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Abstract: In this study, the valorization potential of Polish laterite leaching residues through alkali
activation with the use of NaOH and Na2SiO3 solutions as activators was investigated. The effect of
the main factors, namely the H2O/Na2O molar ratio in the activating solution, the curing temperature,
and the ageing period on the main properties of the produced alkali activated materials (AAMs) was
assessed. The experimental results showed that AAMs with sufficient compressive strength were only
produced when the laterite leaching residues were mixed with significant quantities of metakaolin;
thus, when the mass ratio of laterite leaching residues and metakaolin was 0.50, after curing at 40 ◦C
for 24 h and ageing for 7 days, the produced AAMs acquired compressive strength that slightly
exceeded 25 MPa. X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning
electron microscopy, and energy dispersive X-ray spectroscopy (SEM–EDS) analysis were used for the
characterization of the raw materials and selected AAMs. Furthermore, the structural integrity of the
specimens was investigated after immersion in distilled water and acidic solution (1 mol L−1 HCl),
or after firing at higher temperatures. Finally, the toxicity of the produced AAMs was assessed with
the use of standard leaching tests.
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1. Introduction

Laterites, which contain elevated concentrations of Ni, Al, Fe and in some cases Co, are
formed as a result of the intense weathering of rocks in hot and wet climates [1–4]. They are
mainly treated pyrometallurgically for the production of ferronickel (FeNi). On the other
hand, several alternative hydrometallurgical techniques have been developed for their
treatment, including high-pressure acid leaching (HPAL) [5,6], atmospheric leaching [7–10],
and heap leaching [11–13].

Alkali activation involves the dissolution of Si and Al from raw materials with the use of
strong alkaline solutions, and aims at the formation of secondary, partially amorphous, three-
dimensional aluminosilicates consisting of Si-O-Al bonds, called alkali-activated materials
(AAMs) or geopolymers [14]. The best raw materials used for the production of AAMs include
pozzolans, kaolin, metakaolin, and various industrial wastes, such as fly ash, bauxite residue
(red mud), and various types of slags produced from the steel and the non-ferrous metal
industry, as well as construction and demolition wastes [15–22]. The produced AAMs exhibit
high compressive strength, strong acid resistance, good thermal stability, low shrinkage, and
the tendency to immobilize hazardous elements [23–25]. However, their properties depend
on several factors, namely the type and particle size of the raw materials and the type of
activator, as well as the synthesis conditions, which mainly include the solids:liquids ratio, the
H2O/Na2O and the SiO2/Na2O molar ratios in the alkali activating solution, and the curing
temperature and the ageing period [26–29].

So far, most studies have focused on the production of AAMs with the use of lateritic
soils [30–34], while only a few studies explored the alkali activation of laterite leaching
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residues, which if disposed of in the environment without specific care, may cause the
contamination of soils and water resources [35,36].

The present study investigates the alkali activation potential of the residues obtained
after the atmospheric sulfuric acid leaching of Polish laterites in stirred reactors and the
characterization of the produced AAMs. The novelty of the study is associated with the
valorization of a by-product, considered today as waste, with poor inherent alkali activation
potential, for which the only management option is its disposal in landfills for hazardous
wastes after pretreatment, which mainly involves the neutralization of its residual acidity.
To the best of our knowledge, this is the second study dealing with the valorization of
similar by-products; a previous study explored the alkali activation potential of residues
obtained after larger scale laboratory column leaching tests of Greek laterites [37].

2. Materials and Methods
2.1. Materials

The materials used in the present study were (i) leaching residues obtained after atmo-
spheric H2SO4 leaching of Polish laterites (PLR) in 3 L stirred tank reactors and (ii) metakaolin
(MK) produced in the laboratory after the calcination of kaolin [Al2Si2O5(OH)4, Fluka] at
750 ◦C for 2 h in a laboratory oven (N-8L Selecta, Abrera, Spain).

Metakaolin has pozzolanic properties, increased reactivity and good potential for
alkali activation; it was mixed with PLR to regulate the SiO2/Al2O3 ratio in the starting
mixture [38]. The selection of the calcination temperature was based on the results of a
previous study [37].

The PLR were used as received. The material was washed several times to remove
any residual acidity and to avoid partial consumption of the activating solution during
alkali activation; thus, the paste pH of the PLR prior to use increased to 5.31. Both the PLR
and MK were oven-dried at 80 ◦C for 24 h to remove any remaining moisture and then
pulverized in a Bico-type pulverizer (Fritsch, Dresden, Germany) to decrease their particle
size and thus increase their specific surface area and subsequent rate of alkali activation
reactions. The grain size distribution of the raw materials was determined using a laser
particle size analyzer (Mastersizer S, Malvern Instruments, Malvern, UK). Table 1 presents
the d90 (90% passing) and d50 (50% passing), as well as the specific surface area for both
raw materials. The specific surface area of PLR was much higher, due to the acid attack of
the laterite ore during leaching, which caused the generation of pores and cracks.

Table 1. The d90, d50, and specific surface area of raw materials.

