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Synopses over Streaming Data at Apache Flink

by Gkoutziouli Dimitra

Abstract

A growing number of applications demand algorithms and data structures that enable the
efficient processing of data sets with gigabytes to terabytes to petabytes. Massive amounts
of information that are generated continuously from numerous types of sources are called Big
Data. Big Data is data that contains greater variety arriving in increasing volumes and with
ever-higher velocity. Nowadays, many applications receive data in a streaming fashion way that
must be processed on the fly as it arrives. Thus, the use of data structures called Synopses, is
essential for managing such massive data, as handling large data sets is not often efficient to
work fully on them. Synopses summarize the data set and provide approximate responses to
queries.

One of the main families of synopses are sketches. A sketch of a large amount of data is
a small data structure that is able to calculate or approximate certain characteristics of the
original data. In this diploma thesis we focus on various streaming algorithms of sketches such
as Bloom Filter, Count-Min, Flajolet-Martin and AMS sketches.

We propose a parallel implementation of query registration of the above sketches to be
updated as more data arrives, insert dynamically new instances of these sketches in real-time
execution and compute several functions. These functions may estimate the cardinality of the
elements, the amount of distinct elements, or inform about the existence of an element in a
stream. In order to develop that, we used the Apache Flink framework. Flink is a distributed
streaming engine with high-throughput, low-latency and fault-tolerant computations over un-
bounded and bounded data streams.

First of all, we expound the theoretical background of the implemented algorithms and the
distributed framework. Then, we explicate the implementation of the code as we use a Kafka
connector, the transformations of Datastream API and finally the Queryable State feature of
Flink. Through that method, users query the most up-to-date values of the sketches while
other platforms can use this information as source.



Συνόψεις σε ροές δεδομένων στο Apache Flink

Γκουτζιούλη Δήμητρα

Περίληψη

΄Ενας μεγάλος αριθμός εφαρμογών απαιτεί αλγορίθμους και δομές δεδομένων που επεξεργάζον-

ται αποδοτικά σύνολα δεδομένων που απαρτίζονται από gigabytes σε terabytes μέχρι petabytes.
Tεράστιες ποσότητες πληροφοριών που παράγονται συνεχώς από διάφορες πηγές ονομάζονται
Μεγάλα Δεδομένα. Τα Μεγάλα Δεδομένα είναι δεδομένα που περιέχουν τεράστια ποικιλία, φθά-
νουν σε αυξανόμενες ποσότητες και με μεγάλη ταχύτητα. Σήμερα, πολλές εφαρμογές λαμβάνουν
δεδομένα σε συνεχείς ροές δεδομένων οι οποίες πρέπει να επεξεργάζονται αμέσως κατά την άφιξή

τους. ΄Ετσι, η χρήση δομών δεδομένων που ονομάζονται Συνόψεις, είναι απαραίτητη για τη διαχείρ-
ιση πληθώρας δεδομένων, καθώς δεν είναι αποτελεσματική η μαζική διαχείρηση τους. Οι συνόψεις
συνοψίζουν το σύνολο δεδομένων και παρέχουν προσεγγιστικές απαντήσεις σε επερωτήματα.
Μια από τις κύριες οικογένειες των συνόψεων είναι τα σκίτσα. ΄Ενα σκίτσο μιας μεγάλης

ποσότητας δεδομένων είναι μια μικρή δομή δεδομένων που μπορεί να υπολογίσει ή να προσεγγίσει

ορισμένα χαρακτηριστικά των αρχικών δεδομένων. Στην παρούσα διπλωματική εργασία εστιάζουμε
στους διάφορους αλγορίθμους ροών σκίτσων όπως το Bloom Filter, το Count-Min, το Flajolet-
Martin και το AMS σκίτσο.
Προτείνουμε μια παράλληλη υλοποίηση της εγγραφής επερωτήσεων των παραπάνω σκίτσων τα

οποία θα ενημερώνονται καθώς φτάνουν όλο και περισσότερα δεδομένα, θα εισάγονται δυναμικά
νέα στιγμιότυπα των παραπάνω σκίτσων κατά την εκτέλεση σε πραγματικό χρόνο και θα υπ-

ολογίζονται διάφορες συναρτήσεις. Αυτές οι συναρτήσεις μπορούν να εκτιμήσουν το πλήθος των
στοιχείων, την ποσότητα διακριτών στοιχείων ή να ενημερώσουν για την ύπαρξη ενός στοιχείου
σε μία ροή. Για την υλοποίηση του παραπάνω εγχειρήματος, χρησιμοποιήσαμε την πλατφόρμα
Apache Flink. Το Flink είναι ένας κατανεμημένος συνεχούς ροής μηχανισμός με υψηλό ρυθμό
επεξεργασίας δεδομένων, χαμηλό χρόνο καθυστέρησης και αντοχή σε υπολογιστικά σφάλματα σε
οριοθετημένες ή και μη ροές δεδομένων.
Αρχικά, παρουσιάζουμε το θεωρητικό υπόβαθρο των εφαρμοζόμενων αλγορίθμων και της

κατανεμημένης πλατφόρμας. Στη συνέχεια, εξηγούμε την υλοποίηση του κώδικα καθώς χρησι-
μοποιούμε ως πηγή δεδομέων το Apache Kafka, τους μετασχηματισμούς της διεπαφής Datastream
του Flink και τελικά, το χαρακτηριστικό Queryable State του Flink. Μέσω αυτής της μεθόδου,
οι χρήστες ζητούν να μάθουν τις πιο ενημερωμένες τιμές των σκίτσων και επιπλέον αυτή η πληρο-

φορία μπορεί να χρησιμοποιηθεί ως πηγή σε άλλες πλατφόρμες.
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Chapter 1

Introduction

A growing number of applications demand algorithms and data structures that enable the
efficient processing of data sets with gigabytes to terabytes to petabytes. Massive amounts
of information that are generated continuously from numerous types of sources (e.g. financial
transactions, sensor networks) are called Big Data. Big Data is a term that describes the large
volume of either structured or unstructured data that inundates a business on daily. Big Data is
data that contains greater variety arriving in increasing volumes and with ever-higher velocity.
This is known as the three Vs. When Big Data combine with high-powered analytics can lead
to better managing decisions and strategic business moves. Also in many applications, (e.g.
network traffic monitoring, query at a search engine) data arrives in a streaming fashion way
and must be processed on the fly.

The data structures used by the algorithms to represent the input data stream is merely
a summary, as known as synopses. The use of synopses is essential for managing the massive
data that arises daily in business as handling such large data sets it is not often efficient to
work fully on them. Instead, it is much more convenient to build a synopsis, and then use
this synopsis to process the data. Synopses summarize the data set and provide approximate
responses to queries. A synopsis data structure may resides in main memory providing for fast
processing of queries and of data structure updates by avoiding disk accesses altogether or may
resides on the disks and can be swapped in and out of memory with minimal disk accesses.
Moreover, a synopsis data structure leaves space in the memory for other data structures and
more importantly it leaves space for other processing. So, a synopsis data structure has a
minimal impact on the overall cost of the system. Due to its importance in applications there
are a number of synopsis data structures in the literature and in existing systems. The four
main families of synopses are random samples, histograms, wavelets, and sketches.

In this diploma thesis we focus on various streaming algorithms of sketches such as Bloom
Filters, Count-Min, Flajolet-Martin and AMS sketches. We typically implement a query regis-
tration of the above sketches to be updated as more data arrives, insert new instances of these
sketches in real-time execution and compute several functions. These functions may estimate
the cardinality of the elements, the amount of distinct elements, or inform about the existence
of an element in a stream.

