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Abstract

Ampelography is the branch of viticulture that studies the description, distinction, classi�ca-

tion and evaluation of grapevine varieties. In the modern era of varietal wines, correct iden-

ti�cation of di�erent grapevine varieties is necessary as it can have a substantial �nancial

impact on the wine industry. �e development in digital photography and image processing

tools o�ers enhanced capabilities for ampelography by providing automated and more accu-

rate methods to discriminate leaves, replacing the classic technique. In this thesis, we prove

that machine learning algorithms are able to classify e�ciently di�erent kinds of grape leaves

in an automated way. �e proposed approach consists of the following phases: segmentation,

feature extraction, feature selection and classi�cation. In the segmentation phase the leaf is

separated from its background. �en, in the feature extraction phase, the segmented leaf im-

age is analyzed in order to extract shape and contour features. A�er extracting the features,

we select an optimal subset of them in order to perform the classi�cation in the next phase.

Finally, the results are classi�ed using 3 di�erent algorithms: Naı̈ve Bayes, Decision Tree,

SVM with linear kernel and quadratic kernel. Evaluating the classi�cation results, it should

be noted that the automatic extraction of morphological data and machine learning modelling

proved to be rapid and accurate methods for cultivar classi�cation.
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Περίληψη

Η Αµπελογραφία είναι ο ϰλάδος της αµπελουργίας, που έχει ως αντιϰείµενο την περιγραφή,

διάϰριση, ταξινόµηση ϰαι αξιολόγηση των ποιϰιλιών της αµπέλου. Στη σύγχρονη επο-

χή, είναι απαραίτητη η σωστή αναγνώριση των διαφορετιϰών ποιϰιλιών αµπέλου, ϰαϑώς

µπορεί να έχει σηµαντιϰή οιϰονοµιϰή επίπτωση στην οινοβιοµηχανία. Η ανάπτυξη των

εργαλείων ψηφιαϰής φωτογραφίας ϰαι επεξεργασίας ειϰόνας προσφέρει βελτιωµένες δυνα-

τότητες για αµπελογραφιϰή αναγνώριση παρέχοντας αυτοµατοποιηµένες ϰαι πιο αϰριβείς

µεϑόδους για τη διάϰριση των φύλλων, αντιϰαϑιστώντας τις ϰλασσιϰές µεϑόδους. Σε αυτή

τη διατριβή, αποδειϰνύουµε ότι οι αλγόριϑµοι µηχανιϰής µάϑησης είναι σε ϑέση να τα-

ξινοµήσουν αποτελεσµατιϰά διαφορετιϰά είδη φύλλων της αµπέλου µε αυτοµατοποιηµένο

τρόπο. Η προτεινόµενη προσέγγιση αποτελείται από τις αϰόλουϑες φάσεις: τµηµατοποίη-

ση, εξαγωγή χαραϰτηριστιϰών, επιλογή χαραϰτηριστιϰών ϰαι ταξινόµηση. Στη φάση της

τµηµατοποίησης το φύλλο διαχωρίζεται από την υπόλοιπη ειϰόνα. Στη συνέχεια, στη φάση

εξαγωγής χαραϰτηριστιϰών, το φύλλο, αφού έχει περάσει απο τη διαδιϰασία της τµηµατο-

ποίησης, αναλύεται µε σϰοπό την εξαγωγή χαραϰτηριστιϰών που αφορούν το σχήµα ϰαϑώς

ϰαι το περίγραµµα. Μετά την εξαγωγή των χαραϰτηριστιϰών, επιλέγουµε ένα βέλτιστο

υποσύνολο αυτών για να πραγµατοποιήσουµε την ταξινόµηση στην επόµενη φάση. Τέλος,

τα αποτελέσµατα ταξινοµούνται χρησιµοποιώντας 3 διαφορετιϰούς αλγορίϑµους: Naı̈ve

Bayes, Decision Tree, SVM µε 2 είδη πυρήνα, γραµµιϰό ϰαι τετραγωνιϰό. Αξιολογώντας τα

αποτελέσµατα της ταξινόµησης, ϑα πρέπει να σηµειωϑεί ότι η αυτόµατη εξαγωγή µορφο-

λογιϰών δεδοµένων ϰαι η µοντελοποίηση µε τη βοήϑεια της µηχανιϰής µάϑησης αποτελούν

τόσο γρήγορες όσο ϰαι αϰριβείς µεϑόδους για την ταξινόµηση των ποιϰιλιών.
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Chapter 1

Introduction

1.1 Problem Statement

Ampelography -deriving from the Greek words “ampelos” meaning vine and “graphe”

meaning description- is the �eld of botany that studies the identi�cation and classi�cation

of grapevines. Speci�cally, it is the characterization of grapevine cultivars through visual

inspection of the grapevine (Tassie, 2010). It is crucial to achieve correct identi�cation for

several reasons. First of all, it is essential for successful wine marketing. But despite that,

mistakes in identi�cation can lead to adulteration or fraud, which therefore can have a great

�nancial impact on today’s wine-making industry (Adão et al., 2019).

�e �rst a�empts for ampelographic classi�cation focused on identi�cation of grapes and

berries. �ough this method is now considered uncertain and relatively error - prone. A�er

World War II, the ”Father of Ampelography”, Pierre Galet introduced a system for identifying

varieties based on the shape, contours and characteristics of the leaves of the vines, peti-

oles, growing shoots, shoot tips, grape clusters, as well as the colour, size, seed content and

�avour of the grapes. Mature leaves of grapevines contribute signi�cantly in the identi�ca-

tion process. It is possible to distinguish further among grapevine varieties if you pay careful

a�ention to the distinct details that are present on vine’s mature leaves. It is notable that each

grapevine variety’s leaves are unique as they possess characteristic shapes, coloring, size and

other visual descriptors.

�e past few years, there have been improvements in the identi�cation and classi�cation,

using modern methods and so�ware environments, that have replaced the traditional am-

pelographic approach. A drawback to the use of these modern methods though is that in
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most cases they require expensive instruments, training and special skills to accurately iden-

tify grapevine cultivars. DNA testing is one of the most commonly used modern methods,

providing high accuracy and reliability. Although accurate and reliable, DNA testing has a

disadvantage as it requires sophisticated equipment. So, there is still a place for traditional

ampelography in modern viticulture. �e challenge is to update the classical ampelographic

method to an automated process.

Image processing, the processing of digital images by means of a digital computer, has a

crucial importance in automated systems, as it contributes to identi�cation tasks. �e devel-

opment in digital photography and image processing tools allows us to obtain several visible

mature leaf descriptors ,in an automated way, replacing the classical methods. �ese descrip-

tors will determine the variety to which a particular leaf belongs to. �e purpose of this thesis

is to exploit image processing tools in order to capture the visible information of mature leaves

and then use this information to perform automated ampelographic classi�cation with the aid

of machine learning algorithms.

1.2 Previous & Related Work

1.2.1 Grape Vine Leaves

�e approach by Chitwood et al. used Elliptical Fourier Descriptors (EFDs) to quantify

grape vine leaf shape, as well as Generalized Procrustes Analysis based on venation landmarks

in order to analyse the venation pa�erning. �eir data prove the existence of a genetic basis

for the diversity present in grape leaves (Chitwood et al., 2014). However, their approach is

only descriptive, showing di�erent cultivars clustered and separated and they did not perform

automated classi�cation.

Fractal dimension has been used as a tool for grape vine leaf description as vine leaves

possess a highly complex structure which makes them appropriate for characterization using

fractal analysis. Stefano Mancuso uses the box counting method in his approach, proposing

that vine leaves are fractal. According to him, it is important to de�ne good shape measures

and features so that leaf shapes can be compared and analysed by meaningful and objective

criteria (Mancuso, 2001). He does not perform any classi�cation either. His aim is to empha-

size to the usefulness of fractal analysis in ampelography.

In a study that uses 16 di�erent grapevine cultivars, the extraction of color and shape

20



parameters of the mature leaf is done automatically using computer vision algorithms and

image analysis through a Matlab code (Fuentes et al., 2018). Near-infrared spectroscopy to

obtain the chemical �ngerprint of the leaves was also used in order to compare the accuracy

of the two methods. �e �rst method rendered an accuracy of 94%, while the second one

(NIR) rendered an accuracy of 92%. In their approach, they use a dataset that consists of

scanned leaves. �ey use both shape and colour features in their experiment. Although their

approach presents fairly good results, there are some constraints regarding the equipment.

Scanners may not be practical due to their portability. Even a small portable scanner can be a

li�le bulky to carry around.

Another study, is based on the analysis of leaf images, taken with an RGB sensor (Marques

et al., 2019). For each leaf 101 features were extracted, regarding both colour and shape. �e

approach was applied in 240 leaf images of three di�erent grapevine varieties and it achieved

an accuracy of 87%. Although e�cient, in their approach they test only 3 di�erent varieties.

Moreover, they propose a high-dimensional feature space which is not always e�cient re-

garding classi�cation process.

