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Ou Navier-Stokes peucToSuVOUIXES EELOWOELS VL0l AOUUTIEGTES 1| CUUTIECTEG POEC Elvo
YVWOTEC Tor TEAEUTOLA EXOUTO YEOVIoL. O UN-YRoUUIXOC YORaxXTHEAC TOUS xorio Td adivaTr TNy
VAL T ETEAUGT) TV TEOBANUATWY woviehonolnong, To oTola ToEOUGLELOVToL Yo TORAOELY UL
OTIg gpeLVNTIXEC Tieployég TNe Agpodlao Truixg, Blolateiic xou Eufounyovixic. Ou avoku-
Tixéc Mooel e€lowoewy xivnong elvol YVmoTEC HOVo yia €va TOAD TERLOPLOPEVO apldud GToL-
YELOODY POMV XL YioL ATAES YEWUETPIES PE OUYXEXPUIEVES apyxéc/oploxéc ouvifixec. Etot
elvon avaryxodar 1) yenom aerdunTxedy Yedodwy eTtAucng YLol TNV TEOGEYYLON TV AVCEWY TOUG.
Or apriuntinég autéc pédodol LAoTOWOVTUL GE GUYY POV UTOAOYLO TLXd TepLBdhhovTa tdlaitepa
Yl pEAALO TIXES EQopUoYES. ATd Tic apyéc Tou 1980 unhpde o UeYdAT avamTLET aELdUNTIXWY
ped6dwv enthuone npofinudtwy Pevotoduvauixrc (Computational Fluid Dynamics-CED).
Iapohauta, axduo xou oTIC PERES Wog, 1 avamTun udmArc oxpelfBetog apriunTixmdy oy nudtwy
eniluong twv e€lowoewy Navier-Stokes yio acuunieoteg poéc elvan avaryxoda yiol TV TEOGOUO-
lwomn yeydhou evdlapépovtog TeoBAnudtwy. I'a ntopddetyua, n poviehonoinon tne porc Yopw
o6 UBPOTTEQUYQ, TTEPUYES AVELOYEVYNTELY X0 OEROCHIAPAV, XATA TNV Olodxasia amoyein-
ONG XU TEOCYEIWONG, TNG PONG aluaTog xan PoHg Tou aépa YUPW omd TOUALY Xou EVTOUA XATA
7o méTaypa Toug. TEétola mEoBAuaTa pOMY UToEOVY Vol AVTIIETWTLOTOUY UOVO UE TNV Yenom
uhniic axpelfetag apriuntiney yedodwy. Ouwe, 1 uhniy axpeiBelo tou amouteiton avgdver ou-
vilog exdeTind Tov utoloyloTnd Yeovo eniluong. O cuvduacuog LPNAAC ToLOTNTIC TEOCO-
HOLWOEWY ACUUTIECTWY POWY Gt EDAOYO YEOVIXO BLACTNUN ATEXOVIOTS TWV TUYUTATOY POTC,
anoTéAesE TO %iVNTEO Yl TNV CuYYEUPY TN Tapodoog ddaxtopixig dlatpdhc. AvTixeiuevo
TNe anotehel 1) avamTUEY, AVAALCT) XU EQUPUOYT] EVOC ATOTEAECUATIXOU EMAUTY AOUUTIEG TWY
HETOPBATIXDY TURPWOMY POWY, 0 OTOlOE Vo EXUETIAAEDETOL TIC GUYYPOVES TONUETEEEQY OO TIXES
UTOMOYLO TIXEC OPYLTEXTOVIXEG UE ETULTOYLVTEC LTohoYlop®y. o tnv amodotxy aprduntixy
enihuon mpofAnudtey acuunieotwy powv €youy emxpathoel uédodol dloptnong tne mieong
xaL NG PeudocuumiesTOTNTAS, UE TNV OEUTERT Vo Unv evOeixvuton yioo un woviuee poéc. H
aprdunTx pédodog mou Yo avartuydetl Ya Baciotel otny eloaywyy| Tne nicong otny e&lowon
ouvéyetag (Lédodog SLoEdnone TEGNC) EVOWUATOVOVTUS TNV TEYVIXY TOMATAGY TAEYUSTOV
(multigrid technique) otov aprduntxd emiuth Swxpitonoinone. Ewdwdtepa, yiveton yeron
uPninc TéEne axplBelac cuuToy®Y AELIUNTIXWY OYNUATOY TETEQUCUEVLY BLUPORKY YL UETA-
Tomopéva TAéyuata dtaxpttonoinone (staggered grids). Teyvixéc maparknhonoinone tne emo-
VOANTTXAG OLadixaciog ETIAUGTC TOU TAPAYOUEVOU dEOLOY Kol YEVIXOU YEAUUUXO) CUC TAULITOS

eopuolovTon Yl TN amodoTx vhotolnon tng uedodou. To cuumay | oy HUUTO TETEPACUEVGDY
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Slopopwy (compact or implicit schemes) éyouv to mAcovéxtnua, 6Tl emTUYYEVOLY GE UiXEo
£0po¢ TAEYUOTOC PEYaAUTERT TAEN oxp(Beloc, o Oyéan Ue ToL XAUCIXA Y UATO TENEQUCUEVLV
otapopwy. H btotnta auth elvan ypriown yia TNV €QUEUOYT TOU CYNUITOS XOVTA GTo OpLaL
Tou uTohoYloTixoU ywelou. Mia xawotouio Tng mpotevouevng uedodou eivon 1 emBolr onolo-
oYmote eldouc ouvoploxdv cuvinxdy (Dirichlet, Neumann, Robin and mixed cuvoplaxéc
ouvirxec) otov apiunTixd emhuth. Erniong, oe avtideon pe 1o xhooixd oyfuota TeEnEpo-
OUEVWY BLIPORKY, 1) YPNOT) CUUTAYOV OYNUAT®Y EAAYLOTOTOEL TO TOCOCTO NG aELIUNTIXAC
0Ly uomg, EAXYLOTOTOWVTOG T OLopopd UETAUE) TROYUATIXGDVY Xl AELIUNTIXOY XUUATIXOV O-
eduwy oe OAeg TIC OLaBLOOPEVES 0TO TAEYUa ouyvotntec. H ehayiotonoinomn tne aprduntixrc
Otdyvong elvon emduunTh WBLOTNTA TOL aELIUNTIXOY GYHUUTOC, WOIXITERA OTIC TEQLTTWOELS TPO-
oOUOIwoNE apIUNTIXAC UETEBOONC XUUETOVY (T.)Y. OEQO-UXOUCTIXN Xal NAEXTEOUOY VATIOUOC),
ARG %o o€ TEOPBAAUATO UE EUPY CUYVOTIXO PAGUA 1 OF TEOBAAUATO TOU TEOYUATOTOLOUVTOL

TAUTOYEOVA GE EURU (PUOUNL Y WOELXWY HALUUXOY.

Yy apyn e mopodoug SLaTElfnc, TEQLYPAPETAL 1) XUTACKEUT) EVOC aplUUNTIXOU ETLAUTYH
yia edherntxod tOnou MAE otic 500 yopixéc Slac TIoELS, 0 0Tolog eivol IXOVOC VoL OV TIUETC-
nioet ITpoBruota Xuvoptaxov Twy pe avicotpotniec. To aprduntind oyfua elvon xatdhinio
YOl YEWUETEIXES DLUUERIOELS UE TOUC Ay VG TOUC XATAVEUNHUEVOUC OTO XEVTEO TWY UTOAOYLO TL-
%V xehmv (cell-centered grids). Emmhéov, yio ty eqappoy e teyvixic Iohunhéypotog
XATooXELALOVTOL TPWTOTUTIOL LYNANG axplfetag TeEAecTéC YeTagopds TS TAneoopiag and To
TUXVO OTO apad TAEYUN xaL avTioTpoga. Ewddtepa, ol Tehectég autol eunAéxouy AyoTepES
oprdunTég Tedéelc oe oyéon ue Toug ouvntiopévoug yia cell-centered diaxpitomoloeig. X
OLVEYEL, YeNotLoTolvTag avdhuon Fourier oe tomixd eninedo, dnhady| oc eninedo uTohoYL-
oo xehov, TopdyovTon VewenTixd AmOTEAEGUATA CUYXAONG TN TEYVIXNS TOAUTAEYUAUTOS
Yiot T0 TEOTEWOUEVO oprdunTixd oyfuo. H avdivorn auty emxevipwveton 1660 6Ny EMAOYT
e pedodou yahdpwone, 660 xou oTa UTOhoLTa Pépr Tou cuviétouy TNV Tex Vx| TlohumAgy-
HoTog, Ye oxomo T Pehtiotonomon twv puiuny abyxhiong tou emAutr. O TpOTEWVOUEVOS
aErIUNTNOS EMAUTHS UEAETATOL OE 600 TEOPBAAUATH SOXWAC, HOoTE Vo emBeRanwdel 1 T8N o-
xp(Betag yia xdie emhoyn cuvoploxdy cuvinxmy. Eniong, untoloyiCovton ot puduol obyxiiong
¢ HoAumheypotinric pedddou yior GAOUS TOUG YVWOTOUS TEAEGTEG UETAPORAS, CUUTERLAUSA-
VOUEVOU X0l TV VEWY TEOTEWOUEV®Y TEAEGTOV. Ot Yewpnuxol puduol cbyxhong Peloxovton
O€ CUUQWVIA UE Ta avTioTOLY O aELIUNTIXG ATOTEAECUATA, TOREYOVTAS CYETIXY| ACPAUAELDL VLol
v emAoYY Twv Pacxev cucTatixwy g TeYVxc IlohumAéypatoc. Emnpdoldeta, ol mopa-
tnenveioeg pudpol chyxAiong elvon onNuavVTIXd XAAVTEROL GE GYEDT UE AUTOUS TV aptiunTind
CUUTAY OV OYNUdTeVY delTepne TAENg oxplBelag, Ve TauToyEOvVa UTopoLY Vo cuYXedoly ue
Toug PUIHOUC CUYXAIOTC TTOU UTOPEL XATOLOC VoL ETUTUYEL OE DLAXQLTOTOLACELS, OTAV OL Ay V-
OTOL XUTAVEUOVTOL OTIC XOPUPES TWV UTOAOYLOTIXWY XEMWOY (vertex-centered grids). To véo
oaut6 oyfua e Hohumheypatinrc uedodou epopudletar ye emtuyio oe cell-centered Slaxpl-
Tomotnoelc Yot uPniYc axpifetag uedddoug. Tavtodypeova ue v npoondeila PehtioTonolnong
e tey v HohumAéypatog Tou apriuntixod oyfuatog, Uehetdtar xou 1) Sladixacio eTAvong
TOU TRy OUEVOL YROUULXOU GUC THUATOS UE TNV CUYXQELTIXT EQUQUOYT| TV TLO ONUOPIAGDY ETA-

VOANTTIX@Y pedodwy. To cuyxeltind anotehéouato Tou ToEoUGCLALoVToL AVaBEXVUOUY TNV -
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voryxoudTnTo Yenong e texvixng HoAumAéypatog yio mpoBArjuota Tou cUYXEXELUEVOU ElBoUC,
ool mopatneninxe pio aflOAoYT Pelwor 6To YpoVo ETIAUCTC TOU YEOUUIXOU CUC TAHUATOS, OE
oUYXELOT PE TNV ATOBOTIXOTERY Xhaouxy| enavainmTixy| pédodo emivong.

O rnpotewvouevoe aptiunuxdc emhutrc Tov eélowoewy Navier-Stokes unopel vo avtipe-
TwToeL xavomonTxd TEOBAAUNTH UN-o0Tadep®dy acuUTETTOY POWY, To ool ToEouCIALouv
BLOPOPETINT XATAVOUR TNS QPUOIXAC TOCOTNTAC OE dlapopeTixée dlevdivoele (aVIoOTPOTIES).
INo Ty Slopttomolnoy Twv YweoOY YETABANTOV YeNOWOTO00VTOL CUUTAYT) OYHUNTA TETE-
PUOUEVWY BLPOP®Y TETUPTNG TAENS, EVE YIoL AUTH TOU Ypovou 1) xAaotxn apltduntixy| pédodog
Runge-Kutta tétaptne té€ng. H aouvumeotétnta Tou peuctol egapudleton oe xdlde ypovixd
Briwo Tou aEriuNTXoL YEoVXoU GYNUUTOC Y€K NS ETAUONG EVOC EMAELTTIXOL TUTIOU TEO-
BAuotog pe oxomnd T Sloptwaon tng tieong xa enaxorovda Tou mediov TayutATwY. H anodo-
TixoTNTA 2o 1) axpifeta Tou apriunTixol emiuty) Navier-Stokes emahndedeton yia mpofiruota
0OXUWY CTAIEQOY Ko UETABAAOUEVWY Ypovixd powy. Emnpdoveta, o mpoTetvouevog emi-
AuThC oTa TeoPBAaTa Soxiunc BEATIOE oNUavTIXd TOUC YEOVOUS EXTENEONC TNG ETMLAUOTC
Twv Navier-Stokes. YTi¢ Teplo00TERES TEPITTWOELS, 1) VEO P€V0DBOC UE TN YPNoN TNG TEYVIXNC
[ToAumhéyuatog emtdyuve TN Sadixacior ETALONG TdVE amd BEXA PORES.

Ou petprioeic ambédoomg Tou adyopiluou avadexviouy 6Tl yia TeoPBAfuaTa Yeyédoug dla-
xpLtonoinong péyet 256 X 256 LTOAOYICTIXDY XENGDY, 1 EVOWLULTWOT TNS TeYVIXAC TTohuméy-
HaTOg aVTIHETOTILEL Ye emTUY (o TOV AUEAVOUEVO YpOVO EXTEAEOTC TOU amautelton. 267000,
Y1 UEYUADTERES BLOXELTOTIOLACELS TOU Ywpelou, oL onoleg ypetdlovTon UxpoTepa Yeovixd Briua-
Ta SLoxpLtonolnong, To UTOAOYIGTIXG XOOTOC AMOTEAEL VALY AMOTEENTIXG ToEAYOVTA Yial TNV
eniluon peoloTix®v tpoAnudtwy. Enlong, unoloyiotnxe 6t 1 mo ypovoBopa dladixacio
Tou ahyopluou etvor auTh TNne SLopdwone tng mieong. Autd umrple To xvnTEO Yio TOV E-
Tavooyedloud tou ahyoplduou enthuone twv Navier-Stokes xaw v avdmtugn evog amodo-
TixoU mopdhhnhou alyoplduou yia clyypoveg LTOAOYIOTIXES apyttexTovixés. Lo v addn-
on e napodAnionoinone Tou ahyopiduou yenowwonotiinxay texyvixéc énwe: 1) avadidtadn
WY XOUB®V TOU TAEYUATOS oVUQV PE TO oyAua opadoroinong xéxxwvou-padpou(horizontal
red-black ordering) pe oxoné v aveZoptnronoinon ouddwyv ayveoTtwy xou 2) 1 uédodog
Block Cyclic Reduction yio tnv emitdyuvorn tng enthuong TwV OUUBOTOMUEVODY YROUUIXWY
UTO-CUCTNUATWY. Ol TeEYVIXéS auTéS eQapudoTNXayY Yio Vo unv auéndoly to Bruota extéhe-
ong tou oelptaxo’ akyopliuou. H xatdhAnhin opydvwor TV UTOAOYIOUMY EXUVE EQIXTY TNV
exTéAECT) OANG TNG UTOAOYLOTIXHC TROCOUOIWONG GE GUOKEUT| EMLTAYUVONC UTOAOYIOUWY, UE
AMOTENEGUA TNV UELWTT GTO EAGYLOTO TOU XOGTOUG ETXOVWVING UETAUEY TNEG xVPLIC UVAUNG TOU
UTIOAOYLO TIXOU GUCTAUATOC Xl TNS UVAUNG Tou emitoyuvTy. Emniéov, n npotewvouevn diadi-
xaoio Tapakhnhomoinong expetahheteton TNV enavaaufovouevn block dour| tTou mivoxa Twv
CUVTEAEG TRV, EAUYIC TOTOWWVTAS TIG AMAUTAOEL oE anoUnxeuTtind yweo. H vionoinon tou na-
edAAnAou ahyoplduou mpaypatototfinxe oe tepBdihov avdntuéng tou Teotinou OpenACC
%0l BOXUUAC TNUE OE TEELC UTOAOYLO TIXES APYLTEXTOVIXES XOWNAG UVAUNG UE BLOPORETIXMY TOTWY
emtoyuvtée. Ta amoteréopota amdd0oomG TOU TEOTEWOUEVOL alyopliuou eivon TOAD eviop-
EUVTIXG, aol o Tapdiiniog Navier-Stokes emAuTrg emiTuyydvel pLo ETLTEYLVOT) UEYOADTERT)

am6 10 @opéc oe cUyxplon Ye TNV CElplaxy) uhoTolnon Tou xau 4 QopEC OE OYEoT) YE TNV
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vhomoinom o€ %xOWNG UVAUNG TOAUETEEERY UG TIXES JEYLTEXTOVIXES Ywplg OUWS TNV Yehon &-
mroyLvToyv. Enlong, 1 epoppoyn tou o TpolARUATO UE UEYTAES OVICOTEOTIES AVEDEIEE TNV
urepoy ) Tne Hohumieyuatinrc yedodou, TOL YENOWOTOLEL TNY TEYVIXY| TNS NU-0EalwCTNE TOU
TAéypatog otny Biedduvon Tou TaEOoUCLAlETAL 1) AVICOTEOTIN OE GYECT UE TNV TEXVIXY NG
TAREOUC-apalwoNg TOU XaL GTIC VO Ol TAGELS.

Mépog TwV gpELYNTIXOY ATOTEAECUTWY NG Topolous dlateBnc €yel dnuooteudel ot
TEAX AT OLEVVY| TEQLOBIXS XOU ETUGTNUOVIXE CUVEDELAL
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Av xou n mopodoo epeLVNTIXY SLadIXUCId ETIXEVTPWVETAL OE TEOBANUOTA OPLOUEV OE Ol
OLAOTOTOL XOPTECLOVE TAEYHATA, 1) EMEXTACY] TNG OF TEELS OLICTUCELS 1) O XOUTUAOYRUUUES
ouvtetaypéveg ebvan dueon. Autd cupfaivel BLOTL elvon €UXONN 1) EMEXTACT OAWY TWV BLadLX0-
OLOY TOU ToEayOUEVOU oAYoplduou, xod®g xon TNE EMTAYLVONE HECW TNG TEYVIXAC TONUTAEY-
uatoc. Emiong, n uédodog evdeixvuton yior petoatinés TUpBOOEC AOUUTIECTEC POEC UE TNV
uédodo mpocopoihoes THpPne yeydhwy dvayv (large eddy simulation LES), eved e ) ypfion
EUUECHY apIUNTIXOY YEOVIXWY UEVOOWY ot HoVTEAWY TOEPRNG Umopoly va dnutoupynioly

TPOGOUOLOOELS TLERWOWY POWY LPNATC o TOTNTOC.



Abstract

The Navier-Stokes equations, that govern the motion of an incompressible or compressible
fluid, were introduced more than a hundred years ago. Their nonlinearity leads to signifi-
cant difficulties, sometimes insurmountable, when trying to find an analytical solution. In
order to obtain an exact solution, specific geometries and initial/boundary conditions must
be considered. In more complex situations, such as applications in fluid structure inter-
action, low speed aerodynamics, biomechanics etc., the application of numerical methods
may provide reliable solutions for the Navier-Stokes equations. Furthermore, the necessity
for a fast high-resolution numerical solver for the incompressible Navier-Stokes equations
emerges from real-life simulations, such as flows over hydrofoils, wind-turbine blades, and
aircraft wings during takeoff and landing. Thus, the objective of this thesis is to develop,
explicate and demonstrate the performance of a highly efficient flow-solver, which exploits

the computational power of architectures with computing accelerators.

In the first part of this thesis, and after the preliminaries, an elliptic PDE multigrid
solver is developed and demonstrated. The solver is capable of handling highly anisotropic
2D Boundary Value Problems (BVPs) and is based on high-order cell-centered Finite Dif-
ference Compact schemes and Multigrid techniques. Compact schemes provide a repre-
sentation of the shorter length scales, when applied to problems with a range of spatial
scales, compared to traditional finite difference approximations. An improvement of the
proposed method is the treatment of PDE boundary conditions. Boundary closure formulas
for Dirichlet, Neumann, Robin or mixed-type boundary conditions applied to the physical
boundary are derived and tested herein for several simulation problems. Moreover, novel
multigrid components for cell-centered discretization are being constructed, which could
also be generalized to three dimensional problems in a straightforward manner. In partic-
ular, the new intergrid operators involve less non-zero entries than common operators in
cell-centered grids, preserving at the same time the accuracy of high-order operators. Next,
some theoretical convergence results for the multigrid solver using Local Fourier Analysis

(LFA) are given in order to improve its multigrid convergence factors. The analysis focuses



on both the relaxation method used within the multigrid, as well as in the remaining com-
ponents of the multigrid method. The proposed multigrid elliptic solver is evaluated on
two classical BVPs, so that the fourth-order accuracy of the solver, as well as the boundary
treatments, could be validated. The multigrid convergence rates for every acknowledged
transfer operator, along with every novel one, are evaluated as to determine the conver-
gence behavior of the corresponding multigrid solver. These results are also compared to
the theoretical convergence factors based on the LFA. The concordance of the analytical
and numerical results is acceptable. A comparison between the calculated convergence
rates to the corresponding values, obtained from the second-order compact scheme, indi-
cates the superiority of the high-order compact scheme. In addition, these convergence
rates are as good as the factors one obtains from the vertex-centered case. It is noted,
that the cell-centered multigrid numerical analysis is presented for a high-order scheme,
opposed to earlier studies. Along with the investigation on the improvement of multigrid
techniques for the high-order scheme, iterative methods are also tested for the resulting
sparse linear system and compared with the multigrid numerical solver. The comparison
results indicate the necessity of a multigrid solver for this kind of problems, as it is proved
to be hundreds of times faster than the optimal iterative method when fine discretizations

are used.

The proposed spatial discretization solver is incorporated in an effective Navier-Stokes
solver capable of handling highly anisotropic flow problems. The solver is based on the
pressure-velocity coupling and uses fourth-order compact schemes for discretizing each
spatial dimension, formulated on a staggered grid arrangement. The temporal discretization
is carried out by a fourth-order Runge-Kutta (RK4) method. Incompressibility is enforced
at each time step using a global pressure correction method solving a Poisson-type PDE.
In this method, the multigrid solver is being used within each stage of the RK4 method to
compute the pressure correction. The spatial and temporal fourth-order accuracy of this
Navier-Stokes solver are validated for a set of steady and unsteady classical test problems.
Further, the performance results indicate that multigrid accelerates the solution procedure

more than 10 times, comparing with other solvers in the literature.

The numerical study of the sequential Navier-Stokes solver evince that, in cases of grid
sizes up to 256 x 256, the incorporation of the multigrid scheme handles the increasing
execution time moderately. However, in case of finer grid sizes, the computational cost
becomes intolerable despite the high convergence rates of the Multigrid method. It is noted
that the most time-consuming part of the solver is the pressure correction procedure. This
time restriction gives motive to redesign and develop an efficient parallel multigrid based
Navier-Stokes algorithm, to exploit the benefits of modern parallel computer architectures

2



with accelerators. In order to increase parallelism at each computing phase of the algo-
rithm, the horizontal red-black coloring scheme for grid nodes is chosen. The Block Cyclic
Reduction method is also applied for the solution of the arising linear sub-systems, without
modifying the multigrid cycling nature in the algorithm. This enables the execution of the
entire simulation in the acceleration device, minimizing the communication cost between
memory units. In addition, the proposed parallelization exploits the block structure of the
coeflicient matrix, minimizing data storage and increasing again the parallelism. The solver
is implemented and examined on three parallel machines with different type of accelera-
tor devices. The realization is developed using the OpenACC and OpenMP APIs. The
effect of several multigrid components on modern and legacy acceleration architectures is
investigated

Application’s performance investigation demonstrates that the proposed parallel multi-
grid solver accomplishes an acceleration of more than ten times over the sequential solver
and more than four times over multi-core CPU-only realizations. In case of highly anisotropic
problems, the parallel semi-coarsening multigrid solver is preferred to the full-coarsening
one, as the division of labor by the accelerator device provides faster computational rates, in
case of non-uniform discretizations. Several scientific parts of this thesis have been already
published in
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grid cell-centered techniques for high-order incompressible flow numerical solutions”,
Aerospace Science and Technology - AESTE, vol. 64, pp. 85-101, Elsevier, 2017
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MultiGrid accelerated high-order pressure correction compact scheme for incompressible
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Equations, Proceedings of The World Congress on Engineering 2013 , pp74-79
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3) V. Mandikas, E. Mathioudakis, N. Kampanis and J. Ekaterinaris, "High-order accu-
rate numerical pressure correction based on Geometric MultiGrid schemes for the incom-
pressible Navier-Stokes equations, NumAn 2010 - Conference in Numerical Analysis 2010
- Chania, Greece, pp. 198-203.

The proposed numerical algorithm can be easily extended for the case of three dimen-
sional flow problems, on curvilinear coordinates, expanding the applicability of the current
methodology. Furthermore, the proposed numerical methodology can be applied for solv-
ing comparable problems, e.g. Maxwells equations. The design of a parallel algorithm for
the utilization of a Heterogeneous Multi-Accelerator architecture using the MPI, OpenMP

and OpenACC APIs, is considered to be a promising improvement.
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Chapter 1

Preliminaries

The present chapter provides information about discretization approaches of second-order
scalar 2D Partial Differential Equations (PDEs), introducing the reader to the mathematical
concepts used in the following chapters. The case of the elliptic boundary value problem is
accentuated, as this particular type of problem is being used in the development of multigrid

techniques.

1.1 Boundary Value problems

Let us consider the linear differential equations Lu = f in a domain Q c R2, where

Lu = ayjuy, + aiolyy + Gty + a1ty + asity + aolt (1.1)

with the coefficients functions a;j, a;, ap, for i, j = 1,2 and the right-hand side function f
that may depend on x,y. Defining the discriminant to be a%z — 4ayay;, the properties and

the behavior of the solution depend on the type, as classified below:

e If a?, — 4ay ax > 0, the equation is called hyperbolic.

o If a?z —4ay1ay, = 0, the equation is called parabolic.

19



20 1.2. DISCRETIZATION APPROACHES

o If afz —4ayay, < 0, the equation is called elliptic.

Scalar linear boundary value problems are defined as

L%u(x) = f*(x), xeQ 12)

L'u(x) = f1(x), xeTI :=0Q,

where x = (x, y) and Q is a given open bounded domain with a boundary I'.

1.2 Discretization approaches

The differential equations to be solved in this thesis are assumed to be discretized on a
Cartesian grid type. The Finite Difference Method (FDM) is often used in this type of
grids, whereas the Finite Element Method (FEM) and the Finite Volume Method (FVM)
are widely used in the context of unstructured grids. Herein, FDM is considered as the
discretization method in favor of differential equations. The FDM method is based on
approximation schemes for the partial derivative components of the BVP (1.2). These
discretization schemes use a set of grid points of the discretized domain 2.

The discretized equations are often defined at the same points as the unknowns within
a grid. The arrangement of the unknowns may be applied in one of the following three
ways: vertex-centered, cell-centered and by taking different points for the different types of
unknowns (e.g. staggered grid). Examples of the vertex-centered fashion, the cell-centered
and the staggered Cartesian grid are provided in Fig. 1-1. In this thesis, the focus is drawn

in discretization schemes based on the last two grid types.

1.3 Discrete Boundary Value problems

The numerical solution of the BVP (1.2) on Cartesian grids using the FDM, seeks after an

approximation uy(x, y) that satisfies the discrete BVP (1.2),



CHAPTER 1. PRELIMINARIES 21

Llup(x,y) = f2(x,y), (x,y) € Qy

LI};uh(-xay) = f}l;(x’y), (xay) € 1—‘h-

(1.3)

with a discretization step h.

 —o o0 o

e o @ [
 —o—0 0o

e | o & [ ]
*—9 o o &

(a) (b) (c)

Figure 1-1: Discretization grid types: (a) a vertex-centered; (b) a cell-centered; (c) a staggered.

In particular, in a cell-centered uniform infinite grid type

1 o1 ..
Gy, = {(x,y):x:x,-:(l—E)Ax, y:yj:(]—E)Ay; i,jeZ}. (1.4)

where h = (Ax, Ay) the vector of the fixed mesh sizes, Q;, := QN Gy, and ', := dIQ N Gy,

The BVP (1.3) may be consicely written

Lyup = fr () - (1.5)

The terms uj, and f, are grid functions of the continuous counterpart functions u and f on
Q;,. The linear space of all grid functions, that act on €, is defined as G(€2;,). Thus L, is a

linear operator

Ly : 5(€) = 5. (1.6)

It shall also be noted down that, Eq. (1.5) can be represented as a system of linear algebraic
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equations or as a single grid equation.

The Euclidean inner product for functions u, v

<Ll, V>2 =

D un(x)vi(x) (1.7)

erh

#Qh

where #€), is the number of the grid points of €, and the induced norm

lunllz = V<utn, wn)2 (1.8)

allows the comparison of grid functions in different grids. In case of the discrete operators

Ly, the corresponding operator norm is the spectral norm given as

WLalls = yJp(LaLy) (1.9)

where L; is the adjoint of L, and p is the spectral radius

p((LyL;) = max (|4]; A is eigenvalue of L,L;) . (1.10)

When in practice, the infinity norm

lluplleo = max {lu;(x)] : x € Qp} (1.11)

is frequently being used.

1.4 Stencil Notation

In case of a Cartesian grid, the use of the stencil notation is considered to be a quite con-

venient technique to define discrete operators, e.g L,. The operator L, can be defined on
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G(€y) as

L (x) = Z Cauy(x + kh), x€Q, (1.12)

keJ

with coefficients £, € R and a certain finite subset J C Z2. When gathering coeflicients £

in a stencil, L, can be written as

4
LAxé[flq]Ax = ... €1 & € ... A s LA)’é[sz]Ay =1 & (1.13)
-
_Ay
lery ton tan
Lpy=lbdn =1 ... f(_l’()) f(()’()) f(l’()) ee s (114)

t10) tooy Cao

in one and two dimensions, respectively. Some of the stencils that will be presented herein

using the FDM for the BVP (1.3) will be compact nine-point stencils

tern Lon Lan
Ly=[lln = [(_1,0) 5(0,0) 5(1,0) . (1.15)

t10) ooy tao
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13 14 15 16 IS 7 16 8 13 14 15 16
9 10 11 12 5 13 6 14 5 6 7 8
5 6 7 8 11 3 12 4 9 10 11 12
1 2 3 4 1 9 2 10 1 2 3 4

Figure 1-2: Ordering strategies for grid points (a) lexicographic; (b) point red-black ; (c) zebra

red-black

The points that are close to the boundary need their stencil notation to be modified. In

cell-centered discretizations, case which in this thesis is the basis, the modification of L, in

grid equations near the boundary is not straightforward, see in Fig. 1-1 subfigure (b).
Furthermore, this concrete definition of discrete operators is also convenient in the con-

text of the Local Fourier Analysis, which is essential in the analysis of the Multigrid Method

(MG) in Chapter 3.

1.5 Matrix notation

Discrete operators L; can be represented in a matrix form, i.e. each matrix row depicts the
correlation of an unknown to its neighboring unknowns. Thus, the discretization approach

produces a linear system of the following form

Au = b. (1.16)

where u and b are vectors in the finite dimensional vector space R** and matrix A €
R#%>#Y4 - The structure of the matrix A depends on the numbering of the unknowns (or
grid nodes). Standard ordering strategies for 2D applications are column- or row-wise
numbering of grid points (lexicographic ordering) and red-black ordering, either using a
checkerboard pattern (point-to-point) or in a zebra manner (line-to-line). Namely, in the

case of the red-black ordering, the rule that is followed: firstly, one should number the un-

knowns corresponding to the odd (red) grid points, and then the unknowns that correspond
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to the even (black) grid points. These three ordering types are illustrated in Fig. 1-2. The
linear system (1.16) in the case of the red-black ordering is provided. The corresponding
block matrix A contains the blocks Dgg and Dpgp, representing the red (black) grid point
correlation to the red (black) grid points. To this effect, blocks Hgp and Hpgg represent the

red (black) grid point correlation to the black (red) grid points.

= : (1.17)

1.6 Iterative methods

In a problem where the discretization is fine, the resulted linear system (1.16) is usually
sparse and large. Thus, the use of an iterative method is considered vital in order to solve
efficiently. The iterative process for the numerical solution of (1.16) can be described with

the following iterative scheme

u™D = 4O 4 79B - Au?) for i=0,1,2,... (1.18)

where T is a sequence of matrices and u is a sequence of the solution approximations,
whereas u© is an arbitrary initial approximation. Different selections of the sequence of
matrices T lead to different iterative methods. There are two basic classes of iterative
methods. The classical iterative methods are stationary processes (stationary methods), in
which the matrices T do not depend on the iteration count (7). If the sequence T involves
data that change in every iteration, the process is called non stationary (non-stationary

methods).
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1.6.1 Stationary methods

Stationary iterative methods are grounded in a coefficient matrix splitting, specifically A =
M — N, where M is assumed to be non singular. Then, a linear fixed-point iteration is

defined as

Mu™Y = Nu®” +b for i=0,1,2,... (1.19)

or

™Y = MU Nu® + M'p for i = 0,1,2,... (1.20)

The convergence of the iterative method depends on the properties of the matrix G =
M~'N, the so-called iteration matrix. The asymptotic convergence rate of the iterative
method, depends on the spectral radius of its corresponding iteration matrix G.

Asymptotically (i.e for i — oo) we have

llee — u™ Pl < p(G)llue — ). (1.21)

Thus, an iterative method is called convergent if and only if po(G) < 1. It should ben noted
that a smaller value of spectral radius leads to a faster convergence rate.

