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Abstract

Wireless Sensor Networks (WSNs) are nowadays widely used and form a rapidly growing

area of research. There is a great number of environmental, economical, medical and

even military applications that uses sensors for controlling and monitoring data and

measurements. Faced with issues of low power consumption and wireless networking,

proper operations and reliability of sensor results are very significant.

The goal of this thesis is to detect duplicate values inside a network. Duplicate

values can be considered to be ids that are detected more than one time in the network.

The identification of duplicates in a WSN is important in order to have accurate final

results, while maintaining low power consumption and proper operation of the network.

For aggregate queries such as MIN and MAX, which are monotonic and exemplary, the

existence of duplicates is fault- tolerant. But for duplicate-sensitive aggregates such as

COUNT, AVG or SUM, it gives incorrect final results.

By taking advantage of the hierarchical topology, which is created, during the dis-

semination of the query, nodes can detect if they have duplicate values at their sub-trees.

If a node detects a duplicate value and is the highest in the hierarchy of the tree for

this duplicate value, then it keeps track of this value and merges measurements of this

duplicate value.

In order to keep energy consumption low, we approached our algorithm with three

different methods and their combinations. These methods are Full Data, Delta and Bloom

Filter methods. Through the experiments that we did, we present the gain for each one

of these methods. Reliability and energy consumption are our quantities of comparison.

Algorithms were tested and executed at the WSN of lab SoftNet.
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Περίληψη

Τα ασύρματα δίκτυα αισθητήρων (ΑΔΑ) χρησιμοποιούνται ευρέως στη σημερινή εποχή και

είναι μια περιοχή συνεχώς αναπτυσσόμενη. Υπάρχει μεγάλος αριθμός από περιβαλοντικές,

οικονομικές, ιατρικές, ακόμη και στρατιωτικές εφαρμογές, οι οποίες χρησιμοποιούν αισθη-

τήτες για τον έλεγχο και την παρακολούθηση δεδομένων και μετρήσεων. Επειδή αντιμετω-

πίζουν θέματα χαμηλής κατανάλωσης ενέργειας και ασύρματης δικτύωσης μεταξύ τους είναι

σημαντική η εύρυθμη λειτουργία τους και η εγκυρότητα των αποτελεσμάτων τους.

Στόχος της διπλωματικής αυτής εργασίας είναι η ανίχνευση διπλότυπων τιμών μέσα στο

δίκτυο. Διπλότυπα μπορούν να θεωρηθούν τα ids, τα οποία ανιχνεύονται πάνω από μία φορά

μέσα στο δίκτυο. Η αναγνώριση διπλοτύπων σε ένα ΑΔΑ είναι σημαντική, ώστε να έχουμε

αξιόπιστα τελικά αποτελέσματα, διατηρώντας, ταυτόχρονα, χαμηλή κατανάλωση ενέργειας

και σωστή λειτουργία του δικτύου. Για τα συναθροιστικά επερωτήματα ΜΙΝ και ΜΑΧ,

τα οποία είναι μονοτονικά και ενδεικτικά, η ύπαρξη διπλοτύπων σε αυτά είναι ανεκτική σε

σφάλματα. Αλλά για συναθροιστικά επερωτήματα, τα οποία ειναι ευαίσθητα σε διπλότυπα,

όπως τα COUNT , AV G και SUM , τα τελικά αποτελέσματα είναι εσφαλμένα.

Εκμεταλεύοντας την ιεραρχική τοπολογία, που δημιουργείται κατά την μετάδοση του

επερωτηματος, οι κόμβοι μπορούν να ανιχνεύσουν αν έχουν κάποιο διπλότυπο στο υποδέντρο

τους. Αν ένας κόμβος ανιχνεύσει ένα διπλότυπο και βρίσκεται στην πιο ψηλή ιεραρχία

του δέντρου για το συγκεκριμένο διπλότυπο, τότε παρακολουθεί το διπλότυπο αυτό και

συγχονεύει τις μετρήσεις του διπλοτύπου αυτού.

Για να διατηρήσουμε την κατανάλωση ενέργειας χαμηλή, προσεγγίσαμε τον αλγόριθμό

μας με τρείς διαφορετικές μεθόδους και τους συνδιασμούς τους. Οι μέθοδοι αυτοί είναι οι

Full Data, Delta και Bloom Filter μέθοδοι. Μέσω των πειραμάτων που πραγματοποιή-

θηκαν, παρουσιάζουμε τα οφέλη για την κάθε μία μέθοδο. Οι ποσότητες σύγκρισης είναι

η αξιοπιστία και η κατανάλωση ενέργειας. Οι αλγόριθμοι δοκιμάστηκαν και εφαρμόστηκαν

στο ΑΔΑ του εργαστηρίου SoftNet.
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Chapter 1

Introduction

1.1 Thesis Contribution

Wireless Sensor Network is composed of a great number of small sensor nodes and can

be installed in a big terrain with one or more base stations. Sensor networks represent

a rapidly growing network technology, because they have wireless communication, they

can work with a small battery, they are low budget, and they can sense temperature,

humidity, movement and many more abilities. However, they have limited memory and

computing power.

Sensors, in today’s society, can be used everywhere in many monitoring and controlling

applications. Medicine uses sensors for medical observations and health. Military uses

them for tracking and detection of enemy vehicles in the war zone. Moreover, sensors are

applied in farming, production monitoring or even predict extreme weather conditions.

Some of these applications, though, are duplicate sensitive. For example, if nodes are

applied in an environment and detect objects, there is a probability that two or more

nodes are very close to each other and observe the same object. Nodes must understand,

that the object they are detecting, is the same and they have to send one measurement

of this object to the base station.

The contribution of this thesis is to detect duplicate values inside a network and merge

their measurements into one. By taking advantage of the hierarchical topology, which is

created during the dissemination of the query, nodes can detect, if they have duplicate

values at their sub-trees. If a node detects a duplicate value and is the highest in the
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1. INTRODUCTION

hierarchy of the tree for this duplicate value, then it keeps track of this value and merges

duplicate value measurements.

Using three different methods and their combination we examine, which methods

are preferred to be used most, and which are their drawbacks. The methods, which this

algorithm uses are the Full Data method, the Delta method and the Bloom Filter method

and their combination. Nodes that select to use Full data method send all received data

to their parents or children, respectively, in phase one and two. When delta method is

selected, nodes send their new ids of objects they observe and remove the old ones that do

not observe anymore. By Bloom Filter method, nodes transmit bloom filters containing

the ids of the objects, that nodes observe. An analysis of these methods will be shown

in Chapters 4 and 5.

1.2 Roadmap

In Chapter 2, we describe Sensor networks and mote’s architecture. In this Chapter, is

also included the description of TinyOS and simulator TOSSIM, which simulates entire

TinyOS appications by replacing components with simulation implementations. In the

end of this Chapter, the Tiny Aggregation Service is noted as is essential for sensor net-

works. In Chapter 3, there is a brief survey on some related work of our algorithm. This

includes the SenseJoin application from publication [1] and the application of Sketches in

WSNs. At this point, Bloom Filters are introduced, as they will be used in Chapter 5.

In Chapter 4, we present Full Data method, where nodes send all received data including

their own. This Chapter is followed by Chapter 5, where the Delta and Bloom Filter

methods are being analyzed. By these two methods, our goal is to transmit less data

over the tree. Finally, Chapter 6 includes the experiments, which were accomplished for

the requirements of this thesis, while Chapter 7 consists of not only of our outcome and

conclusions, but also, some possible future work and applications.
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Chapter 2

Sensor networks and TinyOs

2.1 Introduction

WSNs develop a technology, where many applications are being applied in. A network

of sensors is usually consisted of a great number of sensor nodes placed in a large area.

These sensors are low cost, but their lifetime is limited because of energy consumption.

Sensors are used in a wide variety of applications, like medicine, environment, security

and traffic jam. Apart from this, motes have restrictions in size and price and these

limitations affect energy, memory and computing power. A nutshell of a sensor network

can be seen in the Figure 2.1.

TinyOs is a free open source software component- based operating system, which is

used in WSNs. NesC is the programming language, which is used in TinyOs, and it

is a dialect of C optimized for the memory limits of sensor networks. As previously

mentioned, there are components, that are connected to each other using interfaces. A

component can use and can be used by other components.

There are some interfaces and components, which are provided by TinyOs, for com-

mon abstractions, such as packet communication, sensing, timing, storage and so forth.

There is also the TinyOs API, by which a person can interact with the motes through com-

puter by sending and gathering data from motes through serial communication. TinyOs,

also, provides a simulator, where a programmer can execute code before installing it to

the motes. Simulator is being analyzed at Section 2.5.
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2. SENSOR NETWORKS AND TINYOS

Figure 2.1: A Wireless Sensor Network

2.2 Architecture of Sensors

In this thesis, Iris motes are applied and an image of them can be seen in Figure 2.2.

As mentioned in the previous paragraph, a mote does not include only sensors. Iris is a

2.4 GHz mote module used for enabling low- power wireless sensor networks. It, also,

provides not only 250 Kbps high data rate Radio but also wireless communications with

every node as Router Capability.

There is a RAM memory of 8K bytes and a flash memory of 128K bytes. A low-power

micro controller ATmega1281 is being used, as well as, a collection of sensors that can be

installed on sensorboard. The sensorboard, which was used, is MDA100CB 2.3 and it is

consisted of two sensors, one photoresistanse and one thermistor. The first one measures

brightness and the second one temperature values. A more detailed description about

mote’s characteristics is given at [2].

Furthermore, any mote can become a base station and gather all data onto a PC or

other computer platform. When Iris is connected to a standard PC interface or gateway

board, can function as a base station. An interface board which was used for this thesis is

MIB520CA 2.4, which provides a serial/ USB interface for both programming and data

communications. There is also MIB600 offered by MEMSIC that offers a stand-alone

gateway solution for TCP/IP - based Ethernet networks.

The components of the wireless communication of Iris sensor are designed for low
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2.2 Architecture of Sensors

Figure 2.2: Memsic Iris mote

Figure 2.3: Sensorboard MDA100CB of Iris mote

energy consumption and can change frequency and transmitted energy through software.

This particular sensor uses Atmel RF230 which works in frequencies between 2400MHz

and 2483.5MHz. It is also compatible with protocol IEEE 802.15.4 and can achieve

transmission speed up to 250Kbps. According to IEEE 802.15.4 the channels have band-

width 5MHz, so Atmel RF230 can work in channels 11 (2405MHz) to 26(2480MHz). In

a receiving node the current draw is equal to 16mA.
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2. SENSOR NETWORKS AND TINYOS

Figure 2.4: MIB520CA Mote Interface Board

2.3 Architecture of TinyOs

TinyOS is an open source, BSD-licensed operating system designed for low-power wire-

less devices, such as those used in sensor networks, ubiquitious computing, personal area

networks, smart buildings, and smart meters. It has a component-based programming

model, codified by the NesC language, a dialect of C. TinyOS is not an OS in the tradi-

tional sense; it is a programming framework for embedded systems and set of components

that enable building an application-specific OS into each application. Traditional Oper-

ating Systems are too demanding to use them in sensors.

Sensors don’t have a large memory and storage, which are the requirements of tradi-

tional OS. Additionally, a standard Operating System is undoubtedly too complex and

power consuming for a wireless device. Hence, TinyOS is ideal for running on low power

motes, as it is bundled with only the required components and only them.

A basic aspect of TinyOS and nesC is that there is a certain separation of construction

and composition. Components include the names of their interfaces and their implemen-

tation. Apart from the applications, the libraries are also bundled in components. In

more detail someone can see nesC language through this referenced Book [3].

2.3.1 Interfaces

A nesC interface definition specifies a bi-directional interaction between two components,

known as the provider and the user. Interfaces describe a logical related set of commands

and events. When a component provides an interface, it provides a functionality to the
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2.3 Architecture of TinyOs

component it is used by it. The used interfaces represent the functionality components,

which are needed in order to be able to perform the task they are intended to.

In most of the cases, the provider component provides some service, for example send-

ing messages over radio, and commands represent requests, event responses. Commands

are function calls from a user, who wants to use a provider component.

2.3.2 Modules and Configurations

Components can be separated into two different kinds, which are modules and configura-

tions. Configurations describe the wiring between components. In general , they assemble

all the components which are used. On the contrary, modules are implementations, which

define functions, and commands and allocate state, while configurations only connect the

declarations of different components. Typically, the process of connecting interfaces used

by a set of components with interfaces provided by others is called wiring.

2.3.3 Singletons and Generic Components

Components can be separated in singletons and generic. Normally, components are single-

tons, which means that, the name of a component is a single entity in a global namespace.

Generic components are not singletons, because they can have multiple instances as they

can be instantiated within a configuration. In addition, singletons are unique and as a

result they can only exist once.

2.3.4 Tasks and Events

Code in nesC is separated into synchronous code, where code is executed only inside

tasks, and asynchronous code, where code can be executed not only inside tasks, as well

as, in interrupt handlers. Asynchronous coding must be defined by key word async in

interfaces and in modules, where it is applied.