1.2.2 Leaf Pattern Recognition

Nowadays, there is an increasing interest in the automated classi�cation of di�erent plant

species based on their leaves, using machine learning algorithms. Leaf recognition process

usually follows the steps shown in Fig. 1.1. �ere have been many approaches in leaf classi�-

cation in order to develop automated systems that can help ordinary people to identify plants

based on their leaves. �e most common features used by researchers can be categorized

into shape, contour, texture, vein and color features. Some researchers, combine features of

the mentioned categories in order to develop an accurate method to classify di�erent kind of

plants (Kadir et al., 2013). Other researchers are based exclusively on one category. For exam-

ple, Sathwik et al, used texture analysis in order to classify medicinal plant leaves (Sathwik

et al., 2013). An approach that combines Fourier descriptors with other shape features was

investigated to identify 100 kinds of leaves, achieving an accuracy rate of 88% (Kadir, 2015).

Figure 1.1: Leaf Recognition Steps
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1.3 Purpose, Objectives & Innovation

1.3.1 Purpose

�e main purpose of this thesis is to upgrade traditional ampelography for vine identi�cation

into a modern method, taking advantage of the capabilities provided due to development in

image processing and machine learning �elds. Using image processing tools, mature leaf,

which is the region of interest, can be detected and segmented from its background in order

to extract from it several mature leaf descriptors in an immediate, automated way. �en,

machine learning algorithms are supplied with these descriptors and trained to recognize

leaves of di�erent grapevine cultivars.

1.3.2 Objectives

In this thesis, three main objectives are considered. �e �rst one, is the proper preprocessing

of the input grapevine leaf images. Speci�cally, before proceeding in any other step, the leaf

must be separated e�ciently from its background. To do this, a threshold based segmentation

algorithm is implemented. �e second objective, is the extraction of features that approach

the descriptors used in traditional ampelographic identi�cation. In traditional ampelography,

descriptors regarding leaf’s morphology are of high importance. �erefore, to capture this

information, shape and contour features were extracted from the binary leaf image which is

previously acquired from the segmentation process. Finally, the third objective concerns the

reliability of the developed automated system for the ampelographic identi�cation. In order

to achieve reliability, satisfying evaluation metrics, such as high accuracy, have to be ensured

from the side of the machine learning algorithms. Towards that end, di�erent classi�cation

algorithms were evaluated. �ese include: Naive Bayes, Decision Trees and Support Vector

Machines (SVM) using both quadratic and linear kernel. To further improve the accuracy

of the evaluated models, feature selection algorithms were developed, for the retention of

su�cient information and the rejection of redundant data and noise.

1.3.3 Innovation

�e increasing use of innovative computer technology allows the use of digitalized meth-

ods for plant identi�cation. In this thesis, image processing and machine learning algorithms

22



through a customized code wri�en in Matlab were used in order to detect visual grape leaf de-

scriptors and develop an automated system for vine identi�cation. Digital images of grapevine

leaves, acquired using a common digital camera, are used from the system for the identi�ca-

tion. Until now, the ampelographic identi�cation was performed in a manual way, which is

time consuming. Furthermore, the modern methods, like DNA testing, require a complicated

so�ware environment. �e processing of a digital photography using image processing tools

can provide immediate results, unlike naked-eye observation of the grape vine leaf. More-

over, no specialized knowledge or skills will be required in order to use the system. It should

be noted that the proposed method, in addition to being fast and e�cient, can be also devel-

oped with no signi�cant cost. �erefore, it is obvious that the proposed automated system is

practical for routine grapevine cultivar classi�cation.

1.4 �esis Outline

�e thesis is organized as follows:

1. In Chapter 2, background information concerning ampelography as well as the technical

part of this work is introduced.

2. In Chapter 3, the methods used to approach the problem are explained.

• First, a segmentation method is proposed, regarding the constraints of our dataset.

• In the feature extraction phase, several morphology and contour features are pro-

posed, as well as a method for vein extraction is introduced.

• Next, two feature selection methods are analysed, in order to acquire an optimal

feature subset.

• �ree classi�cation models are described and will be tested. �ese are: Naive

Bayes, Decision Tree, SVM with linear and SVM with quadratic kernel.

• Finally, a description for the metrics that are used to evaluate the system’s perfor-

mance is provided.

3. In Chapter 4, the experimental results for the classi�cation methods are presented along

with the evaluation using the metrics described in Chapter 3.

4. �e thesis concludes with Chapter 5, which suggests possible future work.
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Chapter 2

Background

2.1 Ampelographic Background

2.1.1 �e concept of Ampelography

Ampelography, a special branch of viticulture, has as main objectives the description, distinc-

tion and evaluation of cultivated grapevine varieties with the ultimate goal of their classi-

�cation. In classic ampelography three methods are used in order to achieve the objectives

pursued. �e ampelographic description, the comparative ampelography and the experimen-

tal ampelography. �e ampelographic description aims at distinguishing and classifying of

the grapevine varieties and determining their identity, based on external characteristics of

the organs. Comparative ampelography deals with the problem of synonyms of cultivated

grapevine varieties in di�erent places and with the research of the clonal composition of these

populations. Experimental ampelography deals with the investigation and solution of prob-

lems related to the origin of varieties using methods of Genetics and Phytogeography as well

as historical data.

2.1.2 Classi�cation systems

Morphological classi�cation

S. Helbling in 1777 classi�ed the varieties into groups according to the color of the grapes

and into subgroups based on the shape of the grapes (elongated-round). C. A. Frege in 1804

published a classi�cation system based on grapes, while D. S. Poxas Clémente y Rubio (1807),
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separated the varieties based on the density of hair on the leaves in combination with their

cultivating properties. Christ, Acerbi (1825) and E. von Vest (1826) based the classi�cation on

grape and leaf characteristics while Di Rovasenta (1877) was based on the color and the taste

of the grapes. V. Krimbas (1938) invented a system for classifying the varieties of wine grapes

grown in Greece, based on the characters of the grape, the grape seed and the relations of

these viticultural elements. In addition, he used leaf descriptors (Davidis, 1982). Rovasenda

(1877) also proposed a classi�cation system based on the density of hair on the leaves, the

color and the density of hair on the tip as well as the color, shape and taste of the grapes. L.

Levevoux (1946) used the morphological type of �ower to distinguish varieties.

Ampelometric classi�cation

Ampelometric classi�cation is based on the measurement of the dimensions of grapes, leaves

and angles formed by the veins, etc. �is method was used by Metzger (1828), Goethe (1887) by

measuring the angles of the main leaf veins, A. Rodrigez (1938), Ravaz (1902), Rodriquez (1952),

Alleweldt et De�weiller (1989) and others. �e most well-known Ampelometric process is that

of Galet (1979), in which the shape of the leaves is expressed by the proportions of the lengths

of the lateral veins to the length of the main vein and by the sum of the angles formed by

certain veins.

Phenological or physiological classi�cation

�is classi�cation of varieties is based on the various phenological stages of the grapevine,

such as the growth of the latent buds, �owering, maturation and leaf fall (Molon 1906). Pulliat

(1888, 1897) classi�es the grapevine varieties into early, �rst, second, third and fourth periods,

adding sub-periods. Today, this classi�cation corresponds to the early, mid-early, normal

ripening period, mid-late and late varieties (Stavrakakis 2010).

Geographical classi�cation

In the late 1920s, an a�empt was made to classify the varieties of the European vine based

on their geographical distribution (Vavilov 1926) and continued in the 1940s (Pirovano 1943,

Negrul 1946). A notable e�ort is considered by Negrul, who was based on the morphological

and biological characteristics of varieties found in di�erent ecological systems and classi�ed
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them into three major groups: orientalis, which thrived in the Caucasus, pontica, in Black Sea

region, and the occidentalis found in the westernmost parts of Europe (Unwin, 2003).

Phenotypic classi�cation

Phenotypic classi�cation is the division of varieties into groups of the same phenotype. It is

based on the density of hair on the growing shoot tip, the herbaceous stem and the mature

leaves, as well as on the measurements of the leaf characteristics for the determination of the

leaf type (Stavrakakis 2010).

2.1.3 Ampelographic description

Modern ampelography has as its main objects the description, distinction and classi�cation

of the species and varieties of the grapevine, the study of all the factors that contribute to the

phenotypic variation and their cultivation and �nally, the economic evaluation in productive

viticulture. For this purpose, ampelographic description has been developed. �e study of the

varieties is carried out with the method of ampelographic description according to the OIV list

of descriptors (OIV 2009). �e ampelographic characteristics examined refer to characteristics

of the shoot tip, herbaceous stem, young and mature leaf, �ower, grape, vines, phenological

stages and leaf ampelometry.

Shoot Tip Descriptors

Source: (Tassie, 2010)

Figure 2.1: Growing Tips

Many scientist claim that the �rst thing they look at is the shoot tip, if there is one. �e most

important descriptor that shoot tip provides is its anthocyanin coloration and density of hairs

27



on tip. Speci�cally, it can be fuzzy, hairless, shiny or covered in white co�ony hair. One other

useful descriptor provided by the shoot tip is its colour, as well as its shape. Fig. 2.1 illustrates

shoot tips.