Particle Size (µm) d90 (µm) d50 (µm) Specific Surface Area (m2/g)

PLR 13.0 2.3 65.3
MK 25.5 8.8 2.4

Table 2 presents the chemical composition of both raw materials in the form of oxides,
as obtained from the use of a Bruker-AXS S2 Range Spectroscopic Fluorescence Spectrome-
ter A (XRF-EDS, Bruker, Karlsruhe, Germany). The loss in ignition (LOI) was determined
after heating the raw materials at 1050 ◦C for 4 h. It was observed that the PLR had a high
content of SO3 (30.6 wt%), which was due to the formation of secondary products during
leaching, mainly gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O), as also shown in
Section 3.7.1. The low content of Al2O3 (1.2 wt%) denoted poor alkali activation potential
of the PLR and thus, the addition of amendments was required for their valorization. On
the other hand, the MK had a high content of SiO2 (54.2 wt%) and Al2O3 (40.3 wt%), which
indicated high reactivity during alkali activation, as confirmed in earlier studies [37,39].
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Table 2. Chemical composition (wt%) of raw materials.

Oxide (%) PLR MK

Na2O 8.1 1.3
Fe2O3 9.0 0.6
SiO2 23.3 52.5

Al2O3 1.2 38.6
Cr2O3 0.4 0.02
MgO 5.9 0.3
NiO 0.4 -
K2O 0.01 2.4
TiO2 0.01 0.4
CoO 0.02 <0.00097
MnO 0.1 0.01
CaO 17.9 0.1
P2O5 0.2 0.5
SO3 30.6 0.1
ZnO - <0.00003
LOI * 2.9 3.3
SUM 100.0 100.1

* LOI: Loss in ignition was determined after heating of each material at 1050 ◦C for 4 h.

2.2. Alkali Activation

The solution used for the alkali activation of the raw materials was a mixture of
sodium hydroxide (NaOH) and sodium silicate (Na2SiO3). First, NaOH pellets (Sigma
Aldrich) were dissolved in distilled water to obtain solutions with different molarities
(6–10 mol L−1). The resulting solutions were stirred for 5 min and cooled at ambient
temperature. Then they were mixed with sodium silicate solution (8 wt% Na2O, 27 wt%
SiO2, 65 wt% H2O, Merck) and left overnight prior to use. The raw materials, PLR and
MK, were mixed at mass ratios of 50:50 (PLR50MK50) and 70:30 (PLR70MK30), and the
mixtures were then alkali activated. The AAM codes, the mixing proportions, and the
values of the main experimental parameters are shown in Table 3. The selection of these
ratios was based on preliminary tests and the results of earlier studies dealing with the
alkali activation of residues obtained after the heap leaching of Greek laterites for a long
period [37]. The mixing went on for 10 min in a laboratory mixer, and the homogeneous
paste obtained was poured into metallic cubic molds with dimensions of 5 × 5 × 5 cm3.

Table 3. Experimental parameters for the synthesis of AAMs.

AAMs Code
Solids (wt%) NaOH

(mol L−1)
NaOH
(wt%)

H2.5O
(wt%)

Na2.5SiO3
(wt%) L/S Ratio * H2O/Na2O ** SiO2/Na2O **

PLR MK

PLR50MK50_1 25.1 25.1 6 4.9 20.0 24.9 0.81 21.4 1
PLR50MK50_2 26.4 26.4 8 5.9 18.2 23.1 0.70 17.3 1
PLR50MK50_3 27.1 27.1 10 7.0 15.9 22.9 0.63 14.6 1
PLR70MK30_1 34.7 14.8 6 5.0 20.3 25.2 0.83 21.4 1
PLR70MK30_2 34.8 14.9 8 6.4 18.7 25.2 0.78 17.3 1
PLR70MK30_3 35.7 15.3 10 7.5 17.0 24.5 0.71 14.6 1

* Liquid-to-solid ratio in the starting mixture, ** molar ratios in the activating solution.

The molds were vibrated for 2 min to remove any trapped air bubbles and kept at
room temperature for 4 h to enable initial hardening of the paste and the formation of cubic
specimens. After demolding, the specimens were placed in plastic bags to prevent any loss
of moisture and placed in an oven (Jeio Tech ON-02G, Seoul, Korea) for curing at various
temperatures (40 ◦C, 60 ◦C, 80 ◦C, and 95 ◦C). After curing for 24 h, the specimens were
removed from the oven, cooled down, and left for ageing at ambient temperature for 7 and
28 days.

The thermal response of selected AAMs was evaluated after firing them in a laboratory
furnace (N-8L Selecta) at temperatures up to 800 ◦C. The heating rate used was 5 ◦C min−1,
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while the retention time at each temperature was 2 h. Also, selected AAMs were immersed
in distilled water (H2O) and acidic solution (1 mol L−1 HCl) for 7 days, in order to assess
their structural integrity. After each test, compressive strength (MPa), weight loss (%), and
volumetric shrinkage (%) were determined.

