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Abstract

Motion estimation is a widely researched topic of Computer Vision with numerous
published algorithms. Nowadays, Computer Vision and motion estimation are utilized
to confront real world problems. One such application, with on-going research interest,
is the estimation of the motion field of rivers using video data. The incorporation of
Computer Vision in river flow estimation can lead to the development of a low-cost, fast,
accurate and above all, a non-intrusive method of measuring the river’s velocity. These
characteristics are of most importance since until now, this estimation required on-field
measurements with costly conventional equipment, such as accelerometers or doppler-
based devices.

Moreover, natural phenomena that have rapid occurrence, such as flash flood streams,
are hard to monitor at their full extent with the use of conventional equipment. On the
other hand, a video surveillance system accompanied with a motion estimation algorithm
would allow constant and accurate measurements of the flow without requiring the on-
field presence of hydrologists or any other man-held equipment, under the condition that
a light-source is available. However, the development of a motion estimation algorithm
for the case of fluids can be a difficult task due to the dynamic motion nature of the
fluid, guided by both internal and external forces, such as wind and gravity. In addition,
when applying such methodologies to real world problems, such as the development of a
river monitoring system, researchers must also deal with a number of other tasks beyond
the selection of an appropriate motion estimation algorithm. These tasks span from the
selection of hardware equipment to be used and the monitoring layout formation as well
as the data mining capabilities that offers, to even the derivation of a way to associate
the 2-dimensional image space with the 3-dimensional real world in order to reach to a
real world velocity estimate for the river’s velocity.

This thesis addresses the problem of developing an Image-based monitoring layout
for river flows presenting and discussing the methodologies behind each module. More
specifically, we propose the utilization of a stereo camera monitoring layout allowing the
relation of the real world and image plane coordinate systems and thus the 2-Dimensional
image plane motion and the 3-Dimensional river surface motion. Moreover, a novel proba-
bilistic motion estimation method based on stereoscopic data is presented which evaluates
each possible displacement based on the two views of the monitored scene resulting in a

dense global motion field that accurately represents the motion patterns present on the



river’s surface. However, this thesis does not comments upon the performance and cost

trade-off of the used hardware.



ITepiindn

H extiunon xivnone amotehel éva eupéwe eetalouevo Yéuo 0Tov EMCTROVIXNG XAABO TNC
Mryovinic ‘Opaong €xovtag pdAio o TANUOEa ONUOcLeuévey ahyopliuwy ot yedodolo-
yiov. XTic Yépeg pog, 1 Mnyovir| ‘Opaon xaw 1 extiunon xivnong yernowonotodvial yio
TNV QVTWHETOTON TEOPANUATWY 0TOV TEoydaTixd x6ouo. M tétowa e@apuoyt|, Ue e&e-
MOGOUEVO ETUCTNUOVIXG EVOLUPEQOY, amoTehel 1 extiunon Tou mediou xlvnong ToTou®Y o-
Clomownvtag dedopéva Bivieo. H evowpdtwon tou xhddou tng Mnyavixrc Opaong oty
exTiUNOT TOL TEGOL AIVNONEC TWV TOTOUOY UTOREL VoL OONYHOEL TNV AVATTUEY LG Y-
AoU x6GTOUG, YRHYOENS, axEBécTatng Xat TEKToTwe un encufoutixrg uedodou extiunong
NG EMPAVELIXNAC ToUTNTAC EVOS TOTAUOU. AUTH ToL YopoXTNELG TIXE TUYYAVOLY OLETERNC
onuaoclag DEBOUEVOU OTL UEYEL TWEW, 1) eXTIUNON TN TayOTNTUC EVOS TOTOUOU ATOLTOUCE
UETENOELS TEGIOL YENOWOTOLOVTUS dUmovned cuUBATIXG EEOTALOUOG, OTKG ETLTUYUVCLOUETEN
1) ouoxevéc Paocilouevee oe teyvoloyio Doppler.

Emunpoc¥étng, guowxd gavoueva mou €youv Toyela eupdvior, 6w TANUUUEXS Qorvo-
ueva, ftvon 60oxoho va topaxorovdndoly, oe OAT TOUC TNV €XTACT) UE TN YEHOoN ouuBaTixo0
eComhopol. Amo TV dAAn Thevpd, éva oloTnua mapaxoholinong Pivieo to omolo cu-
vodeLeTan e €vay ahyoprduo extiunong xivnong umopel va emitpédel cuveyelc xan oxpifeic
UETENOELS TN POTE Ywelc var amonteltan 1) emToTLO Topousia UBEORGYWY Xot 1) YeroT ECOTAL-
ouol mou amantel avlp®mivo yelploud, utto TNy Teolnédeon undping TNYHC PwTéc Tou Yo
ETUTEETEL TNV AMEXOVION) TNG OXNVAC om0 TNV xduepa. 201600, 1 avdmtuén evog alyopituou
extiunomng xivnong yu Ty mepintwon evég peuc ol umopel vor amoteAEcEL £va dUoXOMO Ep-
Yo, e€antiog TNg duvouxrc @OoNe TNS xbvnomg Tou peucToy, 1) omola xoodnyeltal T6Co Ao
E0WTEPIXEC OO0 XAl ATO EEWTEPXES BUVAELS, OTIKE 0 a€pag xau 1) BapdtnTa. Emimiéov, xatd
™V €QupUoY T Ledodohoywy Bactlouevwy ot enelepyaoia ixovag o€ TPoBAAUATA TOU TEoY-
HorTeo0 XOOUOU, OTKG VoL XAl 1) aVATTUET EVOC GUC THUNTOS TORAXOA0VUNONE TOTOUMY, OL
epeuvnteg Ya mpénel enlong va aoyohnoly pe Wi oelpd amd dhha xodxovTa, TEEX Ao TNV
emAoYY| Tou xotdhAniou akyderduou extiunong xivnong. Ta xodfxovta autd extelvovton
amd TNV emAoyr Tou e£omhiopol mou Yo yenowonoinlel xou TV Tomoloyixy| alloAdynon
g Odtaln mapoxoholinong o GUVBUNOUS PE TIG BLUVATOTNTEG £€6pLENG BEBOUEVWY TTOU
TPOOCPEPOVTAL, UEYPL oL TNV €0PEST) EVOS TEOTOU BLUCOVOESTS TOU 2-BLA0TATOU YMEOU TNG
EXOVOC UE TOV 3-BlAC TUCEWY TRUYUUTIXG XOGUO TROXEWEVOL VoL YTACEL GE Lol EXTIUNCT TNG
TEUYUATIXAG TAY OTNTOC TOU TOTOUOU.

H napoloo diatpdr| aoyoleltar pe 1o TedBAnue tng avdmtuing plag didtadng mapoxo-
hovinong powv motaumy Bacllouevn oe dedouéva Bivieo, mapouctdlovTag xou cLUINTOVTUG

Tic pedodoroyieg mou umopolv va a&lonointoly xadde To Twg v TEAEL avanTOydnxay g



%&de evoTNTO TOL CLUOTAUATOSC ToPUXOROLUNCTC, EEAUPMVTIC OUMS, TO GYONACUO XuL TNV
aCLOAOYNOT TNG OYéomg amédooNg - X6GTOUG Yiat ToV EEOTALOUS ToL Yperotuonotinxe 6o
TEWTOTUTO TOU CUOTAUNTOC. LUYXEXQUIEVY, TEOTEVOUUE TNV YPNOT WIS O TEPEOOXOTUXNS
OLdtang mopaxohoinong 1 onolo ETUTEETEL TNV CUGYETION TWV BLUVUCUITIXOY YOEWY TOU
TEUYHATIXO) XOOUOU X0l TOU ETUTEOOL TNG EXOVIS, ETUTPETOVTNG €TOL TN OLGOVOEDT) TNG
2-Atdotatne taydTnTag 610 eninedo Tng exodvoc xou g 3-AdoToTng TayUTNTOC TOL TEAY-
wotieol yopov. Emmiéov, mopouoidleton Wi véa mdavotixy uédodog extiunong xivnong
Baowlbuevn oo GTEPEOCXKOTIXG BedOopéva 1 omola aflohoyel xdde mdav| YeTaTOmON UE
Bdomn Tic V0 TEOBOAEC TG ToEUXOAOLVOUUEVNS OXNVAC xou 1) oTtola eEAyeL Evar TuxvO Tedlo
xbvnong mou avtimpoowrelel pe axplBeta ta wotiBa xivnong mou undpyouv TNV EMLPAVELX

Tou ToTAUoU.
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Chapter 1

Introduction

Computer Vision is a diverse and active science field with its researchers showing various
interests and aspirations to develop methodologies that confront real world problems,
and thus, blending Computer Vision with other scientific fields. One such attempt is
to combine Computer Vision with Hydrology, developing image based estimation and
inference methods concerning the fluid’s motion field.

An application of this scientific marriage is in river and stream flow monitoring. The
estimation of the flow field of a river or a stream is performed traditionally with the use
of conventional equipment, such as accelerometers, which require on-field measurements.
Such monitoring methods, despite the costly human operated equipment do not provide
continuous monitoring of the flow. This aspect is crucial, in cases of natural hydrological
phenomena that have rapid outbreaks, such as flash floods. Hydrologists rarely can
monitor cases of such phenomena at their full extent since no warning about the imminent
occurrence is possible. In addition, the majority of the conventional equipment that is
used requires the presence of hydrologists near or even within the flow region of the
stream or river. This means that in extreme cases of flash flood events with rapid flow

increase, the measurement acquisition process can become dangerous for the researchers.

1.1 Thesis Focus and Contribution

This thesis describes a new image-based river and stream flow monitoring framework.

The monitoring module integrates image data and depth information of the monitored
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1. INTRODUCTION

scene, captured with the use of a stereo camera layout, estimating the river’s average
real-world surface velocity at any time.

The river’s flow field is initially estimated in the image plane domain, with the use of
a probabilistic optical flow estimation methodology that combines the image data from
the two views to extract displacement probabilities for each examined image region. The
prediction of the position of each object in the next time frame follows a Bayesian infer-
ence scheme based on a number of assumptions about the relation between neighbouring
regions as well as the motion of each pixel within the examined region leading to dense
optical flow field estimates. In essence a stochastic motion estimation model is applied for
the derivation of the motion field making this method ideal for the estimation of fluid’s
flow field since its dynamic motion nature results in the relative positions of neighbouring
points to change faster in a fluid than on a rigid body.

This methodology, initially presented by Chang et.al. 1| based on a 3-Dimensional
(time and space) neighbourhood, was redesigned in my undergraduate diploma thesis
(Bacharidis |[2]) to allow a 2-Dimensional neighbourhood refining prediction ambiguities
due to the data reduction. In this thesis, we introduce an new theoretical basis on
the estimation and neighbourhood formulation process by incorporating the image data
from the two scene views acquired by the stereo camera layout. This new estimation
scheme achieved the same or in some cases increased estimation accuracy compared to
the previous approach, requiring at the same time approximately 16% less amount of
data.

Moreover, to exclude disambiguous and erroneous motions within the flow produced
due to diffusion effects by occluding rocks with the river or at the river banks we applied
clustering and classification techniques on the estimated motion field in order to extract
the main motion trend of the flow. A variety of clustering and classification Machine
Learning techniques were examined, leading to the observation that a supervised classi-
fication approach that utilizes a prior knowledge about the expected motion of the river
flow can achieve higher classification accuracy, with Naive Bayes yielding the best results.

Finally, in order to associate the 2-Dimensional motion field with the real world,
thus, estimating the 3-Dimensional velocity, we utilized the scene’s depth information
derived using the stereo layout. The relation between the projection planes allowed the
association of the position of each object in the 2-Dimensional image plane with its corre-

sponding position in the 3-Dimensional world coordinate system. This association allowed
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1.2 Thesis Outline

the relation between the 2-Dimensional pixel displacements and their corresponding 3-
Dimensional displacements, generating the 3-Dimensional motion field, and thus allowing
the derivation of the 3-Dimensional motion field of the river. In this thesis, we will de-
scribe and present the theoretical basis behind these relations as well as the constraints
and assumptions that were made to achieve an accurate projection relation between the
two coordinate systems.

The framework was incorporated in a newest version of a fluid flow extraction and
visualization tool, Fluid Flow Viewer (F.F.V.), which was initially presented in my un-
dergraduate thesis. This new version allows a user to calibrate the stereo camera layout,
extract the depth map of viewed scene, view of the viewed flow from each camera, ex-
tract the 2-Dimensional motion fields and finally, estimate the 3-Dimensional average

river surface velocity.

1.2 Thesis Outline

In Chapter 2 we state the river flow estimation problem with the use of video data and
we refer to different image-based river monitoring approaches that have been developed
by other researchers, presenting and commenting on the advantages and disadvantages
of each method. In Chapter 3 we present all the background information needed for this
thesis. We give an overview of fluid flow estimation problem and present the state of the
art image based estimation methodologies. Furthermore, we provide basic information
about Stereo Vision and projection relations and scene reconstruction methodologies
that will be used in the depth map generation process. In Chapter 4 we describe our
river monitoring framework, presenting our novel optical flow estimation method, our
main motion trend method extraction scheme, and finally, the relation derivation and
transformation scheme that allows the extraction of the 3-Dimensional river velocity. In
Chapter 5 we evaluate the accuracy of the presented monitoring framework comparing
the velocity estimate with estimates acquired with the use of conventional equipment,
we also compare the new stereo data based optical flow estimation algorithm with our
previous 2-Dimensional single camera version (presented in Bacharidis [2]) as well as
with other known pre-existing optical flow estimation method, and we also present the

new version of our graphical user interface(GUI), Fluid Flow Viewer(F.F.V.). Finally,
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Chapter 6 acts as an epilogue for this thesis, presenting our conclusions along with future

improvements.
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Chapter 2

Problem Set-up

2.1 Image-based River Monitoring

Traditionally, river flow monitoring was performed using man-held, expensive equipment,
such as accelerometers and doppler-based devices. Moreover, such monitoring methods
did not provide continuous monitoring data, a crucial factor for the task of observing
and analyzing the behaviour and characteristics of rapid duration fluid phenomena, such
as flash floods. The development of an image-based river monitoring system provides
non-intrusive, low-cost and constant monitoring of the river flow.

An image based river monitoring system depends on many factors that determine the
estimation accuracy, ranging from the appropriate selection of the hardware and the mo-
tion estimation algorithm, to the camera position in the monitoring scene. Moreover, the
transition to real world conditions introduces new challenges towards producing accurate
estimates, thus, special care must be given to pre and post processing of the collected
data in order to remove distortions introduced by the external monitoring conditions.

There have been a few approaches which try to estimate the river’s motion through
the development of an image-based monitoring system. However, most of these methods
rely upon the existence of artificial and physical tracers within the flow in order to
determine the 2-Dimensional image motion field of the river. Furthermore, the transition
from the 2-Dimensional optical to the real world 3-Dimensional flow field and finally, to
an average real world surface velocity requires knowledge upon the scene (usually use
of ground truth points). These characteristics result in these systems not being fully

automated and adaptable to any monitoring scene, leading to gaps that our approach
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attempts to fill. The following section will attempt to present the basic ideas behind the

implementation of the existing image-based river low monitoring systems.

2.2 Related Work and Component Analysis of Image-

based River Monitoring Systems

We will begin by presenting the key parts behind each image-based river monitoring
system analyzing in each component the differences and variations that each existing
approach offers, commenting at the same time upon the limitations or advantages that
each variation presents.

An image-based river monitoring system essentially consists of three major compo-
nents, (a) Flow Visualization and Recording, (b) Image Processing and Motion Estima-
tion, and (c) 2-Dimensional to 3-Dimensional motion field association. All three compo-
nents are related to each other, since there is a pipeline of information flowing from one

component to another.

2.2.1 Flow Visualization and Recording

The first component deals with the monitoring hardware used, the camera position in
accordance to viewed scene and the affect of the position selection in the data acquisition
process and quality. In this section we will also, deal with flow visualization process from

the scope of tracer selection.

Monitoring layout formation: Existing image-based river monitoring systems use
single camera rigs, most commonly high resolution CCD cameras, placed on-top of bridges
at an angle that allows a wide view of the river surface as well as the river banks (e.g.
Bradley et. al. [46]; Tsubaki et.al. [47]; Muste et. al. [48]), as shown in figure 2.1. The
latter viewing condition is essential to the majority of the developed systems since the
ground truth points used to relate the optical and real world velocity are placed in the
river banks. The selection of the viewing angle is crucial in order to reduce the spatial
distortion that the camera lens introduces, usually angles between 5 to 7 degrees are

selected.
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Figure 2.1: Monitoring layout deployment example of existing image-based river moni-
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toring systems. The selected area is videotaped by a camera laid on top of a bridge.

The appropriate selection of the viewing position, when monitoring takes place in real
world conditions, is crucial since we must compensate and reduce to best possible ratio
the affect of illumination variation of the natural light as well as to be able to acquire the
best possible view of the river surface. The illumination variation problem results in glare
and shadowing phenomena that can reduce the quality of the recorded image. In order to
reduce the image degradation affect due to illumination variation, image pre-processing is
applied to the recorded image prior the motion estimation process. The most preferable
techniques are, (a) histogram equalization (e.g. Kim [49]) or (b) to deal with uneven illu-
mination as an addictive signal and try to subtracted it from the original image to reveal
the detailed information (e.g.Wang et.al. [50];Avgerinakis et.al. [51]). Finally, as far as
the recording frame rate of the flow is defined by the lighting conditions and the exis-
tence of tracers (for particle-based systems), usually a frame rate of 30 frames per second
is selected. The size of the image and the resolution is defined by capability to distin-

guish movement of the water body in image pairs, as well as the selected particle patterns.

Flow Visualization: The second factor in the first component of an image-based
river monitoring system flow visualization tracer selection. The majority of the existing
approaches rely on the existence of tracers, natural(e.g. foam or boils) or artificial, to
apply particle tracking in order to produce the motion field(e.g. Fujita and Komura |52|;
Bradley et. al. [46]; Muste et.al. [48]). The biggest problem in particle-depended systems

is insufficient flow seeding. In cases where no natural tracers are present, artificial tracers
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need to be added, thus, reducing the system automation and constant monitoring char-
acteristics. Moreover, for the case of artificial tracers as will be mentioned in Chapter 3,
careful selection of their characteristics (material, volume e.t.c.) should be made in order
to ensure the validity of association of their velocity field with the river’s.

Another case of flow visualization, unconstrained by the particle existence condition,
is the one when we can use as tracking surrogate the specular reflection formed by incident
light interacting with the free-surface deformations as well as waviness generated by wind
or large-scale turbulence structures (e.g. Tsubaki et. al. [47];Creutin et.al. [53]). Such
image patterns can be easily traced across the river motion and accurately depict the

surface velocity despite their short duration(Fujita et.al. [54]).

2.2.2 Image-based Fluid Motion Estimation

The next component of an image-based river monitoring system is the 2-Dimensional
optical flow field estimation of the river’s flow. In this section we will present the method-
ologies applied in existing monitoring systems. Furthermore, we also deal with motion
field post-processing approaches that aim to reduce the number of erroneous motion vec-
tor estimates. Starting from the task of estimation the 2-Dimensional motion field of the
river, existing approaches can be group in two categories (a) Particle-based Approaches,
and (b) Surface Deformation Approaches, based on the utilization of particles in the

tracking process.

2.2.2.1 Particle-based Approaches

The most widely class of methods used in image based monitoring systems is the Particle
Image Velocimetry methodology (PIV). The idea behind PIV approaches is that we to
use a characteristic pattern (particle) to approximate the motion field of the fluid under
the assumption that motion pattern of the particle follows the motion pattern of the
fluid, in our case the water flow in the river or stream.

Existing monitoring systems mainly rely upon cross-correlation and feature-based
PIV motion estimation methods to derive the motion field (Bradley et.al. [46]; Fujita
et. al. [55]; Muste et.al. [48];Fujita and Komura [52]). Cross-correlation and feature-
based methods compute similarity indexes, such as Mean Squared Error (MSE) or Sum

of Squared Differences (SSD), between an interrogation region in the first image and
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Figure 2.2: Cross-correlation particle tracking process applied in a small cluster of parti-

cles. Image taken from Muste et.al. [48].

candidate interrogation regions in a search area in the subsequent frame, as shown in
figure 2.2. The interrogation region in the first image can be either applied directly on the
tracked particle pattern, initially isolated using color or feature based segmentation(e.g.
Harris Matrix) from the river flow, or on the entire image and then isolating the motion
vectors belonging to the pattern. For example, Fujita et.al. [55] as well as Bradley
et.al. |14], used a cross-correlation coefficient R,; (Pearson’s coeflicient) as a similarity

index to track a particle pattern across the frames and estimate the displacement vectors:

) = >0 >k (aw = ) (b — bia)
| \/Zl Dk (ar — a_’fl)Q Dk (bkl - b;l)Q

where ay; are the grey-scale values for pixels in the interrogation spot, and by are the

R (2.1)

grey-scale values for the corresponding pixels in the search area and ay, by the average
intensity values in the interrogation spot and the search area.

The accuracy of cross-correlation and feature -based approaches depends on the search
area selection. The size of the search window should be appropriately selected in order to
ensure the in-plane motion of the particle is captured. A fixed location for the interroga-
tion region in the second image results in velocity bias errors and high signal-to-noise ratio
due to large displacements (Adrian [56]). In order to solve this problem we can define the
interrogation as well as the search area using multi-stage window deformations (see fig-
ure 3.2), as will be presented in Chapter 3. Such concepts have been extensively applied
in existing image-based river monitoring systems, such as the one presented by Muste

et.al. |[48], who applied a decoupling approach of the interrogation area to any arbitrary
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location in the second image, thus, allowing a dynamic range of velocity measurements

and improving the signal-to-noise ratio.

2.2.2.2 Surface Deformation Approaches

As previously mentioned, the second class of motion estimation approaches utilized in
image-based river monitoring rely upon river surface deformations due to spectral re-
flection of the natural light or waviness introduced by external forces, such as wind and
gravity (Tsubaki et. al. [47];Creutin et.al. [53]; Fujita et.al. [54]). Such approaches are
applied to the entire image and no particle detection and tracking is required since they
are not bound by the existence of particles. In order to compute the motion field of the
image such methods rely upon the image gradients as a means of luminance distribution
propagation along the recorded image frames (Tsubaki and Fujita [57]; Fujita et.al. [54])
or even cross correlation metrics, such as MSE and SSD, searched in a predefined search
region (e.g.Creutin et.al. [53]).