At this moment, five classical stationary iterative methods will be mentioned: Jacobi,
Gauss-Seidel, weighted Jacobi, Successive Overrelaxation (SOR) and Symmetric Succes-

sive Overrelaxation (SSOR) methods. Considered the matrix splitting type

A=D-L-U , (1.22)

where matrix D is the diagonal part of A and —L and —U are the strictly lower and upper

triangular parts of A, respectively. Classical iterative methods are defined as

— Jacobi (JAC) for M =D, and N=L,+ U,
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Gauss-Seidel (GS) for M =D, — L, and N = U,

weighted Jacobi (w — JAC) for M = Dy — wLy and N = wU,s + (1 —w)Dy

Successive Over Relaxation (SOR) for M = Dy —wLy and N = wUy + (1 — w)Dy4

Symmetric SOR (SSOR) for G = (D-wL)  (wU+(1-w)D)(D-wU) (wL+(1-w)D)

The corresponding iteration matrices are G'¢, G5, G’ (w), G (w) (or G39%) and G55 (w).
It is clear that the undamped methods (a),(b) are recovered from (c),(d), respectively, in case
of w = 1. Note that S OR is usually called the weighted Gauss-Seidel method.

A property of SOR attributed to Kahan [96] is given below:

Theorem 1.6.1 A necessary convergence condition of the S OR method is that |w — 1| < 1

(for w € R this condition becomes we (0, 2)).

Furthermore, a few general results on the SOR and related methods are presented below,

in case where A is a 2-cyclic consistently ordered matrix [79].

Definition 1.6.1 A matrix A € C"" is 2 — cyclic or possesses Young’s “property A” if there

exists a permutation matrix P such that

D, B
pAPT =| , (1.23)

C D,

where Dy, D, are nonsingular diagonal matrices not necessarily of the same order.

Definition 1.6.2 Let A € C"" be a 2 — cyclic matrix. Matrix A is considered to be con-
sistently ordered based on the partition (1.22) if 0'(D‘1 (a/L+ éU)) is independent of
a € C)\ {0}

Remark 1.6.1 Among others, matrices that do possess the “two-cyclic consistently or-

dered property” are tridiagonal matrices with nonzero diagonal elements, and, matrices

that already have the form (1.23).
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For the 2—cyclic consistently ordered matrices A, Young [102] proved that the eigen-

values ¢ and A of the Jacobi and SOR iteration matrices respectively, associate with A as:

Theorem 1.6.2 Let A € C"" be a2—cyclic consistently ordered matrix, u € o (D‘1 (L+U ))

and A # 0 satisfied the following functional relationship

M+ w - 1) = W1\ (1.24)
if and only if A € o (GSOF) \ {0).

It may be handily noticed that p(G%) = p*(G’4°), hence, it is expected that the Gauss-
Seidel method will be roughly two times faster compared to the Jacobi method, when the

latter converges.

1.6.2 Non-stationary methods

Non-stationary methods, unlike stationary methods, do not have a constant iteration matrix.

The most popular non-stationary iterative methods are listed below.

Conjugate Gradient method(CG method)

General minimal Residual method(GMRES method)

Minimal Residual (MINRES method)

Symmetric LQ method(SYMMLQ method)

Biconjugate Gradient method (BiCG method)

Biconjugate Gradient Stabilized (Bi-CGSTAB method)

Conjugate Gradient Squared (CGS method)

— Quasi-Minimal Residual (QMR method)
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— Conjugate Gradients on the Normal Equations (CGNE and CGNR methods)

— Chebyshev Iteration

This class of iterative methods construct the basis of a krylov subspace [101] where the

linear solution can be found.

1.6.3 Preconditioners

The condition of a system (1.16) is described by its condition number

K(A) = Al A7 (1.25)

in some appropriate norm. The convergence rate of certain iterative methods, e.g. Krylov
subspace methods, depends on the condition number of the coefficient matrix. Hence, the
concept of the transformation of the linear system into an equivalent - in the sense that it
accepts the same solution - but plain and with an improved condition number compared to
the original one, is considered meaningful. This procedure is defined as preconditioning.
There are a number of ways to apply this transformation. For instance, let M be a matrix

that approximates of A, the equivalent linear system has the form

M'Au = M b (1.26)

where M is called a (left) preconditioner of A. Eventually, electing the iteration matrix
of the aforementioned iterative methods as the preconditioner matrix for Krylov subspace
methods results to the Jacobi, Gauss-Seidel, SOR and SSOR preconditioned methods re-
spectively.

Block iterative methods (block relaxation schemes) are generalizations of the above

point iterative methods. They update a set of unknowns corresponding to a block, e.g.
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those associated to a line or a column in the discretization plane. There are certain cases,
i.e. problems where anisotropies emerge (caused by strongly varying coefficients of the

PDE) in which block relaxation schemes are more effective [50, 49].

il m‘\ i
7 iwl W\HH

A
u““ M' ‘{ti\l” e '

il
l
W (M’ll\ 0 \"!W'\!

i

5 } \‘ |\
i n, ,‘uu'\“\‘ \\\“

.
\
\

R
r;*#, .tm
I ‘#,1', i
i m.l\\

\‘

Error after 5 Error after 10

Error of F .
iterations

initial guess iterations

Figure 1-3: Influence of Horizontal Zebra Gauss-Seidel iteration based on the proposed discretiza-
tion on the error (Model problem).

1.7 Elements of Multigrid

The above-mentioned classical point or block iterative methods (e.g. Jacobi, Gauss-Seidel)
upgrade the initial approximation rapidly during the initial iterations, but convergence
slows down and the entire scheme appears to stall as the iteration count increases (see
Chapter 2 in [56]). In particular, although the global error decreases slowly with respect to
the iteration count, the error smooths down promptly (see Figure 1-3). The fact can be ex-
plained by expressing the error in a Fourier series expansion, segregating the low-frequency
(smooth) and the high-frequency (oscillatory) Fourier modes of error and exploring the way
iteration behaves on these error components. Consequently, it may be noticed that the iter-
ation eliminates the oscillatory modes of error while leaving aside the smooth modes. This

so-called smoothing property is a critical limitation of the convectional relaxation methods.
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However, it can be omited and multigrid is a way to remedy. The smoothing property of
an iterative scheme is adequately analyzed using Local Fourier analysis (LFA), also called
local mode analysis, introduced by Brandt [1]. It is an effective tool for the analysis of the
Multigrid process, even though it is based on certain idealized assumptions and simplifica-
tions: Boundary conditions are neglected and the problem is considered on infinite grids
Gy,. Details and a thorough description of this kind of “smoothing analysis” are given in

Chapter 3.

1.7.1 From Defect correction to Coarse-grid correction

For any approximation uzi) (after i iterations) of the solution u;, in the discrete problem

Lyuy, = fi, (1.27)

we denote the error by eﬁf) = uy, - ug) and the defect (or residual) by rﬁl") = f - Lhugf).

Using these definitions, it can be verified that the de fect equation

Ly = r?, (1.28)

is equivalent to the original equation since u;, = ug) + eif). In order to introduce the two-grid
idea (that leads to the multigrid method), the beginning is set from a general iteration for
solving the defect equation. This process can be presented by the following procedural

formulation:

i) i ) (@ ) ) @)
ug - =f - Lhuﬁl’ — Lhehl) = r;l’ - uy, = ug +e)

However, this procedure is not a meaningful numerical process. Consider now that L, is
approximated by the operator Ly, such as Z;ll exists. In that case, an approximation solution

of the defect equation (1.28) can be obtained solving a “similar problem”
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Liel = r?, (1.29)

Using the above solution, a new approximation of u, may be estimated by

G+ _ @ 40 _ O 71,0 _ 0 T-1 0]
w, " =u, +e =u +L;r" =u +1L, (fh—Lhuh)

(Ih —’EZIL;I) I/t;j) +E;1fh (130)

and, then, the procedural formulation turns up as

: , —— : — —
ug) -9 = f - Lhu;;) - Lhe;l’) = rg) - ufz” ) = ”2) + eﬁq’)

Commencing with some initial approximation uglo), the successive application of this pro-
cess leads to an iterative method. It can be seen from Eq. (1.30), that its iteration matrix
is given by M), = I, — Z;th, where [, denotes the identity operator on §(€2;,). Since the
solution of the defect equation has been used to “correct” the approximation, this procedure
is called defect correction.

It is crucial to find a problem “similar” to the defect equation which comes cheaper
in terms of operation counts, in order to benefit from the above rewriting of the original
equation (1.28). An idea is the use of a coarser grid Qg (H < h) and an appropriate

approximation Ly of L. Thus, the defect equation is replaced by

Lpél) = 1y, Ly - S(Qy) — S(Qp) (1.31)

which can be solved faster for fewer grid points in Q.

Next, é;’? and rg) are grid functions on the Qy, allowing us to define two intergrid transfer

operators
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R G(Qu) = 5(Qu), Py - 5(Qu) = S(Qy). (1.32)
The restriction operator R} is applied to “restrict” r (’) to Qy:
ry = RiE) (1.33)

Then, the correction e ) is transferred back to the fine grid Q,, using an interpolation

(prolongation) operator P;':

&) = Pyey) | (1.34)

This interpolated solution of the coarse-grid defect equation is an approximation of the

fine-grid defect equation. It is being used to ammend the fine-grid approximation.

Altogether, one-coarse grid correction step (calculating u,‘“) from u(’)) takes place as

follows:

Coarse grid correction " — "

— Compute the defect (or the residual) r(l) fn— Ly u(’)

— Restrict the defect (fine-to-coarse transfer) (’) =R r,(j)

— Solve on Qpy Lye A(‘) E_’])

— Interpolate the correction (coarse-to-fine transfer) A(‘) Ph/"(‘)
(l+1) (ORINO)

— Compute a new approximation =u, +é,
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However, the coarse grid correction process does not converge when applied indepen-
dently, as the spectral radius of the associated iteration operator K, = I;, — P};IL;RhH Ly is
> 1. This remark emerges as R]' maps into the lower dimensional space §(Qy) and sub-
sequently, Pl,L'RY is not invertible, i.e. PLL,'R¥Lyv, = 0 for certain v, # 0. Thus,
this approach has sense only when the coarse-grid quantities eg,) and rg,) are “reasonable”
approximations of the corresponding fine-grid quantities. As stated earlier about the error,
after a number of relaxation steps the high-frequency components smooth out and low-

frequency components dominate. Such smooth quantities can be approximated quite well

in coarser meshes.

1.7.2 Two-grid cycle

The development of multigrid methods for the numerical solution of an elliptic BVP (1.3)

is motivated by two basic principles:

1. Smoothing principle Many classical iterative methods (Gauss-Seidel etc.) if
appropriately applied to discrete elliptic problems have a strong smoothing

effect on the error of any approximation.

The other basic principle is based on the following observation: a quantity that is
smooth on a certain grid can, without any essential loss of information, be approximated
on a coarser grid as well, for instance a grid with double the mesh size (see Figure 1-4 (a))

while an oscillatory one is not “visible” on the coarser grid (see Figure 1-4 (b)).
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Figure 1-4: Smooth (a) and oscillatory (b) grid functions on €, projected onto a coarser grid Qg
(H = 2h).

2. Coarse grid principle A smooth error term can be well represented on a coarser

grid Qy, where its approximation procedure is substantially less expensive.

Switching back to the Fourier error components, it is rather evident that, only the low
frequencies are visible on Q, since all the high frequencies coincide with a low frequency
on Qp.

The above considerations imply that it is necessary to combine the two processes of
the smoothing and coarse grid correction. In other words: if we are sure that the error of
our approximation has become smooth (high-frequency components have been smoothed
out) after some smoothing (relaxation) steps, we may approximate this error by a suitable
procedure on a coarser grid. The baseline here is that smooth Fourier error components
on a fine grid appear to be more oscillatory on a coarse grid (see Figure 1-4 (a)) and, thus,
relaxation will be more effective.

To this end, one step of such an iterative two-grid method (calculating uﬁl"”) from uﬁf))
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proceeds as follows:

; @ +1)
Two-grid cycle u,” — u,

(1) Presmoothing

— Compute an approximation of u;, by performing v; steps of a given

@)

smoothing procedure (S') to u,

(2) Coarse Grid Correction (CGC)

(3) Postsmoothing

— Compute ug“) by performing v, steps of a given smoothing

after CGC
procedure (S ) to u;’ after CGC)

with the term smoothing procedure, an iterative method that possesses the smoothing prop-
erty is signified. That is why it is called a smoother. Out of the above correction scheme,

the iteration operator N}/ of the two-grid cycle can be estimated, given by the formula

N =SVK/'S)> with K, = I, - P4L; ' RIL, (1.35)

where S, is the iteration operator of the smoother.

1.7.3 Multigrid cycle

The multigrid idea is based on the concept that is not necessary the coarse-grid defect
equation to be solved precisely; an approximate solution produced by a few two-grid cycles
would do. Certainly, that can be put into practise recursively down to some coarsest grid,

leading to a multigrid method which is being carried out as follows:
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Multigrid cycle " = MGCYC(k, 1, u’, Ly, fi, vi,v2)

(1

Presmoothing

— Compute an approximation of uﬁf) by performing v, steps of smoothing

procedure (S,') to u,((i)

(2) Coarse grid correction (CGC)

— Compute the residual r,(j) = fi — Lku,((i)

— Restrict the residual O = R0

k-1 k
— Compute an approximation of “521 of the residual equation on €;_;
@) (@)

-1 =71

Ly-yu k-1

(%)

as

if k = 1 (coarsest grid), use a direct or fast iterative solver for Eq. (%)

if k > 1, solve Eq. (%) approximately by performing r (>) k—grid cycles

using the zero grid function as a first approximation

U’ = MGCYC(k = 1,7,0, Ly_1, ri1, V1, v2)

— Interpolate the correction
— Compute the corrected approximation on £

(3) Postsmoothing

(i+1)
- Compute u,

procedure (S %) to ul(f’aﬁer €6O)

@ _ pk-1,0)
e, =Py

k

by performing v, steps of smoothing

u(i,after CGO) _ () (i)

ey

l/tk +€k

A multigrid cycle calculates a new approximation u

(i+1)
k

out of a given approximation

u(ki) to produce the solution u;. The subscript k indicates the grid level with k = 0, corre-

sponding to the coarsest grid.
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Two-grid method: Three-grid methods:

R

Four-grid methods:

\f A\ W / 7\; /\ /\/

Figure 1-5: Structure of one multigrid cycle for different numbers of grids and different values of
the cycle index r (e, smoothing; o, exact solution; fine-to-coarse; /, coarse-to-fine transfer).

The parameter r specifies the number of cycles to be carried out on the current coarse
grid level. For r = 1 and r = 2, the multigrid-cycle refers to the V-cycle and W-cycle
algorithm, respectively, see Fig. 1-5. A combination of » = 1 and r = 2 used in practice
is called F-cycle [5] and is illustrated in Fig. 1-6. Furthermore, the algorithm that joins
nested iteration with a cycling strategy is called the Full multigrid (FMG) technique [1].
The general idea of a nested iteration is to provide an initial approximation on a grid by the
computation and interpolation of approximations on coarser grids. The structure of FMG

with nested V — cycle is illustrated in Fig. 1-7.

In order to define a unique multigrid method adequately, one should specify its compo-

nents: the number of the grids involved, the smoother, the number of the smoothing steps v,
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k=1 k=2 k=3

k=4

Figure 1-6: Structure of F-cycle.

/ = FMG interpolation

Figure 1-7: Structure of FMG with r=1 when using k=4(i.e. five grid levels).

and v,, the coarsening strategy which determines the coarser grids, the transfer operators,
the discretization operators in each grid. Since deciding on these components may have

a strong influence on the efficiency of the resulting algorithm, a local Fourier analysis is
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used to analyze the different behaviour as these multigrid components differ, targeting an
optimal component set. Therefore, a programming code based on LFA has been developed
to provide the theoretical framework necessary for the successful use of multigrid methods

in our model problem (see Chapter 3).



Chapter 2

Cell-centered compact Finite Difference

Multigrid techniques

Fourth-order compact vertex-centered finite difference schemes for 2D and 3D Boundary
Value Problems (BVPs) have been extensively studied in [60, 97, 98]. However, the litera-
ture related to high-order finite difference schemes compatible on cell-centered grids is still
considered insufficient. In this chapter, a high-order cell-centered finite difference compact
scheme is presented for elliptic BVP in case of equal and unequal meshsize discretizations.

The numerical scheme is coupled with multigrid techniques.

2.1 The Model Problem

The modified Helmholtz equation is used as the model problem over a rectangular bounded
domain Q, with proper boundary conditions defined on dQ. This BVP is often used as a
benchmark problem for the comparison of various numerical elliptic solvers. It can be

expressed as

Uee (X, Y) + 1y (X, y) — Au(x,y) = f(xy) , (6y)€QA1>0 2.1

41



42 2.1. THE MODEL PROBLEM

Y Y
EOR EaRh ahbb o------ @ ------ @------ °
ly b ! ! ! ! |
L] L] ° L] %0 - - ’é
. . . . ®-- Y
L] L] [ ] o (:9 - - ’4:)
° . . o é -- - {‘p
L : Ly .
0 X 0l | | | X
G--]-m- - R O mmm o ¢ ---n-- )
o computational nodes o computational mesh points

o fictitious mesh points
Figure 2-1:  Dircretization for N, = N, = 4 subintervals (left) and the corresponding computa-
tional domain (right).
The solution function u(x,y) and the right hand side function f(x,y) are assumed to

be sufficient smooth and have the required continuous partial derivatives (for example u €

C4(Q).

2.1.1 Domain discretization

This study employs the compact finite difference method as the discretization scheme for
the elliptic linear operator. Compared to the standard finite difference approximations,
compact schemes have improved resolution in wavespace [24, 51], i.e. compact schemes
provide better representation of the shorter length scales, when applied to problems with a
range of spatial scales, e.g. turbulent fluid flows.

A difference scheme is called compact, when it’s restricted to the patch of cells im-
mediately surrounding the given node and does not extend further. Alternately, high-order
accuracy can be obtained by explicit finite difference formulas. These formulas lead to
wider stencils, hence the resulting linear system has larger bandwidth. Additionally, the

non-compact form of the difference scheme is less convenient, especially near the bound-
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aries.

Taking a rectangular domain Q = [0, [, ]X[0, /;], the mesh sizes in a non-equal mesh dis-
cretization in each spatial direction will be Ax and Ay. Naming N, = [,/Ax and N, = [,,/Ay
the number of the uniform intervals along the x- and y- coordinate directions respectively,
the mesh nodes are written as (X;, ¥;) where X; = iAxand y; = jAy,0<i<N,,0< j < N,.
The cell-centered compact finite difference method seeks an approximation of the BVP
solution in the center node (x;,y;) of every computational cell with x; = (i — %)Ax and
yj = (—3Ayfori=0,1,...,Nc+1and j = 0,1,...,N, + 1. There are N = N,N,
centered mesh points (x;,y;) within €, which can be considered as grid points of a new
computational grid. The mesh points denoted by the indices i = 0, N, + 1 and j = 0, N, + 1
are fictitious, lying outside the computational domain Q.

Figure 2-1 presents an example of the primary mesh discretization (left) and the corre-

sponding new cell-centered computational mesh discretization (right).

2.1.2 Low accurate approximations

The second derivatives in Eq. (2.1) can be approximated with a second-order of accuracy

as

uxx'i,j = 5)2(141',]' + O(AXZ), uyyli,j = 651/!,',]' + O(Ayz), (2.2)

Uir1j = 2Uij + Ui Uije1 = 20 + U j-
Ax? Ay?
order central difference operators at every grid point (x;,y;).

where 62u;; = and 6ju;; = define the second-

Using these finite difference operators, Eq. (2.1) can be discretized at a given point (x;, y;)

as

S2uij + Ooui; — Auy; = fij+ O(lhIP), (2.3)

where h = (Ax, Ay), or, in a more compact form
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Lyuy, = fi + O(IAIP), 2.4)

where L, is the discrete partial differential operator L with

Lu=Au—- Au (2.5

on the rectangular grid G;,. O(||k|*) denotes the truncated terms in the order of O(Ax*>+Ay?),

1.e. consistency relations of the form can be derived

Lu — Ly = O(||h|?) for [|k]| = O

In a stencil notation, and under the assumption of equal mesh-sizes in x— and y—direc-

tion (i.e Ax = Ay = h), the discrete operator L, can be written as

Li=—=11 4-2 1 (2.6)

for (x;,y;) € Q) not adjacent to the boundary. The points near the boundary are treated in a
manner that will be discussed later.
It can be verified, that the second- order Central Difference Scheme (CDS) for the second-

order linear elliptic PDEs is compact for the model problem.

2.1.3 High accurate approximations

High-order of accuracy discretization schemes for the model problem can be obtained fol-
lowing two different approaches. The first one suggests the discretization of the Eq. (2.1)

with a fourth order central-difference scheme based on the fourth-order formula of the sec-
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ond derivative

—Ujy2,j + 161/!,'4_]’]' - 30”i,j + 161/{1'_1’1' —Ujp,j

Ueelij = AR + O(AxY). (2.7)

It shall be noticed that the above formula involves more unknowns compared to the corre-
sponding second-order, thus a wider, fourth-order accurate stencil emerges.
With the aim of a narrow stencil, an variant approach should be followed. Following the

derivation procedure in [32, 49] a fourth order compact scheme will be constructed.

The one-dimensional case

At first, the analogous one-dimensional model problem

Uy —Au=f (2.8)

is considered, where the second derivative u,, at a grid point x; is approximated using the
following central difference operator

2

A
Uxx = 5§M - T;uxxxx + O(AX4), (29)

where u,,,, refers to the 4th derivative’s evaluator at the grid point x;. In order to achieve a
fourth order truncation accuracy in (2.9), Eq. (2.8) is differentiated twice and the second-
order central difference scheme on f,, and u,, is applied. A second-order approximation of

U,.x has the form

Uxxxx = f o T Al
(2.10)

= 82f + A6%u + O(Ax?)

The substitution of (2.10) into (2.9) yields a fourth- order compact approximation for the

second derivative of form
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A 2
e = 8 — 1—’;(5§ £+ 26%u + O(Ax®)) + O(Ax*)

A 2

= %u - 1—;(5)% £+ A6%) + O(AxY) (2.11)
Ax? Ax?

= (1 =222 | 6%u — S262f + O(Ax).

The fourth order compact approximation for the one dimensional problem (2.8) can be

expressed as

Ax? Ax?
1= A= |6%u — “=&f — Au = f + O(AxY), (2.12)
12 12
which can be formulated as
Ax? Ax?
1= A== )62 — Alu =1+ ==& f + Oax*), (2.13)
12 12
or
A L\ A
1+°282) |[1-222)62 = 2|u = f+0ax™. (2.14)
12 12
The operator (1 + Al—)jéi)_l has a symbolic meaning only and the fourth-order compact dif-

ference discretization scheme is given by Eq. (2.12).
Therefore,
Ax? Ax?

-1
_ — = 2 I il AR 4
e — At (1+ > (5x) [(1 112)5x /l]u+0(Ax ). (2.15)

Similarly, an analogous symbolic fourth-order compact approximation operator for the y

direction can be produced

Ay L\ NG
tyy — At = (1 + —y(sz,) [(1 - /l—y)éz — A u+ 0@y, (2.16)

12 7 127
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The two-dimensional case

The model problem can take an appropriate form the following way

Eq.(2.15)  Eq.(2.16)

—_——
Ugy Uy — AU = [ S Uy — A+ uy, — Au = f— Au. 2.17)

The use of the symbolic fourth-order compact approximation operators for the quantities

Uy, — Au and uy, — Au in Eq. (2.1) leads to the following way of their expression

AY N A\ o
M+(1+§(5y) 1—13 6},—/1

Ax? L\ Ax?
(1+—x(5§) [(1—A—X)5§—A ]u
12 12 (2.18)

= f— A+ O(IhI),

where O(||h||*) denotes the truncated terms in the order of O(Ax* + Ay*). The application

of the symbolic operators gives the following relation

AY Ax?\
1+ — 1 —A——|6; -
( + 2 5y)[( A D oy —A4

Ax?
+(1+ =246
o[ 550)

Ayz 2
(1 —/lﬁ)c% —/l]lzt
(2.19)

Ax? Ay?
=11 =/t 2 1 =7 2 _ 4
( + B (5x)( + 12 5),) (f — Au) + O(||k||"),

which is equivalent to the subsequent

A, AP AN A, AX? AXPAY*
1+ —=—6,-41 -4 ou+|l+—0o,-4 -4 0
( 29" 12 144 )" 29" 12 144 )"
A, AX* A, AXP, AXPAY? 4
- A2+ =6, +—06 =1+ —=0; 0 -4 h|[").
( 10 O T o O H 70t 0t g | 4w+ ORI

(2.20)

A few steps after, the above equation can be expressed as
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A 5 A, A 5 A
1+E(5y—/lE (SXM‘F 1+E(5y—/1§ (lexl—/ll/l (221)
Ay? 2 Ax? 2 4 .
= (1 + Eéy + Héx f+ O(h|").

Here, O(Ax* - Ay?) is absorbed into the O(||h|[*) global term. The general fourth-order
compact approximation scheme for the Helmholtz equation after dropping the O(||k||*) term

and rearranging, can be formulated as

1 A 1
(67 +6)u+ E(Ax2 +AY)S30ou — E(Ax%ﬁi +AY S = f+ E(sz(si +AY’S8)f. (222)

Defining the mesh ratio as y = Ax/Ay and multiplying by 6Ax?, Eq. (2.22) leads to the

High-Order Compact discretization scheme (HOC)

AWy je1 + U1, jo1 + Wimy jer + Wiy jo1) + C(Uis1j + Uimy j) + bWy ji1 + Ui j—1)
(2.23)

Ax?
—a;juij = T(gfi,j + fisrj + ficrj + fijer + fij-1)s

with coefficients

a=1001+9") +41Ax%, b=5-—py - 8L =521 -8 G- (1122, for

i=1,...,Nyand j=1,...,N,.
In the specific case of 4 = 0 (Poisson equation) with equal mesh sizes Ax = Ay, the above

approximation formula can be written as
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Uisjat + Uit jo1 + Uiy jar + Uiy jor + AUy + Uimyj+ Ui jar + U jo1)—

Ax? (2.24)
20u; ; = T(Sfi,j + firrj + fiorj + fijer + fijo1),

This compact nine-point numerical scheme (2.24) is generally called “Mehrstellen”,
[57]. Several authors have made use of fourth-order compact schemes to solve elliptic
PDEs ([32, 63, 61]). In this thesis, the upgrade presented points out an improved touch to

impose realistic boundary conditions, described elaborately below.

2.1.4 HOC for boundary equations

The proposed cell-centered HOC difference equations to the boundary node with indexes
i = 1,N,or j=1,N, involve fictitious unknowns outside the domain Q. These fictitious
unknowns can be eliminated from the resulting linear system using appropriate boundary
closure formulas, applying Dirichlet, Neumann and/or Robin boundary conditions (BCs),

valid on the physical boundary.

Case of Dirichlet BCs

':. .._. :.. .... :‘. .:_

(a) (b)

Figure 2-2: The finite difference stencil with the weights of each unknown for Dirichlet boundary
conditions; (a) interior nodes, (b) nodes close to bottom boundary and (c) bottom-left node close to
the boundary.

In the first instance, the study seeks out compact high-order formulas for Dirichlet

conditions. Namely, Dirichlet boundary conditions are considered and applied on the left
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(x = 0) and bottom (y=0) vertices of the domain €, for convenience purposes. Similar
formulas apply for all other vertices.
Next, by considering the grid function ¢ with stepsize h and the function values ¢; = ¢(x;),

the fourth-order one-dimensional approximation formulas are developed as

Gt + ;3 = adi + bdiny + Chia + ddis, (2.25)
5 a 15 Ya 5 Ya a
h = s :———’b:— _—, = —— o dd:———
where a = free. a = e~ 16 P = 6T 16T 16 T 16 " 6 160
Especially when a = 0, Eq. (5.30) takes the form
5 15 5 1
vy = 16+ 161 — Tghi2 ¥ g3 (2.26)
Solving for the variable ¢;,
16 1
i = —Giy1 — 3Pt + bi2 — zPis3 (2.27)
5T 5
the above formula can be rewritten for the variable u; ; as
16 1 .
Uio = ?Mi’% - 314,',1 + Uip — gu,g fori=2, o N, —1, (228)
16 1 .
Ug,j = ?M%’j — 3141’]' t+us;— §M3’j for J= 2, ...,Ny -1 (2.29)

in the x- and y-direction, respectively. High-order difference formulas (2.28) and (2.29)
involve known values on the boundary and unknowns inside the domain Q. That way, the
totality of fictitious unknowns can be eliminated outside the bottom or left boundary for
any arbitrary HOC difference equation (i, 1), i =2, N, — 1 or (1, ), j=2,N, - 1.

The four fictitious unknowns adjacent to the edges of Q are being treated separately. For
instance, the following relation is being used to approximate the fictitious unknown at the

bottom left corner
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1
- 3I/t1,1 +Upp — §M3,3 . (230)

_ 16
oo = Sy}
Alternately, a more intricate formula that is based on the tensor product of the one-dimensional
formula (2.27), with respect to x— and y—directions, can be used. Namely, when writing

(Eq. 5.31) in the following form

h
¢(xi) = Sup(x) = ) | 5ep(xi + k7) (2.31)

K

6
-1
the stencil

Su=lsdn=12 -3 0 1 0 1] (2.32)

suggests the application of the above-mentioned formula. Using the Kronecker product of
the above vector, with respect to x— and y—direction, a new approximation formula for the

bottom left fictitious unknown can be obtained

256 48 16
Uoo =—zUy = ?(”1,% +ui,)+ ?(uz,% + 11 ,)
16 1
- g(ui% + M%J) +9u; ) +uxy + gum (2.33)

3 1
=312 +upy) + 5(”1,3 +uz;) — g(”z,s + Uzp)

that interprets the stencil
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[seln =[S ]ax ® [Se,1ay =

256
25

wiw

o o o o o o

[T

wlx

S o o o o O

W

_16
25 |

(2.34)

with k = (k1,k,) € Z? and h = (Ax, Ay) € R the spatial discretization (grid-steps) of the

computational domain. The other corner fictitious unknowns are eliminated in a similar

way.

Fig. 2-2 presents the stencil form of the fourth-order finite compact scheme for the Dirichlet

case based on the curtailed (restricted) closure formula. The dashed circles represent the

values of function u on the boundary.

Case of Neumann BCs

o

) X Z

\/
—O—r
pI .
(b)

Figure 2-3: The finite difference stencil with the weights of each unknown for Neumann boundary
conditions; (a) nodes close to bottom boundary and (b) bottom-left node close to the boundary.

A comparable elimination procedure can be followed in the case of Neumann condi-

tions. Linear equations corresponding to the bottom left vertices of the domain are derived,

while those on the rest boundary vertices can be similarly formulated.

For this end, the fourth-order one-dimensional approximation formula [24]
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¢l’-+% + a«/);% = (ag; + bis1 + ¢Pia + ddivs + epira)/ I, (2.35)
wherea/:free,a———+ﬂ, = g—%,c:§+%’,d: 25—4——ande— is applied,

selecting @ = 0 and resulting to

17 3 5 1
¢, N (——(bz 4¢i+1 + §¢i+2 - ﬁ¢i+3 + ﬂ¢i+4)/Ax . (2.36)

Solving for the nodal unknown ¢; variable, the corresponding u; ; unknowns can be ex-

pressed as
12Ay0u; 1 17 9 5 1
0= T T S5 UiL T S Ui2 T S5 U3 T S5 U i =2,..,N,— 1, 2.37
U0 =TT gy gttt gptia T gpthia ¥ gpthia Jor (2.37)
12Ax0uy; 17 9 5 1
S AT a; 2T pp T gt ¥ ppttay Jor j =2 Ny =1 (2.38)

in x- and y-direction respectively. It is should be cited, that the respective elimination
formulae for Neumann conditions on the right and the top boundaries can be derived from
(2.35) by reversing the signs in the variables from a to e but not that of a.

The nodal unknown u at the bottom left boundary corner is substituted with

12 duyy 17 9 5 1
=S JA + A+ — + — g 2.39
Uo,0 11 X y ok 22”1 ) Uzp — 22”3% 22M44 ( )
where k = —2* _j + —2__j and vectors i and j are the unitary vectors for each spatial
\/Ax2+Ay2 \/Ax2+Ay2
direction.

The relation (2.39) can be effortlessly written as
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Upo = — 77 + —ZUI T SZUp — —ZU33 TS Us4, (2.40)

12 ou 10u 17 9 5 1
o 2 227 2

— +

ox yoy 11
where vy is the mesh ratio. Alternatively, the tensor product of the one dimensional formu-
las (2.37) and (2.38) generates a new approximation formula for the left-bottom fictitious

corner. Using the stencil forms of these formulae and the Kronecker product, the extended

formula can be derived

14462u%% 1 Ou, 1 Ouy, Ou,1 Oui, Ouy1  Ouis
= ’ -102 = ) = 54(—— = 30 — =
100 =101 0x0y " 121[ ( ay " 0x ) ( oy " 0x )+ 3 oy " ox )
Ouy s Ouy
-6 ’ ’ 289 81 25 153
( dy ox )]+ 484[ g +olupy + 20uU33 + uss + (U2 +uzy)

—85(ui3 +uzp) + 17(u14 +usy) — 4523 + u32) + Mg + tan) — S(uz g + s 3)]

(2.41)

Contrary to Eq. (2.33), in the latter formula the mixed partial derivative is present at
the origin, and as a result, its application is a rather complicated procedure. Eq. (2.41) can
be applied right after the association of the term 6214%,% /0xdy to known function values of
u on the boundary.