2.3. Characterization Method Techniques

The reactivity of raw materials was evaluated through the leaching of 1.0 g of each
raw material in 100 mL of 10 mol L−1 NaOH. Leaching tests were carried out at ambient
temperatures in 250 mL conical flasks under continuous stirring for 24 h. After solid–liquid
separation using 0.45 µm pore-sized membrane Chromafil PTFE filters (Macherey-Nagel
GmbH and Co., Düren, Germany), the concentration of Al and Si in the leaching solution was
determined using an Agilent 7500cx Inductively Coupled Plasma Mass Spectrometer (Agilent
Technologies Inc., Santa Clara, CA, USA) equipped with an Agilent ASX-500 Autosampler.

The compressive strength (MPa) of the AAMs was determined after an ageing period
of 7 or 28 days, using a Matest type compression and flexural machine (C123N, Matest
S.p.A, Treviolo, Bergamo, Italy) with a dual range of 500/15 kN. The density (g cm−3), the
porosity (%), and the water absorption (%) of selected AAMs were evaluated according to BS
EN 1936:2006 [40]. The mean values of each parameter, obtained after three measurements,
were used in the following sections.

The mineralogical analysis of the raw materials and selected AAMs was performed
with the use of an X-ray diffractometer (XRD) (Bruker AXS (D8 Advance type), Karlsruhe,
Germany) (Cu tube, scanning range 4◦ to 70◦ at 2θ, step 0.02◦ and measuring time 0.2 s/step).
Qualitative analysis was carried out with the use of DiffracPlus software (EVA v. 2006, Bruker,
Karlsruhe, Germany) and the Powder Diffraction File (PDF-2) database. The functional
groups of the raw materials and selected AAMs were determined by Fourier Transform
Infrared (FTIR) spectroscopy, using pellets and a PerkinElmer 1000 spectrometer (PerkinElmer,
Akron, OH, USA), in the spectra range of 400 to 4000 cm−1. Pellets were produced by mixing
each powdered material with KBr at a ratio of 1:100 w/w, and then the mixture was pressed
to obtain a pellet.

Microstructural analysis was performed with the use of scanning electron microscopy
(SEM) and energy dispersive X-ray spectroscopy (EDS). For that purpose, a JEOL–6380LV
scanning microscope (JEOL Ltd., Tokyo, Japan), operating at an accelerating voltage of
20 kV equipped with an Oxford INCA EDS microanalysis system (Oxford Instruments,
Abingdon, UK), was used.

The toxicity of raw materials and selected AAMs was determined with the use of the
standard leaching procedure [41,42]. The test involved the leaching of raw material or
selected AAMs in distilled water (8 L per kg) for 24 h. After leaching, the solution was
filtered using 0.45 µm-sized membrane filters, and the concentration of the metal ions in the
eluate was determined (in mg kg−1 of raw material) and compared with existing limits for
the disposal of wastes in various landfill types [43]. The ion concentration in the solution
was determined using an Inductively Coupled Plasma Mass Spectrometer (ICP MS, Agilent
7500 cx) equipped with an Agilent ASX-500 Autosampler.

3. Results and Discussion
3.1. Reactivity of Raw Materials in Alkaline Media

The reactivity of the PLR and MK, as indicated by the concentration of Al and Si in
the alkaline solution and the respective Si/Al molar ratios, are shown in Table 4. It was
observed that the leaching of the PLR resulted in a low concentration of Al (0.5 mg L−1) in
the solution and a much higher Si concentration (59.1 mg L−1), while MK leaching resulted,
as expected, in high concentrations of both elements (61.3 mg L−1 Si and 43.4 mg L−1 Al).
Thus, the resulting Si/Al molar ratios were 118.2 and 1.4 for the PLR and MK, respectively.
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Table 4. Concentration of Si, Al, and Si/Al molar ratios in NaOH solution *.

Raw Material Si (mg L−1) Al (mg L−1) Si/Al

PLR 59.1 0.5 118.2
MK 61.3 43.4 1.4

* Leaching with 10 mol L−1 NaOH solution for 24 h.

3.2. Effect of H2O/Na2O Molar Ratio in the Activating Solution and Ageing Period

The inherent alkali activation potential of the PLR was very low, which was mainly
due to the low content of Al2O3 in the raw material and the unfavorable ratio of Si/Al in the
solution and resulting reactive paste [44–47]. As a result, the compressive strengths of the
produced AAMs did not exceed 2 MPa, as also indicated in a previous study using residues
from laboratory column leachings of a different type of Greek laterite [37]. On the other
hand, when only MK was used as the raw material, under similar experimental conditions
(H2O/Na2O and SiO2/Na2O molar ratios in solution at 14.6 and 1.0 respectively, curing
temperature at 40 ◦C, curing period at 24 h and ageing period at 7 days), the produced
AAMs acquired high compressive strengths of 55 MPa.