In order to propose a scalable parallel implementation of synopses, we use Apache Flink
framework. Apache Flink is an open source framework and distributed processing engine for
large scale computations over unbounded and bounded data streams. Flink provides APIs for
both Stream and Batch processing, and libraries for relational queries, complex event processing
scenarios, graph processing and machine learning. In Flink, programs can be written in Java,
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Scala, Python and SQL, and can be deployed in local, cluster or cloud mode.

1.1 Thesis Outline

In Chapter 1 we talk about Big Data and their semantic use in a business on a day-to-day
basis. Then, we suggest Synopses, a flexible data structure, for managing the massive data
that arise in modern information management scenarios.

In Chapter 2 we set the definition of streaming algorithms and their use cases. Then, in
section 2.1 we present the essential use of sketches as they have been successfully applied to web
data compression, approximate query processing in databases, network measurement and signal
processing/acquisition. In the following sections we analyze commonly used types of sketches,
specifically we set the parameters of each technique, we exhibit how each algorithm works and
finally we list their advantages and the scenarios of using them. In section 2.2, 2.3, 2.4, 2.5 we
make known the Count-Min, Bloom Filter, Flajolet Martin and AMS sketch respectively.

In Chapter 3 we give an introduction of Apache Flink framework. In section 3.1 we per-
form the dataflow programming model of streams and we emphasize on Flink’s characteristics
such as Time, Windows and Watermarks. In section 3.2 we describe how Flink programs are
executed in the distributed runtime environment. In section 3.3 we refer to DataStream API
for handling unbounded and bounded streams and in subsections 3.3.1 and 3.3.2 we elaborate
the transformations that are applied in data streams and we report on stateful operators and
the fault tolerance mechanism, correspondingly. In section 3.4 we expand Flink’s connectors
used as data sources and sinks and moreover in subsection 3.4.1 we detail the Kafka connector.
Finally, in section 3.5 we focus on the features let Flink to have a wide acceptance in real-time
analytics and applications.

In Chapter 4 we propose a distributed implementation of query registration in Apache
Flink. For the development phase, we use the DataStream API in Java to apply transformations
on unbounded data streams. In section 4.1 we analyze the use of Apache Kafka Connector as
source of data that our program manages. In section 4.2 we explain thoroughly the distributed
implementation of query registration. At last, in section 4.3 we point out the use of stateful
function and operator to store the necessary information while in subsection 4.3.1 we exploit
the Queryable State Feature of Flink to allow the user to query a job’s state from outside
Flink’s runtime environment.

In Chapter 5 we conduct several experiments to evaluate the performance of the parallel
implementation. In the first set of experiments, we discuss about the emerging results that we
ran locally. In the second set of experiments, we conduct experiments with different levels of
parallelism to evaluate the runtime and the throughput of our implementation.

In Chapter 6 we deduce the thesis by presenting the main conclusions, and suggest po-
tential directions for future work.
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Chapter 2

Sketches and Streaming Algorithms

In computer science, one technique to analyze Big Data is using streaming algorithms that
several times they have access to limited memory. Streaming algorithms [14] are algorithms
for processing data streams in only a few passes - typically just one- as the input is presented
as a sequence of items. Thereat, a streaming algorithm may produces an approximate answer
based on a summary or ”sketch” of the data stream in memory. Streaming algorithms have
several applications in networking such as monitoring network links for huge flows, counting
the number of distinct values, clustering summary, estimating the distribution of flow sizes,
getting insights of interest and so on.

2.1 Sketches

Sketch techniques [5] have become very popular over the past few years. A sketch of a
large amount of data is a small data structure that is able to calculate or approximate certain
characteristics of the original data. There are lots of types of sketches and the choice using
one of them depends on what the use tries to approximate and also on the nature of the data.
Sketches are mainly suitable for streaming data, in which massive quantities of data flow by and
the sketch summary must continually be updated quickly and compactly. These sketches are
much shorter, often exponentially, than the original data, however they retain crucial and useful
information, such as the number of distinct elements in the data set, the similarity between the
data elements etc.

The methods have been successfully applied to web data compression, approximate query
processing in databases, network measurement and signal processing/acquisition. Commonly
used data sketches include k-minimum value, hyper-log-log summaries, Bloom Filters, Count-
Min, Flajolet-Martin, AMS, dp-means or k-means clusters and the t-digest. Below we expand
the sketches that are used to our implementation for query registration.

2.2 Count-Min

The Count-Min sketch (CM sketch) is a sub-linear space data structure, introduced by
Muthukrishnan and Cormode in 2003 [4] and since then has been used in many applications and
has led to many extensions and variations. CM sketch summarizes large amounts of frequency
data based on probabilistic algorithms to estimate several types of queries on streaming data.
This sketch allows fundamental queries in data stream summary such as point, range, and inner
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product queries to be approximately answered very quickly. In addition, it can be applied to
solve several important problems in data streams such as finding quantiles, frequent items, etc.

This technique uses multiple hash functions, one for each column, to map events to frequen-
cies, but unlike a hash table uses only sub-linear space. Although, there’s always a possibility
of overcounting some events due to collisions. First of all, every cell in the CM sketch is initial-
ized to zero. When an event occurs, the event’s id is hashed over every column and each hash
function outputs a row value. As a result the counter at each resulting row-column combination
increases by one. In order to query an event, we take the minimum value of the event’s counter
among all the hash functions, as it is the closest candidate to give the correct result for the
query.

What is more, we model the data stream as a vector a[1 .. n] and the updates received at
time t are of the form (it, ct) which mean that the element a[it] has been incremented by ct.
The core of the data structure is a two dimensional array count[w,d] that stores the synopsis of
the original vector and which is used to report approximate results of queries. Hence the total
space requirement of the data structure is (w × d). Therefore, we have d pairwise-independent
hash functions h1 .. hd that hash each of the inputs to the range (1 .. w). When an update
(it, ct) comes for the stream, we hash a[it] through each of the hash functions h1 ... hd and
increment each of the w entries in the array that they hash to (Figure 2.1 [4]). For the purpose
of getting the approximate value of an element a[i] of the vector a, it is computed the minimum
of all values in each of the d cells of count where i hashes to.

Figure 2.1: The processing of the updates in a Count-Min sketch

Working on sub-linear space implies that we do not get to store or see all data so we do not
get to deliver an accurate answer to some queries. We rely on some approximation techniques
that deliver an accuracy with a reasonably high probability bound. The data structure is
parameterized by two factors ε and δ, where the error in answering the query is within a factor
of ε with probability δ. So these parameters can be modified based on the space that is available
and accordingly the accuracy of results that the data structure serves.
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2.3 Bloom Filter

Bloom Filter is a space-efficient probabilistic data structure, introduced by Burton Howard
Bloom in 1970 [2], that is used to test whether an element is a member of a set. The answer
is that an element either definitely is not in the set or may be in the set. So, false positive
matches are possible, but false negatives are not. Elements can be added to the set, but not
removed and the more elements that are added to the set, the larger the probability of false
positives.

The base data structure of a Bloom Filter is a Bit Vector. First of all, all the m bits of
the bit array are set to zero. There are also k different hash functions, each of them maps an
element to one of the m bit positions. The more hash functions are used, the slower the Bloom
Filter is, and the quicker it fills up. However, if there are too few it may suffer too many false
positives. In order to add an element, it must be fed to the hash functions to get k bit positions,
and set the bits at these positions to 1. To test if an element is in the set, it must be fed to
the hash functions to get k bit positions. If any of the bits at these positions is 0, the element
definitely does not exist in the set. If all are 1, then it is possible that the element exists in the
set.

In figure 2.2 [15] is illustrated a Bloom Filter with three elements ’x’,’y’ and ’z’. It consists
of 18 bits and uses 3 hash functions. In this example, the colored arrows point to the bits that
the elements of the set are mapped to. In coclusion, the element ’w’ definitely is not in the set,
since it hashes to a bit position containing 0.

