
1

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER ENGEENIRING

Multi Edge Cloud (MEC) Architecture for
supporting Internet of Things (IoT) Applications

Neofytos Zacharia

Committee:

 Professor Euripides G.M. Petrakis (Supervisor)

Associate Professor Samoladas Vasilis

Associate Professor Antonios Deligiannakis

Chania, October 2019

2

Abstract

LINCA, is a distributed master-less IoT system. It is designed and deployed to
offer security and high availability services to any IoT organization that wishes
to register and provide their services and devices to a wider range of users.
Each registered organization in LINCA is realized as a Service Oriented (SOA)
Architecture in the cloud as composition of microservices that run in the cloud
and can interact with other cloud systems, also registered to the LINCA
network. In turn, IoT devices can connect to any LINCA node and a node need
no be aware of devices connected to any other node. All organizations in LINCA
ecosystem adopt JSON for the description of their devices and provide a search
mechanism to search for devices that are connected to any registered cloud
and meet the criteria set by their users, such as device ID, device location,
device type etc. LINCA follows a 3-tier architecture model where each tier
serves functionality for different types of users. The main types of users are
System Administrators, Infrastructure Owners and Customers. System
Administrators have the right to control and modify their individual cloud system
and the users connected to their system. Infrastructure Owners have the
permission to install and connect devices of different or similar types in their
cloud system. Customers have the right to create subscriptions to devices that
are connected to their cloud systems or to devices that are connected to other
registered clouds in LINCA, for example to retrieve device measurements. This
3-tier architecture is expandable, by allowing more IoT organizations to
connect. LINCA is evaluated using a large number of real and synthetic devices
producing massive amounts of data (i.e. sensor measurements). Experimental
results show that the system can respond under heavy workloads in real time.

CONTENTS 3

Contents

1. Introduction... 5

1.1. Motivation .. 5

1.2. Solutions ... 5

1.3. Contributions .. 6

1.4. Structure ... 9

2. Background... 10

2.1. Service-Oriented Architecture ... 10

2.1.1. RESTful Web Services ... 11

2.2. FIWARE Platform for Application Development in Cloud .. 11

2.2.1. FIWARE Services ... 11

2.2.2. Related Technologies to FIWARE ... 13

2.3. IoT Platform .. 15

2.4. Distributed Systems... 16

2.5. Distributed Databases ... 17

2.5.1. Apache Cassandra Database .. 17

2.6. Docker ... 21

3. LINCA System Requirements and Design ... 23

3.1. Use Cases .. 23

3.2. Functional and Non-functional Requirements .. 23

3.2.1. Functional Requirements ... 23

3.2.2. Non-functional Requirements .. 27

3.3. Class Diagram .. 28

3.4. Use Case Diagram .. 31

3.5. Sequence Diagram... 33

3.6. LINCA Architecture Diagram .. 50

3.6.1. LINCA Abstract Cloud-Level Architecture Diagram .. 50

3.6.2. LINCA Cloud-Level Architecture.. 52

4. LINCA System Implementation ... 61

4.1. Implementation of LINCA’s Cloud Systems Services ... 62

4.2. LINCA’s Cloud Systems Interaction .. 76

CONTENTS 4

4.3. Docker and Virtual Machine Interaction ... 80

5. Back-End Performance .. 83

5.1. Experiment 1 ... 84

5.2. Experiment 2 ... 85

5.3. Experiment 3 ... 87

5.4. Experiment 4 ... 88

5.5. Experiment 5 ... 90

5.6. Experiment 6 ... 91

5.7. Experiment 7 ... 93

5.8. Experiment 8 ... 94

5.9. Experiment 9 ... 97

6. Conclusions .. 100

7. Future Work .. 101

8. References .. 102

INTRODUCTION 5

1. Introduction

1.1. Motivation

Nowadays, there are numerous IoT organizations taking advantage of

IoT devices, which can be used to monitor extreme weather conditions or to

control the operations of a house, hospital or even an entire infrastructure such

as a city, factory etc. However, various issues may arise regarding the way IoT

organizations manage their devices when operating independently or in the

context of a unified system. In detail, organizations can install and utilize their

own IoT devices within certain borders, thereby limiting the use of services

offered only to clients registered to the same infrastructure. Furthermore, data

collected by each organization’s IoT devices are stored locally so that the users

of another cloud cannot have a unified view of similar data. For accessing of

data in different infrastructures users must register again to each independent

infrastructure. This increases the risk of data loss, not only in case of internal

system failure within the organization, but also in case of heavy traffic where

the centralized system fails to respond to every request.