Figure 1 presents the compressive strengths of the AAMs produced from mixtures
of PLR and MK at mass ratios of 50:50 (PLR50MK50, Figure 1a) and 70:30 (PLR70MK30,
Figure 1b) as a function of the H2O/Na2O molar ratio (21.4, 17.3, 14.6). It is seen from
these results that the effect of the H2O/Na2O molar ratio on the activating solution is
very important, as its reduction from 21.4 to 14.6 resulted in a noticeable increase in the
compressive strength of the produced AAMs from almost 10 to 25 MPa. On the other
hand, longer ageing periods, namely 28 days, had practically no effect on the compressive
strength of the produced AAMs, thus indicating that the alkali activating reactions were
completed within a few days.
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compressive strengths of (a) PLR50MK50 and (b) PLR70MK30 AAMs (pre-curing time 4 h, curing
temperature 40 ◦C, curing time 24 h; error bars indicate the standard deviation of measurements
obtained from three specimens).

It is known that the low molarity of a NaOH solution, i.e., high H2O/Na2O ratio in the
solution, results in the deficiency of hydroxyl ions, the limited formation of aluminosilicate
bonds, and the low compressive strengths of the produced AAMs. On the other hand, higher
molarity, i.e., low a H2O/Na2O ratio in the solution, may indicate an excess of hydroxyl ions
in the reactive paste, some of which will remain unreacted, and the produced specimens will
acquire low compressive strength. Thus, the optimum H2O/Na2O ratio in each case depends
on the raw material type, its reactivity, and ultimately on the reaction rate [48–50].

Also, the experimental results show that the increase of MK content in the starting
mixture resulted in the production of AAMs with higher compressive strengths of
(PLR50MK50, Figure 1a) up to 26.2 MPa.



Minerals 2022, 12, 1466 6 of 17

3.3. Effect of Curing Temperature and Selected Molar Ratios

The effect of curing temperature on the compressive strengths of PLR50MK50 and
PLR70MK30 AAMs is presented in Figure 2. The H2O/Na2O and SiO2/Na2O molar ratios
in the activating solution were 14.6 and 1.0, respectively, while the ageing period was
7 days. As seen from the results, the increase in temperature from 40 to 60 ◦C had only
a minor positive effect on the compressive strengths of the produced AAMs, whereas at
higher temperatures, a decrease in the compressive strength was noted.
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The compressive strengths obtained after curing at 40 ◦C were 25.9 and 17.6 MPa
for the PLR50MK50 and PLR70MK30 AAMs, respectively. It is known that the increase
in curing temperature in most cases increases the rate of the alkali activation reactions
and enables the formation of stronger bonds [29]. However, in some cases, curing at
high temperature may cause a rapid loss of moisture from the reactive paste, and this
results in the development of microcracks and the production of specimens with poor
properties [51–56].

Table 5 presents the effect of SiO2/Al2O3 and (SiO2 + Al2O3)/Na2O molar ratios
present in the reactive paste on the compressive strengths of the produced AAMs.

Table 5. Effect of oxide molar ratios in the reactive paste on the compressive strengths of selected AAMs 1.

AAMs Code Compressive Strength (MPa) NaOH (M) SiO2/Al2O3 (SiO2 + Al2O3)/Na2O

PLR50MK50 25.9 10 4.1 3.6

PLR70MK30 17.6 6.0 2.6
1 H2O/Na2O = 14.6, SiO2/Na2O = 1.0, curing at 40 ◦C for 24 h and ageing for 7 days.

Both ratios are very important and indicate the effect of the composition of the reac-
tive phase on alkali activation [57–59]. The optimum ratios during alkali activation differ
and mainly depend on the type of the raw material; however, sufficient concentrations
of both elements are required so that the produced AAMs acquire adequate compressive
strengths [49,60,61]. For example, higher molarities of NaOH, i.e., lower (SiO2 + Al2O3)/Na2O
ratios, may result in the production of AAMs with lower compressive strengths, because part
of the alkaline solution may not react. In the present study, the addition of MK resulted in
increased reactivity of the precursors and thus higher concentrations of Si and Al ions in the
reactive paste, which are required for the development of aluminosilicate bonds. On the other
hand, the presence of sulphates and other ions, such as nitrates or phosphates, had a negative
effect on alkali activation, as mentioned in earlier studies [62,63].

In this study, the PLR50MK50 AAM produced when the ratios SiO2/Al2O3 and
(SiO2 + Al2O3)/Na2O in the reactive paste were 10% lower and 20% higher, respectively,
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compared to the PLR70MK30 AAM, which acquired almost 40% higher compressive strength
at 26 MPa.

3.4. Physical Properties of AAMs

Table 6 shows the physical properties of PLR50MK50 and PLR70MK30 AAMs pro-
duced under the optimum synthesis conditions. It is seen from these data that porosity,
water absorption, and apparent density had quite similar values, which were the average
ones of the three measurements taken. Thus, the difference in the compressive strength,
which was almost 50%, was probably due to the presence of denser microstructures and
specific mineralogical phases.

Table 6. Physical properties of selected AAMs 1.

