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Electromagnetic Brain Source Analysis with Statistical and Deep
Learning Approaches

by Athanasios Delatolas

Electroencephalography (EEG) is a well-established non-invasive recording
method for the brain’s functional activity. EEG uses an array of electrodes
placed on the scalp to record electrical potential signals. EEG provides high
temporal but low spatial resolution of brain activity. To gain insight about the
spatial dynamics of the EEG, one has to solve the inverse problem of Source
Analysis, that is, to find the neural sources that give rise to the recorded
EEG activity. There are many existing numerical methods for solving the
inverse problem but most of them strongly rely on priors and require signif-
icant amount of computational time. Recently, neural networks have been
proposed to resolve these issues but their training is based on suboptimal
forward modeling and they cannot localize EEG recordings in various brain
anatomies. Here, we present a new CNN architecture which is independent
of the modeled brain source space and its training is based on realistic and
skull-conductivity calibrated head modeling. The performance of our CNN
is validated with simulated EEG data and real EEG somatosensory evoked
potentials for the first neurological component at 20 ms (P20/N20 response)
from three healthy subjects. Our network has localized the P20/N20 com-
ponent at the subject-specific Brodmann area 3b. Finally, the results suggest
that our CNN outperforms the traditional numerical methods.
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Chapter 1

Introduction

1.1 The importance of Source Analysis

Electroencephalography (EEG) [1] and Magnetoencephalography (MEG) [2,
3] are two non-invasive recording methods for the brain’s functional activity.
EEG uses an array of electrodes placed on the scalp to record voltage fluctu-
ations, whereas MEG uses sensitive magnetic detectors called superconduct-
ing quantum interference devices (SQUIDs) [4] to measure the same primary
electrical currents that generate the electric potential distributions recorded
in EEG. Since EEG and MEG capture the electromagnetic fields produced by
neuronal currents, they provide high temporal but low spatial resolution of
the neuronal activity.

Source analysis consists of two problems. Firstly, the forward problem,
which is to build a head volume conductivity model for describing how the
electrical signals of the brain signal source are transmitted to the scalp elec-
trodes [5]. Secondly, the inverse problem, that is, to localize the active brain-
sources based on the solution of the forward problem [6].

It is vital to gain insight about the spatial dynamics of neuronal activity
(i.e. solution of the inverse problem) because accurate localization of active
brain-sources holds promise to enable novel treatments. The information
acquired through the brain source localization is helpful to diagnose different
brain disorders such as epilepsy, schizophrenia, depression, Alzheimer and
Parkinson disease. Among them, the most common is epilepsy; according
to World Health Organization (WHO) statistics, around 50 million people in
the world have been diagnosed as epileptic [7].

The ultimate goal of source analysis is to provide real-time localization of
the neuronal activity in order to facilitate treatments of the aforementioned
diseases.

1.2 Aim & Innovation

Deep Learning [8] offers a promising new approach to significantly im-
prove source localization in real time. In this thesis, we develop and present
a novel deep learning solution to localize neural sources, and assess its ac-
curacy and robustness with real EEG-recordings [9, 10]. We aim to provide
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real-time source localization, that is, to be able to localize EEG recordings
from different brain anatomies with very low computational time.

The first step to achieve our goal is to to model realistically the geomet-
rical and electromagnetic features of the head. A six-compartment (skin,
skull compacta, skull spongiosa, cerebrospinal fluid, white and gray mat-
ter) anatomical template with 50, 460 dipoles was used [10]. Then, we solve
the forward problem using the Finite Element Method (FEM) [11] because of
its high flexibility to accurately model the electromagnetic field propagation
in geometrically challenging inhomogeneous and anisotropic head volume
conductors such as the human head [12, 13].

Having calculated a realistic leadfield matrix, we aim to create a CNN
that can localize EEG signals from any recording system and to any brain-
anatomy. Thus, our CNN takes as input a topography of the EEG-signal
and estimates the location of the seed dipole which raised the recorded EEG
signal. In more detail, a topography can be generated from any number of
electrodes and the output layer of our neural network has only three neurons
where each neuron corresponds to the coordinates in the three-dimensional
source space.

While we focus on EEG, the same approaches are directly extendable
to MEG, enabling a portable and affordable solution to source localization.
The conceptual novelties of the proposed Convolutional Neural Network
(CNN) [14] are :

1. Localization accuracy in real EEG-recordings. We tested our CNN on
three different subjects (see Chapter 6).

2. Better performance from other deep learning approaches as we not
only used FEM [11] but also a six-compartment head model [10] with
50, 460 dipoles.

3. Very low computational time (once trained) for the estimation of the
source location.

4. Because of the fact that the proposed CNN takes as input a topography
and not the EEG-signal, one can use a topography generated from a
different EEG-recording system than ours.

The proposed CNN paves the way for real-time source localization as it
localizes correctly the EEG recorded activity for different brain anatomies. In
particular, our neural network is tested in three different subjects. Each sub-
ject has its own anatomy, source space and leadfield matrix. Thus, we can
correctly localize EEG data regardless of the geometrical features of the head.
Even though pioneer studies suggest that their neural networks may work
for various anatomies with a transfer learning approach, we managed to
solve the problem of individual brain anatomies using FSL Registration [15,
16, 17]. More specifically, the MRI of each subject is interpolated with the
spline interpolation (computational time: 3-5 minutes) using the FSL tool.
Hence, the predicted three-dimensional coordinates of our neural network
are referring to the interpolated MRI.
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Even though all the numerical methods can also localize EEG to different
brain anatomies, they require the leadfield matrix of each subject (i.e. the
solution of the forward problem). Since, the solution of the forward problem
needs approximately 40 minutes, numerical methods cannot provide real-
time EEG source localization. Due to the fact that our CNN does not need the
leadfield matrix of each subject, it can provide real-time source localization
for various anatomies.

Finally, another advantage of the numerical methods is that they take into
account the inter-subject variability of skull conductivity which causes the
most significant influence on the EEG localization [18]. Therefore, it is worth
investigating a new deep learning approach that can overcome the problem
of the inter-subject variability.

1.3 Related Work

The first pioneer studies that proposed an artificial neural network as a
solution to the inverse problem are [19, 20, 21]. However, these studies are
limited by the sample size, network depth and computational power at that
time, leading to a poor performance. In recent years, several deep learn-
ing methods have been proposed for the inverse problem. Among them,
two Multi-Layer Perceptron(MLP) networks [22, 23] and various CNNs such
as [24, 25, 26].

The aforementioned neural network-based inverse solutions are based on
suboptimal forward modeling and they cannot localize EEG recordings in
various brain anatomies. However, they have been tested in a distributed
dipole model with more than two dipole sources.

There is a long history to study numerical algorithms for the EEG inverse
problem. These methods are divided into three categories: non-parametric
methods, parametric methods [27] and Bayesian methods [28]. A non-parametric
and one of the most famous numerical solutions is minimal norm estima-
tion (MNE) [29]. According to [2], MNE provides best estimates when less a
priori information about the source distribution is available. Moreover, low
resolution electromagnetic tomography (LORETA) [30] localizes the 3D so-
lutions properly as compared with previous minimum norm approach. The
first variation on LORETA is standardized LORETA (sLORETA) [31]. This
method utilizes MNE to estimate the current density and it furthers stan-
dardizes the current density with the expected standard deviation. Another
variation of LORETA is exact (eLORETA) [32]. This method gives more im-
portance to the deeper sources. Moreover, another promising inverse meth-
ods is beamforming. The basic idea of beamforming is the application of
spatial filtering on the measured data to distinguish signals arriving from a
region of interest and suppress those originating elsewhere [33].

Even though, these methods are verified to many studies [27, 34], they
still have limitations. In particular, although MNE offers good results in
terms of resolution and current estimation, it is unable to address the issue
of deep source localization in the outermost cortex [35]. In addition, unlike
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the MNE solution, LORETA can localize the boundary and deep sources.
However, the solution provided has low spatial resolution, which is an unde-
sirable feature when we are dealing with pattern-recognition applications of
brain source localization [35]. Furthermore, localization accuracy of sLORETA
and eLORETA methods is better than LORETA, but their spatial resolution
is not appropriate [34]. Finally, drawbacks of the beamforming approach are
the susceptibility to imprecisions in the forward model and that correlated
sources are often not found [24].

1.4 Thesis Organization

This work is organized in 7 chapters:
In chapter 1, we outline the necessity for Source Analysis. We then ex-

plain the problem we are trying to address and its importance. Finally, we
highlight pioneer studies and state the novelties of this study.

In chapter 2, the reader is introduced to the fundamental and theoretical
knowledge of the topics covered in this thesis. Firstly, we present a short
description of the human brain anatomy and secondly, we summarize the
principals of Electroencephalography (EEG).

In chapter 3, the mathematical background of Source Analysis is intro-
duced. On the one hand, the forward problem is concerned with the compu-
tation of scalp potentials and external fields for a specific set of neural current
sources. On the other hand, the aim of the EEG inverse problem is to find the
location inside the brain of the signal that is responsible for the measured
EEG data.

In chapter 4, we briefly discuss the principals of Deep Learning. Hav-
ing initially introduced the multilayer perceptron (MLP) model, we examine
the convolutional neural network. We also present three important ideas
convolution leverages, those are, sparse interactions, parameter sharing and
equivariant representations [8].

In chapter 5, we explain the pipeline that implements our CNN. Briefly,
given a six-compartment head model that models realistically the geometri-
cal and electromagnetic features of the head, we solve the Forward Problem
using FEM [11]. Having calculated the leadfield matrix, we generate multi-
ple training data for our neural network. Finally, we present the architecture
of our CNN.

In chapter 6, we compare the performance of the deep learning model
against the popular scanning localization algorithms: sLORETA and Dipole
Scan. To access the localization results of our CNN, we use both simulated
and real EEG recordings.

In chapter 7, we draw our conclusions, summarize our results and outline
our contribution. We then talk about the drawbacks of our approach and
suggest potential areas for future work.
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Chapter 2

Background

This chapter provides a brief introduction to both the anatomy of brain and
the electroencephalography (EEG) recording system.

2.1 Anatomy of the Human brain

The human brain is the most complex organ with 1012 neurons, which are
interconnected via axons, dendrites and 1015 synaptic connections. More-
over, brain only weighs around 1500g [36] . This complex structure allows it
to release/absorb quintillion of neurotransmitter and neuromodulator molecules
per second. Brain development starts at a primary age of 17–18 weeks of
parental development and generates the electrical signals until death [1].

Brain is divided into several anatomical and functional regions. It is sur-
rounded by many bones which together form the skull and it is surrounded
by the Cerebrospinal fluid (CSF). CSF flows inside the brain through the
cerebral ventricles. Moreover, brain’s tissues can be broken down into two
major classes: gray and white matter.

Figure 2.1: Gray and White matter

The brain regions formed by gray matter are responsible for processing infor-
mation and establishing connections with white matter. The gray matter is
mostly composed of unmyelinated neurons. The white matter is composed
of myelinated neurons, which are used as connectors to the gray matter. Be-
cause myelinated neurons transmit nerve signals faster, white matter func-
tions to increase the speed of signal transmission between the connections.
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Furthermore, according to embryonic developments, the human brain
can be divided into three regions anatomically: the forebrain (or prosen-
cephalon), the midbrain (or mesencephalon), and the hindbrain (or rhomben-
cephalon) [37].

Figure 2.2: The three regions of the brain

2.1.1 Forebrain

By far the largest region of the brain is the forebrain, which contains the
entire cerebrum and several structures directly nestled within it - the tha-
lamus, hypothalamus, the pineal gland and the limbic system. When we
picture the iconic shape of the human brain, the majority of what’s visible is
the cerebrum with its wrinkly, pinkish-grey outer appearance. It makes up
around 85% of the brain and consists primarily of gray matter, divided into
two hemispheres.

