
Technical University of Crete
School of Electrical & Computer Engineering

Diploma Thesis

Federated Learning at TensorFlow Using

the Geometric Approach

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Undergraduate Degree in Electrical and Computer Engineering

Author:

Georgios Frangias

Thesis Committee:

Prof. Antonios Deligiannakis

(Supervisor)

Asst. Prof. Nikos Giatrakos

Assoc. Prof. Vasilis Samoladas

December 2023

https://www.tuc.gr/index.php?id=5397
https://www.ece.tuc.gr/index.php?id=4481

Abstract

The rapid growth of data generation and internet usage in recent years has created an

unprecedented demand for efficient Big Data collection, processing and analysis. The

ever-growing privacy concerns of the public opinion and the enactment of regulations on

this subject, induce the need for the development of decentralized, distributed and

scalable Machine Learning mechanisms, that can assure both personal data security and

high accuracy collective training. The scientific field of Federated Learning is dedicated

to achieving exactly that; train a global machine learning model without

communicating sensitive locally generated data. For the purpose of the current thesis,

we have developed a deployable extension to the Distributed Machine Learning library

KungFu, to effortlessly execute Federated Learning training jobs on decentralized

compute nodes. The implemented algorithms are the three Functional Dynamic

Averaging methods, inspired by the Geometric Approach. These algorithms have the

ability to approximately monitor a global threshold function, using solely local data

and, subsequently, dynamically determine the need for synchronization and model

aggregation. We have put our implementation to the test by executing exhaustive

experiments on multi-node GPU infrastructure, and compared it to a classic distributed

algorithm. The results demonstrate a significant training time reduction, due to

reduced communication overhead, without having repercussions on accuracy, especially

for non-ideal network topologies.

iii

Acknowledgements

First of all, I would like to express my deep gratitude to my supervisor, Professor Antonios

Deligiannakis. Without his support and knowledge on the subject, this work would not

have been possible. His insights in his courses related to programming systems, databases

and sensor networks provided me with the fundamental thought process necessary to

accomplish this achievement. His passion for research was not only inspiring to me but

also contagious, encouraging me to delve deeper into the field.

My gratitude extends to the committee members. Professor Vasilis Samoladas was

always available for technical questions and assistance. His teaching during the course

on distributed systems introduced me to the fascinating concepts of this field. Further-

more, I would like to thank Professor Nikos Giatrakos for his participation in the thesis

committee, his commitment to research and his interest in the work I have done.

I would also like to acknowledge the support I have been given by the research team

whom I was part of at the Technical University of Crete. Our team consisted of faculty

members and fellow students. It was always helpful to discuss the technicalities and next

steps of our work, with each of us contributing to our collective knowledge.

Last but not least, I am truly grateful to my family and friends who supported me

throughout my five-year-long undergraduate studies. Without them, this journey would

have seemed much more difficult or even impossible.

v

Contents

Abstract iii

Aknowledgements v

1 Introduction 1
1.1 Background . 1
1.2 Problem Statement . 3
1.3 Thesis Outline . 4

2 Related Work 5
2.1 Artificial Neural Networks . 5

2.1.1 Perceptrons and Neural Network Architecture 5
2.1.2 Forward Propagation . 6
2.1.3 Loss Computation . 8
2.1.4 Backpropagation . 8
2.1.5 Evaluation . 9
2.1.6 Summary . 9

2.2 Gradient Descent . 10
2.3 Gradient Descent Algorithms . 11

2.3.1 Stochastic Gradient Descent . 12
2.3.2 Batch Gradient Descent . 12
2.3.3 Mini-Batch Gradient Descent . 13

2.4 Gradient Descent Optimizers . 14
2.4.1 Momentum . 14
2.4.2 Adam Optimizer . 14

2.5 Distributed Machine Learning . 15
2.5.1 Distributed Machine Learning Algorithms 17
2.5.2 Asynchronous Stochastic Gradient Descent 17
2.5.3 Synchronous Stochastic Gradient Descent 19

2.6 Federated Learning . 20
2.6.1 Federated Learning Algorithms 22
2.6.2 Federated Stochastic Gradient Descent 22
2.6.3 Federated Averaging . 23

3 Selected Tools and Framework 25
3.1 TensorFlow . 26
3.2 Keras . 27
3.3 KungFu . 27

vii

Contents

4 Methodology 29
4.1 Geometric Approach . 29
4.2 Functional Dynamic Averaging . 31

4.2.1 Naive FDA . 34
4.2.2 Linear FDA . 35
4.2.3 Sketch FDA . 36

4.3 KungFu Adaptation . 36

5 Experiments and Results 39
5.1 Preliminary Work . 39

5.1.1 Experimental Setup and Infrastructure 39
5.1.2 Model . 40

5.2 Experiments . 40
5.3 Results . 42

6 Conclusions 49

Appendix A Additional Results 53

viii

List of Figures

2.1 Artificial Neural Network . 6
2.2 Input and output of a layer of perceptrons 7
2.3 Trajectories of Gradient Descent Algorithms on Loss Function Contour . 13
2.4 Trajectories with and without Momentum 14
2.5 Distributed Machine Learning Networks 16
2.6 Federated Learning Architectures . 20

3.1 Tensorflow Computation Graph . 26
3.2 Communication functions . 28
3.3 Ring Topology . 28

4.1 Drift Vectors Example . 31
4.2 Workflow of Slurm Job . 38

5.1 Advanced CNN . 40
5.2 Network Topologies . 42
5.3 Accuracy and synchronizations metrics with variable number of clients . 43
5.4 Accuracy and synchronizations metrics with variable batch size 44
5.5 Accuracy and synchronizations metrics with variable threshold 45
5.6 Mean synchronizations with variable number of clients and batch size . . 46
5.7 Training time until accuracy of 99.3% is reached over the number of clients 46
5.8 Communication time distribution with variable topology 47
5.9 Accuracy with variable topology . 48

A.1 Accuracy and synchronizations metrics with variable batch size (4 Clients) 53
A.2 Accuracy and synchronizations metrics with variable batch size (8 Clients) 54
A.3 Accuracy and synchronizations metrics with variable batch size (32 Clients) 55
A.4 Accuracy and synchronizations metrics with variable threshold (4 Clients) 56
A.5 Accuracy and synchronizations metrics with variable threshold (8 Clients) 57
A.6 Accuracy and synchronizations metrics with variable threshold (32 Clients) 58

ix

Chapter 1

Introduction

As of 2018 it is estimated that 2.5 million terabytes of data is created daily and in

2023 around 65% of the world population is frequently using the internet. In this era

characterized by an overwhelming abundance of data, the need for efficient data collection,

analysis, and categorization has never been greater. Machine Learning (ML) has not

only played a pivotal role in meeting this demand but is also shaping the technological

landscape for the foreseeable future. Its applications are vast and impactful, spanning

from large language models and image recognition to online recommendation systems,

spam detection, and even the creation of digital art. As a result, the scientific community

is relentlessly engaged in advancing ML technologies through novel techniques.

Traditional ML techniques might not be suitable while dealing with large amounts of

data. The computational complexity is high and thus the parallelization of the learning

process is necessary. An adaptable and scalable network of learners is required, with an

emphasis on edge computing for efficient learning allocation. Minimizing data exchange

is crucial to optimize network efficiency and resource utilization, all while maintaining the

privacy for individual users. These challenges underscore the importance of distributed

and federated learning approaches, which are designed to address these requirements.

1.1 Background

To fully grasp the focus of this thesis, it’s crucial to first understand the core concepts of

Machine Learning (ML), Distributed Machine Learning (DML) and Federated Learning

(FL).

ML is a specialized area within the field of Artificial Intelligence (AI) dedicated to

enabling computers to learn from data in order to make informed decisions or forecasts.

In contrast to conventional computational approaches that use fixed human-coded al-

gorithms to compute and solve problems, ML algorithms have the ability to recognize

patterns in data and make inferences accordingly. This way, computers gradually learn

and improve their performance as they are exposed to more data.

Most ML algorithms are fundamentally dependent on the concept of Artificial Neural

Networks (ANNs), which are modelled after the biological neural networks that constitute

the brain. Similar to their biological counterparts, ANNs consist of several connected

1

Chapter 1. Introduction

processors called neurons that each produces a sequence of real-valued activations. An

ANN has an input layer of neurons that get activated directly by the input data, as

well as additional neurons that get activated indirectly through weighted connections to

other previously activated neurons. These weights imply a connection strength between

neurons across different layers, akin to synaptic connections in the human brain. Learning

in an ANN setup is the process at which the optimal ANN variables —such as weights—

and subsequent behavior are found.

Traditional non-distributed ML is performed centrally on a single machine. The

data is collected and preprocessed on the same machine, and the model is trained using

this data, adjusting its variables iteratively, to minimize a specific loss function. This

loss function serves as a metric, operating in the domain of the model’s 1 variables, to

approximate how closely the model’s predictions align with the actual characteristics of

the data.

In various scenarios, a distributed learning system is advantageous, primarily because

it can significantly accelerate the learning process through high-level parallelization and

can prevent the communication of sensitive data over the network to a central server.

This is where Distributed Machine Learning (DML) comes into play, offering enhance-

ments in performance, accuracy, and the capacity to handle larger data volumes. Within

DML systems, multiple nodes, and often referred to as clients, maintain their own models

and independently conduct training on subsets of the complete dataset. It’s crucial that

the dataset is distributed in an independent and identically distributed (IID) manner to

ensure the effectiveness of DML algorithms. The training unfolds iteratively in cycles

known as communication rounds. At the conclusion of each communication round, the

clients transmit only their model variables across the network for aggregation. Subse-

quently, the aggregated model is transmitted back to the clients, initiating a new learning

cycle, i.e., communication round.

While DML offers substantial performance gains over traditional, non-distributed ML

methods, it is confined to IID datasets, which are quite rare in real-world learning sce-

narios. This mostly ends up with data being centrally collected in a cluster-based server,

so that they get distributed accordingly. So, in most scenarios DML faces privacy chal-

lenges. The advent of data protection regulations like the EU’s General Data Protection

Regulation (GDPR) and the public’s concerns on personal data after major global data

breaches necessitate a more privacy-conscious approach to learning from multiple remote

users. Federated Learning (FL) addresses this need by providing a distributed learning

framework that prioritizes user privacy. Instead of collecting all personal data from lo-

cal devices to a centralized cluster server, FL performs the training locally in the edge

devices. Only the model variables, not the sensitive personal data, are then aggregated

centrally. This focus extends not only to enhancing data privacy but also to reducing

network overhead. Since the raw data isn’t transferred across the network, FL mini-

1It is important to note that although ANNs are the most common ML models they are not the only
ones. A ML model is any kind of algorithm used to find patterns and classify data. Notable non-ANN
models include Support Vector Machines, Bayesian Classifiers and the k-nearest neighbor algorithm. In
this thesis, the term “model” is used interchangeably with ANNs; however, it’s important to recognize
that ANNs are just one type of ML model.

2

1.2. Problem Statement

mizes the burden on network resources, giving it a significant advantage over traditional

DML techniques. This is especially important for large scale learning implementations

involving millions of users that lack the network capabilities of data centers.

The big technology company Google has been at the forefront of promoting and

implementing FL since 2016. They view FL playing a crucial role in Distributed Machine

Learning, especially for small mobile devices —like smartphones— and have already

implemented it on Gboard, Google’s attempt on a virtual keyboard. They have developed

TensorFlow [25] in 2015, which is an open-source ML library that provides templates

for neural networks, data flow graphs and ML algorithms. TensorFlow offers certain

strategies for distributed learning, such as the Multi-Worker Mirrored Strategy, aimed at

facilitating distributed system operations. However, as of now, TensorFlow’s offerings for

Federated Learning (FL) are limited. The TensorFlow Federated (TFF) framework exists,

but is purely simulation-based and not deployable. Despite this framework’s presence,

TensorFlow has yet to provide an integrated solution that incorporates FL algorithms.

The most prominent framework for Distributed Machine Learning (DML) that utilizes

TensorFlow, along with other libraries like PyTorch, is Horovod, initially developed by

Uber [34]. Horovod facilitates inter-GPU communication and achieves high throughput

speeds through the use of ring reduction techniques. Available under the Apache 2.0

license, it allows for real-world, deployable distributed learning experiments with min-

imal code modification. In a similar vein, KungFu by Luo Mai et al. [7, 24] employs

adaptive distributed learning policies to dynamically adjust learning hyper-parameters.

This allows it to achieve superior data throughput, irrespective of the network limitations

faced by the learner nodes. KungFu also offers tools for monitoring the learning process,

making it a comprehensive solution for distributed machine learning. This adaptability

gives KungFu a performance edge over Horovod, particularly in scenarios involving a

large number of nodes.

1.2 Problem Statement

Most existing distributed and federated learning algorithms in use set fixed communica-

tion rounds, often lasting for a single training step. This communication strategy can be

quite trivial and inconsequential for a cluster-based DML environment, but it is restrictive

for networks of distant learners with limited internet connection. The communication cost

becomes enormous in relation to the computational cost of training, leading the training

process to succumb to communication overhead.

The Geometric Approach [35] method was one of the pioneers in functional monitoring

over distributed systems. It paved the way to monitor specific global metrics, by locally

computing estimations, with minimal network communication. Functional Dynamic Av-

eraging (FDA) [33] has been developed, influenced by the Geometric Approach, and it is

designed with DML in mind. It has introduced three methods to approximate the vari-

ance between local models and their average model, and it has built a synchronization

strategy around them. The FDA methods are theoretically proven to significantly reduce

communication cost and total training time.

3

Chapter 1. Introduction

In this thesis, our goal is to implement and test Geometric Approach techniques

in a deployable form using the TensorFlow library. This includes a deep dive into the

fundamentals of Optimization, Machine Learning, Distributed Machine Learning and

Federated Learning. By this we aim to achieve substantial communication overhead

reduction, an important premise in Federated Learning.

1.3 Thesis Outline

This thesis statement consists of six chapters. Excluding the current one, these are;

2. Related Work

In this chapter, we lay the foundational work for Artificial Neural Networks, Opti-

mizers, Distributed Machine Learning and Federated Learning. These concepts are

explained in detail, organized by level of complexity, starting from the simplest.

3. Selected Tools and Framework

We evaluate the available software tools relevant to the subject and analyze the

reasoning behind the selection process.

4. Methodology

A thorough analysis on the Geometric Approach and Functional Dynamic Averag-

ing is conducted. Moreover, we elaborate on the adaptations needed to incorporate

these algorithms in the tools we have used.

5. Experiments and Results

The executed experiments and their logic are explained. Experiments results are

presented and investigated.

6. Conclusions

We conclude analyzing the experiments results and research process, and suggesting

further work on the subject.

4

Chapter 2

Related Work

2.1 Artificial Neural Networks

Machine Learning research is fundamentally dependent on Artificial Neural Networks

(ANNs), a computational model that resembles the function of biological neural net-

works. The primary role of ANNs is to accurately classify incoming data, which can be of

many forms, such as text, voice and images. To achieve this, ANNs undergo an iterative

learning process, independently tweaking their internal parameters. If designed correctly,

the network will eventually make predictions that are progressively more accurate, resem-

bling human cognitive ability in certain tasks. Structurally, an ANN consists of several

processing elements, called neurons or perceptrons, that receive input data and deliver

outputs based on specific functions assigned to them. In this section, we will discuss the

inner workings of ANNs in detail.