A representative method on this concept is Space-Time Image Velocitry (STIV), pre-
sented by Tsubaki and Fujita (Tsubaki and Fujita [57]; Fujita et.al. [54]). For image
pattern an orientation angle of speed propagation is computed based on image gradients.
The reference pattern is compared to candidate patterns in subsequent frames through a

coherence measure C' computed based on the orientation angle:

VU = Ju)? + 472,
J:L":v + Jt

where C'is the Coherence measure, J,., Ji;, J5¢ are structure tensors calculated as follows:

C:

(2.2)

[ 0g9dg
dg Og
= — 2.4
Jut 5% ot dtdt (2.4)
dg dg
= - = 2.
St o ot dxdt (2.5)

where

@ _ Gi+2 — 8Gi+1 + 8Gi—1 — gi—2
ox 12Ax

(2.6)

Konstantinos Bacharidis 10 October 2016



2.2 Related Work and Component Analysis of Image-based River
Monitoring Systems

Jg . . . . .
where 8_9 is the 4" order central difference scheme and g(z,t) is the gray intensity level.
x
Finally, in order to compute the velocity the pattern is tracked along an interrogation
line through the frame series (Space-Time) and the mean orientation angle ¢ of the
pattern is used to compute the velocity of the river:
Sy

U:
St

tang (2.7)

where U is the average velocity, S, is the length scale of the pattern in m/pixel, S; is the
is the unit time scale of the time axis in sec/pixel and ¢ is the mean orientation of the
pattern along the interrogation line.

The main difference between particle and surface deformation approaches is that the
first compute the instantaneous velocity of the river whereas the latter produces the mean

velocity of the river surface.

2.2.2.3 Erroneous Motion Vector Exclusion

In order to increase the accuracy of the estimated motion field, image-based monitoring
systems must refine the estimated motion fields to exclude erroneous motion estimates
produced either by diffusion phenomena near the river banks or low signal-to-noise ra-
tio in the image or insufficient correlated particle images for the case of particle-based
approaches. Various approaches have been proposed that can correct erroneous motion
estimates (e.g. Fujita and Kaizu [59]; Nogueira et.al. [58]) with the idea behind them
being the combination of the physical characteristics of the flow with an assumption of
local continuity among the vectors. For example, Nogueira et.al. [58] presented a method
in which local coherency of a vector with its 8 neighbors is defined as:

coh — M (2.8)

> il
with u; is the velocity vector of the eight neighboring points and w, the velocity vec-
tor of the examined point. This metric of coherency is then used to define a measure
of uniformity among neighboring vectors, thus, allowing the correction of non-coherent
neighboring vector. Such approaches have been incorporated to existing image-based river

monitoring systems, increasing the estimation accuracy (Fujita [55]; Muste et.al. |[48]).
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Figure 2.3: Positioning and relation between the camera and the ground truth points.

Figure taken from Muste et.al. [48].

2.2.3 2D to 3D Motion field Transition

The last stage an image-based river monitoring system involves the relation of the 2-
Dimensional motion field estimate with its corresponding 3-Dimensional real world. In
order to do so we need to define a mapping between the image and world coordinate
systems. In single camera systems the way to do this is to use ground truth points
(GPs), i.e. points whose 3-Dimensional world coordinates are known. These points are
usually placed in the river banks facing the camera, as shown in figure 2.3 .

The association between the GPs and their corresponding image plane points is per-
formed through an eight parameter projective transformation, initially presented and used
in an image-based river monitoring system by Fujita et.al. [55]. This process known as
image orthorectification, has been since then the most common image to real world rela-
tion method used in the majority of existing monitoring systems (e.g. Bradley et.al. [46];
Fujita et.al. [54]; Muste et.al.( [48], [61]); Creutin et.al. [60]). The relation between the

two coordinate systems based on the eight parameters is defined as:

xw:al-x+a2-y+a3 (2.9)
ar-r+ag-y+1

gy = T Y F (2.10)
ar-r+ag-y+1

with (2, ) being the x and y axis components of the 3D real world point X o4, (2, )
the coordinates of the point in the image plane and a; the transformation coefficients.
Given the appropriate number of control data points (at least 8 control points), these

transformation coefficients can be estimated by solving a system of linear equations. In
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Figure 2.4: Orthorectification application to a river view. Image taken from Muste
et.al. [61].

order to apply this approach an horizontal water surface assumption must be made, a
condition that also requires the control points to be placed on the horizontal surface. The
result of this transformation is an image transformation in which the (x,y) coordinates
of the each point is mapped to its corresponding (x,,¥,) real world coordinates(see
figure 2.4). Thus, we can express the pixel displacement into real world displacement

based on the aforementioned relation as:

Axw = Tw,new — Lw,old

Ayw = Yw,new — Yw,old

and then the real world velocity can be estimated by dividing with the required time

interval.

Konstantinos Bacharidis 13 October 2016



2. PROBLEM SET-UP

Konstantinos Bacharidis 14 October 2016



Chapter 3

Theoretical Background on Motion

Estimation and Stereo Vision

In this chapter we will further present, analyze and compare the motion estimation ap-
proaches that are being used in the 2-D motion field extraction from image data in the
existing image-based monitoring systems as well as the overall fluid motion estimation
problem. Each method class utilizes different constraints in intensity variation model
that leads to the motion field extraction. For example, in particle based methods, an
intensity conservation assumption is being made in order to simplify the particle tracking
process between frames. On the other hand, some methods utilize fluid mechanics to
model, constrain and estimate the intensity variation between the frames. In essence, the

difference between the method lies on the constraints applied in the variation of intensity:
VI - u+ I, = Variation Constraint

where VI = (I,,1,) is the spatial intensity gradient and u = (v,v) is the optical flow
vector. Due to the fact that the time displacement is between two frames,At = 1 the
time related factor can be removed.

Moreover, this chapter will provide the theoretical background behind the relation of
the 2-D image plane and the 3-D real world using for the case of stereo camera views, as
well as the reconstruction ambiguities and constraints introduced based on the deploy-

ment characteristics of the stereo layout.
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STEREO VISION

3.1 Image-based Motion Estimation in Fluids

The extraction of the apparent motion of fluids is a difficult task due to the non-rigid
motion nature of the fluid. Non-rigid motion is dynamic, meaning that the positions
among points in a fluid change constantly and with an unknown scale, due to the effect
of external forces, such as wind or gravity, that alter the motion. In Fluid Mechanics
the velocity field u constant density and temperature and a pressure field p is described

using the Navier-Stokes equations [3] as follows:

du  Ou N1 2
E_EJF(IN)U_ BVervVquf (3.1)
V-u=0 (3.2)

with v being the fluid’s kinematic viscosity, p its density and f an external force, such as
the wind. Naiver-Stokes equations describe the variation of these features based on the
variation of the fluid’s velocity.

If we observe equation (2.1) we can establish a relation between the fluid’s velocity
variation with Computer Vision and optical flow estimation. Equation (2.1) resembles

the optical flow constraint equation, in which the unknown variable is the velocity vector:

VI-u+1,=0 (3.3)

where VI = (1,, 1) is the spatial intensity gradient and u = (v,v) is the optical flow
vector. Due to the fact that the time displacement is between two frames, At = 1 the
time related factor can be removed.

The optical flow constrain equation allows the motion estimation in image data under
the intensity conservation assumption between subsequent frames. This assumption is
the basis behind the affine translational models that estimate the motion field of rigid
models. However, non-rigidity differs from rigid motion since it is characterized by multi-
directional and multi-scalable formulations of the body.

If we relate these two equation based on the velocity being the unknown variable we
can formulate models that approximate and constrain non-rigid based intensity variation
with physically based feature constraints generated by the properties and quantities of
fluids.
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There have been numerous image-based motion estimation approaches that try to
estimated a fluid’s motion. Some of these methods incorporate classical optical flow
methods, based on intensity conservation hypothesis, applied in mediums within the flow,
such as particle tracers, that provide absent rigidity and whose motion field is assumed
to follow and thus, approximate the fluid’s. Other methods, are based on stochastic
modeling the relative position change of pixels, and the relative intensity variation due to
non-rigidity in a fluid image as a random variable with a probability distribution function.
Lastly, the most elaborate motion estimation methods utilize motion models combined
with physically based feature constraints generated by the properties and quantities of

fluids in order to model the multi-directional and multi-scalable formulations encountered.

3.2 Particle-based Methods

The simplest image based motion estimation method class is particle based approaches.
These methods apply block matching motion estimation techniques combined with cor-
relation matching and feature tracking on mediums, known as particles or tracers, that
flow within or in the surface of the fluid.

The key concept is that the velocity field of these particles can be associated with the
velocity field of the fluid under the assumption that the particle’s motion follows the same
motion pattern as the fluids. Such methodologies although being simple to implement
are defined by a number of parameters which ensure that the motion field approximation
is as accurate as possible. These parameters relate to the characteristics of the particles
present in the flow as well as the measurement requirements during the monitoring of the
flow.

As a particle we refer to an element or a group of elements (pattern), natural or
artificial, that can be used as a tracer, which can be tracked along the frames and whose
properties(size, material properties) allow the association of its displacement vector with
the displacement vector of fluid’s flow field. In fact it is the combination of particles
characteristics and monitoring constraints that separate the developed particle based
approaches into two major methodologies, the Particle Image Velocimetry method (PIV)
and the Particle Tracking Velocimetry method (PTV). The approaches belonging to these
method classes, mainly use correlation and feature based image processing techniques

to track particles along the frames and extract the motion field. The main difference
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between these two classes is in the number of particles being tracked, with PTV methods
tracking a single particle along the frame series making it appropriate for low seeding
density flows. On the other hand PIV, tracks groups of particles and thus, is applied
in medium and high seeding density flows. This difference defines the yielded velocity
characteristics, with PIV allowing the estimation of the Eulerian velocity extracted as
the average particle motion in the space based on a group of velocity vectors, whereas
PTV, describes the Lagrangian motion in a system as the motion vector is extracted by

tracking the displacement path of an individual particle (Cenedese [4]).

3.2.1 Particle characteristics and seeding

In the previous paragraphs we mentioned that the main discrimination criterion between
particle based techniques is the particle flow density. The particle seeding density depends
on two factors, (a) the particles characteristics and, (b) the monitoring approach that is
followed to acquire the particle images.

Starting from the second factor, when monitoring fluid flows there exist two monitor-
ing cases, (1) a confined highly restricted flow within a controlled environment , e.g. a
tube, and (2) outdoor monitoring case, e.g. rivers or stream. In the first case, the fluid
is placed in a controlled flow environment and is seeded with particles that are illumi-
nated with a light source, such as lasers, and with digital cameras recording the flow (see
figure 3.1). The illuminated particles can be identified within the fluid flow, using an
image-based correlation scheme. Such monitoring layouts provide images with decreased
background noise and particle overlapping (Westerweel et.al. [5]; Meinhart et.al. [6]).

To that respect, it is important that the characteristics of particles and the seed-
ing method are carefully selected such that sufficient light is scattered into the fluid to
acquire high-quality images for the estimation process. On the other hand, in outdoor
monitoring conditions, when extracting the surface velocity, the estimation accuracy is
highly dependable on the particle characteristics since they determine how the exposure
to external forces, such as the wind, might affect the velocity relation between the particle
and the flow.

But what are the particle’s characteristics and how can we select them appropriately

in order to increase the velocity estimation accuracy?
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Figure 3.1: A laser based monitoring procedure, which uses laser beams as tracer pointers.
Such monitoring layouts are preferable for small scaled flows where PIV motion estimation

schemes can be used.

The answer that question is that mainly artificial particles allow to explicitly define
appropriately relate their characteristics and seeding density with velocity estimation
accuracy. In artificial particles, their characteristics are the diameter, the shape and
density. However, thing characteristics are associated also with the fluid’s density as well
as the dynamic viscosity, meaning that these factors must be taken in mind in order
to increase the tracking success of the particle, and essentially the motion estimation

accuracy.

Answering to the second part of the question, the factors that determine the appro-
priate selection particle characteristics, are the particle motion wpticies, the flow motion
Ufiow as Well as the instantaneous relative velocity Vi,s between the fluid and the par-
ticle. An appropriate relation among these factors will allow us to estimate the flow
velocity from the particles velocity, based on the particle characteristics. This relation,
for the case of spherical artificial tracers is given by the Basset - Boussinesq - Oseen
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(BBO) equation which describes the unsteady motion of a suspended sphere based on
the aforementioned factors as follows:

rd3 .. ! du icl d3 .. 1 du ¢ 1 d3, . 1 dav;
paé"tlc - P flow ptzl;t’bc <= _37rlu/dpar’ticle‘/inst + paé"tlc - P flow gtow - 5 paé’t’bc - P flow C;;wt
terml term?2 term3
3 k d‘/inst d (34)

_3e 1/2 4
2dpartzcle (WMPflow) u/to df (t o 5)1/2 + ; Fl
——
term4 termb
with pgion being the fluid density, p the fluid’s dynamic viscosity, Vi, defining the
difference between upgrticie and Ufiow 5 dparticie being the particle’s diameter, and finally,

F}. the existing external forces, for example, gravity.

The basis of the BBO equation is Newton’s second law, which in the BBO case

describes the imposed forces on the particle’s motion:

AUparti
particle
Mparticle = Lapplied (35)

dt
with mperice being the mass of the spherical particle which is equal to:
Mparticie = gdzarticlepflaw (3.6)
If we combine these two equations we end-up with the BBO equation. Commenting
now on the forces applied to the particle (right side of the BBO) these are essentially
(a)the viscosity applied to the spherical particle, as defined by Strokes’s drag law (term
1), (b) the pressure gradient describing the rate as well as the direction in which the
pressure is applied and change in the particle space(term 2), (c¢) the mass increase due to
the resistance produced to the particle’s motion from the fluid’s volume (term 3), (d) the
Basset force, which describes the temporal delay in the boundary layer development due
to the relative velocity change over time (term 4), and (e) subsequent external forces,
such as gravity or wind, etc. (term 5).
Essentially, BBO equation provides a correlation between the particle’s characteris-
tics, it’s velocity and the velocity of the fluid. Thus, an appropriate selection of the

particle’s characteristics will define the accuracy of the fluid’s velocity estimate.
But how do we appropriate select the particle’s characteristics?

The condition that ensures the appropriate selection of particle characteristics is the

satisfaction of Stoke’s drag law. According to this condition the particle’s Reynold’s
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numberRe,, which is the ratio of inertial forces to viscous forces, and the instantaneous

relative velocity V;,s are related as follows:

inertial forces
7\

ow‘/ins d ar ic;
Re, = PIlowinstCpartic (3.7)
N

viscuous forces

What Reynold’s number offer is an immediate relation between the particle’s charac-
teristics and the different flow situations. For example, high Reynold numbers indicate
the existence of a turbulent flow with instabilities, like vortices or eddies, whereas low
Reynold numbers will indicate smooth flow patterns. An interested reader on the associ-
ation of Reynold’s number and the flow situations is refereed to Hadad’s and Gurka’s [7]

review on the influence of seeding particles parameters in PIV and PTV approaches.

3.2.2 Particle tracking and motion estimation

Following the selection of the appropriate particle characteristics and seeding density is
the isolation and identification of particles. This step is crucial in the particle based
methods since it can either be used as a means of computational speed and estimation
accuracy increase (PIV case) or essentially to define the overall estimation accuracy
(PTV case). For instance, the estimation accuracy on PTV techniques relies more on
the successful tracking step since they tracking process involves only a single particle,
meaning that the correct identification is crucial to ensure the validity of the result.

The most important stage in particle tracking is particle identification which is mainly
based on image segmentation. To this task, the presented approaches are based on either
the use of local and dynamic thresholding procedures (e.g. Stitou and Riethmuller [8];
Cavagna et.al. [9]) or particle-mask-correlation operators (e.g. Takehara and Etoh [10])
and feature selection strategies that are combined with pattern correlation metrics (e.g.
Shindler et.al. [11]).

From these three method classes the one that presents the greatest interest due to its
low computational cost and estimation accuracy trade-off is the last one. In this method
class the most crucial step is the appropriate derivation of the features that will allow an
accurate particle identification. The key feature selection condition is that the particle
features must enable accurate particle identification overcoming aperture-related prob-

lems, that will lead to false motion estimates. For example, one of the most frequent
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feature extraction methods is the use of corner detection based on the image intensity
gradients (Harris matrix). The particle identification is based on the eigenvalues of the
Harris matrix and if the minimum eigenvalue is larger than a threshold then the region
is considered to contain a particle (e.g. Baker and Mathews [12]). A relevant review of

feature based techniques can be found in Shi and Tomasi [13].

Motion Estimation and Validity of Estimate: The final step of a particle-based
approaches involves the estimation of the motion field of the identified particles. Ap-
proaches on this task involve the application a block matching and correlation motion
estimation methods with fixed (e.g. Bradley et.al. [14]; Westerweel et.al. [5]) or adjustable
window sizes ( e.g. Lecordier et.al. [15]; Gui and Wereley [16]), phase cross correlation
(e.g. Hauet et.al. [17]; Nogueira et.al. [18]) and image deformation methods (e.g. Eck-
stein et.al. [19]; Eckstein and Vlachos [20]), differential (e.g. Shindler et.al [11]) as well
as probabilistic methodologies (e.g. [2]).

How do we ensure the validity estimation in the particle based methods?

The validity of the estimates is determined by the displacement vector estimation
success within an interrogation window. There is an immediate relation between the size
of interrogation window and the particle characteristics and seeding density. According to
Keane and Andrian [21] the factors that determine the estimation accuracy are: (a)tracer
particle density Ny, (b)in-plane displacement amountF7, and (c) out-plane displacement
amountFp. The latter motion cannot be appropriately determined in the image plane.
Such motion in a 3D coordinate system is manifested as an object’s motion across the
z-axis, in the form of translation or rotation, which in the 2D image coordinate system,
is reflected as a change in the object’s dimensions rather than a motion. Following again
Keane’s and Andrian’s work, a condition on the combination of the particle density and
the in- and out-plane displacements within the interrogation window can be established
that will allow us to control the accuracy of displacement estimation expressed as the
minimization of the product N;FrFp (Keane and Adrian [21]; Raffel et.al. [22]), which
for the case of PIV measurements in high density flows this product should than 7.
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3.2.3 Particle Image Velocimetry (PIV)

As mentioned in the previous sections, we can divide the particle based methods in two
method classes, (a) the Particle Image Velocimetry (PIV) method class, and (b) the Par-
ticle Tracking Velocimetry (PTV) class based on the amount of particles being tracked.
Starting with the first, in PIV methods we are interesting in finding the displacement
of a pattern of particles within a template window. This is done by examining a set
of neighbouring locations in the next time stamp to find the most similar pattern(see
Fig. 3.2).

Current frame

*
Best match from 1% stage el | . .
B B e N |
Reference R — -Eli-l .
block Initial search center
Y A [ e

@: Block center pixel initial stage

I
|
s

D: Candidate pixel position 1% stage

.: Candidate pixel position 2™ stage

IIl: Best pixel match of i-th stage

Dotted line : Search area defined by whole 1= stage candidates

solid line : Interrogation region by a single candidate in 1% stage

Figure 3.2: An example of a window deformation approach in a two-stage search with
the interrogation window and the search area being deformable. At the 1st stage we
have a square shaped window whereas in the 2nd stage becomes a circle around the best

matched pixel found in the 1st stage.

The motion field is found by dividing the displacement of the image pattern along
the image pair with the corresponding time interval. Existing PIV approaches can be
grouped into three major categories based on the search window formulation, the space
domain in which the correlation is examined and finally, the monitoring hardware used,
(a) Image and Window deformation approaches, (b) Phase Cross-correlation approaches,
(¢) Stereoscopic camera concatenations. The last category determines hardware aspects
of the particle tracking process, while it can incorporate the previous classes in the motion

estimation step.
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3.2.3.1 Image and Window Deformation approaches

In window based approaches, the main factors that control the estimation are the size
and shape of the interrogation window. The simplest window-based motion estimation
approach is to use a window with fixed size and shape and just apply a correlation
coefficient as a matching criterion to extract the motion field (Bradley et.al. [14]. Such
approaches, however, are constrained by the assumption that the motion is restricted
within the window. This assumption makes them susceptible to out-of-plane deviations
of the estimated motion vectors. A solution to this problem to adjust the window’s size
and shape.

Window and image deformation techniques allow the interrogation window in the
second image to be deformed, in terms of rotation,size and shape. Approaches in this
concept involve the use of multi-stage iterative evaluation methods that enable the ad-
justment of the position and the shape of the window (e.g. Lecordier et.al. [15]; Huang
et.al. [23]), as shown in figure 3.2. Another approach is to deform the second image
with use of a bilinear interpolation scheme or a weighting function to deform and recon-
struct the second image thin order to maximize the correlation result (e.g. Jambunathan
et.al. [24]; Nogueira et.al. [18]; Astarita [25]). This modification can address decision
conflicts prone to large interrogation windows or truncation effects of particles in small

window sizes.

3.2.3.2 Phase Cross-correlation approaches

This method class consists of approaches that apply phase filtering and correlation pro-
cedures that incorporate a series of optimized filters to the generalized cross-correlation
scheme between the interrogation area and the reference pattern. The idea is that switch-
ing to the phase domain through a series of filtering procedures will enhance the standard
cross-correlation result.

Such approaches however, are prune to spectral leakage due to under-sampling and
window- bound discontinuity (finite window sizes) as well as aliasing effects produced
by the periodic boundary constraint in the discrete Fourier case, resulting in large dis-
placement deviations. This effect can be reduced through the incorporation of filtering
procedures(prior or posterior the Fourier transform), such as spatial masking, phase fil-
tering and Gaussian transforms of the phase correlation. The most common scheme is

the Generalized Cross Correlation (GCC) that adds a series of adaptive smoothing filters
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prior the Fourier transformation to reduce the effect of the background noise in the esti-
mation of correlation. Numerous approaches have been developed on this sense, involving
the incorporation of phase filters as well as Gaussian kernels prior and posterior to the
FFT correlation operator (e.g. Eckstein et.al. [19]; Eckstein and Vlachos [20]; Theunis-
sen [26]) or even the application of weighted filter series (e.g. Wernet [36]) that allows

the detect of an object in the current scene based on a reference scene.