Tasks cannot preempt each other, on the other side, events can preempt tasks since

they have higher priority and events can preempt each other once they are enabled. This

is a very crucial and critical property, because it can influence some tasks that have to be

completed before an event. There is also a problem, when two or more events are fired

at the same time.
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2. SENSOR NETWORKS AND TINYOS

For example, when two messages arrive to a mote at the same time, the appropriate

event will get fired twice overriding the variables formerly containing useful information.

In this way, a mote will lose data from one of the two messages leading to false results.

On the other hand, if the data of the first received message are instantly copied to other

memory locations, as soon as the events are fired and tasks are posted to process these

data, they will not be overridden and no data loss will occur. TinyOS scheduler runs

tasks one by one in the order they are posted until their completion.

2.4 Power Consumption

It should be clear until now that energy consumption is very important in sensors. This

happens, because sensors are asked to work in remote areas for a long time, so they

should be energy efficient. The elimination of power consumption is the main concern of

all publications in the field of Wireless Sensor Networks. As it will be described later, in

this thesis there are some mechanisms applied for minimizing energy consumption.

Towards minimization of power consumption, there exist two different mechanisms.

First of all, as in Chapter 5 is mentioned, the limitation of transmitting data leads

to less energy consumption by minimizing the number of calculations each mote has to

accomplish. One other way to minimize power consumption is by increasing the amount

of time the nodes remain inactive. This can be accomplished by turning on radio only

when receiving and transmitting messages and turning it off the rest of the time.

2.5 Simulating in TinyOs (TOSSIM)

TOSSIM is a simulator of a Wireless Sensor Network, which is provided by TinyOS.

It simulates entire TinyOS applications and works by replacing components with sim-

ulation implementations. Sensors, which are sometimes placed in uncontrolled physical

environments like nature reserves or seismically threatened structures, need distributed

algorithms for achieving efficient data processing. Their embedded nature makes con-

trolled experiments a difficult task. TOSSIM simulates the TinyOS network stack at the

bit level. This means that by the use of low-level protocols there can be experimenta-

tion in addition to top- level application systems can be achieved. By TOSSIM one can

interact with sensors like they are in real world.
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Therefore, TinyOs has developed a mote simulator, TOSSIM, to ease the develop-

ment of sensor network applications. Thousands of nodes can be used through TOSSIM

compiled with an additional parameter to make command code can be compiled. Com-

piling code to this simulator can only be applied to micaz platform. The command for

compiling is:

make micaz sim (2.1)

Moreover, for the completion of the simulation it is necessary not only the topology

of the network, but also the fading of the signal for each link and the noise model, which

exists, when sending a message for each sensor. The topology, which is used in a network

with 5 nodes is like this:

0 1 − 50.0

1 0 − 50.0

1 2 − 50.0

2 1 − 50.0

0 2 − 50.0

2 0 − 50.0

1 3 − 50.0

3 1 − 50.0

1 4 − 50.0

4 1 − 50.0

In the first and the second column there is a node id and in the third column there

is the gain, meaning the fading of the signal. For the initialization of the simulation

Marina Mavrikou 9 December 2013



2. SENSOR NETWORKS AND TINYOS

we use a python script which sets the given topology and creates noise model. There

is a file named meyer-heavy.txt having a series of samples of noise, by which, through

createNoiseModel() function, occurs the creation of noise model for each node in net-

work.

During simulation user can check the code with the help of debug messages, which are

like printf messages. When code is installed to real sensors and not in simulation, these

messages are ignored during compiling. This debug message can be defined as follows:

dbg(char∗ stringID, const char∗ format, ...)

By this function, user can print messages from the channel that is defined at stringID.

Simulator disjoints these messages to channels depending on the value of this variable.

For each different value of stringID, there is also a different channel. The choice of

channels, that a user wants to observe, can be defined in python file, which initializes

the simulator. The message of dbg() function is created in the same way as printf()

works in C language. Dbg() function also adds in front of each message the characteristic

“DEBUG( TOS NODE ID ) ”, where TOS NODE ID represents the unique id of each

sensor. Python script file can be executed through this command:

python mySimulation.py

2.6 TAG (Tiny AGregation Service for Ad-Hoc Sen-

sor Networks)

Tiny Aggregation Service, or otherwise TAG [4], states that it is unnecessary a sensor

to report its entire data stream in full fidelity. Moreover, as previously mentioned, in a

sensor network each message transmission is an important energy- expending operation.

Therefore, data aggregation can be used to summarize information which is collected

from sensors. Having a workstation or a base station on a sensor working as a sink, the

user can be connected to the sensor network.

Base station is disseminating a simple SQL-like aggregate query across all sensors of

the network. This happens at an early phase. When all nodes have received this message,
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Figure 2.5: Transmitting Data in TAG

at a later phase each node transmits its data. Nodes that receive data of other sensors,

combine their own data with the received ones and then they forward combined data

over the spanning tree. The spanning tree consists of nodes, which are the sensors, and

the root of the tree is the base station. A more detailed analysis of the construction of

the tree is given in Section 4.6. The main motive of TAG is the processing of data inside

the network.

Each node belongs to a level and time is divided in epochs. In each epoch, sensors

route data or aggregate values of their subtree to user through the aggregation tree. Each

epoch is divided into smaller slots. In the first slot the node listens and receives data from

its children. In the second slot, the radio is turned off and it starts sensing and editing

data. Finally, in the third slot the node transmits its data to its parent. In the following

figure we can see time divided into epochs and epochs divided into smaller slots. In each

level there are nodes and in the base station there is the root node.

Another thing that should be noted about Figure 2.5 is that time slots are not exactly

sequential. Parents do not start listening at the exact second when their children start

transmitting data. This happens because there are some limitations in the quality of the

clock synchronization algorithms. Therefore, parents should start listening before the
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children start sending their data.

At this point, it should be mentioned that a node should choose very carefully the

time slot in which radio remains active. This time slot should not be too long, because

this is not efficient for energy consumption. On the other hand, time slot should not

be very short either, because messages are very likely to be lost and not received. In

conclusion, time slot should be very carefully chosen and tree length should also be taken

into consideration.

2.7 Compiling and Programming motes

Concerning compiling the code, TinyOS uses a series of Makefiles. Basic Makefile is the

one which is defined by the variable MAKERULES. Programmer must write a Makefile,

defining the main configuration component of application, but also the sensorboards,

which may be connected to sensors. Furthermore, #include and #define tags must be

included in this file in order to use other libraries for this application. The Makefile which

is used in this implementation is show in Algorithm 1.

Compiling the application we use the following command:

make < platform >

This command is used later when we want to install code to sensors. In platform we

type the model of platform, which is used. In our case we typed iris. For the installation

of the code in iris mote, which is connected to the computer via programming board, we

use the following command in terminal:

make < platform > install, < nodeid > < progmethod >,< serialport >

For the sensors, which were used for this thesis, we ran these commands:

make iris

make iris install, < nodeid > mib520, /dev/ttyUSB0
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Algorithm 1 Makefile
1: COMPONENT=SRTreeAppC

2: CFLAGS += -DSERIAL EN -DTOSH DATA LENGTH=64

3: CFLAGS += -I$(TOSDIR)/lib/printf -DPRINTFDBG MODE -

DNEW PRINTF SEMANTICS

4: CFLAGS +=-I%T/sensorboards/mda100/cb

5: CFLAGS += -DBloom En

6: CFLAGS += -DDELTA MODE

7: CFLAGS+= -DFULL MODE

8: CFLAGS += -I$(TOSDIR)/lib/ftsp/ -DTIMESYNC RATE=1

9: ##includes for simulation Extra implementations

10: CFLAGS += -I../simulation extras/DummySync -

I../simulation extras/ConstantVectorSensor -I../simulation extras/KelvinTempSensor

-I../simulation extras/RandomSensor

11: CFLAGS += -I$(TOSDIR)/lib/net/

12: CFLAGS += -I$(TOSDIR)/lib/net/ctp

13: CFLAGS += -I$(TOSDIR)/lib/net/le

14: SENSORBOARD=mda100

15: include $(MAKERULES)

While developing tinyOS applications, it is wise to mention Yeti. Yeti [5] is a very

helpful plugin of eclipse IDE and it is useful for programmers to write code in nesC. Yeti

isn’t currently under development but it can help users compile and organize their code.

Another way to do this is through gEdit or Kate. They are both editors compatible with

nesc language, where code can be highlighted and indented.
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Chapter 3

Related Work

The problem of energy efficiency is a familiar problem to all the algorithms in WSNs.

Implementations, which are efficient, exist in data management systems for WSNs. In

Section 3.1 Sens-Join will be described, which is an implementation that supports join

operations well locally through nodes. At a later Section 3.2, Sketches will be described,

an implementation which is familiar with Bloom Filters. Bloom filters are being used

in this thesis for data compression ( 3.3). We review all the related work in the next

sections.

3.1 Sens-Join

Sens-Join is an energy-efficient general- purpose join method for sensor networks. It is

presented in the paper “Towards Efficient Processing of General- Purpose Joins in Sensor

Network” [1]. The main scope of Sens-Join is to improve join queries using a minimum

amount of communication. The main problem inside a network, when there is a join

query, is that nodes do not know if their data contributes to query result. The first thing

someone can think of is to have a global matching. But this is quite expensive and for

that reason not efficient.

External Join, which is also presented in this paper, consolidates the data at the base

station. Each node sends to its parent its own data combined with the received data

and the filtering is done at the base station. This method is sometimes optimal in case

when there is a very low selectivity. In addition, it sends too much unnecessary data and
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Algorithm 2 SENS-Join (ref. [1])

1: //At the end of the query’s dissemination;

2: sleepUntilNextStep(); //wait for beginning of SENS-Join

3:

4: Join-Attribute-Collection:

5: ReceivedData = collectMessagesFromChildren();

6: T = constructTupleFromLocalSensorData();

7: //returns T = NULL if (T /∈ A) and (T /∈ B)

8: ForwardJoinAttrValues(ReceivedData, T); //cf. IV-B

9: sleepUntilNextStep();

10:

11: Filter-Dissemination:

12: JoinFilter = receiveFromParent();

13: ForwardJoinFilter(JoinFilter); //cf. IV-C

14: sleepUntilNextStep();

15:

16: Final-Result-Computation:

17: ReceivedData = collectMessagesFromChildren();

18: ForwardCompleteTuples(ReceivedData, T); //cf. IV-D

nodes that are higher at the tree must transmit more data. This means that their energy

consumption is higher than nodes that are at a lower level of the tree.

Sens-Join uses a filtering inside the network with the purpose of sending less data at

the base station. This method is split into two phases, pre-computation and subsequent

final result computation. In the first phase, all nodes send their join attribute until all

data has arrived at the base station. Base station joins all data and then yields a list

of join attributes that contribute to the query result. In the meantime, it disseminates

the filter, which contains the joined attributes that contribute to the query result to its

children. Subsequent final result computation gathers complete tuples of nodes at the

base station. Nodes, that their join attribute belongs to the received filter, disseminate

complete tuples of their measurements to their parent. When all the data has arrived

to base station, the final result is computed. Algorithms 2, 3 and 4 present Sens-Join

from the point of view of a single node.
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Algorithm 3 ForwardJoinAttrValues(Set {S1, ..., Sn}, Tuple T) (ref. [1])

1: //Si: data received from child i

2:

3: Set Of Full Tuples FullTuples =∅;
4: Join Attr Structure JoinAttTuples = ∅;
5: for all Si ∈ {S1, ...Sn}
6: if (Si is Set Of Full Tuples)

7: FullTuples = UnionFull Tuples(FullTuples, Si);

8: else

9: JoinAttTuples = UnionJoin Atts(JoinAttTuples, Si);

10:

11: if (Size({S1, ..., Sn}) + Size(T) ≤ Dmax) && (∀Si ∈ {S1, ..., Sn}: Si is

Set Of Full Tuples)

12: //use Treecut: hand over data to parent and go to sleep

13: FullTuples = InsertFull Tuples(FullTuples, T);

14: send(FullTuples, parent);

15: //query execution is complete:

16: exitQuery();

17: else

18: store FullTuples; //act as proxy for received complete tuples

19: store JoinAttTuples as ”SubtreeJoinAtts”;

20: ProxyJoinAttTuples = πJoinAttr(FullTuples);

21: JoinAttTuples = UnionJoin Atts(JoinAttTuples, ProxyJoinAttTuples);

22: T’ = πJoinAttr(T);

23: JoinAttTuples = InsertJoin Atts(JoinAttTuples, T’);

24: send(JoinAttTuples, parent);

25: //sleep until next step - cf. Figure 1

3.2 Sketches

In a sensor network, the sensors create streams of data from the observations and they

have to transmit them to their parents. These streams can reach a great size, so it

is inefficient to transmit all these data. This means that in many applications it is

unnecessary for each node to report the whole stream in full fidelity. The purpose of

Marina Mavrikou 17 December 2013



3. RELATED WORK

Algorithm 4 ForwardJoinFilter(Join Attr Structure Filter) (ref. [1])

1: SubtreeFilter = IntersectJoin Atts(Filter, SubtreeJoinAtts);

2: if (SubtreeFilter 6= ∅)
3: //send join-attribute tuples of subtree to children

4: broadcast(SubtreeFilter);

5: else

6: //do nothing - the subtree won’t be involved in final step

7: //sleep until next step - cf. Figure 1

using Sketches is to minimize transmitted data for efficient energy consumption. This

approach [6] is being used under networks that are ideal. Ideal networks are considered

to be the ones that message loss rate is very low, which means that messages are not lost.