2.1.1 Perceptrons and Neural Network Architecture

For now, let’s think of perceptrons as black boxes that receive inputs and produce an

output. In an ANN perceptrons are organized into multiple layers, with the most basic

ANNs consisting solely of an input layer and an output layer. The input layer simply

receives raw data values, while the output layer produces the network’s classification

predictions. Correspondingly, the number of perceptrons in the input layer is determined

by the dimensions of input data, and the number of perceptrons in the output layer

matches the number of possible classes. After the learning process, the goal is for the

ANN to classify incoming data with high confidence. Specifically, the perceptron in the

output layer that corresponds to the correct class should produce a value close to 1, while

values from other output perceptrons should remain close to 0.

In more complicated ANN architectures multiple layers are placed between input and

output, called hidden layers. Multiple hidden layers can be useful for the neural network

to recognize input data features in different levels of abstraction. Each perceptron of a

layer is connected to all the perceptrons of the previous layer. The input of a perceptron

that doesn’t belong to the input layer is a weighted sum of the outputs of all perceptrons

in the previous layer. The hidden layers have an arbitrary number of perceptrons and

distinct functions.

5

Chapter 2. Related Work

In Figure 2.1 a simple ANN is presented. There are four layers of perceptrons. The

perceptrons are represented by circles and each connection between neighboring layers

has a weight value. The input layer receives raw data, in this example an image of

a handwritten “3” digit. The output layer gives an estimation of the input’s label 1.

In this example, as the network tries to classify handwritten digits the output layer is

designed to have 10 perceptrons, as many as the number of single digits. In the output

layer the first perceptron’s value is the probability of the inputted image to be a 0, the

second to be 1 and so on.

Input Layer Output LayerHidden Layers

Figure 2.1: Artificial Neural Network

2.1.2 Forward Propagation

In the beginning, it’s essential to note that all the weights of the neural network are

initialized with random values. Additionally, the data intended for input to the neural

network should undergo preprocessing, which typically includes normalization and stan-

dardization. The data is partitioned into two distinct sets: the training dataset and

the test dataset. The training dataset serves as the source from which data is drawn

to train the neural network, while the test dataset remains concealed from the neural

network throughout the training process. The purpose of the test dataset is to assess the

accuracy of the neural network’s predictions when faced with new, unseen data.

The learning process is initiated by a process called forward propagation. At each

forward propagation step a subset of the training dataset —called batch— is fed to the

input layer of the neural network. Eventually, after traversing all layers one-by-one,

eventually it outputs its predictions. The question is how single perceptrons derive their

output value from the input.

As said before, each perceptron that doesn’t belong to the input layer, receives as

input, the outputs of the previous layer’s perceptrons, along with the corresponding

1The terms label and class are used interchangeably and they express the category in which data
items are assorted.

6

2.1. Artificial Neural Networks

weights. The problem is, that the weighted sum of the inputs that a perceptron computes

can span the entire set of real numbers. To confine the output to a more manageable

range —typically between [0, 1]— this sum is passed through an activation function.

Common properties of activation functions include non-linearity, differentiability, and

monotonicity, along with a compact codomain. Widely used activation functions include

the sigmoid function, hyperbolic tangent function (tanh) and rectified linear unit (ReLU).

All of these functions are activating —each in their own way— their input around zero.

However, there are instances where a perceptron needs to be activated around a different

value. To accommodate this, many ANNs equip each perceptron with its own bias value,

in addition to its weighted connections. This allows for more flexible activation behavior.

Let there be a simple architecture of two layers independent of their position in the

ANN. The first layer has m perceptrons and the following second layer has n perceptrons.

The output of the first layer is x with dimensions (m× 1), the output of the second layer

is ŷ with dimensions (n × 1), the weights of the in between connections is given by

the matrix W with dimensions (m × n), the bias of each perceptron is set by b with

dimensions (n× 1) and σ() is the activation function. The output of the perceptrons of

the n-lengthed layer is calculated by the function,

u = WTx+ b

ŷ = σ(WTx+ b) = σ(u). (2.1)

Figure 2.2 shows this example in a system-like form where w1,w2, ...,wn are the rows of

W, 
ŷ1
ŷ2
...

ŷn

 = σ



w1

w2

...

wn


T 

x1

x2

...

xn

+


b1
b2
...

bn


 . (2.2)

.

.

.

Figure 2.2: Input and output of a layer of perceptrons
Inspired by [18]

Now it is quite clear how the forward pass is done. A batch of data is inputted in

7

Chapter 2. Related Work

the input layer, many calculations involving weights and biases happen in hidden layers’

perceptrons until an output is derived at the output layer. At the beginning of the learning

process the weights and biases values are initialized randomly. Consequently, one could

argue that initially, the neural network makes random guesses regarding the actual labels

of the data. This leads to the question of how the ANN progressively improves its ability

to label data with increased accuracy and confidence.

2.1.3 Loss Computation

To enhance the predictive ability of an ANN, a metric on the accuracy and confidence

of the neural network is necessary. This metric is computed through the use of a loss

or cost function, which takes into account the network’s output and the values that the

ANN would ideally produce. Sticking to the example that was used beforehand, if ŷ is

the network’s prediction and y is the ideal values, the loss function for one data item

should be a function of the form ℓ(y, ŷ). But as ŷ is completely dependent on the data

item x (the ANN’s input) as well as the variables of the model W and b, the function

can be represented as ℓ(W,b;x,y).

The main objective of learning in an ANN setting is to minimize the value of the loss

function. The variables of the function are the weights and biases of the ANN. It’s a

well-established principle that to approach the minimum, whether it’s a local or global

minimum, of a function, one must move in the trajectory opposite to the gradient of the

function. This is analyzed in more detail in Sections 2.2 and 2.3. However, the problem

that arises is, that the loss function is rendered practically unknown. The domain of

the function can have thousands or millions of dimensions, due to the large number of

perceptrons used, and the sheer volume of pre-labeled data that requires evaluation can

further complicate the task of estimating it accurately.

2.1.4 Backpropagation

A technique called backpropagation is employed to make iterative estimations of the loss

function’s gradient and consequently adjust the weights of the neural network accordingly.

The algorithm was independently invented by multiple researchers but it was popularized

by D. Rumelhart, G. Hinton and R. Williams [31]. Backpropagation is employed after

every forward pass and loss computation and estimates the gradient of the loss function

layer-by-layer using the chain rule. Starting from the output layer and moving backwards,

at each perceptron connection an error signal e is calculated and then used to update the

corresponding weight value.

Coming back to the Equation 2.1 and Figure 2.2, let there be an ANN with k layers

and x
(m−1)
j be the j-th output of the (m − 1)-th layer and therefore the j-th input to

the perceptrons of the m-th layer [1]. Also, let the loss function ℓ(x,y;W) be a simple

squared error function. The weighted sum of inputs at the i-th perceptron of the m-th

layer is,

2.1⇒ x
(m)
i = σ

(
u
(m)
i

)
= σ

(∑
j

w
(m)
ij x

(m−1)
j

)
. (2.3)

8

2.1. Artificial Neural Networks

The output of the neural network would thus be,

ŷj = x
(k)
i = σ

(
u
(k)
i

)
.

It can be trivially proven that the negative gradient step would be,

∆w
(m)
ij = η

∂ℓ(x,y;W)

∂W
= ηe

(m)
i x

(m−1)
j , (2.4)

where ei,

e
(k)
i =

d

dwi

σ
(
u
(k)
i

)
e
(m)
i =

d

dwi

σ
(
u
(m)
i

)∑
j

w
(m)
ji e

(m+1)
j , m = 1, ..., k − 1,

and η is the assigned learning rate.

2.1.5 Evaluation

The user of the ANN may want to sporadically test the accuracy of its predictions. So,

after the pass of an arbitrary number of forward and backpropagation iterations it is

deemed that an evaluation has to be performed. For this task the test dataset is used

to determine whether the ANN is capable of accurate classification of previously unseen

data.

Similarly to the loss function, during the evaluation, the predictions are compared

to the actual labels of the data. But this time confidence is not a consideration. The

label with the highest prediction probability is considered the network’s “pick” and it is

compared to the actual data item’s label. The final accuracy value is the ratio of correctly

labeled data, after the whole test dataset is processed by the network.

In machine learning research, it is common practice to use accuracy metrics to deter-

mine the termination of the learning process.

2.1.6 Summary

In summary, a neural network trains itself on pre-labeled data following these steps:

1. Initialization. The architecture of the ANN; the number of layers, perceptrons

per layer, activation functions, loss function and hyper-parameters are chosen. The

ANN variables (weights and biases) are randomly initialized.

2. Data processing. The whole dataset gets normalized and standardized. Data

are split in training data and test data.

3. Forward propagation. A single or multiple data items are forward-passed

through the neural network starting from the input layer. Eventually, the resulting

output represents the network’s prediction for labeling the given data item.

9

Chapter 2. Related Work

4. Loss calculation. The neural network’s predictions from the previous step are

compared to the desired predictions, which are determined by the actual labels of

the data. This is accomplished using a loss function.

5. Backpropagation. The ANN estimates the gradient of the loss function layer

by layer, commencing from the output layer and working backward. The oppo-

site direction to the gradient determines the desired adjustments to the network’s

variables. The subsequent variable updates are performed.

6. Iteration. Repeat steps 3-5 until a stopping criterion is reached.

7. Evaluation. Validate the ANN to previously unseen data from the test dataset.

Perform this step with subjective frequency.

2.2 Gradient Descent

The objective of Optimization is to identify the optimal element in the domain of an

objective function, which results to this function’s most favorable value, while obeying

certain conditions. This ideal value is typically either the global minimum or the global

maximum. Such problems are referred to as optimization problems and respectively

either minimization or maximization problems. The following is the form of a generic

minimization problem as termed by Boyd and Vandenberghe [6],

minimize
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p ,

(2.5)

where f is the objective function, gi(x), for i = 1, . . . ,m are the inequality conditions,

hj(x), for j = 1, . . . , p are the equality conditions and m, p ≥ 0. In the context of

Machine Learning, we deal for the most part with minimization problems as we attempt

to minimize a specific loss function.

Tracing back to 1847, the steepest descent method was first introduced by mathemati-

cian Augustin-Louis Cauchy as a means to compute the orbits of celestial bodies [21].

However, the computational form and the proof of convergence of gradient descent took

shape later in the 20th century and variations of it were used to solve complex optimiza-

tion problems. The core concept is straightforward: begin from a certain point within

the domain of the function and gradually take steps towards the opposite direction of the

function’s gradient and thus towards a local minimum of the function. Of course, each

subsequent step should be inside the domain of the function as well. This condition is

ensured by calculating a step value using a line search algorithm1. The stopping criterion

1The backtracking line search is among the most straightforward and commonly used line search
algorithms. Unlike the “vanilla” exact line search, it allows for the use of an arbitrary constant α ∈
{0, 0.5}, which controls the size of updates and gradually decreases the step by a constant β ∈ {0, 1}
to abide by the Armijo-Goldstein condition. It won’t be explained further, as it isn’t applied to a ML
setting. For more details refer to “Convex Optimization” by Boyd-Vandenberghe [6].

10

2.3. Gradient Descent Algorithms

of the algorithm is reached, when the euclidean norm of the gradient reaches an arbitrary

minimal value ϵ [6].

Algorithm 1 Gradient Descent

Given function f and starting point x0 ∈ dom f
repeat

∆x := −∇xf(x)
Line search to compute step t
x := x+ t∆x

until ∥∇f(x)∥22 ≤ ϵ

It is important to note that Algorithm 1 guarantees convergence at the global min-

imum only in the case of strictly convex functions. A non-convex function implies the

existence of local minima that can potentially trap the algorithm to a suboptimal solu-

tion. Additionally, classic gradient descent is not suitable for large amounts of data as it

would require gradients’ computation across the entire dataset for each update.

2.3 Gradient Descent Algorithms

Gradient descent is the cornerstone of most optimizers used in neural networks. The

learning process is drawing upon a subset of samples x(i) and labels y(i) of a dataset

(D = (X ,Y)) in every update step. The objective function in the context of ANNs is

termed loss function, and it evaluates the discrepancy between the model’s predictions

and the actual labels. The loss function is differentiable and takes as its input the current

neural network parameters, namely its weights w and biases b, and a subset of samples

with their corresponding labels (X ⊆ X , Y ⊆ Y). So in general,

ℓ : Rk → R, ∇θℓ(θ;X, Y) ∈ Rk

θ = (w, b) ∈ Rk, x(i) ∈ Rm, y(i) ∈ Rn.

The goal is to iteratively adjust the components of vector θ in order to achieve the optimal

θ∗, which minimizes ℓ. This is the following minimization problem in the style of Equation

2.5,

minimize
θ∈Rk

∑
x∈X ,y∈Y

1

|X|
ℓ(θ;x, y).

Various optimizers achieve this through distinct update techniques. The size of each

update step is computed based on Gradient Descent and it is also analogous to the sub-

jective hyper-parameter of the learning rate (η). The learning rate has typically a value

around {10−2, 10−3}. The optimizer terminates when a specific convergence criterion is

reached.

11

Chapter 2. Related Work

2.3.1 Stochastic Gradient Descent

In Stochastic Gradient Descent (SGD) only one sample x(i) and its label y(i) is forward-

passed through the ANN at every update step and so the sets X, Y are singleton. This

means that the loss function will end up as a function of actual label y(i) and the predicted

ŷ(i). For example, if the loss function is the L2 loss,

ℓ(θ;x(i), y(i)) =
(
y(i) − ŷ(i)

)2
.

Therefore, the update step of the model’s parameters is,

θt = θt−1 − η · ∇θℓ(θt−1;x
(i), y(i)). (2.6)

For ease of reference, Equation 2.6 is presented as,

θ ← θ − η · ∇θℓ(θ;x
(i), y(i))

and all following equivalent equations concerning update steps will do the same.

This algorithm is highly efficient in terms of updates, updating its parameters for each

incoming sample, making it well-suited for online learning scenarios. The algorithm’s

shuffling of individual samples introduces variability into the training process, and this

variability can enhance the model’s generalization capabilities. Generalization refers to

the model’s ability to make accurate predictions on previously unseen test data. It can be

proven that SGD is more likely to escape from a local minimum due to the randomness

of sample selection [4]. On the other hand, SGD, with the limitation of not being able

to leverage computational vectorization can result in lower training speed. Also, noise

prevents the algorithm from converging.

2.3.2 Batch Gradient Descent

The algorithm analogous to classic mathematical gradient descent discussed in Section

2.1 is the naive Batch Gradient Descent. In this approach, the loss function is computed

for the entire dataset in a single update (X = X , Y = Y).

θ ← θ − η ·
∑

x∈X ,y∈Y

1

|X |
∇θℓ(θ;x, y)

On the positive side, Batch GD provides an unbiased estimation of the gradients, as

it utilizes the entire dataset for each update. This ensures a trajectory that consistently

moves towards a minimum, which is especially advantageous in scenarios with small

datasets, such as IoT devices. However, the method comes with computational trade-

offs. The computational cost of such large update steps can be prohibitive for large

datasets. The gradient updates are time-intensive, making it less suited for online learning

environments where rapid adaptation is critical. The accuracy of correctly predicting test

data will remain low for the few first updates.