Fig. 2-3 depicts the stencil form of the fourth-order finite compact scheme in the case of
Neumann boundary conditions, based on the closure formula Eq. (2.39); the dashed circles
represent the values of the derivatives of u on the 0€2. The interior stencil is independent of

the boundary conditions, hence it is omitted from the figure.

Case of Robin BCs

In case of Robin boundary conditions, the fictitious unknowns in the following manner.

Considering the following boundary relation
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ou
o) — =g, 242
u+ E@n g ( )

for some non-zero constants ¢ and € and a given function g defined on the boundary 0Q.
Multiplying formulas (2.26) and (2.36) by ¢ and € respectively, adding them afterwards and
solving for ¢;, the fictitious unknowns orientated on the outside of the left edge of Q) can

be approximated by

ou ;
Up,j = (a/u%,j +,3a1 )/P(AX) + Q(l/tl,j, Uz j, U3 j, I/l4’j;AX), for 1 < J =< N, , (243)
3]

where P(Ax) is a function of Ax and Q(u;1,j, Uirs, j, Uir3, j» Uisa, j3 AX) 1S @ quantity of compo-
nents of u based on the grid step Ax. Working in a similar way, a complete set of elimina-
tion formulae can be produced, in order to manage all the fictitious unknowns in the Robin

boundary conditions case.

Mixed BCs

When mixed boundary conditions in BVPs apply, the solution should satisfy the Dirichlet
or the Neumann boundary condition in a mutually exclusive way on disjoint parts of the
boundary. For example, if 0Q2 = I’y UI',, where I'; and I'; two disjoint parts of the boundary,

u verifies the following equations:

u_ =s
I

ou

on

, (2.44)
=1
I

where s and ¢ are given functions defined on those portions of the boundary. If it’s assumed
that I'; applies on the left and right edges of dQ and I'; = 0Q — I';, the unknown on the
outside of I'; can be handled by Eq. (2.29), while using Eq. (2.37) the unknowns on the

outside of I'; can be eliminated. Moreover, as both boundary conditions (Dirichlet and
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Neumann) are valid in the corners of €, the corresponding fictitious unknowns can be
approximated by Eq. (2.30) or, alternately, using the tensor product of the operators based

on Eq. (2.29) and (2.37). Then, the resulted formula can be written in a stencil form as

8 -3 1 -1
5 » 0 5 0 55
0 0 O 0 0 O
-8 15 -5 1
T »» 0 7 0 5
0 0 0 0 0 0
[seln = Y . . . (2.45)
55 2 0 2 0 110
0 0 0 0 0 0
136 -51 17 -17
% » 0 05 0 35
—192A 36A —12A 12Ay
55 . Ty 0 11 =0 ?y

It should be noted that the last row of the above stencil refers to the boundary values of
Ou/dy, which are known since the Neumann type of condition is considered on the bottom

edge of the boundary.

2.1.5 Right hand side discretization

The evaluation methodology for handling fictitious values of the function f(x,y) appears
on the right hand side of Eq. (2.23), is presented regardless of the boundary conditions. For
this, the discrete values of f are defined as f(x;,y;) = fi ;. The equations corresponding to
the nodes in the vicinity of the boundary contain a single fictitious value, except those that
correspond to the corner nodes, containing an additional one.

To set it straight, the first equation for (i = 1, j = 1) involves values fi and f; 1, while the
equation for (i = 2, j = 1) involves only value f; . All these values can be eliminated upon

the application of the fourth order approximation formula

¢i = 4¢ir1 — 60z + 4dis — Pira. (2.46)
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It is worth of mention, that the above equation does not involve values on the Q. There
are certain applications where function f(x,y) can not be determined or even defined on
the boundary, thus formula (2.46) fullfils this restriction. Fig. 2-4 represents the right hand

side of the HOC scheme in a stencil form.

.|
J

BN S

' 1T

(a) (b) (c)

1

Figure 2-4: The finite difference stencil with the weights for each value of function f independent
of the boundary conditions; (a) interior nodes, (b) nodes close to bottom boundary and (c) bottom-
left node close to the boundary.

2.1.6 The Stencil form

Using the infinite grid type

1 | ..

G, ={x,y):x=x=(- E)Ax, y=y;j=0{- E)Ay; i,jeZ}. (2.47)
the fourth-order compact scheme for the problem, when any type of boundary conditions
is applied, is simplified as

Lyuy(x) = Kj, f(X) at any x € €, (2.48)

Here, u;, and f), are grid functions of the function u and f on €, and L, and K, are linear

operators
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Ly, Ky (&) — 5(€0) , (2.49)

where G denotes the linear space of grid functions on Q. Eq. (2.48) can be represented
either as a system of linear algebraic equations or as a single grid equation.
For instance, Eq. (2.23) is equivalent to Eq. (2.48) for any interior equation. In this case,

the linear operators have the stencil notations

d ¢ d 1
L ! and K, ! (2.50)
= — — n = — . .
hE 2 b —a b h=5 1 8 1
d ¢ d 1
h h

For the boundary equations, wider stencils are obtained because the discretization scheme
involves more unknowns on the left-hand side and the function f needs to be estimated

more times on the right-hand side.
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2.2 Linear system solution

The HOC discretization scheme produces a linear system of equations. It is hereby assumed

that the grid points order comes in a row-wise lexicographical fashion. Then, the discrete

Eq. (2.48) for all interior points results to a sparse linear system

with the block structure

A, 4,
As Ag
0 As
0
0
0

As
As

Ag

Ay O
0O O
As O
O As
0O O
0 A,

Au = b.

Ag
As

—_

As

(2.51)
u; b,
[15) b2
u; bs
= : , (2.52)
uy, by,
Uy, -1 by,-1
| Uy, by,

where the coefficient matrix A is of N X N order, and N = N.N,. The vector u of the

unknowns and the right-hand side vector (RHS) b are both of order N. The basic-matrices

A, fori= 1,...,6and;fjf0rj: 1,...,4 are structured as

a

as

a

ag

as

as

as

(273

ag
0

as

0

ag

as

as

as

de

a

as

a

e RNoN: (2.53)
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It can be noticed that coeflicients a3, a4 and as, as in the first and last line of the sub-
matrices A; respectively have usually non-zero entries. Their presence results to the unabil-
ity to apply the Thomas’ algorithm [90] or the Cyclic Reduction algorithm [95] directly,
when solving the linear system. However, the elimination of these entries is feasible by
multiplying with a4/as the third equation and subtracting it from the first equation and so

on.

2.2.1 Special cases for matrix A

It can be shown, that, in the case of the same boundary conditions apply in all sides of the
domain Q , the matrices A\] are equal to A; for j = 1,...,4. Their entries are listed in Table

2.1 when Dirichlet boundary conditions apply around the domain

Table 2.1:  Entries of the basic-matrices for Dirichlet boundary conditions.

’ H a a as ay as ag ‘

e—47s ! u e V—e /

A] — t —e -3 + 10 O 5 w —e

Ay || §-2e 2s -5 0 s 2(u—e)
e—u s s s e—u

As | 5 ~10 1t 0 % 5

Ay 0 0 0 0 0 0
v s s

A5 3~ e S T 0 ) u-—e

Se / u e / e
Ag | w—F 2u-e -+ 0 u-5 -25s+2e)

where s = 1+9?, t=17y -7, u=5*-1,v=T9-5, w=Ty>+25, ¢ =
17-7y*, ' =5-9> vV =T-5y, w =T7+25y, e = AAX* .
In case of Neumann boundary conditions, the entries of these matrices are displayed in the

following Table 2.2
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Table 2.2:  Entries of the basic-matrices for Neumann boundary conditions.

’ H aq ay as ay ds dg
A _287s+227e r=3le S(e=2¢')  _2l+e V=22 __105e+w’
1 a4 a4 a4 a4 a4 22
A —62e 495 _ 55 5 3ls 31(u—e)
2 a4 a4 a4 a4 a4 22
S(e—u) _5s _5s _3s S(e—u)
Az 22 a4 a4 0 a4 22
u—e S S S u—e
Ay 22 a4 0 a4 a4 22
v 9s 5s s s
As m ¢ 2 4 4 2 u-—e
_2w+193e  9Qu-e)  S(e=2u) _2'+e  2w'—e  _
Ag 44 %) 34 4 2 2(5s +2e)

where s = 1+92, t=327y*-45, u=5y*—-1, v=237y*-27, w=237y*+135, t' =
327—45)/2, u’:5—72, v’:237—27)/2, w’:237+135)/2, e = AAX? .

An interesting comment regarding matrix Ay is that A4 is the zero matrix, when Dirichlet
BCs apply. Additionally, the structure of the basic-matrices depends on the applied condi-
tions. For instance, if Dirichlet BCs are assumed, then each basic-matrix is pentadiagonal
while in the Neumann BCs case every basic-matrix is eptadiagonal. These differences arise
from the application of different interpolation operators in order to manipulate the boundary
conditions. Wider interpolation schemes result to banded matrices with larger bandwidth.
For example, involving an additional node into the interpolation formula, the bandwidth of

the basic-matrices is increased by two.

2.2.2 Special cases of RHS

For the special case of a zero function on the boundary, the vector b can be simplified to
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b] bl

2) (2)

b2 b2

b(23) b(23)

,where b;,b, b, = : forj=2,...,Ny—1. (2.54)

(Ny=2) (Nx=2)
b2 b2

(Ny—1) (Nx—=1)
b." b

b, b,

Tables 2.3 and 2.4 list the entries of those sub-vectors. If non-zero boundary conditions

Table 2.3:  Entries of the sub-vectors b and b, for zero boundary conditions.

L b b, |
b, 1611 = 5(f21 + fi2)+ 16f1.n, — 5(fan, + fin,-1)+
A(fs0 + fi3) = (fax + fr.4) A(fsn, + fin-2) — (fan, + fin,-3)
B 12fin + ficig + fivra— 12fin, + ficin, + firin,—
2 5fia +4fiz — fia 5fin-1 +4fin-2 = fin-3
™ 16fn.1 — S(fn-11 + fa.2)+ 16fo,N, - S(fNX—l,Ny + fo,N_V—l)+
: A(fn-21 + fas) = vz + fved) 402, + fven,-2) = (ve-sv, + fven,-3)

Table 2.4:  Entries of the sub-vectors b(zj) for zero boundary conditions.

L b} |
b, 12fi1 + fijo1 + fijs1 = Sfoj+ 4% — faj
bg) 8fij+ ficrj+ fisrj+ fijo1 + fijr

by | 12/, + fuoj-1 + fnejet = SIn-1j + 4 fn—2j — fn-3,)

apply, then the values of u on the boundary appear to the RHS of the linear system (2.51),
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since these values are known.

2.2.3 Horizontal zebra coloring scheme

For the resulted linear system by the HOC scheme, the horizontal zebra numbering of
equations and unknowns (see Fig. 2-5) is considered. The idea of reordering equations and
unknowns is equivalent to the application of a similarity transformation to the linear system

(2.51) via a permutation matrix P € RV The linear system
p y

PAP"(Pu) = Pb. (2.55)
has, now, the block structure

(A, A0 ...0 0 0A 4,0 ...000I]|[u | [b
0A60000A5A50000 uj3 b3
00A(,0000A5A5000 Us b5
O 00 ..A0O0|00O0..A0 0 ||u._s b;_s
O 0O ..0AO|0O OO .. AsAsO ||lu_; b;_s
000 ..00AO OO ...O0AsAs||uq| |by 2.56)
AsAsO ...0 O OlAs0 O ...0 0 O ||lw b, '
O AsAs... 0 O 0|0 AgO ... 0 O O ||luy by
O O0As...O O O0|0 O Ag... 0 O O ||ug bs
O 0O ..AAs0|0 O O ... Ac O O ||uxy bx_4
0000A5A50000A60 Ug_» bK—Z
(000 ...0AA0 00 ...0 AA ||lug | |bx

The pair of parameters (L, K) in the linear system (2.56) is equal to (N,, N,) for N, even
and equals to (N, + 1, N, — 1) for an odd value of N,

The above linear system can be partitioned as
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Ny
)

Ny
Yo

Yy
; 13 14 15 16 "’i
: 3 3 7 - owhite nodes
! ' eblack nodes
;L 9 10 11 12 "’i
:r 1 2 3 4 "’i
: 1,
‘ X
Figure 2-5:  Zebra coloring scheme for unknowns and equations in case of Ny = N, = 4 (left)
and the structure of the relevant coefficient matrix A (right).
Dgr | Hrp ug br
= (2.57)
Hpr | Dp up bg
where
As As O A, Ay O
O As As As As O
O 0O As O A; As
HBR = ’ HRB =
As As O As O O
As  As As As O
Ay A, 0 0 O As As
and
DR = dlag[A] A6 A(,] , DB = d1ag[A6 A(, Az]
—— ——
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with
~ Ay Az - Ag O
A = and A, = |
O A6 A3 Al
It can be pointed out that the preconditioning coefficient matrix has a block 2-cyclic normal

(or red and black) form with a highly parallelizable and of increased scalability structure

[27, , 44]. In addition, PAPT is block 2-cyclic consistently ordered [79].

2.2.4 Iterative methods

Dealing with realistic applications, the arising algebraic system (2.57) ends up to be very
large, especially for fine discretizations problems. This fact suggests, that iterative meth-
ods [79, 44, ] should be applied as an efficient solution method. For this reason, the

following splitting of the coefficient matrix is considered

PAP' =D, - L, - U, (2.58)
with

Dr O 0] (0] O —Hgp
DA = , LA = and UA = . (259)

O Dg —Hgr O O O

The above conformal partitioning allows the application of classical (stationary) and Krylov

subspace (non-stationary) iterative numerical methods.

Another popular numerical method for the solution of two colored linear systems is
based on the “Schur complement” form [ 101]. There, the original linear system is reordered
into a 2 X 2 block system, as done in the linear system herein (2.57). Then, by eliminating
the unknowns associated to the red grid points (Block-Gauss elimination procedure) the

following form emerges
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Drr  Hgp up br
= _ , (2.60)
0 S ug bB
where S is the “Schur complement” matrix defined as
S = DBBHBRD;Q}QHRB (261)

and BB = bBHBRDI‘Hg)\R. Subsequently, the solution of the linear system (2.57) can be

computed by first solving iteratively the reduced system (Schur complement system)

Sug = by (2.62)

and in the sequel solving the sub-system

DRRMR = bR — HRB . (263)

Altogether, the above procedure can be described by the following algorithm

Algorithm 1 Schur Complement algorithm for Red-Black linear systems

Step 1. Solve DWI;W = bW
Step 2. Evaluate by = by — Hyby

Step 3. Solve iteratively Sup = 53 with § = Dp— HWDa,lHB

Step 4. Evaluate ip = Hpug
Step 5. Solve Dwﬁw = Up

Step 6. Evaluate uy = by — oy

Algorithm’s Step 3 encapsulates an iterative method for the solution of the Schur com-

plement system. This procedure is the most computationally intensive part of the algo-
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rithm. The Schur complement method usually claims nearly half of the execution time to
converge compared to other methods, and that’s because in the iterative procedure the un-
knowns involved correlate to one color only. The Schur complement linear system solution
is followed by the direct evaluation of the remaining unknowns. It is crucial to mention
that, matrix S shall not be formed explicitly in order to solve the reduced system with an

iterative method.



68 2.3. APPLYING MULTIGRID TECHNIQUES

2.3 Applying MultiGrid techniques

The application of the fourth-order compact difference scheme results in a large and sparse
linear system, ergo the use of an iterative solver in order to develop an efficient numerical
solution is advisable. An incompressible Navier-Stokes solver based on a pressure correc-
tion method [7 1] needs at least one (but often up to ten) Poisson-type equations to be solved
at each time step, so that the incompressibility condition is enforced. The computational
cost when solving a single Poisson-type equation can be expressed in terms of the work
unit (WU). Supposing that the approximation of the solution of an unsteady flow problem
is needed, on a 2048 x 2048 grid, after T=100 seconds with a time step of Ar = 107, In
order to approximate the solution, at least 10° Poisson-type equations have to be solved.
The above hypothesis has a computational cost of around 103 WUs.

The term FLOP is a prevalent term used for floating-point operation, for example, as a
unit of counting floating-point operations (FLOPs) carried out by an algorithm or computer
hardware. A processor’s floating point operations per second (FLOAPS) can be estimated

using the equation
FLOPs
cycle

FLOPS = cores X clock x
The majority of microprocessors up to this date, can perform 4 FLOPs per clock cycle;
thus, the aforementioned processor has a theoretical performance of 40 billion FLOPS. A
single sweep using the most uncomplicated iterative method, Jacobi, into a tridiagonal lin-
ear system requires about 4 * 20482 = 16.777.216 operations and 0.42 seconds. Assuming
that IWU = 0.42sec, the overall computation time reaches a total of 4200 seconds.

It is apparent that the acceleration of the Poisson solver is a major factor in the numerical
method’s performance.

This limitation can be overcome by incorporating a geometric multigrid technique into
the iterative procedure. Multigrid methods usually achieve high rates of convergence and
are considered among the fastest methods used for solving large and sparse linear systems

that result from the discretization of multi-dimensional boundary value problems. [!, 56,
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, 86, 92]. Furthermore, the convergence rate of the multigrid methods is independent of
the grid size for specific elliptic BVP [1, 75].
A multigrid method solves the error correction sub-problem (coarse grid correction) on
a coarse grid and then goes back to the fine grid, where it interpolates the error correc-
tion solution. Most of the time consuming computational operations are performed on the
coarse grids, where the problem size is small, and as a result a considerable amount of com-
putational time is conserved. The method consists of an iterative solver called smoother,
which is a relaxation scheme for the error linear system, and two grid-transfer operators,
the restriction for the mapping of the residual vectors from the fine Q" to the coarse QF grid
and the prolongation (interpolation) for the return of the amended error vectors back to the
fine grid. The classical intergrid operations cannot be applied to cell-centered grids without
proper modifications [15, 93, 75, 72] due to the fact that the coarse grid is not part of the
finer grid after each grid-transferring procedure (see Figures 2-6 and 2-7). A variety of
prolongation and restriction operators for cell-centered unequal discretizations are derived

and presented herein.

G---- 000+ 1000+ ---O

H

l' 9

h

O— vy [ JEY V;

Figure 2-6: Fine and Coarse grid-function nodes for N, = 8 and H = 2h; 1D domain.

As shown in subsection 1.7.2, the effect of one iteration of the two-grid method on the
error can be expressed as the result of the application of two operators; the coarse grid

correction operator K’ and the smoothing operator S j,

Ny =S]'KJ'S}> = S)'(Ih — PhAy RIALS (2.64)

to the error vector, where v; and v, indicate the number of pre- and pro-smoothing itera-

tions; 1, is the identity operator of appropriate dimension; A, and Ay are the discretization
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Figure 2-7: Fine and Coarse grid-function nodes for Ny = Ny = 8 and H = 2h; 2D domain

operators on Q" (fine grid operator) and Q¥ (coarse grid operator), respectively; and P%,
and R/ are the transfer operators from the coarse to the fine grid and vice versa.

The fine grid operator A is the coefficient matrix A of the linear system for step-size
h. The direct analog of matrix A, on the coarse grid Q) is picked so as to determine the
Ap in the two-grid method. Hence, the matrix A in the coarse grid is the discretization of
the BVP on the corresponding coarse grid. The advantage of this approach lies on the fact
that the structure of the A matrices remains unaltered whatever the grid, and as a result, the

parallel properties of the algorithm are preserved.

2.3.1 Smoothing operator

The convergence behavior of a multigrid algorithm strongly depends on the error smoother
having the smoothing property (see subsection 1.7.2). The decision on the smoothing
method is determined by two parameters: the parallel properties and the efficiency of the
smoother for both isotropic and anisotropic problems.

Instead of a lexicographic ordering, relaxation methods that use the red-black ordering

schemes of grid nodes are well suited for parallel computations. In anisotropic problems,
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line smoothers are often necessary, as they update all the unknowns in a line simultane-
ously when traversing the grid. Since anisotropy appears in the x—direction in our model
problem for y < 1, an x—line smoother is appropriate. In the following Chapter, smoothing
analysis of a great number of methods using the Local Fourier Analysis (LFA), indicates
that an acceptable compromise is reached when selecting the line zebra Gauss-Seidel as
a smoother. In zebra sweeps the lines traversed in a red-black style, i.e first all odd, then
all even lines. Due to the block structure of the matrix A the block version of the zebra

Gauss-Seidel is preferred.

2.3.2 Coarsening strategies

The coarsening procedure defines the hierarchy of grids to be used within the multigrid
method. Regular grids allow coarsening rules which are easy to use. Doubling the mesh
size from Gj, to Gy with H = 2h, is better known as standard coarsening. A basic
non-uniform procedure doubles the mesh size only with respect to a subset of spatial di-
rections. For instance, x— and y—semicoarsening for two-dimensional applications yield
H = (H1,H2) = (2h,h) and H = (h,2h), respectively. Obviously, both restriction and
prolongation shall to be selected in accordance with the coarsening strategy. Here, these
multigrid components will be presented between two grids, Q" (fine) and Q (coarse), un-

der the consideration that the ratio of the coarse to the fine grid is two (standard coarsening).

2.3.3 Interpolation / Prolongation

In the ascent phase of a multigrid technique, e.g. V., scheme, an interpolation formula
is applied to correct the approximation vectors obtained on finer grids, with the estimated
error vectors obtained on coarser grids. The interpolation operator will be expressed by PZ;
using the coarse grid error vectors vy, it constructs the fine grid error vectors v, based on
the rule v, = P’;IvH. As Fig. 2-6 depicts, the coarse grid points (Vf{ ,i=1,...,N,/2)donot

coincide with the fine grid points (vl’.’ ,i=1,...,N,). The points with indices i = 0, N,/2+1



72 2.3. APPLYING MULTIGRID TECHNIQUES

correspond to fictitious coarse values. To this effect, the coarse and fine grid nodes in 2D
are defined, see Fig. 2-7.
In order to approximate the values of the function v on the fine grid, an interpolation for-

mula based on the coarse grid values is being used.

Constant Prolongation

The simplest prolongation operator is derived by using the first-order formula based on
Lagrange’s interpolation polynomial. This operator is called constant prolongation (CP)
because it interpolates precisely all the constant polynomials. The rule of thumb for its
definition in 1D cases is that every fine grid value is equal to the nearest neighbor coarse

value. This can be expressed in stencil notation as

]1 * l[, * ) (2.65)

in one and two dimensions, respectively, where ”*” marks the position of the coarse grid
node. The notation indicates the weight whereby the value of the coarse grid function in
the coarse grid node contributes to the fine grid function in its neighboring fine grid nodes.

Although CP has a narrow stencil, i.e. a few operations are involved, it lacks in accuracy.

Bi-linear operator

Starting with the development of the 1D operator, the goal is to generalize to more dimen-
sions.
1D operator The use of a more accurate second-order formula, based on Lagrange’s inter-

polation polynomial, yields
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Vo= }L(SV{I +viL)
(2.66)
vio= o+ 1<i<N -1
which in stencil notation is simplified to
g 1
Pi=213 31| - (2.67)

The interpolation formula depends on the boundary conditions. Therefore, in case of zero

Dirichlet boundary conditions vfll n = vﬁx il = 0, inferring that the fictitious values

: : H _ _H H _ . H

are imposed numerically by the values v = —v{" and vy ,,, = —vy ,. In case of zero
s 5‘{]1/2 a"Zr/zn/z . . toe

Neumann boundary conditions, - = = 0, inferring that the fictitious values are

imposed numerically by the values v{| = v{' and vjj , , = v} ,

The components of V", corresponding to points close to the boundary, are given by

h_ 1. H h _ 1. H o)

Vi=aV1i YN, T 2VN2 o (2.68)
h _ . H h _ . H 2
VISV VN SVnn s (2.69)

in the case of Dirichlet and Neumann boundary conditions, respectively. Eventually, a

general linear interpolation in the Dirichlet case is

Pl=—|w Q+w) = Q+e¢) e |- (2.70)

e

whereas in the Neumann case
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1
Pi=Z|w (4=w) x (4-0) e, (2.71)

where w(west) and e(east) are equal to zero, when the corresponding coarse grid node lies
outside the domain, otherwise both are equal to one. Due to this convenient form, the bi-
linear prolongation can be directly implemented. Note that P% is a linear operator from
RM+/2 to RM~. In case of N, = 8 and Dirichlet boundary conditions, this operator has the

matrix form

2000 Vi
3100 123
1 30 0(|wn V3
1 0310 \%) V4
Pilvy = Pyy = 2 = = (2.72)
01 30 V3 Vs
00 31 V4 Ve
L 1n
0013 V7
0 00 2 Vg
. : In

where P is a matrix of order N,/2XN,, describing the operator P%,. The above interpolation
operator is O(h?) accurate because the interpolation is precise for all polynomials of first

degree.

2D operator In two-dimensions, the bi-linear interpolation operator for cell-centered dis-
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cetizations is given by

vgi,Zj = 16(9V +3vil, 4T 3"?,?“ + Vﬁl,ﬁl) ;

vgi+1,2j = 16(3V +9vit, gt v e T 3vii, o)
(2.73)

V122i,2j+1 = (3" + i, gt 9V12/;+1 +3vi, ]+1)

vgi+l,2j+1 16(vl] + 3vl+1 . + 3 L/+1 + 9vl+1 ]+1) I < l -] < ’1 - L
The interpolation P} is a 16-point prolongation and is expressed by the stencil
1 3 31
39 9 3
1

pl=— : 2.74
" 16 i @74

39 9 3

1 3 31

In Dirichlet boundary conditions along the left boundary, v¥, n; = 01is set for j =
1,...,Ny/2, and it is inferred that the fictitious values v, ; are imposed numerically by the
values —v; ;. In Neumann boundary conditions along the left boundary, d(v", 2.7 /0x =01s
set, inferring that the fictitious values v, ; are imposed numerically by the values v, ;.
Using this technique on the boundary, the components of v corresponding to points close
to the corners are given by

no_1.H . . lH ho _ 1 H . h  _1.H o)
= VN1 = 3YNg21 0 VNN, T 3VN 2N 2 (2.75)

h = (2.76)

_yH . h  _H . h o _H .
Vit =V iy, SViNe o YNl SV 200 VNN, T VN2
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in case of Dirichlet and Neumann boundary conditions, respectively. For the rest of the

points close to boundary, e.g. close to the bottom boundary, it goes as

ho _ Ll H o H Y. i _ LloH H ;
Vain = 5BV F Vi) s Vo = s +3vi) fori=1 N2 -1, (2.77)

oo dgaoH L oH N . b 1guH H . _
Vi = 3GV v s VL =30+ 3vE ) fori=1,...,N/2 -1 (2.78)

in Dirichlet and Neumann case, respectively. Following the above procedure, a generaliza-
tion of the linear interpolation in (two or more) dimensions is rather intricate. A tractable
technique that can be used to produce the linear interpolation in higher dimensions, includ-
ing the stencil notation, is based on the tensor product.

The matrix describing the tensor product of two operators is the Kronecker product of the
descriptive matrices. Therefore, the tensor product of the operators P, with respect to the
x- and y-direction constructs the same operator (bi-linear interpolation) in two dimensions.
For instance, assuming N, = N, = 4 grid nodes in each direction, this operator has the

matrix form
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V1
V2
V3
V4
Vs
Ve
Vi — V7
1% 14

Vi y 1
Plr@ Pllvy = PP® Pvy = —
16 V3 Vg

V4 | V1o
Vil
V12
V13
Vi

Vis

S O O O O = W N O W o O DB
S O O O D W = O &N O W o B~ O D O
S D AN A O LW O OO = WD O O O O
A DO N O LW O N LW, O O O O O

V16

(2.79)

Restating the stencil notations of (2.70) and (2.71) with respect to the y-direction

|
PhH=Z n Q2+n) 2+s) s |- (2.80)

Pl=—1yw (4w (@d-¢) e 2.81)

=

where n(north) and s(south) have the same role as w and e. Using again the tensor product
in each direction and dropping the star * for convenience purposes, the general bi-linear

interpolation in the Dirichlet case emerges



78 2.3. APPLYING MULTIGRID TECHNIQUES

nw nw+2) nle +2) en

2 2 2 2 2 2
Pﬁf o P};}y _ 11_6 wn+2) n+2)w+2) (e+2)(n+2) e(n+?2) ’ 2.82)
wis+2) (s+2)(w+2) (e+2)(s+2) e(s+2)

sw s(w+2) s(e+2) es

and in the Neumann case

nw —n(w —4) —n(e —4) en

. \ -wn-4) m—-4)w-4) (e—-4)n-4) —-en-4)
P P, = —

16| _iis—4) (s—)(w—14) (e—4)(s—4) —e(s—4) |

(2.83)

sw —s(w—4) —s(e—4) es

Other Prolongation operator types

The bi-linear interpolation (BP) is a well-known second order prolongation, having a com-
pact 16-point stencil. Alternative second order prolongation operators employing sparser

stencils are those of Wesseling/Khali (WP) and Kwak (KP) [62, 99].

WP:  Based on the linear interpolation in triangles ABD and ACD (if A has indices (i, j)
then a has (21, 2)))

) h
sz 2j 4(3V z+1]+1) ) Voir125j41 = 4(3V z+1]+1) (2.84)
h .k
v2i+1,2] 4(2vl+1 Jj + V T Vt+1 /+1) ’ in,2*j+l - 4(vl] + 2vl J+1 + v1+1 1+1)

as illustrated in Fig. 2-9, the stencil by Wesseling and Khalil can be derived, see e.g [75],

which in general (with the boundary closures) is given by
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C D
c d
b

A B

Figure 2-8: Coarse cell centers A, B, C, D and fine cell centers a, b, ¢, d; 2D cell-centered grid
point configuration.

nw nw
1w 2+nw 2
1 , (2.85)
2 2+ se se
se se
nw 2n — nw
1|2w—nw 6-2w—2n+nw 2
1 , (2.86)
2 6—2s—2e+ se 2e—se
2s — se se

for Dirichlet and Neumann boundary conditions, respectively.
KP: In the two-dimensional case, a linear interpolation for a fine grid node based on its

nearest coarse grid neighbors leads to the Kwak’s stencil [99]

n n

w w+n e+n e
(2.87)

w w+s e+s e

S N
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w 4—w-n d4—e—-—n e
(2.88)

w d—w—-5 4—e—s5 e

in Dirichlet and Neumann boundary conditions respectively.

A new Prolongation operator

Figure 2-9: Coarse cell nodes A, B, C, D and fine cell nodes a, b, ¢, d. E are the central points of
the squares ABDC and abcd; 2D cell-centered grid point configuration.

MP: Next, a new prolongation operator in 2D will be developed, based on WP. The
ABCD square is divided in four triangles ABE, ACE, CDE and BDE, and, then, using a

linear interpolation in the direction of E) =(,1) and?z> = (1, —1) the following emerge

* . (2.89)

5=

This operator is valid for interior domain discretization nodes and with its eight non-zero
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entries competes against the 9-point-stencil of bi-linear interpolation in the vertex-centered
case. It is also worthy of note, that the MP is of order two and, at the same time, preserves
the narrow stencil. Discretization nodes near the boundary provide the following general

stencil in the Dirichlet conditions case

nw nw-—n ne —n ne

nw—-—w 4—-n—-w+nw 4d—-n—e+ne ne—e
(2.90)

e

ws—w 4d—w—-—s+ws 4d—e—s+es es—e

ws ws — 8§ es— s es

where w(west), e(east), s(south) and n(north) are equal to zero when the corresponding
coarse grid node lies outside the domain, otherwise are equal to one. In the Neumann case

the MP stencil pattern transpires as follows

nw n—nw n—ne ne

w—nw 4—-n—-w+nw 4—n—e+ne e-—ne

(2.91)

SN

w—ws 4d—-w—-s+ws 4d—e—s+es e—es

ws S—WwWSs §—es es

High-order interpolation

In the case of the Full Multigrid technique [ 1], a high-order interpolation operator is needed
to interpolate the values of the problem’s solution u to a finer grid. For this purpose, a bi-

cubic interpolation operator is derived for cell-centered schemes.