The development of a distributed system is necessary, where different

IoT organizations may connect and interact with each other. Registration is

mandatory for an organization to join such a system, as the organization will be

able to offer its users even more IoT devices, belonging to the other registered

organizations. Another important aspect of this unified system is that registered

organizations will be deemed equal and offered the same privileges of high data

availability, thus ensuring that their collected data will never be lost. As for

security issues, there will be no single master in charge of security, so each

registered organization will be responsible for the security of their own devices

and services.

The present study intends to build an integrated distributed system with

the aforementioned features, relying on and extending iXen, an existing

implementation of a cloud-based architecture, in order to facilitate

communication and collaboration between individual IoT systems, and satisfy

the requirements of a wide range of users.

1.2. Solution

One approach to solve the aforementioned issues involves the use of

the LINCA System, which is presented through this thesis. LINCA is an

implementation of a distributed IoT system in the cloud, which allows inter-

connection and interaction of individual registered organizations thus forming

an eco-system which provide users connected to any infrastructure with a

unified view of data and services provided by multiple organization given that

the user has the necessary authorization (i.e. users must be authorized to

access data in a foreign infrastructure).. LINCA is responsible for the data

management of registered systems, making them searchable by multiple users

among different organizations. Also, LINCA manages the collected data of each

INTRODUCTION 6

registered organization in a way that ensures high availability. On the other

hand, LINCA assigns the responsibility of individual system security to each

organization. LINCA functions are available through web-based graphical

interfaces. LINCA can manage numerous IoT organizations, as well as the

available types of their connected sensors, which are scattered geographically,

serving multiple demands of various users.

Data from sensors’ measurements is sent to the corresponding

organization. Users’ interest in these measurements is expressed through

queries to the organizations managing the data. Therefore, data will be

accessible by users, as long as they are subscribed to the respective sensors

and they are granted the necessary authorization by the administration of each

specific infrastructure. Infrastructure owners can install devices to their

organization, allowing users of either their own organization or of other

registered organizations to subscribe, subject to payment. In other words,

organizations’ sensors registered in LINCA will attract the interest of customers,

who will need to pay subscription fees to be able to monitor the measurements

of those sensors.

1.3. Contribution

The work builds -upon previous work for iXen [1] system is leveraging
principles of Service Oriented Architecture and modern standards of context
information management. iXen is an experimental cloud-based configuration of
Restful micro-services. Its intention is to tackle the limitations of existing IoT
architectures. Also, one of iXen’s main priorities is the protection of its services
from unauthorized services or user with the OAuth2 mechanism. This research
extends iXen and implement a distributed system that connects multiple IoT
architectures in a way that offers high availability services, security and an
integrated search mechanism.

Each organization in LINCA is represented by a cloud system that is
developed in the FIWARE environment. The main characteristics of the
approach implemented within the scope of the present thesis are summarized
below:

• The design specifications of each registered system are implemented
using well-known open source web technologies such as PHP, HTML,
JavaScript, as well as cloud-based services provided by the public
platform FIWARE, which runs on OpenStack.

• Each registered cloud system in LINCA is developed based on the
principles of Service Oriented Architecture (SOA). Each cloud system
function acts as a stand-alone service that communicates with others
through RESTful interfaces. Service Oriented Architecture simplifies
and facilitates the extension of each cloud system, as each separate
service can be upgraded or replaced without affecting the operation of
the entire architecture. Similarly, new service functionality can be easily
added.

INTRODUCTION 7

• The architecture of a registered cloud system is based on the “secure
by design” approach, ensuring that system services are protected in the
cloud. This way the services’ REST interfaces are only accessible by
the system itself and authorized users.

• The individual systems of LINCA can support sensors that transmit data
through different low-level protocols, such as Bluetooth, Zigbee and
WiFi, with the assistance of gateways, which transmit data to the cloud
using a high-level IP protocol such as http, https or UDP, MQTT and
Coap. The connection of each registered cloud system with its sensor
interface is achieved through FIWARE's IDAS Back-End Device
Management Service.

• In each of LINCA’s cloud systems, data is available in JSON format
making data processing independent of device type and communication
protocol.

• The project includes a complete design of the system in UML, detailing
its specifications.