Sketches are being applied in order to estimate the number of distinct items in a

database or a stream, while using only a small amount of space. Sketches have the same

goal as bloom filters in this thesis, they both are being used to reduce data. The only

difference is the way that are both used. Sketches here are used in COUNT and SUM

queries.

When applying Sketches to COUNT queries, each sensor computes m independent

sketches by using m different binary hash functions. With the use of routing algorithm

each node transmits sketches towards root by sending them to its parents ( a node can

have more than one parents). When a node receives sketches from its children, unites

them with its own k sketches and finally root makes the estimation of COUNT query

result.

Flajolet Martin Sketch estimates the number of distinct items in a stream of values

from [0, ...,M−1]. Given a multi-set M, the FM sketch of M, denoted as S(M)[0, ..., k−1]

are initialized to zero and are set to one using a random binary hash function h applied

to the elements of M . Formally,

S(M)[i] ≡ 1 iff ∃ x ∈ M s.t. min{j | h(x, j) = 1} = i (3.1)

By this equation, each element x is able to set a bit of FMSketch S(M) to one - the

minimum i for which h(x, i) = 1. The least significant bit of h(x), which is the rightmost,
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is equal to 1 and the remainings are equal to zero. The probability of each of the bits at

positions 0..K − 1 being equal to zero is 1
2
. Because of uniformity, it is valid to prove:

Prob[BITMAP [k] = 1] = Prob[10k] =
1

2k+1
(3.2)

Because of equation 3.2, we come to the conclusion, that the least significant bits

have greater probability to be equally to one in addition to the most significant bits. In

[7] it is shown that the estimation of the distinct elements that are added to sketch can

be calculated like this:

• Let R be the position of the rightmost zero bit in BITMAP

• It is proven in [7] that E[R] = log(φd) where φ = 0.7735, or else d = 2R

φ
.

This estimation may have many errors, but if there are plenty of sketches there can

be a better approach of d. The value of d can show the number of distinct values inside

a set M.

When there is SUM query, we can calculate the result by using Sketches like when

we had COUNT with some differences. If a node wants to sum a x value then instead of

making one BITMAP, it makes x and unites them all together. This is a naive solution

but it works just like COUNT queries in the end. This can be succeeded more efficiently

and much more information is presented in Paper [6].

3.3 Bloom Filters

A bloom filter provides a simple space-efficient randomized data structure for representing

a defined set in order to support membership queries. It is very useful in WSNs, because

a bloom filter compresses data into a bitmap array and nodes send less data. Bloom

filters allow false positives, but the space savings often outweigh this drawback, when

the probability of an error is controlled. Testing the insertion and membership in bloom

filters, implies an amount of randomization, since elements are transformed using one-way

hash functions. Testing for the presence of elements, that have actually been inserted in

the filter, will always give a positive result; there are no false negatives. In recent years

they have become popular in the networking literature and are used in many related
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Figure 3.1: Bloom Filter in Action

applications. This article [8], represents the mathematical and practical framework of

bloom filters and some other important variations. This implementation is influenced by

this article, in order to choose the size of bloom filter and the necessary number of hash

functions.

As it is already noted, bloom filters are used to represent a set S = {x1, x2, ..., xn} of

n elements. The size of bloom filter can be set by m bits, where all bits are initialized

by zero. With the use of the hash functions with range {1, ...,m}, each of which maps

or hashes some set element to one of the m array positions with a uniform random

distribution. For each element x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k.

When it is necessary to be examined, if an element x is in a set S, it is inserted in k

hash functions to get k array positions. If any of the bits at these positions are zero, the

element is definitely not in the set. Otherwise, when it was inserted, all the bits would

have been set to 1. However, there is a possibility of false positive, because bits have by

chance been set to 1 during the insertion of other elements.

In Figure 3.1, there is an example of bloom filter with 18 bits initially set to zero.

This bloom filter represents the set of {x, y, z} elements. Each colored line represents

the positions of each element in the bit array. The number of lines represent the number

of hash functions used and in this case three hash functions are being used. The set

of elements are mapped into bloom filter through the hash functions and set to 1. The

element w is not in the set {x, y, z}, because it hashes to one bit array position containing

zero.

It is assumed that a hash function selects all array positions with equal probability.
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After all elements of set S are hashed into the bloom filter, the probability that a specific

bit is still 0 is :

p = e
−kn
m (3.3)

the probability that it is 1 is therefore :

1− p = 1− e
−kn
m . (3.4)

The probability of all bits set to 1, which means all hash functions lead to bits equal

to 1 and claim that an element is in the set, is given from this:

f = (1− p)k = (1− e
−kn
m )k. (3.5)

Considering the above, we have that the probability of false positives decreases as m,

which is the number of bits in the array, increases. Probability increases if n increases

too, which means, that when the number of inserted elements increases, the probability

of false positive goes higher. The number of hash functions needed that minimizes the

probability of false positive, depends on m and n. The optimal number that minimizes

f as a function of k is found by taking the derivatives. More conveniently, note that

f = exp(k ln(1 − e
−kn
m )) = k ln(1 − e

−kn
m ). Minimizing the false positive rate f with

respect to k there is :

∂f

∂k
= ln(1− e

−kn
m ) +

kn

m

e
−kn
m

1− e−kn
m

(3.6)

It is easy enough to discover that the derivative is 0, when k = m
n
× ln 2 . Conse-

quently, in order to have low false positive rates, we have to consider how many hash

functions we must have. The required number of bits m given n as well as a desired false

positive probability p, and assuming the optimal value of k is used, can be computed by

substituting k value in the probability expression above ( 3.5) :

f = (1− e−(
m
n

ln 2) n
m )(

m
n

ln 2) ⇔ (3.7)
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ln f = −m
n

(ln 2)2 ⇔ (3.8)

m = − n ln f

(ln 2)2
(3.9)

This means that, if there is a desired false positive probability f that bloom filter

must have, then the length of the filter must be fixed. M , which is the length of filter,

must be proportionate to the number of elements n being inserted in filter.

More Bloom Filters

There are more bloom filters proposed by many others, like Scalable Bloom Filters [9]

or Stable Bloom Filters [10].

Scalable Bloom Filters can adapt dynamically to the increased number of elements

stored, while retaining a low probability of false positive. This method ensures that the

maximum false positive probability is being set from the start and it is independent from

the number of elements which are inserted. It is based on standard bloom filters with

increasing capacity.

Stable bloom filters are used in streaming data. The idea is to clear all stale data

and make room for more recent elements. Streaming data cannot be stored, because

the stream can be infinite. Since stale information is evicted, stable bloom filters create

false negatives, which do not exist in standard bloom filters. This method is superior to

standard bloom filters in terms of false positive rates and time efficiency, because it gives

only a small space and an acceptable false positive rate.
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Chapter 4

Design and Implementation

4.1 Introduction

In this Chapter the design and implementation of the application Duplicate Detection

is described. As already mentioned, the main object of this thesis is to detect duplicate

values of nodes inside a network. Sensors are assumed to be hierarchically organized in

a collecting data tree. Each node has only one father. Nodes should be able to detect

objects with a specific id and keep measurement for this id.

First of all, nodes have to be synchronized with each other. When this is accomplished,

the creation of the tree, which will be the basis of our implementation for transmitting and

receiving data, starts. Later, in this chapter, the execution flow and all the messages that

are being exchanged among the neighbor nodes and the base station will be described.

In order to execute the final results of a query, three phases are preceded, which are

analyzed in a following section.

4.2 Duplicate Detection

As mentioned in Chapter 1 the main part of this thesis is to eliminate duplicate values.

The existence of duplicates can lead us to false results in aggregate queries. For aggregate

queries such as MIN and MAX which are monotonic and exemplary, the existence of

duplicates is fault- tolerant. But for duplicate-sensitive aggregates such as COUNT,

AVG or SUM, it gives incorrect results.
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The energy consumption dominates today’s sensor motes. Most of the algorithms used

in sensor network try to minimize the number of messages transmitted in order to save

power. In this section, we will not use the two methods Bloom Filter and Delta, that will

be discussed in Chapter 5, but all sensors send all their data, in spite of what they sent

in a previous epoch. This method will be called in later references as Full Data method.

As will be mentioned in Section 4.7, each node stores the messages, it sends in previous

epochs. If the message is the same as in previous epoch, the node does not transmit any

message. Its parent or its children, depending on which phase we are in, keep a backup of

messages received at each round. When a node does not receive a message from a specific

node, it regains the message last received from this node. Consequently, the number of

messages are transmitted and the power consumption is decreased.

While the tree is being constructed, a timer begins to count ( in milliseconds) for

every sensor. The time until timer myTimer fires an event, depends on the depth and

node id of the sensor. When the event from myTimer occurs, there is a Finite-State-

Machine (FSM), as shown in Figure 4.1, which separates the execution of the algorithm

in four different states. These states are:

InitState : this state initializes variables of algorithm and subsystems

Phase1State : a sensor gets its measurement. In this state a new timer Phase1Timer

begins. When this timer fires, phase one begins of the algorithm, which is explained at

the following subsection.

Phase2State : in this state a new timer Phase2Timer begins. When this timer

fires, phase two of the algorithm begins, which is explained at the following subsection.

Phase3State : in this state a new timer TAGTimer begins. When this timer fires,

phase three of the algorithm begins, where the execution of the query begins.

4.2.1 Phase 1 - Collection of data for the Detection of duplicate

ids

In this phase, in a nutshell, nodes transmit the ids of the objects they track. Starting

from the leaves, nodes send their own ids they observe to their parents. Intermediate

nodes receive those id values transmitted from their children and unite them with their

own ids of the objects they track. Once they have gathered values from all their children,

they send only the distinct values of the united ids to their parents. This is repeated
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InitialStatestart Phase1Timer Phase2Timer

Phase3Timer

Figure 4.1: FSM of myTimer

recursively until all values are gathered at the base station. The type of message that is

used in this phase is SS Message that will be described later.

In particular, when timer Phase1Timer fires, an event occurs. Initial state is STATE START.

In this state, the node does not do anything, but it just waits for treceive time. It only

contributes to the synchronization of sensors. After a few milliseconds, the timer fires

again and the event re-occurs, we are at STATE RECEIVE now. In this state a node

receives measurements from its children and initializes the timer. When the timer fires,

the state STATE CALC is activated and the node, only if its not root, starts calculation

tasks for the transmission of their data in the sendSS Message() task. In the Algorithm

5 we can see the pseudocode and in Figure 4.2 the FSM of phase one.

In line 1 of Algorithm 5, there is a while-loop and node exits, when timer Phase1Timer

fires. In this loop, the node receives messages from its children and stores them to

joinAttr array. When the state changes to STATE CALC, if current node has received

no message from one of its children, it retrieves backup values for those children it kept

from the previous epoch, and saves them in joinAttr ( line 4). Later, each node saves

its own id values, which it observes, in joinSent vector. In this vector it also stores the

distinct values of joinAttr (line 6). By the time the calculation is finished, the node

checks if vector joinSent is equal to vector previous joinsent (line 7), which is vector

joinSent in previous epoch. If these vectors are equal, then the node does not transmit
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Algorithm 5 Phase1()

1: while (synch Phase1 == STATE RECEIV E) do

2: Parse received message as vector joinAttr of measurements

3: end while

4: For each child that didn’t send message, store the ids of the previous epoch to array

joinAttr

5: Store current Node’s measurement in joinSent

6: Compute distinct values of joinAttr and Store to joinSent

7: if joinSent == previous joinsent then

8: Doesn’t transmit joinSent to parent

9: else

10: previous joinsent = joinSent

11: Send joinSent to parent

12: end if

13: sleepUntilNextPhase()

joinSent, otherwise vector previous joinSent is replaced by the current joinSent, and

the node sends joinSent vector to its parent (line 11). Finally, the node closes its Radio

and waits for MyTimer timer to fire again for the next phase.

4.2.2 Phase 2 - Node with the minimum depth

In this phase, nodes search to discover, if they have duplicate values. For detecting a

duplicate value, the algorithm must find the node, which is at highest hierarchy in the

tree, that receives an id more than one time. When the root node receives all the messages

from phase one, it gathers all data and detects which ids has duplicates. Thereafter, it

sends this list to its children to inform them that it is the highest node for these ids. This

action is, also repeated by all nodes when they reach phase two. The nodes in this phase

send messages of type ForwardingMsg, which will be described later.