Source: (Tassie, 2010)

Figure 2.2: Mature Leaf Parts

Mature Leaf Descriptors

Another grape vine part that provides various descriptors and makes an important contri-

bution in identi�cation is the mature leaf. Each grapevine variety’s leaves possess several

distinct features that make them unique and therefore they can be used in order to distin-

guish among varieties. Some of the traditional ampelographic features include: the density of

prostrate and erect hairs on / between the main veins on lower side of blade, the number of

lobes, size of teeth, length of teeth, ratio length/width of teeth, shape of blade (Fig. 2.3), size of

blade, color of the upper side of blade, go�ering of blade, undulation of blade between main

and lateral veins, blistering of upper side of blade, anthocyanin coloration of main veins on

upper and lower side of blade, pro�le of blade in cross section, general shape of petiole sinus,

degree of opening / overlapping of petiole sinus, tooth at petiole sinus, petiole sinus limited

by veins, shape of upper lateral sinus, depth of upper lateral sinus, shape of base, length of

petiole compared to middle vein (Ipgri, 1997). Grapevine mature leaf’s parts are illustrated in

Fig. 2.2.

Source: (Ipgri, 1997)

Figure 2.3: Di�erent leaf blade shapes
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Source: (Gurusamy et al., 2014)

(a) Original Image

Source: (Gurusamy et al., 2014)

(b) Segmented Image

Figure 2.4: Edge Based Segmentation Results

2.2 Technical Background

2.2.1 Segmentation

In digital image processing, segmentation technique is performed when an image has to be

simpli�ed to something that is more meaningful and easier to analyse. Speci�cally, during

segmentation process, a digital image is partitioned into two or more segments. Image seg-

mentation is commonly used when objects and boundaries need to be located in image. �e

various segmentation methods and algorithms that have been developed are usually classi�ed

in four main categories (Gurusamy et al., 2014).

1. Edge based

2. �reshold

3. Region based

4. Clustering

Edge based segmentation

�is technique is based on observing the intensity changes in an image. With the aid of

intensity di�erences, object boundaries can be easily located within image. Edge detection

operators are divided into two big categories, �rst order derivative operators and second or-

der derivative operators. Canny edge detector is an example of a commonly used second

derivative operator. In Fig. 2.4 edge based segmentation results are illustrated.
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Source: http://www .biomecardio.com/matlab/otsu doc.html

Figure 2.5: Otsu’s �reshold Method Results

�reshold Technique

�reshold is the simplest method of image segmentation, based on a threshold value, calcu-

lated usually using the original image converted into grayscale. Speci�cally, image pixels are

divided regarding their intensity value. Histogram peaks can be used to acquire the thresh-

olds. �ere are two main categories of thresholding, global and local. Global threshold T is

constant for the whole image. On the basis of T, the segmented image s(x, y) can be obtained

from the grayscale image g(x, y) as follows:

s(x, y) =

1, if g(x, y) ≥ T

0, otherwise

In local thresholding, the threshold value depends on the neighboor of each pixel. Sample

thresholding methods is Otsu’s thresholding which is a global threshold and adaptive local

thresholding which is a local thresholding method. Fig. 2.5 illustrates a segmented image

using Otsu’s threshold.

Region Based Technique

Region based techniques for segmentation are based on grouping pixels or subregions into

same type of regions. �e most common used methods of Region based segmentation are

region growing, region spli�ing and region merging. In region growing, the approach starts

with an initial set of points and regarding these points grows regions by appending to the set

those neighboring pixels that have similar properties. Alternatively, in region spli�ing, the

30



Source: (Zheng et al., 2018)

Figure 2.6: K-Means Segmentation

approach starts with the whole image as a single region and subdivides the regions that do

not satisfy a condition of homogeneity. In region merging, small regions that have similar

characteristics are merged.

Clustering Segmentation

In clustering segmentation technique, a clustering algorithm is performed in image pixels.

�e idea is that each cluster usually contains a group of similar pixels that belong to a speci�c

region. �e basic clustering algorithm is K-means, which clusters, or partitions the given data

into K-clusters. �e algorithm is an iterative process. First, K centroids are initialized and then

the euclidean distance from the centroids is calculated for each pixel. �e pixel is assigned to

the closest centroid based on the euclidean distance value. A�er having assigned all of the pix-

els, the position of each centroid is recalculated using the relation ck = 1
k

∑
y∈ck

∑
x∈ck p(x, y).

�e process is repeated until a number of maximum iterations is reached or until an error value

is satis�ed. K-means segmentation results are shown in Fig. 2.6.

2.2.2 Supervised & Unsupervised Learning

Machine learning algorithms are designed to learn and improve over time when exposed to

data. �ey are usually divided in two main categories: supervised and unsupervised learning.

Supervised Learning

In supervised methods, learning occurs under supervision. �e machine is trained using data

which is well labelled. In other words, in the given dataset, there is prior knowledge of what
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the output should look like. �us, in supervised learning the model is given a set of labelled

data and it is trained to map the input with the correct output accurately. Supervised learning

is further categorized as Regression and Classi�cation problems.

Unsupervised Learning

Contrary to supervised learning, unsupervised learning is used in order to deal with data

which is unlabelled. �e task of unsupervised methods is to �nd interesting pa�erns and

relationships between the inputs based on their pa�erns, similarities or di�erences. Since the

model is given unlabelled data, there is no error or metrics in order to evaluate the potential

solution. �e most common unsupervised learning method is cluster analysis.

2.2.3 Classi�cation

In machine learning, classi�cation is the problem that has to do with the correct assignment of

a new observation into the category it belongs. �e algorithms that implement classi�cation

are known as classi�ers. �e term classi�er also refers to the mathematical function that

maps the input data to a certain category. Classi�cation is usually categorized either as binary

or multi-class classi�cation. In binary classi�cation, only two classes are involved, while in

multi-class classi�cation, there are 3 or more classes.

Binary Classi�cation

Binary classi�cation problems involve the decision whether or not an item has some qual-

itative property. �e class for the item with the property is assigned the class label 1 and

the other class is assigned the class label 0. Popular algorithms used for binary classi�cation

include: logistic regression, k-Nearest neighbours, Decision Trees, Naive Bayes.

Multi-Class Classi�cation

Most classi�cation algorithms permit the use of more than two classes. However, some of

them are by nature binary, e.g. Support Vector Machines. �ese algorithms, can be turned

into multinomial classi�ers using a variety of strategies. Multi-class problems are usually ad-

dressed using various proposed techniques. Some of them include: Neural Networks, Extreme

Learning Machines (ELM), k - Nearest Neighbours, Naive Bayes, Decision Trees.
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2.2.4 Feature Selection

In classi�cation problems, many of the candidate features chosen are either partially or com-

pletely irrelevant/redundant to the target concept. �ese features have to be excluded before

performing classi�cation tasks. Feature Selection is the process of selecting an optimal subset

of features to use in the model construction. Speci�cally, it is the elimination of the feature

number to those that are believed to be most useful to a model in order to predict the target

variable. It is useful to perform feature selection before modeling data for several reasons.

1. Using irrelevant features can decrease the accuracy of the models and train the model

based on irrelevant features. Less misleading data leads to improvement of modelling

accuracy.

2. An optimal subset of features can reduce over��ing. Less redundant data means less

opportunity to make decisions based on noise.

3. It reduces training time. Fewer data points reduce algorithm complexity and algorithms

train faster.

Over the past few years, several feature selection methods are proposed and have proven to be

e�cient in handling high-dimensional data. Feature selection methods can be categorized in

a number of ways. �e most common one is the categorization according to the dependency

of the feature selection search with the construction of the classi�cation model (Saeys et al.,

2007). �is dependency is illustrated in Fig. 2.7, where (a) depicts �lter, (b) wrapper and (c)

embedded feature selection methods.

Source: (Suppers et al., 2018)

Figure 2.7: Feature Selection Methods
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Filter Methods

Filter methods are widely used for feature selection as they can achieve high computational

e�ciency without running any learning algorithms. �e optimal feature subset is selected

using variable ordering. In particular, a�er the variables are ordered, the less important are

discarded, regarding a de�ned threshold value. �e main drawback of these methods is that

they are independent of the employed data modelling algorithm. �at means that �lter meth-

ods will select the features even if the la�er don’t �t in the classi�cation model, thus making

them unreliable (Aziz et al., 2017).

Wrapper Methods

Wrapper methods, depend on the performance of classi�ers to obtain a feature subset. �ey

don’t use feature relevant criteria like �lter methods, but the predictive accuracy of a data

mining method in order to determine the �tness of a selected subset, by integrating the data

mining method as a black box. �e aim of this method is to �nd the subset with the maximum

evaluation, by following a trial and error method. �is approach forces the method to execute

cross validation on small datasets in order to �nd the most accurate estimation, resulting in

be�er overall performance. �e main drawback of the wrapper feature selection methods is

that they are very expensive regarding time and computations, when implemented on high

dimensional feature space.