• Each cloud system in LINCA can easily integrate a business model by
assigning its registered users, as well as users registered to other cloud
systems, with appropriate roles and specific permissions.

• A key tool used for the implementation of LINCA's architecture is
Apache Cassandra Database, which is responsible for data
management and enables search by users connected to LINCA’s
clouds. Furthermore, Cassandra provides security and high data
availability to LINCA’s registered organizations.

To be able to support the previously mentioned features, LINCA relies on a
business model where the three main user categories of the infrastructure can
each gain value while contributing to the expansion and maximum utilization of
the system. The three-layer architecture model adopted by LINCA is depicted
in Figure 1, as described in the rest of this section.

• Layer 1 refers to the IoT infrastructure level, where Infrastructure
Owners can select the cloud systems on which they will install their IoT
devices. The devices of each Infrastructure Owner are connected
directly or through gateways to each LINCA cloud system. Infrastructure
Owners have the right to register sensors in one of LINCA’s registered
cloud systems. The goal of Infrastructure Owners is to attract as many
customers as possible from various LINCA cloud systems to whom they
will sell data management services.

• Layer 2 is essentially the core of the distributed system, comprising of
numerous IoT cloud systems designed according to the architecture of
iXen. Each LINCA cloud representing an IoT cloud system is controlled
by its own System Administrator, who is in charge of adding and
managing the registered users of the particular cloud system along with
their assigned roles and permissions. Furthermore, the administrator of
an individual LINCA cloud system also monitors the operation and
functionality of the system, while also being responsible of assigning
permissions to users registered to others LINCA cloud systems who
want to gain access to the devices or services of that particular cloud.

INTRODUCTION 8

Finally, System Administrators have the responsibility of registering
their systems to LINCA in order to make them discoverable from users
that wish to subscribe.

• Layer 3 includes the Customers of each cloud system within LINCA.
They have the rights to subscribe to one or more of the existing cloud
systems and register to their corresponding sensor devices so as to
collect data regarding the measurements of those IoT systems.
Moreover, they can use the system of the cloud they have subscribed
to in order to request access to the sensors of other LINCA cloud
systems.

Figure 1 – Three-layer architecture of LINCA

INTRODUCTION 9

1.4. Structure

Chapter 2 provides the knowledge background required for

understanding this work and presents the software tools that are used for the

completion of this thesis.

Chapter 3 enumerates the requirements for the presented system

design and outlines functional and non-functional specifications through UML

diagrams, while also providing the architecture diagram of a LINCA cloud

system.

Chapter 4 describes the services of a LINCA cloud system and explains

how different LINCA cloud systems interact with each other according to the

requirements of Chapter 3.

Chapter 5 analyzes the performance of the system using real sensor

data in order to examine system performance in cases of high data volume and

computational load.

Finally, Chapter 6 summarizes the conclusions and Chapter 7 offers

recommendations for future work.

BACKGROUND 10

2. Background

2.1 Service Oriented Architecture

A service-oriented architecture (SOA) [2] is a computer software design

enabling the provision of services among application modules over a

network. Services built according to the SOA architecture can exchange data

without human interaction or code alterations.

A significant feature of a service in SOA is its independence of the

technical characteristics of other interacting services. This transparent

exchange is accomplished through the implementation of a firmly defined

interface, which goes through the required actions to allow inter-service data

streams.

Service-oriented architecture (SOA) is based on a number of principles

briefly discussed below:

• Loose Coupling, meaning minimum interdependency among services,

so as to ensure seamless operation even in case of service functionality

modifications.

• Service Abstraction, which refers to services’ ability to conceal the logic

behind their functionality from other services or applications. In other

words, a service only provides the necessary details about what it does

and not the way it does it.

• Service Reusability, which demands that logic or functionality is broken

down into separate services for maximum reuse. A code written for a

particular service should be able to work with multiple application types,

without having to rebuild it for each individual application

implementation.

• Service Autonomy, implying that services have complete knowledge

and control over the functionality they implement.

• Service Composability refers to the “divide and conquer” approach

applied by services, which tend to tackle problems by breaking them

down into smaller, more manageable tasks, each implementing an

individual business functionality.

• Service Interoperability, meaning that they apply common standards

enabling different subscribers to use them.