Figure 2.2: Bloom Filter testing if the element ’w’ is member of the set

Wherefore a Bloom Filter is based on hash functions, requires much less space than the
actual size of the items that must be stored and checked. It has constant time complexity for
both adding elements and asking if they exist in the set. For these hash functions, collisions
in the outputs do not really matter too much, as long as they are reasonably rare. It is more
important for the outputs to be evenly and randomly distributed and, of course, it is desirable
the hash functions to be fast. Content distribution networks use them to avoid caching one-hit
wonders, files that are seen only once. Web browsers use them to check for potentially harmful
URLs.
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2.4 Flajolet Martin

The Flajolet–Martin algorithm was introduced by Philippe Flajolet and G. Nigel Martin
in their 1984 article ”Probabilistic Counting Algorithms for Data Base Applications” [8]. It
is about an algorithm that approximates the number of distinct elements in a stream with a
single pass, as known as the count-distinct problem. It uses space-consumption logarithmic in
the maximal number of possible distinct elements in the stream.

Suppose that there are random hash function that act on strings and generate integers. It
is expected that:

• 1/2 of them have their binary representation end in 0 (i.e. divisible by 2),

• 1/4 of them have their binary representation end in 00 (i.e. divisible by 4)

• 1/8 of them have their binary representation end in 000 (i.e. divisible by 8)

• and in general, 1/2n of them have their binary representation end in 0n.

If the hash function generated an integer ending in 0m bits (and it also generated integers
ending in 0m−1 bits, 0m−2 bits, ..., 01 bits), intuitively, the number of unique strings is around
2m. This algorithm maintains 1 bit for each 0i seen. The output of the algorithm is based on
the maximum of consecutive 0i seen.

Here is a simple explanation of how the algorithm works [1]. Firstly, is creates a bit vector
(bit array) of sufficient length L, such that 2L >n, the number of elements in the stream.
Usually a 64-bit vector is sufficient since 264 is quite large for most purposes. The i-th bit in
this vector represents whether we have seen a hash function value whose binary representation
ends in 0i. So we initialize each bit to 0. Then, a random hash function is generated and maps
input, usually strings, to natural numbers. Each word of the input, it is hashed and determined
the number of trailing zeros. If the number of trailing zeros is k, the k-th bit is set to 1 in the
bit vector. Once input is exhausted, the index of the first 0 in the bit array, called R. Then,
the number of unique words is calculated as 2R/φ, where φ equals to 0.77351. A proof for this
can be found in the original paper listed in the reference section. The standard deviation of R
is a constant: σ(R)=1.12. This implies that our count can be off by a factor of 2 for 32% of the
observations, off by a factory of 4 for 5% of the observations, off by a factor of 8 for 0.3% of the
observations and so on. In figure 2.3 [1] is illustrated an example of using the FM algorithm for
the stream S= 1,3,2,1,2,3,4,3,1,2,3,1. The hash function that is used is h(x) = (6x+ 1) mod 5
and it is assumed that the absolute value of the bits equals to five. So, the results are that R
= max(r(a)) = 5 and the number of distinct elements equals to N=2R=25=32.
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Figure 2.3: Count the number of distinct elements using the FM algorithm

To improve the accuracy of the FM algorithm, we apply the Averaging method by using
multiple hash functions and using the average R instead. Another strategy is to apply the
Bucketing Averages that are susceptible to large fluctuations. So using multiple buckets of
hash functions from the above step and using the median of the average R, giving fairly good
accuracy. In conclusion, accuracy of this algorithm can be tuned by using appropriate number
of hash functions in the averaging and bucketing steps. The more hash functions are used the
higher accuracy is achieved, but implies higher computation cost.

The algorithm approximates the number of unique elements, along with a standard deviation
σ, which can then be used to determine bounds on the approximation with a desired maximum
error ε, if needed. If the stream contains n elements with m of them unique, this algorithm runs
in O(n) time and needs O(log(m)) memory, on the contrary with the brute-force algorithm that
needs O(m) memory. It was, also, observed that this algorithm is quite sensitive to the hash
function parameters. In 2007 the HyperLogLog algorithm splits the multiset into subsets and
estimates their cardinalities, then it uses the harmonic mean to combine them into an estimate
for the original cardinality.

2.5 AMS

The AMS sketch was introduced in 1996 by Noga Alon, Yossi Matias, and Mario Szegedy
[13] and is used to approximate computation of frequency moments. It was proposed to estimate
the value of F2 of the frequency vector, the sum of the squares entries of a vector defined by a
stream of updates. This quantity is naturally related to the Euclidean norm of the vector, and
so has many applications in high-dimensional geometry, in data mining and machine learning
or anything else that use vector representations of data. The data structure maintains a linear
projection of the stream, modeled as a vector, with a number of randomly chosen vectors that
are defined implicitly by simple hash functions, and so do not have to be stored explicitly. The
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accuracy of the estimating result depends according to sketch’s size. The summary is a linear
projection and so it can be updated flexibly and also the sketches can be combined by addition
or subtraction. Most directly, F2 equates to the self-join size of the relation whose frequency
distribution on the join attribute is f (for an equi-join). The algorithm works as follows:

• Pick m random hash function h1, h2, ..., hm from a 4-wise independent hash family
H = {h : [n]→ { −1√

m
, +1√

m
}}

• Let Aij = hi(j), and compute yi =
∑

j Aijxj, for all i = 1, 2, .., m.

• Output
∑

i yi
2 which is essentially ||Ax||22.

Now compute the mean and variance of
∑

i yi
2.

E[
∑

i yi
2] = mE[yi

2] = ... = ||x||22 = F2.

Var(
∑

i yi
2) = Var(||Ax||22) = ... ≤ 2F 2

2 = O(||x||24/m)

Using Chebyshev’s inequality gives the JL guarantee

P (||Ax||22 − ||x||22 ≥ ε||x||22) ≤
V ar(

∑
i yi

2)

ε2||x||24
= O( 1

ε2m
) ≤ 1

4

where the last inequality holds for m = O( 1
ε2

). Via the Chebyshev and Chernoff bounds, we
get a value that is within a factor (1 + ε) of F2 with probability at least 1− δ.

There are two ways to get a high-probability bound with dependence log 1
δ
. The first method

is to use the “median of mean” trick and the second one is to use higher moments’ bound.
The AMS sketch can also be applied to estimate the inner-product between a pair of vectors.

This use of the summary to estimate the inner product of vectors was described in a follow-up
work by Alon, Matias, Gibbons and Szegedy, and the analysis was similarly generalized to the
fast version by Cormode and Garofalakis. The ability to capture norms and inner products
in Euclidean space means that the AMS sketch turned out to be highly flexible. It is at the
heart of estimation techniques for a variety of other problems which are all of direct relevance
to Approximate Query Processing as well.

16



Chapter 3

Apache Flink

Apache Flink [10] is an open source framework and distributed processing engine for stateful
computations over unbounded and bounded data streams that can perform computations at
in-memory speed and at any scale. Flink was formerly known as “Stratosphere”, a research
project conducted by three universities in Berlin. In December 2014, it was accepted as an
Apache top-level project. Flink provides multiple APIs at different levels of abstraction and
offers dedicated libraries for common use cases. Apache Flink is the next generation Big Data
tool also known as 4G of Big Data. Flink’s programs can be written in Java, Scala, Python
and SQL, and can be deployed in local, cluster or cloud mode. Flink applications can process
recorded or real-time streams. Apache Flink is a distributed system and requires compute
resources in order to execute applications. Flink integrates with all common cluster resource
managers such as Hadoop YARN, Apache Mesos, and Kubernetes but can also be setup to run
as a stand-alone cluster. Flink’s architecture illustrated in Figure 3.1 [3]

Figure 3.1: Architecture of Apache Flink

Flink provides three layered APIs ( Figure 3.2 [16]). Each API offers a different trade-off
between conciseness and expressiveness and targets different use cases.