AAMs
Code

Compressive
Strength (MPa)

Porosity
(%)

Water Absorption
(%) Apparent Density (g cm−3)

PLR50MK50 25.9 7.0 4.2 1.7
PLR70MK30 17.6 7.3 4.5 1.6

1 H2O/Na2O = 14.6, SiO2/Na2O = 1.0, curing at 40 ◦C for 24 h and ageing for 7 days.

3.5. Structural Integrity of PLR50MK50 AAMs

The structural integrity of the PLR50MK50 AAMs was evaluated through the imple-
mentation of different durability tests, including firing at 200, 500, and 800 ◦C for 2h, and
immersion in distilled water and a 1 mol L−1 HCl solution for 7 days. Table 7 shows the
compressive strength (MPa), weight loss (%) and volumetric shrinkage (%), as obtained
after the implementation of each test.

Table 7. Selected properties of PLR50MK50 AAMs obtained from durability tests.

Durability Test Period Compressive Strength (MPa) Weight Loss (%) Shrinkage (%)

Control AAMs 1 - 25.9 - -
Firing at 200 ◦C 2 h 20.4 0.4 3.5
Firing at 500 ◦C 2 h 5.9 4.7 6.9
Immersion in H2O 7 days 21.8 0.2 3.1
Immersion in 1M HCl 7 days 12.0 0.9 4.7

1 H2O/Na2O = 14.6, SiO2/Na2O = 1.0, curing at 40 ◦C for 24 h and ageing for 7 days.

It is seen from these data that when the AAMs were fired at 200 ◦C, the compressive
strength was reduced by almost 20% to 20.4 MPa. On the other hand, when higher firing
temperatures were used, the specimens were severely damaged, due to phase transforma-
tions which deteriorated their structural integrity [64]. The compressive strength obtained
after heating at 500 ◦C was only 5.9 MPa, while heating at 500 ◦C resulted in the formation
of cracks and the almost complete destruction of the specimen. During heating between
130–160 ◦C, gypsum (CaSO4·2H2O), which is a hydrated mineral shown in the XRD pattern
of the PLR (Figure 3), was transformed first into hemihydrate (CaSO4·0.5H2O) and then to
anhydrite (CaSO4), which was formed after heating at 290–900 ◦C [65]. Additional heating
may have resulted in the partial decomposition of gypsum, the formation of CaO, and
the deterioration of the structural stability of the specimens. It was mentioned that AAMs
exhibiting much better structural integrity were produced from Greek laterite leaching
residues, as a recent study indicated [37]. It is known that improved durability under firing
at higher temperature is exhibited by AAMs produced from raw materials or by-products
with much higher inherent alkali activation potential, such as slags or fly ashes. The ther-
mostability and thermal insulation performance of the produced AAMs may have been
further improved if the specimens were reinforced with fibers, or if the calcination of the
raw materials took place prior to alkali activation [66–69].
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Figure 3. XRD patterns of (a) metakaolin (MK), (b) leaching residues PLR, (c) PLR50MK50, and
(d) PLR70MK30 AAMs. Phases identified are: bassanite (B), calcite (C), clinochlore (Cl), goethite
(G), gypsum (Gy), muscovite (M), quartz (Q), talc (T). The AAMs produced at 40 ◦C with the use of
10 M NaOH.

On the other hand, immersion of the AAMs in water for 7 days resulted in an almost
15% compressive strength loss (21.8 MPa), which increased by more than 50% (12 MPa)
after the immersion of specimens for the same period in a much more aggressive 1 mol L−1

HCl solution. Weight loss and shrinkage were quite similar in all cases and varied between
0.4%–4.7% and 3.1%–6.9%, respectively.

3.6. Comparison with a Previous Study

The present study is the second one that attempts to explore the alkali activation
potential of laterite leaching residues. The first one was carried out a year ago [37] and
explored the potential for alkali activation of Greek laterite leaching residues (GLR) after
mixing them with metakaolin (MK) at a mass ratio of GLR:MK 90:10. The synthesis
conditions were: NaOH molarity of 8 M, curing temperature at 80 ◦C, curing period for
24 h and ageing period for 7 days. The main difference was that the curing temperature in
the present study was lower, at 40 ◦C. Table 8 presents the experimental conditions and
compares the results obtained from each of the two studies.

Table 8. Comparison of alkali activation of two laterite leaching residues.

Raw Materials Greek Laterite Leaching
Residues (GLR)

Polish Laterite Leaching
Residues (PLR)

Chemical composition (wt%)

SiO2 30.8 23.3
Al2O3 2.3 1.2
CaO 3.7 17.9
SO3 6.12 30.6

Fe2O3 50.9 9.0

Reactivity (mg L−1) Si 20.1 59.1
Al 2.4 0.5

AAMs GLR90MK10 PLR50MK50

Molar ratio in the activating solution H2O/Na2O 17.4 14.6
SiO2/Na2O 1 1

Molar ratio in the reactive paste
(SiO2 +

Al2O3)/Na2O 9.3 5.1

Fe2O3/CaO 4.8 0.2
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Table 8. Cont.