The cerebrum is where most of the important brain functions happen,
such as thinking, planning, reasoning, language processing, and interpreting
and processing inputs from our senses, such as vision, touch, hearing, taste
and smell. The outer layer of the cerebrum is called the cerebral cortex.

Each hemisphere it is traditionally divided into four lobes - frontal, pari-
etal, occipital and temporal. Communications between the two hemispheres
are maintained by a fibrous bridge called the corpus callosum.

Figure 2.3: Lobes of the brain
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• The frontal lobe, which lays at the front of the brain, controls execu-
tive functions like thinking, planning, and problem solving, as well as
memory, attention and movement.

• The parietal lobe, which sits behind the frontal lobe, deals with the per-
ception and integration of stimuli from the senses.

• The temporal lobe, which runs along the side of the brain under the
frontal and parietal lobes, deals with the senses of smell, taste and
sound and the formation and storage of memories.

• The occipital lobe, which is at the back of the brain, is concerned with
vision.

2.1.2 Hindbrain

The hindbrain is one of the three major regions of our brains, located at
the lower back part of the brain. It includes most of the brainstem and a
dense coral-shaped structure called the cerebellum. The brainstem is one
of the most important parts of the entire central nervous system, because it
connects the brain to the spinal cord and coordinates many vital functions,
such as breathing and heartbeat. There are three main parts of the hindbrain
- pons, cerebellum, and medulla oblongata

Figure 2.4: Hindbrain

• The pons gets its name from the Latin word for "bridge", and it con-
nects the rest of the brainstem to the cerebral cortex. Bulbous in shape,
it sits right underneath the midbrain and serves as a coordination cen-
tre for signals and communications that flow between the two brain
hemispheres and the spinal cord.

• Behind the pons and the rest of the brainstem sits a structure called
the cerebellum (Latin for "little brain"). Just like the cortex, it has two
hemispheres, with a dense layer of gray matter surrounding an inner
region of white matter. It also contains special neurons called Purkinje
cells, capable of processing many signals at once due to their highly
complex dendrite branches.
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• The lower part of both the brainstem and the overall hindbrain is the
medulla oblongata, where the brain transitions to the spinal cord. It is
only about 3cm long, but the medulla is an indispensable nerve tract
which contains the control centres for our autonomic vital functions -
heart rate, blood pressure, breathing - and many involuntary reflexes
such as swallowing and sneezing.

2.1.3 Midbrain

Located towards the base of your brain is a small but important region
called the midbrain, which serves as a vital connection point between the
other major regions of the brain - the forebrain and the hindbrain.

2.1.4 Primary Somatosensory Cortex

The primary somatosensory cortex (S1) is located in the postcentral gyrus
of the parietal lobe and controls the somatic sensory information of the body.
As it is shown in Figure 2.5, each part of the human body occupies a region
at S1.

Figure 2.5: Representations of different body parts on the so-
matosensory (S1). Adapted from [2].

The sensory signals transfer through the afferent nerves from the receptors to
the spinal cord, brainstem, thalamus and finally to the primary somatosen-
sory cortex.

Moreover, S1 is divided into areas: 3 (which is subdivided into 3a and
3b), 1, and 2. Area 3 is generally considered the primary area of the so-
matosensory cortex. Area 3 receives the majority of somatosensory input
directly from the thalamus, and the initial processing of this information oc-
curs there. Area 3b specifically is concerned with basic processing of touch
sensations, while area 3a responds to information from proprioceptors. Area
3b is densely connected to areas 1 and 2. Thus, while area 3b acts as a pri-
mary area for touch information, that information is then also sent to areas 1
and 2 for more complex processing.
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2.1.5 The P20/N20 Component

As described in [33], the first response recorded by EEG/MEG is located
in the ventroposterior thalamus at 14 ms after the stimulus onset. The first
transient response is located in the area 3b at 20 ms post-stimulus. The re-
sponse at 20 ms post-stimulus is called the P20/N20 component, for which
the term “P” refers to a positivity and the “N” to a negativity of the EEG over
the frontocentral and parietooccipital lobes, respectively. The advantage of
knowing the exact cortical position of the P20/N20 component makes S1 a
candidate brain network for the investigation of the behavior of experimental
and modeling source analysis parameters. Thus, the P20/N20 component is
especially appropriate for sensitivity investigations of EEG and MEG source
analysis.

2.2 Electroencephalography (EEG)

While in this thesis we focus on EEG, there are other non-invasive brain
measurements such as magnetoencephalography (MEG) [2, 3], magnetic res-
onance imaging (MRI) and the combination of electroencephalography and
magnetoencephalography EMEG.

2.2.1 EEG definition

Electroencephalography (EEG) [1] is defined as the non-invasive neu-
roimaging technique having high temporal, low spatial resolution. EEG records
the brain activity by measuring electrical signals generated by pyramidal
neurons located in cortical region of brain with the help of electrode arrange-
ment. EEG is a neuroimaging technique that was developed by German
physicist and psychiatrist Hans Berger in 1924, to measure brain activity with
a set of electrodes. The set of electrodes is placed on the surface of the scalp
to measure the electrical potential of the patient under observation [38, 35].

EEG can also be defined as a functional neuroimaging technique with
high temporal resolution (in milliseconds), which measures potential dif-
ferences as linear functions of source strengths and nonlinear functions of
dipole locations [39]

EEG recordings can be used for direct, real-time monitoring of sponta-
neous and evoked brain activity, which enables the spatio-temporal localiza-
tion of neuronal activity.

An example of eeg recording is shown in the figure 2.6
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Figure 2.6: EEG recording, adapted from [40]

2.2.2 EEG system

In the early years of development, EEG signals were recorded using gal-
vanometers. However, with the advancement in modern electronic circuitry,
signals are now recorded using a set of electrodes, differential amplifiers for
each channel, and filters. With the increase in the number of channels, the
computational complexity is increased proportionally.

In particular, the EEG system consists of electrodes, amplifiers, filters and
analogue to digital converters (ADCs) to store the signal into computer or a
needle (pen)-type register to draw the signal on the paper.

Figure 2.7: EEG system adapted from Wiley Encyclopedia of
biomedical engineering [41]

The electrodes record the electrical activity produced by neurons. EEG ma-
chines use an array of electrodes because the brain produces different signals
from different brain regions. The number of electrodes corresponds with the
number of channels an EEG machine has. The more channels, the higher
the resolution of EEG data captured. EEG signals are typically very small,
around 10 microVolts or less. To produce accurate measurements, the signals
from the electrodes are passed to an amplifier (as can be seen in figure 2.7)
that stabilizes the signals and magnifies them to a level that can be measured
accurately.
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2.2.3 Electrodes placement

In 1958, a standard electrode placement system for the measurement of
brain signals using EEG was proposed [42, 43, 44]. The system was called the
10-20 electrode placement system and it only consisted of 21 electrodes. In
this setting, odd electrodes are placed on the left while even on the right. For
an increased number of electrodes, one can simply place the additional elec-
trode with equidistance between the electrodes. An extension of the 10-20
system is the 10-10 system. It is common practice that the electrodes con-
nected to ear lobes (A1 and A2) are taken as reference electrodes. However,
in modern instrumentation, the choice of a reference does not play a signifi-
cant role in the measurement.

The standard nomenclature of the electrodes is based on their location. In
particular, the first letters specify the location in the head: A = earlobe, O =
occipital, P = parietal, F = frontal, and Fp = frontal polar, while the remaining
name comes is a number or the letter ’z’. if it is an even number, then the
electrode is located on the right side, if it is an odd number on the left side,
while the letter ’z’ (stands for zero) implies a central position.

Figure 2.8: Diagrammatic view of the 10-20-electrode system.

A diagrammatic view for the 10-20 electrode system showing distance
measurements for various head regions with 75 electrodes along with ref-
erence electrodes is shown in figure 2.8. Pictures (a) and (b) show three-
dimensional measures while (c) shows a two-dimensional view of the elec-
trode setup.
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Chapter 3

Source Analysis

As mentioned in the chapter 2, EEG provides high temporal but low spa-
tial resolution of the neuronal activity. It is vital to gain insight about the
spatial dynamics of neuronal activity (i.e. solution of the inverse problem)
because accurate localization of active brain-sources holds promise to enable
novel treatments.

The aim of Source Analysis techniques is to find the brain areas respon-
sible for the generation of the recorded signals from the EEG-electrodes. Es-
pecially in epilepsy, Source Analysis techniques are used in order to local-
ize more accurately the epileptogenic zone, alongside with MRI, and facili-
tate the epilepsy surgery. Briefly, Source Analysis consists of two problems.
Firstly, the EEG forward problem, which is to build a head volume conduc-
tivity model for describing how the electrical signals of the dipoles are trans-
mitted to the scalp electrodes. Secondly, the EEG inverse problem, that is,
to estimate the most possible dipoles which could generate the recorded sig-
nals from the electrodes. Solving the forward problem is a prerequisite to the
inverse problem.

Due to the fact that the number of dipoles is significantly larger than the
number of electrodes, without further constraints, this problem problem can
be characterized as ill-posed [27]. The goal of this thesis is to solve the inverse
problem using a neural network.

Figure 3.1: Forward vs Inverse

Before we delve deeper into the forward and inverse problem, it is vital to
define the dipole and the source space.

Definition 1 (Dipole) A source located in the brain that generates electrical activ-
ity is called dipole.

Definition 2 (Source Space) The source space (or source model) is a set with all
candidate positions of the dipoles inside the brain (e.g. gray matter).
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Definition 3 (Dipole’s parameters) A dipole is determined according to the po-
sition in the source space and moment (amplitude and orientation).
If d is the amplitude and −→e is the orientation, then the moment of the dipole is

m = d−→e (3.1)

3.1 Forward Problem

The forward problem is concerned with the computation of the channels
measurements (values of the electrodes) for a specific set of neural current
sources (dipoles). To put it differently, given the amplitude and the orien-
tation of all dipoles in the source space and the EEG channel measurements
must be calculated. Even though this problem does not occur in reality -we
always know the channel measurements-, it is a prerequisite for the inverse
problem.

Moreover, the EEG electrodes are located on the scalp while the source
model is located inside the head. Thus, a head model is required which
is a simulation of the geometrical and electromagnetic features of the head.
The head modeling is carried out with various numerical techniques [11, 45].
However, prior to this, it is necessary to understand the mathematical back-
ground behind it.

As previously stated, each source corresponds to a single known posi-
tion in source space, which is described in the Cartesian coordinate system.
Therefore, in order to determine a dipole in a certain location with the Carte-
sian coordinate system, only the amplitude d is unknown as the orientation
of each dipole is known

{−→ex ,−→ey ,−→ez
}

. For simplicity reasons, we assume that
the source is determined by one amplitude and one orientation. Hence, the

moment of the kth dipole is mk = dk
−→ek instead of mk =



dkx
−→ex

dky
−→ey

dkz
−→ez


.

For p dipoles and q electrodes and for each time point:

Xest = LS (3.2)

where, Xest ∈ Rq×t is the EEG channel measurements over time ; L ∈ Rq×p is
the leadfield matrix that describes the flow of electrical current of each dipole
through every electrode [27] ; S ∈ Rp×t and represents the electrical current
of each dipole over time.
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For a specific time point tk, the above equation is:

Xestk =



Xest(elec1)k

...

Xest(elecq)k


︸ ︷︷ ︸

q× 1

=



l(r1, rsource1) · · · l(r1, rsourcep)

... . . . ...

l(rq, rsource1) · · · l(rq, rsourcep)


︸ ︷︷ ︸

q× p



d1
−→e1

...

dp
−→ep


︸ ︷︷ ︸

p× 1
(3.3)

where, r1 · · · rq are the positions of each electrode; rsource1 · · · rsourcep are the
positions of each dipole in the source space.

Generally a noise or perturbation matrix n [27] is added:

Xest = LS + n (3.4)

The noise is modeled as zero mean Gaussian random variable: n ∼ N (0, σ2Iq)
where σ is the standard deviation of the noise and Iq is the identity matrix.