ProcessFunctions are the most expressive function interfaces that Flink offers. Flink pro-

17



vides ProcessFunctions to process individual events from one or two input streams or events
that were grouped in a window. ProcessFunctions provide fine-grained control over time and
state.

The DataStream API, which is thoroughly analyzed in section 3.3, provides primitives for
many common stream processing operations, such as windowing, record-at-a-time transforma-
tions, and enriching events by querying an external data store.

Flink features two relational APIs, the Table API and SQL. Both APIs are unified APIs
for batch and stream processing. The Table API and SQL leverage Apache Calcite for parsing,
validation, and query optimization. They can be seamlessly integrated with the DataStream
and DataSet APIs and support user-defined scalar, aggregate, and table-valued functions.

Figure 3.2: Layered APIs of Apache Flink

Moreover, Flink features several libraries for common data processing use cases. The li-
braries are typically embedded in an API and not fully self-contained and they are developing
below:

- Complex Event Processing (CEP). Flink’s CEP library provides an API to specify
patterns of events and the CEP library is integrated with Flink’s DataStream API. Applications
for the CEP library include network intrusion detection, business process monitoring and fraud
detection.

- DataSet API. The DataSet API is Flink’s core API for batch processing applications.
The primitives of the DataSet API include map, reduce, (outer) join, co-group, and iterate.
All operations are backed by algorithms and data structures that operate on serialized data in
memory and spill to disk if the data size exceed the memory budget.

- Table API & SQL. The Table API is a language-integrated query API for Scala and Java
that allows the composition of queries from relational operators such as selection, filter, and
join in a very intuitive way. Flink’s SQL support is based on Apache Calcite which implements
the SQL standard.

- Gelly. Gelly is a library for scalable graph processing and analysis. Gelly is implemented
on top of and integrated with the DataSet API. Hence, it benefits from its scalable and robust
operators. Gelly features built-in algorithms, such as label propagation, triangle enumeration,
and page rank, but provides also a Graph API that eases the implementation of custom graph
algorithms.

- FlinkML. FlinkML is the Machine Learning (ML) library for Flink. It supports many
algorithms such as supervised learning and unsupervised learning, recommendation, data pre-
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processing techniques and more. FlinkML has a feature called ML-pipelines, which provides
the ability to chain different transformers and predictors in a type-safe manner.

Apache Flink is the powerful open source platform which can address various types of
requirements efficiently such as Batch Processing, Interactive processing, Real-time stream
processing, Graph Processing, Iterative Processing and In-memory processing. In the following
sectors, we focus on handling streaming data, so we explicate the dataflow of Apache Flink,
the distributed runtime environment and the operators of the DataStream API.

3.1 Dataflow Programming Model

The basic building blocks of Flink programs are streams and transformations. Conceptually
a stream is a never-ending flow of data records and a transformation is an operation that
takes one or more streams as input and produces one or more output streams as a result.
When executed, Flink programs are mapped to streaming dataflows, consisting of streams and
transformation operators. Each dataflow starts with one or more sources and ends in one or
more sinks. The source defines where the input data comes from (e.g Apache Kafka). The
sink defines where the output result is stored (e.g Apache Cassandra). An operator applies
transformations into streams (e.g Map) and the resulted streams produced by data sources,
sinks or operators. The dataflows resemble arbitrary directed acyclic graphs (DAGs) as this
one in Figure 3.3.

Figure 3.3: A directed acyclic graph of a dataflow

For example, in Figure 3.4 [6] we see the streaming dataflow of a Flink program written in
the DataStream API. In the beginning, the program uses a data source connector to consume
data from a topic of Apache Kafka. Then, a Map operator transforms the initial data stream
of strings to events, by using a parse function. The next operator groups by the data stream
according to the key “id,” and then applies every 10 seconds an aggregation function to the
events with the same key. Finally, a data sink is used to store the results of the aggregation
function to rolling files in the system.
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Figure 3.4: Example of a streaming dataflow

Programs in Flink are inherently parallel and distributed. During execution, a stream has
one or more stream partitions and each operator has one or more operator subtasks. The
operator subtasks are independent of one another and execute in different threads and possibly
on different machines or containers. The number of operator subtasks is the parallelism of
that particular operator. The parallelism of a stream is always that of its producing operator.
Different operators of the same program may have different levels of parallelism. In Figure 3.5
[6] it is shown the parallelism view of the previous example.
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Figure 3.5: Example of a parallel streaming dataflow

Notion of Time
An important aspect of streaming applications is the measurement of time. Flink supports

three different notions of time:

i Event time is the time when an event was created and it is usually described by an event
timestamp. Event time programs must specify how to generate Event Time Watermarks,
which is the mechanism that signals progress in event time.

ii Processing time refers to the system time of the machine that is executing the respective
time-based operation. When a streaming program runs on processing time, all time-based
operations (like time windows) will use the system clock of the machines that run the
respective operator.

iii Ingestion time is the time when an event enters the Flink. At the source operator each
record gets the source’s current time as a timestamp, and time-based operations (like
time windows) refer to that timestamp. Ingestion time sits conceptually in between event
time and processing time. Compared to processing time, it is slightly more expensive,
but gives more predictable results.

Windows
Windows split the stream into “buckets” of finite size, over which we can apply computa-

tions. There are the Keyed Windows for the keyed streams using the keyBy operator and the
Non-Keyed Windows for the non-keyed ones. A window is created as soon as the first element
that should belong to this window arrives, and the window is completely removed when the
time (event or processing time) passes its end timestamp plus the user-specified allowed late-
ness. There is, also, the window assigner which defines how elements are assigned to windows
such as tumbling windows, sliding windows, session windows and global windows.
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Watermarks
The mechanism of Flink to measure progress in time-based operations is called watermarks.

Watermarks flow as part of the parallel streaming dataflow along with stream events and carry
a timestamp t. A Watermark(t) declares that event time has reached time t in that stream,
meaning that there should be no more elements from the stream with a timestamp t’ ≤ t.
When a subtask of an operator receives a watermark, it advances its internal clock according to
the watermark’s timestamp. Watermarks are crucial for out-of-order streams where the events
are not ordered by their timestamps. In general a watermark is a declaration that by that point
in the stream, all events up to a certain timestamp should have arrived.

3.2 Distributed Runtime Environment

For distributed execution, Flink chains operator subtasks together into tasks. Each task
is executed by one thread. Chaining operators together into tasks is a useful optimization
as it reduces the overhead of thread-to-thread handover and buffering, and increases overall
throughput while decreasing latency. The sample dataflow in the Figure 3.5 is executed with
five subtasks, and hence with five parallel threads.

There are two types of processes that consists of the Flink’s runtime illustrated in Figure 3.6
[7]. Firstly, there are the JobManagers, also called masters, which coordinate the distributed
execution. They schedule tasks, coordinate checkpoints, coordinate recovery on failures, etc.
There is always at least one Job Manager. A high-availability setup will have multiple Job-
Managers, one of which is always the leader, and the others are standby. Secondly, there are
the TaskManagers, also called workers, which execute the tasks (or more specifically, the
subtasks) of a dataflow, and buffer and exchange the data streams. Same again there must
always be at least one TaskManager. Each Task Manager is a separate JVM process and it is
composed by a number of task slots.

They either can be started directly on the machines as a standalone cluster, in containers, or
managed by resource frameworks like YARN or Mesos. TaskManagers connect to JobManagers,
announcing themselves as available and are assigned work.