Embedded Methods

Embedded methods try to compensate for the drawbacks in the Filter and Wrapper methods.

�ey select the features which best contribute to the accuracy of the model during the mod-

elling algorithm’s execution. Speci�cally, embedded methods do not separate the learning

from the feature selection part. �ese methods are thus embedded in the algorithm either as

its normal or extended functionality. Embedded methods are much less prone to over��ing

and they are more accurate than �lter methods.
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Chapter 3

Proposed Methodology

3.1 Segmentation

Before extracting any visual feature, segmentation process is carried out in order to separate

leaves from their background accurately. �e shape of the leaf has a signi�cant role in recog-

nition thus the segmentation step is of high importance. Usually, it can be accomplished by

converting leaf images in grayscale and then applying a threshold (Kadir et al., 2013), (Wu

et al., 2007). In some cases segmentation process can be quite challenging though. �e input

image is typically taken under controlled conditions, however, images taken from real envi-

ronment are more constrained (Buoncompagni et al., 2015). With regard to our dataset, leaves

are placed on a white background in order to acquire the images for the experiment. �e con-

straint here is the shadow that leaves cast on their background. �e grayscale conversion

approach su�ers in the presence of the shadow and it leads to inaccurate segmentation.

3.1.1 Visible Spectral Indexes

In order to overcome the problem concerning the shadows on the background, we took advan-

tage of the fact that leaves in our dataset display a color that varies from bright to dark green.

To identify the leaf greenness and separate it from the background along with the shadow,

we used a visible spectral-index based method. �e visible spectral-index based strategy is

a commonly used strategy in many researches for greenness identi�cation (Liu et al., 2013).

Such strategies include: the Excess Green Index (EG), Excess Red Index (ER), the vegetative

index (VEG), the color index of vegetation extraction (CIVE), the combined index (COM), etc.

All these methods are based on the fact that plants have larger green indexes than others in
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Figure 3.1: Flow Diagram of Segmentation Process

the normalized RGB color space.

Excess Green index

Excess Green index is used to identify the greenness of a leaf and it is de�ned as follows:

EG = 2G−R−B (3.1)

where R, G and B are the color components of the input leaf image.

Excess Red index

In order to detect the red parts of the leaves, such as petioles and veins, we use another visible

spectral index, excess red index, which is de�ned as follows:

ER = 1.4R−G−B (3.2)

where R, G and B are the color components of the input leaf image.

A�er the two indexes are obtained we perform threshold-based segmentation in each index

and then we combine the results in order to obtain the binary leaf. �e binary leaf is �rst

dilated and then eroded to remove small regions, holes, or points of noise. �e overall process

in order to obtain the binary leaf image is shown in Fig. 3.1. Using the binary image, where

leaf objects are marked as 1 and background objects are marked as 0, the leaf is separated

from its background.
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(a) Leaf Perimeter (b) A leaf and its bounding box

Figure 3.2: Leaf’s Perimeter & Bounding Box Visualization

3.2 Feature Extraction

Usually, a leaf is identi�ed using shape, contour, color, texture or vein features. In this thesis,

we are going to extract shape and vein features. Using a digital camera, we can capture the

shape of every leaf and that makes shape features ideal to use in our method. Texture features

are not considered as it is di�cult to capture texture using a common digital camera. �e

color of leaves in our dataset varies from dark to light green and therefore it does not provide

signi�cant information. It may be used in future work along with the shape features in order

to improve the system’s accuracy.

3.2.1 Shape Features

We de�ned shape features on the basis of morphological features and contour features.

Geometric Features

�e basic geometrical features of the leaf are:

(i) Leaf Area: Number of pixels of value 1 on binary leaf image.

(ii) Leaf Perimeter: Number of pixels along the closed contour of the leaf (Fig. 3.2a).

(iii) Equivalent Circular Diameter: Diameter of a circle with the same area as the leaf.

(iv) Physiological Length: �e distance between two terminals of the main vein.

(v) Physiological Width: �e longest distance between two terminals of the leaf that is or-

thogonal to the main vein.

Physiological Length & Width are calculated using Matlab’s bounding box (Fig. 3.2b).

37



Morphological Features

Morphological features are calculated combining the geometric features mentioned above to

form ratios that are unitless.

Aspect Ratio: �e ratio of physiological width Wp to physiological length Lp. Leaves with

AR values close to 1 are circular in shape, whether they possess lobing or not. Leaves with

values less than 1 are taller rather than wide and vice versa.

AspectRatio =
Wp

Lp

Rectangularity: How similar a leaf is to a rectangle. It is de�ned as the ratio of the product

of physiological length Lp and physiological width Wp and the leaf area A.

Rectangularity =
Lp ∗Wp

A

Narrow Factor: Narrowness of the leaf. It is de�ned as the ratio of the equivalent circular

diameter of the leaf D and physiological length Lp.

Narrow Factor =
D

Lp

Perimeter Ratio of Diameter: �e ratio of the perimeter P of the leaf to the equivalent

circular diameter D of the leaf.

Perimeter Ratio of Diameter =
P

D

Perimeter Ratio of Physiological Length and Physiological Width: �e ratio of the

perimeter of the leaf P to the sum of its physiological length Lp and physiological width Wp.

Perimeter Ratio of Physiological Length andPhysiologicalWidth =
P

Lp +Wp

Compactness: De�ned as the ratio of the product of area A with 4 ∗ pi to the square of leaf

perimeter P . It is sensitive to lobing and serration in the context of grape leaves.

Compactness =
4 ∗ pi ∗ A

P 2

Convexity: �e ratio of convex hull perimeter C to leaf perimeter P .

Convexity =
C

P
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(a) Unlobed Leaf (b) Lobed Leaf

Figure 3.3: Leaves and their Convex Hulls

Solidity: �e ratio of leaf areaA to convex hull areaAc. As the lobation is the main source of

concavity in the leaf boundary, it is apparently the cause of the di�erence between polygons

(Fig. 4). �us, by measuring this di�erence, the unlobed leaves can be easily detected. �e

more the leaf’s lobation, the more area di�erence will occur between the decimated polygon

and its convex hull (Fig. 3.3).

Solidity =
A

Ac

Roundness: How similar a leaf is to a circle, leaves with value close to 1 are circular. De�ned

as the ratio of the product of area A with 4 ∗ pi to the square of convex hull perimeter C .

Roundness =
4 ∗ pi ∗ A

C2

Contour-Centroid Distance (CCD) Features

Although the CCD is translation-invariant and can be made scale-invariant by normalization,

it requires accurate rotational alignment. Non rotationally - aligned, unnormalized CCDs,

however, are still useful for calculating several features. Contour-Centroid Distance D(i) is

de�ned as follows:

D(i) =
√
|Cx − E(i)x|2 + |Cy − E(i)y|2

Where, D(i) is the distance between the centroid of the leaf region and the ith leaf contour

pixel. Cx , Cy are the coordinates of the centroid of the leaf region, and, E(i)x, E(i)y are the

coordinates of ith leaf contour pixel.

A leaf with its centroid and its contour points is illustrated in Fig. 3.4.

Using the distance D(i), the following 6 features are calculated.
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Figure 3.4: Contour points and Centroid of the leaf

Minimum Radial Distance Ratio: Minimum radial distance rmin to mean radial distance

ratio rµ.

MinimumRadial DistanceRatio =
rmin
rµ

Maximum Radial Distance Ratio: Maximum radial distance rmax to mean radial distance

ratio rµ.

MaximumRadial DistanceRatio =
rmax
rµ

Mean Radial Distance Ratio: Average radial distance of the leaf rL to average radial distance

of its convex hull rC .

MeanRadial DistanceRatio =
rL
rC

Dispersion: Ratio of the radius of the circumscribed circle rc and the radius of the inscribed

circle ri of broad leaf’s boundary (Fig. 3.5). A feature to deal with a leaf that has irregular

shape. �e more irregular the leaf’s shape, the higher the dispersion value.

Dispersion =
rc
ri

Circularity: Circularity is the ratio of the mean distance between the centroid of the leaf and

all of the bounding points µR and the standard deviation of the distance from the centroid to

the boundary points sR.

Circularity =
µR
sR

Sphericity: A feature de�ned as the ratio of the product of areaAwith 4∗pi to the maximum

radial distance rmax multiplied by 2.

Sphericity =
4 ∗ pi ∗ A
2 ∗ rmax
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(a) Leaf with regular shape (b) Leaf with irregular shape

Figure 3.5: Dispersion Feature

3.2.2 Vein Extraction

If you think of a leaf like a hand, then its veins are the �ngerprints and tell their own story.

Characteristics present on leaf veins, such as anthocyanin colouration of main veins on upper

side of blade, make a major contribution in grapevine leaf identi�cation. Moreover, vein length

or the angles formed between the main veins of the mature leaf, are some of the strongest

grapevine leaf descriptors measured in classic ampelometry. Using image processing tools we

can extract the leaf venation pa�ern. As already mentioned, leaf veins resemble to �ngerprints

or vessels. �erefore, it is feasible to adapt �ngerprint or vessel detection methods to identify

the veins of a leaf. Combined �lters are proved to be e�cient methods for vessel enhancement

(Oliveira et al., 2016). In our approach, we will use a combined Matched and Frangi �lter to

enhance leave veins in order to perform segmentation.