3.1.1 Maxwell’s equations

Understanding Maxwell’s equations is required to go deeper into the
mathematical basis of the Forward Problem. The interrelation between var-
ious electrical and magnetic quantities was developed by James Maxwell in
1861. The set of equations that was later termed Maxwell’s equations pro-
vides the relationship between electromagnetic field and the charge density
and current density [35].

The electromagnetic field is the combination of the electric field E(V/m2)
and the magnetic field B(T) which can be computed by Maxwell’s equations
and the Continuity equation [2, 46, 13]. In particular, the Maxwell’s equations
are:

∇E =
ρ

ε
(3.5)

∇× E = −∂B
∂t

(3.6)

∇B = 0 (3.7)

∇× B = µ
(
J + ε

∂E
∂t
)

(3.8)

and the Continuity equation is:

∇J = −∂ρ

∂t
(3.9)

where, ρ is the volume charge density in C/m3, J is the current density in
A/m2, µ is magnetic permeability in H/m and ε is the electrical permittivity
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of the medium in F/m. Moreover, Maxwell’s equations and the Continuity
equation can be simplified under the assumptions:

• The magnetic permeability µ for the human tissues is equal to vacuum
permeability µ0

• ∂B
∂t , ∂E

∂t can be neglected while computing E and B

3.1.2 Quasi-static approximation

For neuroscientists, the frequency range is crucial because most brain
research are conducted at frequencies between 0.1 and 100 Hz. Therefore,
the physics is well defined using quasi-static approximations for Maxwell’s
equations [35]. This approximation is also valid as the brain signals are gen-
erated at lower frequencies only. The time-derivative component of Maxwell’s
equations is neglected at these lower frequencies.

Using Ohm’s law, J = σE (where σ is the conductivity of the medium),
and the aforementioned assumptions, the equation (3.8) becomes

∇× B = µ0
(
σE + ε

∂E
∂t
)

(3.10)

Thus, for a quasi-static approximation:

ε

σ
<< 1 (3.11)

and ∣∣∣∣∣ε ∂E
∂t

∣∣∣∣∣ << |σE| (3.12)

Moreover, the current density J is divided into primary current density
Jp and the volume current density Jv = σE. Using the definition related to
brain volume, Jp is the current destiny due to the neuronal activity in the
brain. This current density is spatially bounded in a volume. However, the
volume current density (Jv) flows due to the electric field in the volume under
observation. Thus, the total current destiny is given as follows:

J = Jp + Jv = Jp + σE (3.13)

Magnetic fields and electric currents behave as stationary at all times since
the estimated frequency range of neural sources is less than 1kHz. Conse-
quently, the quasi-static approximation of Maxwell’s equations can be used.
By differentiating equation (3.13) and taking into account that ∇J = 0 in the
quasi-static approximation:

∇J = ∇Jp + σ∇E⇒
∇Jp = −σ∇E

(3.14)
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Provided that, ∇ × E = 0 (quasi-static approximation) and E = −∇V (V
stands for potential), the equation (3.14) can be written as follows:

∇Jp = −∇
(
σ(∇V)

)
(3.15)

To solve the Forward Problem, the potential V must be estimated using
analytical or numerical techniques. Afterwards, the computation of the mag-
netic field (B) is straightforward. The whole forward problem is summarized
in the computation of the magnetic field B outside the head from a given pri-
mary current distribution Jp within the brain [2].

Brain sources are represented as mathematical point dipoles:

Jp = m0 · δ(x− x0) (3.16)

where m0 is the moment of the dipole , δ is the Dirac Function and x0 is the
position of the dipole. Moreover, given that the magnetic potential A can be
written as:

A(x) =
µ

4π

∫
Ω

Jp(x̃)− σ(x̃)∇V(x̃)∣∣x− x̃
∣∣ dx̃ (3.17)

By combining the above equations, the magnetic flux Ψ measured within a
surface area S and circumference l can be written as:

Ψ =
∫

S
B dS̃

=
∮

l
A(x)dx̃

=
µ

4π

[ ∮
l

∫
Ω

Jp(y)
|x− y| dydx +

∮
l

∫
Ω

−σ(y)∇V(y)
|x− y| dydx

] (3.18)

where the first term is the primary magnetic flux and the second term is the
secondary magnetic flux.

3.1.3 Conductivity

According to Ohm’s law, the current density J is given by the electric field
E as follows:

J = σE (3.19)

where σ ∈ R3×3 and

σ =



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


(3.20)

with units (S/m)
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(a) The three layers of the skull. Radial con-
ductivity (σr) is 10 times smaller than the tan-
gential conductivity (σt). Adapted from [45].

(b) White matter consists of different nerve
fibers (axons grouped in bundles). The con-
ductivity along the nerve bundle is 9 times
larger than perpendicular to the nerve bun-

dle. Adapted from [45].

(c) The different colors indicate the primary fiber orientation (red: left-
right, green: anterior-posterior and blue superior-inferior) Adapted from

[47].

Figure 3.2: Anisotropy properties of the conductivity of skull
and white matter.

In terms of conductivity, human head compartments are divided into two
categories: isotropic and anisotropic [48]. Isotropic conductivity denotes that
the current flow is the same in every direction (conductivity is equal in all
directions [45]). Isotropic conductivity characterizes grey matter, scalp, and
cerebrospinal fluid (CSF), and the position dependent conductivity tensor,
σ, is reduced to a position dependent conductivity scalar. Anisotropic con-
ductivity denotes conductivity inequality across the different directions since
the electric field can induce a current density component perpendicular to it
with the appropriate σ in the equation (3.19) [45]. Skull and white matter are
compartments of anisotropic conductivity; The skull is formed by two hard
layers with low conductivity and a spongiform layer with higher conductiv-
ity between them. White matter consists of different nerve fibers with higher
conductivity in the direction along them. Anisotropic conductivity tissues
put the forward problem calculation and, by extension, the inverse problem
calculation at jeopardy [12, 13].



18 Chapter 3. Source Analysis

3.1.4 Boundary Conditions

During head modeling, two boundary conditions are set for separate parts
of the head. They’re known as Neumann and Dirichlet boundary conditions,
and they’re used at the intersections of two separate areas. The difference
between two regions is checked by their respective conductivities (σ1 and σ2)
and the unit normal vector en to the interface between the regions.

The Neumann boundary condition states that the charges are not accu-
mulated on the intersections. Rather they are traveling after leaving one
intersection. In other words, because the head is a pure resistive medium,
there is continuity in current from one interface to the other. Hence, all the
current leaving a region with conductivity σ1 through the interface enters
into a neighboring region with conductivity σ2. Mathematically,

J1 · en = J2 · en (3.21)

and
(σ1∇V1) · en = (σ2∇V2) · en (3.22)

A special case of the Neumann boundary condition is for homogeneous
medium, which is called the homogeneous Neumann boundary condition [49].
This states that due to the low conductivity of air at the outer surface of the
human head, no electricity can travel from the head into the air. Hence, math-
ematically it can be defined as follows:

J1 · en = 0 (3.23)

and
(σ1∇V1) · en = 0 (3.24)

The other boundary condition for the forward problem solution is the
Dirichlet boundary condition. It is limited to internal interfaces and explains
the potential at the boundary; hence, it states that the electric potential shows
continuity across the interfaces, such that

V1 = V2 (3.25)
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Figure 3.3: Boundary between two compartments with conduc-
tivities σ1 and σ2. Adapted from [45].

The equation (3.25) represents the Dirichlet boundary condition. Besides
this, a reference electrode with zero potential is also assigned such that

Vref = 0 (3.26)

Hence, for the forward problem solution with different head models, which
are to be used for the calculation of potential due to dipole sources, the afore-
mentioned boundary conditions are taken into consideration. This will lead
to a proper solution with less errors and more resolution

3.2 Head Volume Conductor Models

Simple and realistic head models are the two types of head models avail-
able. The former uses analytical homogeneous single spheres or multi-spheres,
whilst the later uses numerical solutions to approximate head geometry, such
as Boundary Element Method and Finite Element Method (FEM). MRI scan
can be involved on both categories in order to assist head modeling for more
accurate results [50].

Despite the fact that spherical models are simple to use and computation-
ally light, they result in inaccurate source estimations due to crude approx-
imations of the human head. Realistic head models solve Maxwell’s equa-
tions with numerical methods. The Boundary Element Method (BEM) and
the Finite Element Method (FEM) are the two main numerical techniques.
In these approaches MRI scan of the subject’s head is necessary in order to
extract the geometric tessellations of the various envelopes forming the head
tissues [50].
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3.2.1 Boundary Element Method (BEM)

One of the numerical methods used to solve Poisson’s equation in a realis-
tic head volume conductor model is the boundary element method (BEM) [51].
It is a numerical technique for solving linear partial differential equations de-
fined over certain limits of various domains once they have been converted
from differential to integral form (weak formulation). The structural infor-
mation of the subject is taken using MR images. The boundary integral equa-
tions are formed from the forward problem. Therefore, BEM uses triangles
(boundary elements) as building blocks and surface boundaries are defined
upon each triangle.

3.2.2 Finite Element Method (FEM)

FEM is a very useful numerical tool, which is used for solving bound-
ary value problems that are defined by a differential equation with a set
of boundary conditions [52]. FEM also uses as a building block, elemen-
tary volumes such as tetrahedron or hexahedrons [12, 45, 53, 54]. The po-
tential difference is calculated on the vertices of the building blocks. FEM,
also, allows anisotropic tissue conductivity, such as the three-layered skull
bone (compacta-spongiosa-compacta), CSF and the white matter. Moreover,
FEM’s calculation is a laborious and complex task, therefore it requires a high
computational time.

An important decision for performing FEM in reasonable amount of time
is to choose a proper method to treat the singularity introduced by the math-
ematical dipole. Proposed approaches are “partial integration direct poten-
tial”, “subtraction” and “Venant direct” approach [33].

In the present thesis, we used the Venant direct source modeling approach
due to its high numerical accuracy and high computational efficiency when
used in combination with EEG and MEG transfer matrices and an algebraic
multigrid preconditioned conjugate gradient (AMG-CG) solver [10]. Further
details about the solution of the Forward problem can be found in Chap-
ter 5.2.

Figure 3.4: Six-compartment anisotropic realistic head model
using FEM and source space. Adapted from [10].
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3.3 Inverse Problem

Modeling is used in numerous domains such as engineering, physics,
and applied mathematics to forecast the effects or outcomes of a collection
of known variables. This is known as forward modeling or forward prob-
lem. When solving an inverse problem, we typically start with the results or
measured data and then go on to infer what parameters ‘caused’ those mea-
surements. Unlike in a forward problem, the inverse problem has no unique
solution i.e., multiple (in theory infinite) set of parameters might explain the
same measurement data.

The aim of the EEG inverse problem is to find the location of the sig-
nal that is responsible for the measured EEG data. Such solutions are can
be extremely useful and important both in clinical neuroscience, for exam-
ple to aid in the localization an epileptogenic foci and basic neuroscience to
enhance our understanding about regions responsible for various cognitive
tasks.

The EEG inverse problem is an ill-posed problem because for all admis-
sible output voltages, the solution is non-unique (since p >> q, see equation
(3.2)) and unstable (the solution is highly sensitive to small changes in the
noisy data) [27]. In more detail, a sensor topography could be generated by
an infinite number of active brain sources. This is due to the existence of
sources (silent sources) that do not produce detectable electromagnetic sig-
nals but contribute to the solution. Assumptions are required in order to re-
strict the solution space. Mainly, the assumptions determine the nature of the
sources, for example their quantity, anatomical and neurophysiological con-
straints, the a priori probability density functions and covariance models.
Source localization accuracy depends on variant reasons such as head and
source modelling errors and of course biological and non-biological noise.