More specifically, each node creates its own array, named Duplicates, which stores

ids that has received more than one time and believes that it is the highest of all the

nodes, that receives this duplicate value. In order to be certain, that each node tracks

the correct duplicate value and there is no other node in a higher hierarchy, that tracks

the same duplicate value, each node receives a message from its parent. This message
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STATE STARTstart STATE RECEIV E

STATE CALC

Figure 4.2: FSM of Phase1Timer, Phase2Timer and Phase3Timer

includes the duplicate ids that already exist at the upper tree. If ids are equal, the node

erases those ids from array Duplicates, adds the remaining ones that exist in Duplicates

and forwards the message to its children.

When timer Phase2Timer fires, an event occurs. In this event there is FSM with

initial state STATE START. In this state, the node does not do anything, but just

waits for treceive time. This only contributes to the synchronization of sensors. After

a few milliseconds, when the timer fires again, the event re-occurs. We now are at

STATE RECEIVE state. Now in this state a node receives the duplicate list from its

parent and initializes the timer. When the timer fires, state STATE CALC is activated

and the current node begins creating vector Duplicates with values of the previous phase.

When this is completed, if node does not receive any message in this phase, then it

assumes that message from the previous epoch is valid. Later, the node compares vector

Duplicates to the duplicate list received from its parent. If an id from Duplicates is equal

to the received list, we delete this value from the vector. When completing this task and

Duplicates is not empty, the node unites this vector’s values with the received list and

forwards the new list to its children. FSM of this phase can be seen in Figure 4.2. This

Marina Mavrikou 27 December 2013



4. DESIGN AND IMPLEMENTATION

happens to each node until all nodes have forwarded their list. In the Algorithm 6 the

pseudocode of phase two is presented.

Algorithm 6 Phase2()

1: Parse joinAttr and store duplicates to Duplicates including current node’s ids

2: while (synch Phase2 == STATE RECEIV E) do

3: Save received duplicate values at vector receivedDups

4: end while

5: if ( is root ) then

6: receivedDups = Duplicates

7: else

8: for each (element in Duplicates) do

9: If no message received from parent, restore receivedDups from the previous

epoch

10: if element /∈ receivedDups then

11: Add element to receivedDups

12: else

13: Erase element from Duplicates

14: end if

15: end for

16: end if

17: if receivedDups == previous Dups then

18: Doesn’t transmit receivedDups to children

19: else

20: previous Dups = receivedDups

21: Sends receivedDups to children

22: end if

23: sleepUntilNextPhase()

From Algorithm 6 we can tell that this phase starts by detecting duplicates in the

ids that were received at the previous phase from array joinAttr. Duplicate values are

stored in vector Duplicates (line 1). In line 2, there is a while-loop and the node exits,

when timer Phase2Timer fires. In this loop, node receives messages from its parent and

stores data in the receivedDups vector. When the state changes to STATE CALC, if
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the current node has not received any message from parent and this node is not a root,

it retrieves backup values that were kept from the previous epoch, and saves them in

receivedDups ( line 9). If the current node is root, then it stores vector Duplicates in

receivedDups. In line 8 there is a for-loop, where it examines each element of vector

Duplicates. If an element exists in receivedDups (line 12), then the node erases this

element from vector Duplicates, because there is another node higher than this with

duplicate to this value. Otherwise, the node adds this element to receivedDups (line

11). If receivedDups is not equal to the previous vector that the node sent, then it

transmits the vector to its children (line 21), otherwise, the node does not send anything.

4.2.3 Phase 3 - Execution of Query

In this phase, there is some processing concerning the execution of the query. The imple-

mentation differs, if the query is a “Select Star′′ or if it is one of the rest of the aggregate

queries. If the query is a “Select Star′′, then all nodes, except root, must transmit all

ids that they observe, including their measurements. Otherwise, if the query is another

aggregate, each node, except root node, must execute the query with measurements it

receives. Here, it is important to notice that the node should not include measurements

with ids that exist in receivedDups, which the node received in the previous phase. In

other words, node should not include measurement of an id that is a duplicate, because

this would lead to a wrong result. If the node is a root node, then it calculates the final

result depending on the query. In this phase nodes send messages of type AvgMsg for

“Select Star′′ queries and AvgMsgNotStar for the rest of the queries.

Starting from the leaves of the tree, they disseminate their data, depending on the

query, to their parents. Intermediate nodes receive data from their children and do what

was described earlier. This phase terminates, when all data has arrived at the base

station, where the final result is calculated. Moreover, when a node receives a AvgMsg

or AvgMsgNotStar message and in its data there is an id that exists in receivedDups,

then the node calculates and stores the average value of measurements it has received

for this id. When an id belongs to receivedDups, it means that it is a duplicate and

the node must keep the average value of its measurements in order to avoid false results.

Hence, if there is a “Select Star′′ query, the node forwards all ids and measurements
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that are received including the changes of possible duplicate values; otherwise, the node

executes the query and forwards the query result.

In more detail, when timer TAGTimer fires, an event occurs. In this event there is

FSM with initial state STATE START. In this state, the node does not do anything but

it just waits for treceive time. This only contributes to the synchronization of sensors.

After a few milliseconds, when the timer fires again and the event re-occurs, we are in the

STATE RECEIVE state. In this state a node receives measurements from its children

and initializes the timer. When the timer fires, state STATE CALC is activated and

the node, only if its not root, starts calculations for the executing query. As, previously

described in Chapter 2, TAG [4], nodes try to minimize the payload length by executing

the query. In this way, nodes send less information to the tree. This can only be applied

to aggregate queries except for “Select Star′′. FSM of this phase can be seen in Figure

4.2. In the Algorithm 7 we can see the pseudocode of phase three.

Algorithm 7 describes the algorithm in phase three, when the query is a “Select Star′′.

In line 1 the node is in STATE RECEIVE and receives messages from its children storing

them in vectors avgid and avgvalue. If its child did not send any message, then the cur-

rent node would restore its data from a previous epoch. Received ids and measurements,

including the current node’s ids and measurements, are saved in vectors query listAvgid

and query listAvgvalue (line 5). The node has to check if the received ids and its own

ids are duplicates in order to calculate an average measurement of these ids. This is

examined in lines 6 to 10, where the node compares ids of vector query listAvgid and

checks if they exist in vector Duplicates. If the current node is a root, then it only

prints out the result. Otherwise, if query listAvgid and query listAvgvalue are equal to

the vectors of the previous epoch, then the node does not disseminate any message (in

line 15). In another case, the node adds to value1 and value2 fields of AvgMsgNotStar

vectors query listAvgid and query listAvgvalue and transmits the message to its parent.

When the query is not a “Select Star′′, the algorithm differs, because inner and leaf

nodes need to make some calculations depending on the query. Pseudocode of this part

is shown in the Algorithm 8.

In Algorithm 8 is shown the algorithm in phase three, when the query is not a “Select

Star”. In line 1 the node is in STATE RECEIVE and receives messages from its children

storing them in vectors avgid and avgvalue. If its child does not send any message,

then current node will restore its data from a previous epoch (line 4). Received ids and
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Algorithm 7 Phase3 - “Select Star” query

1: while (synch state == STATE RECEIV E) do

2: Parse received message as vectors avgid of ids and avgvalue of measurements

3: end while

4: For each child that didn’t send message, restore the ids and measurements of the

previous epoch to avgid and avgvalue

5: Store avgid, avgvalue and current Node’s measurements and ids in query listAvgid

and query listAvgvalue respectively

6: for each (element ∈ query listAvgid) do

7: if ( element ∈ Duplicates ) then

8: Calculate average value from query listAvgvalue of this id

9: end if

10: end for

11: if is root then

12: Show vectors query listAvgid and query listAvgvalue

13: else

14: if ( query listAvgid == previous avgid ) && ( query listAvgvalue ==

previous avgvalue ) then

15: Doesn’t transmit to parent

16: else

17: previous avgid = query listAvgid

18: previous avgvalue = query listAvgvalue

19: Sends query listAvgid and query listAvgvalue to parent

20: end if

21: end if

measurements including the current node’s ids and measurements are saved in vectors

query listAvgid and query listAvgvalue (line 5). The node has to check if the received

ids and its own are duplicate in order to calculate an average measurement of this id.

This is examined in lines 6 to 10, where node compares ids of vector query listAvgid

if they exist in vector Duplicates. Something that is different from the previous pseu-

docode is that the current node examines if each id, which is in query listAvgid, exists

in vector receivedDups (line 12). If this is true, then node inserts this id and the cor-

responding measurement in the value1 and value2 fields of AvgMsgNotStar message.
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Algorithm 8 Phase3 - other queries

1: while (synch state == STATE RECEIV E) do

2: Parse received message as vectors avgid of ids and avgvalue of measurements

3: end while

4: For each child that didn’t send message, restore the ids and measurements of the

previous epoch to avgid and avgvalue

5: Store avgid, avgvalue and current Node’s ids and measurements in query listAvgid

and query listAvgvalue respectively

6: for each (element ∈ query listAvgid) do

7: if ( element ∈ Duplicates ) then

8: Calculate average value from query listAvgvalue of this id

9: end if

10: end for

11: for each (element ∈ query listAvgid) do

12: if element ∈ receivedDups then

13: Insert element and its measurement to value1 and value2 fields of

AvgMsgNotStar message

14: else

15: Calculate result depending on the query and Store to query result

16: end if

17: end for

18: if is root then

19: Show query result

20: else

21: if ( Current AvgMsgNotStar msg == Previous AvgMsgNotStar msg ) then

22: Doesn’t transmit to parent

23: else

24: previous avgid = query listAvgid

25: previous avgvalue = query listAvgvalue

26: previous query result = query result

27: Sends query result, query listAvgid and query listAvgvalue to parent

28: end if

29: end if
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Otherwise, node calculates the result depending on the query of the current epoch and

stores the result in variable query result. If the current node is a root, then it only prints

out the result of the variable query result. Otherwise, if query result, query listAvgid

and query listAvgvalue are equal to the variable and vectors of the previous epoch,

then node doesn’t disseminate any message (in line 22). In another case, node adds

to value1 , value2 and query result fields of AvgMsgNotStar vectors query listAvgid,

query listAvgvalue and variable query result and transmits the message to its parent.

4.3 Parameters of Program

Parameters, which are defined at the beginning of the program, are related to the con-

struction of the sensor’s tree and the basic characteristics that our algorithm needs.

In order to construct the sensor’s tree, a value in some variables needs to be defined.

First of all, there must be determined the maximum number of children and depth for

each node. Moreover, when a node receives or transmits a message, it inserts it to a

queue. It is important to define a size for these two queues, the sender and the receiver

queue. All these parameters are settled on these variables : SENDER QUEUE SIZE,

RECEIVER QUEUE SIZE, MAX CHILDREN, MAX DEPTH.

Detecting duplicates can be accomplished using three different methods. In order

to choose which method to use, at the beginning of the program, we initialize some

variables. The variables are : FULL MODE, BLOOM EN, DELTA MODE. By

the first variable, our algorithm uses the Full Data method, by the second variable, our

algorithm chooses to use Bloom Filters and by the third, nodes send to their neighbours

the delta values of the previous message they sent in previous epoch. These variables can

be defined in file Makefile, which is presented in Algorithm 1.

There are, also, other variables, which are fundamental and it is worth mentioning

them. Below we describe those parameters:

QUERY ID : it defines the type of an aggregate query that needs to be executed.

(1 for sum, 2 for max, 3 for min, 4 for count, 5 for count, 6 for “Select Star”)

MEASUREMENT TYPE : it defines a measurement that query needs for execu-

tion. (1 for photo, 2 for temperature)

EPOCH : this variable defines the number of epochs for each execution
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typede f nx s t ru c t RoutingMsg

{
nx u in t8 t header ;

nx u in t16 t senderID ;

nx u in t8 t depth ;

nx u in t8 t query id ;

nx u in t8 t epoch ;

} RoutingMsg ;

Figure 4.3: Definition of RoutingMsg

MAX VLENGTH, MAX VLENGTH X, BFlength : these variables define

sizes of arrays. BFlength represents the size of Bloom Filter.

4.4 Communication with nodes and base station

As previously stated, there will be three different phases before the calculation of the

final result and, before that, there will be the creation of the collecting data tree. For all

these proceedings there are different types of messages.

For constructing the tree and disseminating the query nodes we use the RoutingMsg

message 4.3. The field header defines the type of message. In this case its value is

equal to one. SenderID represents the id of the node that has sent this message. This

field is necessary for the nodes that receive this kind of message. The nodes that receive

it know that their parent is the node with id equal to senderID. With depth, a node

can define its own depth based on this variable. Query id and epoch are also needed

for disseminating a query, so that all nodes will be informed about the type of the query

that needs to be executed.