Matched Filter

A matched �lter as introduced by Chaudhuri et al., was developed in order to detect piecewise

linear segments of leaf veins in leaf images. Matched �lters convolve the image with a 2-D

kernel that enhances the vein structure (Chaudhuri et al., 1989).

Frangi Filter

Frangi �lters use the eigenvectors of the Hessian to compute the likeliness of an image region

to contain vessels or other image ridges (Frangi et al., 1998). In our case, the ridges in the

image are the leaf veins.
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Figure 3.6: Vein Extraction Steps

Before applying the combination of the �lters, leaf image is converted in LAB color space and

L channel is enhanced. �en we convert it back to RGB and turn it to grayscale. A�er this

process, matched and Frangi �lters will be applied. �e main motivation for �lter combination

is the complementarity that they provide. Matched �lters enhance the small vessels be�er,

while Frangi’s �lter is less sensitive to noise. A�er applying matching and frangi �lters on

the segmented leaf image, we perform threshold based segmentation and then we remove the

perimeter, in order to acquire the veins. Fig. 3.6 illustrates the steps for vein extraction.

3.3 Feature Selection

Feature selection is the process of reducing the number of features when developing a predic-

tive model. To reduce the feature number and acquire an optimal feature subset, two feature

selection methods will be tested. Fisher’s score which is a �lter method and Support Vector

Machine - Recursive Feature Elimination (SVM - RFE) which is an embedded method.
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3.3.1 Fisher’s Score

In this method, �rst, leaves with similar shapes are clustered together using Self Organizing

Map (SOM). A�er the clusters are formed, the most discriminant features for each one of

the clusters are de�ned, using Fisher’s Score feature selection method. Linear Discriminant

Analysis (LDA) is performed in each cluster, using the most discriminant features in order

to visualize their discriminatory power and check the class separability. �e optimal feature

subset includes the most discriminant features of each cluster.

Self Organizing Map (SOM)

Clustering is the task of dividing the population or data points into a number of groups (clus-

ters) such that data points in the same groups are more similar to other data points in the same

group and dissimilar to the data points in other groups. Self-organizing map (SOM) is a com-

mon used method for this purpose. In particular, SOM is a type of arti�cial neural network

(ANN) that is trained using unsupervised learning to produce a discretized representation of

the input space of the training data by grouping similar data together. SOM consists of m neu-

rons located at a regular low-dimensional map, usually a 2-D map. A schematic representation

of SOM is shown in Fig. 3.7.

Source: http://matias-ck.com/mlz/somz.html

Figure 3.7: Self-Organizing Map Scheme

SOMs apply competitive learning, which involves back propagation and gradient descent.

Competitive learning is a form of unsupervised learning in ANNs, in which nodes compete for

the right to respond to a subset of the input data. A self-organizing map learns to di�erentiate

and distinguish features based on similarities.
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SOM Algorithm:

1. Each neuron’s weights are initialized.

2. A vector is randomly chosen from the set of training data.

3. Every neuron is examined to calculate which one’s weights are more similar to the input

vector. �e winning neuron is commonly known as the Best Matching Unit (BMU).

4. �en the neighbourhood of the BMU is calculated. �e amount of neighbours decreases

over time.

5. �e winning weight is rewarded with becoming more like the sample vector. �e neigh-

bours also become more like the sample vector. �e closer a neuron is to the BMU, the

more its weights get altered and the farther away the neighbour is from the BMU, the

less it learns.

6. Repeat step 2 for N iterations.

Best Matching Unit is a technique which calculates the distance from each weight to the

sample vector, by running through all weight vectors. �e weight with the shortest distance

is the winner.

Fisher’s Discriminant Ratio

�e Fisher’s discriminant ratio (FDR) is a metric used to quantify the discriminatory power

of individual features between two equiprobable classes (�eodoridis et al., 2010). �e FDR is

de�ned as:

FDR =
(m1 −m2)

2

σ2
1 + σ2

2

where m1 and m2 are the respective mean values and σ2
1 and σ2

2 the respective variances

associated with the values of a feature in two classes. Large absolute mean di�erence and

small variances per class imply large FDR. Maximizing the FDR leads to the best separation

between the two classes.

C-class problem

When we have C classes, �sher’s generalization involves C - 1 discriminant functions (Duda

et al., 2012). Within sca�er matrix is de�ned as follows:

S̃w =
C∑
i=1

S̃i
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where, S̃i =
∑

y∈yi(y − m̃i)(y − m̃i)
t and m̃i =

1
ni

∑
y∈yi y is the mean vector.

General between - class sca�er matrix:

S̃B =
C∑
i=1

ni(m̃i − m̃)(m̃i − m̃)t

where, m̃i is de�ned as above and m̃ = 1
n

∑C
i=1 nim̃i is the de�nition of a total mean vector.

�e generalization of C - class FDR is de�ned below:

FDR =

∑C
i=1 ni(m̃i − m̃)2∑
y∈yi(y − m̃i)2

Fisher’s score is one of the most widely used unsupervised feature selection methods. It be-

longs to �lter methods. �e key idea of the Fisher’s score de�ned above, is to �nd an optimal

subset of features, such that in the data space spanned by the selected features, the distances

between data points belonging to di�erent classes are as large as possible, while the distances

of the data points belonging in the same class are as small as possible.

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a machine learning tool, used for dimensionality reduc-

tion. LDA picks a new dimension that gives maximum separation between means of projected

classes and minimum variance within each projected class. In this method, we pick a 2 di-

mensional space to project the classes of each cluster, in order to visualize the discriminatory

power of the selected features based on their FDR.

3.3.2 Support Vector Machine - Recursive Feature Elimination

Support vector machine recursive feature elimination (SVM-RFE) is a typical wrapper feature

selection method, which adopts the manner of a sequential backward elimination. It was cre-

ated in order to perform gene selection for cancer classi�cation (Guyon et al., 2002). SVM-RFE

uses the weight magnitude as ranking criterion in order to determine a small subset of infor-

mative features that reduces processing time and provides higher classi�cation accuracy. It

works by repeatedly training an SVM classi�er, with a subset of features, and in each iteration

heuristically removing the features with the smaller feature weights. In each iteration, the pa-
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rameters of the classi�cation model (SVM) are re-estimated, by implementing the method of

cross validation. �e SVM-RFE algorithm is described below (Duan et al., 2007):

SVM-RFE Algorithm:

1. Start: ranked feature set R = []; selected feature subset S = [1, ..., d];

2. Repeat until all features are ranked:

(a) Train a linear SVM with features in set S as input variables;

(b) Compute the weight vector;

(c) Compute the ranking scores for features in set S : ci = (wi)
2;

(d) Find the feature with the smallest ranking score: e = argminici;

(e) Update: R = [e, R], S = S − [e];

3. Output: Ranked feature list R.

3.4 Classi�cation

In machine learning and statistics, classi�cation is a supervised learning approach in which

the computer program learns from the data provided and makes new observations or classi�-

cations. In this study, the classi�cation problem is multinomial. �erefore, strategies capable

of solving multi-class classi�cation tasks will be used. Speci�cally, three di�erent approaches

were chosen for classi�cation: probabilistic approach using Naı̈ve Bayes algorithm, hierar-

chical approach using Decision Tree algorithm, and Support Vector Machine algorithm with

linear and quadratic kernel. Support Vector Machines are by nature binary classi�ers. In order

to extend them to solve multi-class classi�cation problems One-Versus-All (OVA) technique

was developed.

3.4.1 Naı̈ve Bayes Classi�er

Naı̈ve Bayes classi�er is a probabilistic machine learning model based on applying Bayes’

theorem with strong (naı̈ve) independence assumptions between the features. It is an easy

to build model. Besides its simplicity, Naı̈ve Bayes is also known to outperform even highly

sophisticated classi�cation methods.
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Bayes �eorem:

P (ωi|x) =
P (x|ωi)P (ωi)

P (x)

Above,

1. P (ωi|x) is the posterior probability of class ωi given predictor x.

2. P (ωi) is the prior probability of class.

3. P (x|ωi) is the likelihood which is the probability of predictor given class ωi.

4. P (x) is the prior probability of predictor. It is de�ned as P (x) =
∑c

i=1 P (x|ωi)P (ωi).

�e data in each class is distributed to the Gaussian distribution N (mi, Si), where mi is the

mean of the class ωi and Si is the covariance matrix of the class ωi. �en, x is assigned to the

class ωi if it ful�ls the following equation (Duda et al., 2012):

P (ωi|x) > P (ωj|x), ∀j 6= i

3.4.2 Decision Tree Classi�er

Decision tree is a hierarchical machine learning model, that can be used to solve both classi�-

cation and regression problems. It falls under the category of supervised learning. A decision

tree is an e�cient way for graphical representation of every possible solution to a problem,

based on given conditions. It comprises of 3 basic segments: a root node, a few hidden nodes,

and many terminal nodes (leaves). Fig. 3.8 illustrates the structure of a decision tree. Decision

trees are preferred because their decision logic can be illustrated and thus they can be easily

understood.