Raw Materials Greek Laterite Leaching
Residues (GLR)

Polish Laterite Leaching
Residues (PLR)

Curing Conditions 80 ◦C, 24 h, 7 days 40 ◦C, 24 h, 7 days
L/S ratio 0.3 0.6

Porosity (%) 21.3 7.0
Water Absorption (%) 5.1 4.2

Density (g cm−3) 2.3 1.7
Compressive strength (MPa) 41 26

References [37] This study

It is seen from these results that the GLR were more efficiently alkali activated because
(i) the addition of metakaolin was very low, only 10 wt%, compared to 50 wt% used in the
present study, and (ii) the compressive strength acquired was almost 50% higher (41 MPa)
compared to the maximum value of the present study (26 MPa).

These differences are mainly due to the following reasons:

- The SiO2 and Al2O3 content of the GLR were significantly higher (30.8 wt% SiO2 and
2.3 wt% Al2O3), compared to the respective values of the PLR, namely 23.3 and 1.2 wt%.

- The Si and Al concentrations after the leaching of each residue with NaOH solution
were 20.1 and 2.4 mg L−1, respectively, for the GLR (when 8 M NaOH solution was
used), compared to 59.1 and 0.5 mg L−1, respectively, for the PLR (when 10 M NaOH
solution was used); this indicated a deficiency of Al species in the solution in the
second case, which was not favorable for the development of aluminosilicate bonds.

- The molar ratio (SiO2 + Al2O3)/Na2O was more favorable in the reactive phase of
the GLR.

- The PLR had a high content of sulfates (30.6 wt%), which were shown as SO3 in Table 2
and confirmed by the presence of gypsum (Figure 3). Such sulfate compounds may
have caused internal expansion during curing, ageing, and solidification [70]. The
presence of gypsum in the precursors and its effect during alkali activation has been
investigated in earlier studies, and the results varied. For example, Cong et al. [71]
stated that silica fume could be used for the improvement of fly ash/slag-based
geopolymers activated with calcium carbide residue and gypsum. On the other
hand, exposure of specimens to 5% MgSO4 resulted in the formation of gypsum
and ettringite, which caused surface spalling, cracking and the deterioration of the
structural integrity of one-part geopolymers [72]. In another study, prior to efficient
valorization of sulfidic mine waste for the production of construction materials, the
extraction of hazardous contaminants and the removal of sulfur using flotation or
bioleaching was carried out [73].

- The content of the CaO in the PLR was much higher (17.9 wt%) compared to the
respective one of the GLR (3.7 wt%), and this may have created implications during
alkali activation. The role of CaO/Fe2O3 molar ratios needs to be further elucidated.
So far, the few studies which were carried out to elucidate this ratio indicate that low
CaO/FexOy molar ratios enhance the early kinetics and compressive strength of the
produced specimens; in the present study, the CaO/Fe2O3 molar ratio was 1.99, which
was four times higher than the ratio recorded in the previous study, at 0.48. [37,74,75].

- The L/S ratio in GLR was smaller and thus more suitable for the production of
specimens with higher compressive strengths. This ratio varied for different materials,
but played an important role in assessing the viscosity and flowability of the paste. In
several cases, low L/S ratios resulted in the production of AAMs with more compact
microstructures and beneficial properties [61,76].

3.7. Characterization of Selected AAMs
3.7.1. Mineralogical Analysis

Figure 3 presents the XRD patterns of raw materials, namely PLR and MK, as well as
the XRD patterns of selected AAMs produced under the optimum synthesis conditions.
It is seen that the AAMs consisted of quartz (SiO2), talc [Mg3Si4O10(OH)2], muscovite
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[KAl2(AlSi3O10)(OH)2], and clinochlore [(Mg,Fe)5Al(Si3Al)O10(OH)8], which were phases
also present in the raw materials. The PLR also contained bassanite and gypsum, which
were phases formed during leaching through the reaction of H2SO4 with calcium carbonates
present in the ore. The presence of calcium sulfates is also indicated in Table 2, which shows
that the contents of CaO and SO3 were 17.9 wt% and 30.6 wt%, respectively.

After alkali activation, it was observed that most bassanite peaks disappeared, while
the intensities of most other peaks were substantially decreased as a result of reactions
between the precursors and the highly alkaline activating solution. The patterns of the
AAMs indicated a certain degree of amorphicity due to the presence of a shoulder between
2-Theta 20◦–30◦ which was more clearly visible in pure MK-based AAMs [77,78]. Similar
phases were also observed in the XRD patterns shown in earlier studies [31,37,79–81].

3.7.2. FTIR Analysis

Figure 4 shows the FTIR spectra, over the range 4000–400 cm−1, of laterite leaching
residues (PLR) and selected AAMs (PLR50MK50 and PLR70MK30) produced under the
optimum synthesis conditions.
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Figure 4. FTIR spectra of (a) leaching residues PLR, (b) PLR50MK50 and (c) PLR70MK30 AAMs.