1D operator Using the fourth-order formula based on the Lagrange’s interpolation poly-

nomial, the cubic interpolation for cell-centered grids is developed, at some interior points
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vgi = ﬁ(—%ﬁl +105v + 3501 —5v11) (2.92)
Vi = me(=5vE 4350 10508 -V )y 2 <i<N,/2-2
from which the following stencil comes up
1
Phi=155|-5 -7 35 105 « 105 35 -7 5| - (2.93)

It should be noted that any cubic polynomial is interpolated by (2.92) exactly. Formula
(2.92) cannot be applied if one (v} and v}, ) or two (v4, v; and vy |, v}, _,) neighboring
values of v are not within the domain Q (see Fig.2-6). In such case, it is more convenient

to use the following quadratic formulae

1 . _ 1
V=510« v, + 15 =V 5 v = 5210 % ve + 15V ) = vl 5 ),

h _ 1 H Hy . h _ 1 H H

Vi=g(=2xvp+ 0+ W = (2w v+ 0+l ), (2.94)
h _ 1 H HN . h _ 1 H H

vy =5(=2xvp +5v] +5v)); VN2 = (=2 % vp + SVNX/2 + Sva/z_l),

based on the Dirichlet conditions v;, (left boundary) and vg (right boundary). The following
equation sums up the cubic interpolation in a matrix form, in case of N, = 8 and homoge-

neous Dirichlet conditions
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80 -16/3 0 0 Vi

144 16 0 0 V)
80 8 0 0 ||w -
1 -7 105 35 -5 1% v
Pipft = Py = — o= | =, 295
535 105 -7 || v vs
0 0 80 80 || v Vs
L7 Iy
0 0 16 144 v;
0 0 -16/3 80 v |

where P, is a matrix of order N, /2 X N,, describing the operator P';{. For completeness’

sake, the one-sided quadratic interpolation in the interior yields

v’zll. = 3_12(_3"51 + 30le + SVfrl) (2.96)
Vi = GV 3007 =3 ) [ 2<i<N/2-2
or, alternatively,
Vi = QI+ 140 =3V ) .97
vém = 31—2(—3\/{{1 + 14vf + 21\1{11) , 2<i<N/2-2

which leads to a 6-point or an 8-point stencil, respectively.
The 2D operator

In order to generalize the cubic (or quadratic) interpolation in higher dimensions, the
tensor product of the one-dimension operator in both x- and y-directions is used so that
the bi-cubic (BCP) interpolation is generated. This operator in a matrix form entails the
existence of a 8§ X 8 grid, i.e. 64 fine grid values, which from the presentation point of view,
is rather unattractive. Below, only the formula needed to manipulate some interior values

(231’3%—2and2§i§%—Q)ispresented.
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H
+ 35ui+2’j_1—

—235uf

i+1,j-1

h _ 1 H _ H
Uynj = mg@ul ;i —T35u;;,

735u .+ 11025ufj +3675u’ . . —525u"

i-1,j i+1,j i+2,j
(2.98)
245ufflijrl + 3675ufj§,rl + 1225uﬁ1’j+1 - 175”g2,j+1+
35u£17j+2 - 525ul{{j+2 - 175Ltfj'rld.+2 + 25ug2’j+2
h h

Solution node values u ub o j41 are estimated in a similar way and lead to

2i+12j° Wainji1»

the following stencil

25 35 175 -525 525 -175 35 25
35 49 -245 -735 735 -245 49 35
~175 -245 1225 3675 3675 1225 -245 -175
.1 | -525 -735 3675 11025 11025 3675 -735 -525
Ph= oo . (2.99)

~525 -735 3675 11025 11025 3675 -735 -525
~175 -245 1225 3675 3675 1225 -245 -175
35 49 -245 735 735 -245 49 35

25 35 -175 =525 =525 -175 35 25

Next, the two bi-quadratic (BQ6P and BQS8P) interpolation formulas for some interior

nodes follow
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Uy = 3—;(9u£1’j_]—90 — 15uf

l+1]1

~90ul! | - +900ul’, + 150ut! | - 0.100)

15uf + 150u” |t 25ul!

i-1,j+1 i,j+ i+1,j+1

and
”gi,zj = i (441u +294ul! iy - 63ul! ot
294ul j+1 + 196ut+1 J+1 42Mt+2 g+ (2101)
631/{[ J+2 42u1+1 J+2 + 9uz+2 J+2

corresponding to the interpolations (2.96) and (2.97), respectively.

The wide stencil of the aforementioned high-order operators is certainly a deterrent factor
when applying them, not only in terms of how efficient the parallelism will be, but also
regarding the computation involved. However, there is at least one good reason to argue
on these high-order operators and that is the convergence rates that can be achieved when

these operators join with the multigrid method, and, is the scope of next chapter.

2.3.4 Restriction

The restriction operator which is the reverse intergrid operator of prolongation, moves the
residual vectors from a fine to a coarse grid and is defined as R'V" = v¥. Obviously,
injection does not have a particular meaning in the case of a cell-centered discretization.

The classical average operator (CR)
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1
v = E(v’,;,._1 +5) (2.102)
n_ 1, h h h
Vij= Z(V2i—1,2j—1 + Vom0 T Vaisi2j + Vaing) (2.103)

in 1D and 2D, respectively, can be applied in this grid type. The stencil notation is similar

to CP

x . (2.104)

ENT-

[+ 1]
21*1,

It shall be noted that the combination of the CP and CR satisfies the variational prop-

erty, i.e.

Pl = 24RIHT (2.105)

where d is the dimension space. Using the Eq. (2.105) a variety of restriction BR, WR, KR,
MR, BQ6R, BQSR and BCR operators for a cell-centered grid can be constructed, relevant
to BP, WP, KP, MP, BQ6P, BQ8P and BCP prolongations, as described in the previous
section. One can effortlessly obtain the restriction formulae from the (2.105), as well as the
stencils of the corresponding prolongation operators.

The order of the operators has a significant role in the convergence analysis of the

multigrid methods. It is rather known that transfer operators should fulfill the rule

m,+m.>M (2.106)

where M denotes the higher order of the derivatives of the PDE, m, and m, the order of the
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restriction and prolongation operators, respectively. The rule (2.106) is a necessary condi-
tion that multigrid should fulfill in order to prove that its convergence rates are independent
of the mesh-size [41]. In our case, this rule is followed for every combination of prolon-
gations and restrictions, apart from the pair (CP, CR). However, and at least in case of the

cell-centered multigrid methods, this condition may be weakened as shown in [94, 43]

mhE > M (2.107)

where m};,"gh and m"¢" are the high-frequency order of the prolongation and restriction,

respectively. Further details are provided in the next Chapter.

2.3.5 Non-equal mesh-size approach

In many CFD or practical applications, such as the temperature distribution in a thin rod,
the Stokes oscillating plate and the Blasius flow over a flat plate, the distribution of the
unknown physical quantity may vary in each direction. In fact, for zero pressure gradient
boundary layer flows (Blasius flow), the solution along the x direction produces a self-
similar velocity field. Therefore, there are certain cases in which the discretization of the
rectangular domain 2 may have unequal mesh sizes in each coordinate direction. In such
cases, the use of a semi-coarsening strategy, i.e. where the mesh coarsening procedure is
only performed along the dominant spatial direction, is proved to be cost-effective. Never-
theless, grid stretching is a common practice in computational fluid dynamics, where high
mesh resolution must be used near the wall or in regions with steep velocity gradients. The
application of a multigrid technique with a partial semicoarsening strategy, see for example
[491,[46], in flow problems is described in the following lines.

Under the assumption that the predominant direction is on the x-axis, only the dominant
direction is coarsened till the mesh aspect ratio y is equal to 1 (i.e. Ax = Ay). Starting with

this grid size, a multigrid technique is conducted with full coarsening (mesh coarsening
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performed in both directions). For the multigrid technique with partial semi-coarsening
strategy, one way residual restriction (EhH ) and correction interpolation (F/ﬁ) operators is
applied, thus all the equivalent one dimensional prementioned operators can be applied.
Additionally, once the grid is reduced to an equal meshsize in both directions, all the above-

mentioned operators can be used.

2.3.6 Multigrid algorithm

The algorithm of an implemented multigrid cycle has a compact recursive definition (see

Algorithm 2).

Algorithm 2 Multigrid V-cycle algorithm
u™0 = MG _Cycle(k,u™,A®, b® v, v,)

Presmoothing:
Step 1. u = Smooth” (u™, A®, p*)
Restriction:
if Ax=Ay (y=1) then
Step 2. p& D = R}[:{(b(k) _ A(k)u(i,k))
elseif Ax < Ay (y <1) then
Step 3. p*V = Rl (B® — A*uP)
end
Recursion:
if kK = 1 then
Step 4. use a fast iterative solver for AVu®D = p
elseif k > 1 then
Step 5. performing r(> 0) cycles %D = MG _Cycle(k — 1,0, A%V, p* v, v,)
end
Interpolation:
if Ax=Ay (y = 1) then
Step 6. u'™ = yth 4 ph gkl
elseif Ax < Ay (y < 1) then
Step 7. u® =y 4 pty*-b
end
Postsmoothing:

Step 8. u™'P = Smooth> ™, A®, p*)

Algorithm 2 computes #“*"® in every new iteration, using a given approximation ‘"X

until it reaches the solution #®. The subscript k indicates the grid level, with k = 1 cor-
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responding to the coarsest grid. In the description of the multigrid-cycle, performing v
smoothing steps with an iterative method, e.g. Jacobi, Gauss-Seidel, applied to any dis-
crete problem of the form AXu® = p® with an initial approximation u®, is denoted by
the Smooth’ procedure. The number of the pre- and post-smoothing iterations in the de-
scent and ascent phase of the multigrid-cycle are denoted by v, and v,, respectively. The
parameter r specifies the number of cycles to be carried out on the current coarse grid level.
In contrast to the interpolation in the multigrid-cycle, which is applied to corrections, the
FMG uses a higher accuracy interpolation formula to transfer approximations of the so-
lution to the fine grid. In each level k of the multigrid-cycle scheme, the matrices A% are
defined by the discretization of the model problem, conditional to this grid size. The advan-
tage of this approach is that this way, the parallel properties of the algorithm are preserved

due to the the structure of the discretization matrices A®.
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Chapter 3

The Local Fourier Analysis

The Local Fourier convergence analysis is an interesting process that can be used for multi-
grid methods, in order efficient solvers for generalized problems to be developed [!]. This
type of analysis is well-established in the case of vertex-centered case, e.g. in[ |, 54, 75, 80],
and for cell-centered discretizations, e.g. in [64].

This Chapter focuses on the smoothing procedure and the coarse-grid correction prop-
erties. Attention is drawn to the relaxation method used within the multigrid solver and,
using the k-grid analysis (k=2,3), the intergrid transfer operators (P, R, etc.) are taken

into account.

3.1 Basic principles

The discrete model problem is considered
Lyup(x) = K, fy(x) forx € Q;, . (3.1

The Local Fourier analysis (LFA) for the multigrid technique is based on the following
simplifications. It is assumed that the coefficient operators L, are constant and, at the same

time, overlooks the boundary conditions, thus all occurring operators are extended to the

91
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infinite grid G;,. Nevertheless, LFA is not restricted to such kind of problems only, since,
under general assumptions, any nonlinear discrete operator with non-constant coefficients
can be locally linearized and replaced (by freezing the coefficient) by an operator with
constant coefficients.

The standard coarsening in the two dimensional case is considered, thus x = (xy, x;)
and h = (hy, hy). The discrete operator L, for a fixed point x € G, can be expressed in a

stencil notation as

L), (k= (K1, k) € Z7) (3.2)

ie. Lyuy(x) = Z Loty (x + kh). (3.3)

keJ

The Fourier nodes are considered to be given from

QDh(e, xh) = eiOx/h — eiglxl/hleié’zxz/hz (34)

where € R?. As the above grid functions have a period range of 2x, it is sufficient to

consider that 8 € © = (-r, 71]%.

Lemma 3.1.1 All grid functions ¢,(0, x),) are eigenfunctions of any constant coefficient

infinite grid operator L,

Proof: Let the grid functions be ¢,(0, x;,) and the discrete operator Ly, where x € Gy,. Then

S lepn(x + kh) = 3 Ll = S ik i0x/h

keJ keJ keJ

Li(0)pn(8, x,)

Lypn(x)

The notation L,(0) refers to the eigenvalues or Fourier symbols of L,. ®
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3.1.1 Standard coarsening frequencies

If the standard coarsening is selected, i.e H = (2hy, 2h;), it’s just the Fourier components

0n(0,) with 8 € O := (-n/2, 7/2]
that are visible on the (infinite) coarse grid Gy. This leads to the following distinction be-
tween high- and low-frequency components on Gy, with respect to Gy. Each low-frequency
0 = 6% € ® is coupled with three high-frequencies marked with (e) in Fig. 3-1)

6" = 6" — (a,sign(8)), aysign(fy))m with a = (a,, a,) € {(1,0),(0, 1), (1, 1)}.

The corresponding spaces of 2h — harmonics are

€0 = span{pn(8”,-), (8", ), 01(8", ), 1 (8°', )} (3.5)

2

Figure 3-1: Low (white region) and high (shaded region) frequencies.
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3.1.2 Smoothing factors

The smoothing behavior of the relaxation scheme can be analyzed using the Local Fourier
Analysis.

Definition of smoothing factor

The assumption that a relaxation method of the discrete problem (3.1) on an infinite grid

can be written as

L;Lth + Lguh + L}_lb_lh = thh (36)

is taken, where u;, corresponds to the old and i, to the new (after the relaxation step)
approximation of the solution u. The Lg refers to the grid points, where the unknowns are
updated simultaneously, e.g in a line. The relaxation uses previous approximations at the
grid points related to L, , whereas at those related to L; all the updated values are already
available.

Consequently, a damped relaxation method for the error is defined by

(L) + wL)e, = (1 — w)LY) — wL;)e,

or

en = Snep,

where §, is the resulting smoothing operator. Applying S, to the Fourier modes ¢;(6, x)

leads to

S (8, x) = S (6, w)pn(6, x), (3.7

where the amplification factor
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(1- a))L2 - wL;l

S,0,w) = 3.8
(0, w) 0+ wlD) (3.8)
Moreover, in the case where w = 1,
§1(6) = ——— (3.9)
T @+ Ly '
Then, the smoothing factor is defined as
p1(w) := sup{|S (6, w)| : 0 € Opign}, (3.10)

and represents the worst factor according to which the high frequencies of error reduce per
relaxation step. The abovementioned factor could also be named as one —grid factor since
it only takes into account fine-grid operators.

Now, the smoothing procedures of the Fourier components that are no longer eigenfunc-
tions of the relaxation operators are considered [54] and, it is assumed that the relaxation

method has the invariance property

Sy & — &Y voe o™, (3.11)

Then, using an ideal coarse grid operator (instead of the real coarse grid operator)

. 0 if 60,
0, ¢n(0,-) = , (3.12)
en(0,) if 0 € Oy,

which annihilates the low-frequency error components and leaves the high-frequency com-

ponents unchanged, the smoothing factor of S, is defined as

p1 = supi|p(OLS1(8) 1 0 € Op) (3.13)

where Q,’j = diag(0, 1, 1, 1) (in standard coarsening) is the Fourier representation of the re-
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lated ideal coarse-grid correction operator and v = v;+v; is the sum of pre- and postsmooth-
ing steps. Pattern smoothers, like ’red-black”, “multicolor” and “zebra”-type relaxations,
fulfill the invariance property [54, 92, 18, 42]. Thus, the smoothing properties of such

coloring smoothers can be evaluated, using the definition (3.13).

3.1.3 H-ellipticity

In order to validate the existence of an efficient pointwise smoother for a certain operator
Ly, one can use the “measure of h-ellipticity” defined by
min{|Ly(0)] : 0 € Opgr}  m

EulLn) = max{|L,@)] : 0€® M (3.14)

with 0 < Ej; < 1. Note that a discretization operator is i — elliptic if E}, is sufficiently far

from zero.

Lemma 3.1.2 If E;, is close to zero then any damped relaxation based on splitting

Ly=L5 +L)+ L, hasp, > 1.

Proof: Assuming that E,(L,) = 0, there is a high frequency 0" with Z;(H*) = —Z;(H*) -

z2(0*). Considering Zg(O*) + wZZ(O*) # 0, this yields that

(1 - w)L2(O) — wL, (0) L= w)L)(6") - L, (6%)
L@ +wli® | | LX) +wli6)

pi1(w) = sup
0€®lu'gh

B |(1 ~ W) LAO") + (L (6%) + L0(6"))
- %6 + wL: (6"

This result leads to the following theorem of existence of a point Smoother.

Theorem 3.1.1 (Existence of a point Smoother)
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1. If E;,(Ly) = ¢ > 0 (for h— 0) by some constant ¢ > 0, there exists a pointwise
smoothing procedure S, with p; < 1, that is bounded away from 1 by some constant

that only depends on c.

2. Furthermore, if L, is described by a symmetric stencil
fi,j = g—i,—j (l’.] = O, 1’ 27 )

with €y > 0 (or {oy < 0) and if Li(0) > 0 (or Ly(0) < 0) for @ # 0, then an optimal

w — JAC point smoother can be constructed with

_ 2|€(0’0)| d _ M —m _ 1- Eh(lh)
Con = pem M P @) = S TR

(3.15)

For more details, the reader may see [2, 92].

3.2 The model problem

As shown in the previous Chapter, the discretization of the modified Helholmtz problem

using fourth-order compact schemes leads to the discrete operator

12 -1 1/2 12 5 172 1/2
1 y?
L, = — _ +-=| -1 -10 -1 |—-4 . (3.16
N 5 -10 5 AZ| -1 -0 -t 12 4 1/2]. 3.16)
12 -1 172 12 5 172 1/2

3.2.1 Fourier symbol of the model problem

The corresponding Fourier symbol is given by



98 3.2. THE MODEL PROBLEM

L,(6) =ﬁ[(10 cos(6r) — 2 cos(6,) + 2 cos(6;) cos(6,) — 10)+
X

y2(10 cos(6,) — 2 cos(8;) + 2 cos(8;) cos(6,) — 10) — AAx*(cos(8;) + cos(6,) — 4)]

(3.17)
which is multiplied by Ax* and simplifies to the relation
L,(0) =2(cos(6>) + 5)(cos(8;) — 1)
+¥%*2(cos(8) + 5)(cos(6r) — 1) - (3.18)

— AAX3(4 + cos(6)) + cos(6,))

In the following investigation, it is assumed, without any loss of generality, that parameter’s

A
y = 22 upper bound is one.
Ay

3.2.2 Measurements of the h-ellipticity

As described in the previous Section, a discretization operator is h — elliptic if Ej, is suffi-
ciently far from zero. In our case, the value of E;, depends on the following two parameters;
(a) the anisotropy parameter y and (b) the combination of the Helmholtz parameter A and

the discretization step size Ax.

Theorem 3.2.1 The maximum value of the denominator of E), is the maximum absolute

value of the set

A ={Ly(0,7) , Ly(x,0) , Ly(m, ) , Ly(0,0)}
: (3.19)
= (—4AAX* — 2497, —4AAX* — 24, -22AX* — 16y* — 16, -6Ax* A}
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while the minimum value of the numerator is the minimum absolute value of the set

B ={L4(0,7) , Ly(m,0), Ly(m,7) , Ly(0,7/2) , Ly(n/2,7/2)}
= {—4AAX* — 24y%, —4AAX* = 24, -2QAx* — 16y — 16, =51Ax* — 12y (3.20)

,—10 = 10y — 42Ax%)
for the discrete operator (3.16).

Proof: The proof in the Poisson case, where A = 0, is provided.

Due to symmetry, it stands that Ly(=6,,0,) = L6y, —6>) = L,(=6,,—-6,) = L,(6,,6,),
therefore, only the cases where 6, > 0 and 6, > 0 have to be considered. Since the function
is continuous in ®, the possible relative extrema can turn up on the boundary or at the
critical points of the function L;,(6) based on (3.18). It is considered known that the list of

critical points may be found when solving the following system

OL,(0 .
62( ) _ sin(6;)(=10 + 2y* — 2(1 + y*) cos(#,) = 0 6, =00r6,=n
06 o . (32D
oL,(0) . 5 2 _ _ _
20 sin(6)(—10y~ + 2 — 2(1 + y) cos(6;) = 0 6b=00rb6,=nm
p

Consequently, there are four critical points (0, 0), (0, n), (7, 0), (0, ). The evaluation of the
function at the critical points reveals that all the values in the extrema are non-negative.
Hence, there are non-negative numbers only in the range of L, (), indicating that the de-
nominator of Ej, is the absolute value of the minimum extrema of L,(0). In order to identify
the numerator of Ej, the points in specific segments on the boundary of ®ye, are inspected,
described by 6, = /2, 0< 6, <n/2and 6, =n/2, 0 < 0, < 7/2.
Case 1: 0, = 5

The function L,(0) simplifies to a function of a single real variable L,(63)=—2(cos(, +
5)+10y*(cos(8, — 1). Following the differentiation of the function L, the function is strictly

increasing, hence the maximum (which is the minimum of the |\Ly|) turns up at 6, = /2,
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and thus (n/2,7/2).
Case 2: 0, =

Similarly, L, is a strictly decreasing function leading to a maximum extrema in 6; = 0

,and thus (0,7/2). &

Likewise, the sets A and B can be obtained for an arbitrary parameter A.

Situation 1: Isotropy(y = 1)

If y equals to 1, then the sets A and B consist of three and four individual elements respec-
tively, instead of four and five as happens in the general case, due to the equal meshsizes in

x- and y- direction (isotropic case). Hence,

A ={-4e-24,-2& - 32,-6¢} (3.22)

and

B = {—4e — 24, -2& — 32, —5¢ — 12, —~4& — 20} (3.23)

where & = AAx”. It is not possible to provide a global expression for m and M, in the whole

range of €. However, one can obtain that

56+ 12 ,ifee0,2]
m= ) (3.24)

2e 4+ 32 ,ifee[%,oo)

and
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2¢6+32 ,ifee0,4]
M= 4s+24 |ifece(4,12] - (3.25)

6e ,if e € (12,00)

S5¢+ 12
2 + 32

E, — 3 The maximum value E; = 17/19 emerges when & = 20/3. Hence, the following

3
As E;, = whene — 0, E;, = 3 when € = 0. On the other hand, if € — oo then

range of values for h — ellipticity is obtained

1 17

ExLy) € (5, E] . (3.26)

0.9-
0.8~

0.7+

0.5

0.4

0 20 40 , 8 100 % 20 40 60 8 100
AAX e

Figure 3-2: The measure of h-ellipticity” for the isotropic case (at left) and for the fully anisotropic
case (at right).

Situation 2: Anisotropy (y € [0, 1))

Following the same path as in the isotropic case and assuming, for simplicity sake, that y

—0, values m and M are given by

de ,if € € [0, 8]
m= (3.27)

2e+16 ,if € € [8, )

and
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4de+24 ,ife€[0,12]
M = , (3.28)

6¢ ,if £ € (12, 00)

and result to

The maximum value E;, = 4/7 is obtained for € = 8. Figure 3-2 depicts the behavior of E),
with respect to € in both isotropic (left) and anisotropic (right) cases.

A flawed value of E;, is obtained when € = 0, indicating the failure of pointwise
smoothers. As defined in the first Statement of Theorem 3.1.1, it is unattainable to con-
struct efficient pointwise smoothers for highly anisotropic problems. In such case, linewise
smoothers instead of pointwise could be considered.

Next, the performance of smoothing factors for a variety of classical and pattern relax-

ation methods is investigated.

3.2.3 Jacobi relaxation scheme

The splitting of the model’s problem operator L in the case of the Jacobi relaxation (JAC),

is given by
0 0O 0O 0 O d ¢ d
1 1 1
L =— L= — - L = — . 3.30
0 0O 0O 0 O d ¢ d

According to (3.9), the Fourier symbol S (6, w) of the weighted Jacobi (w — JAC) is

(3.31)

Si0,0)=1- w(l + L’;(o)) 1 L, (0)

Do) Do
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since I:,j(O) equals zero. The smoothing factor for the undamped JAC point relaxation,

applied to the isotropic Poisson equation is given by

p1 = sup{

The supremum of §,(6, 1) is attained at 6 = (£, +7) yielding p; = % It is noteworthy, that

cos(67) cos(6,) + 2 cos(6;) + 2cos(6,)
5

:0¢€ ®high} . (332)

the second-order accurate scheme (2.3) in the Poisson problem leads to the same smoothing
factor as in the case of the optimal w — JAC (w = 4/5) [92]. Furthermore, for a low-order
scheme the undamped JAC has no smoothing properties (o = 1), making the high-order
scheme more enticing.

In most cases, an optimal point w—JAC (see Fig. 3-9) can be traced as the discrete operator
L, tulfills the conditions of the Theorem 3.1.1. Theorem’s first Statement is satisfied, unless
both y and ¢ equal zero, case that leads to E;, = 0. Furthermore, [y = —20(1 + ¥?) - 4AAX?
is less equal than =20 and /; ; = [_; _; for i, j = 0, 1, thus the second Statement is valid.
The smoothing factors for the optimal parameters of w — JAC are presented in Fig. 3-9,
with respect to € in both isotropic (left) and anisotropic (right) cases. In the special case of

A =0, a well-known optimal value of w,,, = 10/11 [1] can be obtained by

2[l0,0)]
opt = —, 3.33
Wopt m+M ( )

for [0 = =20, m = 12 and M = 32, resulting that p;(w,,) = 5/11.

3.2.4 Lexicographic Gauss-Seidel relaxation schemes

Considering the splitting of L, in the operator
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Figure 3-3: Smoothing factors corresponding to optimal parameters; isotropic case (at left) and
fully anisotropic case (at right).
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Figure 3-4: Grid point stencil (a) Lexicographic; (b) x—line ordering

000 0 0 0 d ¢ d
1 1 1
LZ=EbOO L2:E0—ao Lh=EOOb (3.34)
d ¢ d 0 0 0 000

and the row-wise ordering scheme of the grid points, starting with left lower corner points

(see Figure 3-4(a)) the Fourier symbol of the Gauss-Seidel (GS — LEX) is given by

2d cos(60y)e'” + be'' + cel?

S1(0) = . . — .
w0) a — (2d cos(8))e 1% + be 10 + ce~i2)

(3.35)

For € = 0 and y = 1 eventuates that
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2cos(6))e?” + 4l + 4% A

S1(0) = . : — = -,
w(©) 20 — (2cos(f))e 2 + 4e7i0 + 4e712) 20— A

(3.36)

where A = 2 cos(#))e'” + be'”' + ce'” and A is the conjugate of A. Obviously,

A = 2cos(6)) cos(6,)+4 cos(6,)+4 cos(8,)+i(2 cos(d;) sin(b,)+4 sin(6,)+4 sin(6,)). (3.37)

Fig. 3-5 depicts the behavior of the smoothing factors in the case of GS — LEX with the
symbol (3.36), with respect to € in both isotropic (left) and anisotropic (right) cases. Fig.

3-5 untangles that the smoothing factor (p;) is bounded by % for isotropic problems.

05: 1
04 08
0 05
02
04
01
02
% 0 4 .60 8@ 0 0 0 40 e 8 10

Mz
Figure 3-5: Smoothing factors corresponding to optimal parameters; isotropic case (at left) and
fully anisotropic case (at right).

Next, GS — LEX with a relaxation parameter w (S OR method) is applied and the p;(w)
with respect to w is tracked. Using w # 0, S OR hardly improves its smoothing property for
the isotropic Poisson case problem (see Figure 3-6). The optimal value of w is excessively
close to 1. Additionally, it is clear that this outcome is true regardless of the value of

parameter &.

Remark 3.2.1 The influence of the parameter w on the smoothing properties of w — GS —
LEX is similar to that of those factors obtained from a five-point stencil for Poisson equa-

tion (see Figure 4.2 in [92]).

Moreover, point Gauss-Seidel is not functional in case of very small y values as ex-
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pected, therefore GS — LEX is not considered robust for anisotropic problems.

o
QU

04

Figure 3-6: Smoothing factors (p;) as a function of w for the Poisson problem; isotropic case

3.2.5 Line Gauss-Seidel relaxation schemes

Horizontal line Gauss-Seidel iteration method (based on the x—/ine ordering scheme of grid
points), see Figure 3-4(b), applied to the model problem discretization grid, corresponds to

the splitting

000 0 0 0 d ¢ d
1 1 1
Li=-5|000 ,L2=Eb—ab Ly=2=00 0] (38
d ¢ d 0 0 0 000

The amplification factor is estimated as

ce'®” +2d cos(6,)e'”
a — (ce 1 + 2d cos(8))e i)

S0 = (3.39)

Fig. 3-7 shows the smoothing factors of the line GS — LEX in the isotropic case, with

respect to € (left). As the anisotropy is increased, the right graph in Fig. 3-7) depicts the
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behavior of the line-wise smoother. It is important to mention that the smoothing factors
are bounded regardless the values of parameters v and €. It can be also found that these
values are bounded by 1/sqrt(5) ~ 0.4473 and, especially in the fully-anisotropic case,
p1 1s approximately equal to 0.11. In these conditions, the line GS — LEX is considered a
robust relaxation scheme for our model problem, leading to the general rule: points that are

strongly coupled, i.e. points with large coefficients in L;, must be updated simultaneously.

05 057
04
04
03 N
. 03]
02
04t 4
% 20 10 80 80 100 045 02 04 06 08 1‘
Mz ' ST .

Figure 3-7: Smoothing factors for line GS — LEX; isotropic case (at left) and increasing anisotropy
(at right).

Remark 3.2.2 (GS — LEX versus line GS — LEX relaxation) An advantage when using
line GS —LEX is that its smoothing factors are similar to those of GS — LEX in the isotropic

case while, at the same time, it can effectively handle anisotropic problems.

3.2.6 Relaxations patterns

The Fourier analysis of point and line red-black relaxations, as illustrated in Figure 3-
8), requires special treatments because pattern smoothers consist of two or more partial

relaxation steps. The partial relaxation operator is defined as

artial S0, x,) for x, € G,
Si en(®, ) = : (3.40)

©(6,x) for x € G, G,
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Figure 3-8: Red-black point coloring (left) and red-black horizontal line coloring (right); Red (o),
black (e) points and X denotes the origin of Gy,.

where G, is a subset of Gy, defined by a pattern that describes the smoothing procedure. It
is rather clear that only the grid points of G, are processed in the above partial relaxation

step, while the remaining points (G,\G,) remain intact.

Point red-black Jacobi/Gauss-Seidel relaxation

Point red-black Jacobi(JAC — RB) or Gauss-Seidel(GS — RB) consist of two partial smooth-
ing steps. In the first step, G;, handles the “red” points, while the second only involves the

’black” points, i.e.

GF = {x = (ki Ax, kaAy) € Gylky + ky even}, GP = (x = (k;Ax, kyAy) € Gylk; + ky odd).
(3.41)

The complete JAC — RB or GS — RB iteration operator is given by

SKB = §PACKgRED (3.42)

with
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. A%p(0,x;) for x;, € GF . A%p(0,x;) for x;, € G}
Shen0,x,) = , Spen(0,x,) = ,

©(0,x) for x;, € fo ©(0,x) for x;, € Gﬁf

(3.43)
where
A7 = 2b cos(#,) + 2c cos(8;) + 4d cos(6;) cos(6,) (3.44)
a

Ao = 2bcos(6,) + 2c cos(6;) + 2d cos(6; )e'” (3.45)

a — 2d cos(6,)ei%
and A? := A(68?) for the JAC — RB and GS — RB, respectively. The above partial smoothing

operators can be easily written as a linear combination of ¢,,(6%, x,) and ¢,(6%, x;,), where

@ = (1,1) — a. Hence

SRon(0%, x1) = 5(1 + A%)@n(8%, x1) + 5(A" = (87, x)

i (3.46)
SPen(0°,x1) = 5(1 + A)@u(07, x1) + 5(=A" + Dy (6%, x,,)
leading to the following (4x4)-matrix representations for S¥ and S}
| ACO 41 ALD 0 0
- 1] A9 -1 A0D 4 0 0
S =~ and (3.47)
2 0 0 AL 41 AO0D
0 0 AL — 1 ACD 4
4h
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| 400 1 _a0n g 0 0
1| A% -1 Aty 0 0
§B=_ (3.48)
2 0 0 A0 41 —A0D
0 0 —AGO 1 AOD 4
1h

The combination of the two steps provide the Fourier representation of the global smooth-

ing operator.

Horizontal Zebra Gauss-Seidel relaxation

In the two dimensional case discretizations, Zebra Gauss-Seidel (GS — Zebra) coincides
with the Zebra Jacobi relaxation (JAC — Zebra) for 9—point compact schemes. However,
this relation is no longer valid for discrete operators based on schemes with wider “sten-

cils”. Horizontal GS — Zebra relaxation is described by

Gf = {x = (k] Ax, kyAy) € G| ky even}, Gf = {x = (k] Ax, k,Ay) € G| ky odd},

(3.49)
and the following splitting of the L, within each half-sweep:
00O 0 0 O d c d
1 1 1
L'=—1/I|p 0 p |LV=— —a 0 |L;=— 0 o0 l. 3.50
AR N 0 —a " AR 0 ( )
00O 0 0 O d c d

Again, the complete GS — Zebra iteration operator is given by

Sit = SpHACKSED (3.51)
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with
X A%p(0,x,) forx,e Gﬁf 5 App(0,x,) forx;, e G,lf
Suen(0,x,) = , Snen(@, x,) =
©(6, x) for x, € G? ©(6, x) for x, € GX
(3.52)
where

_ 2ccos(8) + 4d cos(6;) cos(6,)

Aa’
a—2bcos(6,)

(3.53)

Now, the partial smoothing operators can be expressed as a line combination of ¢,(6“, x,)

©0n(0%, x1,), where & = (a1, 1 — a») with @ = (a1, a»)

SRon(0%, x)) = %(1 +A%)pn(0%, xp) + %(Aa — Dpn(6”, x3)

i (3.54)
S heon(@®,x1) = 3(1 + AM)@u(67, x4) + 5(=A" + Dpn(67, x1)
leading to the following (4x4)-matrix representations
| ACO 4] 0 0 AOD 1 —
. 1 0 ALY 41 A0 0
Sk =~ and (3.55)
2l 0 AUD-1 AMO41 0
A0 —1 0 0 AOD 41 ,
» ACO 41 0 0 —AOD 41 ‘
. 1 0 AlD 41 A0 0
S¥=~ . (3.56)
2 0 —ATD 11 A0O 4 0
—A09 4 0 0 AOD 41
- 4h

Figure 3-9 presents values of the smoothing factors for the described pattern relaxation
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methods for two instances; the isotropic (left) and fully anisotropic (right). The graph lines
of JAC — RB and GS — RB are particularly close for both test case problems. Despite
the fact that the point red-black relaxations have satisfactory smoothing factors for the
isotropic problems, they are not robust if the anisotropy is increased, as illustrated in Figure
3-9 (right), unless the parameter € is increased simultaneously. On the other hand, Zebra
Gauss-Seidel has better smoothing factors than the point red-black relaxations and, at the

same time, can effectively handle anisotropies regardless the parameter value.

Remark 3.2.3 Clearly, Zebra Gauss-Seidel smoother seems to be an excellent smoother

for our model problem.

—JACRSB 09
—JAC-RB
08 GSRB

--ZEBRA-GS
0.7

06

£1

0.5}

80 100 120 0'10 20 40

2 40 8 100 120

GO
Mz?
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MAz?

Figure 3-9: Smoothing factors for a variety of pattern relaxations; isotropic case (at left) and fully
anisotropic case (at right).