12

2.3. Gradient Descent Algorithms

2.3.3 Mini-Batch Gradient Descent

In Mini-Batch Gradient Descent a mini-batch of samples is forward-passed through the

ANN at each step [16]. The mini-batch of samples is a subset of samples of the dataset

(X ⊂ X , Y ⊂ Y). This means that the update step should take into consideration the

predictions of all samples in the mini-batch. The mini-batch size is generally a power of

2 in order to utilize GPU usage. So, the step loss is the average of all the losses in the

mini-batch:

ℓ(θ;X, Y) =
∑

x∈X,y∈Y

1

|X|
ℓ(θ;x, y)

θ ← θ − η ·
∑

x∈X,y∈Y

1

|X|
∇θℓ(θ;x, y). (2.7)

Mini-Batch Gradient Descent aims to combine the best of both SGD and Batch GD

worlds. It generally outperforms Batch Gradient Descent in terms of speed while also

providing good generalization by randomly shuffling the mini-batches. Forward-passing

multiple samples allows vectorization and thus computational parallelism. Although it

doesn’t guarantee convergence like SGD, Mini-Batch Gradient Descent offers a similar

frequency of online updates, contingent on the mini-batch size. Again this algorithm,

similarly to SGD, cannot guarantee convergence, but it offers, depending on the size of

the mini-batch, equivalently frequent online updates.

Figure 2.3: Trajectories of Gradient Descent Algorithms on Loss Function Contour
Source Ethan Irby

In Figure 2.3, the contour plot of the loss function is displayed. This function is convex

and evidently has a global minimum at the center of the figure, indicated by a red dot.

The three algorithms —Batch Gradient Descent, Stochastic Gradient Descent (SGD), and

Mini-Batch Gradient Descent— initiate from distinct starting points. Batch Gradient

Descent consistently moves in the correct direction toward the minimum. In contrast,

SGD follows a somewhat chaotic path, eventually nearing the minimum but oscillating

around it. Mini-Batch Gradient Descent exhibits a trajectory similar to that of SGD,

but distinguishes itself by taking larger and more precise steps toward the minimum.

13

https://medium.com/analytics-vidhya/gradient-descent-vs-stochastic-gd-vs-mini-batch-sgd-fbd3a2cb4ba4

Chapter 2. Related Work

2.4 Gradient Descent Optimizers

2.4.1 Momentum

SGD struggles with navigating ravines, i.e. regions where the surface exhibits a signif-

icantly steeper curvature along some dimensions compared to others. This can be seen

in Figure 2.4a where the vertical dimension is much steeper and classic SGD gets car-

ried away from the opposite direction of the function’s gradient. Ravines are frequently

observed around local minima and render classic SGD time-consuming especially for non-

convex functions.

(a) Without Momentum (b) With Momentum

Figure 2.4: Trajectories with and without Momentum. Source Genevieve B. Orr

In order to mitigate this waving effect of the update steps, an SGD Momentum al-

gorithm is being used. The result of the Momentum algorithm can be seen in Figure

2.4b. In its simpler form it makes use of a sequence vt that calculates the exponentially

weighed average of previous updates. For β ∈ [0, 1] the update step is:

vt = βvt−1 + η∇θℓ(θt−1, x
(i), y(i))

θ ← θ − vt

2.4.2 Adam Optimizer

Adam (Adaptive Moment Estimation) is an optimizer method developed by Kingma and

Lei Ba [20] and is elaborated in detail in Algorithm 2. Adam incorporates elements

from both RMSprop and Adadelta 1 by maintaining an exponentially decaying average

of past squared gradients, denoted as vt. The vector vt is referred to as 2nd raw moment

estimate and it accounts for the rate of gradients change, providing a dynamic learning

rate specific to each parameter. Additionally, it retains an exponentially decaying average

of past gradients, mt, akin to the concept of the Momentum method. The variable mt

is called 1st moment estimate and smooths the optimization path when gradient changes

directions. Both of these two vectors undergo bias-correction at each timestep based on

the current timestep t.

Adam has gained widespread popularity as an optimizer in the realm of Machine

Learning due to its unique blend of advantages borrowed from SGD, Momentum, RM-

Sprop, and Adadelta. Its adaptivity is well-suited for tackling non-convex optimization

1RMSprop [36] and Adadelta [40] were independently created around the same period. Both algo-
rithms employ gradient normalization through the root mean square of previous gradients, allowing them
to dynamically adjust the learning rate during the training process.

14

https://willamette.edu/~gorr/classes/cs449/momrate.html

2.5. Distributed Machine Learning

challenges and handling problems with sparse gradients, which are not uncommon in the

landscape of ML problems. Furthermore, the adaptive learning rate component in Adam

streamlines the training process by reducing the need for extensive hyper-parameter tun-

ing, ultimately saving valuable time and resources in model development.

Algorithm 2 Adam (Adaptive Moment Estimation) [20]

Hyper-parameters
η: learning rate
β1, β2 ∈ [0, 1): exponential decay rates for first/second moment estimates

Initially
t = 0 ▷ Timestep
m0 = 0 ▷ 1st moment vector
v0 = 0 ▷ 2nd moment vector

repeat
gt = ∇θℓ(θt−1, x, y) ▷ Get gradients w.r.t. stochastic objective at timestep t
mt = β1 ·mt−1 + (1− β1) · gt ▷ Update biased 1st moment estimate
vt = β2 · vt−1 + (1− β2) · gt ⊙ gt ▷ Update biased 2nd raw moment estimate
m̂t = mt/(1− βt

1) ▷ Compute bias-corrected 1st moment estimate
v̂t = vt/(1− βt

2) ▷ Compute bias-corrected 2nd raw moment estimate
θt = θt−1 − η · m̂t/(

√
v̂t + ϵ) ▷ Update parameters

t = t+ 1
until θt converges

2.5 Distributed Machine Learning

Traditional non-distributed ML is performed centrally on a single machine. Although

the raw data might originate from various locations, it must be collected and transmitted

over the network to a central processing unit. In this setup, a single neural network

handles the entire learning process, as shown in Figure 2.5a. While this initial technique

may have a simple implementation and preprocesses data that can be easily generalized,

it comes at a cost to performance, fault tolerance, scalability and privacy [13].

Contrarily, Distributed Machine Learning (DML) is executed in multi-node networks

designed to improve performance, increase accuracy, and scale to larger input data sizes

[14]. Each client is responsible for training its own local neural network based on its

local data. At regular intervals, these models must pause their independent learning and

engage in synchronization, wherein they exchange their neural network variables with one

another. This synchronization process takes place at the conclusion of a communication

round. Synchronizing with peers can happen either via peer-to-peer model averaging [37,

34] or by using a centralized parameter server [23]. The outcome of this averaging process

is a global neural network that encapsulates the collective learning progress achieved by

all nodes.

This indicates that DML can take advantage of data and model parallelization, pro-

viding faster training, scalability, and minimized network overhead. Learning on models

is done over mini-batches, which are subsets of training data for each node and iteration.

15

Chapter 2. Related Work

There is no need to communicate a large quantity of potentially vulnerable raw data

through the network to reach a global model, as this is achieved by averaging the local

models of each node.

The primary limitation of classic DML algorithms, employing straightforward aggre-

gation techniques, is their dependency on the dataset being independent and identically

distributed (IID) across all clients. When dealing with IID data, learning can occur ef-

fectively on the edge devices or clients, as illustrated in Figure 2.5b. Only the neural

network variables are transmitted across the network in this scenario.

However, in many instances, these basic DML algorithms perform better in a cluster-

based environment, as depicted in Figure 2.5c. In this setup, whether the data is IID

or not, it is collected centrally on a server, where it is merged into a single dataset and

distributed to multiple clients within a cluster of computational nodes. This can be the

only option because IID data are not usually the case when training occurs in many

individual clients in poor network conditions and with a variety of local data. While

the computational aspect of the process remains distributed, data collection and learning

become centralized. This approach raises concerns about client privacy since raw data

still need to traverse the network. Those problems get resolved using Federated Learning

(FL) algorithms, which will be explained in detail in Section 2.6.

. . .

Central Server

Clients

(a) Centralized ML

. . .

Central Server

Clients

i.i.d. data

(b) Ideal DML

. . .

Central Server

Clients

non-i.i.d. data

(c) Cluster-based DML

Figure 2.5: Distributed Machine Learning Networks

16

2.5. Distributed Machine Learning

2.5.1 Distributed Machine Learning Algorithms

A multitude of algorithms have been developed for Distributed Machine Learning. These

algorithms are designed so that they parallelize the learning in an efficient manner, are

fault tolerant, preserve data privacy and reduce communication overhead. They have to

simultaneously provide high training accuracy and low network overhead/traffic.

Large network bandwidth consumption needs to be diminished as data centers and

devices have limited networking capabilities and receive a high frequency of data, espe-

cially due to GPU technology advancements, e.g., CUDA cores. At the same time, DML

adds complexity and expensive synchronization barriers to ML, which need careful con-

sideration. In any case, stragglers, single points of failure, and competing tenants should

be avoided during the development of algorithms. In general, the steps a DML algorithm

takes are the following:

1. Initialization. At first all local models are initialized typically with random

weights and biases.

2. Local Training. The clients start training their models using their local dataset

as long as the current communication round lasts.

3. Synchronization & Aggregation. All clients synchronize at the end of the

communication round by broadcasting their model variables to their peers or to a

central server 2. Then, the variables get aggregated, mainly by averaging, to create

a global model.

4. Global Model Update. The global model is transmitted through the network

and all clients’ models get updated to the global model.

5. Iteration. Iterate through steps 2-4 until a stopping criterion is reached.

2.5.2 Asynchronous Stochastic Gradient Descent

The simplest form of DML algorithms is the Asynchronous Stochastic Gradient Descent

(ASGD) algorithm. A lot of state of the art algorithms are using the basics of ASGD

with some variation. Some of the most popular are Hogwild! [29], which was the pioneer

in the field, Downpour SGD [11], that introduces a parameter server with multiple model

replicas and the asynchronous version of Elastic Averaging SGD [41], which dynamically

decides the duration of local training for each client, reducing network overhead. We

won’t get into detail explaining the nuances of these algorithms and instead we will focus

on the generic form of an asynchronous algorithm for a DML system.

As the name suggests the clients don’t have to synchronize in order to start local

training. The server updates the global model every time it receives variables from any

client and it isn’t confined, waiting for all clients to communicate with it. In this case,

communication rounds are not essential to the algorithm and are not clearly defined.

2Some algorithms train collectively with the absence of a central server. This applies to the KungFu
library that we have used in our experiments and is examined in more detail in Chapter 5.

17

Chapter 2. Related Work

For this example training happens with a simple Mini-Batch Gradient Descent opti-

mizer, which is the most popular choice for such an algorithm. Mini-Batch GD has been

further explained in Section 2.3.3 and Equation 2.7 describes its update step. It was

mentioned earlier, that when clients communicate with the central server, they transmit

their model variables, i.e., weights and biases. In Chapter 5, we will primarily employ

this technique of weight synchronization, as this is the methodology followed in our ex-

periments. However, it’s important to note that an alternative approach exists, which

involves transmitting the gradient of the model’s loss function. This approach is equiva-

lent to the previous and its popularity within the literature is the main reason for its use

in this context. So, Equation 2.7 gets replaced by,

G← G+
∑

x∈X,y∈Y

1

|X|
∇wℓ(w;x, y),

where X is the mini-batch and |X| the size of it, G is the stochastic local gradient and

(x, y) is a data point of the mini-batch with its respective label. In Chapter 5, we will

use the weights synchronization technique that we used on our experiments. Algorithm

3 describes ASGD on the client side and Algorithm 4 ASGD on the server side 3.

Algorithm 3 Asynchronous SGD Client k

Initially wk = random values

repeat

Read wglobal variables from server

wk ← wglobal

for i = 1, . . . , |X| do
Gk ← Gk +

1
|X|∇wℓ(wk;x

(i), y(i))

end for

Send Gk gradient to server

until stopping criterion is reached

Algorithm 4 Asynchronous SGD Server

Initially wglobal = random values

repeat

Wait for Gk gradient of any client k

wglobal ← wglobal − η ·Gk

until stopping criterion is reached

Asynchronous SGD has the ability to swiftly update the global model and, subse-

quently, speed up the local learning process. This is because asynchronous updates

happen instantly without waiting for other client updates. This attribute can prove to

be advantageous in scenarios where straggler clients are prevalent. Straggler clients are

clients that delay their communication with the server, due to either slow-paced local

training or network limitations. In a synchronous environment these stragglers would

have significantly slowed down the collective learning process. Another benefit in using

an asynchronous algorithm is the ability to effortlessly scale the network of clients. The

number of clients in the network is irrelevant to the aggregation process.

The major drawback of Asynchronous SGD is the concept of staleness. Local training

on a client starts by reading the model variables from the server. Nevertheless, over

the course of local training, the global variables may undergo substantial alterations,

3In these examples synchronization happens for each batch step, but in general this might not be the
case. Some variants of Asynchronous SGD allow clients to explore locally for more than one step before
synchronization.

18

2.5. Distributed Machine Learning

potentially rendering the client’s gradient updates outdated to the point of impacting the

effectiveness of the algorithm.

2.5.3 Synchronous Stochastic Gradient Descent

The alternative to asynchronous algorithms are synchronous algorithms for DML. Note-

worthy examples of synchronous algorithms include Parallel SGD [19], which is the vanilla

synchronous SGD, the synchronous version Elastic Averaging SGD [41], which was al-

ready mentioned in Section 2.5.2, and Large Minibatch SGD [16], that found a linear

scaling rule between mini-batch size and learning rate.

In this section, our primary focus is again a generic version of Synchronous Stochastic

Gradient Descent (SSGD) algorithm. Similar to the asynchronous algorithm outlined in

Section 2.5.2, the gradient of the local model is the one that traverses the network. The

key distinction of this algorithm lies in the fact that during each communication round,

the server pauses to accumulate the local updates from all clients prior to proceeding with

aggregation and the subsequent global update. The clients that have already transmitted

their local updates similarly pause, awaiting the completion of the round. Algorithm 5

describes SSGD on the client side and Algorithm 6 SSGD on the server side 3. Note

that on the server side the global model update step happens only when n gradients are

received, n being the number of clients in the network.

Algorithm 5 Synchronous SGD Client k

Initially wk = random values

repeat

Wait for wglobal variables

wk ← wglobal

for i = 1, . . . , |X| do
Gk ← Gk +

1
|X|∇wℓ(wk;x

(i), y(i))

end for

Send Gk gradient to server

until stopping criterion is reached

Algorithm 6 Synchronous SGD Server

Initially wglobal = random values

repeat

G = {}
while |G| < n do

Wait for Gk gradient of any client k

G ← G ∪ {Gk}
end while

wglobal ← wglobal − η · 1
n

∑n
k=1 Gk

Send wglobal variables to all clients

until stopping criterion is reached

It is obvious that this implementation offers more consistency as clients update their

local variables in unison and train based on an identical version of the global model.