By the time nodes receive a RoutingMsg, they disseminate a NotifyParent message

until it reaches root node. Each node, that receives a NotifyParentMsg from its subtree,

forwards it to parent. This message includes the id of parent for each node that started

disseminating the message and is essential for base station in order to learn the topology

of the tree. The struct of this message is shown in Figure 4.4.
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typede f nx s t ru c t NotifyParentMsg

{
nx u in t8 t header ;

nx u in t16 t senderID ;

nx u in t16 t parentID ;

nx u in t8 t depth ;

} NotifyParentMsg ;

Figure 4.4: Definition of NotifyParentMsg

typede f nx s t ru c t SS Message

{
nx u in t8 t header ;

nx u in t8 t head ;

nx u in t16 t senderID ;

nx u in t8 t value [MAXVLENGTH] ;

} SS Message ;

Figure 4.5: Definition of SS Message

NotifyParentMsg includes header, which defines the type of message transmitted

and it is equal to 11. Field senderID represents the id of the node that started dissemi-

nating this type of message and parentID defines the id of its parent. Depth represents

the depth of the node.

When the tree is created, phase one begins, where all nodes send the ids of the

objects that they observe. In this stage, all nodes send messages of type SS Message

4.5. The field header defines the type of the message. In this case its value is equal

to two. Head is a variable that defines the number of elements that are at the array

value[MAX VLENGTH]. SenderID represents the id of the node that has sent this

message. This field is needed for the nodes that receive this kind of message. Nodes that

receive it, store this id at the array children. By this array, nodes are aware of the nodes

that are their children. Array value[MAX VLENGTH] includes all the ids that each

node has received from its children plus its own ids of the objects that it observes.

When phase one is completed, phase two begins, where nodes, starting from the root,
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typede f nx s t ru c t ForwardingMsg

{
nx u in t8 t header ;

nx u in t16 t head ;

nx u in t8 t value [MAXVLENGTHX] ;

} ForwardingMsg ;

Figure 4.6: Definition of ForwardingMsg

send the duplicate ids that exist. Details of this phase are being included at the above sec-

tion. In this stage, all nodes send messages of type ForwardingMsg 4.6. The field header

defines the type of the message. In this case its value is equal to three. Head is a variable

that defines the number of elements that are at the array value[MAX VLENGTH].

Array value[MAX VLENGTH] includes all the duplicate ids that each node has re-

ceived from its parent plus its own duplicate ids.

When phase two is completed, phase three begins, where nodes, starting from the

leaves, send the ids and the measurements according to the query that they received. In

this stage, all nodes send messages of type AvgMsg 4.7. If the query is not a “Select Star”,

then nodes send messages of type AvgMsgNotStar 4.7. The field header defines the type

of the message. In this case its value is equal to four for all the queries except “Select Star”

(when we do not have “Select Star” query, header is equal to nine). Head is a variable

that defines the number of elements that are at the arrays value1[MAX VLENGTH]

and value2[MAX VLENGTH]. Arrays value1 and value2 include the ids and the mea-

surements that each node has received from its children plus its own ids and measure-

ments. SenderID defines the id of the node that sends the message. In case where query

is not the “Select Star”, there is one more variable, query result. Nodes execute the

query, if possible, and store the result in this variable.

4.5 Synchronization of nodes

Synchronizing sensors is a basic condition for the right execution of an algorithm and

for decreasing message loss rates. Moreover, with synchronization, nodes start sending

routing messages by the time it has been defined to them, so that there is a stable list of
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typede f nx s t ru c t AvgMsg

{
nx u in t8 t header ;

nx u in t8 t head ;

nx u in t16 t senderID ;

nx u in t8 t value1 [MAXVLENGTH] ;

nx u in t16 t value2 [MAXVLENGTH] ;

} AvgMsg ;

typede f nx s t ru c t AvgMsgNotStar

{
nx u in t8 t header ;

nx u in t8 t head ;

nx u in t16 t senderID ;

nx u in t32 t qu e r y r e s u l t ;

nx u in t8 t value1 [MAXVLENGTH] ;

nx u in t16 t value2 [MAXVLENGTH] ;

} AvgMsgNotStar ;

Figure 4.7: Definition of AvgMsg and AvgMsgNotStar

neighbours. In this implementation, nodes start phase one at the same time depending

on their depth.

For this application, the implementation of Flooding Time Synchronization Proto-

col,which is included in TinyOs ’s library, is used. In this subsection there will be a short

description of this algorithm and of how synchronization of the nodes is accomplished.

4.5.1 Description of FTSP algorithm

The Flooding Time Synchronization Protocol (or FTSP) utilizes one broadcasting mes-

sage. By this message, a sender obtains time synchronization reference points with its

neighbours. There is a leader and all nodes have to synchronize their clocks to that leader.

This can be achieved through broadcasting time synchronization messages periodically.

This algorithm can be used in single-hop, as well as in multi-hop network. The average
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error of the algorithm for a single hop case between two nodes is 1.48µs. In the multi-hop

case, the average error is 0.5µs per hop accuracy. When broadcasting a message, FTSP

can estimate the time of the delay of the message until it is sent (offset) , but also the

clock skew that exists from sensor to sensor.

FTSP is robust; it can handle topology changes well. Topology changes can be nodes

entering or leaving a network, links failing or even mobile nodes. A detailed description

of this algorithm can be read in this paper [11]. Each node maintains both a local and

global time. Past and future time instances are translated between the two formats. Both

the clock offset and clock skew between the local and global clocks are estimated using

linear regression. Global time can be estimated from this equation:

globalT ime = localT ime+ offset+ skew ∗ (localT ime− syncPoint) (4.1)

The skew is normalized to 0.0 to increase the machine precision. The syncPoint value

is periodically updated to increase the machine precision of the floating point arithmetic

as well as to allow time wrap.

4.5.2 Interface GlobalTime

GlobalTime, as mentioned before, is included in the library of TinyOs. Component

TimeSyncC implements synchronization of nodes and provides interface GlobalTime.

Interface GlobalTime, provides the following commands:

command error t getGlobalTime(uint32 t *time) : it reads the current global

time. Returns TRUE if this mote is synchronized and FAIL otherwise.

command uint32 t getLocalTime() : it returns the current local time of this

mote. Returns the same value with the command Timer.getNow().

command error t global2Local(uint32 t *time) : it converts the global time

given in time into the correspoding local time and stores this again in time. It returns

TRUE if this mote is synchronized and FAIL otherwise.

command error t local2Global(uint32 t *time) : Converts the local time given

in time into the corresponding global time and stores this again in time. Returns TRUE

if this mote is synchronized and FAIL otherwise.
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4.5.3 Real Synchronization

At the implementation of synchronization in our application, we used the commands

of interface GlobalTime of the previous subsection. We used a common time to all the

nodes, whereof, timers will start counting backwards for any different phase. We calculate

a common time by using the command getGlobalTime and replacing the result into this

formula:

stime = b( globalT ime

ROUND DURATION
) ∗ROUND DURATIONc (4.2)

ROUND DURATION variable is initialized at the beginning of the program with

value equal to 2000 ns. Then, we convert the result to a local time with the use of

command local2Global. In this way, all nodes have calculated the correspondence to the

local time,in the common beginning of the period. This common time is being used as a

timing reference for the calculation at the start of each timer.

4.6 Creation of the Hierarchical Tree

This section provides details of how the sensor tree is constructed. As already mentioned,

the construction of the tree depends on the parameters that are defined at the beginning

of the execution. The value of those parameters depends on the characteristics of the

algorithm that we use to collect data from sensors.

The tree consists of nodes and these nodes represent sensors. The number of nodes

is equal to the number of sensors that are inside a network. There is only one root node.

This node is usually a node with id equal to zero and represents, also, the base station.

Each node has only one parent and the number of children is equal to the parameter

MAX CHILDREN, as above mentioned. The construction of the tree happens as follows:

• Root node broadcasts a Routing message, which consists of the variables, that were

previously shown.

• Each node that is inside the range of root and receives this message, stores the data

of the message and sets root as its parent and calculates its depth to be equal to

the depth of the senderID plus one.
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Figure 4.8: Binary tree with levels in each depth

• It broadcasts a Routing message with its node id as senderID replaces the id of

root.

• A node that receives a Routing message defines a sender as its parent, stores data

of the message, calculates its depth to be equal to the depth of the senderID plus

one and broadcasts a new Routing message.

This happens recursively, until there is no node that has no parent. In a network,

where there is no message loss rate, there are no lost messages, and all nodes receive the

messages that are sent to them. In Figure 4.8 there is a structure of a binary sensor tree

with the depth of each level noted.

With Routing messages, nodes initialize their variables that are needed for the algo-

rithm and the execution of the query.

4.7 Data of Previous Rounds

The algorithm for the Detection of Duplicates and the decrease of the total size of bits

transmitted that is implemented requires the conservation of some data for each neigh-

bour. As mentioned before, each node is considered to be a neighbour, which communi-

cates bidirectionally with another node through the structure of the network. In general,

with the term neighborhood, we mean the sum of nodes with which a sensor will compare
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0

2

65

[3] [3]

1

43

[5] [6]

[2, 5, 6] [2, 3]

NodeId Id V alue RecId

0 8 30 [5,6,2,3,2]

1 2 6 [5,6]

2 2 30 [3,3]

3 5 10 [-]

4 6 15 [-]

5 3 7 [-]

6 3 14 [-]

Figure 4.9: Phase One in epoch t - Full Data method

its measurements for detecting duplicates and achieve, at the same time, bidirectional

communication.

For the decrease of the number of bits transmitted, there are arrays that store the

previous message that a node has sent at a previous epoch. These arrays are : pre-

vious joinsent, previous Dups, previous avgid and previous avgvalue. The first array

belongs to the first phase, the second to the second phase and the two other remain-

ing belong to the third phase. There is also variable previous query result storing the

query result of the previous epoch.

4.8 Full Data method in Action

In Figure 4.9, phase one of epoch t is presented. In this topology there are 7 nodes,

where nodes 3 and 4 have node 1 as their parent, nodes 5 and 6 have node 2 as their

parent and so forth. In phase one, as it is previously mentioned, nodes send the ids that

observe. In the attached array we can see the ids and values of all nodes in the network

assuming that each node can have one id and one measurement for this id. In column

RecId there are the received ids that each node has received from its children. Node 2,

as we can see from Figure, sends only one time id 3, because it sends only distinct values.

In Figure 4.10, phase two of epoch t is presented. One can notice from 4.9, that

node 0 is having a duplicate in id equal to 2 as it is shown from column Duplicates of

Figure 4.10. Node 0 transmits its duplicates and their children receive it. If they have
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0

2

65

[2, 3] [2, 3]

1

43

[2] [2]

[2] [2]

NodeId Id V alue Duplicates

0 8 30 [2]

1 2 6 [-]

2 2 30 [3]

3 5 10 [-]

4 6 15 [-]

5 3 7 [-]

6 3 14 [-]

Figure 4.10: Phase Two in epoch t - Full Data method

the same duplicate, they erase it from Duplicates array. If they have also duplicates that

do not exist in array Duplicates they add it to the received duplicate values and forward

them to their own children. Node 2 has duplicates in id equal to value 3. As we can see,

it forwards values 2 and 3 to its children.

In Figure 4.11, phase three of epoch t is presented. In this phase nodes send id

values and their measurements. This case is when we have “Select Star” query. Nodes,

starting from the leaves, transmit their values. In the array of this Figure, there are

RecId and RecV alue which represent the received ids and values from the children of

the corresponding node. Node 2, which has duplicate value in id 3, calculates the average

value of measurements of this id that receives from its children. According to the array,

node 0 receives the value of 10.5 for id 3, which is the average value of 14 and 7 of nodes

5 and 6.

Figure 4.12 represents phase three, when we dont have “Select Star” as a query. As

previously mentioned, nodes execute the query, if the id values that they observe, do not

belong to vector receivedDups. Nodes 3 and 4 send only their measurements, because

their id does not belong to receivedDups. Nodes 5 and 6, which their id is duplicate,

send all their tuples, id and value to their parent. Node 2, which is the highest node

of the tree with duplicates in id 3, must execute the query SUM for the nodes 5 and 6.

Node 0 receives all tuples of node 1 and the query result of nodes 3 and 4. After node

0 has collected all data from its children, it calculates the final result, which in this case

will be equal to 83.5.
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0
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NodeId Id V alue RecId RecV alue

0 8 30 [5,6,2,3,2] [10,15,6,10.5,30]

1 2 6 [5,6] [10,15]

2 2 30 [3,3] [7,14]

3 5 10 [-] [-]

4 6 15 [-] [-]

5 3 7 [-] [-]

6 3 14 [-] [-]

Figure 4.11: Phase Three in epoch t - “Select Star” query - Full Data method
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NodeId Id V alue query result RecId RecV alue

0 8 30 35.5 [2,2] [6,30]

1 2 6 25 [-] [-]

2 2 30 - [3,3] [7,14]

3 5 10 - [-] [-]

4 6 15 - [-] [-]

5 3 7 - [-] [-]

6 3 14 - [-] [-]

Figure 4.12: Phase Three in epoch t - SUM query - Full Data method

When epoch (t+1) comes and the query remains the same as the previous epoch t,

the transmitting and receiving data of the tree is as shown in the following Figures. In

Figure 4.13, nodes 4 and 6 haven’t changed their values, so they do not send anything.