There is also the Job Client which is the starting point of the program execution and it
is not a part of the runtime. The job client creates and sends the streaming dataflow to the
Job Manager for the execution in the distributed environment. During the execution, the client
receives statistics and results from the Job Manager.

3.3 DataStream API

DataStream is the core API for handling unbounded and bounded streams. This API pro-
vides many common stream processing operators which we will elaborate on the subsection
3.3.1. DataStream API [9] supports two types of broadcast streams, streams that are broad-
casted to the downstream parallel subtasks of an operator and streams that are available among
the parallel subtasks. All of the above operators can be stateful and fault tolerant with the
appropriate use of state data structures. Flink has a feature called Queryable State that allows
the user to query the state from outside of the distributed environment. Furthermore, DataS-
tream API is compatible with Apache Storm and therefore allows the reuse of Storm code (e.g
Storm topologies, Spouts & Bolts).
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Figure 3.6: Distributed Architecture of the runtime environment

3.3.1 DataStream Transformations

In this subsection we describe the anatomy of DataStream API programs along with specific
operators that we used in the implementation of the code. Data streams are represented by spe-
cial classes (e.g DataStream<T>, KeyedStream<T, KEY>), which are immutable collections
of data.

The first step in a Flink program is to create a StreamExecutionEnvironment. It is able to
obtain automatically obtain the execution environment from the getExecutionEnvironment()
function.

1 StreamExecutionEnvironment env = StreamExecutionEnvironment .
getExecutionEnvironment ( ) ;

Next a source is created that reads from a Kafka topic or a text file:

1 DataStream<T> data = env . addSource (new FlinkKafkaConsumer08 <>( . . . ) ) ) ;
2 DataStream<Str ing> t ex t = env . readTextFi l e ( ” f i l e : /// path/ to / f i l e ” ) ;

Then, there are plenty of transformations which programs can combine into sophisticated
dataflow topologies. We present those we use in our implementation.

Map Transformation: Takes one element (Datastream) and produces one element (Datas-
tream). Here is an example of a map function that doubles the values of the input stream.

1 DataStream<Integer> dataStream = // . . .
2 dataStream . map(new MapFunction<Integer , Integer >() {
3 @Override
4 pub l i c I n t e g e r map( I n t e g e r va lue ) throws Exception {
5 re turn 2 ∗ value ;
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6 }
7 }) ;

FlatMap Transformation: Takes one element (Datastream) and produces zero, one, or more
elements (Datastream). Here is an example of flatmap function that splits sentences to words

1 dataStream . flatMap (new FlatMapFunction<Str ing , Str ing >() {
2 @Override
3 pub l i c void flatMap ( St r ing value , Co l l e c to r<Str ing> out )
4 throws Exception {
5 f o r ( S t r ing word : va lue . s p l i t ( ” ” ) ) {
6 out . c o l l e c t ( word ) ;
7 }
8 }
9 }) ;

KeyBy Transformation: Logically partitions a stream into disjoint partitions. All records
with the same key are assigned to the same partition. Internally, keyBy() is implemented with
hash partitioning. There are different ways to specify keys. This transformation returns a
KeyedStream, which is, among other things, required to use keyed state.

1 dataStream . keyBy ( ”someKey” ) // Key by f i e l d ”someKey”
2 dataStream . keyBy (0) // Key by the f i r s t element o f a Tuple

Connect Transformation: ”Connects” two data streams retaining their types. Connect
allowing for shared state between the two streams.

1 DataStream<Integer> someStream = // . . .
2 DataStream<Str ing> otherStream = // . . .
3 ConnectedStreams<Integer , Str ing> connectedStreams = someStream . connect (

otherStream ) ;

CoFlatMap Transformation: Similar to flatMap on a connected data stream.

1 connectedStreams . flatMap (new CoFlatMapFunction<Integer , Str ing , Str ing
>() {

2

3 @Override
4 pub l i c void flatMap1 ( I n t e g e r value , Co l l e c to r<Str ing> out ) {
5 out . c o l l e c t ( va lue . t oS t r i ng ( ) ) ;
6 }
7

8 @Override
9 pub l i c void flatMap2 ( St r ing value , Co l l e c to r<Str ing> out ) {

10 f o r ( S t r ing word : va lue . s p l i t ( ” ” ) ) {
11 out . c o l l e c t ( word ) ;
12 }
13 }
14 }) ;

ProcessFunction: Transforms a DataStream or a KeyedStream given a ProccessFunction.
The ProcessFunction can be thought of as a FlatMapFunction with access to keyed state and
timers.
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1 stream . keyBy ( . . . ) . p roce s s (new MyProcessFunction ( ) )

Next, the output results must be stored to an outside system by creating a sink. DataStream
API has a variety of data sink functions.

1 writeAsText ( S t r ing path )
2 pr in t ( )

Finally, when the program is completed must trigger the program execution by calling execute()
on the StreamExecutionEnvironment.

1 env . execute ( Job name) ;

3.3.2 State & Fault Tolerance

Streaming applications often require data structures to store intermediate results of their
computations. Stateful functions and operators store data across the processing of individual
elements, and the information that each operator remembers is called state. Flink provides
in-core data structures for stateful operations, that are scoped per parallel subtask (e.g figure
3.5 Map[1]) or per key attributes from the data records (e.g 3.4 keyBy(“id”)). Flink provides
different state backends that specify how and where state is stored. State can be located on
Java’s heap or off-heap. Depending on the state backend, Flink can also manage the state for
the application.

There are two basic kinds of state in Flink: Keyed State and Operator State. Keyed
State is always relative to keys and can only be used in functions and operators on a Keyed-
Stream. With Operator State (or non-keyed state), each operator state is bound to one parallel
operator instance. Keyed State and Operator State exist in two forms: managed and raw.
Managed State is represented in data structures controlled by the Flink runtime, in contrast
Raw State is state that operators keep in their own data structures and when checkpointed,
they only write a sequence of bytes into the checkpoint so Flink knows nothing about the state’s
data structures and sees only the raw bytes.

We used managed keyed state in our implementation and more specifically we used the
ValueState<T>which is a type of state that keeps a value that can be updated and retrieved.
To get a state handle, we had to create a StateDescriptor. This holds the name of the state
the type of the values that the state holds, and possibly a user-specified function. In our
case we used the ValueStateDescriptor. Although, state is accessed using the RuntimeContext,
so it is only possible in rich functions in order to have access in the four methods: open,
close, getRuntimeContext, and setRuntimeContext. The RuntimeContext that is available in
a RichFunction use the method getState(ValueStateDescriptor<T>) for accessing state.

The queryable state feature of Flink allows you to access state from outside of Flink during
runtime. The Queryable State feature consists of three main entities:

1 The QueryableStateClient, which runs outside the Flink cluster and submits the user
queries.

2 The QueryableStateClientProxy, which runs on each TaskManager and is responsible
for receiving the client’s queries, fetching the requested state from the responsible Task
Manager on his behalf, and returning it to the client.
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3 The QueryableStateServer which runs on each TaskManager and is responsible for serving
the locally stored state.

The client connects to one of the proxies and sends a request for the state associated with a
specific key, k. The only requirement to initialize the client is to provide a valid TaskManager
hostname and the port where the proxy listens. In order for a state to be visible to the outside
world, it needs to be explicitly made queryable by using either a QueryableStateStream or the
stateDescriptor.setQueryable(String queryableStateName) method.

Apache Flink offers a fault tolerance mechanism to consistently recover the state of data
streaming applications. The mechanism ensures that even in the presence of failures, the
program’s state will eventually reflect every record from the data stream exactly once. The
fault tolerance mechanism continuously draws consistent snapshots of the distributed data
stream and operator state. These snapshots act as consistent checkpoints to which the system
can fall back in case of a failure. For streaming applications with small state, these snapshots
are very light-weight and can be drawn frequently without much impact on performance.