The idea is that these filters will enhance the phase term in the DFT domain that
reflects the expected displacement. In the case of region matching between the reference
and the candidate scene, based on a predefined displacement, the filter application will
result in phase cancellation in the spatial domain and the generation of a linear phase
term in the DFT domain. This will manifest as a delta—like function at the correlation
peak. The position of the peak will define the amount of displacement. For example,
consider figure 3.3, a filter W (i, j) to the candidate region in order to detect a particle
in the reference scene. In this case, the filter, known as the phase-only-filter (POF),
eliminates magnitude information removing the affect of scaling, shape or size factors of
the particle (Wernet [36]):

W(i,j) = |F%| (3.8)

with F, being the candidate region in the frequency domain.

Scene f.

——»| Detect Estimate
Peak displacement

Phase Filtering

Figure 3.3: Generalized Cross-Correlation scheme using the Phase Only Filter W (i, j)

defined by the spectral transformation of the scene magnitude.
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3.2.3.3 Stereoscopic camera concatenations

Single camera PIV systems are prune to the out-of-plane displacements. Out—of—plane
motion affects the estimation accuracy due to the fact that the location of each particle
does not correspond to the camera axis. Such depth perception leads to deviation between
the true in-plane and the apparent motion of the particle. In order to reduce such
deviations researchers have incorporated Stereo Vision in the particle estimation process.
The use of a stereoscopic system can counteract the out—of—plane motion affect by
simultaneously acquiring particle images from different directions. This allows a better
depth perception reconstruction, since we can capture the out-of-plane motion, thus,
improving the displacement estimation. The main difference of the SPIV systems from
the other PIV approaches lies on the incorporation of stereo depth information in the
motion estimation process. As far as the particle identification and tracking procedures
used in the SPIV systems the methodologies utilized are essentially the window-based or

image-deformation techniques we previously presented.

Stereoscopic PIV method can classified in two major classes based on the camera

system alignment selected: (1) the translational and (2) the rotational systems.

Translational Alignment: The translational formulation, shown in figure 3.4, is
produced by setting the camera pair axes parallel to each other, being symmetric to the
viewed scene. Such layouts simplify the scene matching process between the two views
since the deviation in the scene between the two views is manifested as a translation
in the x-axis. Translational system layouts also provide well-focused images, due to the
fact that each camera’s optical axes is perpendicular to the illuminated area. A number
of translational camera layout based SPIV approaches have been developed for liquid
flow motion estimation (Prasad and Adrian [27]; Lecerf et.al. [28]; Liu et.al. [29]). For
example, Prasad and Adrian [27], presented a stereoscopic approach to examine a thick
liquid layer scene that uses a translational camera alignment layout in the monitoring
stage, whereas in the motion estimation stage an image-shifting approach is utilized to

identify and estimate the particle’s in-plane and out-plane displacements.

Rotational Alignment: In the case of rotational camera alignment, as depicted in
figure 3.5, the cameras are rotated over a viewing angle to the viewed scene. By rotat-

ing the camera optical center we increase field of view, thus capturing better views of
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Figure 3.4: The Translational Stereoscopic camera alignment.

the out-of-plane motion, increasing the estimation accuracy due to the reduction of the
perspective error. Various SPIV approaches with a rotational camera alignment have
been presented(e.g. Westerweel and van Oord [30]; Hill et.al. [31]) mainly due to the
accuracy increase in the out-of-plane motion that such formulations offer. However, ro-
tational camera alignments are susceptible to errors introduced by the calibration and
reconstruction procedures with the accuracy of both of them depending on the viewing
angles of the cameras (Adrian and Westerweel [33]). The viewing angles of the camera
greatly affect the overall estimation accuracy, since erroneous selection of them can lead
to a non-uniform magnification effect for the image domain. As means of coping with
this unwanted effect the image plane is further rotated under an angle bounded by the
Scheimpflug condition. This condition, ensures co-linearity between the image plane, the

lens plane and the particles, thus, increasing the efficiency of focus.

An interested reader on the SPIV approaches can find more details in Raffel et.al. [22]
and Prasad [32].
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Figure 3.5: The Rotational Stereoscopic camera alignment.

3.2.4 Particle Tracking Velocimetry (PTV)

Particle Tracking Velocimetry (PTV) methods track a single particle along the frames.
This means that they require low seeding densities in order to be able to identify, isolate
and track the specific particle, making these crucial for the success of this method. A
number of PTV approaches have been developed which can essentially be classified, as
Shindler et.al. [11] suggests, into two method classes based on the number of images used
in identification, isolation and tracking processes as well as the seeding density in which
they can be applied: (a) multiply-exposed single images and (b) singly-exposed multiple

images.
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In particular, multiply-exposed single image methods are used in low seeding den-
sity sparse flows, avoiding particle occlusion and overlapping in single frames. However,
singly-exposed multiple image methods are preferable in relatively higher density flows
since the use of sequential frames allows better tracking of the particle. The isolation
and tracking of the particle is performed by either pattern matching or feature based
approaches, like Harris matrix that allow fast identification and isolation of a specific
particle pattern. The tracking process can be performed by either using the initial dis-
placement estimates extracted for the whole image domain in order to guide the particle
matching or by first isolating the particle moving to a predefined region in subsequent
frames in order to track it.

PTV approaches can be further grouped into two categories with respect to the mo-
tion estimation methodology used in the derivation of motion field: (a) block matching

correlation-based and (b) differential-based hybrid estimation.

Correlation Methods: Correlation methods use block matching motion estimation
techniques in order to derive the motion field. The matching of a particle pattern in the
subsequent is achieved using correlation metrics such as the S.S.D. or M.S.E. that act as
a matching criterion. For example the SSD criterion for region matching in the 2D image

domain is defined as follows:

—1N-1

SSD = ZZ (i,j,t) = f (i +v,j +v,t+ 1)) (3.9)

i=0 j=0

with N being the block size and f(i, j, k) the pixel’s intensity in the block at the k'
frame and (v, v) the optical flow field u components.

The majority of the correlation based approaches follow the first concept in the mo-
tion field and particle region association, i.e. the flow field is initially computed for the
whole image domain, then identify /isolate the particle region and finally, associate and
update the optical flow field only for the specified particle. A characteristic example of
this method class and particle to motion field association concept is the approach pre-
sented by Stitou and Riethmuller [8], in which particle extraction is initially performed
based on intensity-level thresholding as determined through the extraction of the local
intensity distribution. The algorithm initially computes the velocity estimates using a
block driven cross-correlation scheme followed by particle matching that associates the

estimated motion field with the specified particle pattern.

Konstantinos Bacharidis 29 October 2016



3. THEORETICAL BACKGROUND ON MOTION ESTIMATION AND
STEREO VISION

Hybrid (Differential-Particle) approaches: Hybrid methods combine differential
optical flow estimation approaches, with particle tracking. In this case of approaches the
particle is initially identified using feature extraction techniques and a candidate region
for the tracked particle in the subsequent frame(s) is defined and then differential optical
flow estimation method is applied. Differential optical flow estimation methods are based
on the optical flow constraint equation (equation 2.3 ). Such approaches combine the
optical flow constraint equation with regularization and smoothness terms to define cost
functions whose minimization produces the estimate of the optical flow field. For example,
Shindler et.al. [11] presented an approach in which the cost function defines a relation
between the candidate search regions and the reference region, in a windowed region W
by combining a modified feature tracking Lucas-Kanade method with the SSD distance

metric:

SsmUpi/Axh—hfm (3.10)

with I, being the candidate image at the time stamp t + s and [; being the reference
image at the time stamp .

This region’s differential formulation, based on the optical flow constraint, in the
form of partial derivatives according to each pixel intensity gradients, as Lucas - Kanade

presented, goes as follows. For each pixel ¢; in the window:

I(q1)v + ]y(QI>V = —Ii(q1)

12 (qu)v + Iy(qﬂ)>” = —1(qw)

I2dzd I1,dzd I Iydzd

ffw I1,dxdy ffw Igdxdy ffw I, Lidzdy

This formulation is essentially a least squares problem whose solution provides the

motion vector u:
— G ut+b=0<—u=-G'b

with G being the Harris matrix and b the mismatch vector.

Konstantinos Bacharidis 30 October 2016



3.3 Probabilistic Methods

The advantage of Hybrid methods is that they combine the flexibility, speed and
feature driven advantages of the differential methods to improve the particle motion field
estimation. Differential approaches provide local velocity vector estimates suitable for
predicting the particle’s position for the successive step of particle pairing across the

frames, reducing the search region range.

3.3 Probabilistic Methods

Another way to estimate the flow field of a fluid is to consider the motion vector of each
fluid pixel as a random variable and thus, apply a stochastic modelling of the inten-
sity displacement field based on a Bayesian inference scheme. The motion as a random
variable is associated with a probability distribution function which enables us to use a
conditional model to associate the image intensity, the unknown velocity field, the prior
motion assumptions and the motion likelihood models. There have been numerous prob-
abilistic approaches the majority whom consider Gaussian models describing the prior
and likelihood information given the observations (e.g. Chang et.al. [1]; Heas et.al. [34];
Krajsek and Mester [35]).

In order to estimate the motion field u need to estimate the posterior probability of the
motion field p (u|l) given a function I(.) that describes image intensities. The posterior
probability is determined by two factors, the likelihood or conditional probability p (I|w)
and the prior probability p(u) .

3.3.1 Conditional Probability Models

In motion estimation the conditional probability describes the observed data given the
underlying motion field. The factor that defines the accuracy of such schemes is the

appropriate selection of the data representation function ¢.

One approach is to follow a stochastic formulation, in which each destination position
is assigned a probability of selection. On this concept, Chang et.al. [1], used a discrete
probability density function to describe the probability of displacement for a pixel in the
candidate region. However, we still need to define a relation between the data and the

displacement probabilities. In Chang’s case the Spatio-Temporal Autoregressive (STAR)
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model provides this relation:

D
I (zs,ys,t) = Z Al (g + Azy, ys + Ay, t+ AL) (3.12)
i=1
with A; being the displacement probability of pixel(xg,ys) of in the frame t to the
pixel position (zs + Az;, ys + Ay;) after the time interval At;.
Based on this formulation, ¢ is defined as a discrete function describing the displace-
ments as: A
Zj:l Aj
In order to define a likelihood function that associates data with a motion model
we combine the discrete probability function ¢ with a continuous function ¢(.) that
representing an assumption of the motion model. An example of such formulation is

presented in Chang et.al. [1], where the conditional probability is defined as:

Ns [/ Ds
p(Iu) =] (Z (¢ (Azi, Ay;) - g (Azs — Azy, Ay, — Ay»)) (3.14)
Toys \ i
In this case, the functiong(.) is differential function based on the pixel displacement,
¢ is the discrete function describing the data in a probabilistic formulation, Dy is the
candidate displacement neighbourhood and N; is the examined pixel’s neighbourhood in
the current frame.

Another approach to define the function ¢ is to incorporate the intensity conserva-
tion assumption. One representative approach of this concept was presented by Heas
et.al. [34]. In their work, ¢ is defined as a linear combination of the image temporal
discrepancies and an observation operator on a pixel grid, based on the optical flow

constraint (equation 2.3):
1 2
z,ye)
with I being the intensity, VI(z,y) the spatial gradients of I, and I; the temporal gra-
dient.
In Heas et.al. [?], the conditional probability (likelihood) is defined in the form of a
Gibbs distribution with function ¢ indicating the observed data energy:

1
P (]|u) = G_¢6_Bd'¢(A$i1Ayi) (3.16)
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in which G is a normalization constant and 3, a free model parameter.

The difference between the formulation used by Chang and the of Heas lies on the fact
that Heas’s approach involves an energy configuration scheme in the data model instead
of a probabilistic-based formulation like the one selected by Chang.

3.3.2 Prior Probability Models

As mentioned the second term of the Bayesian estimation is the prior probability for-
mulation. This probability reflects the initial assumption on the motion model that the
data follow.

In Tmage Processing the most preferable prior for the motion model w is a Gibbs
distribution:

L iU
— 3.17
p(u) Corin e (3.17)

with prior G being a normalization constant and U being the energy term describing
the motion, usually defined as a linear combination of the partial derivatives of the optical
flow field u. The appropriate selection of the prior is crucial, since it acts as a smoothness

factor preventing the velocity to have abrupt variations and discontinuities.

3.3.3 Optical Flow Estimation

The estimation of flow field w can be achieved through the estimation of the posterior
distribution of motion p (u|/). Bayesian formulation allows the estimation of the posterior
probability using the Maximum a Posteriori (MAP) rule. This rule for the case of motion

field estimation is formulated as:
u < argmazx,p (I|u) - p (u) (3.18)

with p (I|u) being the conditional probability describing the observed data given motion
field realization and p (w) the prior probability describing an initial assumption for the
underlying motion model.

If we now assume that the prior motion model follows an exponential distribution the

MAP rule we end up with the following expression:

u = argmazx,p (I|u) - p(u)

= argmazx,p (I|u) - ce™Y
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~ argmaz,p (I|u) - e Y

= argmaz,In (p (I|u) - e ")
= argmin, — In (p (I|uw)) + \U
argmin, L{¢ (Ax;, Ay;)} + \U

= argminfdata + A- fsmooth

with L being a functional term on the conditional distribution and U being an energy
based smoothness factor.

The maximization of the MAP rule for the case of exponential motion distributions is
proportional to minimizing a cost function consisting of a smoothness function term and
a data function term depending on the data description function ¢. The data term fj.:0
is a function describing the relation between the observed data based on the underlying
motion field. Essentially, this term describes errors in the rate of change in image bright-
ness given the estimated motion field. On the other hand, the smoothness term fq,.00tn
describes the a prior assumption made about the motion model describing the flow field
and imposes a smoothness constraint on the flow.

Summing up, a probabilistic formulation leads to a global motion-field estimate since
the final MAP formulation relates the likelihood models of all image pixels and leads to a
highly dense motion fields. However, the use of a discrete description function that assigns
unique displacement probabilities to all the candidate positions in the next frame, like the
one used by Chang et.al. [1] also allows the derivation of local motion estimates for pixel
blocks,based only on the displacement probabilities A; extracted for each neighborhood.
A global scheme will provide smoother and more robust flow estimates. On the other, a
local one will result in a loss of overall detail restricting the estimates only to an average
block level, however, if we restrict to nearby object boundaries the local scheme provides
more accurate results for occluded cases and boundary motion, making it ideal for particle

tracking.

3.4 Differential Methods based on Fluid Properties

In differential optical flow estimation techniques, the image domain is assumed to be
continuous and the optical flow is computed based on the spatio-temporal derivatives of
the pixel intensity, which express the energy channeling between the frames. Global and

the local schemes are also applied here based mainly on the size of implementation in the
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image domain. Global approach are computed over large image regions resulting in dense
optical flow fields through the minimization of a cost function based on the optical flow
constraint equation applied on the image data fz., and smoothness and regularization

constrains fomooth:

min / / fc?ata + )‘2 ' ffmoothdxdy
z,y

Local methods, however, compute the optical flow field in local neighborhoods by mini-
mizing the optical flow constraint function combined with a window based function using
a least squares minimization approach.

When moving to the case of fluid flows, we can consider that the density of features in
the flow is altered by the motion in a local level, thus, we can incorporate the properties of
fluid mechanics, such as mass conservation, or fluid models describing fluid phenomena,

like wave generation, as a constraint to justify brightness variation in the image domain:
VI u+ I; = Fluid Properties

The addition of the fluid properties explains the divergence of the optical flow based on
the undergoing affine transformation model. The optical flow field is estimated through
the minimization of a cost function based on again, the optical flow constraint equation,
which is now constrained by the fluid properties.

We can discretize the methodologies that follow this concept based on whether they
use (a) the fluid’s properties as a constraint or mathematical models or (b) mathematical

models that explain the generation or the behavior of fluid phenomena, such as waves.

3.4.1 Methods based on Fluid Mechanics

Fluid properties derived from fluid mechanics, such as mass or brightness conservation
assumptions, can be used as constraints in the fluid motion. One of the most popular
fluid property incorporated in image-based fluid flow field extraction is the conservation
of mass assumption (Wildes et.al. [37|; Nakajima et.al. [38]).
The rational behind this method class lies on the fact that the fluid’s density o (z,y, 2, t)
can be associated to the 3D velocity field V (z,y, z,t) = (U (x,y, z,t) , N (z,y, z,t) ,W (2,9, 2,t))

using the mass conservation assumption:

do
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The image intensity values are associated with the density the object as:

22(x7y)

Hewt)= [ olepand: (3.20)
Zl(w’y)

with z; and 23 being the object’s surface boundaries. By imposing the surface boundaries

on eq. (2.19), according to Fitzpatrick [53], we can associate it with the image intensity

as follows:

Vel -u+ %I =—(0-n-V>?) (3.21)

with V being the 3D velocity estimate, o the density, and u the 2D optical flow field.
The optical flow field is derived from the weighted average of the initial 3D velocity
field V' with the density o according to the following equation:
20 Vy,dz
z1 T,y

) S 3.22

u

Equation (2.21) is known as the continuity equation and indicates the relation between
the 3D fluid flow and the 2D flow derived from the image under the assumption that
the conservation of mass law is satisfied. The continuity equation is strengthened with
additional physical and smoothness constraints, that restrict the motion field, reducing
the effects of noise (e.g. [Wildes et.al. [37]; Nakajima et.al. [38]).

The flow field estimate is again found through the minimization of a cost function
that has the form:

u:min//(k;-cs—i—cc) (3.23)

with ¢, being the continuity equation and cs a smoothness constraint.

3.4.2 Methods based on the Physical Properties of Fluid Phe-
nomena

The second approach to attribute the brightness change based on a mathematical model

driven by the characteristics of specific fluid phenomena, such as wave generation or

tsunami generation model. One of the most popular fluid phenomena driven models is

the wave generation model (e.g. Jahne et.al. |39]; Saikano [40]).
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For example, Saikano [40], presented a wave-based optical flow in which a wave gener-
ation equation is used to model the image brightness changes. The model that describes
the fluid motion is a multi-directionality irregularity (MI) model of the following form:

M
I, = Z ay cos (krx - costy, + ki y - sind), — 2 frt+ €y,) (3.24)
m=1

with I, being the image intensity at the pixel(x,y) as defined by the MI model,a,
is the amplitude, (k7 k%) are the wave number components, fm* the frequency, ¥ the
orientation, ¢ the noise and M the number of cosine functions that describe the wave.

The multi-directional irregularity (MI) model is combined with the optical flow equa-
tion to explain deviations in the estimated brightness changes based on the temporal
derivative of the image intensity:

dl, (z,y,t)
dt
with I being the image intensity, and [, the expected intensity based on the MI model.

VI-u+1, = (3.25)

The task now is to estimate both the wave-related parameters as well as the optical
flow components. To do an objective function must be defined whose minimization
will lead to the desired estimation. For example, Saikano defined a combined objective

function of robust logarithmic form (to accommodate for outliers and discontinuities):

E (U, v, kgw k’%@» fm7 Oy, 79m) = Z pimgvar(em U) + )\1 Z pwaveconstrm’nt(ela U)

QeR? QcR?2
+ )\2 Z psmoothconstr(zint<€27 U) (326)

QeR?
with three terms pertaining to the data from eq. (34) and two smoothness constraints,
one for the wave model and the other for the optical observations. Each of these terms
has the same form as: p(z,0) = log (1 +0.5 (z/a)Q) ,0p/0e = 2e/ (202+€2> veo =| It +

oH 2,2 2 2\1/2 2 2 4 .2 2 39
Lu+lo——|e =luv+vP—a’*(y—f7)"" | e :|uw+uy+vx+vy|,7:m,g:

gravity acceleration and h: water depth.

The minimization of such an objective function can be performed via optimization
algorithms such as, gradient descent. The characteristic difference and advantage of
specified fluid phenomena driven models is that it allows the estimation of discontinuous
motion in images with inhomogeneous brightness is estimated based on a visually plau-

sible way to reflect these expected discontinuous motion patterns. On the other hand,
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methodologies based on brightness conservation can estimate rather smooth and uniform

motion.

3.5 Stereo Vision

Multiple-View Geometry is an aspiring subject of Computer Vision, with rapid develop-
ment over the last decades. It presents an understanding of what and how a computer
system comprehends the real world. Stereo Vision is a subclass of the Multiple View Ge-
ometry subject dealing with the inference and 3D reconstruction possibilities of a viewed
scene with the use of a camera pair. In order to achieve a full understanding of the
3D space through image views we need to define the number of parameters involved, the
constraints between points and lines imaged in the views, and finally, how we can retrieve

3D-space points from image correspondences.

3.5.1 Projective Geometry and Estimation

Starting from the first task, i.e. the parameter derivation and estimation, we need to de-
fine the relations between the coordinate systems involved, i.e. the 2-Dimensional image
plane space, the 3-Dimensional Camera space and the 3-Dimensional real world. These

relations, depicted in figure 3.6, are defined as follows.

World to Camera System relation: The camera points are related with the 3-D

world points based on the following transformation:
X. = [R|T] - Xuorid (3.27)

where X. = (2., Y., 2¢) are the camera coordinates of the point, X ora = (Tw, Yu, 2w) 1S
the 3-D real world coordinates of the point and R,T are the rotation matrix and trans-

lation vector that relate the two coordinate systems, known as the extrinsic parameters.

World to Image plane relation: A point in the image plane is associated with its

corresponding 3-D real world point through the projection matrix:
Xim = K - [R|T] - Xyortd (3.28)

where X;,, = (z,y) are the image plane coordinates of the point, and K being a 3 x

3 matrix containing the intrinsic characteristics of the system such as the camera focal
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length that denote the mapping from the 3-Dimensional camera coordinate system to the

2-Dimensional image plane.

Figure 3.6: Relation between the 3-D world, the 3-D camera, and the 2-D image plane

coordinate systems.