Comparison between different coarsening strategies and relaxations

Since the combination of pointwise relaxation and standard coarsening strategy is ineffi-
cient for highly anisotropic problems, there are at least two different strategies that indicate
promising smoothing factors as y — 0. As mentioned above, the first is to switch the re-
laxation procedure from pointwise to linewise and retain the standard coarsening strategy.
An alternate multigrid approach in such problem cases is to reatain the pointwise relax-
ation and replace the standard coarsening strategy by the semi-coarsening one. In the case
of semicoarsening , e.g. x-semicoarsing (H = (2h, h)), the range of high frequencies is

configured to the set
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Figure 3-10: Low (white region) and high (shaded region) frequencies for x—semicoarsening (left)
and y—semicoarsening (right); the high frequency (e) correspond to a given low frequency (o).

Figure 3-10 illustrates the distinction of low and high frequencies in case of x— or y— semi-
coarsening. Table 3.1 presents the comparison between the smoothing factors of several
relaxations using different coarsening strategies in a wide range of values of the anisotropic
parameter y. The linewise relaxations are paired with standard relaxation in contrast to
pointwise smoothers that use x—semicoarsening.

Data in Table 3.1 indicates that zebra line Gauss-Seidel should be preferred over linewise
relaxations. Comparing the results of the pointwise relaxations, a slight superiority of the
RB — GS smoother can be discerned. As for the parallel properties, the degree of paral-
lelism is higher using the RB — JAC, but its smoothing factors turn to be worse than those
of zebra line Gauss-Seidel for every possible y value.

The smoothing factor values in Table 3.2 indicate that if a pointwise smoother is paired
with semicoarsening for isotropic problems, the outcome is a worse convergence factor

when compared to that of the standard coarsening strategy. An explanation is that the
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Table 3.1: Smoothing factors p; in the anisotropic Poisson problem case using relaxations with
different coarsening strategies for several values of .

Yy 1 0.9 0.5 0.1 0.01 0.001 0.0001

line GS-LEX  0.447 0.447 0.447 0.447 0447 0447 0.447
zebra GS-LEX 0.160 0.125 0.125 0.125 0.125 0.125 0.125

GS-LEX 0.400 0.391 0.393 0.519 0.528 0.528 0.528
RB-JAC 0.280 0.242 0.238 0.178 0.176 0.176 0.176
RB-GS 0.280 0.225 0.180 0.151 0.150 0.150 0.150

Table 3.2: Smoothing factors p; in the Poisson problem case using pointwise relaxations with
different coarsening strategies.

. Coarsening strategy
Relaxation
standard semicoarsening
GS-LEX 0.400 0.467
RB-JAC 0.200 0.280
RB-GS 0.246 0.280

semicoarsening process causes a discrete anisotropy by excessively stretching the compu-

tational cells.

3.3 Two- and three- grid analysis

First, the LFA to the two-grid transfer operator is applied. The error of a two-grid cycle can

be represented as e, = N'e;,, where the two-grid operator N} is given by

N =S)KYS) =S,'(I, — PhLy RYLy)S . (3.57)
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S, is a smoothing operator on G, while v; and v, indicate the number of pre- and pro-
smoothing iterations. Furthermore, K}, is the coarse grid correction operator, I, the G-
identity, Ly and L, the discretization operators on Gy (coarse) and Gy, (fine) grids. Lastly,
P! and R are the transfer operators from the coarse to the fine grid and vice versa. Sub-
sequently, the impact of the above intergrid operators on the Fourier components will be
explicated and their Fourier representations with respect to the 24-harmonics will be calcu-

lated.

3.3.1 Fourier representation of the discretization operators

The fine-grid operator L, is represented on EY by the (4x4)-matrix

L, o 0 0
. 0 L0 0 0
L) = i (3.58)
0 0 L,(0") 0
0 0 0 L,(0°Y

for each 6 € @,,,,. The Fourier representation of the coarse-grid operator Ly needs further

treatment. It can be shown that for any low frequency ”° and x € G applies that

(0%, x) = 0i(8', x) = 0,(8', x) = u(6"", x). (3.59)

and, moreover, it can be proved that

en(0°,x) = 0 (26%, x). (3.60)

Hence,
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Lugi(0°,x) = Lypu(26”, x) = Ly(26°)¢1 (26, x) (3.61)

that leads to

Ly(0) = Ly(26%). (3.62)

3.3.2 Fourier representation of the transfer operators

Focus is only drawn on the restriction operator as the following relation stands if prolonga-

tion and restriction are adjoined to each other

P, = 4R (6,) . (3.63)

Assuming that the restriction operator is described by a stencil of type R =[r, ]/

RI2(7]

(3.64)
ie. Rllup(x) = Y ran(X + kh), (x € Gg)
keJ
Then, the following is obtained
R,If on(6,x) = Z, repn(0%,X + kh) = ZJ re? cHdn/h
KE. KE
= 3 1 XM = 3 %, (07, X) (3.65)
keJ keJ
= R (0")n(26, %), (x€Gn)
with the Fourier symbol Rf (6%), leading to
RI@) = | RI@™) RE@) RI@O) RIE) (3.66)

Next, the Fourier symbols of the developed restriction operators are derived and their



CHAPTER 3. THE LOCAL FOURIER ANALYSIS 117

polynomial order is calculated along with the low- and high-orders. In order to illustrate
the formulation that may be involved in the determination of the Fourier symbols I?ff and

the corresponding orders, the detailed derivation of the CR operator is provided.

Fourier symbols for restriction operators

The two dimensional CR operator can be written in the stencil notation

1 1
R= % : (3.67)
1 1
Hence, the Fourier symbol is given by
RhH(Oa) = 3 re®'* = 1(e—i%'—i% 4 P F-i% o prigHF +e+i%‘+i%2)
K 4

KkeJ (3.68)
= cos(%) cos(%z).

The Fourier symbols for the rest restriction operators are listed in Table 3.3 .

Orders of the transfer operators

The orders of the intergrid transfer operator strongly depend on the highest order of the
PDE derivatives. The polynomial order of the prolongation (m,) is equal to k + 1, if all
polynomials of degree k are precisely interpolated. Value m, indicates the order of the
restriction operator and is defined as the order of its adjoint prolongation. The condition
that the orders of the transfer operators should meet differ from the vertex-centered to cell-
centered case, as mentioned in the previous Chapter. In the cell-centered case a slightly

restrictive condition

mys" +ml = M (3.69)
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Table 3.3: Fourier symbols for a variety of restriction operators.

restriction Fourier symbols RhH @)
CR cos(%l) cos(%z)
BR cos* (%) cos*(2)
WR cos(%‘) cos(%z) 005(9‘;92)
KR 1 cos(%) cos(2)(cos(6;) + cos(6>))
MR 4(3 cos(”' ) cos((’z) + cos(”' ) cos(5* 302))
BQ6R = (3cos(3) — Scos(2) + 30 cos(Z))

(3 cos(%2) — 5cos(32) + 30 cos(2))
(3 cos(BL) — 14 cos(3) — 21 cos(L))
(3cos(22) — 14 cos(%2) — 21 cos(%))
BCR = (Scos(Z) + 7 cos(%) — 35 cos(32) — 105 cos(L))
(5 cos(mz) +7 cos(sgz) -35 cos(392) - 105 cos(e—;))

BQSR

is needed to apply. The definitions of the low- (/") and high-frequency orders (m."*") of

low

the restriction operator are: m,” and m"" which are the largest numbers satisfying

low

RIO™) = 1+008™" RI@") = 0(6°)™)

) 3 (3.70)
RI0"7) = 0(6°7™) RY(@6°Y) = 0(6™)

with m)"®" = min{m!,m>,m?). The vaules of m}*" and mi¢are similarly defined. Apart
from (3.69), the low- and high-frequency orders are preferred to be positive in both the
restriction and the prolongation. These orders of several transfer operators are shown in

Table 3.4.

For instance, using the Taylor expansion of the corresponding Fourier symbol of CR, it

can be found that



CHAPTER 3. THE LOCAL FOURIER ANALYSIS 119

Table 3.4: Orders of several restriction operators.

CR BR WR KR MR BQ6R BQ8R BCR

low-frequency order m 2 2 2 2 2 4 4 4
high-frequency order m™™" 1 3 2 2 2 3 3 5
polynomial order m, 1 2 2 2 2 3 3 4

REO) =1 - 167 + 63) + 016"

RI(8"Y) = 1616, + 0(6™")

i , (3.71)
R}1(6"7) = sign(61)(361 — 356, — 166165) + O(6P)

REOOD) = sign(6:)(36, — 163 — 1-6,6%) + O(16°VP)

hence the low-frequency order equals two, while the high-frequency equals 1. The polyno-

mial order of CR is 1 since CP is a constant interpolation. It is evident that m,, mifw and

high : : high
m,*" are directly connected to the relation m, < mi" , m,*".

To sum up, the Fourier representation of the two-grid operator for each § € @ by a
(4 x 4)-matrix can be estimated using
Ni©) = 81O - PLO)Ly 2R O)Li(6))S 7 (6). (3.72)
Based on the (4x4)-matrix representation of N, ,fhthe asymptotic two-grid convergence factor
can be calculated by
p2(N;") = suplp(N;"(0)) @ 6 €O} (3.73)

where p(N2"(8)) is the spectral radius of the N2"(6).
Fourier three-grid analysis is based on a recursive application of the two-grid analysis. As

a consequence, the three-grid operator is given by
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N =SPKYS) =821, — Pyl — (N Ly RYL)S ) (3.74)

where Ny,  is defined from Eq. 3.57 [82].
In the next chapter, the multigrid technique is applied to the discretization scheme of the
model problem and numerical results are compared with the theoretical one-, two- and

three-grid convergence factor values.



Chapter 4

Multigrid Discretization Schemes

Performance

In this chapter, a performance investigation of the numerical solution of the linear system,
which arises from the proposed high-order discretization method, takes place. Moreover,
theoretical convergence factors are compared with the numerical measurements of multi-
grid techniques. Furthermore, a review on every iterative solver’s, described in Section
2.2, impact for solving the sparse linear system follows. The numerical validation of the
fourth-order of accuracy of the discretization scheme, coupled with the multigrid technique
including the boundary treatments is also performed. Consequently, an extended investiga-
tion of the implemented multigrid algorithm for the discretization method is presented and
convergence rates for every transfer operator combination are documented. The following
transfer operator combinations are being examined: BP, WP, KP, MP, BQ6P, BQ8P and
BCP prolongation, with their corresponding adjacent restrictions. Horizontal Zebra Gauss-
Seidel solver [79, 56, 86, 92] is chosen as a pre- and post-smoother within V-cycle, W-cycle
, F-cycle and FMG cycling strategy. The coarsest grid of the multigrid cycle consists of
4 x 4 cells for all cases.

The numerical scheme coupled with the multigrid technique is compared against the op-

121
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timal iterative solver. To this end, the termination criterion is set as the point where the
Euclidean norm of the residual gets to a value of less than 107!°. All the numerical tests
were performed on a SunFire X2200M2 machine with 4GB of memory, and two dual core
Opteron@3.0GHz processors. The application was developed in double precision Fortran
code. All the basic linear algebra computations were performed using subroutines from the

Lapack [45] scientific library.

4.1 Test problem 1

The first Helmholtz test problem accepts the exact solution

u(x,y) = 106(x) p(y) , (6,y)€Q=[0,11x[0,1] , with @(x) = e 10E0D* (2 _ )

Parameter A is set to 1, unless considered otherwise, with Dirichlet conditions. As stated in
Section 2.2, due to the structure of the emerged linear system, the corresponding coefficient
matrix is 2-cyclic consistently ordered. Table 4.1 provides the numerical approximations

of the values of parameter w,,, of the SOR method, in several grid mesh cases.

Table 4.1: Numerical approximations of SOR’s w,,; and the corresponding convergence factors.

N, =N, 16 32 64 128 256 512 1024 | 2048
wmmeric 111,5030 | 1.7460 | 1.8630 | 1.9300 | 1.9475 | 1.9705 | 1.9760 | 1.9910

opt

p%””ic 0.5021 | 0.7383 | 0.863 | 0.9294 | 0.9428 | 0.9678 | 0.9790 | 0.9870

Attention shall now be turned to the implementation of the iterative methods for the
test problem 1. Figure 4-1 and Table 4.2 present the convergence behavior and execution
time, respectively, of the stationary methods Jacobi, Gauss-Seidel and optimal SOR for the
case of problems with 64, 128, 256 and 512 computing cells in each direction. As Fig. 4-1

illustrates, the optimal SOR method always converges faster.
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Figure 4-1: Residual norms for JAC, GS and SOR opt methods for selected discretizations.

The numerical results also indicate that Gauss-Seidel method converges almost twice as
fast as Jacobi. That of course, shall be considered typical, as the eigenvalues of those two
iterative methods are associated by the relation Ags = A3, .. As suggested from the hitherto
measurement results, the S OR method shows promising convergence rates. However, for
fine discretization problems the optimal parameter of SOR approaches two (see Table 4.1),

leading to very slow convergence rates.

Table 4.2: CPU time in seconds for Jacobi, GS and optimal SOR methods.
Jacobi | GS | SOR,,,

N, =N, CPU time
64 1.952 | 1.005 | 0.080
128 26.69 | 14.56 | 0.598
256 393 216 | 8.827
512 3780 | 2050 | 86.88
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The most popular Krylov subspace methods are also considered for the solution of the
linear system (2.55) . Preconditioning techniques are considered in order to improve the
performance of the iterative methods. The convergence properties of the Generalized Mini-
mal Residual method (GMRES) and Biconjugate Gradient Stabilized method (BICGSTAB)
are inspected, in terms of the field of the Ritz values of the corresponding preconditioned
matrix. It is well-known that, these values approximate the eigenvalues of the precondi-

tioned matrix of the linear system.

Fig. 4-2 presents the first fifty Ritz values of the preconditioned matrix on the complex
plane, using the Arnoldi iteration [101, 45]. A significant number of preconditioners is
reviewed, such as Jacobi (top right), Gauss-Seidel (bottom left) and SGS (bottom right).
Plot results indicate that Bi-CGSTAB will converge without precondition, since Ritz values
are real and lie in the half complex plane (see top left panel of Figure 4-2). Moreover,
the convex hull containing them does not enclose the origin [101, 45]. In addition, the
Ritz values demonstrate the superiority of the Jacobi preconditioned Bi-CGSTAB against
all other preconditioners and GMRES class methods, since these eigenvalues are real and

clustered around unity.

Figure 4-3 demonstrates the convergence behavior of the unpreconditioned GMRES(50)
and Bi-CGSTAB, along with the selected preconditioners. Gauss-Seidel and SGS precon-
ditioned Bi-CGSTAB methods do not converge in the fine discretization cases, while in case
of coarser grids their behaviour is rather irregular. The SGS preconditioned GMRES(50)
requires less iterations than GMRES method. In accordance with the investigation of the
Ritz values, the Jacobi preconditioned Bi-CGSTAB achieves a better rate of convergence

than the Bi-CGSTAB family methods.

Table 4.3 presents the execution times for all Krylov subspace methods, in case of 256
and 512 computing cells in each direction, measured at the time convergence was accom-
plished. It can be noticed that the GMRES(50) family method requires significantly more

time to reach an acceptable approximation of the solution, even more than the unprecondi-
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Figure 4-2: Ritz values for unpreconditioned and JAC, GS and SGS preconditioned Krylov sub-
space methods.

tioned Bi-CGSTAB. Again, the Bi-CGSTAB method coupled with Jacobi preconditioning

is found to be the faster solver. Although the execution time was reduced with the use of

Table 4.3: CPU time in seconds for GMRES(50) and Bi-CGSTAB methods.

N, =N, Krylov Method CPU time | N, = N, Krylov Method CPU time
GMRES 51.17 GMRES 405
JC. prec. GMRES 39.94 JC. prec. GMRES 447
GS. prec. GMRES 14.58 GS. prec. GMRES 194
256 512
SGS. prec. GMRES 31.81 SGS. prec. GMRES 362
BiCGSTAB 11.98 BiCGSTAB 98.12
JC. prec. GMRES 8.401 JC. prec. BICGSTAB 73.85
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Figure 4-3: Convergence behavior for GMRES and Bi-CGSTAB methods.

S OR,,; and the Jacobi preconditioned Bi-CGSTAB solver, it still remains a challenging
issue in case of finer discretizations. The convergence instabilities were noted using the
S OR,,; and effort will be put in to decrease the execution time using multigrid acceleration

techniques.
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4.1.1 Boundary conditions

The high order finite difference compact solver based on the V—cycle multigrid technique
with the Gauss-Seidel error relaxation scheme and BR — BP intergrid transfer operators
is used to demonstrate the accuracy using several boundary condition cases as presented

below

@ u=0 on 0Q (b) Ou/on=6 on 0Q

() u+du/on=6 on 0Q , d u=96 on x=0,x=1,y=1

ou/on=€¢ on y=90

Functions ¢ and € are the appropriate boundary functions for the test problem 1. Table 4.4
presents the infinite error norms between the computed (it) and the exact solution (u), in
the cases of 128 up to 2048 mesh size. The numerical results indicate, that the fourth-order
of accuracy is verified for every BC choice. In addition, it is evident that the multigrid

approach with the boundary condition treatments, as presented in Chapter 2, is stable.

Table 4.4: Order of accuracy of the method.

Ny =N, | |lu—il|lo | order || |lu —#ill | order | |lu —iill | order || |l — |l | order
(a) (b) (©) (d)
128 1.32e-6 - 1.95e-5 - 4.46e-5 - 2.54e-6 -
256 7.24e-7 | 4.19 | 1.71e-6 | 3.51 || 3.94e-6 | 3.50 || 2.58e-7 | 3.30
512 4.24e-9 | 4.09 | 1.15e-7 | 3.89 || 2.66e-7 | 3.89 | 1.80e-8 | 3.84
1024 | 2.57e-10 | 4.04 || 7.28e-9 | 398 || 1.70e-8 | 3.97 || 1.16e-9 | 3.96
2048 | 1.58e-11 | 4.02 | 4.62e-10 | 3.98 | 1.05e-9 | 4.02 | 7.36e-11 | 3.98
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4.1.2 Local Fourier Analysis predictions versus asymptotic conver-

gence rates

Now the test problem 1 with Dirichlet boundary conditions will be looked into. A V(vy, v,)
cycling strategy, with the GS smoother, is further assumed. The index pair (v, v;) indicates
the number of pre- and post-smoothing iterations within V—cycle and, in fact, pair (1, 1) is
considered. The predictions p3, of the LFA with asymptotic convergence rates ps, for the
three-level case are being compared, with a finest grid Q, of 4 = 1/128. The convergence

factors ps, are experientially estimated using the observed residual reduction through

||r;7||2)”<m>
P = , (4.1)
¢ (||”2||2

where || - ||2 indicates the discrete Euclidean norm and 7" is the residual after m-cycles. Ta-
ble 4.5 summarizes the analytical and numerical smoothing factors. All the approximated
values cited were noted after 10 cycles.

The agreement between the analytical and numerical results is acceptable. However,
there are some discrepancies, as in the majority of instances, multigrid scheme involves
either the prolongations CP and WP or the restrictions CR and WR. Especially in the case of
(CP,CR), the LFA is promising, but inconsistent with the observed numerical convergence
factor. This event might be explained by the rule (2.106). Although in the cell-centered case
this rule is less restricted (2.107), it seems that while performing numerical simulations
both of them should be taken into account.

The measured convergence rates compared to the corresponding values from the second-
order compact scheme [64], evinces the superiority of the HOC scheme. In addition, the
data in Table (4.5) is as decent as the factors obtained when in the vertex-centered case.

The observed convergence rates suggest an intergrid pair of a high- and a second-order
operator. For instance, the p3, of (MP,BCR) or (BCP,MP) is around 0.046. However, a

high-order transfer operator is rather intricate, when applied to nodes near the boundary,
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Table 4.5: Prediction p3, of LFA versus asymptotic convergence rates for the test problem 1

(V(1,1), h=1/128).

CP BP WP KP MP BQ6P BCP
CR 0.117 0.262 0321 0.262 0.262 0.352 0.390
BR 0.226 0.071 0.139 0.071 0.086 0.026 0.033
WR  0.233 0.102 0.170 0.097 0.118 0.092 0.096 Local Fourier
KR 0.226 0.076 0.146 0.071 0.095 0.026 0.032 Analysis
MR 0.226 0.071 0.120 0.071 0.071 0.067 0.061
BQ6R 0.166 0.050 0.137 0.050 0.050 0.144 0.160
BCR 0.186 0.026 0.100 0.026 0.028 0.120 0.122
CR 0478 0.203 0.203 0.203 0.204 0.249 0.221
BR 0.229 0.101 0.101 0.101 0.101 0.048 0.047
WR 0274 0.190 0.194 0.191 0.193 0.220 0.220  Numerical
KR 0.228 0.101 0.109 0.101 0.101 0.048 0.047 Results
MR 0.229 0.101 0.109 0.101 0.101 0.048 0.046
BQ6R 0.312 0.076 0.091 0.076 0.077 0.105 0.082
BCR 0.221 0.047 0.220 0.046 0.046 0.082 0.094

because of its wide stencil. This restriction can be overcome by using lower-order trans-

fer operators (see SubSection 2.3.3) for those nodes, without reducting the corresponding

intergrid operator’s convergence factors.

Proposed operators MR and M P behave similarly, as far as convergence is concerned,

with the rest second-order operators and, at the same time, involve fewer nodes.

4.1.3 Comparing the multigrid schemes

In this section, an investigation on the efficiency of several multigrid type algorithms (V,

W, F) takes place. Hierarchy grids are being used, starting from 42 = 1/16 and two transfer

operator combinations (CP,CR) and (BP,BR). The results in Table 4.6 indicate that W(1,1)
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and F(1,1) schemes produce smoothing factors which seem to be nearly independent of the
grid size. In contrast, V(1,1) scheme along with the pair (CR,CP), exhibits poor conver-
gence rates when used in increased grid size problems. Further, the convergence factors are

stable using the pair (BP,BR), regardless the implemented cycling strategy.

Table 4.6: Convergence rates for the test problem 1.
Cycle h=1/16 h=1/32 h=1/64 h=1/128 h=1/256 h=1/512

v{d,1) 0376 0506  0.590 0.659 0.714 0.752
w(,1) 0.268 0291  0.300 0.305 0.308 0.310 (CPCR)
F(1,1) 0.268 0.292  0.303 0.307 0.309 0.310

vd,1) 0.100 0.110  0.120 0.122 0.129 0.131
w(,1) 0.070 0.074 0.074 0.074 0.074 0.074  (BP,BR)
F(1,1) 0.070 0.073  0.075 0.075 0.075 0.075

0.8 0.8
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Figure 4-4: Numerical smoothing factors for increased grid level depth using cycling schemes (V,
W, F) and two intergrid combinations (CP,CR) (left) and (BP,BR) (right); h=1/256.

A similar behavior is recorded as the grid level depth increases. Firstly, the low-order
pair (CP,CR) is selected. The left graph of Fig. 4-4 shows the inefficiency of the V(1,1)
scheme to stabilize the convergence rates in higher level grids. Consquently, the accuracy
of the transfer operator switches to second-order (see right plot of Fig. 4-4). The smoothing

factors now seem to be invariant for every cycling strategy.
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Figure 4-5: Smoothing factors (three-grid LFA and numerical) as function of the parameter A
for cycling schemes (V,W) and three intergrid operators combinations; (CP,CR) at top, (BP,BR) at
middle and (MP,BCR) at bottom; h=1/128.

Figure 4-5 illustrates a comparison of different multigrid schemes with respect to pa-
rameter A. Again, two transfer operator combinations are being considered. As the A
values increase, improved smoothing factors are being produced. In the case of (CP,CR)
and the first cycling strategy V(1,1), a considerable decrease of the convergence factors is
observed. Thus, for A > 10* the V(1,1) cycle is comparable to the W(1,1) cycle. Addition-
ally, all tested transfer combinations have identical convergence rates for an A value greater

than 10%.

It is apparent that the W(1,1) and F(1,1) cycles do not provide better convergence rates

than the V(1,1), but they validate the efficiency of the multigrid method.

In order to demonstrate the influence of v; and v, values on the V-cycle, Tables 4.7 and
4.8 present the convergence rates along with the execution time of those cycling strategies.

Increasing the number of cycles for each V algorithm, leads to better convergence factors,
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although the execution time increases as well. That can be explained by the fact that as
the number of the pre- and post- smoothing sweeps increase, the arithmetic operations in
every V-cycle also increase. As the A values rise, the performance of the low-order intergrid

combinations is improved. To sum up, the cycling strategy V(2,1) (or V(1,2)) is preferred.

Table 4.7: Convergence rates for several A choices; h=1/256
Cycle V(,1) V(2,1) V(,2) V(2,2
(CPCR) 0.841 0.612 0.657 0.524
(MPMR) 0.117 0.081 0.077 0.057 a=1
(BCPMR) 0.069 0.039 0.029 0.019
(CPCR) 0.739 0.543 0.583 0.483
(MPMR) 0.116 0.079 0.074 0.057 A=10?
(BCPMR) 0.141 0.105 0.106 0.089

(CPCR) 0355 0.240 0.252 0.199
(MPMR) 0.086 0.058 0.058 0.035 A=10*
(BCPMR) 0.090 0.053 0.053 0.037

Table 4.8: CPU time for several A choices; h = 1/256).
Cycle vV{,1) V2,1) V(1,2) V(@2,2)
(CPCR) 1535 6.265 6.842 5.497
(MPMR) 1.222 1.251 1.073 1.301 A=1
(BCPMR) 0.972 0973 0944 0.887
(CPCR) 8.865 5292 5521 4.552
(MPMR) 1.241 1254 1.110 1305 a=10°
(BCPMR) 1.273 1592 1.331 1.452
(CPCR) 2761 2368 2412 2311
(MPMR) 1.238 1341 1294 1311 A=10*
(BCPMR) 1.290 1.310 1.332 1.345

4.1.4 Multigrid performance

Now, an investigation of the performance of V, W, F cycling schemes, coupled with the

Full Multigrid (FMG) algorithm, will be presented. In every cycling strategy, the previ-
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ously discussed intergrid transfer operators along with the GS smoother were incorporated.
Dirichlet conditions are considered for the model problem in the boundary while the values

for the pair (v, v,) in the smoothing process are set to (2, 1).

In Table 4.9, the execution time measurements and the required cycles in several mesh-
size cases are presented. It should be noticed that the V-cycle scheme is sensitive when
applying the intergrid operators. Nonetheless, the rest multigrid schemes seem to be less
affected by the selection of the multigrid operators. The intergrid compination (BCP,MR)
resulted to fastest cpu rates for all cycling strategies. Both W- and F-cycles require the
same number of cycles to converge while, at the same time, F-cycle converges faster. Data
in Table 4.9 also demonstrates an improved performance by the application of the FMG

scheme.

Table 4.9: CPU time measurements and multigrid iterations for intergrid operators.

rid size strate (CPCR) (MPMR) (BCEMR)
& & | Time Cycles | Time Cycles | Time Cycles
V —cycle | 0.259 28 0.065 7 0.058 6
W —cycle | 0.202 13 0.094 6 0.080 5
128x128 b Sete |0170 13 0081 6 | 0069 5
FMG | 0.136 10 |0.072 5 0.062 4
V —cycle | 1.309 32 0.307 7 0.215 5
W —cycle | 0.748 12 |0.371 7 0.215 5
256x236 || b ele | 0645 12 | 0309 6 | 0223 4
FMG 0.434 8 0.230 4 0.186 3
V —cycle | 6.261 35 1.321 7 0.957 5
W —cycle | 3.128 12 1.334 5 1.086 4
>12x 312 F —cycle | 2.781 12 1.170 5 0.956 4
FMG 1.421 6 0.826 3 0.794 3
V —cycle | 27.73 37 4.677 6 3.811 5
W —cycle | 11.94 11 5.529 5 4.613 4
1024x 1024 /- See | 1070 11 |4801 5 |4050 4
FMG 4915 7 3.080 3 3.223 3
V —cycle | 122 38 18.58 6 12.72 4
W —cycle | 49.42 11 18.02 4 14.16 3
2048 x 2048 F —cycle | 44.47 11 16.18 4 12.74 3
FMG 16.51 4 8.936 2 9.221 2
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The analysis in the previous section aims to highlight the superiority of Multigrid tech-
niques. This superiority is numerically verified by comparing the multigrid methods to
every method - stationary, non-stationary, Schur complement - in terms of execution time.
Table 4.10 presents the execution times for every method. The optimal SOR is the most
cost inefficient method, while the Jacobi preconditioned Bi-CGSTAB method is slightly
faster. This method coupled with the Schur complement method reduces execution time
even more. As expected, the Schur complement method requires nearly half the time com-
pared to the Jacobi preconditioned Bi-CGSTAB, as the iterative process only involves half
of the unknowns (the black ones) . However, the FMG multigrid method can accelerate the
solution procedure hundreds of times more, even in the coarse discretization of a 256x256

mesh choice.

With respect to parallel implementations, which are the objective of this study, the step
from V- to FMG-cycles gives a substantial increase of parallel complexity: from log (#€2;)
to log® (#Qy,). The parallel complexity increases the more the coarse grids are being pro-
cessed in each cycle. Thus, the V-cycle along with the itergrid pair (BCP,MR), should be

preferred from a parallel point of view.

Table 4.10: CPU time for several solver choices.

N, =N, Iterative Method CPU time | N, = N, Iterative Method CPU time
SOR,, 8.827 SOR, 86.88
756 JC. prec. BICGSTAB 8.401 512 JC. prec. BICGSTAB 73.85
Schur complement 4.312 Schur complement 42.30
FMG 0.186 FMG 0.794
SOR, SOR, 9932
1004 JC. prec. BICGSTAB 700 2048 JC. prec. BiICGSTAB 7603
Schur complement 390 Schur complement 3832
FMG 3.080 FMG 8.936
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4.2 Test problem 2

The second test problem aims to assess the efficiency of the proposed method, when the
multigrid technique with partial semi-coarsening strategy is applied, compared to the full-

coarsening (standard coarsening) approach. The problem accepts the exact solution

u(x,y) = sin(10rx)cos2my) ,

when solved in the unit square with Dirichlet boundary conditions. The numerical algo-
rithms are being examined for several values of parameter A € {1,102, 10%}. It is apparent,
that the exact solution alters faster in the x-direction than in the y-direction. Hence, a dis-
cretization with mesh ratio y < 1 is favoured. Every multigrid method is based on the
V — cycle algorithm, as it is the most popular multigrid algorithm for such problems [49].

The results are summarized in Tables 4.11-4.13.

Table 4.11: Iteration counts for multigrid method.

Parameter | N, | N, =128
A=1 128 8
=107 8
A=10 8 N, =256
A=1 256 7 9
A=10° 7 9
A=10* 4 9 N, =512
A=1 512 6 7 9
=107 6 7 9
A=10* 3 6 9 N, = 1024
A=1 1024 6 7 8 9
A=10° 5 6 8 9
A =10 2 5 7 9

Table 4.11 presents the iteration counts of the V-cycle algorithm. The experiments
indicate that an increased A value corresponds to fewer V-cycles, proving multigrid with
the partial semicoarsening to be a superb strategy for the solution of anisotropic Helmholtz

problems. Multigrid number of iterations with full-coarsening strategy is not affected by
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the raise of the Helholmz parameter value.

Table 4.12: CPU time in seconds for multigrid method.

Parameter | N, | N, =128
A=1 128 0.075
=107 0.075
A=10* 0.073 N, =256
A=1 256 0.165 0.374
A=10° 0.166 0.366
A =10 0.097 0.364 N, =512
A=1 512 0.332 0.784 1.625
A=10° 0.332 0.779 1.654
A=10* 0.166 0.677 1.659 N, = 1024
A=1 1024 0.798 1.764 3.751 6.832
A=10° 0.649 1.528 3.862 6.821
A =10 0.267 1.263 3.275 6.852

The reading of the results in Table 4.11 untangles that as the grid size becomes finer
in the y-direction only, more V-cycles are required to converge. The CPU time almost
doubles as the N, value doubles (Table 4.12). Further, the CPU measurements indicate
the advantage of using unequal meshsize discretizations in case of increased anisotropy
(N, > N,) or/and the parameter A. Finally, Table 4.13 contains the maximum error norms
obtained using the HOC method under different multigrid strategies. It can also be noticed,
that increasing N, does not always end up to a more accurate solution, e.g. the least error
obtained in the case of N, = 512 reduces substantially, when N, = 256 for every A value

(Table 4.13).

4.3 Concluding Remarks

The performance investigation demonstrates that multigrid discretization schemes are ca-
pable of solving efficiently the sparse linear system that emerges from the application of
the HOC discretization method compared to classical iterative solvers. The selection of in-

tergrid operators within the V-cycle algorithm affects the efficiency of the solution process.
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Table 4.13: Maximum error norms of the solution.

Parameter | N, | N, =128
A=1 128 | 8.24e-6
A=10? 6.68¢e-6
A=10* 3.37e-6 | N, =256
A=1 256 | 3.18e-7 | 3.92e-7
A =10? 2.72e-7 | 3.43e-7
A=10* 7.81e-8 | 7.89e-8 | N, =512
A=1 512 | 3.26e-8 1.75e-8 | 2.37e-8
A =10? 3.07e-8 1.58e-8 | 2.10e-8
A=10* 2.17e-8 | 2.68¢-9 | 2.97e-9 | N, =1024
A=1 1024 | 3.15e¢-8 | 2.08¢-9 | 2.93e-9 1.43e-9
A =10? 3.31e-8 3.94e-9 | 991e-10 1.31e-9
A=10* 2.21e-8 1.08¢-9 | 1.91e-10 | 1.60e-10

Multigrid technique following a partial semi-coarsening strategy is preferable to that of a
full coarsening strategy in highly anisotropic problems. Moreover, the proposed boundary
treatment applied for Neumann, Dirichlet, Robin and mixed condition cases does not influ-
ence the discretization method’s accuracy.