BACKGROUND 11

1 https://restfulapi.net/rest-architectural-constraints/
2 https://www.w3schools.com/whatis/whatis_http.asp
3 https://www.json.org/
4 https://www.w3schools.com/whatis/whatis_xml.asp
5 https://www.fiware.org/about-us/
6 https://www.openstack.org/

2.1.1 RESTful Web Services

Web services based on REST1 Architecture are known as RESTful web

services, which rely on HTTP protocols to enable communication between

client and server applications. The REST architecture handles each content as

a resource. Furthermore, a RESTful web service is usually defined by a Uniform

Resource Identifier (URI) and performs resource representation using HTTP2

Methods and JSON format.

The main HTTP methods are GET, POST, PUT and DELETE, referring

to the operations of reading, creating, updating and deleting respectively. A

RESTful architecture provides a common data model for these four operations,

which defines the input to the POST and PUT methods, as well as the output

for the GET method, while the HTTP status code indicates operation success

or failure.

A RESTful architecture also involves self-descriptive messages, with

resources being independent from their representation to allow access to their

content in diverse formats, like JSON3, XML4 and others.

Finally, it performs stateful interactions via hyperlinks. As all interactions

with resources are stateless, each HTTP request includes all required

information regarding its execution to ensure that previous communication

states do not have to be stored.

2.2 FIWARE Platform for Application Development in Cloud

FIWARE5 is an open-source middleware platform based on OpenStack6,

supporting cloud-based development and distribution of service-oriented

applications. This well-structured platform allows both intra-platform and inter-

platform service assembly. The FIWARE platform provides simple but robust

APIs facilitating application development, while their specifications are public

and free of charge.

2.2.1 FIWARE Services

FIWARE Generic Enablers (GE) provide simple general-purpose

platform functions available through REST APIs, which can be used as modules

of more complex applications.

The following services were used in the context of this thesis:

• Identity Management (IdM) – Keyrock

Identity management is a security and business principle allowing specific

individuals to access particular resources under properly defined conditions,

regarding the time and reason of access.

BACKGROUND 12

7 http://fiware.github.io/specifications/ngsiv2/stable/
8 https://catalogue-server.fiware.org/enablers/pep-proxy-wilma
9 https://catalogue-server.fiware.org/enablers/authorization-pdp-authzforce

The FIWARE Keyrock7 Generic Enabler provides an out-of-the-box

configuration of the common characteristics of an Identity Management

System, enabling other modules to use standard authentication mechanisms

 in order to accept or reject requests based on industry standard protocols.

These characteristics include user access to networks, services and

applications, secure and private authentication from users to devices networks

and services, authorization, trust and user profile management and privacy-

guaranteeing access to personal data.

The Identity Manager is the fundamental module connecting IdM systems at

connectivity-level and application level and authorizing third-party services to

access personal data stored in a secure environment.

• PEP Proxy – Wilma

A PEP Proxy is an endpoint placed in front of a secured resource at a

common public location, serving as a protector controlling access to resources.

Users or other actors have to provide adequate information to the PEP

Proxy for their request to pass through the PEP proxy and reach the actual

location of the secured resource, which is unknown to the outside user and

could be found in a private network behind the PEP proxy or on an entirely

different machine.

FIWARE Wilma8 is a simple PEP proxy built to work with the

FIWARE Keyrock Generic Enabler. When a user attempts to obtain access to

the resource behind the PEP proxy, the PEP will send the user's attributes to

the Policy Decision Point (PDP), from which it will receive a security decision to

enforce (Permit or Deny). Authorized users will barely notice any disruption of

access, as the received response is identical to the one they would receive

upon direct access to the secured service, whereas unauthorized users receive

a 401 Unauthorized response.

• Authorization PDP – AuthZForce

For more complicated access control scenarios, an extra mediation

microservice is necessary to assess each Permit/Deny policy decision by

examining the data provided by the requesting service according to the full set

of access control rules.

FIWARE AuthZForce9 is an advanced access control Generic Enabler

offering such an interpretive Policy Decision Point (PDP) according to

the XACML standard and providing an API to get authorization decisions based

on authorization policies and requests from PEPs.

Rulesets can be updated making security policy maintenance flexible and

adaptive to business needs. Additionally, highly extensible language is used to

describe the access policy and meet any access control scenario.

BACKGROUND 13

10 https://catalogue-server.fiware.org/enablers/publishsubscribe-context-broker-orion-context-broker
11 https://fiware-cygnus.readthedocs.io/en/latest/
12 https://fiware-sth-comet.readthedocs.io/en/latest/
13 https://oauth.net/2/
14 https://www.mongodb.com/

• Publish/Subscribe Context Broker – Orion Context Broker

The Orion Context Broker10 is an implementation of the Publish/Subscribe

Context Broker GE, providing an NGSI interface through which clients can

query and update context information, receive notifications upon context

information alterations and register context provider applications.