This mapping can be expressed in a matrix multiplication form with the use of ho-
mogeneous coordinates in order to express the 3D world viewed point X,,,-q and the

corresponding point X;,, on the image plane:

Xhom.world = (xun Ywy 2w, l)T aJnd:){hom.im = (Ia Y, 1)T

Now, we can express the coordinate system association in terms of matrix multiplication

as follows:
_xw_ _xw_
x
ol =5 rim). Yol _ Y
Zw Zw
- 1 - - 1 -

where the image point is the 3 x 1 vector point in the homogenous image plane
coordinates, K is the 3 x 3 matrix, [R|7T] is the 3 x 4 matrix containing the relation
between the camera and real world coordinate systems, the homogeneous world point is
a 4 x 1 vector point in homogeneous coordinates and finally, H is a 3 x 3 homography

matrix.
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(b)

Figure 3.7: (a)lmage with perspective distortion with the windows not being rectangular
and their lines converging at a finite point, (b)Image taken from Frankfurt airport. Line
parallelism is lost with lines converging also to finite point. First figure was taken from
Hartley and Zisserman [42], whereas the second from wikipedia https://en.wikipedia.

org/wiki/Perspective_projection_distortion.

This homography defines a geometric mapping of points from one plane to another.
For the world to camera to image relations the homography matrix denotes the rela-
tion(extrinsic and intrinsic parameters) that describes the conversion of 3D real world

point coordinates to image pixel point coordinates.

Plane Mapping problems and Solutions: Projection along rays through a com-
mon point defines a mapping from one plane to another. In order to say, that we have an
accurate plane mapping it is evident that this mapping preserves the lines and geometri-
cal formulations intact, i.e. a line in one plane is mapped to a line in the other (Hartley
and Zisserman [42]).

However, for the case of an image we do not have this affect. Instead we end up with
a projective transformation known as perspective projection. Such mapping results in
geometrical shapes being distorted and line parallelism to be violated with parallel lines
on a scene plane converging to a finite point. For example, in figure 3.7, the windows
appear not to be rectangular in addition to their true nature, and line parallelism is lost

as line appear to converge in the second image.

Removing projective distortion in a perspective image: In order to remove
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the projective distortion we need to compute and apply to the image the inverse of the
projective transformation. The way to do the computation of the projective transforma-
tion is to use point-to-point correspondences between known 3D world points and their
corresponding image points. If we define a world point in inhomogeneous coordinates
(2w, Yuw) and its correspondence in the image plane (x,y) then according to the projective

transformation we end up with:

~hi @y + Ry + i _ har -y + hog - Yo + hog
x = and y =

ha1 - Ty + h3a - Yo + b33 ha1 - Ty + h3a - Yy + has

These equations are linear in the elements of H. In order to find the matrix H we
need four point correspondences. The constraint to achieve an accurate result is that
the four points must not be col-linear. By finding H we can then compute the inverse
transformation of H and then apply it to the whole image to undo the effect of perspective

distortion.

3.5.2 Epipolar Geometry

For the case of a stereo rig we need to deal with two perspective views and furthermore,
we need also to define the geometry that depends only on the cameras, allowing the
relation of their positions as well as their internal parameters.

The epipolar geometry is intrinsic geometry of the two camera views, depended on
the cameras’ internal parameters and relative pose. It essentially defines assumptions
and constraints that allow the image planes of the two views to be related and guide the
point correspondence search between the two views. We will now go through the basic

principles of the epipolar geometry.

Epipolar plane 7: The plane defined by an image point correspondence(x and 2/,
the associate 3D space point X and the baseline of camera centres. All the parameters as
shown in figure 3.8 are coplanar and the rays back-projected from the point correspon-
dences intersect at the space point X.

How do this property facilitates the problem of searching for a correspondence?

If we know only the one of image point and search for its correspondence in the other

image plane we can use the epipolar plane 7 to define a search area instead of searching
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"ol

epipolar plane 7T \

epipolar line
forx

Figure 3.8: (a)Point Correspondence, with C and C’ being the camera centres of the

(a) (b)

image planes. The 3D space point X, and the image plane point correspondences images
(xandz') lie in the common epipolar plane 7. (b) The epipolar line define a ray in which
the 3D space point X must lie in order the image of the X to lie on the epipolar line I’ in

the the second view. Figure was taken from Hartley and Zisserman [42].

the entire image plane. We know that the ray corresponding to the unknown point lies
in the epipolar plane 7. If we define a line [’ as the image in the second view of the ray
back-projected from the known point, the unknown point (z’ in the case of figure 3.8.b)
will lie on the intersection of the line [’ with the second image plane. This line is known

as the epipolar line.

Epipole e:The point defined by the intersection of the line connecting the camera

centers, known as the baseline, with the image plane.

3.5.3 Intrinsic and Extrinsic Parameters

We still have not discussed how to estimate the internal parameters of the stereo rig as
well as the relative positions of the cameras between them and the viewed scene. The
parameters that define these relations can be grouped into (a)intrinsic and, (b) extrinsic

parameters.
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RT

W

Figure 3.9: Extrinsic parameters.

3.5.3.1 Extrinsic Parameters of the Stereo rig

By the term extrinsic we refer to the transformation parameters that allow the camera
and the world coordinate systems to be related, i.e. define the location and orientation

of the camera with respect to the world frame.

This transformation is typically defined by (figure 3.9):

e a 3-D translation vector T' = [z, v, z]T and defines relative positions of each frame.

e a 3 x 3 rotation matrix, R, that rotates corresponding axes of each frame into each

other, with R being orthogonal.

As mentioned, real world, camera and image plane coordinate systems are related by
projection transformations shown in equation (2.28). If we examine this relation we end

up with the following pair of equations:

T — Ty Te Rllmw + Rlew + RlSZw + Tx
=s5—=s-" (3.29)

f Ze RSlxw + R32yw + R33Zw + Tz

— Yo c R w R w R w T,
Y=Y _ Ye _ 21Ty + L122Yw + 11232y + 1y (3.30)

f SZc - R317y, + R3oyw + Razzw + T

where (z,,%,) is the principal point, (2., y., z.) is the 3D camera point’s coordinates
and (z,y) are the point’s coordinates in the image plane, f is the focal length and s
denotes the scaling ratio of the pixel spacing in the x- and y-directions for the case of

unequal pixel dimensions in the CCD cameras.

Konstantinos Bacharidis 43 October 2016



3. THEORETICAL BACKGROUND ON MOTION ESTIMATION AND
STEREO VISION

Given the previous assumption and the relation presented previously we can derive
the following:
r—x x
2 == (3.31)
Y—Y Ye
By considering only the direction of the point in the image as measured from the prin-

ciple point results in an point estimate that is independent of the unknown focal length f
. By combining the equations for interior (equations 2.29 and 2.30) and exterior(equation
2.27 and 2.28) orientation we obtain for the equation (2.28) the following relation:

Lo . Rllzw + R12yw + RlSZw + TJ:

(2.29)&(2.30) = —— "2 — g
Y—"%Y Rlew + R22yw + R23Zw + Ty

By assuming that the model plane is on Z,, = 0 of the world coordinate system then
the parameters T,, Ri3, Ro3, and Rs; , with i=1,2,3 drop out of the equations(2.29 and
2.30) for the image coordinates:

T — X, ) Rlll’w —+ ngyw + Tx

= =S
Y=Y Rlew + R22yw + Ty

We can observe that the estimation of the extrinsic parameters is now simplified into
an 6 parameter estimation, thus simplifying the computation and data requirements. As
for the overall relation between the image plane point and the 3D world point we can
observe that for the case of planar targets the point X,,,q and its image plane associated

point x;,, are related by a new homography matrix:

Lim = H/ : Xworld =K- [Rl R2 T] . Xworld (332)

with H” being a 3 x 3 homography matrix.
In order to estimate the extrinsic parameters we need to recover the simplified 6
parameter rotation matrix R and translation vector T'. This process known as camera

calibration will be presented in the following sections.

3.5.3.2 Intrinsic Parameters of the Stereo rig

As intrinsic parameters of the stereo rig we refer to the parameters affecting the relation
of a camera point to its corresponding image plane projection point. These parameters

are the camera characteristics, such as the focal length and the camera center point. The
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matrix containing these parameters is the 3 x 3 K matrix, from equation (2.28) and in

its simplest form is defined as follows:

K = f Yo

with f being the focal length and (x,,y,) the coordinates of the principal point (camera
center).

In the case of a CCD camera, there is a possibility that the pixel dimensions are not
the same, i.e. no squared sized pixels. In such case, the matrix K is called the camera

intrinsic matrix and has the following form:

/

o x,

Kcep = a, U,
1

with a,, a, the focal length along the x and y directions and (z,, yo) = (M - To, My - Yo)

the coordinates of the principal point (camera center).

3.5.4 Radial and Tangential Lens Distortion

The world point, image point and the optical center are not really collinear as imaged in
the ideal case of the pinhole lenses. In the real non-pinhole lenses there exist a number

of inevitable geometric distortions.

What is radial distortion?

Due to the spherical lens surface, a geometric distortion occurs in the radial direction.
In radial distortion a point imaged at a distance from the principle point can be seen as
larger /magnified (pin-cushion distortion), smaller (barrel distortion) or a mixture of both

types(mustache distortion) than the perspective projection estimates (see figure 3.10).

The relation between the projected point and the ideal(non distorted) point is modeled

as function of radial displacement:

(-0
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“pincushion” no distortion "barrel”

Figure 3.10: Radial distortion variations. Image source: https://en.wikipedia.org/

wiki/Distortion_(optics)

where (x,y) are the distorted point coordinates, (., y,) are the ideal point coordinates
and L(r) is a distortion factor, defined only for positive values of r, with an approximation

of it, derived using Taylor series:

L(T>:1+k17’+k’27“2+k37”3+“'

with (ky, ko, ks, - - - )being the distortion coefficients and r = /22 + y2. If we now
consider the fact that even powers of the distance r from the principle point occur we

only need to take account the first and second coefficients and ignore the others.
What is tangential distortion?

Another kind of distortion is the "thin prism" distortion, also known as tangential
distortion. Tangential distortion is induced due to manufacturing imperfections of lens
elements and the imperfect centering of the lens components to the camera sensor, as

shown in figure 3.11.

Thin prism distortion induces both radial and tangential distortions resulting the L(r)

function to have the following form:

r+ (Gr? 4 Grt+ Gré+ -+ ) sin (6 — a)

L(r;a) =
(r;a) 0+ (Qur? + Gt + Gr + -+ ) cos (0 — a)

where (; are the thin prism distortion coefficients, r is the radial distortion factor, # is the

observed angular component of a projected point and a is the angle between the positive
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Object Plane

Lens Plane /’

Image Plane

Tilted Image
Plane

Tilted Image
Plane Center”

Figure 3.11: Tangential distortion, source: http://zone.ni.com/reference/en-XX/

help/372916P-01/nivisionconcepts/spatial_calibration_indepth/

y-axis and the axis of maximum tangential distortion.

3.5.5 Camera Calibration

Camera calibration results in the estimation of the intrinsic and extrinsic characteristics
of the stereo layout. One of the most known calibration methodology is the one presented
by Zhang [41], which allows the estimation of the stereo rig relative position (extrinsic
parameters) as well as the camera intrinsic parameters. Although this method is con-
sidered one of the most solid methodologies for camera calibration it only takes account
the radial lens distortion and not the tangential distortion. A solution to this is to use
Heikkil’s and Silven’s [43] intrinsic model which include two extra distortion coefficients
corresponding to tangential distortion. The calibration process essentially computes the

camera projection matrix P from corresponding 3-space and image entities.

We will now present Zang’s method using Heikkil’s and Silven’s [43] intrinsic model.
The basic idea behind Zang’s method is that we seek correspondences between a 3D
point X ¢ and its image x;,, in order to derive the parameters of the projection trans-
formations (extrinsic, intrinsic parameters). Given sufficiently many correspondences
Xworld,i < Tim, the camera matrix P may be determined. In order to do so, in an un-

known scene we use planar surfaces, usually a chessboard pattern, as a reference patterns
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that allows easy mapping between 3D space points and the corresponding image plane
ones. The restrictions for the planar surface, for the case of a chessboard is that (a)
the chessboard’s square size is known, (b) the chessboard sides are not even and (c) the

pattern is visible in the acquired frames.

The Chessboard’s role: In order to detect the chessboard pattern we deploy a cor-
ner detection procedure so as to find the corners of the chessboard. The 3D coordinates
of the recognized corners are required for the estimation. In each frame(multiple frames
required since we are using a non co-planar approach) the checkerboard is assumed to be
coincident with the XY plane of a 3D coordinate system in which the coordinates (0,0,0)
are assigned to its top-left corner. The camera centers are now reassigned by estimating
the rotation and translation that minimizes their squared distances. We need to have a
different aspect in the horizontal and sizes of the chessboard pattern so that the correct

recognition and assignment of the coordinate layout is succeeded.

The most common approach in order to obtain the image points z;,,;, as mentioned
in Hartley and Zisserman [42], is to (a)initially extract the line segments Canny edge
detection, (b) to apply straight line fitting in the extracted edges and (c)find intersecting

lines to derive the imaged corners.

How do we estimate the 6 parameters of the simplified planar target case

and how do we compute the missing elements?

Extrinsic Parameter Estimation - Recovering the Rotation Matrixz and Translation Vec-
tor: The homography matrix H” denoting the relation between the image plane point and

the 3D world point is expressed as follows based on the relation equation (2.32):
H' =1lhy hy hs] =X+ K - [Ry Ry T3]

with A being an arbitrary scalar and K being the intrinsic matrix and T : [T, T,]"

since T, has been excluded in the planar simplification.

By forcing orthonormality for the first two rows of the rotation matrix R by adjusting

them and re-normalizing them with a scaling factor so that they are related as:
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R, = Ry + kR and R, = Ry + kR,

and

R -Ry=Ry-Ro+k(Ry-Ri+Ry-Ro)+k?Ry-Ry=0and k~ —(1/2) R, - Ry

In this case we can derive the third row of the rotation matrix R by simply taking
the cross-product of the two rows. Based on the orthonormality of the two rows we can

derive two following constraints for the homography matrix:

KT (K K 'hy =0 (3.34)

KT (K™Y K hy = hI (K1) K 'hy (3.35)
If we define as A = (K~)" K~! , a 3 x 3 matrix, and « its corresponding 6D vector,
with K being the intrinsic parameter matrix as previously defined, then for each model
to image homography relation we can derive the following equation:
hATh; = vl (3.36)
with h; being the i-th column vector of H and
vij = [hahj1, hinhjo + hiohj1, hiohjo, hishjn + hihjs, hishja 4+ hiohys, hithB}T
Applying the two previous relations to equation we end up with:
o7
12
p|la=0=Va=0 (3.37)
(Uu - U22)

With n images we end with n relations of the form of equation (2.36). The solution
of this system of linear equations is the eigenvector of VIV for the smallest eigenvalue
derived. By estimating V' we end up estimating o and thus, finally estimating the intrinsic
matrix K. Having found the estimate for K we can derive the rotation matrix and

translation vector using the following relations derived from the relation (2.32) and the
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orthonormallity conditions(i.e. the third row of the rotation matrix is the cross-product

of the two first rows):

Ry = \K 'y (3.38)
Ry = AK 'hy (3.39)
Rs = Ry X Ry (3.40)
T =\K 'hs (3.41)

with T being the translation vector (3x 1), R = [Ry Ry R3] is the (3 x 3) rotation matrix
and A = 1/||K'hy|| = 1/||Khy||.

Since, we are dealing with image points fused with noise(Gaussian) this approach
uses a maximum likelihood inference to obtain the estimates. The estimates are obtained
through the minimization of the following functional:

>0 llwis — & (K, Ri, Ty Xuoptay) |I? (3.42)

i=1 j=1

where n is the number of images with m points and % is the projection of X4,
to the image plane based on (2.27). The solution of the maximum likelihood problem is
performed using the Levenberg- Marquardt Algorithm [44] as mentioned in the previous

section.

Intrinsic Parameter Estimation -Focal length, Principal point, Radial and Tangential
distortion estimation:Given the estimates of the Rotation matrix and the estimates for
the two components of the Translation vector (7, and 7)) we have to estimate the focal
length, the 7, component, the principal point as well as the distortions and to refine
the estimates based on minimization of the image error. In order to solve the previous
equations we assumed that a reasonable estimate of the position of the principle point is

known.
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e Focal Length and 7.,

In order to estimate these two factors we take the cross product of equations (2.29
and 2.30), with the estimated rotations and translations (across x and y axes) R;;
and T, T, and solve these equations for the focal length f and the translation across

the z-axis T, using one or more correspondences between the target and the image:

5 (R + RigYw + Rizzw +12) f — (2 — 2,) T, = (R3170w + Raoy + Razzw) (. —2,)  (A)
s (Ro1%w + RooYw + Roszw +Tyy) [ — (¥ — ¥o) Tt = (R3120w + Rsoyw + R332w) (Y — Yo) (B)

e Radial and Tangential Distortion

Based on the intrinsic model defined by Heikkil’s and Silven’s [43], the distortion
model between the true (distorted) image coordinate and the undistorted image

coordinate (produced by the pinhole geometry) is defined as a function of both
radial and tangential distortions:

Tu+D,+d,=x
(3.43)
Yot Dy +dy =y

where (z,y) is the distorted image coordinate on the image plane ,and (x,,y,) is
the undistorted image coordinate and D,, D, is the induced radial distortion and
d.,d, is the induced tangential distortion with:

Dy =y (kir?® + kor* + -+ ),
Dy = yy (kir® + kor* + -+ ),
dy = 2k3z,yy + Ky (7“2 + 2xi) ,
dy = ks (r* + 2u3) + 2kazu,

where k is the 5 x 1 vector containing the distortion coefficients(radial and tangential)
The estimation of the intrinsic parameters is incorporated to the Maximum Likelihood

inference model allowing the estimation of the complete set of parameters by minimizing
the following functional:

Z Z ||$’Lj - j (Ky k:h k?) k:37 k47 R’hj—‘ia Xworld,j) ||

i=1 j=1
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The minimization is again performed with the Levenberg- Marquardt Algorithm as men-

tioned previously.

3.5.6 Stereo Alignments and Image Plane Relation

The continuous debate in a stereo rig formulation is whether a parallel or a convergent
layout will be selected. Each one has its advantages and disadvantages. In a parallel rig
the cameras are placed parallel to each other separated by the inter-axial distance and
both are aimed straight ahead, as illustrated in figure 3.12).(a). A parallel rig requires
simpler transformations in order to move from the physical to image plane coordinate
systems as well as to relate the two image planes together. In a parallel rig the the viewed
scene in each camera differs in a form of translation in the x-axis only. The biggest prob-
lem in a stereo rig is to find a way to relate the views of the two cameras, thus a simple
translation in one axis allows us to easily find point correspondences between the image
views. A parallel layout provides valid points more accurately, thus, allowing a more
accurate 3D scene reconstruction with denser depth information fields compared to a
convergent layout, and is also unaffected by keystone distortion ** that is more common
in a convergent stereo rig.

However, parallel layouts provide less information about the depth perception, since the
field of view is constrained. This fact is due to the point of convergence of the two views,
which in a parallel stereo rig happens to be the infinity. When the convergence point
is infinity, then depth information of the scene is lost and there is no focus. Also, this
introduces a number of unmatched regions in the views especially in the edges of the
scene.The solution to this problem is to shift the two views horizontally to place the
point of convergence wherever desired. This is an easy task since the views only differ in
the x-axis.

On the other hand, convergent layouts, use wider viewing angles and depth perception,
since the point of convergence is not the infinity as in the parallel case but in front of the
viewed scene. This means that everything in front is pushed in front of the view anything
behind is pushed back into screen space, whereas, an infinity point of convergence does
not produce this effect and, as mentioned, requires post processing. Nevertheless, conver-
gent layouts introduce keystone distortion, when the viewing angles and viewed scene’s
dimensions are not selected appropriately, which can lead to inaccuracies during the 3D

scene reconstructions. Moreover, since the cameras are not aligned further pre-processing
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Left Camera Right Camera

X4 Right Camera

Image Image

Figure 3.12: (a)Parallel stereo rig, (b) Convergent stereo rig. Figure was taken from

http://www.slideshare.net/RobinColcloughl/viva3d-stereo-vision-user-manual-en-201606.

must be made in order to match the views (x and y axis misalignments). This is known
as image rectification. As mentioned this process is not required in parallel rigs due to

the fact that the views only differ in x-axis information.

** Keystone Distortion: an effect produced when two images are not parallel, due to
the projection of an image onto a surface at an angle which results in a distortion on the

image dimensions, e.g. make a square look like a trapezoid.

3.5.6.1 Image Rectification

In the case of a convergent stereo rig the images taken by the camera pair are mismatch
in both x and y axes. In order to simplify our search for point correspondences during
the relation of the viewed scene to its corresponding image plane view we need to apply
geometrical transformations that changes a general camera configuration model with non-
parallel epipolar lines (convergent layout) to the canonical one (parallel image planes)
that will allow the mismatches to be present only in the x-axis(see figure 3.13).

The rectification procedure is based on the characteristics and constraints of the stereo
rig and the common plane of projection 7w defined by the two camera centers and their
corresponding image planes. The characteristics of the epipolar plane 7 defined after the

rectification process will be:
e Epipolar lines(l and I’ in the figure 3.13) become collinear and parallel

e Exclude y-axis from the disparity estimation step
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Figure 3.13: The rectification process of transforming the image pair, with C, C’ being

the principal points, and [R|t] the transformations relating the two planes.

e Any disparities will be parallel to x-axis
e Epipoles — oo

The rectification procedure, as previously mentioned, is the process of computing the
image transformations resulting the conjugated epipolar lines (denoting the corresponding
points) to become collinear and parallel to horizontal image axis. In order to define the
require transformations that allow the relation of the two images planes and the world
coordinate system let’s remember the relation between the 3D world point coordinate
vector Xyorg = (mw,yw,zw)T and the corresponding coordinate vector in the camera
reference coordinate point Xcamera = (Ze, Ye, 2.)7 is defined according to equation(2.27).