In the next Chapter, the HOC method is applied in order to solve the Navier-Stokes equa-

tions over equal and unequal discretizations.
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Chapter 5

Solving the Navier-Stokes equations

The Navier-Stokes equations model the motion of viscous fluid substances. From a mathe-
matical point of view, unsteady incompressible Navier-Stokes equations are parabolic equa-
tions in time and elliptic boundary problems in space. Hence, in the process of their solution
(a) a set of initial conditions and (b) boundary conditions at each space boundary point for
a fine value ¢+ > 0, are required. In practice, steady viscous flows are usually converted
to unsteady problems, and are being solved using a time marching scheme. The desired
solution of the steady viscous flow problem comes from the solution that supervenes as
significant amount of time ¢ has passed.

In incompressible flows, the density is assumed to be constant, to wit % = 0, which is
equivalent to a divergence free velocity field. A general assumption in fluid flows at low
speeds (Ma < 0.2 —0.3) is that they can be treated as incompressible flows. Mach number
(Ma) is a dimensionless quantity representing the ratio of flow velocity past a boundary to

the local speed of sound and is mathematically written as

u
Ma =—-
c

where u is the local flow velocity with respect to the boundaries and c is the speed of sound

in the medium. In a simple explanation, a speed of Mach 1 equals the speed of sound.

139
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Therefore, Mach 0.75 is about 75% of the speed of sound (subsonic), and Mach 1.35 is

about 35% faster than the speed of sound (supersonic).

The incompressible Navier-Stokes equations in the absence of body force, and in two

spatial dimensions, can be written as

ou Ov

—+—=0, 5.1

0x " ay -1
(conservation form)

ou OF 0G 1 0F, 0Gy

4 = _Vp+ — 5.2

6t+8x+8y p+Re(6x+8y)’ (5-2)

where u = [u,v, ]! and p are the velocity vector and pressure respectively, and Re = ‘% =

% is the non-dimensional Reynolds number based on the characteristic velocity U and
the characteristic length-scale L. The kinematic viscosity (v) is the ratio of the dynamic
viscosity u to the density (o) of the fluid. Vectors F and G are both inviscid flux vectors,

while Fy and Gy are the viscous flux terms given by:
F = [u*,w]”, G = [vu,v*]"

ou Ovqr ou ovqyr
FV = a0 a_ = PN .

[ax ﬁx] [E)y (9y]
The first equation (5.2) is called the continuity equation and describes the conservation
of mass. The second equation (5.1) is called the momentum equation and describes the

conservation of flow momentum. The first term on the right hand side of the momentum

equation refers to the forces that occur when pressure changes.

The development of high-order accurate finite difference numerical methods for the
solution of the incompressible Navier-Stokes equations is a subject of continuous inter-

est with applications in several fields; fluid structure interaction, low speed aerodynamics,
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biomechanics, direct and large eddy simulations of turbulence with immersed boundary
methods [78, 31] to name a few. In this study, pressure-velocity coupling is employed and
the solution technique is based on a high-order accurate compact discretization [51], com-
bined with a multigrid acceleration method [1, 4, 56, 92, 75, 86]. Traditional numerical
methods to reach a solution of an incompressible flow equation include pressure correction
[40, 217 or fractional time-step methods [1 1, 25, 55, 65]. Fractional time-step methods are
often combined with a Poisson-type equation in the pressure correction phase. Operator
splitting and predictor-corrector methods, that disassociate the computation of the velocity
and the pressure [81], are also frequently used. A way to circumvent the difficulties as-
sociated with the enforcement of the incompressibility constraint V - u = 0 is to use the
artificial compressibility or pseudocompressibility method, originally introduced in [10]
for the solution of steady-state incompressible flows. In [16] an extension to the time-
dependent incompressible Navier-Stokes equations was cited. The main disadvantage of
this technique however, is that the numerical diffusion required to stabilize the solution is
rather high, to a degree that this approach is not suitable for high resolution time dependent

flow simulations, even combined with high order accuracy techniques.

The continuity equation of the incompressible flow equations has a non-evolutionary
character, because the pressure is included in a non-time-dependent form. An entirely
different approach would be a way to rewrite the Navier Stokes equations in vorticity—
stream—function formulation as in [17], [12] and [77]. This formulation however, faces

additional difficulties, when applied to three dimensional flow simulations.

The incompressibility constraint can be enforced iteratively to each Runge-Kutta stage,
using a local pressure correction or a global pressure correction method. A Poisson equa-
tion utilizes the global pressure correction obtained from the momentum equations, and
yields the pressure field distribution in terms of the velocities. Pressure correction with
a Poisson equation is accomplished by advancing the velocity field in time, solving nu-

merically the momentum equations and, subsequently, solving the correction equation for
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pressure at the current time step, so that continuity can be enforced in the next time step

[22]. Hence, in this method velocity and pressure are indirectly coupled.

In this solver the Global Pressure correction method is employed based on the Pois-
son equation [72]. The continuity equation is combined with the momentum and the
divergence-free constraint becomes an elliptic (in nature [25, 65]) equation for the pres-

sure.

In order to ensure energy conservation in the discrete level [71], the velocities are ad-
vanced in time by numerically solving the discretized momentum equations on the cell-face
centers. Next, the Poisson equation for the pressure is being solved, and discretization on
the cell centers at the current time step takes place, so that continuity at the next time step is
fulfilled. This approach has been employed in several approximation methods used to nu-
merically solve the incompressible Navier-Stokes equations, [ 1], [81], [71]. For example,
the SIMPLE method [$8] is using a Poisson-type equation to enforce incompressibility. A
simplified and physically appealing approach that involves the cell-by-cell pressure correc-
tion [21] at each time step has been proposed, and still is a popular technique, despite the
increased computational cost for higher Reynolds number flows. That is imputed to the fact
that, as the Reynolds number increases, the number of iterations required in the cell-by-cell
pressure correction also considerably increases and the associated computational cost be-
comes intolerable. It is generally observed, that pressure correction methods based on the
solution of a Poisson-type equation, require fewer iterations for high Reynolds numbers in
order to converge [71], compared to the cell-by-cell method. Therefore, they can efficiently

be extended to the three dimensional case.

It has long been recognized that improved aerodynamic design requires detailed infor-
mation of the near wall flowfield. For example, although the high drag caused by turbulent
flow has significant impact on the operational cost of vehicles, mechanisms of receptivity
and nonlinear growth of instabilities, which under various noise environments lead complex

flows to transition and turbulence, are poorly understood. Even less understood is the im-
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pact of recently developed conventional and unconventional flow control techniques on per-
formance and operational cost. Typical second-order accurate in space methods employed
in computational fluid dynamics (CFD) algorithms for incompressible flows, e.g. [21],
[85], require a large number of grid points to adequately resolve the steep flow gradients.
On the other hand, high-order upwind methods often introduce artificial diffusivity, partly
contaminating the numerical solution. Recent studies have focused on the development of
methods based on high-order discretizations of the numerical solution [7 1] with high-order
finite difference compact schemes, applied on a staggered-grid for the convective and vis-
cous fluxes in the momentum equations. Additionally, this requires the development of
high resolution techniques in order to incorporate the incompressibility condition, i.e. the
development of high resolution techniques for solving elliptic Boundary Value Problems
(BVPs). In [71], the Poisson-type equation is solved using a fourth-order accurate finite
difference scheme, applied to enforce the incompressibility condition to the Navier-Stokes

approximated solution universally.

The conservative or divergence form of the convective terms is employed in order to
ensure energy conservation (analyzed in detail by Morinishi et al. in [100] for high order
explicit schemes and in [24], [71], [73] for compact schemes). Energy conservation in the
discrete level is important on the overall stability and accuracy of the computational method
and of critical importance for large eddy simulation (LES). The conservative staggered grid
approach was extended to the finite volume method, with compact high order schemes, by

Mabhesh et al. in [52] and Nagarajan et al. in [73].

In this work, the Poisson-type equation is solved using a fourth-order accurate finite
difference scheme as presented in Chapter 2, applied to enforce the incompressibility con-
dition to the Navier-Stokes solution universally. The pressure is computed in the center
of each computational cell, discretized under fourth-order accurate compact schemes. The
resulting discrete Poisson equation has a nine-point stencil. Fourth order compact finite

difference schemes have been derived for vertex-centered grids and for 2D and 3D Pois-
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son equations [60, 97, 98, 70]. The present scheme is compatible with cell-centered grids.
An improvement of the proposed method is the treatment of realistic boundary conditions.
Boundary closure formulas in case of Dirichlet, Neumann, Robin or mixed-type boundary
conditions applied on the physical boundary, are derived.

The numerical solution of a Poisson-type equation is a highly demanding task both in
terms of computational cost and in core memory, even with low order accurate discretiza-
tion schemes. The arising linear system is large and sparse, necessitating the use of an
iterative solver in order to minimize the computational time. Significant convergence ac-
celeration however, may be achieved with the employment of a multigrid technique paired
to the iterative solver. Based on the previous analysis (see Chapter 3) and investigation
(see Chapter 4) the numerical solver can incorporate a cell-centered multigrid technique
[74, 99, 43, 62], using a partial semi-coarsening strategy [49] and zebra grid-line Gauss-
Seidel relaxation for solving unsteady incompressible Navier-Stokes equations. However,
it is worth mentioning that applications of cell-centered multigrid method are usually based
on second-order discretizations [64, 62, 99]. There is a poor literature concerning investiga-
tions on the effects of various multigrid components of the pressure correction procedure.
A comparison of different smoothers, including some pressure correction methods on a
staggered grid, can be found in [19] while in [35] are a few available on non-staggered
grids. These comparisons pertain to nonlinear multigrid methods based on Full Approxi-
mation Scheme (FAS) [1]. Gjesdal et. al. [35] reported that changing the restriction and
prolongation operator had no significant effect on the convergence of the method.

The outline of this chapter is the following: firstly, the discretization of the momentum
equations is presented. Then, the pressure correction scheme and the discretization of the
resulting Poisson-type equation along with the boundary treatments follow, and finally, the
validation and the performance results of the implemented solver over a set of steady and

unsteady problems and high resolution simulations sign this section off.
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5.1 The Numerical Scheme

In this section, a description of the numerical method is presented. The numerical method
uses fourth order accurate compact schemes, formulated on a staggered grid arrangement.
The corresponding spatial discretization of the first- and second-order derivatives in (5.1)
and (5.2) are described in a more detailed way in [71]. Incompressibility is enforced using
a globally defined pressure correction scheme, computed from the solution of a Poisson-
type problem, coupling (5.1) and (5.2) through the associated perturbed velocities. In order
to ensure high-order spatial accuracy, the pressure correction equation is also discretized
through a fourth-order finite compact scheme. In the implementation of compact schemes,
the boundary conditions need to be discretized using a single layer of fictitious cells along
the boundary, unlike the explicit high order finite difference methods, where a wider fic-
titious layer is required. It is known that high accurate approximations of pressure cor-
rection techniques based on the global Poisson-type equation are effective in flows with a
high Reynolds number. A fourth order accurate method [71], which confines the need for
very fine grids, does not guarantee the reduction of the computational needs that emerge
from the numerical solution of the Poisson equation for large scale problems. A cell-
centred geometric multigrid technique [74] for the acceleration of the numerical solution
of the Poisson-type equation is preferred in order to reduce the computational cost. Multi-
grid accelerating techniques are of interest because of their ability to maintain problem
size-independent convergence rates in certain elliptic problems [!, 4, 56]. The temporal

discretization is carried out by the classical explicit fourth-order Runge-Kutta method [47].

5.1.1 Staggered grid arrangement

The physical domain Q = [0, L,] X [0, L,] is equally subdivided into cells of width Ax and
height Ay, where N, = L,/Ax and N, = L,/Ay is the number of computational cells in

each direction. The vertices’s of each cell C; ; are (x;,y;), with x; = iAx and y; = jAy for
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0 <i<N;and 0 < j < N,. The midpoints on the vertical and horizontal edges, and
centers of the cell are defined by the associated midpoints on each spatial direction denoted
by xi-1p = (i—1/2)Axand y;_ip = (j—1/2)Ayfor0 <i < N,and 0 < j < N,. An exterior
fictitious layer of a single-cell-width adjacent on each side of the physical domain is also
added. The fictitious points (see Fig. 5-1) are numbered using the indices i = =1, N, + 1
and j = -1, N, + 1 in each axis. Fig. 5-1 right illustrates the dependent variables locations

on each computing cell C; ; as follows: the pressure p, denoted by p; ;, in the cell centers

Y
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Figure 5-1: Staggered grid discretization (Nx =N, = 4) subintervals (left) and the
schematic details for the computational cell C;; (right)

(Fig. 5-1 right) with coordinates (x;-1/2,yj-1,2); the u velocity component is denoted by
Ui+12,; on the midpoint of the vertical edges with coordinates (x;, yj—i/2); and the v velocity

component is denoted by v; j,1,, on the midpoints of the horizontal edges with coordinates

(Xi—1/2, ;)
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5.1.2 Spatial Discretization

The Eq. (5.1) can be extensively expressed as

ou 1 (0 Ou ou
i F(u,v,p;t) = 0 ( %) - —( V) + Re (a(a) (ay)) (5.3)
ov op d0 Ov ov
i G(u,v,p;t) = _6_y - —( %) - —(uv) — (G_(a) (8y)) (5.4)

The staggered grid discretization requires approximations of both the u- momentum
and the v- momentum equations (5.3), (5.4) at the midpoints of the vertical and horizontal
cell-edges respectively, while the continuity equation (5.1) is discretized at the center of
each cell. Compact, Padé-type finite difference schemes [24, 83] are being used to reach
a fourth-order of accuracy in the derivatives of the convective fluxes. Compact schemes
evaluate the derivatives in a coupled fashion performing tridiagonal matrix inversions.

For the discretization of the second-order derivatives in the viscous fluxes F, and G, on
staggered grids, the first derivative approximation is applied twice. A fourth order compact
scheme based on Pad é approximations for the first derivatives in the left-hand side of the
equations (5.3 and 5.4) will eventuate. For the implementation, the boundary conditions is
necessary to be incorporated, such that we obtain closed systems. If & represents the step
size, the first-order derivative at an integer point (x;) is computed in a coupled fashion using

functional values from integer points, solving the following linear system

(P = (Qig); ,i=1..N (5.5

where the compact finite-difference operators P and Q, are
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¢, + 3¢, , i=1

Pig)i=9 ¢_ +4¢ +6,,, i=2,.,N-1

3¢;V—] + ¢;V' ’ i=N
S(=17¢1 + (2 + ¢3) — ba) i=1
Q)i =1 3Pt = bi-1) i=2,..,N—1

o (pn-3 — Ny + dn-1) + 1T¢y , i=N
If known values at the midpoints are involved, the first-order derivatives at the integer

points are computed using functional values from the midpoints, solving the following

linear system

(P2)¢)i = (Qg) . i=1..,N (5.6)

where the compact finite-difference operators P and Q are

¢, +22¢, , i=1

(Pag))i=% ¢, +226,+¢,,, i=2,..N-1,

Dy +by.  i=N
55 (=577¢;3 + 603¢;5 — 2761 + ¢3) , i=1
Q)i =\ F (B2 = bim1p2) i=2,.,N-1

2~y + 270y_g = 603¢y s + 5770y y) . i=N

The same formulas are functional for the half-points X1 with a few simple modifications,

denoted with operators j)z and Qz.

Moreover, interpolations are required; between the collocated points (x;,y;) and the

staggered velocity midpoints of the vertical edges with coordinates (x;, y;-1,2) and the mid-
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points of the horizontal edges with coordinates (x;_1,2, ;). The necessary functional values
at integer valued points emerge by a compact interpolation of the functional values at the

midpoints, solving the following linear systems

(:PO)(pT = (Q0¢)l B = 19 9N s (57)

where the compact finite-difference operators Py and Q, are

¢+ é5, i=1

(Pop)i =1 ¢7 , +6¢; +¢7,,, i=2,..,N-1,

¢*N_] + ¢}k\l H l = N
i(¢%+6¢g+¢g), i=1
Q)i =\ 4By + i) s i=2,.,N-1

%(QSN—% + 6¢N—% + ¢N+% , 1=N

The computation of the second-order derivatives requires the successive application

P

of (5.6) twice. The derivatives -

and ‘3—5 in the pressure gradient VP, are fourth-order
accurate and their evaluation is provided once the linear system (5.6) has been solved.
These compact interpolations used herein are available in [71]. The numerical experiments

in [71] confirmed the stability of this approach.

The space discretizations are earlier defined in one space dimension. The subscripts
x and y are introduced to indicate the coordinates in directions and so, the terms in the

momentum equations (5.3) and (5.4) have the following approximations
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pe~ P35 Qp atall points  (x;,y; 1)

py =P Qyp atall points  (x;_ LY))

(u?), ~ P;1Q;w atall points  (x;,y 1)

(), = Tl‘yIQlyvz atall points  (x;_1,y))

(uv)y ~ E;(w)E,(v)P7!Quv  at all points (Xi, y-1) 5:8)
(), = Ey(u)Ex(v)Tf;Qlyuv atall points  (x,_1,))

e = P710, 710, u atall points  (x;,y 1)

tyy = P30, P31 Quu atall points  (x;,y;1)

-1

Vix X 332x szin ; Q,,v atall points  (x,_ 1,y )

~ @1
Vyy ¥ T2y

Q,, P 1 Qv atall points  (x; LY))
where E,(u) and E,(v) are interpolations applied when solving the linear system (5.7).
The argument indicates which velocity component is involved, while the subscript x or y

denotes the coordinate direction.

To reach a conclusion, the discretized momentum equations are (subscripts ommitted)

Ri(u,v,p;t) = — fP]_;lelf - Ey(u)Ex(v)fPl_lelyuv - in; Q. p
(5.9)
1~ < Y~

+ o (P21 02 P51 Qo + P50 00, P51 Qo u

and

Ri(u,v,p;t) = — ‘J’]_;Qlyvz - Ey(u)Ex(v)’Pl_;leuv - in;Q2yp 5.10)
o o )
+ E (?2; QZX(Pbi ng + ?2; szfpzyl Q2y> u

5.1.3 Temporal Discretization

The momentum equation (5.2) can be written in the following compact form:
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d
d—ltl = R(u, p;t) ,where R(u, p;f) = -Vp+ A(u;1). (5.11)
The term A = (A,, A,), with A,(u,v;t) and A,(u, v; t), denotes the remaining terms in (5.3)

and (5.4) respectively. An explicit, fourth-order accurate Runge-Kutta scheme is used in

the temporal discretization of equation (5.11),

u! = u’, pn,l =p' (5.12)
u? =u" + %R”’l, (5.13)
u? =u" + %R’“’z, (5.14)
u™t = u" + ArR™, (5.15)
ut = u" 4+ %(R’“ +2R"™ + 2R™ + R™). (5.16)

with " = nAt, ! = 17, ("2 = 3 = 1" + At/2, " = " + At, and R™ = R(u™!, p™t; i), for

{=2,3,4.

The quantities ptt, € = 2,3,4 and p"!, appearing in equations (5.12) to (5.16), are
determined by the enforcement of incompressibility on the velocity vectors w™!, £ = 2,3,4
and u"*!. Incompressibility is enforced on the intermediate velocity vectors u™’, £ = 2, 3,4

n+1

and on the final solution u*™" at time level n + 1, making use of the pressure correction

methodology described in the following subsection.

Stability restrictions are imposed in the proposed numerical scheme, as implied by the
standard type CFL condition in (5.17) and the diffusive stability constraint (5.18), proposed

and critically examined by [76] and displayed below:

At
CFL = ||u||z <1, (5.17)
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and

vi—; < (1/2), (5.18)

where & is the smallest spatial grid resolution, d is the spatial dimension of the Navier-

Stokes equations and v is the fluid’s kinematic viscosity.

5.1.4 Pressure correction method

The procedure followed to enforce the incompressibility condition iteratively by solving a
globally defined Poisson-type equation for the computation of pressure updates is described
hereupon. Considering the semidiscrete (discrete only in time) form of momentum equa-
tions (5.11) and using the divergence free condition at the pressure points of the staggered
grid, an equation for every pressure point becomes available. Using the continuity equa-
tion, this equation now transforms to a Poisson-type equation for the pressure correction.

This Poisson-type equation is discretized deploying a fourth-order accurate solver.

More specifically, by retrieving the equations (5.12) to (5.16) and letting uZ}fl be the
discrete in time (but continuous in space) solution of (5.2) obtained from the ¢ stage of
the Runge-Kutta method as well as setting p/s;, = p™*~! (where p™! is the discrete in time
pressure from the previous intermediate stage) the corrected pressure at the £ stage comes

as

prt, = pl + Ap. (5.19)

An updated value of the velocity ! is defined by

W = u' + ag A=V + A1), (5.20)

new new
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Then, the substitution of the relation (5.19) into (5.20) renders

Wi =u + ag A=V — Ap + Al 1)

new old

(5.21)
=u" + ag e A=Vl + AL 1) — ag 1 AtV A,

which is equivalent to

wl =utl —ag  AtV(Ap) . (5.22)

new

Application of the continuity equation (5.1) to ul}, implies that at the centers of the

cellsC;;,i=1,....1,j=1,...,J,

i,j»

V-ut =0. (5.23)

new

The substitution of (5.22) in (5.23) provides the following Poisson-type equation which

stands at the cell centers, fori=1,...,N,, j=1,...,N,,

V-V(Ap); = (V-ul),, (5.24)

age-1 At
or expressed in an expanded form

V. un,f

O,d)i’j . (5.25)

&*(Ap) &*(Ap) 1
( 0x? )t/ +( 0y? )llj - a[’g_lAl(

The discretization procedure of the discrete Poisson equation (5.25) is thoroughly ex-

plained in the following subsection within the multigrid framework.
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Figure 5-2: Pressure correction computational mesh.
5.2 Compact Finite Difference discretization for the pres-

sure correction

As previously mentioned, the global pressure update process, which is applied for all cells
simultaneously, needs a pressure equation solution for each stage, Egs. (5.12) - (5.16), of
the RK4 method.

The above numerical analysis (proposed in [71]) updates the value of the pressure by solv-
ing a pressure correction equation (5.26) at each time step, with the pressure correction
term Ap defined globally on €, and valid at the cell centers M;; (i = 1,...,N,, j = 1,...N,)

of the prime computational mesh

P (Ap) P(Ap)\
( ox? )ij+( 0y* )ij_ v (20

1 A
where f;; = f(M;;) = m(v LI

The pressure p is actually a Lagrange multiplier which confines the velocity field to a

divergence free condition and enforces incompressibility. When applying the incompress-
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ibility condition, it is also necessary to specify the appropriate boundary conditions for p
and Ap functions. The Neumann type BC can be applied using the normal projection for
the momentum equations (5.2) on the wall, as in [38], where a unique solution for r > 0
is provided. In most cases, mixed types of boundary conditions, will effectively yield a
well converged and accurate solution [84]. In case of Dirichlet boundary conditions, p is
constant on the walls of the domain and therefore Ap = 0. Under Neumann conditions,
Op/on = 0, which leads to d(Ap)/on = 0, where n is the outward normal vector on the
boundary.

The solution Ap(x,y) and the right-hand side function f(x,y) of equation (5.26) are
assumed to be sufficiently smooth and have continuous partial derivatives; therefore, an
approximation of the solution using an appropriate discretization scheme can be reached.
In a staggered prime computational grid the solution of equation (5.26) is sought in every
cell-center of Q. The centered grid points (x;_1/2,yi-12), i = 1,..., Ny, j=1,..., N, inside
Q) are considered to be nodal points of a dual computational mesh (x;,y;), i = 1,...,N,,
Jj=1,...,N,, while fictitious points denoted by i = 0, N, + 1 and j = 0, N, + 1 correspond
to fictitious pressure corrections outside the domain €. Fig. 5-2 presents these mesh nodes

in the case where N, = N, = 4.

5.2.1 High order Compact Finite Discretization

This section presents an alternative methodology for the discretization of the pressure cor-

rection equation utilizing high order compact finite difference schemes.

The equivalent one-dimensional pressure correction problem of (5.26)

Ap! =f,i=1,.,N. (5.27)

1s considered.
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As proposed in [51], the second derivative’s value ¢!" at the mesh point x; of the one di-

mensional function ¢ can be approximated using the following formula

1" 1" 1" 1" ” ¢i 37 2¢l + ¢i—3 ¢i 2 2¢l + ¢i—2
Bol, +ad, + ¢ +adl + B, = ¢ . K2 +b— e (5.28)

Giv1 — 20 + diy
+a 5 ,

which involves its neighboring node values. The fourth order of accuracy constraints for
4!
the coefficients satisfy the equations a+b+c = 1+2a+2B and a+22b+3%c = 5(& +22p).

The above formula simplifies to

Giv1 — 2¢; + ¢y
h? ’

¢ + 10 + ¢}, =12 (5.29)

when ¢ = b = B = 0 are selected. In order to eliminate the fictitious unknown values

00, ¢n+1 for i = 1, N the following fourth order interpolation formula

¢i—% + a¢[+% =ap;_1 + b¢, + iy + d¢l’+2, (530)

— -5 _a p_15,9% ._ _5, % -1 _a
canbeused,wherea—free,a—16 16,19—16+16,c— 16+16andal—16 e

If @ = 0 the values ¢, and ¢y, can be calculated using the following equations
16 1 16 |
bo= <1 =31 +d— b 3 v = Phyay — 30w+ by —idvo. (53D

This formula fits the case where Dirichlet boundary conditions apply, as the values ¢ 1 and

Py.1 are computed on the boundary. The second derivative values ¢ and ¢}, in relation

;\,7+1
(5.29) can be eliminated using the equation (5.30).

Now, discretized equation (5.29) can be written in the following operator’s form

(Pg")i=(Q¢); ,i=1,...N. (5.32)
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using the compact finite-difference operators P and Q. These discrete operators are

16, , +35¢, + 104, — ¢ , i=1
(P )i=1 ¢ +10¢ +¢,,, . i=2,.,N-1,

—¢y , +10¢,_ +35¢, , +16¢,, i=N

L(16¢1/, = 25¢1 + 106, — ¢3) , i=1
(Q8)i =\ 21 = 20 + iv1) i=2,.,N—-1

B(=¢n-2 + 10¢y_1 — 25¢y + 16¢y,412) , i=N

The application of these operators in the one-dimensional pressure correction problem

(5.27) results to the following discretization equation

(QAp); = (Pf)i + OAY) (5.33)

out of which a fourth order of accuracy compact scheme is obtained.

In the case of Neumann boundary conditions an equivalent interpolation formula (5.30)

has the form

h(‘/’;_% + CV¢;+%) = agi-1 + bg; + cdin1 + ddivr + i3, (5.34)
where a = free, a = ‘222%, b = % - 9?", c = % and d = ";" and e = ﬁ. In order to

evaluate the fictitious values ¢ and ¢y, the above formula for @ = 0 is applied, resulting

to

2 0 17, 9 5 1
by = _Hh¢ 1 + ﬁ(ﬁl + Z(]ﬁz - ﬁ(ﬁg + Z(ﬁzt (5.35)
(5.36)
2 17, 9 5 1
On+1 = thﬁ N+b T ﬁQSN + ﬁ@v—l - ﬁfl’zv—z + Z¢N—3 (5.37)
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As in the case of Dirichlet boundary conditions, so in Neumann, a similar fourth order of
accuracy compact discretization scheme emerges.

Robin or mixed type boundary conditions can be treated similarly by eliminating all fic-
titious node values using a combination of the approximation formulas (5.31),(5.35) and

(5.37).

In the development of a two dimensional fourth order finite difference compact dis-
cretization scheme for the pressure correction equation (5.26), the compact finite difference

operators P and Q are applied as

PQ*Ap;; + P*QAp;; = PP + OAY) (5.38)

where P* , Q° , P¥ and Q" are the corresponding operators for each partial derivative’s
direction. The above relation is valid at every grid point (x;,y;) and, in addition, O(A*)
denotes the truncated terms of the order of O(Ax* + Ay*). After dropping the O(A*) term,
the fourth order compact discretization scheme of the pressure correction equation can be

expressed as

TAp;; = S (5.39)

The expanded form of operators J and 8§ is

a(Apisi jo1 + Apivi jo1 + Apii je1 + Apicy jo1) + 2D(Apj ju1 + Apj j_1)+ (5.40)

2¢(Apis1,j + Api_1j) — 20aAp;; = sz(8fz‘,j + firrj + ficrj + fijer + fij-1)

witha=1+79% b=5-v%and c = 59> — 1 and v = Ax/Ay the mesh ratio, for all interior
nodesi =2,.,N,—1, j=2,..,N, — 1 (see Fig. 5-3(a)). Equation (5.40) formulates the
fourth order accurate discretization of the interior scheme,[49]. Closure schemes have to

be derived at the four edges of the domain. Equations corresponding to pressure nodes in



CHAPTER 5. SOLVING THE NAVIER-STOKES EQUATIONS 159

(a) (b) (©

Figure 5-3: The compact finite difference stencil ; (a) interior weight unknown nodes, (b) boundary
weight unknown nodes and (c) boundary corner weight unknown nodes .

the vicinity of the bottom boundary are formed as

S5d(Api-iy + Apiciy) + 10a(Apiip + Apicip) — a(Api_i 3 + Apivi3) — 10gAp;  +

A 2
2c¢(10Ap;, — Apiz) = 1—;(350ﬁ,1 +100f;2 — 103 + 35(fic11 + firr,)+ (5.41)

10(fic12 + fir12) = (fim13 + fir13)) + A(Ap, £ h),

withd = 7—5y*>and g = 7 — 25y* for i = 2,...,N, — 1 based on Dirichlet boundary
conditions (see Fig. 5-3(b)). The grid function A(Ap, f; h) involves known values on the
boundary of Ap and the right hand side function f. A similar formulation stands for the
equations near the upper, left and right boundaries. Additional closures are required for the

corners of the domain. The equation corresponding to the bottom-left boundary corner is

a(—875Ap1,1 + 100AP22 + Ap3’3) + Sd(lOAng — Ap371) + 56(10Ap172 — Ap1,3)—
2

Ax
10a(Ap3o + Apy3) = 3(1225f1,1 +100f22 + f33 +350(f21 + fi2)— (5.42)
35(f51 + f13) = 10(f32 + f23)) + B(Ap, f3 h)

with e = 7y* — 5 and B(Ap, f; h) again, a function of known values on the boundary, (see

Fig. 5-3(c)). The other three corner equations are similarly derived.

Remark 5.2.1 The discretization scheme (5.39) is equivalent to the fourth-order finite dif-

ference compact scheme (2.48), which is presented in Chapter 2.
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5.2.2 Discretization of the right hand side

On the staggered grid arrangement, the right-hand side of equation (5.39) is evaluated for
every grid node equation (5.40) using the following one-dimensional compact fourth order

approximation formula, available in [24],

b
hagiy + ¢+ ai) = aldiy = ¢ )+ 3(ig — iy, (5.43)

where a = (9 — 6)/8 and b = (-1 + 22a)/8. This relation involves derivative values
¢’ computed at the cell centers for staggered grids and function values ¢ computed at the

corresponding cell edges. Gathering the terms at the right-hand side b; ; of (5.40) as

2
bij = Ax"(8fij+ fis1,j + fijr1 + ficrj + fij-1)

= AC[8(V - i)y + (V)i + (V)i + (V- uli)ijon + (V- ul)i o]
A 2
= al (8(9xu,~,j + 88},\)1"]' + 8xul~+1,j + ayVH_LJ'
a1 At
’ (5.44)
+ (9xul',j+1 + (9yv,-,j+1 + (9}51/15_1,1' + 6),\/1-_1,]- + (9xu,-,.,-_1 + Gyv,;j_l)
Ax?
= o t(axui,l,j + 86)6141"]' + axu,-HJ + ayvi,j+1 + 86);\/,"]' + 8yvi7]-+1
+ Ot jo1 + Oty jr1 + OyVijo1 + OyViji1)
and applying the relation (5.43) for @ = 0 and @ = é, yields:
1T - T
=7 1
A -99 =27
bii=—— |2 s+ t| | (5.45)
T a A2
Li-1 99 27
7 -1
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where
Ui-32,j T YVij-3/2 U321 + Wip3g2 i1 + YWic1 32 + Vis1,j-3/2)
Ui—1/2,j + VVij-1)2 Ui1)2,j-1 + Uir1/2,j-1 + Y(Vie1j1/2 + Vis1,j-1/2)
5= , L= . (5.46)
Uis1/2,j + VVije1)2 Uip1/2,j-1 + Wir1/2,j-1 + YVic1 12 + Visrj+1/2)
| Uiv3/2.j T YVij+3)2 | Wiv3/2,j-1 F Uir3)2,j-1 + YVic1js32 + Vi+1,j+3/2)_

The values in the previous relation correspond to the values of the vector uZ}Z on the stag-
gered grid and are already available from the previous time step.

Right-hand side values close to the boundary are evaluated in a similar manner with an
appropriate modification of the above procedure, though taking into account the following

fourth order approximation formula

where a = (—11 -46a)/12,b = (17 +202a)/24, c = (3 - 66a)/8, d = 5(—1 + 22a)/24 and
(1 —22a)/24, eliminating fictitious mesh node values in each spatial direction.