• FIWARE Cygnus

Cygnus11 is a connector persisting context data originating from Orion

Context Broker into other third-party databases and storage systems, like

MySQL, MongoDB, DynamoDB and CKAN, to generate a historical view of the

context. It accepts NGSI dataflows and stores them in its predefined database.

Cygnus can store raw and aggregate data, independent of user database.

• FIWARE Comet

The FIWARE Comet12 stores and retrieves historical raw and aggregated

context data registered in an Orion Context Broker instance.

All communications between the Comet and the Orion Context Broker (or

any other third party) use standardized NGSI interfaces.

2.2.2 Related Technologies to FIWARE

• Authorization Protocol – OAuth2

OAuth13 is an open-standard authorization protocol offering secure

designated access capability to applications, by disallowing the exchange of

password data and demanding the use of authorization tokens, the so-called

“OAuth2 tokens”, to verify an identity between service consumers and

providers. Therefore, it allows end users to approve the interaction between

applications on their behalf without having to disclose their credentials.

Additionally, the OAuth2 mechanism is specifically designed to work with

HTTP protocol and allows the assignment of OAuth2 access tokens to third

parties that have already been identified by an authorization service, such as

Keyrock IdM.

• MongoDB Databases

MongoDB14 is an open-source non-relational database management

system (DBMS) using a document-oriented database model that supports

various forms of data and is suitable for big data applications and other

processing jobs involving data that do not fit well in a traditional relational

BACKGROUND 14

15 https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html
16 https://www.oasis-open.org/committees/download.php/2713/Brief_Introduction_to_XACML.html

model. Instead tables and rows, the MongoDB architecture comprises of

collections and documents.

• Information Model – NGSIv2

FIWARE-NGSIv215 manages the whole lifecycle of context information,

involving updates, queries, registrations, and subscriptions. The NGSIv2 API

comprises of a simple information model based on context entities and a

RESTful interface for context data exchange through queries, subscriptions and

updates.

The key elements of a NGSI information model are:

Entity is any physical or logical object (sensor, user etc.). Each entity is

characterized by an entity id and a type e.g. "Sensor".

Attributes are elements of entities and have a name, a type, and a

value.

Name (of an attribute) describes the type of property that represents the

value of the attribute of the entity.

Type (of an attribute) refers to the data type of the value of the attribute

(e.g. Float, Int, String). An attribute can have from one-to-n metadata.

Metadata is a part of an attribute describing the property of the attribute

value. Metadata variables, like name, type and value, follow the same rules

followed by the corresponding attribute variables.

JSON objects are used for entity representation, applying the syntax rules

set by the NGSI standard.

• Extensible Access Control Markup Language (XACML)

eXtensible Access Control Markup Language16 (XACML) is a vendor-

independent declarative access control policy language, a processing model

and an architecture specifying how to assess access requests according to

policy-defined rules and enabling common access control terminology and

interoperability. XACML policies are split into a hierarchy of three levels,

PolicySet, Policy and Rule.

The PolicySet is a collection of Policy elements containing one or

more Rule elements. Each Rule within a Policy is evaluated as to whether it

should grant access to a resource - the overall Policy result is defined by the

overall result of all Rule elements processed in turn. Separate Policy results

are then evaluated against each other using combining algorithms define

which Policy wins in case of conflict. A Rule element consists of a Target and

a Condition.

.

BACKGROUND 15

17 http://cassandra.apache.org/
18 https://database.guide/what-is-a-column-store-database/

• Internet of Things (IoT) – Cloud Computing

Two pioneering technologies, Internet of Things (IoT) and cloud computing,

have seen tremendous expansion in recent years [3] , due to the increasing use

of smart devices and sensors in many fields, such as healthcare and assisted

living, industrial systems and environmental monitoring. Smart devices and

sensors operating as Internet-connected data collectors, together with large

(mostly cloud) platforms where data is stored for permanent storage and

analysis, provide a beneficial environment for modern businesses to broaden

their client base.

The concept of marrying the Internet of Things with cloud computing has

also provided new opportunities for real-time data accumulation and analysis.

Being simple, scalable and affordable, cloud computing has become one of the

most preferred platforms for IoT data storage, processing and analysis, with

companies selecting to deploy their applications and systems on the cloud to

minimize infrastructure, maintenance and operating costs.