In the case of the camera pairs, the aim is to relate the two image planes in order to
associate corresponding points but also to define the relations the image planes and the
physical world. In this case the camera projection transformation for each camera are
the following:

Xiept = Prest » Xworta and Xopigne = Pright * Xwortd (3.44)

with P; being the projection matrix of each camera relating each image point X; of the
each camera to the world point X4

What we need to do now is to define the appropriate rotational and translational
transformations that will form the projection matrix of the left image plane in accordance

with the one of the right camera’s, i.e. rectify the planes:
Pepp =R Prgne +T (3.45)

with R, T being the rotational and translational transformations.

Konstantinos Bacharidis H4 October 2016
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One of the most known image plane rectification methods is the one introduced by
Trucco and Verri [45]. The method is based on the fact that the extrinsic as well as the
intrinsic parameters of the stereo rig are known and that the stereo rig is bound/con-
strained based on the following assumptions: 1)the origin of the reference frame is the

principal point and 2) the focal length is known. The methodology goes as follows:

1. Estimate the intrinsic and extrinsic parameters of both images. For example, we can
use Zang’s [41] approach (known and well tested approach) to recover the interior
orientation, the exterior orientation, the power series coefficients for distortion, and

an image scale factor. This is done by using linear least-squares fitting methods.

2. Calculate the relation transformations, i.e. the rotation and translation require in

order to match the the planes of the two cameras:

R = Ryignt - Ripy and T = Tiepy — R - Trigne (3.46)

where R;,T; are the rotation matrix and translation vector of the i-th camera,
i = [left,right].

3. Construct three mutually orthogonal unit vectors e, es and e3. The first vector e;
is given by the epipole. Since the origin coincides with the image center the vector

e has the same direction with the translation and can be defined as:

T
I

€1

For the second vector es we have the orthogonality constraint. By taking the cross
product of e; with direction vector of the optical axis and normalizing it, we derive

the vector es:
1

CTVTERT

Now, again using the orthogonality principle between the three vectors we can

[_Ty Tx O]T

derive the vector ez as the cross product of the vectors e; and es:

€3 = €1 X €
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Build the orthogonal matrix Rg.. that will be used to define the new rotation ma-
trices and translation vectors of the two camera’s that will define the new Projection

matrices:

T
€1

RRect = eg (3 47)

T
€3

4. Set Riepr = R and Ryigne = R - Rrer. The projection matrices of the image pair
can are associated based on the R and 7" computed in a relation similar to the one

relating the world coordinate system and the camera coordinate system:

177
]Dleft = RTPrightT = RRectPleft = RRectRTPright + RRectT and RRectT = 0
0
5. For every point of the left image calculate the rectified point as follows:

Timiest = [ Y f]T = RpectTimiest = (£ Y 217 = Timiestneet = ;[x/ y 217

and do the same for the right camera points. But these points are in camera

coordinate system (not in pixels). To associate them with pixel coordinates:

:10—035:&—%andy—oy:&—yC

f f

with (x.,y.) being the camera center coordinates, f the focal length and (o, 0,)

the coordinates of the center of projection.

Perform the last step backwards, which means for each pixel in the rectified image,
we need to find the correspondent point in the original image so that we don’t end

up with holes in the rectified image.

The final relations between the rectified image points and the original image points

are the following:

T = (:1:/ — ox> %/Rn + <y/ — Oy) 27‘;—2321 — R3127fx + 0, (3.48)
= (m/ — 0$> ?%ng + (y/ — Oy> 27/322 — R3227/fy + oy (3.49)

An example of a pre-rectified and the rectified image pair for the chessboard pattern is

shown in figure 3.14.
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Figure 3.14: (a) Chessboard view from a convergent stereo rig prior rectification with
disparities present in both x and y axis, (b) Rectified Chessboard view with disparities

only present in the x-axis.

3.5.7 3D Structure Reconstruction via Triangulation

Having related the two views and the world system we can determine a point in the 3D
space given its projections onto two, or more, images, a process known as triangulation.
In order to solve this problem it is necessary to know the parameters of the camera pro-
jection function from 3D to 2D for the cameras involved, in the simplest case represented
by the camera matrices. Having estimated the 3D coordinates of each point of the scene

we can reconstruct the scene.

How do we find the 3D space point?

In order for point correspondences be associated with a 3D space point the must sat-
isfy the epipolar constraint. However, an image pair point correspondence observation
consists of noisy point correspondences which does not in general satisfy the epipolar

constraint.
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What is the epipolar constraint? The epipolar constraint ' Fz = 0 denotes that the
point ' in the second image lies in the F' -z and the two rays back-projected from image
points = and " lie in a common epipolar plane passing through the two camera centers,
with F' being the fundamental matrix.

The idea behind this constraint is derived from the fact that if the projection point
z is known, then the epipolar line e - ' is known and the point Xwor;a Projects into the
right image, on a point  which must lie on this particular epipolar line, as shown in
figure 3.8.(b). This means that for each point observed in one image the same point
must be observed in the other image on a known epipolar line. This provides an epipolar
constraint which corresponding image points must satisfy and it means that it is possible

to test if two points really correspond to the same 3D point.

Fundamental Matriz, role and its use in the epipolar constraint:

The fundamental matrix is the algebraic representation of epipolar geometry. It is the
projective mapping from points to lines describing the epipolar constraint we previously
mentioned. More specifically, the set of points = and 2’ are both images of the 3D point
Xuwortg in the plane, i.e. they are projectively equivalent, since they are each projectively
equivalent to the planar point set X4 Thus, there exists a 2D homography mapping
the one with other. Now, given the point z in the second image, the epipole ¢  and the
epipolar line {" passing through «’ for which we have I' = ¢’ x 2’. Then, since the points
x and = are associated through a homography matrix H we can express the epipolar line

I as:
l=¢ xH-z=F- -z
with F' = ¢’ x H, being the fundamental matrix.

e Camera projection matrices and fundamental matrix association

Given the camera pair projection matrices P and P’ of the left and right camera
respectively. The association of the 3D world point X4 with the image point x
and its projection matrix is P - X,,q = x. The ray back-projected from the world
point Xyorq to the image plane into x is the line formed by the two known points,
the camera center C' (for which P - C = 0) and the point Ptz = PT (PPT)_1 -z,
which belongs to the ray since it projects to x, P(PTxz) = x. The line joining the
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two points is:

Xuora(A) = Ptz 4+ A\C (3.50)

with PT being the pseudoinverse of P, PPt = Xfil, C' is the camera center and

X)) is a normalization scalar.

For the second camera, with a projection matrix P’ these two mentioned previously
are imaged at P'C and P' (P*z). The epipolar line ', joining these two points, is:

/= (PC)x (PPa)

The point P'C is the epipole €' in the second image and thus, the previous equation

1S written as:
I'=¢ x (P/PJ“) z=Fx

meaning that the fundamental matrix, given that the projection matrices are known
is equal to F' = €' x (P’P*).

e Fundamental Matrix Properties(as presented in Zisserman [42]) (1) The
epipole: "For any point x (other than e) the epipolar line I' = F - z contains the
epipole €. Thus € satisfies ¢ 7 (F-2) = (¢7F)z = 0 for all z. It follows that
eTF =0, i.e. € is the left null-vector of F. Similarly F -e = 0, i.e. e is the right
null-vector of F". (2) For epipolar lines: [ = F-" and I' = F7 - .

3.5.7.1 Triangulation Methodology

Going back to the derivation of the 3D space points we must find the best point corre-
spondence estimates that minimize a geometric error subject to the epipolar constraint
given a fundamental matrix F' in order to find the correct correspondence. Based on
Hartley and Zisserman [42], the optimal triangulation method first corrects the point
correspondences found initially, in order to find the best corresponding points satisfying
the epipolar constraint, and then compute the 3D world point correspondence based on
the DLT method.
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e First Step: Point correspondence correction

The objective of this step is given a measured point correspondences z <
and a fundamental matrix F, compute the corrected correspondences 7 <> 2 that

minimize the geometric error(below) subject to the epipolar constraint:
C <x x> = d(z,%)+d (xx) Y (3.51)

where d() is the Euclidean distance. The point correspondence correction is based
on the assumption that only one of the corresponding points lies at an epipole
leading the 3D space point to coincide with the other camera center. The overall
algorithm used to achieve the identification and correction of the point correspon-
dences is summarized in Hartley and Zisserman [42], chapter 12, algorithm (12.1)

- until step x.

e Second Step: 3D world space point estimation After the correction of the
point correspondences we can use the estimates to find the 3D world point X4
estimate using the Homogeneous method (DLT). The method uses the corrected

. . A NG
point correspondences, i.e. T and T .

Homogeneous method(DLT): We know that each pair of image points of the image
pair used is associated with its 3D space point based on the equations z;, =
P - Xyoria and x;m = P - Xyorg- These equations can be combined into a form
AX = 0, which is an equation linear in X, with A a matrix being of the following

form:
z-p?T — plT
37 _ 2T
y-p— —p
A=1, 3T _ 1T
r-p—- —p
_y, T p’QT_
with z;, = (x,y) ,x;m = (x',y') the point correspondences in each image, and

P = [p'" p** p*T]  P' = [p'" p*" p3T] the projection matrices.

So, all we need is to use the matrix A to estimate the 3D space point X 4. The
algorithm goes as follows (as presented in the Hartley and Zisserman’s book, chap-
ter 11).

Konstantinos Bacharidis 60 October 2016



3.5 Stereo Vision

The overall method is summarized as: The task is given n > 4 point corre-
spondences, and the matrix A, determine the vector X so that AX = 0, with X
being the vector describing the 3D space point.

For each correspondence compute the matrix A;, as previously shown.

1. Assemble the n(2 x 9) matrices A; into a single 2n x 9 matrix A.

2. Obtain the SVD of A, the SVD is a factorization of A as UDV?, where U
and V are orthogonal matrices, and D is a diagonal matrix with non-negative
entries. The unit singular vector corresponding to the smallest singular value
is the solution X;. Specifically, if A = UDVT with D diagonal with positive
diagonal entries arranged in descending order down the diagonal, then X is

the last column of V.

3. The matrix X is determined.

Thus, we have found the 3D world space points that correspond to the points of

the two images planes.

3.5.7.2 Reconstruction Ambiguities

We will present the reconstruction capabilities of a scene based on the knowledge available
about the scene’s placement with to a 3D coordinate frame, as well as the parameters of

the monitoring system(see figure 3.15).

e Projective transformation ambiguity: if we don’t know anything about the
intrinsic and extrinsic parameters of the monitoring system, then, we can we can
express the ambiguity of reconstruction with an arbitrary projective transformation.
A projective transformation will preserve intersection and tangency but will not

preserve angles, ratios of length or volume of an object.

e Affine transformation ambiguity: if we now know the focal length of the cam-
eras and the cameras are associated through a simple translation, then the recon-
struction can be expressed with an affine transformation. An affine transformation
will preserve parallelism and volume ratios, however, it will not preserve angles and

ratios of length.

e Similarity transformation ambiguity: If we have a fully calibrated camera

pair, then reconstruction can reach up to a similarity transformation. A similarity
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Figure 3.15: The reconstruction transformations for the case of the building view. Image

transformed based on an image presented in Hartley and Zisserman [42].

transformation will preserve parallelism, angles, ratios of volume and length. How-
ever, we still deal with scaled ratios of length, in order to derive actual information
about the real world dimensions of the object we will need additional information
about the real dimensions of the scene, thus, leading to an Euclidean reconstruction

(metric reconstruction!

Metric transformation: This transformation preserve the full extent of information
that we can extract from a scene, parallelism, angles, length and volume. In order to
move from another reconstruction scale to the metric scale additional information about
the scene are needed. This information can be provided in the form of a constraint on
line parallelism that can correct the plane of estimation or ground truth points (simplest
and most effective way). For example, in the case where ground truth points are available
then the relation between a ground truth point X, p and the estimated 3D point X,
is through a 3 by 3 Homography matrix H (Hartley and Zisserman [42]):

XgrP =H- Xest

which can be moved to an image point relation reforming the image point and world

correspondence equation(2.28) as:
Xim=P-H ' X,p (3.52)

An example of the impact of the use of ground truth points in the case of a projective

reconstruction is shown in figure 3.16.
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Figure 3.16: The The projective reconstruction moved to metric through the use of
five (or more) world points: (a) the five points placed on the initial scene and, (b) the

reconstruction after the point mapping. Image taken from Hartley and Zisserman [42].
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Chapter 4
Our Approach

Our approach is a new formulation of an image-based river monitoring system that is
unbound by the requirement of particles for the generation of a velocity flow estimate
as well as, of the task of control point selection for the estimation of the real surface
velocity of the river. Our method utilizes a stereo camera layout to derive the necessary
relation between the physical and image coordinate systems. The estimation of the
optical velocity of the fluid is performed using a stereo probabilistic framework for the
computation of the optical flow field. To increase the accuracy of the estimation as well
as to remove erroneous or unwanted motion vectors, image segmentation and machine
learning classification methods are incorporated. Our approach can be summarized in

the following steps:

1. Stereo Layout:Use the stereo layout to derive the relation between the 3D physical
and 2D image coordinate systems and formulate a region of examination with known

real world dimensions.

2. Optical Flow Estimation: Combine a probabilistic optical flow estimation method-
ology with the additional information provided by the stereo (layout) to estimate
the optical flow field of the fluid employing the entire image domain of the stereo

image pair.

3. Coordinate System Relation for Velocity Estimation: Associate the esti-
mated motion field with the corresponding 3D physical velocities based on the 3D
physical coordinate change of the 2D image points as defined by the 2D motion

vector. In this way the perspective distortion introduced by the transformation
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from the 3D world to 2D image domain is removed.

4. Velocity Estimate Validation: Consider the average 3D velocity estimate as
constant over the monitored area and validate the estimation by examining whether
an existing particle in the flow, assuming to have the same velocity, travels along the
examination area at the expected number of frames. By validating our estimate we

validate the fact that the estimated velocity accurately expresses the fluid’s motion.

4.1 Stereo Monitoring Layout

As mentioned, existing monitoring systems make use of a single camera set up. The
relation between the physical and image coordinate systems is established by solving an
eight parameter transformation system, which given the appropriate amount of data (at
least 8 control points) leads to a system of linear equations. However, such formulations
require the prior appropriate selection of known control points which in accordance with
the horizontal viewing position assumption leads to harsher geometrical reconstructions
of the scene (affine reconstruction).

To overcome these disadvantages and reach to more detailed scene reconstructions,
we propose the use of a stereo layout that can provide world and image plane mapping
without the use of predefined control points, as well as providing information about the
depth map of the scene allowing even crude 3-Dimensional scene reconstructions. In
our monitoring formulation we have selected a calibrated monitoring approach since it
allows the computation of both the stereo rigs’ characteristics and the distortion values,
minimizing projection ambiguities and thus, strengthening the coordinate system rela-
tion. The use of a stereo rig apart from removing the need of control points in order to
relate the physical and image coordinate systems, provides additional scene information,
such as depth perception and multiple scene views, that can be utilized in the processing
part to increase the accuracy of estimation e.g. stereo motion estimation for the flow or
increase field of view by view stitching (panorama).

As mentioned in Chapter 3, the continuous debate in a stereo rig formulation is
whether a parallel or a convergent layout will be selected. Each of these has its advantages
and disadvantages. A parallel layout requires simpler transformations in order to move
from the physical to image plane coordinate systems and provides more valid points for

3D scene reconstruction i.e. denser depth information field compared to a convergent
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Figure 4.1: (a)Non Convergent Stereo Rig, (b) Convergent Stereo Rig, placed on a bridge.

layout. On the other hand, parallel layouts provide less information about the depth
perception. Convergent layouts, have better viewing angles and depth perception but,
introduce keystone distortion which reduces the number of valid points in both image
planes, and thus, leading to sparser scene reconstructions. The answer to this problem
in the river monitoring case is that the selection is river dependent. Streams or rivers
with small width will allow a parallel layout place in the center of the bridge as well as,
a convergent layout (see figure 4.1). However, for the case of a river with large width
only a convergent layout will be feasible due to the fact that the parallel layout has a
restricted distance between the camera pair (= 5.5¢m) resulting in a restricted field of

view, and thus, in our system formulation a convergent layout was selected.

However, as mentioned in Chapter 3, convergent stereo layouts require the association
of camera pair positions, which in our case differ in x and y axes(in non-convergent they
differ only in x-axis), as well as the stereo rig with the physical 3-Dimensional world
system. In the following subsections we will define these relations, based on the theoretical

background presented in Chapter 3.
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4.1.1 Physical to Image plane coordinates

The role of the stereo rig is to connect the physical and image plane coordinate systems
so that an association between the 3-Dimensional viewed scene and the 2-Dimensional
image can be defined, providing us with a depth map estimate of the scene referenced to
the stereo layout position. This coordinate system relation allows us to define a region
of known dimensions that will provide the information required to perform the trans-
formation of the image-based velocity estimate to its corresponding real world velocity
approximation. The relation between a point in the physical X,orld = (2, Yw, 2) and

a point in the image plane x;,, = (z,y) coordinate systems is given by:

-xworld-
X
Yworld
y| =K -[R[T]
Zworld
1
- 1 -
_:C'world_
f T, Ry Rip Riz |T,
Yworld
= [ Yol |Ran Ra2 Raz |T,
Zworld
s Rs1 Rsy Rss |1 .

= Tim = P Xworld

with K being a matrix containing the intrinsic characteristics of the camera, required for
the relation between the camera and the image plane coordinate systems, [R|T] a matrix
denoting the extrinsic parameters of the system, i.e. the rotation (3 x 3 matrix) and
translation (3 x 1 vector) required to match the world and camera coordinate systems
and P being the projection matrix, defining the geometric mapping of points from one
plane to another.

This equation expressed the correspondence relation between the image points and
the world points. In order to estimate the intrinsic parameters of the system (if not
known), such as the focal length f or the principal point coordinates (z,,y,, as well as
the extrinsic characteristics of the camera to world relation, i.e. the relative position of
the stereo layout in accordance to the viewed scene, we follow a calibration process(as
presented in Chapter 3).

The estimation of both intrinsic and extrinsic parameters of the system allows us to
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reduce the projection ambiguity between the two coordinate systems (up to similarity
reconstruction or Euclidean, given additional scene information), thus acquiring more

detailed point mapping for the final point displacement association.

4.1.2 Image Plane relation in the camera pair

Having related the physical and image coordinate systems for each camera the next step
is to relate the camera pair together. This process involves the disparity map estimation.
For the case of a non-convergent layout the image planes are parallel on the y-axis,
meaning that the difference between a point in the first camera is just a translation in
the x-axis, i.e. a point at the position (x,y) in the first image will be located in the
position (z + d;,y) in the second image. For the case of a convergent layout in order to
relate the image planes we need first to rectify them (as has been shown in figure 3.13
so that the points can be associated with a translation in the x-axis only, and finally
compute the disparity map.

The relation between the 3D coordinate point Xyomg = (Tw, Yuw, 2w) and the corre-
sponding in the camera reference 3D coordinate point X.umera = (T¢, Ye, 2ze) is defined
based on the extrinsic parameters (rotation R, translation 7). When dealing with a

stereo rig, the camera projection matrices can be expressed as follows:

Xleft = Beft : Xworld = Rleft : Xworld + Eeft (41)
Xright = Pright : Xworld = Rright : Xworld + Tright (42)

The task is not only to relate the two image planes in order to associate corresponding
points but also to define the relations the image planes and the physical world. For this
purpose, we employed Bouguet’s algorithm for stereo rectification as presented by Trucco
and Verri [45]. This method uses relates the left camera’s image plane to the right cam-
era’s image plane by applying appropriate rotational and translational transformations
forming the projection matrix of the left image plane in accordance with the one of the
right camera’s:

Pepe = R+ Prigny +T (4.3)

with R and T being the rotation matrix and translation vector respectively relating

the two planes formed as follows:

R = Ryign - Ripy and T = Tiepy — R - Trigns (4.4)
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where R and T essentially rectify the coordinates of the right camera X, 4, to those of
the left camera as X pgect,ighs. Furthermore, although this transformations lead to coplanar
image planes, row alignment is not achieved. To do so a rotation matrix R,.. consisting
of three epipolar unit vectors with mutual orthogoniallity is computed and applied to the
left projection matrix moving the left camera’s epipole to infinity as well as aligning the
epipolar lines horizontally leading to row alignment of the image planes ( [42]). The row

alignment of the two cameras is achieved by setting the rotation matrices as:
Rleft =R- Rrect and Rm’ght =R (45)

The resulting image planes are now aligned and can be searched for point correspon-
dences. By rectifying the image planes we have succeeded in the epipolar lines in the
two images to be parallel with the x-axis leading to the corresponding points in the two
images being as close to each other as possible, with any point disparities being in the
x-axis. The reason that no exact matching is achieved can be attributed to the fact that
the application of arbitrary 2D projective transformations can lead to the image being
distorted which essentially means that finding the pair of transformations that relates
the two images introduces also distortion ( [42]).

Essentially, based on these linear relations, we can derive the physical point coordi-
nates to whom each image point is back projected, through a process known as triangula-
tion (as presented in Chapter 2). This process utilizes the image plane point z;, = (x,y)
and 3D world point X, = (Zy, Yu, 2w) relations (eq.(3.28)) and parallel projectivity rela-

tion to form a system of linear equations based on the cross product:
Tim X P+ X, =0

Thus, we end up with a system of linear equations of the form B - X,, = 0, where B

is a matrix of the following form:

x T — piT

37, oT
y-p— —Dp
B =
o T — T
y 3T — T
with 2, = (z,y), 2, = (x',y/) the point correspondences in each image, and P =

[plT p*r 3T} P = [pllT p2T p/3T} the projection matrices.
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Figure 4.2: (a) The distorted scene representation as recorded from the camera, (b) the

undistorted scene representation after the orthorectification process.

In the case of no noise then there will be an exact solution for X,. However, in
the opposite case the image coordinates measurement is inexact and thus, we will have
another solution for B- X, expect zero. To solve the system we apply the constraint that

the norm || X, || = 1. Essentially, the problem now becomes:

Minimize ||B - X,|| under the constraint || X,| = 1: The solution of the linear
system and thus, the derivation of the 3D world point is achieved through the singular
value decomposition (SVD) of the matrix B using at least 4 known correspondences. The
matrix B is factorized in the form of UDV?, with U and V being orthogonal matrices
and D being a diagonal matrix with non-negative entries. The 3D world point is the unit
singular vector that corresponds to the smallest singular value of the matrix B(total least
squares), which is equivalent to the (unit) eigenvector of BT B with the least eigenvalue,
under the assumptions that BT B is invertible and B is an man matrix, with rank n and
m>n ([42]).