Nodes 1 and 2 keep a backup of their data from previous epoch, so they use backup data

for nodes 4 and 6. Node 1 sends ids 8 and 6, and forwards them to its parent, node 0.

Node 2 has the same values as in previous epoch, so it does not send its values to its

parent.

In phase two, as shown also in Figure 4.14, node 0 has received id 8 two times and

it stores it to array Duplicates. Nodes 1 and 2 receive duplicates of their parent and

uniting them with their own duplicate values, they forward them to their children. It
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[2]
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[8]

[8, 6]

NodeId Id V alue RecId

0 8 30 [8,6,2,3]

1 8 8 [8]

2 2 30 [2]

3 8 2 [-]

4 6 15 [-]

5 2 4 [-]

6 3 14 [-]

Figure 4.13: Phase One in epoch t+1 - Full Data method
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[8, 2] [8, 2]

1

43

[8] [8]

[8] [8]

NodeId Id V alue Duplicates

0 8 30 [8]

1 8 8 [-]

2 2 30 [2]

3 8 2 [-]

4 6 15 [-]

5 2 4 [-]

6 3 14 [-]

Figure 4.14: Phase Two in epoch t+1 - Full Data method

should be mentioned, that if node 0 had still duplicate value in id equal to 2, then it

would not send any message to its children, so they would assume that it is the same

duplicate ids as in previous epoch.

In Figure 4.15, phase three of epoch t+1 is presented. Nodes 4 and 6 haven’t changed

their values from previous epoch, so they do not send their data also in this phase. The

rest of the nodes send their data. As previously stated, nodes keep average value of

measurements of ids that belong to array Duplicates. Node 0 has gathered all data as it

is also shown in arrays RecId and RecV alue.

In Figure 4.16, phase three in epoch t+1 is presented when we have a SUM query.

In this phase, the same things as the other phases of this epoch apply. Nodes 4 and 6 do
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0
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NodeId Id V alue RecId RecV alue

0 8 30 [8,6,8,2,3] [2,15,8,17,14]

1 8 8 [8] [2]

2 2 30 [2] [4]

3 8 2 [-] [-]

4 6 15 [-] [-]

5 2 4 [-] [-]

6 3 14 [-] [-]

Figure 4.15: Phase Three in epoch t+1 - “Select Star” query - Full Data method
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NodeId Id V alue query result RecId RecV alue

0 8 30 46 [8,8] [2,8]

1 8 8 - [8] [2]

2 2 30 - [2] [4]

3 8 2 - [-] [-]

4 6 15 - [-] [-]

5 2 4 - [-] [-]

6 3 14 - [-] [-]

Figure 4.16: Phase Three in epoch t+1 - SUM query - Full Data method

not send data, because they have the same value as the previous epoch. Node 0 receives

all data from its children and the measurements of duplicate id 8. The final query result,

in the end, will be 59.33.
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Chapter 5

Saving Packet Payload

5.1 Introduction

Battery-powered embedded systems carefully manage energy consumption for maximiz-

ing system lifetime. Wireless sensor networks, made up of many mote devices, are ,most

of the times, designed to operate for months without intervention. Sensor networks are

typically used to monitor an environment and may be deployed in remote or hazardous

locations. WSNs can consist of thousands of motes, and cover wide areas. As a result,

mote software and hardware must consider energy consumption at every level.

Aggregation, a widely researched field for reducing data transmissions by combining

data on motes, reduces energy use by spending additional energy on computation to save

a greater amount of energy on the power-hungry radio. Increasing on-mote processing

complexity will require additional computational hardware, demanding more energy. As

sensor networks grow and generate larger data sets, these energy costs will keep up rising.

This thesis explores the use of two different methods of minimizing transmitting data

and having as a consequence energy consumption. The following section represents the

implementation of Delta method and next is Bloom Filter method. Opening and closing

radio of sensors is another way of minimizing energy consumption, but it isn’t enough. As

it is previously stated, the application of each method depends on Makefile, the starting

file, and the value of parameters Bloom En and DELTA MODE, which are defined at

this file.
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5.2 Delta Data Transmission

The main focus of this section is how to reduce the number of sensor data transmission,

while maintaining the knowledge of existing duplicates. This proposed method could be

used in sensor networks, where data payload of transmission should be minimal.

This method is called “delta”, because nodes send the changes of data from the

previous epoch. Nodes keep a backup of the data, that was sent in a previous epoch for

each phase. When the next epoch comes, the nodes have calculated the data that needs

to be sent. Then, it sends only the plus or minus values of a variable. Delta method is

used only in the first and second phases, where nodes send ids or duplicate values. At the

first phase, nodes send ids of objects that are new to the network or ids of objects that

are no longer observed by sensors. Subsequently, at phase two,where they send duplicate

values to their children, with this method nodes send the differences of the duplicate

values from the previous epoch. For each phase, there is a different type of message.

Below we can see the different types of messages, considering the phase that we are in.

5.2.1 Delta Method in Action

In this subsection will be shown the structs that are being transmitted in first and second

phase. The first struct in Figure 5.1, represents the type of message that is sent at

phase one, when delta method is enabled and it is called SS Message delta. The field

header defines the type of the message. In this case its value is equal to five. Plus pt

and minus pt are variables that define the number of elements that are at the arrays

plus[MAX VLENGTH] and minus[MAX VLENGTH]. SenderID represents the

id of the node that has sent this message. In arrays plus[MAX VLENGTH] and

minus[MAX VLENGTH] are stored the values of ids that are new or have left the

network according to the previous epoch.

The second struct in Figure 5.2, represents the type of message that is sent at phase

two, when delta method is enabled and it is called ForwardingMsg delta. The field

header defines the type of the message. In this case its value is equal to six. Plus pt

and minus pt are variables that define the number of elements that are at the arrays

plus[MAX VLENGTH] and minus[MAX VLENGTH]. In arrays plus[MAX VLENGTH]

and minus[MAX VLENGTH] are stored the values of ids that are new or have left the

network according to the previous epoch.
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typede f nx s t ru c t SS Message de l ta

{
nx u in t8 t header ;

nx u in t8 t p lu s p t ;

nx u in t8 t minus pt ;

nx u in t16 t senderID ;

nx u in t8 t p lus [MAXVLENGTH] ;

nx u in t8 t minus [MAXVLENGTH] ;

} SS Message de l ta ;

Figure 5.1: Definition of SS Message delta

typede f nx s t ru c t ForwardingMsg delta

{
nx u in t8 t header ;

nx u in t8 t p lu s p t ;

nx u in t8 t minus pt ;

nx u in t8 t p lus [MAXVLENGTH] ;

nx u in t8 t minus [MAXVLENGTH] ;

} ForwardingMsg delta ;

Figure 5.2: Definition of ForwardingMsg delta

This method only represents the delta values of ids and not delta values of bloom

filter implementation. It can also be implemented in bloom filters and the only change is

a new type of message. When a node receives a message of delta values of bloom filter,

it can figure that the received list concerns the bloom filter of a previous epoch and not

a full message.

In order to fully understand how delta method works, here is an example. As previ-

ously stated, delta method is used only in phases one and two. When we are in epoch t,

and t equals to 1, which means that it is the first epoch that our algorithm is executed,

the result is the same as shown in Figures 4.9, 4.10, 4.11 and 4.12. The only difference

is that when using delta method, there is a plus and a minus array. In the first epoch,

all values are entered in array plus.
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[+2,−3]

1
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[+8,−5]

[+8,−5,−2]

NodeId Id V alue P lus Minus

0 8 30 [8] [5,2]

1 8 8 [8] [5,2]

2 2 30 [2] [3]

3 8 2 [-] [-]

4 6 15 [-] [-]

5 2 4 [-] [-]

6 3 14 [-] [-]

Figure 5.3: Phase One in epoch t+1 - Delta method

When epoch (t+1) comes and the query remains the same as the previous epoch t,

the transmitting and receiving data of the tree is as shown in the following Figures. In

Figure 5.3, nodes send the changes of the previous epoch. Node 3 sends the new id that

observes, which is 8, and removes the previous id which is 5. Node 1 understands that

node 3 does not observe anymore object with id equal to 5. Node 4 does not change its

values so it does not send any message. Node 1 calculates its differences from previous

epoch, and informs its parent about the changes of its subtree. The same thing applies

also in the right subtree of node 0. Node 2 receives the changes of node 5 and forwards

them to its parent. In the array of this Figure we can see columns Plus and Minus,

where they show the received ids, which are added or removed from the children of the

corresponding nodes.

In phase two, as shown also in Figure 5.4, starting from node 0, it sends the different

values from previous epoch. In previous epoch node 0 had duplicate in value 2, but now

it has in value 8. It has to inform its children of the change, so it sends in Plus array

value 8 and in Minus array value 2. Nodes that receive it, they forward it. Node 2 has

also duplicate value in id equal to 2. This node in previous epoch had received duplicate

in value 2 and the only difference from previous epoch is that there is no duplicate in

value 3. Then, it sends in Plus array duplicate id 8 and in Minus array duplicate id 3.

This means that nodes 3 and 6 deem that there are no longer duplicate values in id 3,

but there are in ids 8 and 2.

Phase three is the same as Figure 4.15 and 4.16, because in phase three delta method
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[+8,−3] [+8,−3]

1

43

[+8,−2] [+8,−2]

[+8,−2] [+8,−2]

NodeId Id V alue P lus Minus Duplicates

0 8 30 [-] [-] [8]

1 8 8 [8] [2] [-]

2 2 30 [8] [2] [2]

3 8 2 [8] [2] [-]

4 6 15 [8] [2] [-]

5 2 4 [8] [3] [-]

6 3 14 [8] [3] [-]

Figure 5.4: Phase Two in epoch t+1 - Delta method

is not applied.

5.3 Bloom Filter method Transmission

In this thesis, the use of Bloom Filters is very lucrative, because it compresses data of

dissemination minimizing data payload of the tree. Nodes create their bloom filter locally

after collecting all data from their children and then they forward their own bloom filter

to their parents or children depending on the phase.

Specifically, in this implementation the size of Bloom Filter at each node is defined

from the variable BFlength. As it is previously mentioned, it’s a binary tree and this

means that each node must have maximum two children. Therefore, when we have 100

nodes in our network, nodes in depth one must collect in phase one, on average, 25 id

values. This leads to the conclusion that we cannot have 2 hash functions in that small

Bloom filter, because the probability of having a bit equal to zero is very small. That’s

why there is only one hash function used. However, we can also use more than one hash

functions by changing the variable hashes into the number of hash functions we want to

use.

Bloom Filter is used only in phases one and two. In phase one, the node sends to its

parent the union of the bloom filters that has received including its own. From the initial

file Makefile, also shown in Algorithm 1, the user can define, if bloom filters should

be included in the execution and this can be done by defining variable BLOOM EN .
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When there is only Bloom filter enabled in network and not Full Data or Delta method,

the algorithm in phase one is as follows:

• Leaves create their bloom filter, adding their ids that observe and send them to

their parents.

• Intermediate nodes receive bloom filters of their children and create their own bloom

filter by uniting all received bloom filters together. They also add their own ids to

their filter, that observe, and forward it to their parent

• This is continued recursively until all data arrives at base station.

In Algorithm 9 the pseudocode of phase one, when using bloom filters is presented.

In line 1, the current node sets bits of BFilter to value 1, located at the result of hash

functions, when inserting the ids that this node observes. Node, in lines 2 - 4, is in state

STATE RECEIVE, where it receives from its children their bloom filters. While receiving

those messages, current node unites received filters with its own bloom filter. If a child

did not send any message, then current node fetches the bloom filter that was sent at

the previous epoch and unites it with current BFilter. In lines 6 to 11, node examines if

BFilter is the same as the bloom filter, which was sent in the previous epoch. If bloom

filter is the same, it does not transmit to its parent(line 7), otherwise, it stores the new

bloom filter to previous BloomSS and disseminates it.

When mytimer fires, an event occurs and we are at phase two. While all bloom filters

are gathered in base station, the algorithm goes as follows:

• Nodes start comparing with logic AND all receiving bloom filters including their

own. When logic AND returns 1 for a bit in position i, then root sets bit equal to

1 in position i of the array DupBloomMine.

• When all comparisons finish, root disseminates array DupBloomMine to its chil-

dren.

• Intermediate nodes receive DupBloomMine of their parent and pass its bits to

DupBloom array. They compare their own DupBloomMine with the received

DupBloom. If a bit from array DupBloomMine is equal to the corresponding

bit of DupBloom, then we set this bit of DupBloomMine to zero. When this is
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Algorithm 9 Phase1 with Bloom Filters

1: Map result of hash functions of current node’s ids and insert into BFilter

2: while (synch Phase1 == STATE RECEIV E) do

3: Unite received bloom filter with BFilter

4: end while

5: For each child that didn’t send message, unite the bloom filter of the previous epoch

to BFilter

6: if BFilter == previous BloomSS then

7: Does not transmit BFilter to parent

8: else

9: previous BloomSS = BFilter

10: Send BFilter to parent

11: end if

12: sleepUntilNextPhase()

completed, we unite with logic OR the two arrays. Node sends DupBloom to its

children.

