53 |R-HSA-216083  [Integrin cell surface interactions 0.000017207  |0.0038047
54 |R-HSA-8874081 [MET activates PTK2 signaling 0.000022871 |0.0045512
55 |R-HSA-8875878 [MET promotes cell motility 0.000059256 |0.01072
56 |R-HSA-80941332 |RUMNX2 regulates genes invalved in cell migration 0.000094882 |0.015735
57 |R-HSA-3000171 [Non-integrin membrane-ECM interactions 0.00017682 0.027067
58 |R-HSA-6806834 [Signaling by MET 0.00041984 0.059678
59 |R-HSA-8940973 [RUNX2 requlates osteoblast differentiation 0.00091841 012184
60 |R-HSA-3000170 |Syndecan interactions 0.001164 0.14477
61 |R-HSA-76002 Platelet activation, signaling and aggregation 0.001314 0.15382
62 |R-HSA-8878166 [Transcriptional regulation by RUNX2 0.0014533 0.16067
63 |R-HSA-8941326 [RUNX2 reqgulates bone development 0.0016355 0.1713

64 |R-HSA-114608  [Platelet degranulation 0.0017468 0.17381
65 |R-HSA-76005 Response to elevated platelet cytosolic CaZ+ 0.0019478 0.18458
66 |R-HSA-2173782 [Binding and Uptake of Ligands by Scavenger Receptors 0.0028071 0.25391
67 |R-HSA-186797  [Signaling by PDGF 0.0052923 045172
68 |R-HSA-120704  |Oligomerization of connexins into connexons 0.0056748 0.45172
69 |R-HSA-190827  [Transport of connexins along the secretory pathway 0.0056748 0.45172
70 |R-HSA-3000497 [Scavenging by Class H Receptors 0.0075536 0.55717
. REHSAREORTIES i{:ll‘l‘:xz regulates genes involved in differentiation of myeloid 0073556 0SSTT
72 |R-HSA-8941284 |RUNX2 regulates chondrocyte maturation 0.009441 0.6539

73 |R-HSA-0006934 |Signaling by Receptor Tyrosine Kinases 0.0095292 0.6539

Figure 70: b) Pathway annotation (KEGG, Reactome) of 31 common
gene list as extracted from the intersection of the gcrma
analysis subset, and the optimal SVM-REFE (tissue and blood)

Figure 71: a) Gene Ontology (GO) annotation in the category of biologi-
cal process-no redundant of 10 common gene list as extracted

subsets

10 Common Genes - oligo intersection

2 A. Gene Ontology-Biological Process-noRedundant (p value =0.01)
3 |Gene Set Description P Value FDR
4 |G0:0090130 tissue migration 0.0071725 1

5 |G0:1901342 regulation of vasculature development 0.0087173 1

6 [G0:0002237 response to molecule of bacterial origin 0.0096543 1

from the intersection of the oligo analysis subset, and the
SVM-REFE (tissue and blood) optimal subsets
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g 10 Common Genes - oligo intersection

10 B. Pathways

n KEGG (p value £0.05)

12 | Gene Set Description P Value FDR

13 |h5a00750 Vitamin B6 metabolism 00032101 1

14 [h5a00260 Glycine, serine and threonine metabolism 0021255

15 [hsa01230 Biosynthesis of amino acids 0039573

16 |hsa04657 IL-17 signaling pathway 0048893

17 Reactome (p value <0.01)

1% Gene Set Description P Value FDR

19 |R-HS. 1 ECM proteaglycans 000075342
Scavenging by Class H Receptars 00022724
Serine 00051069
Extracellular matrix organization 0011271

— 753 reguiates transcription of additional cell cyce | o
23 genes whose exact role in the p53 pathway remain

Figure 72: b) Pathway annotation (KEGG, Reactome) of 10 common
gene list as extracted from the intersection of the oligo anal-
ysis subset, and the SVM-RFE (tissue and blood) optimal
subsets

A.4 SAMPLE R SCRIPTS

Some sample R scripts are included in this section, describing the
main steps we followed in our analysis.

Listing A.1: Feature extraction on pdac dataset

cl = ifelse (grepl ("NORMAL", colnames(input), fixed=TRUE
), 'Normal’, ’PDAC’)

f = factor(cl, levels=c("PDAC","Normal"))

design = model. matrix(~o+f)

colnames(design) = ¢("PDAC","Normal")

data. fit = ImFit(input,design)

contrast .matrix = makeContrasts(PDAC—Normal,levels=
design)

data. fit .con = contrasts. fit (data. fit , contrast . matrix)

data. fit .eb = eBayes(data. fit .con)

tab = topTable (data. fit .eb, adjust .method="BH", sort.by =
"logFC", p.value =0.01, number=Inf, lfc =2)

Listing A.2: SVM Training
trctrl <— trainControl (method = "LOOCV’ classProbs =
TRUE, verboselter = TRUE,summaryFunction =
twoClassSummary)
#SVM RADIAL




A.4 SAMPLE R SCRIPTS

svmRadialgrid <— expand.grid(sigma = c(.01, .015, o0.2),C
=c(0.75, 0.9, 1, 1.1, 1.25))
svmRadial <— train( Patient ~ . ,data = training ,method
= ’svmRadial’, metric = "ROC",trControl = trctrl ,
tuneGrid=svmRadialgrid,verbose = FALSE)
#SVM RADIAL PREDICTION
results <— predict(svmRadial, newdata=training)
svm_training_ prediction <— confusionMatrix( results,
training $ Patient )

Listing A.3: KNN Training

#K NEAREST NEIGHBORS

knn_fit <— train(Patient ~ . ,data = training ,method ="’
knn’,metric = "ROC"trControl = trctrl ,tuneLength =
20)

#K NEAREST NEIGHBORS PREDICTION

results <— predict(knn_fit, newdata=training)

knn_training_ prediction <— confusionMatrix( results ,
training $ Patient )

Listing A.4: Feature Selection process (SVM-RFE)

svmRadialgrid <— expand.grid(sigma = c(.01, .015, o0.2),C
=c(0.75, 0.9, 1, 1.1, 1.25))

trctrl <— trainControl (method = 'repeatedcv’ ,number=1o,
repeats=5,classProbs = TRUE,verboselter = TRUE,
summaryFunction = twoClassSummary)

control <— rfeControl( functions=caretFuncs, number=5)

prediction <— rfe( training [,1:74], training [,75],
trControl = trctrl , sizes=c

(5,10,20,25,30,35,40,45,50,55,60,65,70)  , rfeControl =

control,method = "svmRadial",tuneGrid = svmRadialgrid,
verbose = TRUE)

results <— predict(prediction, newdata=training)

svm_training_prediction <— confusionMatrix(results $pred,
training $ Patient )

XX1
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Listing A.5: Sample Heatmap construction

input<—read.table("example.txt", header = TRUE, sep = " "
, dec =".")

hr <— hclust(as. dist (1—cor(t(input), method="pearson")),
method="complete")

mycl <— cutree(hr, h=max(hr$height)/1.8)

mycolhc <— rainbow(length(unique(mycl)), start=o.1, end
=0.9)

mycolhc<— mycolhc[as.vector(mycl)]

mycol <— colorpanel (512, "green", "red")

hm<—heatmap.2(as.matrix(input), Rowv=as.dendrogram(hr),
Colv="FALSE", col=mycol,

scale="row", density.info="none", trace="none",
RowSideColors=mycolhc,

margins =c (12,9) , main="Sample Heatmap with Clustering")
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