Data being up to date eliminate any potential detriments to the collective learning pro-

cess. Furthermore, it is much simpler to debug and devise smart dynamic strategies on

this algorithm. Given that all clients maintain a uniform state at any given moment, syn-

chronization for particular tasks becomes straightforward. For these reasons, we choose

to implement the Functional Dynamic Averaging methods, explained in Section 4.2, using

a synchronous algorithm, more on that in Chapter 5.

The main shortcoming of such synchronous algorithms lies in the presence of straggler

clients, which can substantially impede the synchronization process. The completion of

each communication round is dependent upon the receipt of updates from all participating

19

Chapter 2. Related Work

clients. This is why some variations of the synchronous algorithm try to avoid potential

straggler issues by waiting to receive gradients for a subset of all clients [10]. The slower

workers’ updates are dropped when they arrive and thus latency is limited.

2.6 Federated Learning

Federated Learning (FL) is a form of Distributed Machine Learning, with an additional

emphasis on data privacy [22]. Local data are strictly contained in the clients and are

not transmitted through the network. Only the model variables are send to central

servers. This can be profoundly beneficial for personal mobile devices since learning can

be achieved using cross-user data, while simultaneously abiding by personal data security

laws and regulations.

Data is maintained locally, either on edge devices (Figure 2.6a), e.g., mobile phones,

sensors, medical devices, or in so-called data silos (Figure 2.6b), e.g., different depart-

ments of a company having separate independent databases or a network of separate

hospitals. Data silos can be proven effective in areas where data security plays a sig-

nificant role, and sensitive raw data should be confined in certain physical locations.

Such domains encompass sectors like healthcare, smart cities facilitated by IoT applica-

tions, and military establishments. Generally, the goal of Federated Learning is to adapt

distributed machine learning for a vast network of diverse devices, often with limited

computational power and each processing relatively small datasets.

Clients . . .

Central Server

(a) Cross-Device FL

Clients / Silos . . .

Central Server

...

(b) Cross-Silo FL

Figure 2.6: Federated Learning Architectures

Federated Learning algorithms resemble DML algorithms, but prioritize edge comput-

ing. The learning process should predominantly take place on edge devices. As a result,

it is crucial for such algorithms to incorporate methodologies that address the following

key challenges:

1. Enable learning from data that is neither independent nor identically distributed.

In most cases, in Federated Learning applications, it’s typical to have vast numbers

of clients participating, with each client often corresponding to an individual user.

20

2.6. Federated Learning

The user base can encompass millions spanning multiple diverse countries, cultural

backgrounds and professions. Hence, the data generated and utilized for training

on each client tends to have significant variance. For example, take the Gboard

application by Google that employs FL to enhance virtual keyboard recommenda-

tions. The vocabulary used by young users differs greatly compared to older ones,

language can differ around the globe and even from region to region. Consequently,

the data in the network are neither independent nor identically distributed, posing

challenges to the efficient convergence of the training process. A variety of distinct

techniques have been devised, each aiming to overcome a certain category of data

skewness. A detailed overview of these methods is presented in “Federated learning

on non-IID data: A survey” by Hangyu Zhu et al. [42].

2. Reduce the communication overhead associated with synchronization.

The sheer magnitude of participating clients, many operating on less-than-ideal

wireless network infrastructure, necessitates significant reduction of network com-

munication traffic. Merely transmitting model variables through the network

doesn’t sufficiently address the demands of Federated Learning. Therefore, it should

be guaranteed that global updates aren’t mandated at every training iteration. To

the contrary, local models should be allowed the flexibility to independently explore

more of their own data, guided by global metrics. If these global metrics exceed an

arbitrary threshold, synchronization is initiated and a new communication round

follows. In this thesis, we consider the divergence between the local models and

their average as a global metric.

3. Minimize the risk of malicious identification of individual data points.

On initial consideration, it may seem far-fetched to have concerns about privacy,

especially given that no raw data travel through the network. Despite the absence

of direct data transmission, malicious actors could potentially gain access to model

data stored on a central server and deduce the input dataset. This technique is

termed a “model inversion attack”, where an adversary designs a neural network

inverse to the global one. This adversarial network takes the global model’s out-

put as its input and aims to reconstruct the initial data points of individual users.

While the efficacy of such attacks tends to increase with fewer clients, adversaries

can still have insights into the collective dataset even in large networks. Knowing

the peculiarities of the dataset someone can design adversarial clients that falsely

label data (data poisoning). FL systems are often equipped with further privacy

mechanisms to avoid such attacks. Most notorious is the work done in the Differen-

tial Privacy front. A differentially private algorithm ensures that by gaining access

to a global model’s output it is not possible to determine whether an individual user

has contributed or not in the learning process. This is performed by adding extra

noise to model updates. We won’t get into detail on differentially private algorithms

as it is out of this thesis scope. If you want to have an in-depth understanding on

the dangers looming over FL and DML, you are suggested to read the article titled

“Vulnerabilities in Federated Learning” by N. Bouacida and P. Mohapatra [5].

21

Chapter 2. Related Work

2.6.1 Federated Learning Algorithms

In order to clearly understand the inner workings of Federated Learning algorithms we

ought to describe the general strategy that all such algorithms use, and also describe

some of the more basic ones in detail. Every Federated Learning Algorithm follows the

steps detailed below and in this order.

1. Initialization. Initialize the global model and local models with random variable

values.

2. Client Selection. Choose a subset of clients to participate in the current com-

munication round. This selection process may be random or deliberately based

on specific criteria, such as the device’s availability or the quality of its network

connection.

3. Broadcast. The chosen clients retrieve the latest global model from the central

server.

4. Local Training. Each selected client computes the next local training step based

on its local dataset.

5. Synchronization & Aggregation. All participating clients synchronize at

the end of the communication round by broadcasting their model variables to the

central server. Then, the variables get aggregated, mainly by averaging, to update

the global model.

6. Global Model Update. The global model gets updated with the new aggregated

values of the chosen clients.

7. Iteration. Iterate through steps 2-5 until a stopping criterion is reached.

The conventional practice for client selection in a communication round within Fed-

erated Learning involves defining a fraction of the total set of clients, represented by a

variable C within the range of (0, 1]. Consequently, only a C-fraction of the total client

population —expressed as C ·n, where n is the total number of clients— is designated to

train during each round.

2.6.2 Federated Stochastic Gradient Descent

Federated Stochastic Gradient Descent (FedSGD) [27] is the simplest Federated Learning

algorithm. It is used as a baseline in the field’s literature in order to compare with more

complicated algorithms. This algorithm is almost identical to the simple Synchronous

SGD algorithm (Section 2.5.3), as it uses plain Stochastic Gradient Descent for training

and has a synchronous global update mechanism. The fraction of participating clients is

a constant C = 1, and so, all clients are participating at every round.

The main difference is that this algorithm uses the whole local dataset {Xk,Yk} of

each client k to take a training step. So, at each communication round all clients calculate

22

2.6. Federated Learning

their gradients Gk over their whole dataset and send it to the server. Then, the server

calculates its weight variables wglobal by taking an opposite step towards a weighted sum

of the gradients. Each gradient is weighted by dk
d
, where dk = |Xk| is the number of

data points in client k dataset and n is the number of data points of all clients in the

network. The pseudocode for FedSGD is given below in Algorithm 7 for the client-side

and in Algorithm 8 for the server-side.

Algorithm 7 Federated SGD Client k

Initially wk = random values

repeat

Wait for wglobal variables

wk ← wglobal

for {x, y} ∈ {Xk,Yk} do
Gk ← Gk +

1
dk
∇wℓ(wk;x, y)

end for

Send Gk gradient to server

until stopping criterion is reached

Algorithm 8 Federated SGD Server

Initially wglobal = random values

repeat

G = {}
while |G| < n do

Wait for Gk gradient of any client k

G ← G ∪ {Gk}
end while

d←
∑n

k=1 dk
wglobal ← wglobal − η

∑n
k=1

dk
d
Gk

Send wglobal variables to all clients

until stopping criterion is reached

2.6.3 Federated Averaging

Federated Averaging (FedAvg) [27] is one of the first ever Federated Learning algorithms

that sought to increase robustness to non-IID data distributions. To further explain this

algorithm, we have to introduce constants E, the number of epochs of local training

performed at each communication round, and B, the local mini-batch size of each client.

When using the term epoch in Machine Learning we are referring to a complete pass

through the entire training dataset while training. So for FedSGD, in Section 2.6.2, we

can say that E = 1 and B →∞.

For FedAvg, C ̸= 1, and so at every communication roundm = C ·n clients participate

in training. The server randomly selects m clients in a set St to train for the current

round t. It then sends the global weight variables wglobal to the selected clients in set St

and commands them to initiate their local training. Each client splits its local dataset

{Xk,Yk} to B-sized batches. Local training lasts for E complete passes of the local

training dataset. At the end of each batch training the local weights are updated as we

previously saw in Mini-Batch SGD and equation 2.7,

wk ← wk − η ·
∑

x∈X,y∈Y

1

B
∇wℓ(wk;x, y), (2.8)

where {X, Y } is a batch taken from {Xk,Yk}. Then, each participating client proceeds

to send the local updated weights to the central server. There, and when all clients in

set St have returned their weights, the global model’s weights are updated based on the

transmitted local weights. Similarly to FedSGD, the global weights wglobal are calculated

23

Chapter 2. Related Work

as a weighted sum of the participating clients weights. The coefficients are determined

again by dk
d
, where dk is the number of data points that client k used in training and d the

number of data points that all participating clients in St used. The detailed algorithms

for FedAvg are given below in Algorithm 9 for the client-side and in Algorithm 10 for the

server-side.

FedAvg outperforms FedSGD. With much fewer communication rounds and by train-

ing subsets of clients at a time, FedAvg achieves training accuracy equivalent to the one

achieved by FedSGD. Given the appropriate parameter tweaking communication rounds

can be reduced almost 100 times. We aim at achieving similar results in our own experi-

ments, where we seek to determine each communication round’s duration dynamically.

Algorithm 9 Federated Averaging Client k

Initially wk = random values

repeat

Wait to be selected and get wglobal variables from server

wk ← wglobal

B ← (split Pk into batches of size |X|)
for each local epoch e = 1, . . . , E do

for batch b ∈ B do

for i = 1, . . . , |X| do
Gk ← Gk +

1
|X|∇wℓ(wk;x

(i), y(i))

end for

wk ← wk − η Gk

end for

end for

Send wk variables to server

until stopping criterion is reached

Algorithm 10 Federated Averaging Server

Initially wglobal = random values

repeat

m← max(C ·K, 1)

St ← (random set of m clients)

Send wglobal variables to m clients ∈ St and initiate local training

W = {}
while |W| < m do

Wait for wk variables of any client k ∈ St

W ←W ∪ {wk}
end while

d←
∑

k∈St
dk

wglobal ←
∑

k∈St

dk
d
wk

until stopping criterion is reached

24

Chapter 3

Selected Tools and Framework

At the outset of this diploma thesis, it was quite clear that we needed the appropriate

tools to implement a genuine federated learning system. Consequently, it was necessary

to identify tools with inherent FL capabilities that could be easily scaled up into a fully

functional deployment. Fortunately, there was an abundance of distributed machine

learning and federated learning tools at our disposal, and the need for development from

scratch was obviated. The pivotal decision was selecting the most suitable tool from the

available options.

Starting from the bare bones, it was quite evident that Python would be the program-

ming language of choice, as it is convenient for the use of data structures and provides,

out of the box, libraries ideal for big data and machine learning operations.

In the context of machine learning frameworks, the deliberation was primarily between

TensorFlow [25] and PyTorch [30]. Despite PyTorch’s ease of use, Python-like code

functions and simplicity, which make it favorable for use as a theoretical research tool,

TensorFlow seemed more capable of real-life applications. TensorFlow has a much wider

use in the Machine Learning industry as it is production-ready, especially for mobile

devices, and it has comprehensive documentation and support. Industry leaders like

Google, X (formerly known as Twitter) and Airbnb, among others, use TensorFlow for

their Machine Learning and Artificial Intelligence applications.

Then, the decision had to be made on which framework to use in order to transition

machine learning processes into a distributed and subsequently federated environment.

The framework that we’ve concluded on is KungFu [7, 24] developed by Luo Mai et

al., from Imperial College London’s LSDS Group. It is a distributed machine learning

library for TensorFlow, that enables adaptive training and provides distributed systems

operations. We’ve opted in favor of KungFu, because it can be easily deployed right

away on any diverse group of computing nodes, regardless of hardware specifications,

physical and networkwide location. It promises high throughput speeds and equips the

user with the ability to arbitrarily set network topologies. Arranging clients in hierarchical

topologies could prove useful in implementing Federated Learning scenarios.

25

Chapter 3. Selected Tools and Framework

3.1 TensorFlow

TensorFlow is an interface for machine learning algorithms expression. It focuses on

providing comprehensive machine learning solutions on a broad variety of platforms, from

computationally weak mobile devices to large-scale distributed systems. It is designed

to scale the training process across different types of hardware as CPUs, GPUs, FPGAs

and TPUs, Google’s custom Tensor Processing Units.

The TensorFlow development team has aimed to simplify its usability for real-world

machine learning applications by crafting a unified system that serves both research and

production needs. By the use of the Keras [8] open-source library, it equips the user

with standard datasets, data pipelines and tools to easily validate and transform large

datasets. TensorBoard, TensorFlow’s visualization toolkit tracks training in real-time and

offers immediate insight of the process. TensorFlow Distribute is an API to distribute

training across multiple devices and includes multiple strategies, “flavors” of distributed

machine learning.

TensorFlow is an open-source platform, released under the Apache 2.0 license, pro-

viding users with access to its API and reference implementation. It boasts a substantial

user community, which actively fosters contributions from its members. The development

on the interface is continuous since its release and its documentation is rich in examples

and always up-to-date (TensorFlow API docs).

The touchstone of TensorFlow operations, as its name would suggest are tensors.

Tensors are typed, multidimensional arrays, with types including signed and unsigned

integers with sizes varying from 8 bits to 64 bits, float, double and strings.

TensorFlow —especially on its earlier 1.x versions— offers high computational per-

formance and portability outside Python using a technique called graph execution. A

TensorFlow graph is a directed graph that encapsulates a computation, comprising a se-

ries of nodes, with each node depicting a distinct mathematical operation. Upon the start

of execution, clients generate this computational graph to serve as a pipe for the dataflow,

with tensors being the entities that move along the graph’s edges. The graph’s structure

is static during execution, which allows TensorFlow to possess a complete overview of a

tensor’s lifecycle, enabling it to make informed decisions regarding GPU usage and mem-

ory allocation. Parallelization of graphs can happen by distributing operational nodes

to subgraphs and replacing cross-thread and cross-device edges with Send and Receive

nodes. Only parts of computations that are independent can be split into different threads

and devices.

MatMul Add ReLU

W

x

b

. . . c

Figure 3.1: Tensorflow Computation Graph Example
Source [25]

With the advent of TensorFlow versions 2.x, the framework has introduced an alter-

26

https://www.tensorflow.org/api_docs

3.2. Keras

native to graph execution known as eager execution. This approach allows TensorFlow

operations to be performed sequentially by Python, providing immediate results in a

build-as-you-go fashion. This interactive approach of eager execution can be particu-

larly beneficial for beginners or during the prototyping phase of projects, offering a more

intuitive and accessible way to work with TensorFlow.