The discretization of the pressure correction equation with the fourth order compact
difference scheme provides a sparse linear system. In case of realistic applications where
fine discretizations are required, it is also large. In such a system, the theoretical analysis,
along with the numerical experiments in previous chapters, suggest the employment of an

iterative method coupled with a multigrid method for an efficient solution process.
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5.3 Numerical Results

The numerical experiments presented in this section were conducted in order to demon-
strate the high-order of accuracy of the solver. The incompressible Navier-Stokes equa-
tions are being solved over equal and unequal mesh-size discretizations using multigrid
techniques. The effectiveness of the proposed solver is under review for a set of steady
and unsteady flow problems. Comparison results between the numerical method and [71]
without the multigrid technique are obtained for the driven cavity flow. Additionally, in
order to validate that the multigrid technique using partial-coarsening is preferable to that
of full-coarsening in certain cases, the execution time and the L, error norm estimates of
these strategies are documented in the Stokes boundary layer test problem. The V — cycle
multigrid acceleration with HOC discretization is implemented for the pressure correction
equation in every case. The iterative process recurs until a coarse grid of 4 X 4 computing
cells is reached. The Horizontal Zebra Gauss-Seidel solver is preferred as a smoother for
the resulted pressure-correction linear system in every intermediate levels, including the
coarsest grid. Two presmoothing and one postsmoothing steps are applied in each level.
Multigrid integrid operations use the BCP prolongation and MR restriction operators for
an optimal multigrid technique.

In order to retain the high-order of accuracy in time and avoid nonlinear instabilities in
the numerical experiments, the computations use CF L numbers under the stability limit of
the Runge-Kutta method. All single core numerical tests were performed on an OracleFire
X2200M2 machine with 4GB RAM and two dual core Opteron@ 3.0GHz processors. The
operation system installed is Oracle’s Linux 6.3 and the implementations were developed
in double precision Fortran code. All basic linear algebra operations were performed using
subroutines fromthe Lapack [45] scientific library. It was detected that the divergence free
condition on the discrete level is enforced to machine accuracy (less than 107%). The ter-
mination criteria in the solution of the pressure correction equation is dependent upon the

residual of the finest grid in L, norm; in fact, when the norm takes a value less than 1078 in
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every simulations.
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Figure 5-4: Residuals R in the L, norm of the new method; kovasznay flow (Re=100).

5.3.1 Kovasznay flow

Initially, a problem introduced by Kovasznay (see [34]) is considered, modeling laminar
flow behind a two dimensional grid. Although this test case does not exhaust the resolving
capabilities of the current methodology, it is suitable as a typical example to demonstrate
the spatial accuracy of the method. The analytical solution of the velocity vector u = (u, v)

and pressure p is given by

u=1-e"cos(2my)

A

v = —eYsin(2ny) (5.48)
2

p=po-— %eQ/lx’

where pg is an arbitrary constant and the parameter A is given in terms of the Reynolds Re

number by
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Figure 5-5: Streamlines of the approximated velocity on a 64x64 grid; Kovasznay flow
(Re=100).

R Re?
= e < 0 (5.49)

A
2 4

This flow problem is solved in the domain Q = (-0.5,1.5) x (0,2) and when the
Reynolds number equals 100. Dirichlet boundary conditions based on the exact solution
are considered. In order to confirm the accuracy of the method, the L?>-norm error estimates
and the associated order of convergence are presented in Table 5.1. The time step At was
determined using CFL = 0.75. In every level, the desired order of accuracy is reached
for both velocity and pressure. The numerical approximation solutions for the velocity
u = (u,v) and pressure p are obtained using the multigrid Navier-Stokes solver. These ap-
proximations are denoted by u* and p*, respectively. It is observed that the combination of
the multigrid technique with the fourth order compact finite difference scheme, retains the
fourth order of the spatial accuracy. Fig. 5-5 depicts the streamlines of the approximated
velocity on a 64x64 grid. Additionally, the time table of the value of residuals R with

At = 2 x 1072 (Fig. 5-4) indicates that steady-state solution was reached after 7 = 5 units
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of time.
Table 5.1: Convergence estimates for the Kovasznay flow
rid size o — w.l, lp — plle,
& Error Order Error Order
8 4.51e-2 - 5.13e-2 -
16 3.79¢-3 357 640e-3 3.01
32 223e-4 4.09 5.04e-4 3.67
64 1.41e-5 398 3.50e-5 3.85
128 8.87e-7 399 2.46e-6 3.92
10~ L2 Re=is0s w0k L2 nom Remioe0
F Sl —&—— L2 norm Re=10000 F N —<&—— L2 norm Re=10000
102 ~ — — — - slope4 — — — - slope 4
F 10'2§
10°E
gmﬁ: %1“5
>10"5 E 510'5 L
10’ 10°k
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0.25 0.1325 0.015 0.25 0.1325 0.015

Figure 5-6: Convergence rates of velocity and pressure error L,-norm versus the grid-size
(h) at T = 5; Taylor vortex.

5.3.2 Taylor vortex

The Taylor vortex problem [53] is a well-known example of the unsteady incompressible

Navier-Stokes equations, which has the following exact solution

—2n%t
u = —cos(mx) sin(7ry)e3T
v = sin(mrx) cos(ﬂy)e%% (5.50)

1 —any
p= Z(cos(Zﬂx) + cos(Zﬂy))e%T,
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Figure 5-7: Temporal accuracy in L,-norm of the velocity at 7 = 5; Taylor vortex.

where Re is the Reynolds number. In order to confirm the spatial and temporal accuracy
of the numerical method for a wide range of Reynolds numbers, the Taylor vortex problem
is solved in the square domain [—1, 1]%. Periodic boundary conditions and initial condition
are imposed based on the exact solution. The convergence rates of the computed solutions
for different mesh sizes (4 up to 64 cells in each direction) and for Reynolds numbers 102,
10°, and 10* are shown in Fig. 5-6. For all simulations the time step was determined
for CFL = 0.75. The convergence rates for velocity and pressure error in L-norm are
evaluated at the final time 7 = 5. As it is observed these rates are of order 4 for all test
cases. As frequently detected in this test problem, the velocity magnitude error tends to

drop more abruptly when increasing the Re numbers compared to the pressure error.

5.3.3 Oseen vortex decay

The temporal and spatial accuracy of the numerical scheme is evaluated next in an unsteady
flow problem. The decay of an ideal vortex (Oseen vortex) with uniform pressure and initial

velocity distribution
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Figure 5-8: Comparison of the exact and computed u-velocity for 64x64 and 128x128 point
grids at T = 4; Oseen vortex decay.

r
ve(r,t =0) = T (5.51)

where I defines the strength of the vortex and r the distance from the origin. This vortex
decays under the action of viscous dissipation and the velocity distribution at time 7 is given

by the following exact solution [58]

F 2Re
ve(r, 1) = %(1 —e ). (5.52)

The time-dependent flow with the initial condition given by (5.52) was computed for I' = 5.
Fig. 5-8 presents the numerical solution of (5.52) obtained from equally spaced, Cartesian

grids with 64x64 and 128x128 nodes, until final time 7 = 4.

It can be seen (see Fig. 5-8) that the computed velocities approximate the exact solution
better as the resolution increases. Furthermore (see Fig. 5-9), fourth order spatial and

temporal accuracy is accomplished.
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Figure 5-9: Comparison of the L, norm of spatial (left) and temporal (right) errorsat 7 = 1;
Oseen vortex decay.
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Figure 5-10: Divergence error and Residual R in the L? norm of the new method for 64x64,
Ar=0.002; Stokes oscillatory plate (Re=1).

5.3.4 Stokes oscillating plate

This flow problem assesses the efficiency of the proposed method when the partial semi-
coarsening multigrid strategy is applied, compared to the full coarsening approach.
Although uniform finite difference discretizaton using equal meshsizes in both x and y

directions can be effortlessly implemented, there are cases where the use of unequal mesh-
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sizes in different coordinate directions proves to be more cost effective. In such cases, the
modeled physical quantity is unevenly distributed in different directions. The flow over an
infinite oscillating plate (Stokes problem) is an unsteady incompressible flow problem with
an exact solution that demands finer resolution than normally to the wall direction. The
flow over the plate begins after the plate starts an oscillatory motion (on the plate y = 0)
with a speed u(x, 0, 1) = ug cos Qr.

The exact solution [58] of the time-dependent velocity is:

QRe oR
u(x,y,t)=e N2 cos(Qt —y‘/—e).

> (5.53)

The parameter values 1y = 1 and Q = 2x are used. Periodic boundary conditions are
imposed in the streamwise direction and on the plate v = dp/dn = 0 is considered. The
discretization uses a mesh ratio y > 1, because the exact solution alters in the y — direction
only. Comparison results are summarized in Tables 5.2-5.3 for the implementation of the
two multigrid techniques with partial semi-coarsening and full-coarsening strategies. When
Re = 1, the diffusive time constraint must be satisfied. Increasing the anisotropy Ax >
Ay, allows the temporal interval to increase. In this case, it is interesting to note that the
behaviour of the problem is similar to the one-dimensional and that the time-step restriction
is dictated by the equation (5.18) for d = 1. A fixed time interval was used (At = 2 x 1073)
in every spatial discretization. In Fig. 5-10, the solution converges to a steady repetitional
pattern with reasonable small values in the time table of the residuals R and the velocity

divergence, with Ar = 2 x 1073,

Table 5.2: Total CPU time in seconds for Stokes oscillating plate.

N,N,=8[N,=16 | N,=32 [N, =64
8 | 35 - - -

16| 7.20 | 11.49 - -

32| 1397 | 2261 | 3522 -

64 | 2325 | 4423 | 81.10 | 140
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Table 5.2 includes the total execution time required to converge to the solution at time
T = 1/4 after the time periodic solution has been reached, on several equal and unequal
meshsize grids. Execution time measurements indicate that the semi-coarsening multigrid
technique is increasingly preferable in terms of CPU cost than the full-coarsening one for
the increasing anisotropy (Ay < Ax) cases. Table 5.3 presents the L, error norm of the so-
lution together with the convergence rates computed by the proposed method. Decreasing
Ay does not always lead to a reasonable increase of the solution’s accuracy. The identical

L, norm error estimates are obtained by keeping the value of Ay fixed.

Table 5.3: L, error and convergence rate estimates for Stokes oscillating plate.

Ny | Ny=8 | Ny=16 | N, =32 | N, = 64 | Order
8 [3.17e-3 - -
16 | 4.61e-4 | 4.61e-4 - - 2.781
32 | 3.79¢-5 | 3.79¢e-5 | 3.79e-5 - 3.604
64 | 2.61le-6 | 2.61e-6 | 2.61le-6 | 2.61e-6 || 3.860

5.3.5 Driven cavity flow

The steady-state driven-cavity flow problem [91], [30], [7] has been widely used as a vali-
dation example in numerical methods solving the incompressible Navier-Stokes equations.
The flow is contained within a unit square cavity and no-slip boundary conditions are im-
posed on every wall, except the upper wall, where u = 1 and v = 0. The boundary con-
dition for the pressure in every wall is obtained when considering zero normal gradient
(Op/on =0).

Since this case has been solved quite a few times, there is a great deal of data to compare
with. A good set of data for comparisons is that of [91] as it includes tabular results for
various Reynolds numbers. Numerical solutions for the driven-cavity flow were obtained
using different Reynolds numbers and compared to the calculations in [91] as presented in

Fig. 5-11 and 5-12. The results herein are in acceptable agreement to those by Ghia et
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Figure 5-11: Comparison of velocity approximations with reference solutions by Ghia et
al. [91] for Re = 400 and 1000.

al. [91]. It is noted that, while Reynolds numbers remain under 1000, a 64x64 grid size
is acceptable for a sufficiently accurate solution. When increasing the Reynolds number,
a finer grid is required (see Fig.5-12). The velocity magnitude distribution and vectors
of uniform lengthscale for Re={400, 1000, 3200, 5000} are presented in Fig. 5-13. The
flow pattern is also in agreement with those in [91], with the recirculation in the middle,
driving two left-spinning vortices in the lower right and left corners of the domain for
lower Reynolds numbers and an extra left-spinning vortex on the upper left corner for
higher Reynolds numbers. As expected - and already well documented in the literature
- the corner vortices increase in size as the Reynolds number increases, with a repetitive
formation of additional vortices in the three corners (upper left, lower right, lower left).

In higher Reynolds numbers, the resulting flow pattern implies an added flow instability
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Figure 5-12: Comparison of velocity approximations with reference solutions by Ghia et
al. [91] for Re = 3200 and 5000.

due to Reynolds number increase. To ensure that a steady state solution has been reached,
the results in figures Fig. 5-11-5-13 were obtained for non-dimensional times 77 = 35
for Re = 400 and 1000, T = 120 for Re = 3200 and 5000. For time values greater than
T = 20 for Re = 400, T = 30 for Re = 1000, T=85 for Re = 3200 and 7 = 110 for
Re = 5000 , no apparent differences where noticed by further propagating the solution.
This was also established by examining graph in Figure 5-14, that shows the residuals
R history with respect to non-dimensional time different temporal discretizations. The
L,—norm minimizes to values less that 5 x 107'°, which indicates a solution reaching a

steady state status.

Tables 5.4-5.7 display the total CPU time needed to converge to a steady state solution

using the multigrid solver. For good practice comparison, the same values are also pre-



CHAPTER 5. SOLVING THE NAVIER-STOKES EQUATIONS 173

0.0000E+00  1.5789E-01 3.1579E-01 4.7368E-01 6.3158E-01 7.8947E-01 9.4737E-01

Figure 5-13: Velocity magnitude distribution and vectors of uniform lengthscale for
Re={400, 1000, 3200, 5000}. The flow patterns agree well with those in [91], with the
recirculation in the middle driving two left-spinning vorticies in the lower right and left
corners of the domain for lower Reynolds numbers and an extra left-spinning vortex on the
upper left corner for higher Reynolds numbers.

Table 5.4: Total CPU time and time per Stage in seconds for Re=400 and T=25.

Grid size Multigrid solver GMRES solver [71]
At Total time Time/Stage Total Time Time/Stage

64 1/100 74.82 0.007 182 0.018

128 1/250 714 0.029 3942 0.158

256 1/1000 11328 0.113 142300 1.423
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Figure 5-14: Residuals R in the L, norm of the new method for Reynolds 400 up to 5000;
Driven cavity flow.

Table 5.5: Total CPU time and time per Stage in seconds for Re=1000 and T=35.

Grid size Multigrid solver GMRES solver [71]
At Total time Time/Stage Total Time Time/Stage

64 1/50 60.19 0.009 128 0.018

128 1/100 461 0.0329 2466 0.176

256 1/400 6993 0.129 85176 1.521

Table 5.6: Total CPU time and time per Stage in seconds for Re=3200 and T=100.

Grid size Multigrid solver GMRES solver [71]
At Total time Time/Stage Total Time Time/Stage

64 1/50 144 0.007 358 0.018

128 1/100 1088 0.027 6415 0.160

256 1/200 8667 0.108 116320 1.454

Table 5.7: Total CPU time and time per Stage in seconds for Re=5000 and T=120.

Grid size Multigrid solver GMRES solver [71]
At Total time Time/Stage Total Time Time/Stage

64 1/50 187 0.008 429 0.018

128 1/100 1445 0.030 7719 0.161

256 1/200 12895 0.134 140165 1.460
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sented for the numerical method proposed in [71], where the ILUT preconditioned Krylov
subspace iterative solver GMRES was employed in the numerical solution of the linear sys-
tem. In addition, the average CPU time needed to perform a single stage of the Runge-Kutta

method is included. Each Table refers to a specific Reynolds number.

This performance investigation unveiled the superiority of the proposed numerical scheme
in terms of execution time. The ratio of the computational time between the two methods

increases along the order of the linear systems.

Table 5.8 presents the number of V — cycles required for the pressure correction sub-
problem solution per time-step. It is interesting to notice that, when the overall solution
converges (approaching the steady state) the V — cycles reduce to minimum (1), thus accel-
erating significantly the pressure correction procedure. It was observed that the execution

time per Stage remains stable in case of the non-multigrid solver.

At the beginning of the overall solution process, with increasing Reynolds numbers, the
multigrid solver converges faster (see Table 5.8), i.e. four V —cycles for Re = 400 and 1000
and three cycles for greater Reynolds numbers are needed. That can be explained by the fact
that large Reynolds numbers lead to more oscillatory solutions and thus to more oscillatory
errors. The multigrid technique is highly capable of solving such kind of problems, because
the multigrid smoothing procedures can quickly eliminate the oscillatory error components,

while smooth modes are slowly damped.

5.3.6 Double Shear Layer Flow

This test case evaluates the ability of the computational algorithm to resolve unsteady flow
features that require high resolution. It has been well documented in the literature [69],
[23] that under-resolved numerical simulations of the evolution of a 2D vortex street for an
incompressible fluid with double-periodic boundary conditions can produce artifacts char-

acterized as ‘spurious eddies’. In particular, the time-dependent flow with initial condition
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Table 5.8: V-cycles required for convergence against time duration.

Time (sec) Reynolds Number
400 1000 3200 5000
[0, 0.306) 4 4 3 3
[0.306, 0.365) 3 4 3 3
[0.365, 1.09) 3 3 3 3
[1.09, 1.945) 2 3 3 3
[1.945, 3.10) 2 2 3 3
[3.10, 3.89) 2 2 3 2
[3.89, 11.73) 2 2 2 2
[11.73, 23.53) 1 2 2 2
[23.53, 39.65) 1 1 2 2
[39.65, 106) 1 1 1 2
[106, 120] 1 1 1 1

Figure 5-15: The computed vorticity field on a 256x256 grid at T=1; Shear Layer.

tanh(6(y — 0.25)) ify <0.5
u(x,y,t =0) = ,

tanh(6(0.75 —y)) ify>0.5
that represents a shear layer (with ¢ determining its thickness), which evolves into a peri-

odic eddy pattern, when it is perturbed in the y direction. Using a sinusoidal perturbation of

the form v(x, t = 0) = v'sin(27x) as in [23], where V' is the perturbation amplitude, the ini-
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tial shear layer and the perturbation converges to a solution that takes the form of a regular
periodic vortex street. A unit-square domain [0,1]x[0,1] was preferred for the simulation
over a 256x256 grid. Periodic boundary conditions were applied in every direction and a
Reynolds number of Re = 10000, with a thickness parameter 6 = 100 and a perturbation
amplitude v/ = 0.05. Second and higher order schemes have been tested in this problem
in [28], using the artificial compressibility (AC) method by Chorin [10] which was later
extended for time-dependent incompressible flows by Merkle & Athavale [16] and others
[85]. The major drawback of the AC methodology is that the numerical diffusivity required
to stabilize the solution is considerably high in this kind of problems. It is expected that,
the deficiency of low order methods to produce ‘spurious eddies’ for specific discretiza-
tions is lifted with the application of higher order schemes. As Fig. 5-15 shows, the fourth
order accurate compact method produces a regular periodic eddy pattern, with excellent

agreement with those presented in [23] and [28].

5.4 Concluding Remarks

An efficient high-order accurate, compact finite-difference solver for the solution of the in-
compressible Navier-Stokes equations is developed. The global pressure correction method
is applied to enforce incompressibility. An effective fourth-order accurate compact scheme
has been used as a discretizer for the approximation of the spatial and temporal terms.
New approximation compact formulas were proposed for the boundary closures to ensure
the global accuracy of the solver. An optimized multigrid technique is incorporated for the
pressure correction algebraic system, as presented. It has been observed that, when increas-
ing the Reynolds number in fine grid discretizations, the numerical solution of the pressure
correction procedure is significantly accelerated, due to the application of the multigrid
technique. The zebra coloring scheme numbering unknowns and equations, has increased

the degree of parallelism, allowing efficient implementations of realistic problems on paral-
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lel architectures. In the next section an efficient parallel algorithm of the solver is designed

and implemented modern computing architectures.



Chapter 6

The Parallel Navier-Stokes Solver

A great number of large scale flow simulations are performed on parallel computing archi-
tectures. Today supercomputers’ hardware comprises of several multicore processors on
computing nodes and have a number of accelerators attached. These computing devices
have become an substantial component of every supercomputer. Originally, the most com-
mon accelerator type, the GPU (Graphics Processing Unit) was designed with an aim to
improve the efficiency of the graphics processing pipeline, but it was soon discerned that
it would prove to be useful in enhancing the performance in scientific computing applica-
tions. Recent efforts accelerating CFD simulations using GPUs can be found in [29] and
implementations employed GMG in [87]. In this chapter, the design of a parallel algorithm
for the Navier-Stokes solver for architectures with accelerators is presented[66]. In the first
section, the advancement of parallel multigrid algorithms is briefly described and, next,
each part of the parallel Navier-Stokes algorithm follows separately. Finally, a presentation
of the implementation and the performance investigation on shared memory architectures
with accelerators end the chapter. The parallel algorithms of Pressure correction, Block
Cyclic Reduction (BCR) and the Multigrid techniques are also presented. The parallel per-
formance analysis of the Pressure Correction algorithm for high resolution simulations is

the scope of Section 4.

179
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6.1 Parallel Multigrid techniques

Although multigrid components may have a highly parallel nature, the overall structure
of the standard multigrid algorithm is inherently not parallel. This sequential nature of
multigrid is due to the fact that computation in every grid level of the multigrid algorithm
is sequentially executed. Moreover, the computation count changes between different grid

levels.

Historically, efforts on parallel multigrid algorithms started in early 80’s [3]. In early
90’s, McBryan et al. [68] present a study of parallel algorithms suited for multigrid. Parallel
results, implementing numerous supercomputing architectures, exhibited very poor scaling
in the most implementations. In [26], Chow et al. provide a more recent study of parallel

algorithms for multigrid techniques.

In general, parallel algorithms for multigrid techniques can be classified in two classes.
The first class is based on the divide and conquer method, subdividing the computational
grid into sub-grids with or without overlaps, where each sub-grid is handled by one process.
The communication between the sub-problems is usually minimized by minimizing the sur-
face area of each sub-grid and, at the same time, keeping overlapped zones at the sub-grid
boundaries. Particularly relevant to this technique is the domain decomposition multigrid
methods. The second approach is to solve the global problem using a fast multigrid solver
based on a grid partition for a parallel solver. Several other interesting parallelization ap-
proaches for specific situations have been explored in the literature: additive variants of

multigrid [39, 6], multiple coarse grids [8] and parallel multilevel block LU factorization

[59, 26].
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6.1.1 Computing Accelerators

The world’s first computing accelerator was Nvidia’s GPU-GeForce 256 device, that came
out in the market in 1999 !. As the name suggests, GPUs were initially designed for
graphics/video processing and were programmed using specialized graphics languages. In
applications like those, where many thousands to millions of pixels need to be displayed
on screen at the same time, throughput is more important than latency. In contrast, CPUs
execute a single instruction (or few instructions, in the case of multiple cores) rapidly.
This led to the current shared memory design of highly parallel architecture of modern
graphics processors. In the last decade, the employment of GPUs has entered a new era,
as the devices are not only used for calculations related to 3D computer graphics, but for
other general purpose computations also, leading to the term GPGPU (General Purpose
Graphics Processing Unit). A researcher can identify a computing problem with sufficient
data parallelism, exploit the GPU’s power to compute the necessary quantities faster than
before and, therefore, GPUs are becoming popular in many scientific computing areas.
Today, the top manufacturers of computing accelerators are Nvidia, AMD and Intel.
The first two produce CPU based accelerators with thousands of cores, while Intel has
accelerator devices with tens or hundreds, but more powerful cores. Top-of-the-line CPUs
used in supercomputing clusters contain four to sixteen CPU cores. GPUs on the other
hand, consist of hundreds or thousands of processing cores, and fall in the category of

shared memory multi-core computing devices.

6.1.2 Multigrid on architectures with accelerators

In the last few years, various multigrid Navier-Stokes solvers have been successfully im-
plemented on architectures with accelerators [33, 37]. Bolz et al. [14] and N. Goodnight
et al. [36] first implemented a parallel version of multigrid on GPUs. Both studies use the

OpenGL API to interact with the GPU. In [14], an optimized parallel multigrid algorithm

Thttp://www.nvidia.com/page/geforce256.html
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was designed to layer the four quadrants of a scalar problem into a single four channel
texture format to enable vectorization. They reported a roughly 2x speed-up over the CPU
version of the algorithm. Alternatively, all multigrid data, i.e. current solution, residu-
als, intergrid operators could be stored as textures on the GPU. This practice allowed the
authors in [36] to achieve speedups of around 5x on large grids over CPU. Both studies
indicated, that memory bandwidth is a major bottleneck in the implementation of multi-
grid. The aforementioned efforts were put before the introduction of the Compute Unified
Device Architecture (CUDA) toolkit. CUDA is a parallel computing platform and appli-
cation programming interface (API) model created by NVIDIA in 2006. It allows soft-
ware developers and software engineers to use a CUDA-enabled graphics processing unit
(GPU) for general purpose processing, an approach known as GPGPU. Unlike previous
API solutions, e.g. Direct3D and OpenGL, the CUDA platform is designed to work with
programming languages such as C, C++ and Fortran, making it easier for specialists in par-
allel programming to fully utilize the GPU resources. In this programming environment,
several variants of GMG have been implemented on accelerators the last decade. Shinn and
Vanka [9] implemented a multigrid Full Approximation Scheme (FAS) method using the
semi-implicit method for the SIMPLE algorithm to solve the incompressible Navier-Stokes
equations. Thibault and Senocak [89] developed a second-order CUDA-based GPU solver
for the incompressible Navier-Stokes equations. The double precision simulation algorithm
on a single GPU for the lid-driven cavity problem for a domain of 8388608 computational
nodes achieves a roughly 13x speedup compared with an equivalent version running on one
CPU core. Cohen and Molemaker [48] later presented the code for a second-order finite
volume method solving the incompressible flow equations with the Boussinesq approxima-
tion. Using double precision, the GPU-based solver was approximately eight times faster
over an eight-core CPU. However, it is should be mentioned that those implementations
are based on low-order discretizations. The literature concerning investigations about the

GPU performance of high-order compact schemes for incompressible flows is rather poor.
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Furthermore, most studies focused on the investigation of the GPU performance of multi-
grid using full-coarsening. Emphasis in semicoarsening was given only in[67]. There, a
massively parallel version of a semicoarsening multigrid 3d solver is developed coupled
with a black-box multigrid solver for solving plane systems. Their multi-GPU implemen-
tation is found to be faster than the multi-core implementation running on 12 Intel® Xeon®

E5-2620 cores, for models with planes large enough (i.e. sizes of at least 1 million cells).

In this chapter, the design of a parallel high-order multigrid Navier-stokes solver based
on the sequential solver presented earlier is presented along with the implementation on
computing systems equipped with three different GPU types of acceleration devices: a)

Tesla M2070, b) Tesla K40 and c) Tesla K80.

6.1.3 The OpenACC API

OpenACC is a relatively new Application Program Interface (API) used for the acceleration
of applications on shared memory architectures with accelerators developed by NVIDIA,
Cray, the Portland Group and CAPS. The OpenACC API describes a collection of com-
piler directives to specify loops and regions of code in standard C, C++ or Fortran to be
offloaded from a host CPU to an attached accelerator device. OpenACC is designed for
portability across operating systems, host CPUs and a wide range of accelerators including
APUs, GPUs and multi-core coprocessors like Intel’s Phi device 2. In constrast to CUDA,
OpenACC is a high level, descriptive approach, that enables developers to express the par-
allelism in the code to the compiler using directives (e.g. CSACC or !$acc in Fortran code),
and then lets the compiler target and optimize this parallelism to any parallel architecture
from a single source code °. In fact, the way to add the OpenACC directives in a legacy
code is quite easy and similar to the OpenMP API. The example shown in Table 6.1.3

demonstrates the parallelization of a loop over grid cells for adding the pressure correc-

Zhttp://www.intel.com
3http://www.openacc.org
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tions (Ap(l : N, 1 : Ny)) to the stored pressure vector p(1 : N,, 1 : Ny), where N, and N,
is the number of nodes in x— and y—direction . Both the OpenMP and OpenACC parallel
construct directives can be applied to a readily vectorizable loop (see Table 6.1.3) without

changing the original code.

Table 6.1: A Fortran code example with OpenMP / OpenACC parallel construct pressure
update implementation

!'...OpenACC version !'...OpenMP version
! ...loop over the cells I'...loop over the cells
'$acc kernels 'Somp parallel
'$acc loop '$omp do
do i=1,N; do i=1,N,
do j=1,N, do j=1,N,
... pressure update to the cell ... pressure update to the cell
p(i, j) = p(, j) + Ap(i, j) p(, j) = pQ, j) + Ap(, j)
end do end do
end do end do
!$acc end kernels '$omp end parallel

In [20], the developed multigrid method is based on GMG HOC approach for the Pois-

son anisotropic problem over vertex-centered grid. They achieved a roughly 2.5x speedup
over a very fine grid (16384x2048) comparing the computing time of the OpenACC pro-
gram on an NVIDIA Tesla M2070 GPU. The smoothing procedure leads to a series of block
tridiagonal linear systems. The key to explain the poor efficiency of the GPU algorithm [20)]
is the solution of the tridiagonal linear systems using a sequential solver (Thomas algorithm
[20D).
Here, these type of linear systems are effectively solved by using the cyclic reduction algo-
rithm [95], which is appropriate for vector programming. Our algorithm uses of backward
substitution only, since the coefficient linear systems matrices are factorized at the begin-
ning of the program.

In this work, the target is to accelerate the Navier-Stokes solver’s performance on shared

memory architectures with accelerator devices. Attention is focused on spotting the differ-
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ences between grids with equal and unequal spacing.

6.2 The Block Cyclic Reduction algorithm

Considering the linear system Au = b, where the coefficient matrix

a
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| 0
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dg

and vectors u and b are of size N,.
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Assuming, that, N, = 29, the above linear system can be expressed using the following

block tridiagonal form
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which is abbreviates to
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The method of Block Cyclic Reduction in the context of (6.3) will be illustrated. The

algorithm proceeds in two stages: reduction and backward substitution. During each step

of the reduction stage, half of the unknowns are eliminated. Based on the above matrix

partition, after ¢ — 1 reductions, a 2 X 2 linear system is solved and the solution is evaluated.

All previously eliminated unknowns are computed by the backward substitution procedure.

Three consecutive equations, arranged in the following tableau, are considered:

Eq# Up; > Ui WUp; WUpjpp Upjpo b

2j—-1| B D C b1

2j B D C by, forj=2,---,29%2-1
2j+1 B D C | by

In order to eliminate w,;_; and u;,, equation #(2;j — 1) is multiplied by -BD7!', equation

#(2j+ 1) by —=CD™! and both added to equation #(2j). The result is a new equation
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Eg# | wyj o wy Uy Wy W

j | B0 D 0 C |b

where

B =-BD'B
D =D-BD'C-CD'B= (D')T
¢ =-cpc=(B)

b,j = sz - BD_lsz_l - CD_1b2j+1

(6.5)

This way the odd indexed block unknowns are eliminated and a block tridiagonal re-

duced system for the even indexed block unknowns emerges

. u b,
D C )
, , ll4 b2
B D C
B\/ B Uyg-1_9 bz,jz_l
. | Upg-1 | | b2£1—2
where
C=C

b, =b, — BD™'b, - CD 'b;

blzq_z = bzqfl — ED_lbzq—l_l

(6.6)

(6.7)

which has the same structure as the original system, and thus this process can be cyclically



188 6.2. THE BLOCK CYCLIC REDUCTION ALGORITHM

repeated. Once the even numbered block unknowns have been computed, the odd indexed
block unknowns can be obtained from the original system by solving the following block

linear systems

Dlll = bl - Cllz
(6.8)
Dllzj_l = b2j—1 - Bllzj_z - Cu2j+2 for j= 2, ,2(1—2 -1
The reduction process generates the sequence of systems:
1 [ o
i Uy .k b
po  Ew !
Uy .ok b;k)
B pk b
= : (6.9)
(k)
o pw || e D sr-iyy
: (9]
u(2‘1‘1‘k)-2k | | b(zq—l—k)

fork =0,1,...,9 — 1. The matrices and vectors are defined by the means of the following

recursions

B*D = _p®O(p®)-1 g®
D*D = p® _ gl pky-1 et _ oo pky-1 gk

CH+D = GD =t phy-1o®

DED = pB _ gHR)-1ER _ o k-1 gk

DED = p® _ B (p®)-1c® (6.10)
B = _BW(p®)y-1 g

b(1k+1) _ b(2k> _ B(k)( D(k))—lb(lk) _ C(k)( D(k))—lb(Sk)

bV = bl — BOD®) b | - cODOY DY, =2, 20 -1
b(k+1) — b(k)

2q9-1-k 29—k

_ E(k)(D(k))—lb(zlfI{k_]
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fork = 0,1,...,q — 2. At the end of this process, the 2 X 2 system DY Duy,1 = bi’_l is

solved.

Taking into account the matrices’ structure, one may easily verify that

(k) (k) (k) (k)
- a a das
po =" "2 | pw_ S| pw=]|®
| as aék) | 0O O as agk)
(6.11)
(k) (k)
- a a — 0 a
po | 7o P 3O = 3 c® = g’
le(k) CTl 0 &g(k)
fork = 1,---,9 — 2, and it can be seen that the structure for every matrix is retained at

every cyclic reduction level, minimizing the storage requirements. Backward substitution

is performed by evaluating the solution of the following linear systems

D(k)qu = b(lk) - C'(k)U2k+1
(6.12)

(k
DPug; i = by = BYug; 5pe = CPug

for j=2,---,29%2and k = g — 2, ...,0 starting with vector uy,1.