The two main categories of Inverse Problem’s solutions are the non- para-
metric and parametric methods [27]. Briefly, in non-parametric models a
number of dipole sources with predetermined locations and orientations are
allocated alongside the brain volume or cortical surface. Regarding the para-
metric methods, the aim is to find the best dipole position and orientation.
The model consists either of a single dipole in a spherical head model or of
multiple dipoles in a realistic head model. Moreover, dipole orientations can
be predetermined or varying. On the other hand, non-parametric techniques
estimate dipole’s moment in a predetermined source space, leading on a lin-
ear problem. In this thesis, only non-parametric methods have been used,
so an attempt to briefly explain them is made. The mathematical derivation
following is based on the Bayesian framework.

3.3.1 Bayesian Framework

Both the EEG channel measurements Xest ∈ Rq×t (remainder: q is the
number of EEG channels while p is the number of dipoles) and the the elec-
trical current of each dipole S ∈ Rp×t are considered as random variables and
the noise is modeled as zero-mean Gaussian random variable n ∼ N (0, σ2Iq) [27].
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The likelihood density is the conditional probability density of Xest given S:

pli
(
Xest

∣∣S) = ( 1
2πσ2

) q
2

exp
(
− 1

2σ2

∣∣∣∣∣∣∣∣Xest − LS
∣∣∣∣∣∣∣∣2

2

)
(3.27)

In order to estimate the sources S̃, the conditional density of S given Xest need
to be calculated, which is called posterior density ppost

(
S
∣∣Xest

)
. Furthermore,

the a-priori information of S is encrypted in its density probability ppr
(
S
)

and Bayes’ rule is applied as follows [55]:

ppost
(
S
∣∣Xest

)
=

pli
(
Xest

∣∣S) · ppr
(
S
)

p(Xest)
(3.28)

p
(
Xest

)
operates as a normalizing constant and thereby it does not have an

important role. Finally in order to estimate the sources S̃, the the maximum
a posteriori (MAP) or conditional mean (CM) could be utilized [55].

S̃MAP := argmax ppost
(
S
∣∣Xest

)
(3.29)

S̃CM := E

[
S
∣∣Xest

]
=
∫

Sppost(S
∣∣Xest) dS (3.30)

In order to link the aforementioned methods with other widely used tech-
niques Gibbs distributions are used in the prior probability:

ppr
(
S
)

∝ exp
(
− λ

2σ2P
(
S
))

(3.31)

where λ is the regularization parameter and P
(
S
)

is the penalty function.
Finally the equation (3.29) can be written:

S̃MAP := argmax
s∈Rp

{
exp

(
− 1

2σ2

∣∣∣∣∣∣∣∣Xest − Ls
∣∣∣∣∣∣∣∣2

2
+

λ

2σ2P
(
s
))}

(3.32)

3.3.2 Dipole Scanning

In this method a single point or a limited group of points that explain
the largest amount of topographical variance are assumed. In other words,
it assumes that the source of brain activity consists of one or a small number
of dipoles. This method runs a grid search (for each position in the source
space) based on the assumed dipole(s) for a time window or a time point, and
finds the dipole model parameter that minimizes the difference between the
simulated and measured distributions [56]. The resulting Equivalent dipole
model is interpreted as the source of cortical activity.
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3.3.3 Minimum Norm Estimate (MNE)

This solution to the EEG inverse problem was proposed by M. S. Hämäläi-
nen and R. J. Ilmoniemi in 1984. This is the most generalized approach to es-
timate 3D source distribution in the absence of any a priori information. The
only assumption it takes into account for a solution is that the current distri-
bution should have a minimum overall intensity (smallest L2-norm) [57]. The
idea to use minimum norm estimates was first provided by M. S. Hämäläi-
nen et al. in “Interpreting Magnetic Fields of the Brain: Minimum Norm
Estimates” [29]. According to Hämäläinen et al. [2], MNE provides best es-
timates when less a priori information about the source distribution is avail-
able. In the aforementioned articles [2, 29], the magnetic fields were dis-
cussed at length; however, the same analogy can also be derived for electric
fields.

In more detail, MNE uses the Tikhonov regularization by setting P(S) =∣∣∣∣S∣∣∣∣22. The estimated electrical current of each dipole S̃MNE can be obtained
by the minimization of ∣∣∣∣Xest − LS

∣∣∣∣2
2 + λ

∣∣∣∣S∣∣∣∣22 (3.33)

which alternatively it can be written as:

S̃MNE =

(
LᵀL + λIp

)−1

LᵀXest (3.34)

The above equation is valid since the number of dipoles (p) is larger than the
number of the EEG channels (q).

3.3.4 Standardized low resolution brain electromagnetic to-
mography (sLORETA)

MNE localization approach presented drawbacks related to the magni-
tutde and depth of the sources. Therefore, a motivation for a new method
was arisen. With the introduction of low resolution brain electromagnetic
tomography (LORETA) [30] the problem of extensively large errors seemed
to be resolved. This method has good accuracy in localization of the sources
even when they are located deep in the head.

sLORETA [31] is the first variation on LORETA. This method is based on
standardization of current density that is supposed to be estimated for source
localization. The current density estimate is carried out using the MNE ap-
proach, and it is further standardized using its expected standard deviation,
which is hypothesized to have originated exclusively by noise in measure-
ments.

For each dipole k sLORETA yields the estimate of standardized current
density power:

S̃ᵀMNE, k

{[
VS̃pp

]}−1

S̃MNE, k (3.35)
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where S̃MNE, k ∈ R3×1 is the current density estimate at the kth voxel given

by the minimum norm estimate and
{[

VS̃pp

]}
∈ R3×3 is the kth diagonal

block of MNE variance.
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Chapter 4

Deep Learning

Modern deep learning provides a very powerful framework for super-
vised learning. By including more layers and units within a layer, a deep
network can represent functions of increasing complexity. Deep learning can
be used to do most tasks that require translating an input vector to an output
vector and are simple to complete quickly, given sufficiently large models
and large datasets of labeled training examples. Other tasks that aren’t as
simple as linking one vector to another, or that are challenging enough to
necessitate time for thought and reflection in order to complete the the task,
remain beyond the scope of deep learning for now [8].

Deep feedforward networks, also often called feedforward neural net-
works, are the quintessential deep learning models. The goal of a feedfor-
ward network is to approximate some function f ∗. For example, for a clas-
sifier, y = f ∗(x) maps an input x to a category y. A feedforward network
defines a mapping y = f (x; θ) and learns the value of the parameters θ that
result in the best function approximation.

These models are called feedforward because information flows through
the function being evaluated from x, through the intermediate computations
used to define f , and finally to the output y. There are no feedback connec-
tions in which outputs of the model are fed back into itself.

Feedforward networks are of extreme importance to machine learning
practitioners. They form the basis of many important commercial applica-
tions. For example, the convolutional networks used for object recognition
from photos are a specialized kind of feedforward network. Feedforward
networks are a conceptual stepping stone on the path to recurrent networks,
which power many natural language applications.

4.1 Multilayer perceptron (MLP)

Perceptrons were developed [58] in the 1950s and 1960s by the scientist
Frank Rosenblatt. Multi layer perceptron (MLP) is a supplement of feed for-
ward neural network. It consists of three types of layers—the input layer,
output layer and hidden layer, as shown in Figure 4.1. The input layer re-
ceives the input signal to be processed. The required task such as prediction
and classification is performed by the output layer. The true computational
engine of the MLP is an arbitrary number of hidden layers inserted between
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the input and output layers. In a MLP, as a feedforward network, the data
flows in the forward direction from input to output layer.

Figure 4.1: Schematic representation of a MLP with single hid-
den layer.

A directed acyclic graph defines how the functions are combined together in
a MLP. Thus, the above MLP can be mathematically described as:

f (x) = f (3)
(

f (2)
(

f (1)
(
x
)))

(4.1)

where f (1) is the first layer, f (2) is the second layer and so on.

4.1.1 Artificial Neuron

The most fundamental unit of a deep neural network is called an artificial
neuron, which takes an input, processes it, passes it through an activation
function (see subsection 4.1.2) like the ReLU, return the activated output.

Figure 4.2: An Artificial neuron

The output of the above neuron is:

y = f
( n

∑
i=1

xi · wi + bi

)
(4.2)
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A layer in the MLP shown in Figure 4.1 consists of multiple neurons. The val-
ues of both vectors x = [x1, x2, . . . , xn]ᵀ and b = [b1, b2, . . . , bn]ᵀ are assigned
during the training process.

4.1.2 Activation Function

The activation functions are inspired by human neural firing, i.e., it ei-
ther fires or does not. They have a crucial influence in a neural network.
The activation functions are used to create nonlinear input-output relations.
This nonlinearity, paired with a large number of neural nodes and layers, re-
sembles the structure of a human brain, which is why it’s termed a neural
network. There are many activation functions (some of them presented in
Figure 4.3):

(a) relu (b) sigmoid

(c) tanh

Figure 4.3: Some activation functions

The role of the activation function is to transform and abstract the data into
a more classifiable plane. Generally, the data is very tightly clustered; it is
the job of the activation function which transforms the data into a differ-
ent plane which helps in observing the effects of different dimensions in the
given problem [59].
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4.1.3 Gradient-Based Learning

The process of designing and training a neural network is similar to that
of any other machine learning model with gradient descent [8]. The most
significant distinction between linear models (such as SVM) and neural net-
works is that a neural network’s nonlinearity leads most interesting loss func-
tions to become non-convex. This means that neural networks are usually
trained by using iterative, gradient-based optimizers that merely drive the
loss function to a very low value, rather than the linear equation solvers used
to train linear regression models or the convex optimization algorithms with
global convergence guarantees used to train logistic regression or SVMs.

Convex optimization converges starting from any initial parameters (in
theory—in practice it is very robust but can encounter numerical problems).
Stochastic gradient descent applied to non-convex loss functions has no such
convergence guarantee, and is sensitive to the values of the initial parame-
ters. For feedforward neural networks, it is important to initialize all weights
to small random values. The biases may be initialized to zero or to small pos-
itive values.

Of course, we can use gradient descent to train models like linear regres-
sion and support vector machines, and this is frequent when the training set
is extremely large. Training a neural network is similar to training any other
model from this perspective. Computing the gradient is slightly more com-
plicated for a neural network, but can still be done efficiently and exactly.

As with other machine learning models, to apply gradient-based learning
we must choose a loss function, and we must choose how to represent the
output of the model.

4.1.4 Loss Function

An important aspect of the design of a deep neural network is the choice
of the loss function. From the training data, a deep learning neural network
learns to map a set of inputs to a set of outputs. We cannot calculate the
perfect weights for a neural network; there are too many unknowns. Instead,
the learning problem is recast as a search or optimization problem, and an
algorithm is used to navigate the space of possible weight settings that the
model could employ to create good or adequate predictions.

Typically, a neural network model is trained using the stochastic gradi-
ent descent optimization algorithm and weights are updated using the back-
propagation of error algorithm. The “gradient” in gradient descent refers to
an error gradient. The model with a given set of weights is used to make
predictions and the error for those predictions is calculated. The gradient
descent algorithm aims to alter the weights so that the following evaluation
reduces the error, thereby travelling down the gradient (or slope) of error.

In the context of an optimization algorithm, the function used to evaluate
a candidate solution (i.e. a set of weights) is referred to as the objective func-
tion. We might try to maximize or minimize the objective function, which
means we’re looking for a potential solution with the highest or lowest score.
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Typically, with neural networks, we seek to minimize the error. As such, the
objective function is often referred to as a cost function or a loss function and
the value calculated by the loss function is referred to as simply “loss.”

Importantly, the choice of loss function is directly related to the activation
function used in the output layer of your neural network. These two design
elements are connected. Think of the configuration of the output layer as a
choice about the framing of your prediction problem, and the choice of the
loss function as the way to calculate the error for a given framing of your
problem. [8]. In particular, some widely used configurations are:

• Regression Problem: A problem where you predict a real-value quantity.