In case of a program failure (due to machine or network or software failure), Flink stops the
distributed streaming dataflow. The system then restarts the operators and resets them to the
latest successful checkpoint. The input streams are reset to the point of the state snapshot.
Any records that are processed as part of the restarted parallel dataflow are guaranteed to not
have been part of the previously checkpointed state.

3.4 Connectors

Connectors provide code for interfacing with various third-party systems. Some of the
supporting connectors of Flink are: Apache Kafka (source/sink), Apache Cassandra (sink),
Amazon Kinesis Streams (source/sink), Elasticsearch (sink), Hadoop FileSystem (sink). In our
implementation we use a Kafka Connector in order to read from Kafka topics the data inputs
and the requests. Apache Kafka is a distributed, high-throughput message queuing system
designed for making streaming data available to multiple data consumers. The Flink Kafka
Consumer integrates with Flink’s checkpointing mechanism to provide exactly-once processing
semantics.

3.4.1 Apache Kafka Connector

Apache Kafka [11] makes the streaming data durable by persisting incoming messages on
disk using a log data structure. Typical installations of Flink and Kafka start with event
streams being pushed to Kafka, which are then consumed by Flink jobs. Flink integrates with
Kafka in a way that guarantees exactly-once delivery of events, does not create problems due
to backpressure, has high throughput, and is easy to use for application developers.

What is more, in Kafka there are topics. A topic is a handle to a logical stream of data,
consisting of many partitions. Partitions are subsets of the data served by the topic that reside
in different physical nodes. Services that put data into a topic are called producers and a service
that reads data from a topic is called a consumer. Moreover, there is the Kafka broker, a service
that is installed on the node that contains the partition and allows consumers and producers to
access the data of a topic. Each message within a partition is assigned with a unique id, called
“message offset”, which represents a unique, increasing logical timestamp within a partition.
This offset allows consumers to request messages from a certain offset.
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When the user creates a Kafka topic, has to specify the number of partitions in order to
be assigned to Flink’s parallel task instances. When there are more Flink tasks than Kafka
partitions, some of the Flink consumers will just idle and they won’t read any data. Although
when there are more Kafka partitions than Flink tasks, Flink consumer instances will subscribe
to multiple partitions at the same time (Figure 3.7 [12])

Figure 3.7: Kafka partitions assigned to Flink workers

The case that Kafka partitions equal to Flink parallelism is ideal since each consumer takes
care of one partition. If the messages are balanced between partitions, the work will be evenly
spread across Flink operators. Flink’s Kafka consumer is called FlinkKafkaConsumer and
provides access to one or more Kafka topics.

1 P r o p e r t i e s p r o p e r t i e s = new P r o p e r t i e s ( ) ;
2 p r o p e r t i e s . s e tProper ty ( ” boots t rap . s e r v e r s ” , ” l o c a l h o s t :9092 ” ) ;
3 p r o p e r t i e s . s e tProper ty ( ” zookeeper . connect ” , ” l o c a l h o s t :2181 ” ) ;
4 p r o p e r t i e s . s e tProper ty ( ”group . id ” , ” t e s t ” ) ;
5 DataStream<Str ing> stream = env
6 . addSource (new FlinkKafkaConsumer<>(” t o p i c ” , new SimpleStringSchema ( ) ,

p r o p e r t i e s ) ) ;

We use the JsonDeserializationSchema (and JSONKeyValueDeserializationSchema) which
turns the serialized JSON into an ObjectNode object, from which fields can be accessed using
objectNode.get(”field”).as(Int/String/...)(). The KeyValue objectNode contains a “key” and
“value” field which contain all fields, as well as an optional “metadata” field that exposes the
offset/partition/topic for this message.

Flink’s Kafka Producer is called FlinkKafkaProducer and allows writing a stream of records
to one or more Kafka topics.

1 DataStream<Str ing> stream = . . . ;
2 FlinkKafkaProducer<Str ing> myProducer = new FlinkKafkaProducer<Str ing >(
3 ” l o c a l h o s t :9092 ” , // broker l i s t
4 ”my−t o p i c ” , // t a r g e t t o p i c
5 new SimpleStringSchema ( ) ) ; // s e r i a l i z a t i o n schema
6 stream . addSink ( myProducer ) ;

Flink’s Kafka connectors provide some metrics through Flink’s metrics system to analyze
the behavior of the connector. The producers export Kafka’s internal metrics through Flink’s
metric system for all supported versions. The consumers export all metrics starting from Kafka
version 0.9.
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3.5 The Importance of Apache Flink

Subsequently, we briefly describe some of the features that let Flink to have a wide accep-
tance in real-time analytics and applications:

1 Flink provides continuous streaming processing at event-driven applications and offers
stream and batch analytics. Flink’s engine, process data streams as true streams because
each record is processed immediately and independently as soon as it arrives. Further-
more, Flink’s expressive APIs and specific performance guarantees allow applications to
run 24/7 and processes data at lightning fast speed (hence also called as 4G of Big Data).

2 Benchmarks have proven that Flink can compete with other well-known distributed Big
Data platforms and that it can process millions of records per second. Users of Flink have
reported impressive performance numbers, such as applications running on thousands of
nodes that process multiple trillions of events per day. It has excellent performance with
low latency, high throughput and in-Memory computing.

3 Streaming applications often require some custom state to maintain intermediate results
of their computations. Flink uses a sophisticated late data handling and an asynchronous
lightweight incremental checkpoint mechanism that guaranties exactly-once state consis-
tency in case of a failure. It has fault tolerance as failure of hardware, node, software or
a process does not affect the cluster.

4 Flink scales to any use case and is able to support very large state and incremental
checkpointing. Finally, flexible deployment and the use of savepoints, make Flink the
appropriate tool to manage Big Data.
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Chapter 4

Implementation

In this chapter we describe the distributed implementation of query registration in Apache
Flink. For the development phase, we use the DataStream API in Java to apply transformations
on unbounded data streams. For data sources and sinks, we use Apache Kafka. During our
implementation, we took into consideration the original source code of the Count-Min, Bloom
Filter, AMS and FM algorithm. Each class that implements one of the previous algorithms,
among other methods, it includes an add(Integer value) function and an estimate(Integer value)
function, while the AMS class includes the estimateF2() function as well. However we use an
abstract class called Sketch that contains all the above functions of every kind of sketch by
inheritance. As it is easy to understand by the name of each method, the add function inserts
a value in a sketch structure and the estimate function computes the desirable result. In case
that sketch is an instance of AMS class, then the estimateF2() function computes the value
F2 of the frequency vector otherwise the function returns 0. In Figure 4.1 is illustrated the
dataflow of the inheritance of the classes. Each class that extends the abstract class Sketch has
a private field which references to an instance of one of the sub-classes.

Figure 4.1: Diagram of class inheritance

Consequently, in the first section we talk about the implementation of Kafka connector and

29



how it interacts with Flink when is used as a data source. In the second section we introduce a
parallel implementation for inserting values in the sketches after creating them. Moreover we
request either to create new sketches or to estimate the result each sketch has computed. In
the third section we feature the use of stateful operations and in the subsection we propose the
idea of requesting queries in real-time.

4.1 Evaluation Methodology using Kafka Connector

First of all, it’s worth mentioning that we use two different sources. The first one is used as
the data input namely a <key, value>pair. We may have lots of streams in our architecture, so
”key” refers to the stream id and ”value” refers to the element that we want to enter in a sketch
in order to compute some functions about it. The second one is used as a stream of requests of
type <key, value>pair again. As we mentioned before it is able to request for a new instance
of any sketch or for the estimated result of the wished value. So, ”key” refers once again to the
stream id that we want to deal with and ”value” refers both to the element and the action we
wish. This is accomplished as we split the String ”value” information. Summarizing, we have
a data input with the stream id and the according value and then we have a stream of requests
which must first create some sketches in order to insert the values into them and then estimate
the result.