2.3 IoT Platform

IoT platforms are the core of IoT architecture, connecting the real and

virtual world and enabling communication between entities.

An IoT platform includes the following components:

• Connectivity and Normalization

The layer of connectivity incorporates various protocols and data formats into

a single "software" interface, guaranteeing device interactivity and proper data

reading. A common format and storage location for all data facilitates the

management, analysis and monitoring of IoT devices.

• Device Management

The device management unit makes sure that the connected entities function
properly and that installed software and applications are running correctly with
updated versions. Actions performed in this layer include device disposition,
remote configuration, management of software and firmware updates and
troubleshooting. With thousands of devices composing an IoT-supported
system, automation and batch tasks are required to minimize manual labor and
related costs.

• Database

Data storage is another key feature of an IoT platform, while device data
management has made database requirements more complex and demanding,
in terms of:

Volume, as the amount of data to be stored can be enormous.

BACKGROUND 16

17 http://cassandra.apache.org/
18 https://database.guide/what-is-a-column-store-database/

Variety, with diverse devices and types of sensors employing different data
formats.

Velocity, often making data flow analysis necessary for instant decision
making.

Veracity, or accuracy, since sensors sometimes generate vague and
imprecise data.
To meet these requirements, an IoT platform is often combined with a cloud-
based database, distributed across numerous sensor nodes, with scalability for
big data and capability of storing both structured and unstructured data (SQL
and NoSQL respectively).

• Processing and Action Management

This IoT platform component involves accumulating data from the connectivity

and normalization module and storing it in the database. Event-triggering rules

are used in this stage to enable "smart" actions depending on the sensor data.

An example of such rule in the case of a smart home could be: "If GPS-based

indications show that the distance between a person’s smartphone and their

home is greater than 5 meters, then all home lights should be turned off."

• Analytics

IoT implementations often demand complex analytics to benefit from data

streams registered in an IoT platform. For instance, in a smart home, analytics

could assist in finding which combination of lights and heating is mostly

preferred by the owner during the day and night hours depending on weather

conditions.

• Data Visualization

Data visualization is vital since it enables pattern and trend identification. Line

or pie charts and 2D or 3D models available in administrative toolkits are used

to this end.

• External Interfaces

In business and corporate implementations, it is significant and beneficial to
integrate IoT with existing management tools, ERP systems, and the IT
ecosystem in general. Embedded application programming interfaces (APIs),
software development kits (SDKs) and gateways are the fundamental
mechanisms enabling integration of third-party systems and applications.
Therefore, well-defined external interfaces are essential in minimizing related
integration efforts and costs.

2.4 Distributed Systems

A distributed system can be simply defined as a group of computers

operating together and appearing as a single entity to the end-user [4].

BACKGROUND 17

17 http://cassandra.apache.org/
18 https://database.guide/what-is-a-column-store-database/

The computers composing a distributed system can be either in physical

proximity, interconnected through a local area network (LAN), or geographically

sparse and connected via a wide area network (WAN). A distributed system

can consist of diverse architecture components like mainframes, servers,

workstations, personal computers, minicomputers and so on. Moreover,

regardless of their types, these machines operate simultaneously and have a

shared state, ensuring that upon failure of a single component, the entire

system’s uptime will not be significantly affected.

Distributed Systems (DS) have numerous advantages, include the

following:

• Node interconnection facilitates data exchange and sharing between DS

nodes.

• Scalability enables easy node insertion to the distributed system.

• Seamless operation implies that failure of a single node cannot cause

failure of the entire distributed system, instead communication among all

other nodes is maintained.

• Multiple sharing of resources across various nodes is possible.

2.5 Distributed Databases

A distributed database comprises of two or more files stored in different

servers located either on the same network or on entirely different networks [5].

Database components are stored in multiple physical locations and processing

is disseminated among multiple database nodes. Distributed Databases have

the following characteristics:

▪ Databases are logically interrelated and usually compose a single logical

database.

▪ Data is physically stored across multiple nodes. Data in each node is

managed by a Database Management System (DBMS) independent of

the other nodes.

▪ Node processors are connected through a network and do not dispose

of multiprocessor configuration.

▪ A distributed database is not a loosely connected file system.

▪ A distributed database includes transaction processing, yet does not

constitute a transaction processing system.