– Output Layer Configuration: One node with a linear or relu (de-
pending on the problem) activation unit.

– Loss Function: Mean Squared Error (MSE).

• Binary Classification Problem: A problem where you classify an example
as belonging to one of two classes. The problem is framed as predicting
the likelihood of an example belonging to class one, e.g. the class that
you assign the integer value 1, whereas the other class is assigned the
value 0.

– Output Layer Configuration: One node with a sigmoid activation
unit.

– Loss Function: Cross-Entropy, also referred to as Logarithmic loss.

• Multi-Class Classification Problem: A problem where you classify an ex-
ample as belonging to one of more than two classes. The problem is
framed as predicting the likelihood of an example belonging to each
class.

– Output Layer Configuration: One node for each class using the
softmax activation function.

– Loss Function: Cross-Entropy, also referred to as Logarithmic loss.



30 Chapter 4. Deep Learning

4.2 Convolutional neural network (CNN)

Convolutional networks also known as convolutional neural networks or
CNNs, are a specialized kind of neural network for processing data that has a
known, grid-like topology. Examples include time-series data, which can be
thought of as a 1D grid taking samples at regular time intervals, and image
data, which can be thought of as a 2D grid of pixels. Convolutional networks
have been tremendously successful in practical applications. Convolutional
networks are simply neural networks that use convolution in place of general matrix
multiplication in at least one of their layers [8].

4.2.1 Layers of a CNN

As shown in Figure 4.4, in CNN the features are detected through the
use of filters which are also known as kernels [60]. A filter is just a matrix of
values, called weights that are trained to detect specific features. The purpose
of the filter is to carry out the convolution operation, which is an element-
wise product and sum between two matrices.

Figure 4.4: Schematic representation of a convolutional neural
network

The training of the CNN is fastened by reducing the amount of redundancy
present in the input feature. Hence, the amount of memory consumed by
the network is also reduced. One common method to achieve this is max
pooling, in which, a window passes over input data and the maximum value
within the window is pooled into an output matrix. The algorithm is made
efficient for feature extraction by concatenating multiple convolution layers
and max pooling operations. The data is processed through these deep layers
to produce the feature maps which is finally converted into a feature vector
by passing through a MLP. This is referred to as a Fully-Connected Layer that
performs high-level reasoning in the developed model.

If the k-th feature map at a given layer is represented as hk whose fil-
ters are determined by the weights Wk and bias bk, then the feature map is
obtained as follows for tanh activation function:

hk
ij = tanh

((
Wk ∗ x

)
ij + bk

)
(4.3)

where, x is the input and ij is the pixel of an image.
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The output of the fully-connected layer carries probabilities of each class
or the estimation for a regression problem. The weights updation and op-
timization of the algorithm is done through the back propagation of gradi-
ents [60].

4.2.2 Benefits of CNNs

Convolution leverages three important ideas that can help improve a ma-
chine learning system: sparse interactions(also referred to as sparse connec-
tivity or sparse weights), parameter sharing and equivariant representa-
tions [8]. Moreover, convolution provides a means for working with inputs
of variable size. We now describe each of these ideas in turn.

Matrix multiplication by a matrix of parameters with a separate parame-
ter indicates the interaction between each input unit and each output unit is
used in traditional neural network layers. This means that every output unit
depends on every input unit. Convolutional networks, however, typically
have sparse interactions. This is accomplished by making the kernel smaller
than the input. When processing a picture, for example, the input image may
have thousands or millions of pixels, but we can discover small, important
features like edges using kernels that only take up tens or hundreds of pixels.
This means that we need to store fewer parameters, which both reduces the
memory requirements of the model and improves its statistical efficiency. It
also means that computing the output requires fewer operations. If there are
m inputs and n outputs, then matrix multiplication requires m× n parame-
ters and the algorithms used in practice haveO(m×n) runtime (per sample).
It is possible to get good performance on the machine learning problem while
keeping k several orders of magnitude less than m in many practical situa-
tions. For graphical demonstrations of sparse connectivity, see Figure 4.5.

Figure 4.5: Sparse connectivity.
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In the Figure 4.5, we highlight one input unit, x3, and also highlight the out-
put units in output s that are affected by this unit. (Top)When s is formed by
convolution with a kernel of width, only three outputs are affected x. (Bot-
tom)When s is formed by matrix multiplication, connectivity is no longer
sparse, so all of the outputs are affected by x3.

Parameter sharing refers to using the same parameter for more than one
function in a model. In a traditional neural net, each element of the weight
matrix is used exactly once when computing the output of a layer. It is mul-
tiplied by one input element and then never used again. As a synonym for
parameter sharing, one can say that a network has tied weights, because the
value of the weight applied to one input is tied to the value of a weight ap-
plied elsewhere. Each member of the kernel is used at every point of the
input in a convolutional neural network (except perhaps some of the bound-
ary pixels, depending on the design decisions regarding the boundary). The
parameter sharing used by the convolution operation means that rather than
learning a separate set of parameters for every location, we learn only one
set. This does not affect the runtime offorward propagation (O(k× n)) but it
does further reduce the storage requirements of the model to k parameters.
For a graphical depiction of how parameter sharing works, see Figure 4.6.

Figure 4.6: Parameter sharing

In the Figure 4.6, black arrows indicate the connections that use a particu-
lar parameter in two different models. (Top)The black arrows indicate uses
of the central element of a 3-element kernel in a convolutional model. This
single parameter is used across all input locations because of parameter shar-
ing. (Bottom)The single black arrow indicates the use of the central element
of the weight matrix in a fully connected model. This model has no parame-
ter sharing so the parameter is used only once.

Finally, in the case of convolution, the particular form of parameter shar-
ing causes the layer to have a property called equivariance to translation.
To say a function is equivariant means that if the input changes, the output
changes in the same way. Specifically, a function f (x) is equivariant to a
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function g if:
f (g(x)) = g( f (x)) (4.4)

In the case of convolution, if we let g be any function that translates the input,
i.e., shifts it, then the convolution function is equivariant to g. For example,
let I be a function giving image brightness at integer coordinates. Let g be a
function mapping one image function to another image function, such that
I′ = g(I) the image function with I′(x, y) = I(x − 1, y). This moves all the
pixels of I one unit to the right. If we apply this transformation to I, then
apply convolution, the result will be the same as if we applied convolution
to I′ , then applied the transformation g to the output.

Convolution creates a form of timeline when processing time series data,
showing when distinct features arise in the input. If we move an event later
in time in the input, the exact same representation of it will appear in the
output, just later in time. Similarly with images, convolution creates a 2-D
map of where certain features appear in the input. If we move the object
in the input, its representation will move the same amount in the output.
This is useful for when we know that some function of a small number of
neighboring pixels is useful when applied to multiple input locations. For
example, when processing images, it is useful to detect edges in the first layer
of a convolutional network. The same edges appear more or less everywhere
in the image, so it is practical to share parameters across the entire image.

4.3 Improving the way neural networks learn

Successfully applying deep learning techniques requires more than just
a good knowledge of what algorithms exist and the principles that explain
how they work. In this section, a suite of techniques is introduced which
can be used to improve on our implementation of backpropagation, and so
improve the way our networks learn.

4.3.1 Batch normalization

Batch normalization [61] is one of the most exciting recent innovations in
optimizing deep neural networks and it is actually not an optimization algo-
rithm at all. Instead, it is a method of adaptive reparametrization, motivated
by the difficulty of training very deep models.

Batch normalization provides an elegant way of reparametrizing almost
any deep network. The reparametrization significantly reduces the problem
of coordinating updates across many layers. Batch normalization can be ap-
plied to any input or hidden layer in a network. Let H be a minibatch of
activations of the layer to normalize, arranged as a design matrix, with the
activations for each example appearing in a row of the matrix. To normalize
(standardize) H, we replace it with:

H′ =
H− µ

σ
(4.5)
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where µ is a vector containing the mean of each unit and σ is a vector con-
taining the standard deviation of each unit.

4.3.2 Dropout

Dropout is a radically different technique for regularization [62]. In dropout
we modify the network itself. Suppose we’re trying to train the network in
Figure 4.7a:

(a) No dropout (b) With dropout

Figure 4.7: Graphical explanation of the dropout layer

In particular, suppose we have a training input x and corresponding desired
output y. Ordinarily, we’d train by forward-propagating x through the net-
work, and then backpropagating to determine the contribution to the gra-
dient. With dropout, this process is modified. We start by randomly (and
temporarily) deleting a proportion of the hidden neurons (usually 50%) in
the network, while leaving the input and output neurons untouched. After
doing this, we’ll end up with a network along the following lines. Note that
the dropout neurons, i.e., the neurons which have been temporarily deleted,
are still ghosted in Figure 4.7b. We forward-propagate the input x through
the modified network, and then backpropagate the result, also through the
modified network.

By repeating this process over and over, our network will learn a set of
weights and biases. Of course, those weights and biases will have been learnt
under conditions in which a proportion of the hidden neurons were dropped
out. When we actually run the full network, all the neurons will be active.
To compensate for that, we halve the weights outgoing from the hidden neu-
rons.

Heuristically, when we dropout different sets of neurons, it’s rather like
we’re training different neural networks. And so the dropout procedure is
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like averaging the effects of a very large number of different networks. The
different networks will overfit in different ways, and so, hopefully, the effect
of dropout will be to reduce overfitting.
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Chapter 5

Implementation

In this thesis, we develop and present a novel deep learning solution to
localize neural sources, and assess its accuracy and robustness with both
real [9] and simulated EEG-recordings. To model more realistically the geo-
metrical and electromagnetic features of the head, a six-compartment head
model was used [10]. Then, we solve the forward problem using the Fi-
nite Element Method (FEM) [11] because of its high flexibility to accurately
model the electromagnetic field propagation in geometrically challenging in-
homogeneous and anisotropic head volume conductors such as the human
head [12, 13]. With the solution of the Forward problem we generate sim-
ulated EEG-recordings to train a Convolutional neural network (CNN) that
solves the inverse problem. While we focus on EEG, the same approaches
are directly extendable to MEG, enabling a portable and affordable solution
to source localization.

We utilized Python and Matlab to implement the above functionality. In
particular, we used the libraries: Duneuro [63], Tensorflow [64], Keras [65],
Pandas [66] and Fieldtrip [67].

5.1 Forward Modeling

In order to produce a more realistic result of the Inverse Problem, the
Forward Problem must be modeled as realistically as possible. Thus, we
used a source space with p = 50, 460 dipoles and a set of q = 74 electrodes
based on the 10-10 system. The precision of our source space is in the order
of millimeters. The dipoles must be imported to a realistic head model. We
used a six-compartment head model [10] with the following compartments:

• skin

• skull compacta

• skull spongiosa

• cerebrospinal fluid

• white matter

• gray matter
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Furthermore, we set the isotropic conductivities as follows:

• for skin: 0.43 S/m

• for skull compacta: 0.0031 S/m

• for skull spongiosa: 0.01116 S/m

• for cerebrospinal fluid: 1.79 S/m

The anisotropic conductivity tensors for the compartments gray and white
matter were determined as described in [10].

Moreover, the source space in the center of the gray matter compartment
without restrictions to source orientation. This ensures that all dipoles are
located inside the gray matter and sufficiently far away from the neighbor-
ing tissue compartments to fulfill the so-called Venant condition, that is, for
each dipole, the closest mesh node should only belong to elements, which
are labeled as gray matter [10].

5.2 Solution of the Forward Problem

As described in the Chapter 3, in the Forward problem we have to build a
head volume conductivity model for describing how the electrical signals of
the brain signal source are transmitted to the scalp electrodes. In other words,
given the neural sources and the recorded potentials at the EEG-electrodes
the leadfield matrix must be calculated (see Equation (3.2)).