3.2 Keras

Keras [8] is the high level API of the TensorFlow framework. Keras is designed to be

user-friendly without it being over-simplistic. It helps developers by standardizing the

trivial parts of training, allowing them to concentrate on the critical aspects of their

projects. It embodies the principle of progressive disclosure of complexity; basic tasks

are straightforward and easy to express, while increase in difficulty is gradual. Moreover,

Keras delivers robust performance and scalability. This is evident by its wide adoption

in industry and research.

The foundational data structures of Keras are layers and models. Models are com-

prised of layers and are the way, to design and initialize neural networks on TensorFlow.

The Sequential model stands as the most basic form of model provided by Keras, es-

sentially being a linear stack of layers. The model structure grants essential and handy

functions for training the model (fit) and accuracy evaluation (evaluate). Keras, also,

offers straightaway popular optimizers, loss functions and metrics for their models.

3.3 KungFu

KungFu [7, 24] is a distributed machine learning library for TensorFlow. Its main focus

is to provide a distributed machine learning tool that can perform fast inter-GPU com-

munication, while also enabling its users to dynamically tune hyper-parameters online

during the training process. Machine Learning users lose a significant amount of their

labor time configuring training hyper-parameters. There are no clean-cut solutions for

parameter tuning, as each ML problem has its own unique dataset and requirements.

Users necessarily resort to exhaustive trial and error techniques. KungFu comes to fill

this gap in existing distributed ML tools.

KungFu adapts training parameters by expressing certain Adaptation Policies (APs).

In order to convey these APs KungFu is equipped with distributed functions or opera-

tions. These functions can be divided into three categories; monitor, communication and

adaptation functions. Communication functions allow for tensor transmission through

the network and adaptation functions can dynamically alter hyper-parameters’ values.

Monitor functions can be developed for each user’s custom use case and offer global

metrics that can initiate parameter adaptations.

Some of the most useful operations provided for our training project are broadcast(),

allreduce(), rank() and size(). Functions rank() and size() are adaptation functions that

output the “identification number” of each client in the network and the total number

of clients in the network at the given moment respectively. Functions broadcast() and

27

Chapter 3. Selected Tools and Framework

allreduce() are communication functions. The broadcast() function is self-explanatory; a

client broadcasts a variable and after the operation all other clients are assigned its value.

On the other hand, the allreduce() function receives input from all clients, aggregates

them using a function and at the end distributes its output to all clients. The KungFu

allreduce() operation outputs the sum of all clients’ values.

a

a

a

Client 0

Client 1

Client 2

a

a

a

(a) Broadcast

a

a

a

Client 0

Client 1

Client 2

(b) All-Reduce

Figure 3.2: Communication functions

Collective operations in KungFu are performed without a central server or coordi-

nator. Clients communicate with each other in a decentralized manner by peer-to-peer

communication. This is accomplished by an asynchronous collective communication layer

implemented in the Go and C++ programming languages, which is then bound with

Python to run experiments using TensorFlow or PyTorch. Decentralized communication

is also accelerated —when communicating gradients— by the parallel use of the Nvidia

Collective Communications Library (NCCL) alongside the communication layer. NCCL

is following on the Message Passing Interface (MPI) [28] and achieves peer-to-peer com-

munication by designing a bidirectional ring topology based on the actual topology of

the network’s GPUs [38]. GPU cores and nodes that neighbor each other are more likely

to be paired together in the ring [17]. KungFu’s communication network is proven to

perform better than the state-of-the-art Horovod [34] in terms of throughput.

Legend

Switch

NIC

Ring

Client 0 Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Client 7

Node 0 Node 1 Node 2 Node 3

Figure 3.3: Ring Topology Inspired by [17]

Apart from the automatic ring topology detection, KungFu offers the adaptation

function tree(), to set custom tree topologies. This function receives as input a Python

list that contains the topology information in the form [parent0, parent1, . . . , parentn].

The i-th element of the list contains the i-th client’s parent in the topology, while the

client that is its own parent is a tree root. Another adaptation function is set size(),

which can decrease and increase the number of clients in the network.

28

Chapter 4

Methodology

4.1 Geometric Approach

Izchak Sharfman et al. have proposed and validated an innovative strategy for overseeing

threshold functions within distributed systems in their work ”A Geometric Approach to

Monitoring Threshold Functions over Distributed Data Streams” [35]. The main idea

behind it is that an arbitrary global monitoring task can be split into a set of constraints.

These constraints are implemented on individual data streams to locally eliminate data

increments that are irrelevant to the monitoring result. Consequently, communication

between different nodes gets reduced significantly while the global monitoring quality

remains high.

We will swiftly clarify the decentralized aspect of the Geometric Approach (GA) for

better understanding. Keep in mind that we will refer to data, either local or global as

statistics and to clients as nodes, as this is the terminology used for the GA. Let there be

a network of n nodes and let the local statistics of each node pk at moment t be v
(k)
t ∈ Rd

for k ∈ [1, n]. The global statistics vector would be trivially calculated as,

vt =

n∑
k=1

w(k)v
(k)
t

n∑
k=1

w(k)

,

where w(k) is the arbitrary weight of node’s pk statistics. To monitor the global statistics

vector would require the continuous communication of the local statistics at each t round.

This is why each node stores locally the last statistics vector as v′(k) from all nodes, as

well as a local estimate et of the global statistics. The estimate et is calculated as,

et =

n∑
k=1

w(k)v′(k)

n∑
k=1

w(k)

.

In addition to these variables, each node stores a statistics delta vector ∆v
(k)
t =

v
(k)
t −v′(k), which is the difference between the current local statistics vector and the last

29

Chapter 4. Methodology

statistics vector this node broadcasted to the network. Another parameter stored locally

is the so-called drift vector which is given by,

u
(k)
t = et +∆v

(k)
t .

It can be trivially proven that the weighted average of the drift vectors of the network

is equal to the global statistics vector,

n∑
k=1

w(k)u
(k)
t

n∑
k=1

w(k)

= vt

In other words, this is equivalent to the geometric property, that vt is in the convex

hull of the drift vectors,

vt ∈ Conv(u
(1)
t ,u

(2)
t , . . . ,u

(n)
t) . (4.1)

This property enables us to break down the global monitoring task into smaller, local

tasks. Since individual nodes lack the capability to determine the convex hull of drift

vectors, they must locally verify whether the monitored function f falls below or exceeds

the threshold r in a local area of the Rd. This region is given by a d-dimensional ball

B(et,u
(k)
t) which is centered at

et+u
(k)
t

2
and has a radius of

∥∥∥et−u
(k)
t

2

∥∥∥. It is known that,

Conv(u
(1)
t ,u

(2)
t , . . . ,u

(n)
t) ⊂

⋃
k

B(et,u
(k)
t)

4.1
=⇒ vt ∈

⋃
k

B(et,u
(k)
t)

Let’s assign a color to each vector within the ball: red for vectors that meet the

condition {x|f(x) < r} and green for those where {y|f(y) ≥ r}. A node must report

its local statistics to the network when there are green vectors in the ball, indicating a

breach of the local constraint. If the ball is monochromatically red, due to the relationship

above, it is certain that vt < r and, thus, there is no need for communication.

In Figure 4.1, a visualization of drift vectors for 2-dimensional statistics is drawn on

a plain for better understanding. All local statistics, at the start for t = 0, are located

on the same point, at the blue square. This means that v0 = v
(k)
0 , ∀k ∈ [1, 5]. The red

dots are the local statistics at t = t1 for all 5 nodes and the arrows pointing to them

are the respective drift vectors. The gray area is the convex hull of the drift vectors and

the circles are the balls B(et1 ,u
(k)
t1) of each node. At each point the individual nodes

don’t have information over the convex hull, but they can collectively monitor it using

the union of circles. It is obvious that the union of the circles is a superset of the convex

hull. Each node inspects its circle for constraint violations in order to determine whether

or not it should share its statistics.

30

4.2. Functional Dynamic Averaging

Figure 4.1: Drift Vectors Example
Source [35]

The decentralized geometric approach algorithm as presented in the paper [35] is

displayed in Algorithm 11.

Algorithm 11 Geometric Approach Decentralized Algorithm [35]

Initially
Broadcast a message containing the initial statistics vector and update v′(k) to hold
the initial statistics vector. Upon receipt of messages from all the nodes, calculate the
estimate vector et.

Processing stage
Upon arrival of new data on the local stream, recalculate v

(k)
t , and u

(k)
t , and check if

B(et,u
(k)
t) remains monochromatic. If not, broadcast the message ⟨k,v(k)

t ⟩ and update

v′(k) to hold v
(k)
t .

Upon receipt of a new message ⟨l,v(l)
t ⟩, update v′(l) to hold v

(l)
t , recalculate et, and

check if B(et,u
(k)
t) is monochromatic. If B(et,u

(k)
t) is not monochromatic, broadcast

the message ⟨k,v(k)
t ⟩ and update v′(k) to hold v

(k)
t .

It should be evident at this point, that this approach can be implemented in a Dis-

tributed Machine Learning setting and may even extend to Federated Learning, as it of-

fers a systematic strategy to minimize network communication. In this context, ”nodes”

can be thought of as individual learners or clients, ”local and global statistics” as the

parameters of a neural network, and ”constraints” as local metrics for these parameters.

4.2 Functional Dynamic Averaging

Motivated by the Geometric Approach [35] and Functional Geometric Monitoring (FGM)

[15, 32], V. Konidaris and V. Samoladas introduced a distributed machine learning syn-

chronization method named Functional Dynamic Averaging (FDA) [33]. This method,

31

Chapter 4. Methodology

which includes three distinct monitoring techniques, significantly cuts down the cost of

network communication. It surpasses comparable synchronization methods in actual

training duration, while still maintaining high training accuracy.

FDA, being a synchronization method, can be implemented on top of any Synchronous

DML algorithm like the one presented in Section 2.5.3. The standard Synchronous SGD,

detailed in Algorithms 5 and 6, operates in communication rounds, each equal to one

batch step in duration. It’s a recognized principle in all DML algorithms that the global

model’s highest accuracy is attained when it closely approximates the average of all local

models. Similarly, in FDA it is desired for the variance between the local weights of all

clients w
(k)
t for k ranging from 1 to n and their mean model wt, at step t, to be bellow

a predetermined threshold Θ. Exceeding this threshold could lead to a trade-off with

accuracy, which is not desired. The threshold Θ is considered a hyper-parameter of the

FDA method that is defined at the beginning of the round and can be adjusted throughout

the training process. Thus, the ideal condition for ending a communication round, known

as the Round Termination Condition (RTC), can be mathematically expressed as,

1

n

n∑
k=1

∥∥∥w(k)
t −wt

∥∥∥2 ≤ Θ . (4.2)

As long as the RTC holds we presume the individual learners haven’t significantly

deviated from their mean point. However, it is impossible to calculate the value of the

mean model wt precisely, without exchanging the local weights at each training step. For

this reason, the FDA method provides three different ways to approximately monitor the

RTC.

In general, consider that there are n clients, each with its own local state Sk(t) that

belongs to an m-dimensional real space, denoted as Sk(t) ∈ Rm for k = 1, . . . , n. The

global state at time t, represented as S(t), also lies in Rm and is defined as the average of

all the local states. We aim to transform the RTC Inequality 4.2, into a new approximate

monitoring formula. This formula will have the form F (S(t)) ≤ Θ, where F : Rm → R a

non-linear function.

It is crucial to emphasize a significant point before moving to the three monitoring

methods. Let there be t0 the time the latest communication round started and therefore

w
(1)
t0 = w

(2)
t0 = . . . = w

(n)
t0 . The update of learner k at step t is the difference of the weights

at step t and the weights of the last synchronization t0,

∆
(k)
t = w

(k)
t −w

(k)
t0 .

As a result, the average update is given by,

∆t =
1

n

n∑
k=1

∆
(k)
t .

Note that the left side of the RTC Inequality 4.2 can be written as,

32

4.2. Functional Dynamic Averaging

1

n

n∑
k=1

∥∥∥w(k)
t −wt

∥∥∥2 = 1

n

n∑
k=1

∥∥∥w(k)
t −w

(k)
t0 −

(
wt −w

(k)
t0

)∥∥∥2
=

1

n

n∑
k=1

∥∥∥∆(k)
t −∆t

∥∥∥2
=

1

n

n∑
k=1

(∥∥∥∆(k)
t

∥∥∥2 − 2∆
(k)
t ·∆t +

∥∥∆t

∥∥2)

=

(
1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2)− 2∆t ·∆t +
∥∥∆t

∥∥2
=

(
1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2)− ∥∥∆t

∥∥2

(4.3)

Thereby, we can conveniently define the local state of the k-th client and function F as,

Sk(t) =

[
||∆(k)

t ||2

∆
(k)
t

]
∈ Rm+1 and F

([
v

x

])
= v − ||x||2 , (4.4)

and now due to 4.3 and 4.4 the RTC is equivalent to F (S(t)) ≤ Θ.

However, defining the local state Sk(t) in the described manner would be resource-

intensive for the network. The local update ∆
(k)
t has m dimensions, corresponding to

the number of weights in the local client’s model. Further down, our goal is to examine

different ways to define the local states and the F function in order to minimize network

overhead.

The FDA method can be used in both centralized and decentralized networks of

clients. The general workflow in a centralized network is described by Algorithms 12 and

13 for any client k and the central server respectively.

Algorithm 12 Centralized Functional Dynamic Averaging Client k

repeat

B ← (split Pk into batches of size |B|)
Wait for server message m

if m = ⟨sync⟩ then ▷ Server demands model synchronization

Send w(k) to central server

else

if m = ⟨w⟩ then ▷ First step of the new round

w(k) ← w ▷ Get the new updated global model

end if

w(k) ← w(k) − η ·
∑

x,y∈b
1
|B|∇wℓ(w

(k);x, y) ▷ Where b the next batch from B
Send local state Sk(t) to central server

end if

until m = ⟨term⟩

33

Chapter 4. Methodology

Algorithm 13 Centralized Functional Dynamic Averaging Server

Initially w = random values

Broadcast message m = ⟨w⟩
repeat (t = 0, 1, . . .) ▷ Communication round

Wait for Sk(t) from all clients k ∈ [1, n]

Compute global state S(t)← 1
n

∑n
k=1 Sk(t)

if F (S(t)) ≤ Θ then ▷ No synchronization

Broadcast message m = ⟨cont⟩
else ▷ Synchronization

Broadcast message m = ⟨sync⟩
Wait for w(k) from all clients k ∈ [1, n]

w← 1
n

∑n
k=1w

(k)

Broadcast message m = ⟨w⟩
end if

until stopping criterion is reached

Broadcast message m = ⟨term⟩ ▷ Stop training

Algorithm 14 Decentralized Functional Dynamic Averaging

Initially w(k) = random values

Broadcast w(k)

Upon receipt of w(l) : w(k) ← w(l)

repeat

B ← (split Pk into batches of size |B|)
w(k) ← w(k) − η ·

∑
x,y∈b

1
|B|∇wℓ(w

(k);x, y) ▷ Where b the next batch from B
Wait for Sk(t) from all clients k ∈ [1, n]

All reduce averaging: S(t)← 1
n

∑n
k=1 Sk(t)

if F (S(t)) > Θ then ▷ Synchronization

All reduce averaging: w(k) ← 1
n

∑n
k=1w

(k)

end if

until stopping criterion is reached ▷ Stop training

4.2.1 Naive FDA

The most trivial method to approximate monitoring of the RTC involves using the squared

norm of the local update as the local state. By doing so, the dimensionality of the message

to be communicated is reduced to one. Therefore, the local state at time t for client k

and the function F can be expressed as,

Sk(t) =
∥∥∥∆(k)

t

∥∥∥2 ∈ R and F (v) = v .