• This happens recursively until all nodes receive a message including leaf nodes.

In Algorithm 10 the pseudocode of phase two is presented, when using bloom filters.

In line 1, current node creates DupBloomMine by comparing receiving bloom filters

and its own from the previous epoch. We search at each individual bit of all the filters

and if there are at least 2 bits set to 1 in the same position, then at the same position

we set bit of DupBloomMine to 1. This means that there is an id, which is probably

duplicate. Vector DupBloomMine does the same thing as Duplicates does for Full Data

method. DupBloomMine restores the bloom filter, which includes the duplicate values

of this node.In lines 2 - 4, is in state STATE RECEIVE, where the node receives from

its parent pointers of its bloom filter that has duplicates. While receiving the message,

current node sets to 1 bits of DupBloom according to received bloom filter. This means

that DupBloom includes all the duplicate values that exist in higher hierarchy of the

tree ( as was receivedDups in Full Data mode). If current node is root, then it only

needs to transmit DupBloomMine, only if it is different from the previous epoch(line

10).Otherwise, it does not transmit anything. If node is not root, it must check if the
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typede f nx s t ru c t SS Message bloom

{
nx u in t8 t header ;

nx u in t16 t senderID ;

nx u in t8 t BloomFi lter [ BFlength ] ;

} SS Message bloom ;

Figure 5.5: Definition of SS Message bloom

upper tree nodes have duplicate ids at the same id, that current node has stored into

DupBloomMine. This can be accomplished by comparing the two vectors (lines 14-15)

bit by bit. If vector DupBloomMine has a bit equal to 1 and not DupBloom, then this

means that current node has a duplicate value that the other node higher in the tree does

not have. In order to include this value in the transmitting data, we set bit of DupBloom

equal to 1 in the same position as it is in DupBloomMine. On the other hand, if bits of

DupBloom and DupBloomMine in the same index are equal, then current node must

remove this id from its bloom filter. This can be done by setting this bit to zero(line

15). In lines 20 to 26, node examines if DupBloom is the same as the bloom filter, which

was sent at the previous epoch. If the bloom filter is the same, it does not transmit to

its parent(line 21), otherwise, it stores the new bloom filter to previous BloomM and

disseminates it.

5.3.1 Bloom Filters in Action

In phase one the type of message that is sent is named as SS Message bloom. This

message includes a variable that defines the type of message header. This variable is set

to seven. There is also senderID, where it is equal to TOS NODE ID of node that sends

the message. BloomFilter is the bitvector, which contains ids of objects that nodes and

their subtree observe. In Figure 5.5, we can see the struct of this type of message.

In phase two the type of message that is sent is named as ForwardingMsgbloom. This

message includes a variable that defines the type of message header. This variable is set

to eight. V alue is the bloom filter, which contains the duplicate values that exist in the

tree. In figure, 5.6, we can see the struct of this type of message.
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Algorithm 10 Phase2 with Bloom Filters

1: Create DupBloomMine, its bits are set from bloom filters of its children and its

own

2: while (synch Phase2 == STATE RECEIV E) do

3: Parse array value and store values to DupBloom

4: end while

5: if ( is root ) then

6: if DupBloomMine == previous BloomMine then

7: Does not transmit DupBloomMine to children

8: else

9: previous BloomMine = DupBloomMine

10: Sends DupBloomMine to children

11: end if

12: else

13: for i = 0; i < BFlength; i+ + do

14: if (DupBloom[i] == DupBloomMine[i]) then

15: DupBloomMine[i] = 0;

16: else if ( DupBloomMine[i] == 1 &&DupBloom[i] == 0 ) then

17: DupBloom[i] = 1;

18: end if

19: end for

20: if DupBloom == previous BloomM then

21: Does not transmit DupBloom to children

22: else

23: previous BloomM = DupBloom

24: Sends DupBloom to children

25: end if

26: end if

27: sleepUntilNextPhase()

In order to fully understand how Bloom Filter method works, here is an example. As

previously stated, bloom filters are used only in phases one and two. In epoch t and in

phase one nodes send their ids through bloom filters. This can be seen in Figure 5.7,

where nodes unite their own bloom filters and disseminate them to their parents. Nodes
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typede f nx s t r u c t ForwardingMsgbloom

{
nx u in t8 t header ;

nx u in t8 t va lue [ BFlength ] ;

} ForwardingMsgbloom ;

Figure 5.6: Definition of ForwardingMsgbloom
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[00000001] [00000001]
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[00010000] [00000100]

[01010100] [01000001]

NodeId Id V alue BloomFilter

0 8 30 [11010101]

1 2 6 [01010100]

2 2 30 [01000001]

3 5 10 [00010000]

4 6 15 [00000100]

5 3 7 [00000001]

6 3 14 [00000001]

Figure 5.7: Phase One in epoch t - Bloom Filter method

3 and 4 send their filters to node 1 and then node 1 unites them with its own. Nodes

5 and 6 observe the same object, so they have the same id and by extension the same

bloom filter. Node 2 unites the received bloom filters with its own and forwards it to

its parent. Column BloomFilter, which is shown in Figure, represents the united bloom

filter of each node.

Phase two can be seen in Figure 5.8, where nodes disseminate bloom filters with

duplicate ids. Node 0 has a duplicate id, of which bloom filter is equal to [01000000]. It

disseminates this bloom filter to its children. Node 2 has also duplicate value, with bloom

filter equal to [00000001]. When this node receives from its parent the value [01000000],

it unites it with its own DupBloomMine and forwards it to its children.

Phase three is the same as Figure 4.11 and 4.12, because in this phase we do not

apply this method.

When epoch (t+1) comes and the query remains the same as the previous epoch t,

the transmitting and receiving data of the tree is as shown in the following Figures. In

Marina Mavrikou 56 December 2013



5.4 Combination of methods
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[01000001] [01000001]
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[01000000] [01000000]

[01000000] [01000000]

NodeId Id V alue DupBloomMine

0 8 30 [01000000]

1 2 6 [-]

2 2 30 [00000001]

3 5 10 [-]

4 6 15 [-]

5 3 7 [-]

6 3 14 [-]

Figure 5.8: Phase Two in epoch t - Bloom Filter method

Figure 5.9, nodes 4 and 6 haven’t changed their values, so they don’t send anything.

Nodes 1 and 2 keep a backup of their data from previous epoch, so they use backup data

for nodes 4 and 6. Node 1 sends ids 8 and 6, and forwards them to its parent, node 0.

Node 2 has the same bloom filter from previous epoch, so it does not transmit it.

In phase two, as shown also in Figure 5.10, node 0 has a duplicate value in id of

which bloom filter equals to [01000000] and stores it to DupBloomMine array. Nodes

1 and 2 receive bloom filter of their parent containing its duplicate values and uniting

them with their own DupBloomMine filter, they forward it to their children. It should

be mentioned, that if node 0 had still duplicate value in id of which bloom filter is equal

to [01000000], then node wouldn’t send a message to its children, so they would assume

that it is the same duplicate value as in previous epoch.

Phase three is the same as Figures 4.11 and 4.12, because in this phase we do not

apply this method.

5.4 Combination of methods

Until now the three methods have been presented to be used separately at the execution.

In file Makefile in Algorithm 1, we can set variables FULL DATA, BLOOM EN and

DELTA MODE and combine the methods as we want.

When we have applied the methods that will be used, nodes have to choose which

method should they use best at each phase. This can be solved by checking the data

payload of each method. Nodes choose the method, which uses the least bits. When
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[00000010]

[00000110]

NodeId Id V alue BloomFilter

0 8 30 [01000111]

1 8 8 [00000110]

2 2 30 [01000001]

3 8 2 [00000010]

4 6 15 [00000100]

5 2 4 [01000000]

6 3 14 [00000001]

Figure 5.9: Phase One in epoch t+1 - Bloom Filter method
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[00000010] [00000010]

[00000010] [00000010]

NodeId Id V alue DupBloomMine

0 8 30 [00000010]

1 8 8 [-]

2 2 30 [01000010]

3 8 2 [-]

4 6 15 [-]

5 2 4 [-]

6 3 14 [-]

Figure 5.10: Phase Two in epoch t+1 - Bloom Filter method

there is a tie, there is a priority in Full Data method, because it is more secure and nodes

will not lead to false assumptions.

In order to consider how a combination of at least two methods works, it can be

seen through an example. The first epoch t = 1, when combining Delta with Full Delta

methods, is the same as Figure 4.9, because there is no previous epoch to send the

differences.

When epoch t+1 arrives, Figure 5.11 presents the transmitted data. Nodes 3, 5 and

6 choose to send their ids through Full Data method, because in this way they send less

data. If they chose delta method, node 3 for example had to send [+8,−5]. Node 1

decides also to use Full Data method, because it uses less bits. Node 2 decides to use

delta method, because it only sends [+7,−3] value to its parent. If node 2 chose to use
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[2] [7]
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[8]

[+8,−5] [+7,−3]

NodeId Id V alue RecId P lus Minus

0 8 30 [-] [8,7] [5,3]

1 2 8 [8] [-] [-]

2 2 30 [2,7] [-] [-]

3 8 2 [-] [-] [-]

4 6 15 [-] [-] [-]

5 2 4 [-] [-] [-]

6 7 1 [-] [-] [-]

Figure 5.11: Phase One in epoch t+1 - Full Data and Delta methods

Full Data method it had to send [2, 7] data, which is one byte more in transmitting data.

Phase two, when using these two methods will be as shown in Figure 5.12. Node 0

has also duplicate values in id 8. In previous epoch, it had duplicate values in id 2. In

this phase node 0 uses delta method to send only the change from previous epoch, by

adding id 8 to Duplicates array and sending [+8] value. Node 1 and its subtree does

not have any other duplicate value, so they only forward message of node 0. Node 2, in

addition, in previous epoch had duplicate in id 3. In this epoch, though, it does not. If

node 2 used Full Data method, it should send [2, 8], otherwise, it should send [+8,−3].

As it is previously mentioned, when there is a tie, Full Data method prevails. In this

way, node 2 chooses Full Data method.

Phase three is as shown in Figure 4.15 and 4.16, because in this phase Delta or

Bloom Filter methods are not used.
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0

2

65

[2, 8] [2, 8]

1

43

[+8] [+8]

[+8] [+8]

NodeId Id V alue Duplicates P lus Minus

0 8 30 [2,8] [-] [-]

1 2 8 [-] [+8] [-]

2 2 30 [-] [+8] [-]

3 8 2 [-] [+8] [-]

4 6 15 [-] [+8] [-]

5 2 4 [-] [-] [-]

6 7 1 [-] [-] [-]

Figure 5.12: Phase Two in epoch t+1 - Full Data and Delta methods
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Chapter 6

Experiments

Up to here, we have discussed the three methods only in theory. But let’s see some real

action. In the first section, the outcome of each method and the combination with each

other is presented, when there is exact topology defined. In the second section, the results

of methods and their combinations are shown, when the signal strength decays. In both

experiments we used “Select Star′′ query, because this is the query, which sends most

bits over the network.

6.1 Results with defined topology

At this experiment, all nodes have equal value of gain, which is −50.0 dB. It is also

defined, which nodes communicate with others. The tree is binary so all nodes have

maximum two children. Through TOSSIM, there was a simulation over various number

of nodes thus different topologies.

Each method has its drawbacks. This experiment has as a target to reveal these draw-

backs in order to decide which method is best to use. Nodes are defined to observe only

one object, thereafter, each one has one id and one measurement. Ids and measurements

change their value at each epoch with a probability equal to 0.4.

In Figure 6.1 a table is presented, where in first column there is a range of values

that correspond to the ids of nodes. In the second column there is a range of values that

correspond to the ids of objects that each node observes. In other words, a node can

observe only the objects that are at its range of values. At the last line, nodes that their

TOS NODE ID belongs to ranges 20-39 and 90-100, it is shown that they observe objects
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Figure 6.1: Range of the Values of Objects observed

TOS NODE ID
Object’s id

observed

0− 19 0− 9

40− 49 20− 29

50− 59 20− 29

60− 79 30− 39

80− 89 40− 49

20− 39, 90− 100 TOS NODE ID

Figure 6.2: Mean number of bits sent at different topologies

that have their own TOS NODE ID as object’s id. This table is necessary in order to

define, that there will be nodes that observe the same id and share these duplicates

through all the tree.