Despite the computational cost of the Finite Element Method, we choose
to utilize FEM because of its high flexibility to accurately model the electro-
magnetic field propagation in geometrically challenging inhomogeneous and
anisotropic head volume conductors such as the human head [12, 13]. With
the help of Duneuro [63] we computed the EEG leadfield matrix (and thereby
solved the forward problem) using the standard (CG-) FEM approach [11]
with the Venant source model using the transfer matrix approach [68].

The Venant direct approach is used due to its high accuracy and computa-
tional efficiency [33]. When using FEM, an increased number of elements is
needed for modeling all the complex geometries of the modeled volume but
the computational costs can be reduced significantly due to the use of sparse
matrices [68]. The use of the transfer matrix approach enables to solve the
Forward Problem for a head model with millions of elements.

In FEM, three-dimensional elements such as hexahedra or tetrahedra are
used to model the head volume. In this thesis, hexahedral meshes are used
because it is easier and faster to obtain the mesh out of the labeled MRI. For
hexahedral meshes, the voxels in the labeled MRI volume can be directly
converted to mesh elements. In contrast to tetrahedral meshes, this direct
conversion is not possible and further elaboration of the segmented model is
necessary to create tissue compartments that are not intersect each other.
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5.3 Simulation of EEG Recordings

Having solved the Forward Problem, we can now proceed to the solution
of the Inverse Problem, that is, to estimate the most possible source activity
which could generate the scalp EEG signals. Since the Inverse Problem is
solved using a neural network, we must generate the training data. To train a
deep learning model and evaluate its performance on source localization, we
need to know the ground truth of the underlying neural sources generating
EEG data. Since this information is unavailable in real EEG measurements
of human participants, we performed simulations with an actual EEG sensor
array, a realistic anatomy and source configurations.

Our neural network is designed to operate on single time instances of
EEG data with a single source. Thus, we simulate the electrical activity as
described in [24].

Each simulation contained one dipole cluster, which can be considered
as a smooth region of brain activity. A dipole cluster was generated by se-
lecting a random dipole in the cortical source model and then adapting a
region growing approach as described in [69]. In more detail, we recursively
included all surrounding neighbors starting from a single seeding location,
thereby creating a larger source extent with each iteration. The number of
iterations define the neighborhood order s, where the first order s1 entails
only the single selected dipole. Each seed location was assigned a dipole mo-
ment between 5 and 10 Nano-Ampere Meter (nAm). The neighboring dipoles
were assigned attenuated moments based on the distance to seeding location.
The attenuation followed a Gaussian distribution with a mean of the seeding
dipole moment and a standard deviation of half the radius of the dipole clus-
ter, yielding smooth source patches. The generation of this spatial pattern is
graphical represented in the source model:
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(a) Step 1 (seed dipole)
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(b) Step 2
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(c) Step 3
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(d) Step 5
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(e) Final step (simulated electrical activation)

Figure 5.1: Neural source simulation

The simulated electrical activation S ∈ Rp of p = 50, 460 dipoles was then
projected the leadfield matrix L ∈ Rq×p in order to calculate the potential
at the 74 EEG electrodes Xest ∈ Rq. To generate realistic training data, we
added Gaussian white noise at a specific SNR level (see Equation (3.4)). In
more detail, the SNR is set based on the power of the neural sources to be 15
dB:

SNR = 10 · log
(Psignal

Pnoise

)
(5.1)
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where Psignal is the power of the simulated electrical activation and Pnoise
is the power of the additive Gaussian noise (unknown variable in the above
equation). From the simulated 74 channel measurements, one can create their
topography. In the figure below, the topography of the simulated source (see
Figure 5.1) is shown. The dots represent the EEG-electrodes placed on the
scalp.

Figure 5.2: Simulated topography

With the aforementioned algorithm 300, 000 training samples ( electrical cur-
rents of neural sources and their respective topographies) were produced.
Since each simulation contained one dipole cluster, we produce single source
EEG-snapshots.

5.4 CNN for the EEG Inverse Problem

Deep neural networks have been considered a potential tool for inverse
problems. Theoretically, it has been proven that deep neural networks are
able to fit any distribution. In practice, many network structures have been
proposed, aiming to obtain multi-scale source information from the original
data. In this way, the deep learning models can adapt to more complex dis-
tributions and thus have greater potential to generate more realistic source
distributions compared with traditional numerical algorithms. Nevertheless,
the potential of deep learning is still a new and growing in Source Analysis.
We therefore focus on developing a novel deep learning framework for real-
time EEG source localization.

5.4.1 Architecture

The design and training of the neural network (see Figure 5.3) was accom-
plished using the Tensorflow [64] and Keras [65] libraries, which are based on
Python 3. In particular, the CNN takes as input an EEG topography and pre-
dicts the location of the electrical activation (that is responsible for the EEG
recorded signals) in the three-dimensional source space. Thus, our CNN can
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be mathematically described as:

Φ : R67×67 → R3 (5.2)

since a topography is a 67× 67 picture (see Figure 5.2) and the output layer
is a vector with the x,y,z coordinates in the three-dimensional source space
of the activated seed dipole (see Section 5.3). Training was accomplished on
the Google Colab Pro.

Figure 5.3: CNN architecture

The architecture of our CNN (see Figure 5.3) is inspired by three pioneer
studies [22, 23, 24] (see Section 5.5 for differences between the neural net-
works). The input topography passes through two 2D-Convolution layers
which are separated with a max pooling layer. Moving on, there are three
fully-connected layers with 1024,2048,5096 neurons respectively. Finally, the
output layer is also a fully connected layer with only three neurons that cor-
respond to the coordinates in the three-dimensional source space. In more
detail,

• The first convolution layer has only 8 filters Fi , i = {1, . . . , 8} of size
3× 3

• The second layer is a two-dimensional max pooling layer with a pool
size of 2× 2

• The third layer is a convolution layer with 16 filters Fi , i = {1, . . . , 16}
of size 3× 3

• The output of the third layer is a tensor G ∈ R30×30×16 which is re-
shaped from the fourth layer (flatten) to a vector g̃ ∈ R14400 to enable a
connection to the next fully connected layer. The flattened vector g̃ con-
sists of 14400 output nodes and each node is connected to every neuron
of the following fully connected layer.

• The next three fully connected layers have 1024, 2048, 5096 neurons re-
spectively and each neuron of each layer is connected to every neuron
of the following layer. Moreover, after each one these layer there are
also Batch Normalization [61] and Dropout [62] layers. The rate of the
Dropout layer is set to 0.25.
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• All the 5096 neurons of the seventh layer are connected to all three neu-
rons of the output layer. The output layer estimates the position of the
electrical activation inside the head. Thus, each layer corresponds to a
coordinate in the three-dimensional source space.

To recapitulate, our CNN maps a 67× 67 topography to the location of the
dipole that is responsible for the EEG recorded signal. Thus, it solves the
EEG Inverse Problem.

5.4.2 Deep Network Training

Convolution filters, weights and biases were optimized using the Stochas-
tic Gradient Descent (SGD) algorithm [70] with a learning rate λ = 0.001 and
batch size of 32. The proposed convolutional neural network was trained
with datasets of 300 thousands simulated snapshots, generated at a fixed
SNR level (15 dB), yet, as discussed in Chapter 6 the trained CNN operates
well in a wide range of SNR levels.

We tried out various loss functions for regression problems. The loss func-
tions below yielded the better results. The term y denotes the true values, ỹ
the predicted values and N the length of both the vectors with actual and
predicted values. In more detail,

• Mean Square Error (MSE): The loss is the mean overseen data of the
squared differences between true and predicted values:

L(y, ỹ) =
1
N

N

∑
i=1

(
yi − ỹi

)2 (5.3)

• Mean absolute error (MAE): The loss is the mean overseen data of the
absolute differences between true and predicted values:

L(y, ỹ) =
1
N

N

∑
i=1

∣∣yi − ỹi
∣∣ (5.4)

• Huber loss: is a combination of the mean squared error function and
the absolute value function. The intention behind this is to make the
best of both worlds.

Lδ(yi, ỹi) =


1
2 ·
(
yi − ỹi

)2, if
∣∣yi − ỹi

∣∣ < δ

δ ·
(∣∣yi − ỹi

∣∣− 1
2 δ

)
, otherwise

(5.5)

We ultimately decided to use the Mean absolute error (MAE) (5.4) as it shown
to perform well on image segmentation tasks and allowed for a fast conver-
gence of our CNN compared to others.

We decided to use Rectified Linear Units (ReLUs) [71] as activation func-
tions after each layer. ReLUs have shown to exhibit the best performance in
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our preliminary tests compared to alternatives (e.g. sigmoid, tanh). ReLU ac-
tivation functions were used in the output layer. Typical CNNs for regression
use linear activation functions, however, since predictions are by definition
non-negative in our application, ReLUs appeared to us as an appropriate al-
ternative.

To recapitulate, we trained our CNN (see Figure 5.3) with the the Stochas-
tic Gradient Descent (SGD) algorithm [70] as optimization algorithm, the
Mean absolute error (MAE) as a loss function over 500 epochs with a batch
size of 32. The training was accomplished on Google Colab Pro and it took
12 hours.

5.4.3 Novelties of the proposed CNN

While we focus on EEG, the same approaches are directly extendable to
MEG, enabling a portable and affordable solution to source localization. The
conceptual novelties of the proposed Convolutional Neural Network (CNN)
are :

1. Localization accuracy in real EEG-recordings. We tested our CNN on
three different subjects (see Chapter 6).

2. Better performance from other deep learning approaches as we not
only used FEM [11] but also a six-compartment head model [10] with
50, 460 dipoles.

3. Very low computational time (once trained) for the estimation of the
source location.

4. Because of the fact that the proposed CNN takes as input a topography
and not the EEG-signal, one can use a topography generated from a
different EEG-recording system than ours.

5.5 A comparison of our proposed CNN with other
neural network-based inverse solutions

The architecture of our CNN is inspired by three pioneer studies [22, 23,
24]. More specifically, we compare our CNN with the other neural networks
in terms of:

• Forward Modeling: The ConvDip-study [24] used a head model with
5, 124 dipoles and solved the Forward Problem with the Boundary Ele-
ment Method. In the DeepMEG [22], they solved the Forward Problem
using the BrainStorm [72]. Finally, both in the ESBN [23] and in this
study the Forward Problem is solved using the Finite Element Method.

• Neural Network Input Layer: All neural networks use a snapshot of
the EEG-recordings. Both DeepMEG [22] and ESBN [23] use the recorded
values from the EEG-electrodes as input. In comparison, ConvDip [24]
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and our CNN use a topography which is generated from the EEG-
recorded values.

• Neural Network Output Layer: Even though, all the aforementioned
networks use a Fully Connected layer in the output, there is a key dif-
ference. In ConvDip [24] the output layer consists of 5, 124 neurons and
each one of them corresponds to a dipole in the source space. Thus,
ConvDip estimates the amplitude of each dipole. A source space with
only 5, 124 dipoles is not as detailed and realistic as our source space
with 50, 460 dipoles (>10 times larger). In comparison, in both the
DeepMEG [22] and our CNN, the output layer consists of three neu-
rons (for a single source) and thereby computes the source coordinates
in the three-dimensional source space.

• Depth of the network: All the pioneer neural nets have less layers than
ours. More specifically, while both DeepMEG [22] and ESBN [23] have
four layers, ConvDip [24] has three. The proposed CNN has 7 (without
the flatten layer). Moreover, ConvDip in comparison with our CNN
does not use pooling layers.

• Evaluation on real EEG-recordings: While our CNN, ESBN [23] and
ConvDip [24] were tested on real EEG-recordings, DeepMeg [22] is
not. Finally, our CNN is tested on three different subjects with dif-
ferent anatomies (see Chapter 6) whereas, both the ESBN [23] and Con-
vDip [24] were tested in recordings from a single participant.
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Chapter 6

Evaluation

In this Chapter, we evaluate the performance of our CNN and compare
it to state-of-the-art inverse algorithms, namely sLORETA and Dipole Scan-
ning. Firstly we assess the performance of the neural network using simu-
lated data (as described in Chapter 5). Note that the evaluation set was not
part of the training set of our CNN, hence it is unknown to the model. We
further validate the performance of our network on real data recorded dur-
ing the doctoral of Dr. Antonakakis [33]. The real EEG-recordings are from
three different subjects and thereby three different anatomies.