34

4.2. Functional Dynamic Averaging

It is easy to show these definitions satisfy the RTC.

F (S(t)) ≤ Θ⇔ 1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2 ≤ Θ

⇔

(
1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2)− ∥∥∆t

∥∥2 ≤ 1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2 ≤ Θ

4.3⇐⇒ 1

n

n∑
k=1

∥∥∥w(k)
t −wt

∥∥∥2 ≤ 1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2 ≤ Θ (4.5)

⇒ 1

n

n∑
k=1

∥∥∥w(k)
t −wt

∥∥∥2 ≤ Θ RTC (4.2)

The only drawback of using this Naive method of approximating the RTC is that,

as shown in Inequality 4.5, sometimes it overestimates the true value of variance. In

short, while the conditions for RTC are always met by the Naive FDA, the converse isn’t

always true. Fortunately, this doesn’t happen often enough to pose any danger to the

effectiveness of the algorithm. The methods analyzed below closer approximate the RTC

by communicating more data at each step.

4.2.2 Linear FDA

In Linear FDA in addition to the squared norm we also send a reduced version of the local

update. This is done by multiplication with a unit vector ξ, so that a one-dimensional

number results ξ ·∆(k)
t ∈ R. In such wise, the resulting states and function are,

Sk(t) =

[
||∆(k)

t ||2

ξ ·∆(k)
t

]
∈ R2 and F

([
v

x

])
= v − x2

Again, it is easily proven that Linear FDA satisfies the RTC.

F (S(t)) ≤ Θ⇔ 1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2 − 1

n

n∑
k=1

(ξ ·∆(k)
t)2 ≤ Θ

⇔

(
1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2)− ∥∥∆t

∥∥2 ≤ 1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2 − (ξ ·∆t)
2 ≤ Θ

4.3⇐⇒ 1

n

n∑
k=1

∥∥∥w(k)
t −wt

∥∥∥2 ≤ 1

n

n∑
k=1

∥∥∥∆(k)
t

∥∥∥2 − (ξ ·∆t)
2 ≤ Θ

⇒ 1

n

n∑
k=1

∥∥∥w(k)
t −wt

∥∥∥2 ≤ Θ RTC (4.2)

Randomly choosing the unit vector ξ is proven to be suboptimal, as it would most

likely be orthogonal to the average update ∆t. The ideal option for ξ would be for it

to be linked with ∆t, but this implementation would be impractical. Instead we create

vector ξ in accordance to ∆t0 , i.e., the average update of the last client synchronization.

35

Chapter 4. Methodology

This vector can be easily computed without communication, by also locally storing wt−1 ,

the weights of the next to last synchronization. By this, all clients can locally compute

∆t0 = wt0 −wt−1 .

4.2.3 Sketch FDA

The Sketch FDA method utilizes the concept of AMS sketches [9] to estimate the average

update. The AMS sketch, with notation sk(·), is a function that compresses a large vector

into a much smaller matrix. Let a vector v ∈ RM , then its sketch is sk(v) ∈ Rm×d given

by,

sk(v) = Ξ =
[
ξ1 ξ2 . . . ξd

]
, where d ·m≪M.

The sketch function is linear and can be computed in O(dM) steps. There also exists

a function, notated as M2, that can quite accurately estimate the squared norm of a

vector v using its sketch sk(v) as input. The function is,

M2(sk(v)) = median
i=1,...,d

∥ξi∥
2 .

For m = O
(

1
ϵ2

)
and d = O

(
log 1

δ

)
it is proven that with probability at least 1− δ we can

estimate the value of ∥v∥2 in the range,

(1− ϵ) ∥v∥2 ≤M2(sk(v)) ≤ (1 + ϵ) ∥v∥2 . (4.6)

In this case, the large vector that needs compression is the local update ∆
(k)
t ∈ RM .

On that account, the local state and F function for Sketch FDA are defined as,

Sk(t) =

[
||∆(k)

t ||2

sk
(
∆

(k)
t

)] ∈ R1+d×m and F

([
v

Ξ

])
= v − 1

1 + ϵ
M2(Ξ) .

Now, to prove that the RTC implies,

F (S(t)) ≤ Θ⇔ 1

n

n∑
i=1

∥∥∥∆(k)
t

∥∥∥2 − 1

1 + ϵ
· 1
n

n∑
i=1

M2

(
sk
(
∆

(k)
t

))
≤ Θ

linearity⇐⇒ 1

n

n∑
i=1

∥∥∥∆(k)
t

∥∥∥2 − 1

1 + ϵ
M2

(
sk
(
∆t

))
≤ Θ

4.6⇐⇒

(
1

n

n∑
i=1

∥∥∥∆(k)
t

∥∥∥2)− ∥∥∆t

∥∥2 ≤ 1

n

n∑
i=1

∥∥∥∆(k)
t

∥∥∥2 − 1

1 + ϵ
M2

(
sk
(
∆t

))
≤ Θ

4.3
=⇒ 1

n

n∑
i=1

∥∥∥w(k)
t −wt

∥∥∥2 ≤ Θ RTC (4.2)

4.3 KungFu Adaptation

KungFu is open for customization as it prioritizes custom user-designed Adaptation Poli-

cies (APs). Also, explicit training loop implementation is encouraged so that custom

36

4.3. KungFu Adaptation

training functions can be called in each iteration.

Our implementation is based, as well, on a custom training loop using the

GradientTape TensorFlow class. GradientTape records the operations that happen dur-

ing a forward pass and then uses them to calculate the local gradients at every step.

We have opted out of using the wrapper optimizers developed by the KungFu team.

This decision was reached as we intended to implement the Functional Dynamic Aver-

aging (FDA) methods, as described in Section 4.2. The FDA methods aggregate model

weights, while the KungFu optimizers aggregate gradients.

We have also opted to use eager execution of TensorFlow functions as the FDA meth-

ods require if conditions. So, graph execution usage is limited.

The training loop logic is common for all experiments and inside the

tf2 mnist experiment.py file. The standard local training loop is confined in a func-

tion that uses GradientTape, and it gets wrapped around FDA functions that call it.

At the end of each epoch, a model evaluation happens using the model of the client

with current rank()=0. For FDA methods, we evaluate the last model derived from a

synchronization, to avoid overfitting with local data.

We have used three distinct FDA Python functions to reference three Python files —

located in folder /fda functions— that contain the FDA logic. The FDA logic contains

squared norm, unit vector and AMS sketch calculation functions. Only when the RTC

gets violated, the FDA functions perform an all-reduce operation to aggregate all clients

weights and therefore assign the aggregated weights to local models. The last and second

to last synchronization models, necessary to approximate the RTC, are stored in the

experiment Python file as global variables.

Regarding the dataset, our choice was the MNIST dataset [12]. MNIST is a dataset

containing a large number of handwritten digits in the form of grayscale 28 × 28 pixel

images. It has become the standard dataset for image recognition, often termed the

“Hello World” of Deep Learning and Optical Character Recognition (OCR). The training

dataset contains 60,000 images and the test dataset 10,000. Since we have expected that

our experiments would last multiple epochs, we had to design the training dataset so that

clients wouldn’t run out of data. First, there was a need to normalize the data and shard

them using the TensorFlow method shard(N,i), where N is the number of clients and i

the current client. This is important so that the dataset gets partitioned and each client

gets its own separate share of it.

The shards of the dataset have to get repeated in order to train for multiple epochs,

without exchanging local data. The TensorFlow methods used for dataset manipulation

are explained below.

train_dataset.shuffle(shuffle_size).repeat().batch(batch_size)

randomly shuffle the data

of inputted buffer

buffer set equal to the

dataset cardinality

indefinite repeatition of

the dataset
batch for training loop

The experiments needed to run in a High-Performance Computing (HPC) setting

using the Slurm Workload Manager. Most HPC infrastructure serve a multitude of users

37

Chapter 4. Methodology

and for that reason resources are extremely valuable. Individual jobs submitted to the

server enter a priority queue when resources are limited. Therefore, we needed to reduce

the number of jobs submitted to the server to the absolute minimum, and automate

the process. This is achieved by describing each experiment’s hyper-parameters in a

JSON file format. Python script experiments in json.py receives as input a list of

hyper-parameters possible values and creates a JSON file with all possible experiments

as JSON objects. Then, the job submitter.py script creates a custom Slurm job script

based on the inputted values (see Figure 4.2).

The Slurm job reads the IP addresses of the participating HPC nodes and calls the

run experiments.py script. This script is responsible for running in sequence all KungFu

experiments, described in the JSON file, using the subprocess Python library. In be-

tween individual KungFu command calls (experiments), all nodes run a “sleep 1m”

command, waiting for all other nodes to end their previous experiment.

During every experiment a Python dictionary stores important data results. The

results are of three types; step, epoch and info results. Info are general information of the

experiment concerning hyper-parameters and overall results. Step results are collected at

each step and include loss, time and whether a synchronization occurred. Epoch results

also include accuracy evaluation data. Each of these three types is collected in a Pandas

[26] dataframe in the logs df.py script. The info dataframe is appended in the info.csv

file where all experiments information is stored and it has its own unique experiment ID.

Each experiment stores all its step and epoch results in CSV files, but this time each one

has its own file.

experiments_in_json.py

run_experiments.py

job_submitter.py

experiment_1 experiment_2 experiment_n

kungfu_run

HPC

JSON file Slurm job script

kungfu_run kungfu_runkungfu_run

info.csv
epoch.csv
epoch.csv
epoch.csv

epoch.csv
epoch.csv
step.csv

Figure 4.2: Workflow of Slurm Job

38

Chapter 5

Experiments and Results

In this chapter, we will explain in detail the preliminary work that was needed to perform

the experiments and also present and analyze the results that were generated. Preliminary

work involves code structure, training details, KungFu customization and data analysis

description.

5.1 Preliminary Work

5.1.1 Experimental Setup and Infrastructure

The experiments were performed using the KungFu distributed machine learning library,

q.v. Section 3.3. The source code was forked from the project’s GitHub repository

and customized in order to facilitate our needs. At first, it was crucial to design a

comprehensive and effortless way to install KungFu on the available hardware, using the

available source code.

The initial experiments were performed on a personal computer environment of only

one node and moved on to cluster and High-Performance Computing (HPC) infrastruc-

ture. The first attempt on a cluster was the CPU “Grid” Cluster at Technical University

of Crete (TUC), however the CPU instruction set required from KungFu wasn’t available

to this server.

A more modern and customizable option was used afterwards and namely the

“∼okeanos-knossos” cloud IaaS service provided by the National Infrastructures for Re-

search and Technology (GRNET). The ∼okeanos-knossos is equipped with a convenient

user interface to create, edit and destroy custom CPU-powered virtual machines (VMs).

The use of ∼okeanos-knossos, with its simple VM architecture, was pivotal assisting in

the understanding of KungFu’s function in a distributed environment.

On this server, a custom Conda environment [2] was designed so that the installation

of KungFu on a multitude of VMs can be simpler and speedier. Conda environments

are collections of software packages that complement or replace the default packages

installed on a machine. These package collections can be described in .yaml files, so

they can be used in different machines without the effort of package reinstallation. The

package go-cgo was the most important for building the project as it was the only one

who managed to compile the communication layer library designed by KungFu.

39

Chapter 5. Experiments and Results

Further experimentation, involving GPUs this time, was conducted using the newly-

assembled Polytechnix GPU server at TUC. Nonetheless, hardware on this server was

insufficient for the purpose of the ultimate experiments. The experiments demanded a

GPU cluster consisting of multiple nodes, and that ideally involves a handy scheduler. For

that reason, the final solution would be to run the experiments on the ARIS HPC super-

computer from GRNET S.A. [3]. The ARIS supercomputer provides 44 GPU accelerator

nodes each containing 2 processors. ARIS admits projects from any Greek educational

institution and thus a variety of users and purposes.

This workload needs to somehow get balanced by a central service. Consequently,

ARIS employs the Slurm workload manager [39] to manage submitted jobs. Users are

obligated to describe their job requirements in a Bash file, i.e. number of nodes, RAM

usage, wall time. If all nodes are allocated, Slurm adds the job in a queue, with its rank

depending on its requirements.

5.1.2 Model

The model we needed to select for the experiments had to be powerful enough to achieve

high accuracy, comparable to state of the art performance. This way we could examine

if the Geometric Approach algorithms can maintain high accuracy values, while reducing

training time. In order to keep the number of variables in the neural network low, we

had to use a Convolutional Neural Network (CNN).

The network has been developed by Michail Theologitis from the Technical University

of Crete for his own Federated Learning project and termed “Advanced CNN” (Figure

5.1). The network uses multiple convolutional layers, with ReLU as the activation func-

tion, and multiple pull layers. It consists of 2,592,202 variables in total.

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

SoftmaxDropout=0.5

Dropout=0.5

Figure 5.1: Advanced CNN

5.2 Experiments

Our main focus regarding the experiments was to show how the Geometric Approach

—using the Functional Dynamic Averaging (FDA) methods— perform in various hyper-

parameters settings. In order to isolate each hyper-parameter and observe the changes

40

5.2. Experiments

that each of them induces to a number of metrics, it was necessary to arbitrarily choose

a set of default hyper-parameter values. Each parameter examined alters its value based

on a set described by us, while all other parameters remain stable on their default values.

The FDA methods are compared to a baseline synchronous algorithm, that essentially

aggregates model variables for every training step. It is equivalent to training with zero

threshold, minus the local state computation and communication.

The parameters that where used are the following. They include hyper-parameters

for number of clients, batch size and threshold. The values in bold font represent the

default values.

Repeat 3 times



1. Optimizer: Adam (learning rate 10−3)

2. Epochs: 50

3. Model: Advanced CNN

4. Algorithms: Synchronous, Naive FDA, Linear FDA, Sketch FDA

5. Number of Clients: 4, 8, 16, 32

6. Batch Size: 64, 128, 256

7. Threshold: 1, 25, 50, 100, 200

The number of total experiments performed can be extracted by the following calcu-

lation,

(3× (7 FDA exp.) + (3 Synchronous exp.))× (4 clients setups)× (3 repetitions) = 288.

Hopefully, an automated mechanism to execute 288 experiments was developed, thor-

oughly analyzed in Section 4.3. This mechanism provided the advantage to concentrate

all 288 experiments to only four Slurm [39] jobs, as many as the number of different

clients setups.