2.5.1 Apache Cassandra

Apache Cassandra17 is a NoSQL, wide column store18, peer-to-peer

distributed database running on a server cluster, designed to manage large

amounts of data and support high user traffic, i.e. thousands of concurrent

users or operations per second. Unlike other master-slave databases, in

Cassandra, all nodes in its cluster have an identical role and communicate with

BACKGROUND 18

19 https://techblog.mdsol.com/2014/06/16/no_single_points_failure.html
20 https://docs.datastax.com/en/dse/5.1/cql/cql/cql_using/cqlKeyspacesAbout.html

 each other equally, while there is no single point of failure19 guaranteeing

increased fault tolerance. Consequently, in case of cluster node failure, other

nodes take over to complete the task. An additional advantage of this database

is the possibility to add (or remove) a server to (or from) the cluster at any time

without requiring downtime. Moreover, high data write speed allows real-time

processing of big data.

As mentioned before, Cassandra is a wide column store NoSQL

database. This means that it uses tables, rows, and columns, where the names

and format of each column can vary from row to row on the same table. The

components of Cassandra’s data model are keyspaces and column families,

also known as tables and columns. A graphic representation of this data model

is depicted in Figure 2.

Figure 2 – a graphic representation of a Cassandra Data Model

A keyspace20 is a container for a list of one or more tables, like a

database in a relational database. These tables contained within a keyspace,

are also known as column families and comprise of a collection of rows. In

Cassandra, a row is the smallest unit of the table that stores data. It consists of

a primary (or partition key), identifying a row in a column family (table), and a

number of columns associated with it. In turn, A column is Cassandra’s basic

data structure with two values, namely key or column name and column value.

Column key is similar to the concept of a column name in relational databases

and uniquely identifies a column in a row, while a column value stores one value

or a collection of values. A column family is similar to the concept of a column

value in a relational database. Figure 3 shows a column family with its rows of

data with the corresponding columns and partition keys.

BACKGROUND 19

21 22 23 https://docs.datastax.com/en/archived/cassandra/3.0/cassandra/architecture
24 https://docs.datastax.com/en/archived/cql/3.3/cql/cql_using/useUpdateKeyspaceRF.html
25 26 https://docs.datastax.com/en/archived/cassandra/3.0/cassandra/architecture/archDataDistributeReplication.html
27 http://cassandra.apache.org/doc/latest/operating/snitch.html

Figure 3 – Column family view

The basic infrastructure component of this database is the node server

responsible for storing data. A collection of Cassandra server nodes constitutes

a cluster of nodes, known as the Cassandra ring. Interaction between cluster

nodes is based on a peer-to-peer communication protocol called Gossip

Protocol21 which propagates information about data and node health.

Communication between two nodes involves the provision of information about

each node’s status, as well as about the latest status of any node with which it

had previously communicated. This process allows for failure detection. On the

other hand, during start up, a cluster node, the so-called “seed node”, uses this

protocol to facilitate all other nodes of the Cassandra ring in identifying each

other.

As already mentioned, a table within a keyspace consists of various rows

referenced by partition keys. The partitioner22 is a hash function calculating the

hash value of a particular partition key. This value is known as token. The

hashing algorithm data mapping to physical cluster nodes, meaning that every

range of values (token range) generated from the partition keys through the

hashing algorithm23 is assigned to the corresponding cluster node. Then, the

created token will decide which node will receive the first replica of data that the

token refers to, while the total number of replicas across the cluster depends

on the replication factor24. If the replication factor is greater than one, then the

placement of the subsequent replicas is determined by the replication strategy.

There are two main replication strategies used by Cassandra, the Simple

Strategy25, placing subsequent replicas on the next node in a clockwise routine,

and the Network Topology Strategy26 ensuring that replicas are not stored on

the same rack, i.e. a unit that contains multiple servers all stacked one on top

of another. In addition, Cassandra uses snitches27 to discover the overall

network overall topology. A snitch determines which datacenters and racks

nodes belong to. With this process, Cassandra stores data replicas on multiple

ring nodes to guarantee reliability and fault tolerance. Figure 4 below shows the

division of a 0 to 100 token range evenly amongst a four-node cluster. Node 1

is responsible for partition key hash values 0-24, Node 2 is responsible for

BACKGROUND 20

partition key hash values 25-49, Node 3 is responsible for partition key hash

values 50-74 and Node 4 is responsible for partition key hash values 75-99.