We use the localization error [55] as metric to quantify EEG source lo-
calization performance. The localization error (LE) can be quantified as the
Euclidean distance between truly activated source rtrue and the reconstructed
peak source rpeak in three dimensional source space.

LE = ||rtrue − rpeak||2 (6.1)

The localization error requires the location of the seed dipole (rtrue) that
generated the recorded activity (from the EEG-electrodes). In the case of sim-
ulated data, the seed dipole of the dipole cluster (see Section 5.3) is known
and the LE can be used. Many studies use the Spatial Dispersion (SD) as
a metric to access the quality of the source localization in real-data. As de-
scribed in [73], Spatial Dispersion SD is quantified as:

SD =
∑

p
k=1 djkx̃k

∑
p
k=1 x̃k

, djk = ||rk − rj||2 (6.2)

which is the l1 norm of the distance vector d =
{

djk
}

k=1,...,p, containing the
distances djk between the position of the peak reconstruction amplitude rj
and all sources in the source space {rk}k=1,...,p, weighted by the source esti-
mate x̃ normalized to its l1 norm.

Spatial Dispersion requires to estimate the amplitude of each dipole as
ESBN [23] and ConvDip [24]. Thus, it can not be used in our neural network
as it predicts the location of the seed dipole in the three-dimensional source
space. Moreover, SD does not account for localization at all and it only mea-
sures the extent of the electrical activation.
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Figure 6.1: Visualization of spatial resolution metric. Adapted
from [73].

In the above figure, the contour outlines the activated patch. What is shown
in the subfigure:

A) is the ideal source estimate

B) is the source estimate with large localization error (quantified as high
LE) but low spatial dispersion (SD)

C) is the source estimate with high spatial dispersion (high SD)

Hence, Spatial Dispersion is not reliable if it’s the only metric which ac-
cesses the performance of the model in real EEG recordings. As it will be
described in Section 6.2, we can evaluate the performance of our convolu-
tional neural network with the predicted location as the EEG-recordings are
product of a very specific experiment and thereby we can anticipate where
the seed dipole should be located.

6.1 Evaluation with simulated data

Firstly, we assessed the performance of our convolutional neural network
using simulated data as described in the data generation workflow (see Sec-
tion 5.3). Note that the evaluation set was not part of the training set of our
CNN, hence it is unknown to the model.

6.1.1 Evaluation for various SNR levels

To assess localization accuracy in different realistic scenarios, we con-
ducted simulations with different SNR levels. While our CNN is trained with
15 dB SNR data, in the evaluation we used SNR levels ranging from −10 dB
to 20 dB. We compared the performance of our CNN against the popular
sLORETA [31] and Dipole Scan localization algorithms. For each SNR 5, 000
samples (EEG and sources data) were simulated. The localization error for
each SNR is shown in the Figure 6.2.
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Figure 6.2: Localization Error for various SNR levels

It appears that, our CNN consistently outperformed both the sLORETA and
Dipole Scanning localization algorithms with the exception of low SNR lev-
els (< −4.5 dB) where Dipole Scanning had a slightly better accuracy. As
expected, all methods consistently improved their localization performance
with increasing SNR values.

For visualization purposes, we display a simulated topography for each
signal-to-noise ratio. All the simulation have the same seed dipole and dif-
ferent SNR.

(a) SNR = −10dB (b) SNR = −5dB

(c) SNR = 0dB (d) SNR = 5dB
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(e) SNR = 10dB (f) SNR = 15dB

(g) SNR = 20dB (h) Without noise

Figure 6.3: Topographies for various SNR levels

Even though, our CNN is trained with 15dB SNR data (see Figure 6.3f), it
operates well and outperforms the traditional approaches in a wide range of
SNR levels. Moreover, the Figures 6.2 and 6.3 prove the generalization ability
of our convolutional neural network.

Generalization is defined as the ability of an algorithm to perform well
on unseen examples. In statistical learning terms an algorithmA : X � Y is

learned using a training dataset S =

{(
x1, y1

)
. . .
(
xN, yN

)}
of size N where

xi ∈ X is a data sample and yi ∈ Y is the corresponding label (for example,
source location coordinates).

6.1.2 Influence of the depth of the source

The influence of the depth of the simulated source is tested. The larger the
depth is, the weaker the source affects the EEG-signal. Thus, the larger the
depth is, the more difficult the localization is. We compared the performance
of the Inverse methods (CNN, sLORETA, Dipole Scanning) for all the depths
in the source models and different SNR levels (see Figure 6.4).
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(a) SNR = −10dB
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(b) SNR = −5dB
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(c) SNR = 5dB
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(d) SNR = 10dB
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(e) SNR = 15dB
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(f) SNR = 20dB

Figure 6.4: Localization Error for various SNR levels and
depths

A further surprising result is that our CNN does not depend on the depth
of the source cluster for high SNR levels. Our neural network is capable
to correctly localize even deep sources with nearly no drop-off. In partic-
ular, while Dipole Scan has the worst localization results and strongly de-
pends on the depth of the source, both our convolutional neural network and
sLORETA slightly depend on the depth of the source cluster. Furthermore,
for all Signal-to-noise ratios except −5dB, our CNN yields the less localiza-
tion error over all the spectrum of the depths. Finally, as expected, as the
SNR increases the dependence of the localization methods on the depth of
the neural source decrease and thereby they yield better results.

To recapitulate, our CNN outperforms the traditional approaches in terms
of reconstructing deep sources (see Figure 6.4) and robustness to noise (see
Figure 6.2). Even though our neural network is trained with simulated data
which have 15dB SNR, it can localize accurately EEG topographies with var-
ious SNR levels. Thus, our CNN has a great generalization ability and it is
neither underfitted nor overfitted.
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6.2 Evaluation with real data

To evaluate the performance of our CNN and the other inverse algorithms
in a realistic set-up, we used data of real EEG recordings. As a comparison
with other neural networks that solve the Inverse Problem, we used EEG
recordings from three different subjects and thereby three different anatomies.
To the best of the author’s knowledge, all existing Deep Learning studies for
Source Localization (including this thesis) are trained with data generated
from a specific MRI and thus a particular anatomy of the human head.

Pioneer studies suggest that their neural networks may work for various
anatomies with a transfer learning approach. In particular, a transfer learning
approach where the neural network is trained on one subjects’ anatomy and
fine-tuned for each additional subject with new training data of the individ-
ual anatomies. Fine tuning could be achieved by replacing the output-layer,
lowering the learning rate and retraining for only few epochs.

Nevertheless, we managed to solve the problem of individual brain anatomies
using FSL Registration [15, 16, 17]. More specifically, the MRI of each subject
is interpolated with the spline interpolation using the FSL tool. Hence, the
predicted three-dimensional coordinates of our neural network are referring
to the interpolated MRI. To this extent, we overcome the suggestion of trans-
fer learning and we present a novel solution without raising the problem of
computation time as the spline interpolation needs approximately three to
five minutes.

The general idea of a spline is this: on each interval between data points,
represent the graph with a simple function. The simplest spline is something
very familiar; it is obtained by connecting the data with lines. Since linear
is the most simple function of all, linear interpolation is the simplest form of
spline. The next simplest function is quadratic. If we put a quadratic function
on each interval then we should be able to make the graph a lot smoother. If
we were really careful then we should be able to make the curve smooth at
the data points themselves by matching up the derivatives. This can be done
and the result is called a quadratic spline. Using cubic functions or 4th degree
functions should be smoother still. So, where should we stop? There is an
almost universal consensus that cubic is the optimal degree for splines.

6.2.1 Data Acquisition

The real EEG data were recorded during the PhD [33] of Dr. Antonakakis
and specifically are from this paper [10]. The EEG recordings of one of the
participants in the study can be found here [9].

As described in [10], five right-handed subjects (three of them were 27
one 32 and the last 49 years old; 2 females) participated in the study. So-
matosensory evoked potentials (SEP) and fields (SEF) were simultaneously
acquire in a magnetically shielded room using 80 AgCl sintered ring elec-
trodes (EASYCAP GmbH, Herrsching, Germany, 74 EEG channels plus ad-
ditional six channels to detect eye movements). For the detection of cardiac
activity, electrocardiography (ECG) was additionally measured. Prior to the



6.2. Evaluation with real data 51

measurements, the electrode positions of the EEG cap were digitized using a
Polhemus device (FASTRAK, Polhemus Incorporated, Colchester, VT).

A MAGNETOM Prisma 3.0 T (Release D13, Siemens Medical Solutions,
Erlangen, Germany) was used for the acquisition of MRI datasets. A 3D-T1-
weighted (T1w) was measured with fast gradient-echo pulse sequence (TFE)
using water selective excitation to avoid fat shift (TR/TE/FW = 2300/3.51
ms/8◦, inversion prepulse with TI =1.1 s, cubic voxels of 1 mm edge length);
3D-T2w turbo spin-echo pulse sequence (TR/TE/FA = 3200/408 ms/90◦, cu-
bic voxels, 1 mm edge length) and DTI using an echo-planar imaging se-
quence (TR/TE/FA = 9500/79 ms/90◦, cubic voxels, 1.89 mm edge length),
with one volume with diffusion sensitivity b = 0s / mm2 (i.e., flat diffu-
sion gradient) and 20 volumes with b = 1, 000s / mm2 in different directions,
equally distributed on a sphere.

An additional volume with flat diffusion gradient, but with reversed spa-
tial encoding gradients was scanned and utilized for susceptibility artifact
correction. During T1w-MRI measurement, gadolinium markers were placed
at the same nasion, left and right distal outer ear canal positions for landmark-
based registration of EEG to MRI.

6.2.2 Stimulation

The somatosensory stimulation was conducted with the following experi-
ment [10]. The median nerve at the right wrist was stimulated with monopha-
sic square-wave electrical pulses having a duration of 0.5 ms. The stimulus
strength was increased until a clear movement of the thumb was visible. This
type of stimulation is abbreviated as EW stimulation.

The data were acquired with a sampling rate of 1,200 Hz and online fil-
tered with a 300 Hz low pass filter. The experiment consisted of 1,200 tri-
als. The stimulus onset asynchrony (SOA) varied randomly from 350-450 ms
to avoid habituation and to allow obtaining clear prestimulus intervals for
signal-to-noise ratio (SNR) determination.

6.2.3 Expected Localization

Principally, in real EEG-recordings, as opposed to simulated, we cannot
know the location of the dipole cluster that produced the recorded electrical
activity. As we lack ground truth for real EEG sources, we cannot use the
localization error to quantify the performance of the Inverse Methods. How-
ever, as described in Section 6.2.1, the EEG-recordings were generated by a
very specific experiments with particular parameters, thus, we can know the
approximate location of the seed dipole.

In the study [74] participated five right-handed male volunteers ages 21 to
36. The participants were stimulated with an air-puff-derived tactile stimu-
lator which provides a light, superficial pressure stimulus to the skin surface.
About 40 points in the right hemibody (including the tongue, lips, hand, arm,
trunk, leg, and foot) were stimulated in a randomly determined order (see
Figure 6.5).
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Figure 6.5: Forty-three stimulated points of the right hemibody.
Adapted from [74]

Having collected EEG recordings for each stimulation, Source analysis, based
on a single moving equivalent current dipole (ECD) model n a spherical vol-
ume conduction, were applied to magnetic field distribution studies. The
location (x, y, and z positions), orientation, and dipole moment of the best-
fitting single ECD were estimated for each stimulation.