Source: https://www .javatpoint.com/machine-learning-decision-tree-classification-algorithm

Figure 3.8: Decision Tree Form
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Decision Tree Based Method

�e decision tree classi�er is organized as a series of test questions and conditions in a tree

structure. �e root and the internal nodes contain a�ribute test conditions to separate records

that have di�erent characteristics. Every terminal node (leaf) is assigned a class label. Begin

the tree from the root node, apply the test condition to the record and follow the appropriate

branch based on the output. It then lead us either to another internal node, for which a new

test condition is applied, or to a leaf node which de�nes the class label.

3.4.3 Support Vector Machine (SVM)

A support vector machine (SVM) is a supervised machine learning model that uses classi-

�cation algorithms for binary classi�cation problems. In SVM data items are plo�ed in n-

dimensional space in a coordinate according to its class. SVM algorithm aims at �nding an

optimal hyper-plane that discriminates the diverse classes by maximizing the gap between

data points on the boundaries.

Suppose a given training dataset with ’n’ samples (x1, y1), (x2, y2), ..., (xn, yn), where xi is

the feature vector with m-dimensional feature spaces. Each xi will be associated with a value

yi indicating if the element belongs to the class (+1) or not (-1). �e formal de�nition of the

dataset is:

D = {(xi, yi)|xi ∈ R, yi ∈ {−1, 1}}ni=1

�e equation of the hyperplane can be wri�en:

wTx+ b = 0

�e width of the margin then is:
2|k|
||w||

.

�erefore, the problem is de�ned as follows:

maximize
2|k|
||w||

subject to : (wx+ b) ≥ k, ∀x of class 1

(wx+ b) ≤ −k, ∀x of class 2
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SVM Kernel Functions

SVM algorithms use a set of mathematical functions that are de�ned as the kernel. �e func-

tion of a kernel is to take data as input and transform it into the required form. Di�erent

SVM algorithms use di�erent types of kernel functions. �ese functions can be of di�erent

types, each one used for di�erent purpose. Some kernel examples include: linear, nonlinear,

polynomial, radial basis function (RBF), and sigmoid. �e polynomial and RBF are especially

useful when the data-points are not linearly separable. In this approach, linear and quadratic

kernel will be tested.

One-Versus-All (OVA)

As mentioned above, many classi�cation algorithms naturally permit the use of more than

two classes, but some others are by nature binary algorithms, e.g. SVM algorithm. In or-

der to turn SVM algorithm into a multinomial classi�er we follow the one-versus-all (OVA)

technique. �e main idea of OVA technique is to decompose the classi�cation into K binary

problems. Each problem discriminates between one class to all the rest. �e OVA methodol-

ogy is described below.

OVA methodology:

1. Suppose a dataset D = {(xi, yi)}, xi ∈ Rn, yi ∈ {1, 2, 3, ..., K}

2. Since there are K possible labels, build K di�erent binary SVM classi�ers.

3. Let the positive examples be all the points in class i, and let the negative examples be

all the points not in class i.

4. Let fi = wTi x be the binary classi�er. �e ”score” wTi x can be thought of as the proba-

bility that x has label i.

5. �e multi-class hypothesis is de�ned by f(x) = argmaxifi(x).

In order to perform one-versus-all classi�cation it is assumed that each class is individually

separable from all the others. OVA is easy to implement and works well in practice.
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3.5 Evaluation

In order to calculate the metrics used for evaluation of classi�cation results, we have to intro-

duce the following measures:

1. A True Positive (TP) test result is one that detects the condition when the condition is

present.

2. A True Negative (TN) test result is one that does not detect the condition when the

condition is absent.

3. A False Positive (FP) test result is one that detects the condition when the condition is

absent.

4. A False Negative (FN) test result is one that does not detect the condition when the

condition is present.

In order to de�ne the above measures in the case of a multi-class classi�cation problem, we

may use one-against-all approach. �erefore, supposing there are n classes:

1. ”TP of Cn” is all Cn instances that are classi�ed as Cn.

2. ”TN of Cn” is all non-Cn instances that are not classi�ed as Cn.

3. ”FP of Cn” is all non-Cn instances that are classi�ed as Cn.

4. ”FN of Cn” is all Cn instances that are not classi�ed as Cn.

Using these four measures, we calculated the most commonly used metrics for classi�cation

evaluation. �ese include: Accuracy, Speci�city, Sensitivity. In order to de�ne them, we used

the confusion matrix method. A confusion matrix for n classes is illustrated in Table 3.1.

�e total numbers of true positive (TTP), false negative (TFN), false positive (TFP), and true

negative (TTN) for each class i will be calculated based on the generalized equations presented
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Predicted Class

Class 1 Class 2 … Class n

Ac
tu

al
Cl

as
s

Class 1 x11 x12 … x1n

Class 2 x21 x22 … x2n

. . . . .

. . . . .

. . . . .

Class n xn1 xn2 … xnn

Table 3.1: Confusion Matrix

below (Manliguez, 2016).

TTP =
n∑
j=1

xjj

TFN =
n∑

j=1,j 6=i

xij

TFP =
n∑

j=1,j 6=i

xji

TTN =
n∑
i=1

n∑
j=1

xij − TTP − TFN − TFP

Using the above measures, accuracy, speci�city and sensitivity are calculated as follows:

Accuracy =
TTP

TTP + TFP + TFN + TTN

Sensitivity =
TTP

TTP + TFN

Specificity =
TTN

TFP + TTN
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Chapter 4

Results & Discussion

In this section, we present the results of the experiments we have conducted to demonstrate

the e�ectiveness of the proposed method.

4.1 Experiment Dataset

Our dataset contains a total of 144 leaf images of 54 di�erent grapevine leaves. �e leaf is

placed in a white background in order to acquire the image. Some of the images contain a

ruler which is removed along with the background in the segmentation step. Most of the

leaves cast shadows on their background. Sample images of our dataset are shown in Fig. 4.1.

Figure 4.1: Sample images from our dataset

53



Figure 4.2: Combination of EG & ER binarized images.

4.2 Segmentation Results

Using the proposed visible spectral index methodology for segmentation we managed to sep-

arate leaves from their background e�ciently. In Fig. 4.2 we can see how the combination of

thresholded EG and thresholded ER indexes results in the �nal binary leaf image.

In Fig. 4.3 we present some indicative segmented leaf samples along with their corresponding

binary leaf image.

Figure 4.3: Segmented leaf samples along with their binary images
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4.3 Feature Extraction Results

In Fig. 4.4 we present some indicative leaves from our dataset along with their extracted

features. Features are numbered as follows: 1. Compactness, 2. Perimeter ratio of diameter, 3.

Dispersion, 4. Convexity, 5. Solidity, 6. Aspect Ratio, 7. Circularity, 8. Min Distance Ratio, 9.

Max Distance Ratio, 10. Perimeter Ratio of length and width, 11. Roundness, 12. Sphericity,

13. Rectangularity, 14. Narrow Factor, 15. Mean Radial Distance Ratio.

(a) Leaf 1 (b) Leaf 2 (c) Leaf 3 (d) Leaf 4 (e) Leaf 5 (f) Leaf 6 (g) Leaf 7 (h) Leaf 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Leaf 1 0.4700 4.5825 1.4981 0.7367 0.9066 1.1218 11.2430 0.7868 1.1787 2.0951 0.8661 7.0600 1.5178 0.9700 0.9520

Leaf 2 0.2449 6.3492 6.1954 0.5716 0.7987 1.0488 3.5181 0.2198 1.3617 2.8922 0.7495 6.4664 1.5330 0.9333 0.8110

Leaf 3 0.3388 5.3972 2.5427 0.6421 0.8649 0.9725 5.8281 0.5130 1.3044 2.4979 0.8217 6.3309 1.4857 0.9129 0.8883

Leaf 4 0.3732 5.1429 2.7969 0.6657 0.8753 1.0523 6.5801 0.4358 1.2188 2.3837 0.8420 7.0089 1.4806 0.9512 0.9097

Leaf 5 0.4054 4.9344 2.3502 0.6990 0.8640 1.0486 8.3399 0.5082 1.1944 2.3043 0.8296 6.9313 1.4586 0.9567 0.9281

Leaf 6 0.2165 6.7527 5.4491 0.5405 0.7938 0.9848 3.5940 0.2557 1.3931 2.9638 0.7411 6.0575 1.6521 0.8711 0.8150

Leaf 7 0.3528 5.2897 3.0598 0.6465 0.8770 1.0152 4.6129 0.4133 1.2645 2.4581 0.8439 7.2541 1.4739 0.9365 0.8621

Leaf 8 0.2499 6.2842 3.5581 0.5661 0.8114 1.0023 4.7757 0.3759 1.3375 2.8111 0.7801 6.2302 1.5906 0.8957 0.8470

Figure 4.4: Indicative Feature Extraction Results

As already mentioned, the value of each extracted feature indicates a certain property regard-

ing leaf’s shape. For example, convexity is the relative amount that an object di�ers from a

convex object. High convexity value, close to 1, indicates a relatively convex leaf shape. On

the other hand, low convexity value, indicates that a leaf has irregular boundaries. Leaf 1 (Fig.