Nevertheless, in many real-world applications including traffic monitoring, surveil-
lance, human motion and river flow, the motion is still in two dimensions in the world
coordinate system, with the third dimension of height being of minor importance. Fo-
cusing on such applications, we can limit the back-projection to only two dimensions,
which is exactly the case of mapping the perspective onto the projective mapping (see
figure4.2), which performs a distance and motion scaling from the camera plane to the

2D world plane parallel to the observed surface.
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4.1.3 Disparity and Depth map estimation

The image planes relation performed in the previous step results in the points of each
plane to be associated in the form of a translation in x-axis. Thus, we can now define
the disparity map d that contains the distance between corresponding points in the two

views.

The computation of the disparity map can be performed using similar approaches
used for the computation of the optical flow of an image. In our case we employed a vari-
ational approach developed by J.Rally [62], due to the fact that it produces denser and
more accurate disparity maps compared to a block matching-based disparity estimation
method.

What does the disparity map offer?
The disparity map allows us to compute the depth map of the scene by back-projection
of each 2D image plane point into its corresponding point position in the 3D world
coordinate system. This process, known as triangulation (see figure), utilizes image-point
correspondences, as defined by the disparity map, in the image pair of a stereo layout
to derive estimates of the Homography matrices, essentially the projection matrices P,

which map the 3D world point to its corresponding 2D image point, eq.(3.28).

The derivation of the point correspondences in the two image planes is performed
using the disparity map d, which indicates the point relation between the two planes.
Specifically, as mentioned, the rectification process led to the relation of the two planes
in the form of a simple translation in the x-axis meaning that a point x;eft = (x,y) in
the left camera image plane is located in the point @, = (z',y) = (z + d;, y) in the
right camera image plane, with d; being the disparity for the given point, as shown in
figure 4.3.

Finding the point correspondences and through inversing the transformations applied
in the rectification process we can find the corresponding coordinates of the points in the
original unrectified planes which can now be associated with 3D world point through the
mapping relations presented in Chapter 3, in the Stereo Vision subsection, which show

that the 3D point estimation process leads up to system of linear equations.

Konstantinos Bacharidis 72 October 2016



4.2 Optical flow Estimation

Left Image at time t Right Image at time t

Disparity d - (x+d,y)

Figure 4.3: The relation of corresponding points in the two views after the plane rectifi-

cation process.

How will depth information be used?

The additional depth information is used as means of validating the velocity estimate
produced by the monitoring system. This is done by using the depth information to
define a region of examination in which the velocity estimate is validated by examining
the time for which an image pattern (usually a natural tracer, e.g. leaf or foam) takes
to move through a region whose length is defined by the depth difference of two objects
used as indicators/markers present at the viewed scene. More on this subject will be

presented in the final sections presenting our monitoring framework.

4.2 Optical flow Estimation

The next step of the estimation process is the computation of the 2D image velocity
field. For this task we have developed a probabilistic method for the computation of the
optical flow field of a fluid based on the methodology introduced by Chang et.al. [1]. The
approach presented in the following subsections is based on our previous work [2] on
probabilistic optical flow estimation schemes.

Probabilistic approaches, as presented in Chapter 3, assume that the motion vector
(displacement) of a pixel can be considered as a random variable following a distribu-
tion model. Thus, we can formulate a probabilistic inference model which associates to
each possible position in the candidate neighborhood in the next frame a probability of
displacement. Such formulations allows the employment of Bayesian inference schemes
that can predict the motion field. However, in a probabilistic formulation the model’s
accuracy depends upon on the a’ priori assumption about the data distribution charac-
teristics and priors which with their turn are highly affected by the amount of the data

that is available. Fewer data will result in an over fitting case where the outliers will
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reduce the accuracy of the estimate instead of increasing it. To solve this problem one
solution, according to [1] is to use a number of subsequent frames to increase the data
used in the estimation process. In our method we proposed the use of a regularization
factor A that will penalize the outliers” importance and thus, keeping the estimate robust
without the use of extra data.

Our proposed approach on this issue, is to take advantage of the stereo layout and
incorporate the additional scene information provided by the use of a stereo layout into
the displacement coefficient estimation process. As will be presented in the following
sections this addition ill result in the reduction of the amount of data used in overall
estimation process through the reduction of the size of the interrogation window at the

examined frame pair.

4.2.1 Probabilistic Optical low Formulation

We will start by presenting the theoretical basis of the probabilistic optical low method
presented in Bacharidis [2].

The probabilistic method uses a conditional Bayesian model to estimate the unknown
2D velocity field u = (v, v). The Bayesian formulation is based on the assumption that
a pixel’s flow vector is actually a random variable described by a probability distribution
function. So, the unknown velocity can be formed as a posterior distribution that is
estimated based on the Maximum a’ posteriori rule which is defined from prior likelihood

motion model assumptions:

U = argmazap (lu) - p (u) (4.6)

where p (¢|u) is the conditional probability describing the observed data given the actual
realization of the underlying global flow field and p (u) is a probability describing a prior
knowledge for the motion, usually a Gibbs distribution.

As mentioned in Chapter 3, subsection 3.3.1, the conditional probability describes
the observed data given the underlying motion. The key factor in this representation
is the appropriate selection of the data representation function ¢. In our approach the
representation function, as Chang [1| suggested, is formulated as the probability of a
pixel in the reference frame ending up in a specific position in a fixed neighborhood in
the next frame:

A

¢~ m (4.7)
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where D, is the size of the candidate neighborhood in which our pixel can be positioned
in the next frame.

The coefficient A; denotes the transition probability of the examined pixel to a specific
position ¢ in the candidate neighborhood. These coefficients are estimated by means of
the relation of the image intensities of both frames, reference and next, based on a Spatio-

Temporal Autoregressive model:
D,
I(z,y,t)=> Aj-I(x+Az,y+ Ay, t+ At) (4.8)

where I(x,y,t) is the intensity of the pixel (z,y) at time ¢ in the reference frame and
I (z+ Az, y + Ay, t + At) the intensities of the pixels(z + Az;, y + Ay;) at the destina-
tion neighborhood at time ¢ + At, which in our approach At = 1 since we consider the
next frame.

The estimation of the transition probabilities A is performed through a least squares
scheme that utilizes the pixel intensity information of the neighborhood, N, of the pixel
(x,y) in the reference frame and the pixel intensity information of the candidate neigh-
borhood, D, in the next frame. We essentially end up with a minimization of the cost
function:

N
J(A) =" (I (g, s, t) — KT A)? (4.9)

s=1
with ks being a vector of size D containing the intensities of pixels belonging to the
candidate neighborhood for the pixel (zg,ys) in the next frame and N being the number
of elements in the spatial neighborhood Ny of pixel (xs, ys) in the current reference frame.

In order to decrease the effect of outliers and constrain the estimation we have added
a regularization term s which acts as a penalty term on the estimate on the existence of

outliers. Thus the previous cost function is now defined as follows:

N 1T A2 D
Zs:l ([ (‘T37y57t) ks A) + Z /{/2 . Aj

J(A) = -

(4.10)

If we represent the previous equation in a matrix form we end up with a least squares
estimation problem of the form Ax = b, with A being a matrix containing the transition
coefficients, x being a matrix containing the intensities of pixels belonging to the spatial

neighborhood Ny centered at the pixel (xg,ys) and finally, b being a matrix containing
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the intensities of the pixels belonging to the candidate neighborhood D in the frame t-+1
where the pixel (x4, ys) is expected to be displaced at.

In our case this least squares problem is estimated with respect to A instead of z
since the matrix A contains the coefficients to be estimated. The solution of such least

squares scheme is given by:
A= (KTK+N-s1) " K™M (4.11)

with K being the matrix containing the vectors k, with the intensities for all the
possible transitions for each pixel contained in the spatial neighborhood Ny defined by a
central pixel (z;,ys), and M being the matrix containing with the intensities of the pixels

belonging to spatial neighborhood Ny of the central pixel (zs, ys).

4.2.1.1 Local Motion Estimates

At this point we can use the estimated transition probabilities to extract a local motion
field for the fluid, by selecting as the final destination position the position assigned to
the highest transition probability A;. This local estimation scheme although being able
to detect the main motion trend does not suffice for the accurate estimation of the fluid.

This is due to the dynamic and highly consistent motion nature of the fluid. The
motion field of a liquid actually shows a unique velocity vector everywhere, meaning that
each pixel should be characterized by a single velocity vector which can be extracted
using the information of distribution functions we found. Thus, a general motion vector
interpolating model must be defined that can estimate and associate the velocity vectors

for all pixels belonging to the fluid.

4.2.1.2 Global Motion Estimates

The extraction a global motion field is achieved through the utilization of the Bayesian
inference scheme, as presented in Chapter 3.3, in equation (3.18). Through the MAP
formulation we can calculate a posterior distribution for each pixel through which we
can choose the appropriate distribution that will give us the velocity vector best describ-
ing the pixel’s movement. This global motion is obtained by maximizing the posterior
distribution which is proportional to the minimization of a cost function consisting of a

smoothness function term, defined the prior motion model(which in our case is a Gibbs
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distribution) and the data function ¢:

Ugiopar = argmazp((I|u) - p (u)
~ argmazgp((I|u) - eV
= argming — In (p((I|u) - +AU)
= argmingL{¢ (Ax;, Ay;)} + \U

with L being denoting a functional term based on the conditional distribution and U
being an energy based smoothness factor.

In our approach, as Chang et.al. [1] initially presented, the functional term is a differ-
ential function consisting of linear relation of the discrete data function ¢ with a family

of 2-D Gaussian distributions, thus defining the new functional term ¢ as:

Gua ot (Ts + Az, ys + Ay,) = Z (Dot (Ts + Axiys + Ay;) * h (Azy — Ay, Ay, — Ay;)]
(4.12)
in which (z; + Az;, ys + Ay;) € Dy and h (z,y) is the family of Gaussian basis functions.
The smoothness factor U is linear combination of the image gradients, that define the
image energy:

U =3 (e )2 + u, (e, ) 1) (4.13)

Finally, the cost function leading to the global velocity estimated, minimized through

gradient descend based methods, is defined as follows:

CostFunction = — Z 109 (Gay ot (T5 + Az, ys + Ayy) )+ Z ([ (s, ys)|I” + luy (s, y5)[?)

S S

(4.14)
where w,(zs,ys) = u(zs + 1,y) — u(zs, ys), uy(ws,ys) = u(zs,y + 1) — u(x,,ys) and u is
the global velocity vector.

4.2.2 Stereoscopic Data Utilization

As shown in the previous paragraphs, the estimation of the local displacement proba-
bilities A; for each pixel position in the candidate neighborhood is an inference problem
leading to a least squares solving scheme which is high dependent on the amount of data

used. One way to increase the estimation accuracy and at the same time reduce the
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Left Image at time t Right Image at time t

Disparity d - (x+d,y)

Left Image at time t+1 Right Image at time t+1

Disparity d'

(x+Axy+Ay) J L{mmtwﬂwﬁ

Figure 4.4: Relation between the stereo image pairs and their optical flow estimates based

on the disparity map.

amount of data used is to utilize the extra information provided by the bi-channel for-
mulation of the stereo scheme. The pixel intensities of the two camera pairs, that have
been set up in a parallel layout or have been rectified when a convergent layout is used,

are related based on the disparity d as follows:

]left (ZC, Y, t) = IRectRight (Qf + d7 Y, t) (415)

For the subsequent frames, where a displacement for the pixel(xz, y) occurs the relation be-
tween the paired images for the stereo layout is defined based on both the displacement(Az, Ay)

as well as the disparity estimate (see figure 4.4):
Ileft (il? + A.CE, Yy + Ay,t + 1) = [RectRight (.Z' + d/ + Ax, Y + Ay, t+ 1) (416)

with d' = d+ D, indicating the disparity of the shifted pixel, which is essentially a change
in the disparity value of the previous frame at a constant D;.
For each pixel intensity at each camera based on the STAR model as shown in eq. 4.8

we have the relation:

D
IK(x,y,t):ZAi'[K(x—i—Awi,y—i—Ayi,t—i—l) (4.17)

i=1
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where K=left, right denoting the intensity of the image for each camera.

Combining equations 4.16 and 4.17 allows us to express equation 4.15 in the following
form:

D D

4.15 = Z Asesti-liepe (x + Axg,y + Ayt +1) = Z Avight,j IRectright (x +d + Azj,y + Ayj, t + 1)
. = (4.18)

If we compare equation 4.18 in parts and with consideration that the intensities of each

image of the camera pair at time t+1 are connected based on equation 4.16 we can

conclude that that given the disparity estimate the coefficient depicting the translation

to a certain position must have the same value in both the images in the image pair, i.e.

Aleft,i = Aright,j 5 with ¢ = j
As mention the coefficient estimation for the case of a single camera, in a matrix
formation solving the least square estimation scheme of the form Ax = b with respect to

A instead of z. For the case of a stereoscopic layout the matrices A, x,b are now defined
as:

I (z1 + Az, y1 + Ay, t) I (z1 + Azp,y1 + Ayp, t') 0 0
0 0 Irr (21 4+ Azy +d y1 + Ay1,t') - Ly (21 + Azp +d',y1 + Ayp,t')
@ =
I (zn + Azy,yn + Ay, t') - I (zy + Azp,yn + Ayp,t) 0 0
0 e 0 Irp (zny + Azy +d' yn + Ay1,t') -+ Irr (zy +Azp +d'yn + Ayp, t)
Aleft,l
A Aleft,D
Aright,l
_Aright,D_
and
I (z1,y1,t)
h— Il(xNayNat)

ITT (1171 + dv Y1, t)

L ITT(xNayN7t) i

with A being a 2Nz2D matrix, x being a 2Dx1 vector, b being a 2Nx1 vector, N being
the size of the spatial neighborhood N, D the size of the destination neighborhood,
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Iy =I5 the left image intensity value, I,, = Ireetrignt the rectified right image intensity
value and t' = ¢ + 1 the time-stamp indicating the next frame.
Given the assumption that the transition coefficients (A;.s; and A,;4) for each trans-

lation in each image pair must have the same value we can express the coefficient vector

A as:

0
0 1 0 0
00 0 L[ A
A= - : =[I:1]" - Acommon (4.19)
1 0 0 --- 0
O 1 0 . 0 Aleft,D
0 0 0 - 1]

What we essentially did is that we expressed the coefficient matrix A in form A =
C"-Acommon, where C'is a 2Dx D matrix and A.ypmmon being a Dz 1 vector. This formulation
allows us to estimate the transition coefficients, removing the duplicates since we have
shown that Ajcrr; = Arighej, with @ = 7.

By doing this we have doubled the information used to approximate the transition
probabilities, modeling the estimate considering the illumination variation encountered
between the stereo image pair. This formulation enables us to use smaller windows sizes
to reach the same accuracy compared to the case of a single camera layout.

This formulation allows us to estimate a common set of transition coefficients for the
two cameras since Ajepr; = Arignt,j, With ¢ = j, utilizing matched intensity information
from both cameras as to increase estimation accuracy. Essentially, in this form we double
the intensity values used to approximate the transition probabilities for each point and
model the estimate by also considering the illumination variation encountered between
the stereo image pair. This formulation enables the use of smaller windows sizes to reach
the same accuracy compared to the case of a single camera layout. A possible drawback
of introducing stereoscopy in the estimation of displacement distribution pertains to
the introduction of an error factor associated with the stereo camera model and the
computation of an accurate disparity map estimate that provides the correct relation

between the pixel points of the stereo image pair. The error sensitivity can be reduced
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by constraining the estimated model with the addition of a regularization parameter
A, which controls both the modeling and computation errors for the original ill-posed
inversion problem.

Finally, the estimation of the transition coefficients is again performed through the
same least squares formulation shown in equation 4.11. Moreover, a global motion field is
estimated as shown in the previous subsection through a Maximum a’ posteriori (MAP)

formulation using the new transition coefficients A;.

4.3 Velocity Computation in World Coordinate System

Up to this point we have computed the optical flow field of the scene using the full
intensity information from the stereo camera system, but all the computations pertain to
the common 2D reference system used by the camera planes. Since we have also derived
the disparity map for the two cameras in parallel concatenation, as well as the general
concatenation scheme, we also have the means of transforming the 2D back to the 3D
world space. Thus, in this section we derive the mapping of the motion vector field from

the 2D reference system of cameras to the 3D world coordinate system.

4.3.1 River Isolation and Main trend Extraction

Prior the mapping between the coordinate systems and the extraction the 3D real world
velocity of the river, we need to exclude the unwanted information that exists in order
to reduce the computational cost as well as to increase the estimation accuracy.

This step involves the isolation of the river from the unwanted terrain, i.e. river banks,
rock formations within the water. Such data despite being redundant can also reduce the
estimation accuracy since cases such as dispersion phenomena of the water hitting the
river banks or the rock formations inside the flow, produce motion vectors that do not
depict the river’s main trend of motion and thus, are not useful for the estimation of the
velocity of the flow. For the case of the river banks although the vegetation along the
river may show motion due to the wind or the illumination variance, yet do not provide
any information for the flow of the river and thus, must be ignored.

A quick way to deal with unwanted scene information such as the vegetation in the
river banks as well as rock formations inside the river flow is to apply a segmentation

approach on the region of interest. This will separate the river from the vegetation. To
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(a) (b)

Figure 4.5: River isolation via segmentation, (a) Initial image of Koiliaris river, (b)
Class containing vegetation, rock formations, leaves and (c¢) Class containing the pixels

belonging to the river.

do so, we transformed the river image into the HSV color space and performed a K-means
classification task on the hue and saturation channels of the image, separating it into two
classes (see figure 4.5 ), one containing the vegetation, rock formations, leaves flowing in
the water etc. and the other containing the water pixels. In order to distinguish which
of these clusters contains the water pixels we used an evaluation metric. The group class
that has the biggest average value, computed by the associated pixels, contains the water

pixels.

Isolating the river reduces the unwanted flow vectors from the vegetation and the
diffusion effects in the river banks and rock formations in the flow. However, this does
not solve the surface flow vectors of the river flow that are produced by the wind or the
illumination variance. The conventional measuring systems form a tunneling effect in
which the water flows to its natural motion direction, without being disturbed by wind

changes in the surface of the flow.

Since we cannot constrain the river flow conditions, we need to define a means of
distinguishing the main motion of the flow from the motion vectors caused by external
forces, such as wind. As a solution we can apply a classification method on the motion
vectors of the estimated flow field, in order to isolate and identify the underlying motion
trends in the river flow. Motion trend classification will allow the extraction of a main
trend of motion for the river flow, that will allow us to increase the velocity estimation
accuracy since the affect of redundant motions such vortical motion patterns will be re-
duced.
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How many motion classes? and supervised or unsupervised classifiers?

The biggest questions to every classification problem is first the number of classes
selection and secondly, whether to use a supervised or an unsupervised classification
method.

Starting from the first question the motion trends can be grouped into 8 motion
directions (North, South, East, West and the four subsequent motion directions). Since
there is always a hint for the main motion direction of the river we can easily mark which
of these motion directions are considered valid for the main trend of motion, e.g. the river
flows to the North so we accept North, North-East and North-West motion directions,
as shown in figure .

As far as the supervised /unsupervised debate we compared unsupervised (K-NN, K-
means, Expectation Maximization (EM)) and supervised (Naive Bayes) classifiers. As
will be presented in the Result section, the supervised classifiers presented the best results
compared to the unsupervised ones, an expected result since in the case of unsupervised
learning the distance and error metrics tested (Euclidean Distance, Cosine similarity)
lead to the utilization of a sole discriminant factor (magnitude or direction) in the vector

matching process.

4.3.2 River Surface Velocity Computation

The computation of the image based motion vector is performed by computing the pixel
displacement in subsequent frames and dividing them by the time interval between the
subsequent frames. In order to extract the corresponding motion vector in the 3D space,
we need to relate each 2D pixel position with its 3D point correspondence. The stereo
layout allows us to derive such mapping through the process of trianguation. This process,
as presented in 2.5.7.1, produces a mapping between the two coordinate systems given
the fact that an appropriate point correspondence exists between the points of the two
image planes.

Thus, the 3D motion vector of a point can now be expressed as the displacement
between the two estimated 3D position of each point based on the relative positions of
pixel-based correspondent, divided by the time interval At:

U _ ||Xwo1:ld,new - Xwo;ld,oldH
real At

(4.20)
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Since the images used have been orthorectified meaning that it has constant scale in
which features are represented in their true’ positions only two directions of estimated
3-D world point are used the x and y direction. This is due to the fact that the image has
been reformed as though every point were viewed simultaneously from directly above.
The velocities computed correspond to the instantaneous velocities of points on the
river’s surface. The main trend in the river velocity can be considered as the average of

several instantaneous velocities in the world system, i.e. for M relevant points of interest:

M
i=1 Ureal,i
Uriver = E# (4.21)

In order for this velocity estimate to be considered as the river’s surface velocity we
need to validate the assumption that this velocity will almost be constant over the area
of examination. Of course, this assumption will only show validity in cases of rivers
where the flow is unobstructed and is not accelerated due to the change of the ground’s
inclination. Notice that the use of a world coordinate system and the projective mapping
in the expression of the motion permits the direct averaging of vectors estimated at
different points of the river, since they are devoid of perspective effects depending on the

viewing depth

4.4 Velocity Estimate Validation

To validate the estimated velocity we can make use the existence of physical particles
in the flow, such as leaves or flowing wood parts. Such validation may be performed
under the notion that the computed leaf velocity should follow the main trend of the river
motion or the fluid velocity on the surface of the river. When using natural particles with
physical dimensions, i.e. objects such as leaves, we cannot guarantee that the influence
of external forces, such as wind or turbulence, will not dominate the particle’s motion
forcing the particle to follow a different motion from the typical fluid field. Nevertheless,
under the assumption of minimal external forces, the validation process can be performed

as follows.