To begin with, we built two Kafka Consumer and two Kafka Producer as it is pointed out
in subsection 3.4.1. They all belong to the same group-id.

1 kafkaConsumer input = new kafkaConsumer ( ” l o c a l h o s t :9092 ” , ” top i c Input ” ) ;
2 kafkaConsumer r e q u e s t s = new kafkaConsumer ( ” l o c a l h o s t :9092 ” , ” top icReques t s ” ) ;

Then, we set two variables with type of DataStream<ObjectNode>and we use the addSource
operator in order to attach a new source function and read the data input and the data requests
from Apache Kafka.

1 DataStream<ObjectNode> InputStream = env . addSource ( input . getFc ( ) ) ;
2 DataStream<ObjectNode> ReqStream = env . addSource ( r e q u e s t s . getFc ( ) ) ;

4.2 Distributed implementation of query registration

The first two variables that anyone has to set in a Flink program is the StreamExecutio-
nEnvironment and the setStreamTimeCharacteristic. In the first case we use the getExecu-
tionEnvironment() in order to create an execution environment that represents the context in
which the program is currently executed i.e. local or remote environment. In the second case
we use TimeCharacteristic.Ingestion for further details see the section 3.1. Thus, we set the
level of parallelism, although this parameter can be changed by the command line.

1 StreamExecutionEnvironment env = StreamExecutionEnvironment .
getExecutionEnvironment ( ) ;

2 env . se tSt reamTimeCharacter i s t i c ( T imeCharacte r i s t i c . Ingest ionTime ) ;
3 env . s e t P a r a l l e l i s m (4) ;
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As we have already set the two Kafka sources, we call the map operation for each of them.
Hence, each line of the stream within the data input is transformed to Tuple2<Integer,Integer>,
while each line of the stream within the requests is transformed to Tuple2 <Integer,String>.
After all, the ”keyBy” operator is called in order to sort the tuples by the stream id. The
operation ”name” terms the above transformations to ”DataInputMap” and ”RequestMap”
respectively when they appear at the streaming dataflow in Figure 4.2. Apache Flink Web
Dashboard creates the dataflow execution of the Flink program.

Figure 4.2: Streaming dataflow of the two Kafka Sources to map operators

In the sequel, we use the operator ”connect” with the results of the above DataStreams
as arguments. Then, we use a coflatMap transformation, named as ”ConnectData&Requests”
(Figure 4.2), which is worth to be described in detail. The flatMap transformation extends the
RichCoFlatMapFunction as we manage ConnectedStreams now and we want to have access to
the RuntimeContext in order to know the subtask id when we use a parallel implementation. So
the coFlatMap contains two flatMap that execute in parallel for every of the above DataStream.

In the RichCoFlatMapFunction, initially, we set a variable type of ArrayList<Sketch>which
stores a list with the available sketches. Furthermore, we set a variable type of HashMap<Integer,
ArrayList<Sketch>>wherein we store the stream id and the aforementioned list of sketches.

In particular at the first flatMap, we get the list of sketches of each stream id and for each
element we call the add(Integer value) function in the direction of entering the flowing values
across all kind of sketches from the list.

At the second flatMap the second node of the Tuple2, splits its information to two variables
by the comma delimiter. Now, there is the value and the act, which may be ”create a CM
sketch”, ”create a BF sketch”, ”create an AMS sketch”, ”create a FM sketch” or ”estimate
value”. For example if the second node includes the value (240,1) that means that ”240” refers
to the requested value that we are interested of and ”1” refers to the creation of a new instance
of Count-Min sketch. The number ”2”,”3”,”4” refers to the creation of a new instance of Bloom
Filter, AMS and FM sketch correspondingly. Any other number refers to the estimation of the
relevant value. If it is requested to create a new sketch, we make an instance of it, we get the
list of sketches of the specific value (i.e. ”240”) and we add the new sketch to the list. What
is more we use a variable to count the instances of each sketch that has been created. If it is
requested to estimate a value for a stream id, we get the list of the sketches for the specific
stream id and for each element we call the estimate(Integer value) function of class Sketch. The
result of each sketch is printed on the screen while the collector of the RichCoFlatMapFunction
collects a record Tuple2 with the information of the stream id and the list of the sketches which
relates to. So, this operator produces a DataStream<Tuple2 <Integer, ArrayList<Sketch>>.
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4.3 Distributed Solution using State

Afterward, we wish to use a stateful function and operator to store the list of the sketches
that every stream id owns. At the beginning we use the KeyBy operator to group the output
of the ”ConnectData&Requests” operator according to the stream id. By using the KeyBy
operator, we construct a new KeyedStream that each key represents the different number of
the streams. For each one of the keys, we apply the KeyedProcessFunc() function. We decided
to use a ValueStateDescriptor and to set it as Queryable. So the ValueState stores the String
information. In this way, we store the most up-to-date list of available sketches for each different
stream id in the Keyed State of Flink. Finally data sinks consume the DataStream<String>and
forward it to files or we could use the addSink() function to write to a Kafka topic. In Figure
4.3 is illustrated the streaming dataflow of the total implementation of the program.

Figure 4.3: Streaming dataflow of Flink program

4.3.1 Real-Time Querable State

In this subsection, we exploit the Queryable State Feature of Flink to allow the user to query
the aforementioned keys from outside Flink’s runtime environment. The Queryable State of
Flink, exposes the Keyed State to the outside world and allows the user to query the available
keys of a specific operator. The Queryable State feature is capable of performing queries only
in states maintained by KeyedStreams. In our use case, the keyed state is stored inside the
KeyedProcessFunc() function, to the ValueState data structure. In order to query the keys of
the ValueState, we have to specify the hostname and the port of the TaskManager. Then, we
have to specify the name of the data structure that holds the state (e.g “request”). Afterwards,
we submit the query to the Task Manager with a specific key.

1 CompletableFuture<ValueState<Str ing>> getKvState =
2 c l i e n t . getKvState ( JobID . fromHexString ( ”JobId” ) , ” r eques t ” ,

key , TypeInformation . o f (new TypeHint<Str ing >() {}) ,
mydescr iptor ) ;
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Internally, the QueryableStateClientProxy of the Task Manager receives the request, and then
asks the Job Manager which one of Task Managers holds the value of the queryed key. Based
on that answer, the proxy will retrieve the value from the QueryableStateServer of the corre-
sponding Task Manager. This value is then returned from the proxy to the client.
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Chapter 5

Experimental Evaluation

We conducted several experiments locally and remotely using the multi-node cluster of our
university, to evaluate the performance of the distributed implementation of query registration
over synopses.

5.1 Locally experiments

To begin with we ran locally experiments to a portable computer equipped with Intel(R)
Core(TM) i7-7500U CPU @ 2.70GHz. During our experiments we used unbounded data streams
using Apache Kafka. The main source of the input dataset is a csv file that contains infor-
mation about a population. Moreover there are eight columns ”Year”, ”District.Code”, ”Dis-
trict.Name”, ”Neighborhood.Code”, ”Neighborhood.Name”, ”Gender”, ”Age”, ”Number”. We
used the fourth and the eighth column in order to have 73 distinct keys and 14017 values. So
we read topics from Kafka continuously from the beginning of the csv file in order to create an
unbounded stream. The source of the request dataset is a txt file with key,value pairs that we
created. We chose randomly to create 17 count-min, 15 bloom filter, 7 ams and 5 FM sketches
with 40 distinct keys while the remotely experiments are more specified.