The bands present in the PLR residues at 2850 cm−1 and 2917 cm−1 were assigned to
hydrocarbon stretches, while the small bands at 3546 cm−1 and 3607 cm−1 were attributed
to Fe3+-OH-Fe3+ stretching and deformation vibrations. The band seen at 1096 cm−1 in
PLR residues corresponded to asymmetric stretching vibrations of the silicate tetrahedral
network. Furthermore, the bands shown at 1620 cm−1 in PLR residues and 1637 cm−1

in both AAMs were due to -OH bending vibrations [13]. The peak at 1149 cm−1 was
associated with sulfate minerals, i.e., bassanite and gypsum [82]. This peak was clear in
the PLR and less sharp in the produced AAMs, due to the partial reaction of the original
gypsum with the alkaline solution and the development of amorphous phases [83]. The two
bands shown at 600 and 654 cm−1 in the PLR residues could be assigned to the formation
of calcium-based sulfates, as also indicated by the XRD pattern [37].

The band region between 3600 cm−1 and 3000 cm−1 in both AAMs was related to the
stretching (-OH) and bending (H-O-H) vibrations, due to the hydration processes that took
place during alkali activation [84].

The board bands detected at ~1478 cm−1 in the PLR50MK50 AAM (Figure 4b) and
~1418 cm−1 in the PLR70MK30 AAM (Figure 4c) were associated with the asymmetric
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stretching vibrations of O-C-O bonds and indicated the formation of carbonation products
from the reaction of alkali-activated silicates with atmospheric CO2 during the curing
period [34]. The band at 1015 cm−1 in both AAMs was attributed to Si-O-Si, Fe-O-Si
and Si-O-Al stretching vibrations of the growing inorganic polymer network [18]. The
small bands at 868 cm−1 and 873 cm−1, shown in the AAMs were due to the out-of-plane
bending vibrations of the carbonate ions [34]. The bands in the region 600 and 800 cm−1

shown in both AAMs (Figure 4b,c) were related to Si-O-Al deformation vibrations [85].
The characteristic band of quartz at 460 cm−1 remained unaffected in both AAMs, due to
the low reactivity of this mineral phase in alkaline systems, as also indicated in a previous
recent study [37].

3.7.3. SEM Analysis

Figures 5 and 6 show SEM-back-scattered electron (BSE) images of the PLR and
selected AAMs (PLR50MK50 and PLR70MK30) produced under optimum conditions,
respectively. The PLR consist of small and inter-grown particles that eventually form
spherically aggregated precipitates (Figure 5a). In agreement with the XRD results, the
dominant presence of well-defined crystals of bassanite and gypsum was identified on
the free surface of the PLR and is shown in detail in Figure 5b (zoom of rectangular
area of Figure 5a). Previous studies have confirmed the co-existence of calcium sulphate
precipitates with different degrees of hydration in laterite leaching residues, including
bassanite (CaSO4·0.5H2O), gypsum (CaSO4·2H2O), and anhydrite (CaSO4), due to attack
from the acidic solution [86,87].
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at several magnifications i.e., (a) ×200 and (b) ×1000. Energy dispersive X-ray spectroscopy (EDS)
spectra at 1000 indicated the presence of (c) bassanite and (d) gypsum in the form of rosettes and
prismatic crystals, respectively.
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Figure 6. Cross-sectional SEM images of selected AAMs produced by mixing Polish laterite leaching
residues (PLR) and metakaolin (MK) at mass ratio (a) 70:30 (PLR70MK30) and (b). 50:50 (PLR50MK50).
EDS spectra showed in several spot locations (c–e) and (f) areas (red rectangle) the presence of
undissolved oxide phases and newly formed inorganic gels [Cl: Clinochlore, T: Talc, Q: Quartz, Ch:
chromite, Gel: (N,C)–A–S–H].

Among the examined AAMs, significant differences in the microstructure and the
alkali-activation reaction products were observed in cross-sections, depending on the mix-
ing ratios of the precursors/binders used. In this context, the SEM/EDS examination
of PLR70MK30 AAM (Figure 6a) revealed a heterogeneous structure with an adequate
cohesion between the paste and the PLR. As shown in the XRD patterns, this microstruc-
ture was dominated by large clinochlore [(Mg,Fe)5Al(Si3Al)O10(OH)8] crystals (>50 µm)
along with several smaller crystals (<20 µm) of talc [Mg3Si4O10(OH)2] and some grains of
chromite (FeCr2O4). The observation of several unreacted and/or partially dissolved parti-
cles, as well as hollow cavities and microcracks in the inorganic matrix of the PLR50MK30
AAM, may have decreased its durability, and this was confirmed by the lower compres-
sive strength (17.6 MPa) obtained for this specimen compared to the PLR50MK50 AAM
(25.9 MPa). As shown in Figure 5b, the PLR50MK50 AAM exhibited a denser and more
compact microstructure, with strong bonding with the inorganic matrix and almost no
presence of voids or unreacted particles, when compared to PLR70MK30 AAM, which
justifies its higher durability. SEM-EDS analyses, carried out in cross-sectional areas of the
PLR50MK50 AAM, confirmed the compact and homogenous formation of (N,C)–A–S–H
polymeric gel with high ratios of Na/Si and Al/Si, at 0.51 and 0.33, respectively; on the
other hand, the gel was poor in calcium (Ca/Si ratio of 0.08) and sulfur/sulfates (S/Si ratio
of 0.02). This low content of calcium sulphate-hydrated phases (bassanite and gypsum)
inside the polymeric network of the PLR50MK50 AAM indicated the synergistic interaction
between the metakaolin added in the starting mixture at a 50:50 ratio and the alkaline
activators (NaOH and Na2SiO3 solutions), which resulted in their extensive dissolution in
the polymeric matrix [37].