1. Particle Selection and Detection:Select the particle to be tracked. The selection
can be either user assisted, i.e. the user selects the particle he considers the most
appropriate manually in the image, or an automated particle identification can be

performed. For the latter we can make use of the segmentation method used in
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previous sections. We can observe in figure 4.5 that the particles flowing in the
river, case e.g. leaves, have been assigned to the non- water class. We can perform
a supervised segmentation process on this class moving to the YCbCr color space,
aiming at a specified value range of the channels Ch and Cr that corresponds to
the particle’s color values, brown color in the leaf’s case. The identified particle is

then stored as a reference pattern.

2. Examination Region Formulation and Velocity Validation: In order to
simplify and constrain the validation process, we can define a region of examination

through which the particle’s motion will examined.

The validation is performed by searching the specified particles after a number N
of frames, under the assumption that the estimated 3D velocity estimate remains
constant over the river length. The constant velocity is used to match the par-
ticle’s 3D position at the initial time stamp and the estimated position based on
motion estimation. Afterwards, by back-projecting the estimated position on the
camera plane(s) we examine the particle’s presence within the specified region of
the frame(s).

In the following subsections details on the validation process will be presented as well

as how the region-dependent parameters used in the validation process are defined.

4.4.1 Validation Process

Instead of starting from the region formulation we will begin our methodology presenta-
tion by first defining the overall validation process and then explaining the way that the
region-dependent parameters are defined in the next Region Formulation subsection.

The velocity validation can be performed in two ways:

1. Time specified particle search: in which given the estimated velocity and a
region with known real world dimensions we estimate the time required for the
particle to travel the region. The search for the particle in the corresponding

estimated frame exiting the region validating the estimate.

2. Position specified particle search: in which given the estimated velocity, the
initial particle position and a predefined time interval, then we can estimate the

final position of the particle. Essentially, using the estimated 2D motion vectors
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and the projection relation between the points of the 2D image plane and the one
of the 3D world we can back project the final 2D position (due to the motion

displacement) to its corresponding 3D position.

In our validation scheme we adopt the first approach estimating the time required
for the particle to travel from its current computed 3D position (defined by its centroid)
to the position of the first indicator (entry to region of interest) as well as the second
indicator (exit from region of interest) given the estimated average 3D velocity:

Xw,indFin - Xw,indStart

tmov = 4.22
. (4.2

in which Xy inarin = (Tw, Yu, 2w) corresponds to the stereo-based estimated 3D coordi-
nates of the centroid belonging to the indicator object denoting the end of the region,
Xuw.indstart = (Tw, Yw, 2w) corresponds to the stereo-based estimated 3D coordinates of the
centroid belonging to the indicator object denoting the start of the examination region,
and finally, u, corresponds to the particle’s velocity which assumed that it follows the
river’s motion pattern can be assumed equivalent to the river’s motion, u, ~ Uyiyer-
Having found the required time we can then move to the future frames and search
for the particle near the ’end of region’ indicator(see figure 4.6). The number of frames
forwards that we need to move in order to search the particle can be easily found given

the camera’s frame rate:

Ntrames = tmop - frame rate (4.23)

Then by simply moving at the frame = reference frame + (Nyyqmes = 1 frame) we can
search the particle. The particle will be searched in an interrogation window centered at
the centroid of the ’end of region’ indicator whose width will equal to the image’s width
dimension and the length will be predefined, as shown in figure 4.6.

The verification of the particle at this position validates both the estimation accuracy
as well as the velocity-constancy assumption. The most important assumption behind
the velocity estimation method and its validation is the velocity constancy in its 3D
form, which is devoid of perspective effects associated with the 2D mapping. In real-
world applications, the 3D velocity constancy assumption can be justified better than
in the 2D case, where velocity needs to be adjusted with time and scene depth as to

accommodate the perspective effects.
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Figure 4.6: Formulation of the search area for the particle in each image plane by defining
a window with a horizontal size equal to the image’s width and vertical size the size of
the particle = M pixels up and down. The window is formulated around the centroid of

the second indicator.

4.4.2 Region Formulation

As presented in the previous subsection in order to simplify, constrain and reduce the
computational burden an examination region is defined based on two objects serving as
region start and finish markers(indicators). The stereo-driven 3D world coordinate esti-
mates of their centroids allow the computation of the region’s length used in equation 4.22
which computes the time required for the particle to move through the examination re-

gion.

Two key questions arise in this process: (a) How do we select the markers/indicators?,

and, (b) How do we detect the particle in the frames?

Starting from the first question the indicator objects, are assumed to be always present
in the viewed scene, in static positions. The objects are manually selected by a user, by
defining a rectangular window around the object, in the image depicting the viewed scene.
The 2D centroid of the pixels belonging to the object is defined and its corresponding

estimated (via the stereo layout) 3D coordinates are extracted. The length of the region
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can then be defined as by simply taking the depth difference (z-axis coordinate estimate)
of the centroids of the two object-indicators.

As for the second question the reference particle pattern will be searched within this
region using the SURF feature extraction and identification methodology presented by
Bay et.al. [63]. As previously mentioned the presence of a particle or a characteristic
particle portion within this region can be considered for the accuracy assessment of the
estimated instantaneous velocity of the river.

To further increase the estimation confidence we can also back-project to the expected
particle position in the two cameras. In such case, the particle’s position will be different
on each image plane of each camera defined by the direct mapping from 3D to 2D via
the corresponding matrix projection. Then, by taking advantage of the disparity map
we can relate the pixel positions and the motion vector estimates between the two image
planes. We can use this relation to search the particle in the two camera planes thus,

increasing the tracking validity of the particle.
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Chapter 5

Results

In this chapter we present the results of our work. The result section will be divided in

four sections presenting and commenting upon the following:

e The 2-D stereoscopic probabilistic optical flow estimation method: Illus-
trating the improvement in accuracy as well as data reduction compared to the use

of single camera probabilistic method.

e The comparison of the proposed stereo-based technique with other rel-
evant methods: Test and compare the proposed optical flow method with other
approaches utilized in the fluid flow extraction case in order to illustrate the effi-
ciency of the proposed method to capture local motion trends retaining the both

magnitude and directional accuracy.

e The ability of summarization of motion trends:Perform clustering on the

underlying motion directions.

e The overall developments and stages of 3D motion estimation: Presen-
tation of the results for each stage of the proposed imaged-based river monitoring

system.
Finally, an additional section is added presenting a visual environment(a graphic user

interface) which incorporates the aforementioned stages of image-based river monitoring

system into a user-friendly tool.
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5.1 Improvement of 2D motion estimation using stereo
data

Apart from the 3D river velocity estimation framework, in this thesis we have also pre-
sented a new stereo based probabilistic optical flow estimation method. In the following
paragraphs we will present how the incorporation of the stereo-driven information in the
optical flow estimation process, enhances the estimation accuracy but also allows the
reduction of the amount of data used in the estimation process. During this evaluation
stage we compare the stereo-based approach with a single camera optical flow estimation
methodology presented in my undergraduate diploma thesis [2]. The two approaches are
compared, with real as well as synthetic datasets, on the estimation accuracy, the amount

of data used and the post-processing capabilities that each method presents.

5.1.1 Accuracy using Real Data

As far as the optical flow estimation accuracy is concerned, we observed small deviations
the optical flow field estimates of both approaches. Specifically, based on the experimen-
tal results taken in Koiliaris River, show that approximately 21.7% of the main motion
vectors change and about 9.85% of the total motion vectors between the two optical
flow derivation schemes. Both approaches succeed on retaining the main motion trend
information as shown in figure 5.1. However, their main difference lies on their trade-off
between the estimation accuracy and the amount of data used to achieve it. Based on
the amount of data used, the stereo case requires a smaller interrogation window size
~ 38% to reach an estimation accuracy with less than 10% deviation from the single
camera approach. This is due to the incorporation of the data from the second camera
which acts as an enhancement for the estimation process. In terms of 3D real world veloc-
ity estimate deviation between each approach this ~ 22% main motion vector deviation
results in the single-based approach to produce an estimate of 0.4201m/secs compared
to the 0.3864m/secs of the stereo approach with the Conventional equipment producing
0.3993m/secs.
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Motion field using a Single Camera layout Motion field using a Stereo Camera layout
300 400 300 400

600

0 100
60 00 bo 2

(a) (b)

Figure 5.1: (a)The estimated motion field using a single camera and stereo camera lay-

out,and, (b)Estimated motion field using the on-field stereo layout scheme.

5.1.2 Accuracy using Synthetic Dataset

To further back these observations we have tested both of these approaches with synthetic
datasets using ground truth motion fields. The synthetic datasets where created based
on the monitored scene. Motion fields where applied only to the leaves present at the
flow. This serves a double cause, since despite the motion estimation accuracy testing it
also indicates the ability of our approach to adapt to particle tracking, through the use
of color-based segmentation approaches.

This dataset was generated for both single and stereo camera layouts. The motion
formulations employed in the synthetic dataset consist of linear translations in the each
axis separately and diagonal translations ranging from 0 to 4 pixels. For the stereo case
the disparity map d maximum translation in the x-axis (due to parallel layout assumption)
is of approximately 5 pixels. Figure 5.2 presents one of the generated synthetic datasets
and the ground truth motion field. The selection of the translational motion patterns
instead of rotational or spiral motions was based on the facts that the main trend of
motion in the river flow which is followed ideally by all the tracked particles tends to
follow ideally (assuming no rock formations exist within the river which may produce
rotational or spiral motions due to diffuse effects) a linear translational motion pattern.

The single and stereo based approaches are compared both on the optical flow es-
timation accuracy as well as the on the amount of data (window size) required. The
optical flow field estimates of both the single and stereo optical flow estimation approach
are compared to this ground truth optical field. The estimation accuracy assessment is
performed based on the Angular (AE) and Endpoint (EE) error metrics ( [64]). Table 5.1
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shows the average observed errors using the same window size (13 x 13) for each of the

motion cases.

‘Synthetic Datase - motion only 1 leaves.
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Figure 5.2: (a) The synthetic reconstructed river scene with motion added on the leaves,
(green) indicates the initial position and (magenta) the shifted position (a translational
motion to the right direction), (b) the corresponding ground truth motion field, (c¢) the
estimated optical flow field using the single camera probabilistic optical flow method,
and (d) the estimated optical flow field using the stereo camera probabilistic optical flow
method.
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Method Angular Error(AE) Endpoint Error(EE) Stdev AE  Stdev EE
Single Camera 0.0162 0.0066 0.0037 0.0283
Stereo Rig 0.0155 0.0039 0.0034 0.0209

Table 5.1: Endpoint and Angular errors between the Stereo and the Single camera Prob-
abilistic optical flow estimation approaches using for the stereo case a neighborhood size

20% smaller than the one used for the single camera optical flow probabilistic model.

We observe that both approaches lead to high accurate estimates with the stereo-based
approach retaining more information about the magnitude information compared to the
single-based method with a small loss in the directional information. The resulted errors
show that a mean error Endpoint error of 0.2 pixels and an Angular error of lesser than
1 degrees is produced by the application of a Bayesian inference optical flow estimation
technique. These results indicate a very good estimation accuracy in the estimation for
both the directional and the amplitude information of the motion field. The suitability
of the Bayesian inference approach in the optical flow estimation for fluids flow fields has

been proved in Bacharidis [2].

However, as mentioned, the most important benefit of the stereo method is the data
reduction during the estimation process. In our test cases we have observed that the use
of the stereo based probabilistic optical flow estimation method can lead to approximately
15.82% dataset size reduction, without presenting loss in accuracy, compared to the use
of the single camera probabilistic optical flow estimation method. Figure 5.3 presents the
relation between the window block size variation (window size range [7 — 17]) and the
estimation accuracy for both the single-based as well as the stereo-based approaches. In
subfigures 5.3.a and 5.3.b we present the error variance for different window sizes between
the two approaches, whereas subfigure 5.3.c presents the fluctuations of the error metrics
opposed to the optimal window size for the single camera approach (solid points, window
size 13x13).

Commenting on the results, we can observe that the stereo-based approach outper-
forms the single camera-based method. The stereo based method achieves the same or
better accuracy using smaller window sizes, thus reducing both the data requirement as
well as the computation time. Moreover, we can also observe that the standard devi-
ation of the error metrics is also reduced despite the size increase of the interrogation
region indicating that the produced flow field is more compound. As for the estimation
accuracy of the presented stereo-based method, the Angular and Endpoint error metrics

range below 1 degrees and 0.01 pixels, respectively, implying good estimation efficiency.
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F0.01

Error Metrics using Stereoscopic Probabilistic Method

()

Figure 5.3: Average Angular and Endpoint Errors and their standard deviations using
various window sizes in the examination neighborhood formulation for the case of the
stereo-based probabilistic optical flow estimation method. (a) AE and StD of AE for
both methods, (b) EE and StD of EE for both methods, (¢)AE, EE for the proposed
stereo-based approach compared to the optimal neighborhood window size found for the
single camera probabilistic optical flow estimation method(13 x 13 window- marked with

blue, bullet points indicate the corresponding AE and EE).
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5.2 Efficiency of Motion Estimation in Capturing Local

trends

In this section we evaluate the proposed Stereo-based Probabilistic Optical flow estima-
tion method on three basic types of fluid motion that can be encountered in both labora-
tory and real world experiments. The motion models used to formulate the experimental
dataset consist of: (a) a simple linear motion, (b) a vortex pair with a rotational mo-
tion pattern, and (¢) a membrane-like motion arrangement. These motion patterns were
synthetically formulated by applying the appropriate motion function to a set of moving
particles. The generation process follows the synthetic motion generation scheme based
on Kalman filter, which is implemented in the PIVLab tool (Thielicke and Stamhuis [65];
Thielicke [66]). The flow fields are seeded with particles of 3-pixel diameters, with a size
variation of 0.5 pixels, having a displacement range from 0 to 4 pixels. Synthetic im-
ages are used as "ground-truth" patterns, since the flow motion pattern and the particle
seeding are well defined. In particular, ground truth motion fields are derived from the
motion equations used to create the synthetic images.

The algorithms compared are (a) a Gaussian weighted Lucas-Kanade method (Baker
and Matthews [12]), (b) the classic Horn and Schunck method (1981), (¢) the Single
Camera Probabilistic approach (Bacharidis [2]) using normal pdfs and (d) a local Particle
Image Velocimetry tool (OpenPIV) (Thielicke and Stamhuis [65]) that utilizes a cross-
correlation algorithm with shifting windows to accommodate for large displacements and
reduce the effect of out- of- plane motion(Taylor et.al. [67]; Adrian [56]) and finally, (e)
the proposed algorithm..

In every experimental case we have used a macro block formulation of 16 x 16 pixels,
leading to a sparser and easier to comprehend flow field. This was performed so as to
first, match the first 2 methods and the proposed method with the block based formulated
methods (¢) and (d). The aim behind the selection of these methods is to illustrate the
difference between the fluid directed methods from the classical optical flow approaches
as well as the difference between local and global philosophies in the estimated optical
flow field.

The evaluation metrics used to assess the accuracy of each method are the Angu-
lar Error (AE) and the Endpoint Error (EE) (Baker et.al. [64]). The Angular Error
is determined by the dot product of the motion vectors divided by the product of the

motion-vector lengths, followed by the inverse cosine transformation; it depicts accuracy

Konstantinos Bacharidis 95 October 2016



5. RESULTS

of the directional information on the estimated motion field. On the other hand, the
Endpoint Error is defined as the absolute squared error between the estimated and the
ground truth motion vectors; it primarily depicts the magnitude accuracy for the es-
timated motion field. We evaluate each method’s accuracy based on the average and
standard deviation (STD) of these error metrics over the entire image, which are pre-
sented in the following tables. These metrics allows us to have a qualitative inspection

on the estimated motion vectors.

Linear Translation Motion Case:
The linear motion case implies small deviations in amplitude in the rage of |0, 3| pixels. In
order to allow for estimating such small deviations, the smoothing factors in all methods
is not as severe as it should be in uniform motion. The results of each method are shown

in figure 5.4 and the corresponding Error metrics in Table 5.2.

Method Angular Error Endpoint Error Stde AE  Stde EE
Proposed 1.3882 0.1164 0.3383 0.0441
Single Cam Probabilistic 1.5339 0.1732 3.8183 0.1693
Weighted Lucas-Kande 8.2863 0.9624 4.6570 0.1090
Horn-Schunk 2.8214 0.5508 0.8821 0.1052
Particle-Based (OpenPIV) 1.8335 0.2338 3.8095 0.2470

Table 5.2: Evaluation metric results for the linear shift motion case.

From the results we observe that the proposed method as well as the single camera
probabilistic method and the local particle-based method surpass in accuracy (both in
direction and magnitude) the differential approaches. More specifically, we observe in
Table 5.2 that the proposed method produces average angular and endpoint errors of ~
1.4 degrees and 0.1164 pixels, respectively, implying good estimation efficiency. Moreover,
the standard deviation between the estimated vectors is small both in magnitude and
direction implying a coherent and accurate estimate. Both the stereo (proposed) and
single probabilistic (Figures 5.4 (a),(b)) methods preserve the discriminant information
of the region and thus result in high fidelity estimates, but with the stereo (proposed
method) showing reduced errors compared to the single camera one.

Differential approaches do not perform well in recovering magnitude information and

result in significant underestimation of the motion effects. The weighted Lucas-Kanade
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method(local one) shows the worst performance in both amplitude and direction estima-
tion due to the locality of the implementation scheme forming a trade-off between uniform
and locally varying estimate. Horn-Schunck’s method(global one) allows better preser-
vation of the directional information of this flow field, yielding low angular errors with
a small deviation factor (Figure 5.4(d)). However, from Table 5.2 we observe that Horn
and Schunck’s method is inferior to the recovery of magnitude information compared to
the probabilistic and particle based methods due to the fact that the smoothness induced
by the regularization factor used, over-weights the motion amplitude at each region. Fi-
nally, as previously mentioned the local particle-based method achieves high estimation

accuracy coming third to the comparison process.

Vortical Motion Case
For the second test of a rotational motion pattern with two vortexes, the estimated
motion field varies smoothly with a diminishing effect in magnitude while approaching the
vortex’s center.The results of each method are shown in figure 5.5 and the corresponding

Error metrics in Table 5.3.

Method Angular Error Endpoint Error Stde AE  Stde EE
Proposed 8.4615 0.4080 3.2832 0.1627
Single Cam Probabilistic 10.3751 0.4530 4.0843 0.1297
Weighted Lucas-Kande 13.0720 0.4999 6.9035 0.3148
Horn-Schunk 10.0056 0.5989 3.2550 0.3860
Particle-Based (OpenPIV) 5.4748 0.2172 5.0570 0.8076

Table 5.3: Evaluation metric results for the vortex pair of the rotational motion case.

In this test case, the proposed approach(Figure 5.5(a)) ranks second in performance
behind the particle-based methods showing an average Angular Error of ~ 9 degrees
and average Endpoint Error of ~ 0.5 pixels showing an error decrease of ~ 1.5 degrees
and ~ 0.05 pixels from the single camera Probabilistic approach(Figure 5.5(b)). From
the top performing method of this scenario the particle-based method(Figure 5.5(e)) the
proposed approach shows an error increase of 3.5 degrees. Nevertheless, the standard
deviation of both the stereo(proposed) and single camera probabilistic schemes is smaller
implying that the estimates are more compound. This is a useful algorithmic attribute in
more random cases where the estimated displacement is expected to show large deviations

affected by noise.
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Proposed Method

(a) (b)

() (f)

Figure 5.5: Vortex pair case; (a)Ground truth motion field, (b) Stereo-Based Probabilistic
method(Proposed), (c¢) Single Camera Probabilistic approach, (d) Weighted Lucas -

Kanade, (e) Horn - Schunck and (f) OpenPIV tool.

The differential approaches show increased estimation accuracy compared to the pre-

vious problem formulation. Horn- Schunck’s method (Figure 5.5(d)) manages to retain
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the directional information of the flow, ranking second in the angular error estimation,
however, it fails to accurately estimate the magnitude of the motion vectors yielding the
highest endpoint error due to the regularization term which in the estimation process
although providing a smoother and coherent flow field, yet fails to retain the motion
detail of each region. The locally weighted Lucas Kanade scheme on the other hand,
manages to counterbalance the smoothness loss with an accurate magnitude estimate.
The directional information loss shows an angular error of almost 13 degrees and the

magnitude information loss an endpoint error of 0.5 pixels.

Membrane Case
For the final test case of a membrane, the motion pattern is similar to a wave-like motion
exhibiting large motion deviations within each region.The results of each method are

shown in figure 5.6 and the corresponding Error metrics in Table 5.4.

Method Angular Error Endpoint Error Stde AE  Stde EE
Proposed 5.1023 0.1946 1.8143 0.1244
Single Cam Probabilistic 10.7231 0.2874 2.0170 0.1648
Weighted Lucas-Kande 12.5725 0.2675 1.8950 0.1097
Horn Schunk 20.9866 0.5029 5.0894 0.2584
Particle-Based(OpenPIV) 5.7395 0.1428 2.1470  0.2308

Table 5.4: Evaluation metric results for the membrane motion case.