As is previously mentioned, each method uses different type of messages. This means

that nodes send different number of bits according to the method they use. In order to

have a sufficient image of the total number of bits that are being sent, when using each

method, we repeated the experiment for 10 times and computed the mean number of bit

values. Each run lasted for 16 epochs.
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6.1 Results with defined topology

Figure 6.3: Percentage Error of final Data

Figure 6.2 shows the results of this experiment. As we can see in the x-axis there are

the number of nodes, which are in the network. Y-axis shows the total number of bits sent

in 16 epochs in all three phases. Delta and Full Delta methods are the two most lowest

lines in the graph. Consequently, these two methods transmit the minimum number of

bits. Bloom Filter is the method that sends more bits than any other combination of

methods. This means that nodes will have greater energy consumption. On the contrary,

if Bloom Filter method is combined with Full method and these two with Delta method,

the results are equivalent to Full method. In the topology, where we have 35 nodes

inside the network, we can observe that Full Bloom Delta method starts to use only

Bloom Filter, because with this method, less bits are transmitted. After 100 nodes inside

a network, Full method will be sending more bits than Full Bloom Delta method and

probably more than Bloom Filter method.

A naive outcome is that Delta and Full Delta methods are those that send less bits, so

they are the ideal methods to use. Figure 6.3, comes at this point to verify and examine

this choice.

In Figure 6.3, we compute the percentage error of final data, that root has gathered.

Percentage error is computed by the following formula:
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Percentage Error = mean(
|ideal − algorithmic|

ideal
) (6.1)

Ideal symbolizes the ideal value of measurements that are expected to be received.

Variable algorithmic represents the summation of measurements of a specific object-id.

By this formula we can find how much algorithmic value deflects from the ideal value.

This Figure shows that Delta and Full Delta methods have the highest deviation of

all other methods, in other words, it is not a good choice to use only these methods,

just because they send less data. Full Bloom Delta method is the third one with the

highest deviation and this is because it uses Delta except from Bloom Filter and Full

Data methods. From this Figure, one can notice, that Full Bloom method has the

lowest deviation in more topologies than Full Data method. This means that, it is more

vulnerable to use this method in some topologies, although it sends some bits more than

Full Data method.

When there are 25 and 35 nodes in the network, we can see that the percentage

error is falling in all methods. This is caused by the number of nodes that are in the

network and the number of duplicates that are in. As previously mentioned, in Figure

6.1, nodes with id 20-39 do not have duplicate ids of objects they observe. In that case

there are more unique ids(except from when there are over 60 nodes in the network)

in topologies, where we have 25 and 35 nodes and it is expected deviation to decrease.

In topologies, where we have 45 and 60 nodes, the range of duplicate values has not

changed, (see in Figure 6.1), and no other unique ids are added in the network. In this

Figure, the percentage error retains its value, which is also expected. For 60 to 80 nodes

in the network, percentage error increases. This is due to the fact that, according to

the previous table, there are more duplicate values, and the probability of a false result

is increasing. Finally, in topologies 90-100, the number of unique values increases and

duplicate ids remain the same. This leads to the decrease of percentage error like it

happened previously.

6.2 Results when weakening strength of signal

Wireless sensors, like Iris, are being placed in specific environments according to the exact

behavior of a wireless link. An example of a specific environment can be the aisle of a
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building or a parking structure. First of all, there should be defined the models of radio

and wireless channel and their interaction.

RF signal propagation, reflection and scattering conditions can influence signal strength

by two ways. The first one is the decay of the signal. It decays exponentially with re-

spect to distance. The second one is, for a given distance d, the signal strength, which is

random and log-normally distributed about the mean distance - dependent value. One of

the most common and most used radio propagation models is the log-normal shadowing

path loss model:

PL(d) = PL(d0) + 10nlog10(
d

d0
) +Xσ (6.2)

In Equation 6.2, d is the transmitter-receiver distance, n is the path loss exponent,

which is the rate at which signal decays. Xσ is a zero-mean Gaussian random variable

(in dB) with standard deviation σ. Values of n and σ are obtained from experimental

values. PL(d0) is the power decay for the reference distance d0.

According to this model, the received power ( Pr ) in dB is given by:

Pr(d) = Pt − PL(d), (6.3)

which means, that the received signal strength Pr at a distance d is the output power

of the transmitter Pt minus PL(d) (all powers in dB).

Once the radio has decided on how to encode the bits of sending data, it has to de-

cide how to send data over the wireless channel. The options are modifying amplitude,

frequency or phase of the carrier frequency also called modulation. Encoding and modu-

lation is very necessary in Wireless Sensor Network. The probability of a bit error Pe is

given by:

Pe =
1

2
exp−

γ
2 , (6.4)

where γ is the signal to noise ratio (SNR) in the presence of additive white gaussian

noise (AWGN). For a frame being received correctly, there needs to be all bits received

correctly. Hence, for a frame of length f the probability of successfully receiving a packet

is:
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p = (1− Pe)8f (6.5)

Another important aspect that influences link behavior is noise floor, which depends

on both the radio and the environment. Noise floor represents the noise that can exist in

an environment. Temperature of an environment or even interfering signals can influence

noise floor. When the receiver and the antenna have the same ambient temperature the

noise is given by:

Pn = (F + 1)kT0B, (6.6)

where F is the noise figure, k the Boltzmann’s constant, T0 the ambient temperature

and B the equivalent bandwidth. There is also link asymmetry because of hardware

variance in the noise floor and output power.

To sum up, the specific behavior of the wireless link depends on two elements: the

radio, and the environment (channel) where they are placed. Hence, in order to obtain

better simulations, the characteristics of both elements should be provided. The model,

which we used and is proposed by the ANRF group at USC, is a more general link-layer

model and it is valid for static and low-dynamic environments. This model simulates

hardware variance through a joint gaussian process:(
T

R

)
∼ N

((
Pt
Pn

)
,

(
ST STR
SRT SR

))
(6.7)

Where the covariance matrix S shows the variance of the output power, noise floor

and the correlation between them.

For the execution of this experiment, we used the suggested values that were used for

MICA2 motes. Nominal values for these motes are −20dBm < Pt < 5dBm, Pn =

−105dBm and can be changed from the covariance matrix. For these values, covariance

matrix is:

S =

(
3.7 −3.3
−3.3 6.0

)
(6.8)

Next we obtained values for the channel characteristics path loss exponent, shadowing

standard deviation and d0 from other studies like [12] and the suggested values from [13].
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Figure 6.4: Values of channel, radio and topology parameters

Channel Parameters Value

PATH LOSS EXPONENT 3.3

SHADOWING STANDARD DEVIATION 5.5

D0 1.0

PL D0 32.5− 43.0

Radio Parameters Value

NOISE FLOOR −105.0

S11 3.7

S12 −3.3

S21 −3.3

S22 6.0

Topology Parameters Value

TOPOLOGY 2

NUMBER OF NODES 36

TERRAIN DIMENSIONS X 100.0

TERRAIN DIMENSIONS Y 100.0

For the channel, radio and topology parameters we used the values that are presented in

Figure 6.4.

Topology parameters allows us to test different deployments. The available type of

deployments are:

• Grid (1): nodes are placed on a square grid topology and the number of nodes

inside the network has to be a square of an integer.

• Uniform (2): based on the number of nodes, the physical terrain is divided into a

number of cells. Within each cell, a node is placed randomly.

• Random (3): nodes are placed randomly within a terrain.

• File (4): position of nodes is read from an input topology file from user.

Changing channel parameter PL(d0), there is a different output file when executing

this model. This output file contains the link gains for each link and the noise floor for
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each node. For this experiment, we tried different values of power decay PL(d0) in dB for

the reference distance d0. When increasing the value of power decay, path loss increases

too. This means that for a specific number of nodes in a network, topology changes and

more packets are lost. This experiment was repeated for 10 times and each run lasted

for 16 epochs.

As we can see in Figure 6.4, there are 36 nodes inside our network in a 100 ∗ 100

terrain. Figure 6.5 represents the mean number of bits that are sent, when there are

constantly 36 nodes, but topology changes. As power decay increases, the depth of the

tree increases. When power decay PL(d0) is equal to 32.5, tree depth has reached value

2. On the other hand, when power decay is equal to 43, tree depth has reached value 6.

From the last mentioned Figure, one can tell, that there is a very small increase in the

number of transmitted bits. This is happening, because, while increasing power decay,

nodes diverge from root- base station. By this, nodes transmit data of their children,

which means more transmitting bits. As power decay increases, path loss increases too.

In other words, the probability of losing a packet is bigger than when path loss is smaller.

This explains why the mean number of bits does not increase a lot, when tree depth

increases.

Concerning the comparison of the methods and their combinations, we can tell, that

bloom filter method transmits, again, more bits than the other. Delta and Full Delta

methods, but also the combination of the three methods send less data than Full Data and

Full Bloom Filter method, which is expected as in previous experiment. The combination

of the three methods (which is the black line) is the same as Full Delta method. This

happens, because there are many messages lost and nodes do not choose to use Bloom

Filter method in first and second phase. Full Bloom and Full Data methods send almost

the same mean number of bits.

In order to decide, which method works better, when path loss increases, we must

notice, also, Figure 6.6. This Figure represents the percentage error of final data, when

signal power decay increases. Percentage error is computer, as in previous experiment,

through this Equation 6.1.

From Figure 6.6, we can observe that Full Delta and Delta methods and the com-

bination of all three methods have the highest percentage error as signal power decay

increases. The rest of methods have similar percentage error. When PL(d0) reaches

Marina Mavrikou 68 December 2013



6.2 Results when weakening strength of signal

Figure 6.5: Mean number of bits sent when increasing Signal Power Decay

value of 35, tree depth is equal to 2. When power decay is between 35 and 40, the num-

ber of nodes, that are in level 3 increases, but the maximum tree depth remains 3. This

means that nodes are being shared inside the network and message loss is being reduced.

When power decay is equal to 40, 42 and 43, maximum tree depth changes to 4,5 and

6 respectively. This is expected, because at these values path loss is very high and the

probability of message loss is bigger than before.

Marina Mavrikou 69 December 2013



6. EXPERIMENTS

Figure 6.6: Percentage Error of final Data when increasing Signal Power Decay
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Chapter 7

Conclusion

7.1 Conclusion

In this thesis, we used the combination of three methods, so as to implement aggregate

queries, which are sensitive in duplicate values. Our goal was to combine and compare

different methods in order to detect duplicate values and execute aggregate queries. We

have proven that, it is not ideal the nodes to send all their data to their parents or

children in phases one and two, respectively. We, also, showed that, it is necessary to

examine the accuracy of final data, that base station gathers and not to choose a method,

which transmits less bits.

Nodes might have obstacles between them and, with great possibility, messages are

lost. Consequently, there is a high message loss rate leading messages to get lost and not

reach their destination.

When using delta method in this environment, nodes can lead to false conjecture of

what exactly sender has transmitted. For example, a node, at epoch 1, sends to its parent,

a delta message of ids at the first phase, then its parent creates a list of ids according

to the receiving message. At epoch 2, the same node sends a new delta message to its

parent, but the message does not reach its destination. The parent of this node now

deems that its child has not changed its ids from the previous epoch. Having epoch

3, the node sends another delta message with other plus and minus values. When its

parent receives the message, it makes the new list of ids, which is not correct. The same

problem can be created, also, at phase two. This is a drawback of delta method and its
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combination and the impact is also shown especially in experiment two, where pathloss

is increasing.

What there is concluded from experiments, is that, it is preferable to use the Full

Bloom Filter method instead of the Full Data method. By the Full Bloom Filter method,

nodes transmit less bits and the error percentage is lower than the Full Data method.

When the path loss increases, these two methods are equally satisfactory, but, by the

Full Bloom Filter method nodes send less bits (performance of Full Bloom Filter will

be greater in bigger networks with more than 100 nodes), which means, by extension,

less computation and less energy consumption. The Delta and the Full Delta methods

transmit much less bits than the other methods and can be used, when the accuracy of

final data is not very essential.

Moreover, with the option of nodes not sending their current measurements, when

being equal to the measurements of the previous epoch, the data payload of network

becomes less. This can be interpreted as, that nodes do not transmit data, so energy

consumption is becoming less.

We have concluded, that detection of duplicate values is vital in WSNs, when they can

influence our final data. It is mandatory to eliminate duplicates for our results in order

to be accurate and reliable. All other existing applications do not take into consideration

of duplicate values inside a network and assume that they do not exist. Nevertheless, by

this algorithm, we are able to detect in which area there is a duplicate value, and isolate

it.

7.2 Future Work

The work performed in the context of this thesis implementation can be extended and

neutralize message loss rate. This can be succeeded by having acknowledgments for each

packet transmitted. In other words, each node, that receives a packet, transmits an

acknowledgment to sender to let it know that it received the message. There will be

defined a timeout, by the time it expires, sender will re-transmit its packet, if it has not

received an acknowledgment for it.

Last but not least, with the ability to transmit measurements to more than one

parents, by dividing them into equal pieces according to the number of parents each node

has, we can manage to break large values into smaller pieces and limit the number of
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packets transmitted inside the network. By this, intermediate nodes will have less data to

calculate and execute queries. When we have more than one parents and use the Bloom

Filter method, nodes can send their bloom filter to all their parents aiming to minimize,

again, false results at the two first phases of our algorithm.
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