4.4a) has a convexity value of 0.7367 whereas Leaf 6 (Fig. 4.4f), which has a less convex shape,

has a convexity value of 0.5405. Convexity measures local irregularities on a leaf’s boundary.

Another example is compactness, which is a feature a�ected from lobation and serration on

the context of the leaf. Speci�cally, it has a low value in the presence of intense serration

and deep sinuses, just as in the case of Leaf 6 (Fig. 4.4f) and Leaf 8 (Fig. 4.4h), and greater

otherwise.
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4.4 Feature Selection Results

4.4.1 Fisher’s Score

Clustering: SOM 3x3

In this feature selection method, we �rst cluster leaves with similar shape together using a self

organizing map 3x3 and then we calculate �sher’s discriminant ratio for each cluster. SOM

3x3 results in 8 di�erent clusters. Sample clusters of di�erent grapevine leaves with similar

shapes are shown in Fig. 4.5.

(a) Cluster 3
(b) Cluster 4

Figure 4.5: Sample Clusters

Table 4.1 displays the obtained results from �sher’s score. FDR1, FDR3, … , FDR9 are the

�sher’s discriminant ratios corresponding to cluster1, cluster3, …, cluster9 respectively.

Table 4.1: Fisher’s Discriminant Ratio

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FDR1 0.8982 0.9385 2.1816 0.7706 66.1765 9.9105 8.8164 1.5731 1.1518 0.5211 3.4113 1.3594 2.3705 0.9215 8.4552

FDR3 1.8164 1.6569 8.1769 1.0676 7.6515 8.7930 14.2594 3.1441 7.8080 1.1304 4.1583 9.2409 4.8230 7.2411 13.9878

FDR4 8.3578 8.2325 4.5479 9.6389 5.7376 4.4160 3.1441 7.3272 4.0712 8.7325 4.8763 7.6046 2.5887 4.4579 5.7709

FDR5 4.3894 4.5613 1.7629 5.7939 2.9404 7.5597 2.2178 2.1621 1.8264 7.5165 0.9612 5.6328 0.0678 1.9728 5.3797

FDR6 7.0346 5.1290 0.6273 4.1222 12.1367 5.6141 2.3144 0.5324 3.7860 3.4263 14.1193 7.8364 2.0198 3.6736 2.7253

FDR7 2.9589 2.7374 7.1304 2.9216 7.6880 15.8464 1.8172 12.0155 4.2634 2.5272 5.3498 4.1539 3.3111 6.5742 14.6060

FDR8 0.4196 0.3833 1.9871 0.4214 5.8673 6.2186 0.4906 1.7086 5.2807 0.3505 6.5895 1.8192 0.9316 2.2083 0.8858

FDR9 4.5946 4.6232 5.8657 3.3458 20.0509 38.3373 2.7509 8.9132 2.3123 3.2543 13.9379 3.9491 8.7300 17.1663 2.9681
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Features presented in table 4.1 are numbered as follows: 1. Compactness, 2. Perimeter ratio

of diameter, 3. Dispersion, 4. Convexity, 5. Solidity, 6. Aspect Ratio, 7. Circularity, 8. Min

Distance Ratio, 9. Max Distance Ratio, 10. Perimeter Ratio of length and width, 11. Roundness,

12. Sphericity, 13. Rectangularity, 14. Narrow Factor, 15. Mean Radial Distance Ratio.

Features were ordered in a descending order per cluster according to their FDR score and

the most informative ones were chosen. �e discriminatory power of the feature subset per

cluster was visualized using LDA (Fig. 4.6). A�er selecting the most discriminant features

for each cluster, a rate was calculated for each feature by counting the number of clusters for

which it was selected as most discriminant. Features with zero rate were excluded from the

optimal feature subset. �erefore, the optimal feature subset consists of 13 features. In table

4.2 the rate of each feature is shown.

(a) Cluster 4 (b) Cluster 5

Figure 4.6: LDA Visualization: Sample Clusters

4.4.2 Support Vector Machine - Recursive Feature Elimination

In SVM-RFE method, the algorithm computes the ranking weights for all features and then

sorts them according to weight vectors. A support vector machine classi�er (One-Versus-

All) with a linear kernel was trained for this purpose. A�er ge�ing the features ranked in

descending order, we choose the �rst 10 to form our optimal feature subset. Feature’s Ranking

a�er performing SVM-RFE is presented in table 4.3
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Feature Rate

Aspect Ratio 87.5%

Mean Radial Distance 50%

Sphericity 50%

Solidity 50%

Roundness 37.5%

Convexity 37.5%

Compactness 25%

Perimeter Ratio of D 25%

Circularity 25%

Min Distance Ratio 25%

Max Distance Ratio 25%

Perimeter Ratio of L & W 25%

Narrow Factor 25%

Dispersion 0%

Rectangularity 0%

Table 4.2: Feature’s Occurring Rate

Feature Rank

Circularity 1

Min Distance Ratio 2

Dispersion 3

Mean Radial Distance 4

Max Distance Ratio 5

Solidity 6

Rectangularity 7

Aspect Ratio 8

Compactness 9

Roundness 10

Sphericity 11

Perimeter Ratio of L & W 12

Narrow Factor 13

Perimeter Ratio of D 14

Convexity 15

Table 4.3: SVM-RFE Ranking

4.5 Classi�cation Results

In this section, the di�erent results obtained for each representation with each algorithm are

presented. Our dataset contains a total of 144 leaf images, 20 of them were used for testing and

the rest for training. To cross validate our model and generate averaged results, we repeat-

edly perform the classi�cation task 30 times, each time shu�ing the 20 test images. In each

repetition we calculate the accuracy, the speci�city and the sensitivity of the system using the

confusion matrix. �e conducted experiments are presented below:

• Experiment 1: Perform classi�cation using the 15 extracted features.

• Experiment 2: Perform classi�cation using only the feature subset determined using

Fisher’s score selection method.

• Experiment 3: Perform classi�cation using only the feature subset determined using

SVM-RFE selection method.
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4.5.1 Experiment 1

Table 4.4 and Fig. 4.7 show the obtained results of the classi�cation using all 15 features. As

we see, the probabilistic approach using Naı̈ve Bayes gives the best result, while hierarchical

classi�cation approach using Decision Tree gives the worst results.

Evaluation

Accuracy Speci�city Sensitivity

A
lg

o
r
it

h
m

s Naı̈ve Bayes 0.7817 0.9908 0.7702

Decision Tree 0.5051 0.9831 0.4965

SVM (Linear Kernel) 0.7117 0.9895 0.7316

SVM (�adratic Kernel) 0.7883 0.9948 0.7991

Table 4.4: Evaluation: 15 Features

Figure 4.7: Classi�cation Results: 15 Features
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4.5.2 Experiment 2

Table 4.5 and Fig. 4.8 show the obtained results of the classi�cation using the subset of 13

features obtained from �sher’s score selection method. �e performance of Naı̈ve Bayes clas-

si�er did not change signi�cantly. SVM with quadratic kernel and decision tree achieved a

be�er performance, while in the case of svm with linear kernel the performance decreased.

Evaluation

Accuracy Speci�city Sensitivity

A
lg

o
r
it

h
m

s Naı̈ve Bayes 0.7717 0.9906 0.7596

Decision Tree 0.5335 0.9851 0.5254

SVM (Linear Kernel) 0.6717 0.9862 0.6860

SVM (�adratic Kernel) 0.8133 0.9965 0.8254

Table 4.5: Evaluation: 13 Features

Figure 4.8: Classi�cation Results: 13 Features
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4.5.3 Experiment 3

Table 4.6 and Fig. 4.9 show the obtained results of the classi�cation using the subset of 10

features obtained from SVM-RFE feature selection method. As we can see from the obtained

results, the performance increased for every classi�cation method. �e best results are given

from SVM with quadratic kernel.

Evaluation

Accuracy Speci�city Sensitivity

A
lg

o
r
it

h
m

s Naı̈ve Bayes 0.8083 0.9936 0.7982

Decision Tree 0.5663 0.9854 0.5623

SVM (Linear Kernel) 0.7500 0.9891 0.7596

SVM (�adratic Kernel) 0.8500 0.9947 0.8605

Table 4.6: Evaluation: 10 Features

Figure 4.9: Classi�cation Results: 10 Features

61



4.6 Discussion

4.6.1 Evaluation of the extracted feature set

In traditional ampelography, leaf’s shape plays a major role in the identi�cation process. �is

study implemented 15 shape features, de�ned on the basis of morphological and contour fea-

tures, in order to represent grapevine leaf’s shape. Our proposed feature set was proved to

be e�cient for the problem as it ful�ls certain conditions. First of all, it is low-dimensional

compared to other features and therefore it makes the classi�cation process computationally

e�cient. Moreover, the computation of the proposed features is simple which implies small

execution time. It should be noted that, the proposed features are scale and translation invari-

ant, which means that the location and scaling changing of the leaf can not a�ect the extracted

features. �e only drawback is that some of the features, such as dispersion, are not noise re-

sistant. A small ’unwanted’ hole on leaf’s surface may a�ect the feature’s value signi�cantly.