To assess the efficacy of the Geometric Approach using a broader range of network

topologies, six extra experiments have been executed. The earlier experiments have been

using the default ring topology of KungFu, but this topology isn’t common in Federated

Learning scenarios. Ring topologies are beneficial to cluster-based training. Since the

Geometric Approach was designed with decentralized learners in mind, it was reasonable

to assume that they would perform significantly better in these topologies compared to

the baseline algorithm. As the results would be more evident in a bigger network, it was

decided to execute them in a network of 32 clients. The parameters of the experiments

were:

1. Optimizer: Adam (learning rate 10−3)

2. Epochs: 50

3. Model: Advanced CNN

41

Chapter 5. Experiments and Results

4. Algorithms: Synchronous, Naive FDA, Linear FDA, Sketch FDA

5. Number of Clients: 32

6. Batch Size: 128

7. Threshold: 2

The default ring topology (Figure 5.2a) used by KungFu creates an optimal ring based

on the topology of the GPU nodes in the network as shown in Figure 3.3. The topologies

that we investigated were a star and binary tree topology. The star topology would

be the most wearing to the network as all peer-to-peer communication would require

communication with central node “0”. On the other hand, the binary tree topology would

be an in-between solution as it is a complete tree and distributes network overhead in

equal shares.

0

1

2
3

4
5

678910
11

12
13

14

15

16

17

18
19

20
21

22 23 24 25 26
27

28
29

30

31

(a) Ring

0 1
2

3
4
5
6

7
8
9

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31

(b) Binary Tree

0 1

2

3
4

5
6

7891011
12

13
14

15

16

17

18

19
20

21
22 23 24 25 26

27
28

29
30

31

(c) Star

Figure 5.2: Network Topologies

These experiments, as discussed earlier, were executed using the ARIS HPC [3] 1.

The GPU partition of ARIS provides 44 nodes each containing two Haswell - Intel(R)

Xeon(R) E5-2660v3 processors. KungFu has the ability to add multiple slots for clients

in a single node and thus a decision had to be made, on how many clients would exist

on each node. Having two GPU processors on each node we concluded to use two clients

per node, although this would slightly limit inter-GPU communication. So, from now on

two clients are synonymous to one GPU node.

5.3 Results

The visualization of the experiments’ results was possible with the use of a data analysis

Python class that reads CSV files and registers their data in three Pandas [26] dataframes

as the ones created during experiment execution (q.v. Figure 4.2). This class is used by a

Jupyter notebook dedicated to data visualization. The main points of focus are accuracy,

number of synchronizations (a.k.a. communication rounds) and execution time.

1This work was supported by computational time granted from the National Infrastructures for Re-
search and Technology S.A. (GRNET S.A.) in the National HPC facility - ARIS - under project ID
pa230902

42

5.3. Results

0 5 10 15 20
Training Time (mins)

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

20

40

60

80

Sy
nc

hr
on

iza
tio

ns

5850 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) 4 Clients

0 5 10 15 20
Training Time (mins)

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

5

10

15

20

25

30

35

Sy
nc

hr
on

iza
tio

ns

2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) 8 Clients

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sy
nc

hr
on

iza
tio

ns

1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) 16 Clients

0 2 4 6 8 10
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2

4

6

8

10

Sy
nc

hr
on

iza
tio

ns

700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(d) 32 Clients

Figure 5.3: Accuracy and synchronizations metrics with variable number of clients

As the number of clients increases, the variance between the local models and their

average is reducing and thus fewer synchronizations are performed. The FDA methods

outperform the baseline algorithm in terms of training duration and accuracy. The dura-

tion advantage of the FDA methods becomes more prominent with the increase of clients

in the network as communication becomes more and more expensive. For the detailed

43

Chapter 5. Experiments and Results

training duration results refer to the Appendices’ Table A.1. In real time the FDA meth-

ods are equally superior to Synchronous in terms of accuracy as they repeatedly reach

high accuracy prematurely.

0 5 10 15 20 25 30
Training Time (mins)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

10

20

30

40

Sy
nc

hr
on

iza
tio

ns

2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) Batch Size 64

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sy
nc

hr
on

iza
tio

ns

1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) Batch Size 128

0 2 4 6 8
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2

4

6

8

10

Sy
nc

hr
on

iza
tio

ns

700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) Batch Size 256

Figure 5.4: Accuracy and synchronizations metrics with variable batch size

The batch size like the number of clients reduces the number of synchronizations.

Training steps are becoming larger and consequently each epoch has fewer steps. The

number of synchronizations is inversely proportional to the batch size. Increasing the

batch size by two, cuts synchronizations in half.

Although the number of communication rounds decreases for larger batch sizes, the

total training duration of the FDA Methods approaches more the duration of the Syn-

chronous algorithm. This is because the Synchronous algorithm benefits more from the

decreasing number of total steps. For the detailed training duration results see Table

A.2. The same figures for 4, 8 and 32 clients are appended in Figures A.1, A.2 and A.3.

44

5.3. Results

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training Time (mins)

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

50

100

150

200

250

Sy
nc

hr
on

iza
tio

ns

1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) Threshold 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

5

10

15

20

25

30

35

Sy
nc

hr
on

iza
tio

ns
1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) Threshold 25

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sy
nc

hr
on

iza
tio

ns

1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) Threshold 50

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2

4

6

8

10

Sy
nc

hr
on

iza
tio

ns

1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(d) Threshold 100

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

1

2

3

4

5

6

Sy
nc

hr
on

iza
tio

ns

1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(e) Threshold 200

Figure 5.5: Accuracy and synchronizations metrics with variable threshold
45

Chapter 5. Experiments and Results

In Figure 5.5 accuracy and synchronizations results are shown with variable threshold.

The smaller the threshold value the more the FDA methods emulate the performance of

the Synchronous algorithm. They increase their accuracy quickly in the first few epochs

and their graphs oscillate heavily. This is because the number of communication rounds is

increasing. A larger threshold value means limited communication and decreased training

duration, but at the expense of accuracy, especially in the first ten epochs. Nonetheless,

still they outperform Synchronous in terms of accuracy, even for large threshold, but only

for large numbers of clients.

Training duration results can be found in Table A.3 and the equivalent figures for

4, 8 and 32 clients in Figures A.4, A.5 and A.6. In Figures A.4 and A.5 and for large

threshold values Synchronous has comparable accuracy performance.

Clients

5
10

15
20

25
30Batch Size

75 100125 150 175 200 225 250
M

ean Synchronizations

0
20
40
60
80

100
120
140
160

20
40
60
80
100
120
140
160

Figure 5.6: Synchronizations with variable number of clients and batch size

5 10 15 20 25 30
Clients

1

2

3

4

5

Tr
ai

ni
ng

 T
im

e
(m

in
s)

Linear FDA
Naive FDA
Sketch FDA
Synchronous

(a) Threshold 1

5 10 15 20 25 30
Clients

1

2

3

4

5

Tr
ai

ni
ng

 T
im

e
(m

in
s)

Linear FDA
Naive FDA
Sketch FDA
Synchronous

(b) Threshold 25

Figure 5.7: Training time until accuracy of 99.3% is reached over the number of clients

46

5.3. Results

Figure 5.6 shows the mean number of synchronizations for the default threshold value

50. It is clear that the number of communication rounds fluctuates despite the stable

threshold value. The general pattern is that for a higher number of clients and larger

batch size the number of communication rounds decreases.

We can also observe that the number of synchronizations is equal for different ex-

periments. For example, experiments with 4, 8, 16 clients and batch size 256, 128,

64 correspondingly all have the same number of synchronizations. This can be ex-

plained by the fact that the “global batch size” in those experiments stays the same,

4× 256 = 8× 128 = 16× 64 = 1024.

In Figure 5.7 we show the training time needed to reach an accuracy of 99.3% by

the several algorithms, in relation to the number of clients. We show results for the

default batch size 128 and for threshold values 1 and 25. This is deliberate, as for higher

threshold values and 32 clients, this accuracy value cannot be reached in just 50 epochs.

This is another indication that not all threshold values are suitable for all scenarios. The

difference in training time between the Synchronous and the FDA methods is pronounced,

with the Sketch FDA method lagging a bit behind compared to Naive and Linear. What

is quite worrying is that all algorithms record higher training time as the number of

clients increases, although we would expect the higher computational parallelization to

reduce it. This might mean that the MNIST dataset isn’t complicated enough to justify

a large number of clients.

2 4 6 8 10
Communication Time (seconds)

0

2

4

6

8

10

12

De
ns

ity

Binary Tree
Ring
Star

Figure 5.8: Communication time distribution with variable topology

Moving on to the topology experiments, we have created a density graph for the

communication time of each synchronization in Figure 5.8. The data used on this figure

are taken from the Synchronous algorithm experiment as it had, by nature, many more

synchronization data. So for this example, the measured communication time is the time

needed to perform the all-reduce operation. We can evidently detect that the default ring

topology is the optimal out of the three, with the binary tree topology closely lagging

behind and the star topology being considerably slower.

47

Chapter 5. Experiments and Results

0 2 4 6 8 10
Training Time (mins)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

(a) Ring

0 5 10 15 20
Training Time (mins)

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

(b) Binary Tree

0 20 40 60 80 100
Training Time (mins)

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

(c) Star

Figure 5.9: Accuracy with variable topology

Having in mind that communication is more expensive for the new network topologies,

we assumed that the training performance of the FDA methods would be even more

beneficial. This is clear in Figure 5.9, as the FDA methods perform much better in real

training time for 50 epochs. While the FDA methods are around five times faster than the

baseline algorithm for the default topology, they are around six and seven times faster

for the binary tree and star topologies. This speed up happens without any accuracy

trade-off.

48

Chapter 6

Conclusions

The current thesis aims to develop a deployable Federated Learning tool using Tensorflow,

that is based on the theoretic framework of the Geometric Approach. We have selected to

extend the KungFu distributed learning library as it is offering state of the art throughput

speeds and provides adaptive mechanisms especially on custom network topologies.

The algorithms that we have chosen to implement were the three variations of Func-

tional Dynamic Averaging (FDA), termed Naive, Linear and Sketch. We have verified

what was already proven in theory. The FDA methods outperform a classic synchronous

algorithm in a vast set of hyper-parameters. These positive results have been even more

pronounced when executing in suboptimal network topologies that simulate real-life de-

centralized networks of distant nodes. This is what convinces us that this work would have

direct application on Federated Learning scenarios, where individual nodes communicate

through poor internet connections.

Something that stands out in the results is that the arbitrary value set as a threshold

in the FDA methods does not fit all hyper-parameter configurations. To make training

more adaptable, we could develop a functional solution to automatically set the threshold

value based on the number of clients and the batch size and aiming for a stable number

of synchronizations. This could save valuable time spent on threshold tuning. Regression

models and exhaustive experimentation could be the solution to this problem.

Although the work that have been done is significant, it is still a small portion of

the available experimentation choices. We haven’t experimented with the use of other

optimizers. Adam can be widely used in the field, but it is not the only one and isn’t

suitable for all Machine Learning cases.

It has been observed that the synchronous baseline algorithm used requires more time

to achieve an accuracy goal as the number of nodes increases. This means that the com-

plexity and duration of the training process is miniscule compared to the communication

overload. This is an indication that we have reached the limits of the MNIST dataset,

which may not offer enough complexity to justify the use of large networks of learners.

Consequently, we would like to test our work on more complex and demanding datasets

to extract more variable results.

49

Appendices

51

Appendix A

Additional Results

0 5 10 15 20 25 30 35 40
Training Time (mins)

0.975

0.980

0.985

0.990

0.995

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

25

50

75

100

125

150

175

Sy
nc

hr
on

iza
tio

ns

11700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) Batch Size 64

0 5 10 15 20
Training Time (mins)

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

20

40

60

80

Sy
nc

hr
on

iza
tio

ns

5850 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) Batch Size 128

0 2 4 6 8 10 12
Training Time (mins)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

5

10

15

20

25

30

35

Sy
nc

hr
on

iza
tio

ns

2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) Batch Size 256

Figure A.1: Accuracy and synchronizations metrics with variable batch size (4 Clients)

53

Appendix A. Additional Results

0 10 20 30 40
Training Time (mins)

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

20

40

60

80

Sy
nc

hr
on

iza
tio

ns

5850 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) Batch Size 64

0 5 10 15 20
Training Time (mins)

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

5

10

15

20

25

30

35

Sy
nc

hr
on

iza
tio

ns

2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) Batch Size 128

0 2 4 6 8 10 12
Training Time (mins)

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Sy
nc

hr
on

iza
tio

ns

1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) Batch Size 256

Figure A.2: Accuracy and synchronizations metrics with variable batch size (8 Clients)

54

0 5 10 15 20
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

5

10

15

20

Sy
nc

hr
on

iza
tio

ns

1450 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) Batch Size 64

0 2 4 6 8 10
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2

4

6

8

10

Sy
nc

hr
on

iza
tio

ns

700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) Batch Size 128

0 1 2 3 4 5
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

1

2

3

4

5

6

Sy
nc

hr
on

iza
tio

ns

350 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) Batch Size 256

Figure A.3: Accuracy and synchronizations metrics with variable batch size (32 Clients)

55

Appendix A. Additional Results

0 5 10 15 20
Training Time (mins)

0.9800

0.9825

0.9850

0.9875

0.9900

0.9925

0.9950

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

200

400

600

800

1000

Sy
nc

hr
on

iza
tio

ns

5850 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) Threshold 1

0 5 10 15 20
Training Time (mins)

0.965

0.970

0.975

0.980

0.985

0.990

0.995

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

20

40

60

80

100

120

140

Sy
nc

hr
on

iza
tio

ns
5850 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) Threshold 25

0 5 10 15 20
Training Time (mins)

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

20

40

60

80

Sy
nc

hr
on

iza
tio

ns

5850 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) Threshold 50

0 5 10 15 20
Training Time (mins)

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

10

20

30

40

Sy
nc

hr
on

iza
tio

ns

5850 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(d) Threshold 100

0 5 10 15 20
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

5

10

15

20

Sy
nc

hr
on

iza
tio

ns

5850 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(e) Threshold 200

Figure A.4: Accuracy and synchronizations metrics with variable threshold (4 Clients)
56

0 5 10 15 20
Training Time (mins)

0.965

0.970

0.975

0.980

0.985

0.990

0.995
Ac

cu
ra

cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

100

200

300

400

500

Sy
nc

hr
on

iza
tio

ns

2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) Threshold 1

0 5 10 15 20
Training Time (mins)

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

10

20

30

40

50

60

Sy
nc

hr
on

iza
tio

ns
2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) Threshold 25

0 5 10 15 20
Training Time (mins)

0.94

0.95

0.96

0.97

0.98

0.99

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

5

10

15

20

25

30

35

Sy
nc

hr
on

iza
tio

ns

2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) Threshold 50

0 5 10 15 20
Training Time (mins)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sy
nc

hr
on

iza
tio

ns

2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(d) Threshold 100

0 5 10 15 20
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2

4

6

8

10

Sy
nc

hr
on

iza
tio

ns

2900 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(e) Threshold 200

Figure A.5: Accuracy and synchronizations metrics with variable threshold (8 Clients)
57

Appendix A. Additional Results

0 2 4 6 8 10
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000
Ac

cu
ra

cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

0

20

40

60

80

100

120

140

Sy
nc

hr
on

iza
tio

ns

700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(a) Threshold 1

0 2 4 6 8 10
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

5

10

15

20

Sy
nc

hr
on

iza
tio

ns
700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(b) Threshold 25

0 2 4 6 8 10
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

2

4

6

8

10

Sy
nc

hr
on

iza
tio

ns

700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(c) Threshold 50

0 2 4 6 8 10
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

1

2

3

4

5

6

Sy
nc

hr
on

iza
tio

ns

700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(d) Threshold 100

0 2 4 6 8 10
Training Time (mins)

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ac
cu

ra
cy

Linear FDA
Naive FDA
Sketch FDA
Synchronous

0 10 20 30 40 50
Epoch

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Sy
nc

hr
on

iza
tio

ns

700 synchronizations for "Synchronous"

Linear FDA
Naive FDA
Sketch FDA

(e) Threshold 200

Figure A.6: Accuracy and synchronizations metrics with variable threshold (32 Clients)
58

Clients Synchronous Naive FDA Linear FDA Sketch FDA

4 21.93 5.72 6 10.2

8 22.17 3.03 3.16 5.51

16 16.62 1.63 1.7 2.93

32 10.59 0.9 0.92 1.61

Table A.1: Mean experiment duration (minutes) for variable number of clients

Batch Size Synchronous Naive FDA Linear FDA Sketch FDA

64 32.31 2.54 2.94 5.16

128 16.62 1.63 1.7 2.93

256 8.68 1.27 1.32 1.96

Table A.2: Mean experiment duration (minutes) for variable batch size

Threshold Synchronous Naive FDA Linear FDA Sketch FDA

1 16.62 4.3 4.35 5.59

25 16.62 1.8 1.86 3.11

50 16.62 1.63 1.7 2.93

100 16.62 1.54 1.61 2.82

200 16.62 1.49 1.57 2.8

Table A.3: Mean experiment duration (minutes) for variable threshold

59

Bibliography

[1] Shun-ichi Amari. “Backpropagation and stochastic gradient descent method”. In:

Neurocomputing 5.4 (1993), pp. 185–196. issn: 0925-2312. doi: https://doi.org/

10.1016/0925- 2312(93)90006- O. url: https://www.sciencedirect.com/

science/article/pii/092523129390006O.