Overall, an ECD following chest stimulation were located in the left post-
central gyrus. The ECD location to the tongue stimulation was the most infe-
rior, followed by the lips, fingers, and arm, which were gradually shifted to
superior and medial, along the central sulcus (as shown in Figure 6.6).
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Figure 6.6: Expected localization of each stimulus. Adapted
from [74]

Furthermore, the localizations regarding the right thumb and index are
further verified in [75]. In this study, twenty participants underwent tactile
stimulation in all the fingers (D1 to D5 where D1 is the thumb, D2 the index,
etc.) of the dominant right hand.

In more detail, studies have revealed the cytoarchitectonic subdivisions of
primary sensory cortex (S1), namely areas 3a, 3b, 1 and 2, outline the cortex
in the postcentral gyrus (see Figure 6.7).

Figure 6.7: Areas of S1 as defined in cytoarchitectonic studies.
Adapted from [75]

In Figure 6.7, area 3a occupies the fundus of the central sulcus (dark blue),
area 3b the anterior wall of the postcentral gyrus (red), area1 its crown (light
blue) and area 2 its posterior wall (green). The black arrow indicates the
central sulcus.

The activation in the contralateral somatosensory cortex during tactile
stimulation of the fingers of the right hand is shown in the Figure 6.8. The
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first column shows transverse anatomical image with z-coordinate indicated.
Subsequent columns show the activation patterns in S1 overlayed on magni-
fied T1-weighted images for each finger. The location of the peak voxel in
area 3b is indicated by blue crosshairs.

Figure 6.8: Activation on the S1. Adapted from [75]

These two experiments[74, 75] are pertinent to ours because:

• The age of participants in both studies is in the same range.

• The participants in both studies are right-handed.

• The stimulus of the right wrist is implicitly included in both [74] and [75],
as the stimulus of the right wrist produces the stimulation of both the
thumb and the index.

Moreover, the results from both [74] and [75] are trustworthy as they have
been verified from numerous subjects and brain anatomies. Therefore, we
can use the produced localization as references.

To recapitulate the information from both studies [74, 75], the stimulation
of the right wrist in a right-handed subject, generates an electrical activation
in the primary sensory cortex (S1) and in particular in area 3b which is the an-
terior wall of the postcentral gyrus (red in Figure 6.7). In the next section, we
will show that our CNN localize this type of EEG recording to the expected
location.

6.2.4 Results

To evaluate the performance of our CNN and the other inverse algorithms
in a realistic set-up, we used the real EEG data. The data were recorded as
described in Section 6.2.1. Based on the preprocessed clean EEG signal, we
compare the performance of our neural network with the traditional numer-
ical methods (sLORETA and Dipole Scan). We tested our convolutional neu-
ral network in three out of the five participants in [10].
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The first subject is a 49 years old male. The recorded EEG signal and the
produced topography (which is the input of our CNN) are shown in the Fig-
ure 6.9
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Figure 6.9: Recorded data from subject 1

The vertical black dotted-line in the left plot represents the timepoint in which
the topography was created. In this timepoint,the measurements of the 74
EEG-electrodes are the input in the traditional algorithms while the topog-
raphy is the input of our CNN. The source localization on the MRI of each
method is shown in the Figure 6.10.

(a) CNN

(b) sLORETA

(c) Dipole Scan

Figure 6.10: Source Localization for subject 1
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The second subject is a 27 years old female. The recorded EEG signal and
the produced topography (which is the input of our CNN) are shown in the
Figure 6.11
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Figure 6.11: Recorded data from subject 2

The source localization on the MRI of each method is shown in the Fig-
ure 6.12.

(a) CNN

(b) sLORETA

(c) Dipole Scan

Figure 6.12: Source Localization for subject 2

The third subject is a 27 years old male. The recorded EEG signal and
the produced topography (which is the input of our CNN) are shown in the
Figure 6.13
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Figure 6.13: Recorded data from subject 3

The source localization on the MRI of each method is shown in the Fig-
ure 6.14.

(a) CNN

(b) sLORETA

(c) Dipole Scan

Figure 6.14: Source Localization for subject 3

As it can be seen from Figures 6.10,6.12,6.14, our CNN generates the ex-
pected localization (see Section 6.2.3) ,for all the participants, which is the
primary sensory cortex (S1). Moreover, while sLORETA also correctly local-
izes the electrical activity, Dipole Scan estimates inaccurately a deeper (in the
head) location. Furthermore, our CNN predicts a location in area 3b whereas
sLORETA localizes the EEG measurements in area 2 of the S1 (see Figure 6.7).
Based on Section 6.2.3, area 3b is the optimal location for this experiment.
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Finally, we compare the execution time of each algorithm. In particular,
table 6.1 shows the mean localization time of each method for all three sub-
jects.

Method Localization time (seconds)

CNN 0.17 ±0.001

sLORETA 0.38 ±0.02

Dipole Scan 0.57 ±0.03

Table 6.1: Mean Execution time

The aforementioned computational time does not take into account the pre/post-
processing steps of each method, it only measures the time each algorithm re-
quires. In more detail, both sLORETA and Dipole Scan require the leadfield
matrix of each subject, thus they need the solution of the Forward Problem.
Since we solve the Forward Problem with FEM, it needs approximately 40
minutes to be computed. In comparison, our neural network needs the inter-
polated MRI (approx 3 minutes).
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6.3 A comparison of our results with other neural
network-based localizations

In the Section 5.5, we compared our approach with [22, 23, 24] in terms
of implementation. We now compare these studies in terms of results. In
particular, we discuss the localizations in both the simulated and the real
data:

• Simulated: In the DeepMEG [22] study, the performance in the sim-
ulated data was evaluated with the Localization Error (LE) as in this
study. Both ConvDip [24] and ESBN [23] utilized many more metrics
to access the performance of their networks. More specifically, Con-
vDip utilized Area under the ROC curve (ROC), LE, Mean squared
error (MSE), Normalized mean squared error (nMSE). ESBN utilized
LE, area under curve (AUC) and Spatial Dispersion (SD). Finally, all
the networks including ours, outperformed the traditional numerical
algorithms in simulated data.

• Real data: Firstly, DeepMEG [22] is not evaluated with real data. In
comparison, our CNN, ESBN [23] and ConvDip [24] are evaluated with
real data. In particular, both ESBN and ConvDip are evaluated with
real data from one participant. Moreover, ConvDip and ESBN use spa-
tial dispersion to evaluate the performance of their networks on real
data. As it was explained before (see Figure 6.1), spatial dispersion
(sd) is not reliable when it is the only metric. In contrast, our CNN is
validated with EEG recordings from three participants and with the lo-
cation of the predicted source not the sd. Our network has localized the
P20/N20 component at the subject-specific Brodmann area 3b, making
possible the EEG localization for various brain anatomies
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Chapter 7

Discussion

To recapitulate, in this thesis we discussed the problem of real-time source
localization.

We have presented a CNN that aims to find the location of the seed dipole
that is responsible for the recorded data from the EEG-electrodes placed on
the scalp. Initially, to model more realistically the geometrical and elec-
tromagnetic features of the head, a six-compartment (skin, skull compacta,
skull spongiosa, cerebrospinal fluid, white and gray matter) head model was
used [10]. Then, we solve the forward problem using the Finite Element
Method (FEM) [11] because of its high flexibility to accurately model the elec-
tromagnetic field propagation in geometrically challenging inhomogeneous
and anisotropic head volume conductors such as the human head [12, 13].
Having calculated the leadfield matrix with the help of Duneuro [63], we
generate simulated EEG recordings. Those synthetic EEG-recordings was
later on used in order to train the proposed CNN. Finally, we access the
accuracy and robustness of our CNN with both real [9, 10] and simulated
EEG-recordings.

7.1 Result Summary & Contribution

As we previously discussed, we addressed the Inverse Problem of Source
Analysis by combining a six-compartment head model, the Finite Element
Method, EEG data generation and a convolutional neural network. Our re-
sults showed that our method can correctly localize real EEG recordings in
any brain anatomy.

Even though, the traditional analytical approaches can also localize EEG
recordings in any anatomy, the existing Deep Learning approaches have been
tested in a single participant, thereby a single brain anatomy. Our neural net-
work is tested in three different subjects. Each subject has its own anatomy,
source space and leadfield matrix. Thus, we can correctly localize EEG data
regardless of the geometrical features of the head.

Also, within the limited scope of our experiments, our approach seems
to compare very favorably to approaches as Dipole Scan and sLORETA. Our
neural network outperforms the aforementioned methods. In particular, to
assess localization accuracy in different realistic scenarios, we conducted sim-
ulations with different SNR levels. Even though our CNN is trained with 15
dB SNR data, it can correctly localize EEG data in a wide range of SNR levels.
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Moreover, our model does not depend on the depth of the source cluster, i.e.,
our CNN is capable to correctly localize even deep sources with nearly no
drop-off.

Moreover, our CNN yields very low computational time once trained.
More specifically, it needs 0.17 seconds to localize EEG-data in an extremely
detailed source space with 50, 460 dipoles. In comparison, sLORETA needs
0.38 seconds and Dipole Scan needs 0.57 seconds in the same detailed source
space. The aforementioned computational time does not take into account
the pre/post-processing steps of each method, it only measures the time each
algorithm requires. In more detail, both sLORETA and Dipole Scan require
the leadfield matrix of each subject, thus they need the solution of the For-
ward Problem. Since we solve the Forward Problem with FEM, it needs ap-
proximately 40 minutes to be computed. In comparison, our neural network
needs only interpolation which requires around 3 minutes.

Finally, due to the fact that our neural network is trained with a realistic
six-compartment head model and an extremely detailed source space, it can
accurately localize the recorded electrical activity regardless the anatomy of
the brain.

7.2 Drawbacks of our Approach

Despite the advantages of our approach, it is worthy to note the draw-
backs. First of all, the dipole orientations in the head model need to be
constrained, as the free orientation can greatly influence the source imag-
ing results. Our method does not estimate dipole orientations because the
simulated EEG-data do not have this piece of information. Thus, our model
does not learn about orientations.

Furthermore, our approach is under the assumption that brain activity is
always smooth. In particular, we only generate synthetic source data that
follow a Gaussian distribution. Hence, during training, our CNN learns that
the brain activity is always smooth and follows a Gaussian distribution.

Moreover, our model does not estimate the location of the seed dipoles in
a distributed dipole model with more than one source. Our CNN has three
neurons in the output layer and each one of them corresponds to a coordinate
in the three-dimensional source space. Thus, it can only predict the location
of a single dipole in the source space.

Finally, even though we managed to overcome the problem of different
brain anatomies and we tested our model in three subjects, we have to solve
the problem of the inter-subject variability of skull conductivity which causes
the most significant influence on the EEG localization [18]. More specifically,
while each head model has its own skull conductivity, our approach assumes
that all the subjects have the same skull conductivity. Additional research is
important to offer a trainned model with representatitive head tissue con-
ductivities beyond one subject.
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7.3 Future Work

Based on the drawbacks of our approach, there are still many disciplines
worth exploring:

• Dipole Orientations: As mentioned before, our model does not esti-
mate the orientation of the reconstructed source. Thus, it is worth in-
vestigating an architecture that can predict the orientation of the source
cluster.

• Distribution of brain activity: In our work, we generate synthetic source
data that follow a Gaussian distribution. In reality that is not the case,
thus we could simulate samples of brain activity which a proportion of
them still follows a Gaussian distribution and the rest of them follow a
Random Markov Field.

• Distributed dipole model: Our approach predicts the location of a sin-
gle dipole in the source space. Hence, it cannot estimate the location of
multiple sources from a topography of the EEG data. Although further
research is required, our CNN could operate in a distributed dipole
model with a simple extension. In particular, in the output layer, it
could have three neurons for each source. For instance, if the location
of two sources was to be predicted then the neural network would have
six output neurons. The first three would correspond to the coordinates
of the first dipole while the rest to the coordinates of the second dipole.
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