In order to overcome this problem, during the segmentation step, morphological operations

were performed. Using the proposed feature set, a satisfying accuracy was achieved.

4.6.2 Comparison of Fisher’s Score and SVM-RFE

In order to reduce the dimensionality of the feature space, we tested two di�erent feature se-

lection methods, Fisher’s score and SVM-RFE. Fisher’s score was a computationally e�cient

and easy to implement procedure. However, being independent of the classi�cation algorithm

implemented, Fisher’s score ended up in a feature subset which didn’t �t in every classi�cation

model tested. Feature selection using SVM-RFE had satisfying results. �e selection process

was successful, since it managed to �lter out the redundant features, without undermining

the models’ accuracy levels. Especially when it was combined with SVM classi�er it was

proved to be a powerful tool for classi�cation. A common drawback that is usually discussed

regarding SVM-RFE and other wrapper methods, is that they su�er from being computation-

ally expensive. However, in the case of a small dataset, just as in our experiment, SVM-RFE

method turned out to be a good solution.
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4.6.3 Comparison of classi�ers and their capabilities

�e classi�ers implemented in this experiment are the following: Naı̈ve Bayes, Decision Tree,

SVM with linear and SVM with quadratic kernel. Each one has di�erent capabilities and ad-

vantages regarding the experiment. A�er evaluating their performance, we resulted in several

observations. It is obvious that Naı̈ve Bayes has a satisfactory performance. In general, this

classi�er does quite well when we have to deal with low amounts of data just like in our case.

However, there is a drawback, as Naı̈ve Bayes delivers optimal classi�cation if the a�ribute

independence assumption holds. �is weak point is o�en addressed using feature selection

methods. In terms of Decision Tree, they performed worse than any other implemented clas-

si�cation model. �e advantage of this classi�er is that the tree can be visualized and hence,

for non-technical users, it is easier to explain model implementation. Unlike Decision Tree,

SVM achieved high accuracy rates. It is a powerful tool for classi�cation, especially when

using a quadratic kernel and it is combined with SVM-RFE method. With these conditions

being met, as it can be seen from the results in Table 4.6, SVM achieved an accuracy of 85%

outperforming every other classi�er. SVM with a linear kernel did not perform that well, pro-

vided that our data is not linear separable. However, when it was combined with SVM-RFE it

managed to reach a satisfying accuracy of 75%.
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Chapter 5

Conclusion & Future Work

Conclusion

�e aim of this study was to exploit image processing and machine learning tools in order

to upgrade the science of ampelography into a more sophisticated method, using digital leaf

images for the identi�cation. �e acquired images were pre-processed and the leaf was e�-

ciently segmented from its background. �en, information regarding grapevine leaf’s shape

was captured using several morphological and contour features, which were used as input

in the selected classi�cation models. In order to improve classi�cation’s accuracy we tested

2 di�erent feature selection methods. �e evaluation results proved that machine learning

models are able to produce a rapid and accurate classi�cation result.

Future Work

In the present work, only shape features were used in order to classify grapevine leaves. In

the traditional ampelographic approach though, additional descriptors are used, such as color,

vein, or hair. In a future scope, the extracted veins could be exploited in order to detect features

such as anthocyanin colouration of main veins on upper side of blade, or the density of hair

on main veins. �is would improve improve the classi�cation accuracy. Furthermore, as

the models developed are based on machine learning algorithms, accuracy could be further

improved by using more digital images of the existing cultivars for training.
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Appendices
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Appendix A

Supplementary material

A.1 Segmentation results

Supplementary data to segmentation results can be found online at :

• https://doi.org/10.6084/m9.figshare.12639908.v1

• https://figshare.com/articles/dataset/

Segmented Leaf Images/12643301
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ital ampelographer: a cnn based preliminary approach. In Epia conference on arti�cial

intelligence (pp. 258–271).

Aziz, R., et al. (2017). Dimension reduction methods for microarray data: a review. AIMS.

Bioengineering, 4(1), 179–197.

Buoncompagni, S., et al. (2015). Leaf segmentation under loosely controlled conditions. In

Bmvc (pp. 133–1).

Chaudhuri, S., et al. (1989). Detection of blood vessels in retinal images using two-

dimensional matched �lters. IEEE Transactions on medical imaging, 8(3), 263–269.

Chitwood, D. H., Ranjan, A., Martinez, C. C., Headland, L. R., �iem, T., Kumar, R., . . . others

(2014). A modern ampelography: a genetic basis for leaf shape and venation pa�ern-

ing in grape. Plant Physiology, 164(1), 259–272.

Duan, K.-B., et al. (2007). One-versus-one and one-versus-all multiclass svm-rfe for gene

selection in cancer classi�cation. In European conference on evolutionary computation,

machine learning and data mining in bioinformatics (pp. 47–56).

Duda, R. O., et al. (2012). Pa�ern classi�cation. John Wiley & Sons.

Frangi, A. F., et al. (1998). Multiscale vessel enhancement �ltering. In International confer-

ence on medical image computing and computer-assisted intervention (pp. 130–137).

Fuentes, S., Hernández-Montes, E., Escalona, J., Bota, J., Viejo, C. G., Poblete-Echeverrı́a,

C., . . . Medrano, H. (2018). Automated grapevine cultivar classi�cation based on

machine learning using leaf morpho-colorimetry, fractal dimension and near-infrared

spectroscopy parameters. Computers and Electronics in Agriculture, 151, 311 - 318.

Retrieved from http://www.sciencedirect.com/science/article/

pii/S0168169918302345 doi: h�ps://doi.org/10.1016/j.compag.2018.06.035

Gurusamy, V., et al. (2014). Review on image segmentation techniques.

71



Guyon, I., et al. (2002). Gene selection for cancer classi�cation using support vector ma-

chines. Machine learning, 46(1-3), 389–422.

Ipgri, U. (1997). Oiv. 1997. descriptors for grapevine (vitis spp.). international union for

the protection of new varieties of plants, geneva, switzerland/o�ce international de

la vigne et du vin, paris, france/international plant genetic resources institute, rome,

italy. �is publication is available to download in portable document format from URL:

h�p://www. cgiar. org/ipgri/IPGRI UPOV OIV Via delle Se�e Chiese, 142(34), 4.

Kadir, A. (2015). Leaf identi�cation using fourier descriptors and other shape features. Gate

to Computer Vision and Pa�ern Recognition, 1(1), 3–7.

Kadir, A., et al. (2013). Leaf classi�cation using shape, color, and texture features. arXiv

preprint arXiv:1401.4447 .

Liu, H., et al. (2013). Developmnet of a green plant image segmentation method of machine

vision system for no-tillage fallow weed detection. In 2013 society for engineering

in agriculture conference: innovative agricultural technologies for a sustainable future

(p. 95).

Mancuso, S. (2001). �e fractal dimension of grapevine leaves as a tool for ampelographic

research. HarFA—Harmonic and Fractal Image Analysis, 6–8.

Manliguez, C. (2016). Generalized confusion matrix for multiple classes.

Marques, P., et al. (2019). Grapevine varieties classi�cation using machine learning. In Epia

conference on arti�cial intelligence (pp. 186–199).

Oliveira, W. S., et al. (2016). Unsupervised retinal vessel segmentation using combined

�lters. PloS one, 11(2).

Saeys, Y., et al. (2007). A review of feature selection techniques in bioinformatics. bioinfor-

matics, 23(19), 2507–2517.

Sathwik, T., et al. (2013). Classi�cation of selected medicinal plant leaves using texture

analysis. In 2013 fourth international conference on computing, communications and

networking technologies (icccnt) (pp. 1–6).

Suppers, A., et al. (2018). Integrated chemometrics and statistics to drive successful pro-

teomics biomarker discovery. Proteomes, 6(2), 20.

Tassie, L. (2010). Vine identi�cation–knowing what you have.

�eodoridis, S., et al. (2010). Introduction to pa�ern recognition: a matlab approach. Aca-

demic Press.

72



Wu, S. G., Bao, F. S., Xu, E. Y., Wang, Y.-X., Chang, Y.-F., & Xiang, Q.-L. (2007). A leaf recog-

nition algorithm for plant classi�cation using probabilistic neural network. In 2007

ieee international symposium on signal processing and information technology (pp. 11–

16).

Zheng, X., Lei, Q., Yao, R., Gong, Y., & Yin, Q. (2018). Image segmentation based on adaptive

k-means algorithm. EURASIP Journal on Image and Video Processing, 2018(1), 68.

73