For the last test case, the proposed algorithm(Figure 5.6(a)) achieves the highest
accuracy considering the direction information with an angular error of 5.1 degrees. As
far as the magnitude inference task the proposed algorithm ranks second behind the
particle based approach(Figure 5.6(b)) with a difference of ~ 0.051 pixels. Considering
the results of the probabilistic class of methods (proposed and the single camera based
one),the probabilistic methods show a more compound motion field (Figure 5.6 (a),(b))
in terms of magnitude deviation, but have about twice as high angular error compared to
the particle based approach. Comparing the two methods we can observe again that the
stereo-based (proposed) surpasses in accuracy the single camera probabilistic approach,
showing reduced estimation deviations both in the directional as well as the magnitude

aspect of the motion field.
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As far as the Differential approaches they rank last in this test case with the Lucas-
Kanade local scheme being slightly better (Figure 5.6(c)), but with errors similar to the
global probabilistic method. However, we observe that the resulting motion field is denser
and the deviation in the angular error is smaller compared to the global probabilistic
scheme. Horn and Schuck’s scheme (Figure 5.6(d)) provides the worst estimate due to the
fact that its global scheme along with the smoothness constraint enforce strict coherence
between regions in the form of smoothness, leading to a continuously diminishing motion

estimate towards the center of each dense membrane .
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Figure 5.6: Membrane case; (a) Ground truth motion field, (b) Stereo-Based Probabilistic
method(Proposed), (c) Single Camera Probabilistic approach, (d) Weighted Lucas -
Kanade, (e) Horn-Schunck and (f) OpenPIV tool.
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5.3 Summarization and Clustering of Motion Direc-

tions

In this section of the Results Chapter we present the comparison results between the
selection of a supervised and an unsupervised classification method on the extraction
of the main motion trend. We have compared the classifiers both on the main trend
of motion selection as well as the real-world velocity estimate and the optimal number
of classes. The desired main motion trend should consist of upstream motion vectors
with none or small deviation to the left and the right. The examined classifiers are:
(a)K-Nearest Neighbors, (b)K-means with Euclidean distance and Cosine Similarity, (c)
Expectation Minimization and (d) Naive Bayes classifier. The test case examined in the
following experiments regards a monitoring session in Axelloos River. The reference real
world surface velocity, determined using a Doppler-based device( Q-liner), was found to
be 0.6567m/sec. In this monitoring session the interrogation area was formed around the
Doppler device (Q-liner) whose dimensions were used to approximate the dimensions of
the region, as shown in figure 5.7. The underlying motions patterns were found based on

the best performing classifier, that will be presented in the following paragraphs.

Selection of number of classes:
Figure 5.8 shows the deviation between the classification result between different classifi-
cation methods as well as the deviation introduced by the number of classes used. As we
can observe in the figure the K-NN classifier although produces a close to the expected
velocity estimate, yet it fails to recognize and classify correctly all the wanted motion
vectors present in the flow, compared to the Naive Bayes classifier and lacks stability of

classification as well as accuracy even with more than 4 classes of motion.

As mentioned the examined motion directions used during the experiments were es-
sentially the four main motion orientations(up, down, right and left) provides the most
stable classification results. As we can see in subfigures (¢) and (d) of figure 5.8 in both
the cases of K-NN and Naive Bayes classifier the use of an extra class leads to misclassi-

fications and thus, a false estimate for the main trend of motion.
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Figure 5.7: (a) Initial frame(red box denotes the initial dimensionally known work area)
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Figure 5.8: Main trend of motion classification deviation between K-NN and Naive Bayes
classifiers prior the global optimization step, (a) K-NN with 4 classes, real-world veloc-
ity estimate=0.6350 m/sec, (b) Naive Bayes classifier with 4 classes, real-world velocity
estimate=0.6377 m/sec, (c) K-NN with 5 classes, real-world velocity=0.7820 m/sec and

(d) Naive Bayes with 5 classes, real-world velocity estimate=0.7334 m/sec.

Results based on the real world velocity estimate:
Concerning the estimated velocity magnitude, we compare the classifiers based on the
resulting surface velocity estimate, by also examining if they estimated correctly the
main motion trend. The classification task was performed 10 consecutive times for each
classifier, with the same optical flow field, using the four classes.

The estimated velocities are presented in Tables 5.5 and 5.6. All the classifiers
presented a success rate from 5/10 to 10/10 on classifying as a main trend of motion purely

upstream motion vectors. The resulted surface velocities presented in Tables I and II are
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based on these successful classification results and contain 5 of the 10 resulted values. In

the last two lines of the tables are depicted the average deviation the correct classification

values as well as the number of correct classifications. As correct classification we define

the classification that indicates as a main trend of motion the upstream motion(motion

vectors with a upwards or slightly deviated to the left or right motion direction). The

deviation between resulted velocity values is due to the initial centroids’ values used

which resulted in different number of classified motion vectors which combined with the

magnitude based metrics used by most of the classifiers yields deviations in the resulted

motion. Table 5.5 presents the estimated velocity by using only the local displacement

probabilities to derived the motion vectors and Table 5.6 presents the estimated velocities

after the global optimization stage of the velocity field, as presented in Chapter 4.

m/sec K- K- K-NN | EM Naive
means | means Bayes
(Euc) | (Cos)
1 0.8418 | 0.6350( 0.7690 | 0.6198 | 0.6377
2 0.8893 | 0.8592| 0.7655 | 0.5962 | 0.6377
3 0.6350 | 0.8592| 0.5962 | 0.6259 | 0.6377
4 0.6350 | 0.6350| 0.8592 | 0.5920 | 0.6377
5 0.6350 | 0.6350| 0.7655 | 0.5328 | 0.6377
SucNum | 5/10 6/10 | 6/10 7/10 10/10
AvDev 0.0963 | 0.0816] 0.1325 | 0.0716 | 0.0190

Table 5.5: Real-world velocity estimates before global optimization step, Q-liner esti-

mated velocity:0.6567m/sec
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m/sec K- K- K-NN | EM Naive
means | means Bayes
(Euc) | (Cos)
0.6920 | 0.7996| 0.5318 | 0.5318 | 0.6476
0.6568 | 0.6270| 0.6728 | 0.5819 | 0.6476
0.6920 | 0.6270] 0.7521 | 0.6476 | 0.6476
0.7990 | 0.7330] 0.8055 | 0.5318 | 0.6476
0.6748 | 0.8604| 0.7521 | 0.5819 | 0.6476
SucNum | 8/10 | 6/10 | 6/10 | 7/10 | 10/10
AvDev | 0.0555 | 0.0853| 0.1009 | 0.0869 | 0.0091

QU =W N~

Table 5.6: Real-world velocity estimates before global optimization step, Q-liner esti-

mated velocity:0.6567m/sec

In both cases, based on the fact that Q-liner’s estimated velocity is 0.6567 m/sec,
we we derive that, prior the global optimization step, the most stable classifier from the
unsupervised class is the Expectation Maximization classifier with 7/10 correct identi-
fications and an average deviation from Q-liner’s estimation of 0.0716m and posterior
the global optimization step the most stable classifier is K-means with a deviation of
0.0555m from the expected surface velocity. From the supervised class we used the Naive
Bayes classifier as a corresponding method. The Naive Bayes classifier presented a bet-
ter classification accuracy compared to the unsupervised classifiers with a 10/10 correct
identifications and an average deviation from the Q-liner’s estimation, prior the global
optimization step, of 0.0190m and posterior the global optimization step with a devia-
tion of 0.0091m from the expected surface velocity indicating that a supervised algorithm

leads to better accuracy compared to an unsupervised one.

5.4 River Motion Estimation in World Coordinates

We have designed an initial version of the monitoring system that we have previously
presented which has been tested in Koiliaris river, Chania, Crete. In our study site,
Koiliaris river has a small width (=~ 8m) so both parallel and convergent layouts can
be implemented. We have selected and placed in the nearby bridge a convergent lay-
out(Figure 5.9(a,b)), consisting of CCD cameras(Prosilica GC1020) to examine how the
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convergent layout will perform at a small scale experiment (Figure 5.9). The camera
pair is rotated about 12 degrees in the y-axis and +4 degrees in the x-axis respectively in
order to have a panoramic view of the scene. The baseline between the camera centers is
88cm and the cameras are rotated about 2 degrees and —3 degrees in the x-axis for the
left and right camera respectively. Finally, the camera pair placed at tripods have 5.25
meters distance above the rivers surface. The final system will have the cameras placed
at permanent positions on the bridge and with a wireless transmission system in place

(in our initial experiment an Ethernet connection to a modem was used).

(c) (d)

Figure 5.9: Koiliaris River site,(a)The convergent stereo rig placement on top of the
bridge, (b)Close up on the stereo rig used, consisting of two CCD cameras, (c¢)View of

the Left camera, (d)View of the Right camera without rectification.

Starting from the stereo layout and the depth estimate, we first calibrated the cameras
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by placing a chessboard pattern at the river banks, gaining the information required to
relate the physical and the image coordinate systems and thus, producing the 2D to 3D
point mapping, information that can be later used to rectify 2D motion field correcting
the perspective effect.

The next stage is to extract the 2D motion field from the recorded image data. Fig-
ure 5.10 shows the motion field extracted using the proposed Stereoscopic Probabilistic
optical flow estimation method. Moreover, using a Naive Bayes classifier(which as will
be presented in the following subsection proved to be the best motion pattern classifier)
we were able to classify the estimated motion field into 4 motion classes: (a) Pure x-
axis translation with increase in x-value, indicating motion to the East, (b) Pure x-axis
translation with decrease in x-value, indicating motion to the West, (¢) Downwards mo-
tion(South, South-East and South-West) and finally, (d)Upwards motion(North, North-
East and North-West).

Optical flow field & Motion Trends Koiliaris River

) 100 200 300 400 500 600 7008

Figure 5.10: An example of the estimated motion fields and the derived main trends

using stereo camera layout and stereo-based probabilistic optical flow method.

As can be observed in figure 5.10 the main motion trend is the upwards motion, a result
verifying the observable real motion of the river. Prior the motion pattern discrimination
and classification we need to isolate the motion vectors belonging to the river from the
vegetation, in order to exclude unwanted and erroneous motion vectors from the motion
pattern classification process as well as the velocity estimation process, as shown in figure
4.5.
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The most crucial aspect of the presented methodology in leading to accurate estimates
is the projection correction that this stereo-based approach offers. The perspective affect
can be corrected in the stereo based case using the image plane and scene relation resulting
in a more accurate flow estimate. This effect manifests itself as in pixels in the far sight
of the camera having smaller motion vector magnitudes compared to the pixels in the
front of the camera despite the fact that the motion is actually the same. As mentioned
existing monitoring systems with single camera layouts required the use of Ground Points
with known coordinates in order to undo the perspective effect, a constraint that a stereo
layout does not have, thus making this monitoring system more flexible and autonomous

compared to its peers.

River's Motion Fleld Scaled due to Orthorectification
S -5 s A L ¥
e g

Figure 5.11: Koiliaris river test case, (a) river’s motion field without projection correction
placed in image coordinate system and (b) scene and motion field rescaled motion field

based on the reconstructed 3D scene coordinates.
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Leaf group Motion field — No projection correction

Figure 5.12: Leaf bunch tracking in Koiliaris river test case, (a) leaf bunch being tracked
and corresponding motion field without projection correction placed in image coordinate
system and (b) scene and motion field orthorectification based on the reconstructed 3D

scene coordinates.

To illustrate this effect we have isolated leaves flowing in the river surface tracking
their motion in both viewing cases. The stereo based approach allows the correction of
the perspective effect by associating the 3D world point information of the scene with
the image plane information and the derived motion field.

Figures 5.11 and 5.12 present the test case and the rescaled optical flow field based
on the real world motion as estimated using the relations between the motion changes in
each coordinate system. The first indicates the rescaled magnitude of the motion vectors
for the whole river flow field whereas the second the rescaled motion vectors for a leaf
bunch. The projection correction essentially scales the motion vectors according to the
3D world coordinate system. In the test case presented in Figure 5.12 the 3D motion

found in the initial and final leaf positions remains almost unchanged despite the fact
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that the image based motion differs approximately 2 pixels.

5.4.0.1 Proposed and Conventional Velocity Estimations

Having found the 2D motion field, derived the transformation relation between the image
plane and the 3D world coordinate system, allowing the correction of the perspective
effect, we finally reach to the out-most aim of this paper, i.e. the estimation of the 3D
surface velocity of the river.

By relating the two coordinate systems, as presented in Chapter4 we can compute the
3D average surface velocity of the river. In the following Table 5.7 we present our velocity
estimates on the Koiliaris’s surface velocity for 4 monitoring sessions, with measurements
taken under almost ideal measuring conditions (no rain or cloudy days). Moreover,
we compare the estimated surface velocity with the velocity estimates produced using
conventional Hydrological equipment(accelerometers and Doppler based devices) in order
to present the estimation deviation. The first two estimates were made the same day
at two distinct video recording, whereas the remaining two monitoring sessions where

performed in different days.

Test Cases Conventional Equipment Proposed Monitoring System Deviation

1 0.3993 £+ 0.0331 m/sec 0.4124 m/sec +0.0131 m/sec
2 0.3993 + 0.0331 m/sec 0.3864 m/sec -0.0129 m/sec
3 0.6251 m/sec 0.6009 m/sec - 0.0242 m/sec
4 0.7143 m/sec 0.6947 m/sec -0.0196 m/sec

Table 5.7: Table Deviation between the estimated river surface velocities measured with

conventional equipment and the proposed image-based method.

As can be observed from the table our approach shows an average deviation of
+0.01745 m/sec between the real river surface velocity measured using conventional
equipment (accelerometers and Doppler-based devices) and the velocity estimate derived
using the proposed image based method. The velocity estimate using conventional equip-
ment (i.e. accelerometers) is considered to be the average surface velocity +the variance,
as measured throughout the monitoring session. This deviation shows that the proposed
approach even at this current prototype stage produces close to actual surface velocity
estimates. Even more this deviation can be further reduced through the performance and

accuracy optimization of each of the system’s components.

Konstantinos Bacharidis 112 October 2016



5.4 River Motion Estimation in World Coordinates

5.4.0.2 Velocity Estimate Validation

The final stage of the system, consists of the estimation validation which ensures the
accuracy of the estimation. If natural particles, such as leaves, are present within the
flow then they are used as validation points for the estimated velocity. The leaves are
assumed to follow the river motion, thus having the similar velocities. Assuming an al-
most constant velocity we simply examine whether the leaf bunch enters an interrogation
region, defined by two points or objects in the scene (indicators), after a specific number

of frames since the frame that they were first identified.

Following the methodology presented in Chapter 4 we have applied this validation
scheme to our experimental scene in Koiliaris River. In our case a leaf formation is
automatically isolated through appropriate thresholding in the vegetation class found
during the river and vegetation class, its SURF features are being extracted and then the
particle is searched in future frames. A simplified example of this process, in our case
of study, is shown in figure 5.13, where initially the leaf pattern is isolated and used as
a reference pattern. This leaf pattern is then examined in future frames. At each frame
each particle is isolated, its SURF features are being extracted and then compared to the

reference pattern.

A more elaborate representation of our evaluation scheme, applied in Koiliaris River,
is shown in figure 5.14, showing the final implementation of our method applied in one of
our monitoring sessions. The red and blue color variations in the figure indicate the leaf
motion between consequent frames and were added to highlight this motion. As indicator
points/objects we used distinct rock and vegetation formations that were present in the
scene forming an interrogation region of approximately 0.59 meters in length, computed
by taking the depth estimate difference of the centroids of each indicator(in the test case

a bush and rock formations as shown in Figure in points 1 and 2 respectively).

The first leaf encounter within the interrogation region was in frame 128 of our test
video. The frame rate of the monitoring camera set was 30fps. The estimated velocity
according to our approach was 0.3864 meters/sec. Following our approach we estimated
that the leaf bunch will require 86 frames to first exit the interrogation region, i.e. the leaf
will require ¢ = 1.53secs to go through the interrogation region. As shown in figure 5.14
the leaf bunch enters the interrogation region in frame 212 and starts to exit (first leaf
to exit) the interrogation region at frame 301 showing that our approach had a deviation

Of freat — fewpecteda = 301 — 298 = 3 frames showing that our approach is close to the real
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leaf velocity, and thus, proving the validity of the estimated velocity.

Figure 5.13: Particle isolation and tracking, (a) Segmented scene containing the vege-
tation and the natural particle being tracked, i.e. the leaf, (b) Isolated particle for the
examination process, (¢) The vegetation and natural particles present at N = 10 frames
forward, (d) Isolated particles present in the current frame and (e) Matching of the ref-
erence particle in the current frame to verify that it has cascaded to this expected region
at this current frame based on the velocity estimate, with red is the reference particle

pattern and blue the particles present in the current frame.
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Reference Leaf Pattern

(b)

Figure 5.14: Validation stage in Koiliaris River. Red and blue colors indicate the motion
between consequent frames. (a) The leaf bunch formation across the frame series are
fused into one unique frame to better represent the methodology stages across the frame
series, (b) Identified and tracked leaf formation based on a reference leaf pattern taken

from previous frames.
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& Fluid Flow Viewer - O
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Figure 5.15: Initialization window of Fluid Flow Viewer (v.1.0).

5.5 Visual Environment: Fluid Flow Viewer

Following the work presented in Bacharidis [2]|, we present a new version of the graphical
tool "Fluid Flow Viewer (FF'V)" that incorporates all the aforementioned capabilities
assisting a user to easily set up an image-based river monitoring system(Figure 5.15).
Such tools, can also be very useful to hydrologists studying the properties of the ow and
using the information derived for the extra extraction of flow characteristics.

This version of the graphical tool(FFV v.1.0) presents the user with the following

possibilities:

e Real time view of each camera and instant single frame and video acquisition.

On spot stereo rig calibration, plane rectification and depth map extraction.

Reprojection error display in order to evaluate the depth extraction accuracy.

Motion field extraction using the presented Stereo-based Probabilistic method.

Vortex Detection and main motion trend extraction.
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e User- defined selection of the interrogation region by allowing the user to manu-
ally select the two indicator/objects, presenting their depth estimates in order to

evaluate the accuracy of the depth estimate.

e Real world average surface velocity of the river.

The specific version of the Fluid Flow Viewer was specifically designed in order to
allow the user to set up the image monitoring system, acquire images of the flow, calibrate
the system and extract on spot measurements of the flow.

The system’s stages involve the following tasks: (a) View of the scene(real time)
from each camera allowing the user to appropriately set up the stereo rig. (b) Stereo
Rig calibration in order to extract the parameters that allow the relation of the image
plane with the real world coordinate systems, (¢) Depth Map extraction, (d)Interrogation
region formulation through user-defined indicators,(e) 2-D motion field and main trend
extraction as well as vortex detection(more details on the methodology used in this stage
can be found in Bacharidis [2]), and (e) Real world velocity estimation. Figure 5.16
presents examples of some of the stages.

The steps (d) to (f) can be performed multiple times, allowing the user each time
to determine parameters of the Optical flow estimation method as well as interrogation
region thus, allowing to essentially determine the accuracy of the final estimate. Moreover,
the user is able to save and load the parameters of a river case, i.e. the parameters relating
the cameras of the stereo rig and the real world as well as the optical flow algorithm’s
ones allowing him to perform post-processing on the data.

The advantages and novelty of the viewer is that it allows even at this non-optimized
prototype on spot measurements with a waiting time between each session of approxi-
mately 10 minutes. All the aspects of the monitoring system are controlled from this
tool presenting the user the freedom of forming the layout in the most accurate way
possible by evaluating the accuracy of stereo rig’s relations and depth map extraction.
The biggest advantage of this tool is that it provides the system with independence and

flexibility to be applied in almost every river case.
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Figure 5.16: Some of the Stages of FFV, (a)Scene view and Frame capture, (b)Camera
Calibration and Error Visualization,(c)Depth Map Creation(image from another session,
(d)Indicator Selection, (e) Region formulation and Motion field
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Chapter 6

Conclusion

6.1 Conclusion

This thesis presented a new image-based river monitoring framework that allows the
estimation of the real world average surface velocity of the river flow using image data.
More specifically, we presented and examined the theoretical basis behind each component
of the system and assessed its role in the estimation process. The proposed system shows
high estimation accuracy, a deviation of £0.01745 m/sec from the estimate acquired using
conventional equipment, it is autonomous and flexible allowing on-spot measurements at
almost any river flow case. Furthermore, compared to its peers the systems is free of the
ground points requirement due to the novel use of a stereo camera layout that allows

immediate mapping between the image plane and world coordinate systems.

Moreover, this thesis presented a stereoscopic probabilistic optical flow method that
utilizes the stereo data as a means of strengthening the displacement probability esti-
mates of a pixel to a candidate position found by the use of Bayesian inference optical
flow field estimation scheme. The algorithm was based to a probabilistic method pre-
sented in our earliest work(Bacharidis [2]) which for a candidate neighborhood associates
each destination position to a transaction likelihood, considered as a sample of a local
distribution function. The estimated local distribution functions are combined with a
differential basis functions to form a conditional probability of the observed data based
on the underlying motion field. By applying the Maximum a Posterior rule, using a prior
assumption of the motion model, we can end up with the posterior probability of motion,

i.e. the motion field.
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The presented algorithm proved to be more accurate compared to particle-based block
matching and differential optical flow methods concerning cases of fluid flow motion
pattern estimation. The presented method succeed on retaining both magnitude and
directional information of the motion field, leading to coherent motion field estimates
with angular errors of less than 1 degree and endpoint error of less than 0.2 pixels.
Furthermore, compared to its predecessor the addition of the stereo data in the estimation
process leads to an increase in estimation accuracy as well as in computational efficiency
since in order to achieve the same accuracy the proposed algorithm required almost
15.90% less data in order to estimate the transition coefficients, compared to its single

camera predecessor.

6.2 Future Work

6.2.1 Proposed Image-based Monitoring System

As far as the proposed monitoring system, the system will be tested in more river mon-
itoring cases in order to further examine its accuracy and assess the role of each of its
parameters in the deviation on the velocity estimate. Moreover, testing of monitoring
under various weather conditions, will allow us to assess its performance based on the
weather condition factor, since so far the system has only been tested under ideal weather
conditions.

Moreover, more elaborate pre-processing and post-processing will be performed on
the observed data in order to reduce the affect of noise or extreme illumination variations
on the estimated motion field. Techniques such as histogram equalization and motion
vector filtering have already applied at the current version of the system, however, the
methods used are basic and more problem-focused ones are expected to further increase

the accuracy.

6.2.2 Stereo-based Probabilistic Optical flow Method

Since the proposed algorithm is a variation of the one presented in our earliest work,
future variations on this that will allow us to further increase its accuracy and com-
putational performance follow the same pattern as the suggestions made for its pre-

decessor(Bacharidis [2]). For example, the use of shifting windows for the candidate
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neighoborhood based on an similarity measures will allow the algorithm to detect larger
displacements, thus increasing the algorithms accuracy in cases of high-speed fluid flows.
Another approach is to change the basis function used to define the conditional proba-
bility of motion, i.e. functions whose data representation resembles the examined motion
style can be used, allowing a more problem-specific motion field estimation method that
increases the accuracy. Finally, concerning the problem of increasing the computational
performance of the algorithm one solution is to perform the data computation on Fourier

space domain.
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