[2] Anaconda Software Distribution. Version Vers. 2-2.4.0. 2020. url: https://docs.

anaconda.com/.

[3] ARIS HPC. 2016. url: https://www.hpc.grnet.gr/en/.

[4] Léon Bottou. “Stochastic Gradient Learning in Neural Networks”. In: 1991. url:

https://api.semanticscholar.org/CorpusID:12410481.

[5] Nader Bouacida and Prasant Mohapatra. “Vulnerabilities in Federated Learning”.

In: IEEE Access 9 (2021), pp. 63229–63249. doi: 10.1109/ACCESS.2021.3075203.

[6] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Univer-

sity Press, Mar. 2004. isbn: 0521833787. url: http://www.amazon.com/exec/

obidos/redirect?tag=citeulike-20%5C&path=ASIN/0521833787.

[7] Andrei-Octavian Brabete, Peter Pietzuch, and Daphné Tuncer. Kungfu: A Novel

Distributed Training System for TensorFlow using Flexible Synchronisation. 2019.

url: https://www.imperial.ac.uk/media/imperial-college/faculty-of-

engineering/computing/public/1819- ug- projects/BrabeteA- Kungfu- A-

Novel- Distributed- Training- System- for- TensorFlow- using- Flexible-

Synchronisation.pdf.

[8] François Chollet. keras. https://github.com/fchollet/keras. 2015.

[9] Graham Cormode and Minos Garofalakis. “Sketching Streams through the Net:

Distributed Approximate Query Tracking”. In: Proceedings of the 31st International

Conference on Very Large Data Bases. VLDB ’05. Trondheim, Norway: VLDB

Endowment, 2005, pp. 13–24. isbn: 1595931546.

[10] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Communications of

the ACM 56 (2013), pp. 74–80. url: http://cacm.acm.org/magazines/2013/2/

160173-the-tail-at-scale/fulltext.

[11] Jeffrey Dean et al. “Large Scale Distributed Deep Networks”. In: Advances in Neural

Information Processing Systems. Ed. by F. Pereira et al. Vol. 25. Curran Associates,

Inc., 2012. url: https://proceedings.neurips.cc/paper_files/paper/2012/

file/6aca97005c68f1206823815f66102863-Paper.pdf.

61

https://doi.org/https://doi.org/10.1016/0925-2312(93)90006-O
https://doi.org/https://doi.org/10.1016/0925-2312(93)90006-O
https://www.sciencedirect.com/science/article/pii/092523129390006O
https://www.sciencedirect.com/science/article/pii/092523129390006O
https://docs.anaconda.com/
https://docs.anaconda.com/
https://www.hpc.grnet.gr/en/
https://api.semanticscholar.org/CorpusID:12410481
https://doi.org/10.1109/ACCESS.2021.3075203
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20%5C&path=ASIN/0521833787
http://www.amazon.com/exec/obidos/redirect?tag=citeulike-20%5C&path=ASIN/0521833787
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-ug-projects/BrabeteA-Kungfu-A-Novel-Distributed-Training-System-for-TensorFlow-using-Flexible-Synchronisation.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-ug-projects/BrabeteA-Kungfu-A-Novel-Distributed-Training-System-for-TensorFlow-using-Flexible-Synchronisation.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-ug-projects/BrabeteA-Kungfu-A-Novel-Distributed-Training-System-for-TensorFlow-using-Flexible-Synchronisation.pdf
https://www.imperial.ac.uk/media/imperial-college/faculty-of-engineering/computing/public/1819-ug-projects/BrabeteA-Kungfu-A-Novel-Distributed-Training-System-for-TensorFlow-using-Flexible-Synchronisation.pdf
https://github.com/fchollet/keras
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf

Bibliography

[12] Li Deng. “The mnist database of handwritten digit images for machine learning

research”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.

[13] “Federated Learning Ekkono Solutions AB”. In: 2020.

[14] Alex Galakatos, Andrew Crotty, and Tim Kraska. “Distributed Machine Learning”.

In: Jan. 2017, pp. 1–6. doi: 10.1007/978-1-4899-7993-3_80647-1.

[15] Minos Garofalakis, Daniel Keren, and Vasilis Samoladas. “Sketch-Based Geometric

Monitoring of Distributed Stream Queries”. In: Proc. VLDB Endow. 6.10 (Aug.

2013), pp. 937–948. issn: 2150-8097. doi: 10 . 14778 / 2536206 . 2536220. url:

https://doi.org/10.14778/2536206.2536220.

[16] Priya Goyal et al. “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”.

In: CoRR abs/1706.02677 (2017). arXiv: 1706.02677. url: http://arxiv.org/

abs/1706.02677.

[17] Sylvain Jeaugey. Distributed Training and Fast inter-GPU Communication with

NCCL. GTC Silicon Valley. Presentation. Nvidia, 2019. url: https : / / www .

nvidia.com/en-us/on-demand/session/gtcsiliconvalley2019-s9656/.

[18] Georgios Karystinos and Vassilis Diakoloukas. Artificial Neural Networks. Statis-

tical Modeling and Pattern Recognition. Technical University of Crete, Chania,

Greece. 2023.

[19] Robert Kennedy. “A parallel and distributed stochastic gradient descent implemen-

tation using commodity clusters”. American English. In: Journal of Big Data 6.1

(Dec. 2019). doi: 10.1186/s40537-019-0179-2.

[20] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.

2017. arXiv: 1412.6980 [cs.LG].

[21] Claude Lemar´echal. “Cauchy and the Gradient Method”. In: (2010). url: https:

//www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.

pdf.

[22] Li Li et al. “A review of applications in federated learning”. In: Computers &

Industrial Engineering 149 (2020), p. 106854. issn: 0360-8352. doi: https://doi.

org/10.1016/j.cie.2020.106854. url: https://www.sciencedirect.com/

science/article/pii/S0360835220305532.

[23] Mu Li et al. “Scaling Distributed Machine Learning with the Parameter Server”. In:

11th USENIX Symposium on Operating Systems Design and Implementation (OSDI

14). Broomfield, CO: USENIX Association, Oct. 2014, pp. 583–598. isbn: 978-1-

931971-16-4. url: https://www.usenix.org/conference/osdi14/technical-

sessions/presentation/li_mu.

[24] Luo Mai et al. “KungFu: Making Training in Distributed Machine Learning Adap-

tive”. In: (2020). url: https://www.usenix.org/system/files/osdi20-mai.

pdf.

62

https://doi.org/10.1007/978-1-4899-7993-3_80647-1
https://doi.org/10.14778/2536206.2536220
https://doi.org/10.14778/2536206.2536220
https://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://www.nvidia.com/en-us/on-demand/session/gtcsiliconvalley2019-s9656/
https://www.nvidia.com/en-us/on-demand/session/gtcsiliconvalley2019-s9656/
https://doi.org/10.1186/s40537-019-0179-2
https://arxiv.org/abs/1412.6980
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf
https://www.math.uni-bielefeld.de/documenta/vol-ismp/40_lemarechal-claude.pdf
https://doi.org/https://doi.org/10.1016/j.cie.2020.106854
https://doi.org/https://doi.org/10.1016/j.cie.2020.106854
https://www.sciencedirect.com/science/article/pii/S0360835220305532
https://www.sciencedirect.com/science/article/pii/S0360835220305532
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/system/files/osdi20-mai.pdf
https://www.usenix.org/system/files/osdi20-mai.pdf

Bibliography

[25] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learning on Heteroge-

neous Systems. Software available from tensorflow.org. 2015. url: https://www.

tensorflow.org/.

[26] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-

ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and

Jarrod Millman. 2010, pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

[27] H. Brendan McMahan et al. Communication-Efficient Learning of Deep Networks

from Decentralized Data. 2023. arXiv: 1602.05629 [cs.LG].

[28] Forum MPI. MPI: A Message-Passing Interface. Tech. rep. 1994.

[29] Feng Niu et al. HOGWILD!: A Lock-Free Approach to Parallelizing Stochastic Gra-

dient Descent. 2011. arXiv: 1106.5730 [math.OC].

[30] Adam Paszke et al. “Automatic differentiation in PyTorch”. In: 2017. url: https:

//api.semanticscholar.org/CorpusID:40027675.

[31] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learning repre-

sentations by back-propagating errors”. In: nature 323.6088 (1986), pp. 533–536.

[32] Vasilis Samoladas and Minos N. Garofalakis. “Functional Geometric Monitoring for

Distributed Streams”. In: International Conference on Extending Database Tech-

nology. 2019. url: https://api.semanticscholar.org/CorpusID:81985918.

[33] Vasilis Samoladas and Vissarion Konidaris. “Extreme-Scale Online Machine Learn-

ing On Stream Processing Platforms”. In: Unpublished Manuscript (2023).

[34] Alexander Sergeev and Mike Del Balso. “Horovod: fast and easy distributed deep

learning in TensorFlow”. In: CoRR abs/1802.05799 (2018). arXiv: 1802.05799.

url: http://arxiv.org/abs/1802.05799.

[35] Izchak Sharfman, Assaf Schuster, and Daniel Keren. “A Geometric Approach to

Monitoring Threshold Functions over Distributed Data Streams”. In: Ubiquitous

Knowledge Discovery: Challenges, Techniques, Applications. Ed. by Michael May

and Lorenza Saitta. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 163–

186. isbn: 978-3-642-16392-0. doi: 10 . 1007 / 978 - 3 - 642 - 16392 - 0 _ 10. url:

https://doi.org/10.1007/978-3-642-16392-0_10.

[36] Tijmen Tieleman and Geoffrey Hinton. “Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude”. In: COURSERA: Neural networks

for machine learning 4.2 (2012), pp. 26–31.

[37] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. “Decentralized Collab-

orative Learning of Personalized Models over Networks”. In: CoRR abs/1610.05202

(2016). arXiv: 1610.05202. url: http://arxiv.org/abs/1610.05202.

[38] Cliff Woolley. NCCL: Accelerated Multi-GPU Collective Communications. SC15

Conference. Presentation. Nvidia, 2015. url: https : / / images . nvidia . com /

events/sc15/pdfs/NCCL-Woolley.pdf.

63

https://www.tensorflow.org/
https://www.tensorflow.org/
https://doi.org/10.25080/Majora-92bf1922-00a
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1106.5730
https://api.semanticscholar.org/CorpusID:40027675
https://api.semanticscholar.org/CorpusID:40027675
https://api.semanticscholar.org/CorpusID:81985918
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
https://doi.org/10.1007/978-3-642-16392-0_10
https://doi.org/10.1007/978-3-642-16392-0_10
https://arxiv.org/abs/1610.05202
http://arxiv.org/abs/1610.05202
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf
https://images.nvidia.com/events/sc15/pdfs/NCCL-Woolley.pdf

Bibliography

[39] Andy B. Yoo, Morris A. Jette, and Mark Grondona. “SLURM: Simple Linux Utility

for Resource Management”. In: Job Scheduling Strategies for Parallel Processing.

Ed. by Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2003, pp. 44–60. isbn: 978-3-540-39727-4.

[40] Matthew D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. In: CoRR

abs/1212.5701 (2012). arXiv: 1212.5701. url: http://arxiv.org/abs/1212.

5701.

[41] Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with Elastic

Averaging SGD. 2015. arXiv: 1412.6651 [cs.LG].

[42] Hangyu Zhu et al. “Federated learning on non-IID data: A survey”. In: Neurocom-

puting 465 (2021), pp. 371–390. issn: 0925-2312. doi: https://doi.org/10.1016/

j.neucom.2021.07.098. url: https://www.sciencedirect.com/science/

article/pii/S0925231221013254.

64

https://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1412.6651
https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.098
https://doi.org/https://doi.org/10.1016/j.neucom.2021.07.098
https://www.sciencedirect.com/science/article/pii/S0925231221013254
https://www.sciencedirect.com/science/article/pii/S0925231221013254

	Abstract
	Aknowledgements
	Introduction
	Background
	Problem Statement
	Thesis Outline

	Related Work
	Artificial Neural Networks
	Perceptrons and Neural Network Architecture
	Forward Propagation
	Loss Computation
	Backpropagation
	Evaluation
	Summary

	Gradient Descent
	Gradient Descent Algorithms
	Stochastic Gradient Descent
	Batch Gradient Descent
	Mini-Batch Gradient Descent

	Gradient Descent Optimizers
	Momentum
	Adam Optimizer

	Distributed Machine Learning
	Distributed Machine Learning Algorithms
	Asynchronous Stochastic Gradient Descent
	Synchronous Stochastic Gradient Descent

	Federated Learning
	Federated Learning Algorithms
	Federated Stochastic Gradient Descent
	Federated Averaging

	Selected Tools and Framework
	TensorFlow
	Keras
	KungFu

	Methodology
	Geometric Approach
	Functional Dynamic Averaging
	Naive FDA
	Linear FDA
	Sketch FDA

	KungFu Adaptation

	Experiments and Results
	Preliminary Work
	Experimental Setup and Infrastructure
	Model

	Experiments
	Results

	Conclusions
	Appendix Additional Results