In figure 5.1 is illustrated the number of tuples that are inserted into various sketches and
different stream ids while the input dataset increases. The subfigure (a), (b) and (c) exhibits
the number of tuples per parallelism 1,2 and 4 respectively. In addition each subfigure presents
both the number of tuples per subtask, when level of parallelism is greater than 1, and the
total cumulative number of tuples per parallelism level.

In subfigure (d) of figure 5.1 we ascertain that the total number of tuples that are inserted
into sketches remains about the same irregardless the level of parallelism that has been in-
creased. This was expected as we ran the experiments locally and so there were not any more
available resources in order to improve the performance of the system. Finally we note that
the number of tuples inserted into sketches increases linearly and with constant ratio in time.
Furthermore in local mode the total number of tuples is much smaller than in remote mode
one.
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(a) Insert value to sketches vs parallelism 1 (b) Insert value to sketches vs parallelism 2

(c) Insert value to sketches vs parallelism 4 (d) Total count of tuples vs parallelism

Figure 5.1: Illustration of inserting values to various sketches

In figure 5.2 is illustrated the number of tuples that are estimated from various sketches
to 42 distinct stream ids while the request dataset increases. The subfigure (a), (b) and (c)
exhibits the number of tuples per parallelism 1,2 and 4 respectively. In addition, each subfigure
presents both the number of tuples per subtask, when level of parallelism is greater than 1, and
the total cumulative number of tuples per parallelism level.

In subfigure (d) of figure 5.2, we ascertain that the total number of tuples that are es-
timated from sketches remains about the same irregardless the level of parallelism that has
been increased. As mentioned before there were not any more available resources in order to
improve the performance of the system. Finally we note that the number of tuples estimated
from sketches increases almost linearly. Furthermore in local mode the total number of tuples
is much smaller than in remote mode one.
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(a) Estimate value vs parallelism 1 (b) Estimate value vs parallelism 2

(c) Estimate value vs parallelism 4 (d) Total count of tuples vs parallelism

Figure 5.2: Illustration of estimate values from various sketches

5.2 Flink Cluster Setup

In order to run our experiments to the multi-node cluster of our university, we deployed
Flink by using the Standalone Cluster setup. This setup includes a single Job Manager (master
node) and at least one Task Manager (worker nodes). In our setup, we used 12 Task Managers
with maximum number of parallel task slots 36 (i.e. 36 physical cores). During our experiments,
the maximum Job parallelism that we used was 32, so we let Flink’s runtime to make the choice
of the specific task slots. The table below presents the system specifications of the Job and
Task managers.

Flink Cluster Setup
Node CPU Cores Ram GB

1 Job Manager Intel Xeon E5-2430 v2 6 32
12 Task Managers Intel Xeon X3323 4 8

5.3 Remotely Experiments

In remote mode we ran several experiments about inserting a value to a specific kind of
sketch each time. Τhe characteristics of a new sketch when it is dynamically created are
presented below.
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• Count-Min: epsilon=0.0002, confidence=0.99 and seed=4

• Bloom Filter: falsePositivePropability=0.02 and expectedNumOfElements=1000000

• AMS: depth=5 and numOfBuckets=512

• FM: bitmapSize=32, numHashGroups=64 and numHashFunctionsInEachGroup=32

5.3.1 Insert value into sketches

In this subsection we discuss about the experiments of inserting a value into a sketch. In
subfigure (a), (b), (c), (d) of figure 5.3 we present the number of tuples that are inserted into
Count-Min, Bloom Filter, AMS and FM sketch respectively. In every experiment we used 45
instances of each sketch to 40 distinct stream ids. We note that the number of tuples that
are inserted in every sketch is almost equal (figure 5.4). The total number of tuples of every
subfigure is much higher than the results of the local experiments. Tuples increase linearly for
each kind of sketch.

As we increase the parallelism level, Flink Cluster provides more resources and thus the
number of tuples increases as well. Ιndicatively in figure 5.5 we present the result of inserting
values to Count-Min sketch with parallelism 4 and 8.

(a) Insert value to Count-Min vs parallelism 4 (b) Insert value to Bloom Filter vs parallelism 4

(c) Insert value to AMS vs parallelism 4 (d) Insert value to FM vs parallelism 4

Figure 5.3: Illustration of insert values in every sketch
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Figure 5.4: Insert value vs sketch with parallelism 4

(a) Insert value to CM vs parallelism 4 (b) Insert value to CM vs parallelism 8

Figure 5.5: Illustration of insert values into sketches vs parallelism level

In figure 5.6 is illustrated the number of tuples of inserting values into each sketch per
parallelism level for 10000ms. When we double the parallelism level the number of tuples
almost doubles as well.
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Figure 5.6: Insert values into sketches for 10000ms time period vs parallelism level

5.3.2 Estimate value

In this subsection we discuss about the experiments of estimating a value of each sketch.
Ιndicatively, in subfigure (a) and (b) of figure 5.7 we present the average time needed for each
subtask of every sketch to compute 100 requests for estimating a value for parallelism level
4 and 8 respectively. In every experiment we used 35 instances of each sketch with distinct
streams ids. In order to obtain the results of the above experiments we recorded 10 samples
of estimated time for each subtask and we computed the mean for each subtask. Finally, the
largest value of time of all the subtasks of each sketch was chosen as the time that each sketch
needed. It is worth mentioned that time was measured in nanoseconds.

(a) Average time to estimate values vs sketch
and parallelism 4

(b) Average time to estimate values vs sketch
and parallelism 8

Figure 5.7: Average time to compute 100 requests vs sketch vs parallelism
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5.3.3 Throughput

Whereupon we exhibit the results of throughput of the above experiments. In figure 5.8
is illustrated the average number of tuples per second for inserting a value into each kind
of sketches while using different levels of parallelism. It is expected that as we double the
parallelism level, throughput doubles as well.

Figure 5.8: Average Throughput inserting value to sketches vs parallelism level

Concerning the throughput of estimating a value of each sketch we present indicatively the
throughput of each subtask of every sketch per 100 requests and parallelism 4 in figure 5.9 for
different stream ids.

Figure 5.9: Throughput estimate per subtask vs sketch for parallelism level 4
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In figure 5.10 is illustrated the total throughput of estimating at each subtask 100 requests
for each sketch for different parallelism levels. The Flajolet Martin sketch seems to responded
better at estimating values while the Count-Min sketch comes next. As we increased the
parallelism level, throughput enlarged as well.

Figure 5.10: Throughput vs sketch vs parallelism level
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Chapter 6

Conclusions & Future Work

In this diploma thesis, we proposed a distributed implementation of query registration over
synopses. We focused on various streaming algorithms of sketches such as Bloom Filter, Count-
Min, Flajolet-Martin and AMS sketches. The requirements included the dynamical creation of
new sketches in real-time execution, update the sketches and computation of several functions
such as the cardinality of the elements, the amount of distinct elements, or inform about the
existence of an element in a stream. Furthermore, we developed a program that exploits the
Queryable State feature of Flink, in order to allow the user to query the most up-to-date values
of the sketches.

For the development phase, we used Apache Flink framework which is a distributed pro-
cessing engine for large scale computations over unbounded and bounded data streams. It has
excellent performance with low latency, high throughput and in-Memory computing.

We conducted several experiments locally and remotely to evaluate the performance of our
implementation. The experimental results of the cluster proved that by increasing the job
parallelism, the running time drops significantly and at the same time the throughput gets
better. Insertion and estimation increases linearly and constantly. Throughput experiments
showed that our implementation handles efficiently the growth in the size of the input and
requests.

In future work more sketches and more structures of synopses could be added to this project.
In addition, the execution result (about the state) could be used as a source to another frame-
work i.e. Apache Spark in order to compute new methods.
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