Algorithm 3 Multigrid Navier-Stokes solver
Step 1. Guess an initial pressure field
for all time steps do
for all RK4 stages do
while (not converge) do
Step 2. - Solve pressure correction equation
Step 3. - Correct pressure and velocity fields
end
endfor
Step4.  Update velocities and pressure
Step 5. Set current pressure field as initial pressure
endfor
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6.3 The Parallel solver for incompressible Navier-Stokes

equations

As descripted earlier, the Navier-Stokes solver’s algorithm can be outlined with Algorithm

3. In addition, each time step of the discretization scheme for both the momentum and

pressure correction equations can be algorithmically descripted as

Stage 1:
oD
i+1/2,j i+1/2,j
) _
i,j+1/2 i,j+1/2
(n1) _  (n)

pi’j - pi,j

Stage ¢ :

O _ () (nl-1)
2 - W T age-1At F7+1/2,j

o _ ) (n.0~1)
Viger2 = Vije12 +ag 1At Gi,j+1/2

u

Pressure Correction Equation :
TApi; = 8(V -u™),;;

Correct :

nt) _ __(nt-1)
p,',j - pi’j + Api,j

no  _ O -1 .
Wi = Wi, ac-1A1 Py Qo
(n,f) _ (D

ij+172 = Tij+1)2

Update :

172, 12, T+1/2,j T+1/2,j T+1/2,j

At
W = e (P 4 2F0D, w 2R & P

LjF1/2 T Tije1)2 i,j+1/2 i,j+1/2 i,j+1/2

Al
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Pij = Pij
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2,3,4
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(6.13)
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(6.15)
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(6.17)

(6.18)

(6.19)
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6.21)
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(6.24)
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fori=1,..,N,, j=1,.,Ny, andi=1,..,N,—1, j=1,..,N, — 1. The first argument
n in index pair (7, {) indicates the time step (i.e corresponding to time ' = nAt). The
parameter £ corresponds to a particular stage of RK4 method, with ! = ¢, f*? = %3 =
" + At/2, 1"* = " + At, where At is the time-step size, and term (F"9, G™9) denotes the
discrete vector of R(u™?, p®9; %) in space, for stages £ = 2,3,4. As stated earlier, the
discrete pressure correction equation (6.18) needs to be solved at each stage of the RK4
method, which is the most time consuming part of the solver. Thus, the effort to develop

an efficient parallel Navier-Stokes solver focuses on this procedure.

As has been previously highlighted, the corresponding pressure correction algebraic
system is sparse and large in realistic applications, where fine discretizations are necessary.
Its solution process has been earlier accelerated using an iterative method coupled with
multigrid techniques. For a efficient parallelization of the multigrid pressure correction
phase, parallel computations for every component of the multigrid procedure have to be
performed without changing the overall algorithmic steps. This approach is preferred in
order to ensure the favorable convergence behavior of the solver, avoiding any change to the
multigrid cycling steps. Among the multigrid components, the smoothing procedure is the
most computationally intensive procedure. Besides, the grid-transfer operators application

and the computation of the residual are fully parallelizable.

It is well-known that, smoothing schemes that use red-black ordering of grid nodes are
well suited for parallel computations. Block Red-Black Gauss-Seidel smoother calcula-
tions can be carried out in parallel, since groups of red and black unknowns are decoupled.
Another advantage of using zebra relaxation is its smoothing factors, since multigrid con-
vergence factors are better than those of the lexicographic line Gauss-Seidel relaxations
(see Chapter 3). As mentioned in Chapter 2, the resulting pressure correction linear sys-
tem’s form (2.57) in the horizontal zebra coloring scheme, is scalable and has interesting
parallel properties [27, , 45], as the groups of unknowns can be processed in parallel.

More specifically, each block of unknowns corresponds to an horizontal grid line. Their
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evaluation is possible with a linear system solution using the basic-matrices A, Ag or A; as
the coefficient matrix. Thus, their parallel solution can further increase the degree of paral-
lelism of the numerical method proposed herein. It shall be also noted that the coefficient
matrices Ay, Ag or A; of the basic linear systems have the non-zero entries a3, a4 and as, ag
in their first and last lines. Their presence does not allow one to apply the Cyclic Reduction
algorithm directly when solving a linear system with these coefficient matrices. Thus, the
Block Cyclic Reduction procedure presented above, is preferred in solving these arising
linear sub-systems.

As stated earlier, the selection of the multigrid cycling strategy (i.e. V, W or F-cycling)
affects the convergence rate and the parallel performance of the pressure correction numer-
ical scheme. Coarsest and middle grids, corresponding to small size problems, are frequent
layovers in each F- and W-cycle, making these strategies less efficient on parallel environ-
ments. Moreover, in each cycle greater computation effort is put compared to the V-cycle
algorithm. Another important issue is that the implemented intergrids transfer operators
influence the convergence rates of the V-cycle algorithm. However, the proposed intergrid

pair (BCP, MR) ensures good convergence rates of the V-cycle.

6.3.1 Parallel procedures of the solver

In the previous section, a multigrid based iterative solver has been presented for the solu-
tion of the pressure correction equation, which is the most computationally intensive part
of the proposed Navier-Stokes numerical scheme. This iterative solver consists of several
numerical procedures with high degree of parallelism. They together compose a paral-
lel algorithm (Algorithm 4) of an efficient solution of the incompressible Navier-Stokes
equations in shared memory multicore computing architectures. The solver’s algorithm is
ported to the OpenACC API support.

It is crucial to mention that in case of architectures with accelerators, the total amount of

computations is performed on the accelerator device. Only the initialization procedures are
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Algorithm 4 Parallel Multigrid Navier Stokes solver

Step 1. CPU: Initialization of u, v and p vectors

Step 2. CPU: Construction of M® matrices for all kK multigrid levels

Step 3. CPU: Factorization of basic-matrices A(lk), A(6k), X(lk) for all k levels (stored

in AP, FAY, fZ(lk)) based on the block cyclic reduction process
Step 4. CPU to Accelerator Device Memory transfer: Copy vectors u, v, p
and M®, fFAD, fAD, fAW for all k levels
while (" < t4;,,) do
Step 5. acc kernel: Evaluate the RHS vectors F(u, v, p; "), G(u, v, p;t")
for{=2tof{=4do
while (V- u® > tol) do
Step 6. acc_kernel: Evaluate vectors u“, v\ according to (6.16),(6.17)
Step 7. acc_kernel: Evaluate the RHS vector for the Pressure Correction
Equation (6.18)
while (|| b — MAp || > tol) do

Step 8. acc kernel: Ap = MG_V(k,Ap, M(k),fA(lk),fA(k),fAﬁk),b)
end
Step 9. acc_kernel: Correct p©, u®, v\ according to (6.19),(6.20),(6.21)
endfor
Step 10. acc_kernel: Update u, v, p at t* + At according to (6.22),(6.23),(6.24)
end

Step 11.  Accelerator Device to CPU Memory transfer: Copy vectors u, v, p

performed on the CPU (Steps 1-3) and the data is being sent to the accelerator device which
performs the iterative solution procedure. When an acceptable approximation of pressure
and velocities has been reached, their values are transferred back to the host’s main mem-
ory. Steps 1-3 include the initialization of velocity and pressure vectors and the construction
and cyclic reduction factorization of the basic matrices arising from the discretization of
the pressure equation. These matrices are constructed for every k level of the multigrid
cycle. Matrix-free storage method is preferred due to the block structure of all the matrices
(Eq. 6.1). Their computation involves 10 value entries only for each basic-matrix regard-
less the multigrid level, which designates this algorithm as a very efficient one in terms
of storage measurements. All the basic linear algebra operations involving these matrices
are properly modified with a consideration of this matrix-free storage type. Initialization
in Step 2 comes from the implementation of the iterative method and specifically from the

direct solution of the relevant sub-systems. One should recall that in each time step four
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pressure Poisson equations are being solved. To this end, the three basic-matrices found on
the diagonal of the matrix M, are factorized, based on the Cyclic Reduction. As elaborated
before, BCR consists of two phases, the forward reduction and the backward substitution.
The matrices’s factorization is equivalent to the forward reduction phase of the CR. Thus,

this approach minimizes the overall computation cost.

Algorithm 5 Parallel Multigrid V-cycle algorithm

acc kernel: Ap™ = MG V(r,Ap®”, M?, fAV, fAY, fAV, b
Presmoothing:

Step 1. Ap") = ZebraGS (Ap™, M©, b7, fAY, FAV, A, vy, tol)
Restriction:

if y=1 then
Step 2. b = R;‘j(b(r) _ M(r)Ap(r))
elseif y <1 then
Step 3. bV = Rl(B" — M"Ap»)
end
Recursion:
if r =1 then
Step 4. ApD = ZebraGS (Ap™, MV, bV, fAV, fAD, FAY maxstep, tol)
elseif k > 1 then
Step 5. Ap"D = MG V(r— 1,0, M, fAY™D, fAUD| fAUD prD)
end
Interpolation:
if y = 1 then
Step 6. Ap" = Ap" + PZAp("”
elseif y < 1 then
Step 7. Ap? = Ap® + FZAp("‘)
end
Postsmoothing:

Step 8. Ap") = ZebraGS (Ap", M, b, fAV, fAL, FAV v,, t0l)

Every iterative computation can be performed on the accelerator device, including the
RK4 time steps and the multigrid pressure correction technique. Steps 5-10 describe each
stage (Steps 5-9) of RK4 computations with the solution of the pressure correction prob-

lem. Step 10 describes calculations for pressure and velocities updates at each time step.

The parallel V-cycle multigrid technique for the pressure correction procedure is de-

scribed with a recursive algorithm (see Algorithm 5). Grid nodes are repeatedly reduced in
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half, performing restriction, smoothing, prolongation and error correction phases calculat-
ing the new pressure approximation Ap®".

Index k corresponds to the grid level, with » = 1 implying the coarsest grid. Values v,
and v, correspond to the number of smoothing steps applied in every discrete problem of
the form M@ Ap” = b during the pre-smoothing and post-smoothing procedure respec-
tively. The fully parallelizable restriction and interpolation multigrid operators are applied
in Steps 2, 3, 6 and 7. These transfer matrices are not being constructed explicity, instead
an implementation of a matrix-free scheme using matrix-vector multiplication takes place.
The recursive application of the multigrid technique at the coarser grid is applied in Step
5. The multigrid algorithm is concluded with the application of the smoother. This parallel
procedure is applied twice (Steps 1 and 8), before the restriction and after the interpolation
procedure for every multigrid grid level r. At the coarsest grid level r = 1 the smoother is

also applied (Step 4) for the solution of the error pressure linear system.

Algorithm 6 presents the zebra x—line Gauss-Seidel smoothing procedure for the multi-
grid technique applied to the pressure correction linear system. In this parallel procedure a
new approximation of the pressure error Ap is calculated using an initial value Ap®?. The
algorithm consists of two main computing phases in the evaluation of the new pressure
error approximation, based on the red-black Gauss-Seidel smoothing process. In the red
phase (Steps 3a-4c¢) approximations that correspond to red pressure grid nodes are being
calculated, involving the matrix-vector multiplication of Steps 3a-d and the direct block
linear system solution of Steps 4a-c. The matrix-vector multiplication that involves matrix
Hyp is a fully block parallelizable procedure. The computation involves matrix-vector mul-
tiplications with the basic matrices A,, A4 and A5 and some vector additions. All these basic
linear computations are independent and can be performed efficiently on parallel architec-
tures. In Steps 4a-c, a parallel block cyclic reduction is applied for the direct block linear
system solution. The second part of the algorithm has a similar structure that involves the

calculated red approximations, matrix-vector multiplication with matrix Hg and again a
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Algorithm 6 Horizontal Zebra Gauss-Seidel smoother
acc kernel : Ap = ZebraGS (Ap°, M, b, fA,, fAs, fA,, maxstep, tol)

Step 1. Ap =Ap°@ ; istep =0

do {
Step 2. Ap® = Ap ; istep = istep + 1
Red Phase
FParallel Matrix-Vector Multiplication: Apg = Hp * Ap;’eld

Step3a. fori=1toi=N,/2—1doin parallel s; = A5 = Ap??
Step3b. fori=1toi=N,/2—1doin parallel Ap; ., =s; + ;1
Step 3c.  Apy = Ay x ApSM + Ay = Ap3
Step3d. fori=1toi=N,/2doin parallel Ap; = —Ap; + b,
Parallel Solution of DrApg = Apr
fori=1toi= N,/2 -1 do in parallel
Step 4a. Apiv1 = BCR(Apis1,As, fAs)
endfor
Step 4b.  Ap; = —Asz * Ap, + Ap
Step4c.  Ap; = BCR(Ap1,Aq, fA))
Black phase
Step5. fori= N, +1toi=N,doin parallel Ap; = b;
Matrix-Vector Operation: Apg = —Hpg * Apgr + bp
Step 6a.  fori=1toi=N,/2doin parallel 5; = A5 x Ap;
fori=1toi=N,/2—1do in parallel
Step 6b. Apn,24i = bnyjovi — Si — Siv1
endfor _ _
Step 6¢.  Apy, = by, — Ay Apw, o1 — Az = Apyp
Parallel Solution of DgApp = App
fori = N,/2 +1toi= N, doin parallel
Step Ta. Apl = BCR(AP,‘,A(,, fA())
endfor
Step 7b.  Ap™ = —A; * Apy,_1 + Apy,
Step7c.  Apn, = BCR(Apy,, Ay, fAg)
‘while (I1Ap — Apd’dll > tol or istep < maxstep)

block cyclic reduction linear system solution. The total amount of these computations is
parallelizable on block form. Moreover, matrix-vector multiplications where the basic ma-
trices As, A\z and ;1\4 are involved and vector additions include a second level of parallelism.
This additional level is also present on the cyclic reduction solving procedure.

The block cyclic reduction direct solver’s algorithm is presented in Algorithm 7. It
comprises of two parallel phases, the forward reduction of the right hand side vector (Steps

2a-c) and the backward substitution (Steps 3a-c). Parallel processes appear in each reduc-
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Algorithm 7 Parallel Block Cyclic Reduction
acc kernel : u = BCR(b,A, fA)
Step 1. g = log>(Ny)
Parallel Factorization of right hand side vector b
fork=0tok=qg—2do
Step2a. b/ = bl — BOD®) P — cODH®)~Tp
for j =2 to j = 297! — 1 do in parallel

Step2b.  bYV = bl — BODO) B — cODO) Y,
endfor _
Step 2c. b(zlf:.l_)k - b(zlfz)—k _ B(k)(D(k))—lb(zlfI)_ .
endfor

Parallel Backward-Substitution
Step 3a. Solve DU Duy,1 = b\
fork=qg—-2tok=0do
Step 3b.  Solve Duy = b'¥ — CPuye
for j = 2to j = 29752 do in parallel
Step 3c. Solve Dugyj_jyx = b(zlj.)_l — BPugy; g — CPug
endfor
endfor

tion level k (Steps 2b,3c). These processes involve 2 X 2 block matrix-vector multiplica-
tions, vector additions and linear system solution for specific matrix forms (see Eq. 6.11).
This computation can be easily performed with closed formulas, optimizing the parallel

computation in block level.

The computation in the above parallel Algorithms 4-7 includes two levels of paralleliza-
tion. The first one exploits the block structure of the data while the second takes advantage
of the basic linear algebra operations within each block. For instance, the parallel compu-
tations of Step 6a in Algorithm 6 can be performed as illustrated in Figure 6-1. The first
level of parallelization lies on the block level for the evaluation of vector s; = As * Ap;.
This parallel matrix-vector multiplication is partitioned in % blocks of N, size. Each block
operation is assigned to a N, size of group cores (Block Thread). Taking into account
the structure of As matrix, each core of every Block Thread evaluates a single element of
vector s; using matrix values ai, as, as, as, as and ag (assuming Neumann boundary con-

N _ NyN:

ditions). For this particular matrix-vector operation 5 = —5— core threads are necessary.

The work assigned to each core thread is represented in the oblong core boxes in Figure
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Figure 6-1: Parallelization approach for executing the Step 6a of the Algorithm 6 on GPU
architecture. Each oblong box is handled solely by GPU core thread.

ACCELERATOR

6-1. All the other parallel block computations are being assigned in a similar way to the
acceleration cores.

The incompressible Navier-Stokes parallel solver’s algorithm designed in this section,
has been implemented on shared memory multicore architectures and its performance in-

verstigation is the scope of the following section.

6.4 Parallel implementation

This section includes the performance investigation of the Navier-Stokes solver realization
for equal and unequal mesh-size discretization problems. The application is developed in
double precision Fortran code with the OpenMP and OpenACC APIs support for PGI-CDK
16.7 compiler’s suite. In order to demonstrate the computational efficiency of the solver,
realizations of the sequential single CPU implementations are compared to OpenMP multi-
core CPU only and OpenACC device accelerator implementations. Compiler’s option -

fast is used, enabling compiler’s optimization features, including the vectorization option.
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The basic linear algebra operations were performed using the BLAS scientific library for
CPU implementations [13]. Three types of parallel machines with different accelerator

device architectural design were selected using CUDA’s version 7.5.

e The first machine is an HP SL.390s server that features two 6-core Xeon X5660@2.8GHz
processors, with 24GB of memory and a Tesla M2070 GPU. The Nvidia’s Fermi type
M?2070 GPU accelerator has 6GB GDDRS of memory and 448 cores organized in 14
multiprocessors and is attached to the host via an PCI-E Gen2 slot connection. The

operating system is Oracle Linux 6.1.

e The second machine is a Dell R730 server featuring two 8-core Xeon E5-2630@2.4GHz
processors, with 16GB of memory and a Tesla K40 GPU. The Nvidia’s Kepler type
K40 GPU accelerator has 12GB GDDRS of memory and 2880 cores organized in 15
multiprocessors and is attached to the host via an PCI-E Gen3 slot connection. The

operating system is Ubuntu Linux 16.10.

e The last machine is a Dell R730 server with two 8-core Xeon E5-2695@2.3GHz
processors, with 64GB of memory and a Tesla K80 GPU. The Nvidia’s Kepler type
K80 GPU accelerator has 24GB GDDRS of memory and 4992 cores organized on
26 multiprocessors, and it is attached to the host via an PCI-E Gen3 slot connection.

The operating system is Ubuntu Linux 16.10.

Two classical incompressible flow test problems are being solved. All the results docu-
mented are the average values of 35 numerical solutions, using the machines in standalone
mode. The first is the Driven Cavity flow steady state simulation problem and the other is
the unsteady Stokes Oscillatory Plate. In all the realizations the time-step size is determined
by CFL = 0.75 and the size of the coarsest mesh (4 = 0) of the GMG pressure correction
process consists of 4 x4 computing cells. The number of pre- and post-smoothing iterations

in the descent and ascent phase of every multigrid-cycle is v; = 2 and v, = 1, respectively.
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Figure 6-2: Comparison of velocity approximations with reference solutions by Ghia et al. [91]
for Re = 3200 over a 1024x1024 mesh at T = 60; At = 1/1500

6.4.1 Driven cavity flow problem
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Figure 6-3: Speedup measurements for multi-core CPU only realizations. Top: For the first
computer choice. Bottom: For the second computer choice; Driven cavity flow (Re=3200).

The results obtained from the implementation are compared to the numerical data from
Ghia et al. [91], in Fig. 6-2. The agreement with the benchmark data for Re = 3200 is
acceptable. It is noteworthy that the fourth-order accuracy of the parallel solver is verified.

The performance of the Navier-Stokes solver on multi-core CPU only architectures

yields no significant acceleration (see Fig. 6-3) for an increased number of CPU cores, as
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adding more than eight CPU cores leads to negligible performance improvement (see Fig.

6-3).
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Figure 6-4: Pressure correction and entire Navier-Stokes solver speedups for GPU over
single and multi-core CPU only realizations. Top left GPU type is M2070. Top right GPU
type is Tesla K40. Bottom GPU type is Tesla K80; driven cavity flow (Re=3200).

With respect to the GPU implementations, speedup plot measurements in Fig. 6-4, for
the three types of computer realizations, indicate that acceleration is accomplished for the
pressure correction problem and for the entire Navier Stokes solver. The acceleration factor
in GPU implementations over the multi-core CPU only implementations is also measured
for the first two computer choices. As pointed out earlier, the CPU-GPU communication
time is negligible as the data transferring is unvarying, independent of the total time steps.

The best GPU acceleration of the Navier-Stokes solver observed is about 11x using
the Tesla M2070 GPU, 15x using the Tesla K40 GPU and 14x using the Tesla K80 GPU

types versus a single-core CPU. It is noticeable that speedup measurements increase as the
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discretization of a problem gets finer, since the computation also increases. Accelerators’
technical specifications differences (PCI bus connection type, number of cores and memory
size) accounts for the speedup differences among architecture implementations.

Speedup performance in case of the GPU over multi-core CPU only implementations
is observed to be less efficient than those over the single CPU core implementations as
expected. However, parallel implementations on the M2070 and K40 GPUs are found to
be almost always faster than the OpenMP implementations running on 12 and 16 cores
respectively, achieving as high as 4x and 6x speed-ups for a 4096 x 4096 grid size.

It can also noted that the pressure correction procedure has similar performance to the
entire Navier-Stokes solver for every grid option. This outcome can be explained by esti-
mating the time measurements (see Fig. 6-5). Execution time for solving the momentum
equation is relatively small compared to the performance of the pressure correction proce-
dure. This time difference becomes smaller for larger problem sizes. However, the pressure

correction computation is still the dominant portion of the total run-time.

0
T T T T
[CPressure Correction . [IPressure Correction

0+ [ Momentum Equations -~ IV omentum Equations

=
s

=]
s

Execution time (hours)
= o
Execution time (hours)
P
8

X560 M2070 E5-2630 Kdo E5-2696 K80 X5660 M2070 E5-2630 K40 E6-2605 K80

Figure 6-5: Execution time distribution for 1024x1024 (right figure) and 2048x2048 (left
figure) discretization problems for single CPU and CPUGPU implementations; Driven cav-
ity flow (Re=3200).

The energy consumption measurements of the algorithm is also investigated in the case
of the driven cavity flow test problem. The energy monitoring tool likwid is used to measure

the processor and memory energy consumption for CPU-only implementations. For the
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Figure 6-6: Energy measurements in Joules for the second machine choice; Driven cavity
flow 2048 x 2048 discretization (Re=3200).

CPUGPU realizations the Nvidia-smi software is used. Figure 6-6 presents the energy cost

in the second computer case, solving the 2048 x 2048 problem size with all the available

computing resources. It seems that enabling all 8 cores of the first processor, is the most

energy efficient choice for the CPU-only implementation. Adding the second’s processor

cores the energy consumption is significantly increased. CPUGPU computation choice is

the most energy efficient one among all available algorithm realizations.

Table 6.2: V — cycle’s subroutines time percentage (%) for the TeslaM?2070 multigrid

realization. .
Mesh size Residual (%) Smoother (%) Restriction (%) Prolongatlon.(%) Norms (%)
and Correction
512 x 512 3.72 79.18 1.75 1.94 13.41
1024 x 1024 5.96 717.53 2.36 2.19 11.96
2048 x 2048 9.42 74.05 33 2.51 10.72
4096 x 4096 12.02 72.07 3.92 2.74 9.25

Next, the performance of the pressure correction procedure is thoroughly investigated.

Tables 6.2-6.4 present the execution time measurements percent for every parallel compu-

tation component. The proportion data indicates that the most computationally intensive

part of the algorithm is the smoother process. The smoothing procedure takes about 70%
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Table 6.3: V — cycle’s subroutines time percentage (%) for the T eslaK40 multigrid realiza-
tion.

Mesh size Residual (%) Smoother (%) Restriction (%) P;gg)giitrie(ﬁig?) Norms (%)
512x 512 3.02 79.58 1.89 2.09 13.42
1024 x 1024 433 78.80 2.36 2.13 12.38
2048 x 2048 6.93 76.94 3.11 2.14 10.88
4096 x 4096 9.79 74.41 391 2.15 9.74

Table 6.4: V — cycle’s subroutines time percentage for the TeslaK 80 multigrid realization.

Mesh size Residual (%) Smoother (%) Restriction (%) P;gg)giitrie(:iig?) Norms (%)
512x 512 2.96 78.55 2.00 2.11 14.38
1024 x 1024 4.17 78.95 2.37 2.06 12.45
2048 x 2048 6.64 76.17 3.3 2.10 11.79
4096 x 4096 9.35 74.79 4.01 2.07 9.78

of the computation every time. On the contrary, the intergrid operators consume < 7% of
the total kernel time. Among the V-cycle’s subroutines, the Residual function varies widely

as the problem size increases due to the involved matrix vector multiplication.

6.4.2 Stokes oscillating plate

In the previous Chapter, this test case for Re = 1 was investigated and numerical results
were presented for the Multigrid Navier-Stokes serial algorithm. Now, results of the paral-
lel version implemented on architectures with accelerators are obtained in order to assess
the performance of the parallel solver over extremely anisotropic problems. The same sim-

ulation parameters are considered, except the fact that the Re number now equals 5000.

As Fig. 6-7 depicts, the speedup measurements for CPU only multi-core realizations



CHAPTER 6. THE PARALLEL NAVIER-STOKES SOLVER 205

are between 2.6x and 2.3x. Further, it seems that the partial semi-coarsening strategy
(solid graph lines in Fig. 6-7) has similar parallel performance and scalability as the full-

coarsening (dash-dit graph lines in Fig. 6-7) for CPU only multi-core architectures.

=-Grid: 409664
~+Grid: 4096+4096

~#:Grid: 4096164
.................................. 25 =+Grid: 4096x4096

1 2 4 8 12 12 4 8 16
Number of cores Number of cores

Figure 6-7: Speedup measurements for multi-core CPU only realizations. Left: For the
first computer choice. Right: For the second computer choice; Stokes oscillatory plate
(Re=5000).

The parallel performance of the CPUGPU partial semi-coarsening and full-coarsening
multigrid Navier-Stokes solver is shown in Figure 6-8. The speedup measurements of the
three different implementations are demonstrated against single CPU only and multi-core
CPU only architectures. These measurements include both the pressure correction problem
and the entire Navier Stokes solver for the available parallel computer architectures. In
particular, the overall speedup for the finest grid size (4096x4096) is about 10x in Tesla
M2070 GPU, 14.5x in Tesla K40 GPU and 12.2x in Tesla K80 GPU type over the single-
core CPU solver realization. At first glance, it can be seen that the GPU performance
implementation of the anisotropic algorithm is similar to the isotropic one for the cavity
flow test problem. However, it is noticeable that in the first test case, the CPUGPU solver
achieves a speedup slightly less than two in case of a 512 X 512 discretization, in the
implementation where the first computer machine is involved, and close to one in both the
second and third computers. In the anisotropic problem, in case of 4096 x 64 discretization

size, a speedup a little less than 3 using the first computer and near two for the other
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computer types is observed. These two different dimension problem cases have the same
number of nodes (262144) but the division of labour by the GPU in the anisotropic case
leads to improved computation efficiency. In this anisotropic case less but larger basic

matrices are involved in the computation, compared to the isotropic case.
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Figure 6-8: Pressure correction and entire Navier-Stokes solver speedups for GPU over
single and multi-core CPU only realizations. Top left GPU type is M2070. Top right GPU
type is Tesla K40. Bottom GPU type is Tesla K80; Stokes oscillatory plate (Re=5000).

It is also noted that the gap between speedup lines of the pressure correction and the
entire Navier-Stokes solver is larger in fine grid problems. To identify this discrepancy, the
distribution of the execution time between Pressure correction and Momentum subroutines
is presented in Figure 6-9. The simulation execution time is measured in hours for two size
problems, single CPU only and CPUGPU implementations for every computer option. It
is obvious that in the anisotropic case, the momentum procedure possesses an increased

percentage of time compared to the one in the isotropic case. This is due to the reduced
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Figure 6-9: Execution time distribution of the CPUGPU Navier-Stokes solver for the
Stokes oscillatory plate over 4096 x 64 and 4096 X 1024 mesh sizes at T = 2.25

number of multigrid cycles needed for the pressure correction sub-problem. For example,
one V-cycle is required for every stage of the Runge-Kutta process in the anisotropic case,

while in the isotropic problem at least three cycles are needed.

6.5 Concluding Remarks

An efficient parallel algorithm for the solution of the Navier-Stokes equations for incom-
pressible flows was designed and realized. The solver is fourth order accurate and com-
prises a multigrid technique with compact finite difference discretizations. In order to in-
crease parallelism, the zebra numbering scheme is preferred together with the Block Cyclic
Reduction method for the solution of the linear sub-systems. Taking into account the in-
volved basic linear algebra operations and the structure of the finite difference matrix, an
extra level of parallelization appears within the algorithm. All the sub-matrices of the co-
efficient matrix are manipulated with their appropriate entries, avoiding thus the storage
of the matrix in total in the computations. That minimizes the need for data storage and
communication between the host and accelerator memories. Since the accelerator devices
have lower memory limitations, the proposed computation handling allows the consumma-

tion of all the computations in the acceleration device. The performance investigation of
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the parallel implementation established that multi-CPU only realizations are less efficient
than those performed on computing architectures equipped with acceleration devices. The
performance of the parallel solver has been investigated on three different types of GPU
acceleration architectures, including a recent Kepler type and the legacy Fermi. An accel-
eration of more than 10x was observed when solving fine discretization problems in all the

test cases and computing architectures.



Chapter 7

Conclusions

This chapter summarizes the scientific conclusions of this research work and presents di-

rections for the future.

7.1 Summary of Present Work

The main purpose of this research study is to develop an efficient high resolution numerical
solver for simulations of the incompressible flow problems modeled by the Navier-Stokes
Equations. It is based on the Finite Difference Compact Scheme discretization in a two
dimensional domain. Conclusion results are summarized as follows:

With respect to the elliptic PDEs numerical solver

e [t is possible to apply the high-order finite compact elliptic solver directly on cell-
centered grid discretizations or on staggered grids. New high-order approximation
formulae are derived for the boundary closures, including Dirichlet, Neumann, Robin

or mixed-type boundary conditions, to ensure the global accuracy of the solver.

e The arising linear system is large, sparse and block structured, therefore, the use of

an efficient iterative method is necessary in order to minimize the computational cost.

209
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e The fourth order of accuracy of the solver is verified, for all boundary condition type

choices.

e The performance investigation for the efficient iterative solver of the linear system

indicates the necessity of multigrid acceleration

e An analysis of cell-centered multigrid methods for the HOC scheme with LFA, pro-
vides us an efficient and robust multigrid solver for both isotropic and anisotropic

problems.

With respect to the multigrid Navier-Stokes numerical solver

e An optimized multigrid technique is incorporated to the pressure correction algebraic

system in order to accelerate the solution procedure of the Navier-Stokes solver.

e A number of experiments were conducted, including steady and unsteady flow prob-
lems, to validate the fourth-order accuracy in space and time of the Navier-Stokes

solver.

e The most demanding part of the solver, in terms of computational resources, is the
pressure correction solution procedure and is significantly accelerated, when apply-

ing the multigrid technique.

e In terms of the CPU workload, the semi-coarsening multigrid technique is prefered

to the full-coarsening one for the anisotropy flow problems.

e Moreover, the pressure correction procedure turns up to be the most computationally
intensive part of the Navier-Stokes numerical scheme. In particular, for problem sizes
up to 256 x 256, the incorporation of the multigrid scheme produces a containment
of the increasing execution time. However, in finer discretization problem sizes, and
despite the high convergence rates of GMG on sequential computing architectures, it

ultimately yields to unbearable computational cost.



CHAPTER 7. CONCLUSIONS 211

With respect to the parallel multigrid Navier-Stokes numerical solver

e An algorithm that exploits the computational power of multicore computing architec-
tures with accelerators was developed, in order to overcome the CPU time restrictions
from sequential implementations of the Navier-Stokes solver, without modifying its

primary algorithmic steps.

e In order to increase the solver’s parallel properties the zebra coloring scheme is pre-
ferred, along with the Block Cyclic Reduction method for solving the linear sub-

systems.

e The block structure of the finite difference matrix indicates the use of a matrix-free
storage method, in order to reduce the data stored and cut down the communica-
tion between the main and the accelerator memories. All the sub-matrices of the
finite difference matrix are being manipulated with their appropriate block entries. A
similar approach takes place in the intergrid transfer operators. The corresponding
transfer matrices need not be explicitly computed, since the symbolic formulae for

those operators are being used.

e The way that the computations could be conducted suggested herein, enables the total
amount of workload to be performed on the acceleration device, in order to overcome

the memory physical limitations in the accelerator devices.

e The computations incorporate two levels of parallelism. The first one exploits the
block structure of the data, while the second one takes advantage of the basic linear

algebra operations within each matrix block.

e The application of the parallel solver is being implemented on three shared-memory
computing architectures with different accelerator devices, including a modern Kepler-

class GPU and a legacy Fermi-class GPU.
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¢ In multi-CPU only realizations, the parallel performance of the solver was considered
to be poor as the speed-up factors went up to hardly 3x and low scalability was
noted. On the other hand, in a CPU-GPU environment, the implementations were
faster compared to the multi-CPU only, as the speed-up observed was 4x in every

accelerator device tested.

e With respect to CPU-GPU implementations, an acceleration of more than 10x is ob-
tained for fine discretization problems in every test case and computing architecture,

compared to sequential implementations.

7.2 Future Work Suggestions

The proposed solver can be extended in several ways. A few recommendations follow:

With respect to the elliptic PDEs numerical solver

e The proposed fourth-order compact discretization methodology for the modified Helmholtz
problem may be generalized for the complete elliptic operator and/or in three dimen-

sions in a straightforward manner.

e Similar generalizations of specialized multigrid methods to 3D are not straightfor-
ward; at least their implementations are nontrivial. Zebra line GaussSeidel relaxation
in 2D will be generalized to zebra plane relaxation in 3D, with each planewise so-
lution being obtained by using zebra line relaxations. Partial semicoarsening is also

complicated, since there are two directions with different mesh sizes.

e The different behavior between the multigrid method applied to cell-centered and
vertex-centered grids can be featured on a great scale by using the Local Fourier

Analysis for the HOC scheme.

With respect to the multigrid Navier-Stokes numerical solver
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e The numerical Navier-Stokes algorithm can be extended for complex geometries on
three dimensional curvilinear coordinates, thus expanding the applicability of the

current methodology.

e The method is suitable for LES of moderate Reynolds number incompressible flows,
while addition of implicit time marching and turbulence models would make it suit-

able for high fidelity simulations of high Reynolds number turbulent flows.

With respect to the parallel multigrid Navier-Stokes numerical solver

e The employment of a single accelerator device already yields to high speed-up fac-
tors. A potential improvement requires the design of a parallel algorithm that em-
ploys multiple devices from an Heterogeneous Multi-Accelerator Cluster, using Ope-

nACC, OpenMP and MPI APIs.
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