3.8. Toxicity Assessment

Table 9 shows the toxicity of the PLR and the PLR50MK50 AAM after the application
of the EN 12457-3 test.
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Table 9. EN 12457-3 results (L/S = 10 L kg−1).

Elements

Raw Material AAMs Limit Values *

Leaching
Residues (PLR) PLR50MK50

For Wastes
Accepted at

Landfills for Inert
Wastes

For Non
Hazardous Wastes

For Wastes
Accepted at
Landfills for

Hazardous Wastes

mg kg−1

Al 5.4 15.7 - - -
Cr 0.3 0.3 0.5 10 50
Mn 98.2 0.2 - - -
Fe 7.3 29.8 - - -
Ni 449.4 0.6 0.4 10 40
Cu 0.3 0.06 2 50 100
Zn 3.9 0.4 4 50 200
As <DL 0.06 0.5 2 25
Mo 0.7 0.05 0.5 10 30
Cd 0.4 0.04 1 5
Pb 0.6 0.01 0.5 10 50

SO4
2− 800 80 1000 20,000 50,000

* Council Decision 2003/33/EC.

It is seen that the toxicity of the PLR far exceeded the limits given for all disposal
options except for Ni, which exhibited a dissolution rate of 449.4 mg kg−1; thus, they could
not be disposed of in any landfill without treatment. The determined dissolution rate of
Zn (3.9 mg kg−1) was almost equal to the limit (4.0 mg kg−1) for landfills accepting inert
wastes. Increased dissolution rates were also observed for the sulphate ions of the PLR, but
the values determined were definitely below all limits. The PLR50MK50 AAM exhibited
extremely low toxicity, except for Ni, which exhibited a dissolution rates of 0.6 mg kg−1,
which slightly exceeded the limit set for wastes accepted at landfills for inert wastes.

Based on these results, the alkali activation of laterite leaching residues with the
addition of metakaolin resulted in the production of AAMs with very low toxicity; the
only element that marginally exceeded the lower limits was Ni. It is believed that if the
PLR is co-alkali activated with other wastes, including for example metallurgical slags or
construction and demolition wastes, the toxicity of the produced AAMs will be minimized
as seen in previous relevant studies [21,49].

4. Conclusions

Laterite leaching residues, obtained after the sulfuric acid leaching of Polish ores in
stirred reactors under atmospheric conditions, exhibited very low inherent alkali activation
potential. However, they could be efficiently alkali activated at a low temperature, of 40 ◦C,
if mixed with metakaolin at the mass ratio of 50:50, and the obtained compressive strength
of the specimens after an ageing period of 7 days reached 26 MPa. This was mainly due to
the pozzolanic nature of metakaolin and the adjustment of the Si:Al ratio in the reactive
paste. The molar ratios which were important in the activating solution and defined the
efficiency of alkali activation were H2O/Na2O and H2O/Na2O.

The structural integrity of the produced AAMs was acceptable. When the specimens
were fired for one hour at 200 ◦C, the compressive strength was reduced by almost 20%.
When higher firing temperature was used, phase transformations took place, which deteri-
orated their structural integrity, and the compressive strength was reduced substantially
to almost 6 MPa. On the other hand, the immersion of AAMs in water for 7 days resulted
in an almost 20% reduction in compressive strength, which exceeded 50% when a more
aggressive HCl solution was used.

The microstructure of selected AAMs, produced after the mixing of PLR and MK at equal
mass ratios using SEM/EDS, was homogeneous, compact, and revealed the formation of a
strong (N,C)–A–S–H polymeric gel, which eventually improved the mechanical properties.
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The produced AAMs exhibited very low toxicity, as indicated by the application of
the EN 12457-3 test, while the only element that slightly exceeded the limits for wastes
accepted at landfills for inert wastes was nickel.

Overall, the results of this study indicate that alkali activation can be a viable option for
the valorization of laterite leaching residues and the production of AAMs with beneficial
properties that can be used as binders or construction materials. Future studies will
involve the co-valorization of leaching residues with metallurgical slags or construction and
demolition wastes in line with circular economy principles. This approach will definitely
contribute to reduction of the footprints of several industrial processes. The role of gypsum
or other sulfides or sulfates present in the initial wastes during alkali activation will be also
further investigated.
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