Figure 4 – Nodes of Cassandra rings with their corresponding token range

The client reads or writes requests that can be sent to any node in the

cluster. Cassandra is a master-less database, so the client can connect to any

cluster node at any given moment. When a client connects to a node with a

request, the particular node serves as the controller for the specific client

operation and acts as a proxy between the client and the nodes owning the

requested data. The controller decides which nodes in the ring should get the

request based on cluster configuration.

Depending on the partition key and replication strategy, the controller

forwards and replicates data to the respective nodes, which process the request

individually. During a node-level write operation, every node initially writes data

into the commit log and then writes them into the memtable, which is a write

back cache located in the memory. The commit log, located in the disk, is used

for restoring the data in case of node failure resulting to data loss in the

memtable. Whenever the memtable is at full capacity levels, the data it held is

written to the disk’s SSTable (Sorted String Table), which is an ordered

immutable key value map, providing an efficient way of storing large sorted data

segments in a file. Moreover, after data in the memtable are flushed to an

SSTable, their corresponding data in the commit log are purged.

Likewise, during a node-level read operation, the client can choose to

connect to any node of the cluster ring. The chosen node is called the controller

and is responsible for returning the requested data. A partition key is necessary

for every read operation and is used by the controller to locate the node where

the first replica is located.

BACKGROUND 21

28 https://www.docker.com/

Consequently, for every read request, Cassandra reads data from all

corresponding SSTables and scans the memtable for any data fragments,

which are then merged and returned to the controller. Internally, the SSTables

are using a Bloom Filter to check whether the requested partition key is stored

in an SSTable. Cassandra uses Bloom Filters to check if any of the SSTables

contains the requested partition key, without having to actually read their

contents, hence evading expensive I/O operation. Once a read is completed

from all contributing nodes, the controller compares the retrieved data. If the

replica has an older version of the data, the controller returns the latest version

to the client by issuing a read repair command with the older version of the data.

Also, a new node can join the Cassandra Cluster without affecting the

function of the other cluster nodes. The auto-bootstrap function in Apache

Cassandra is responsible to redistribute the data in Cassandra’s cluster when

a new node is joining the cluster. Initially, the node that will join the Cassandra

cluster is defined as an empty node without data. When this new node starts

the auto-bootstrap process, it must contact the cluster seed nodes in order to

learn information about the other cluster nodes and the configurations they

follow. After it contacts the seed nodes, it informs the Cassandra Cluster that is

ready to join the cluster. Immediately, through the consistent hashing algorithm,

the node calculates the portion of cluster’s data for which will be responsible.

In this way the cluster sends to the new node the corresponding portion of data

.When the new node receives all the data for which it will be responsible, it

informs the cluster that is a part of it and is ready for usage .

2.6 Docker

Docker28 is a containerization platform that packages applications and

all their dependencies together in the form of a docker container to guarantee

interoperability, i.e. seamless operation in any environment.

As Figure 5 demonstrates, every application runs on separate containers

and has its own dependencies and libraries, ensuring independence of the

other applications and providing developers with the necessary security to build

applications that will not interfere with one another.

Figure 5 – Docker

BACKGROUND 22

29 https://docs.docker.com/engine/reference/builder/
30 https://docs.docker.com/engine/reference/commandline/images/
31 https://www.docker.com/resources/what-container
32 https://docs.docker.com/machine/overview/

The basic features of Docker are listed below:

▪ Dockerfile29 is a textual instruction document with all the commands that

a user can call on the command line to assemble an image.

▪ Docker Images30 are the building components of a Docker Container,

stored in the Docker Registry, which is either a local user repository or a

public repository, like a Docker Hub, permitting multiple users to

collaborate in building an application.

▪ Docker Container31 is a running instance of a Docker Image holding the

entire package needed to run the application. As a standardized unit, it

can be created on the fly for application or environment deployment.

▪ Docker Machine32 is a tool enabling a provider to install Docker Engine

(Docker’s Software) on virtual hosts and manage them easily with

docker-machine commands. It allows the creation of Docker hosts on

various environments, such as a Windows box or local Mac, a business

network, a data center, or even cloud providers like Microsoft Azure and

Amazon AWS. Docker-machine commands can help start, inspect, stop,

and restart a managed host, upgrade the Docker client and daemon, and

configure a Docker client to talk to the provider’s host.

LINCA SYSTEM REQUIREMENTS AND DESIGN 23

3 LINCA System Requirements and Design

3.1 Use Case

LINCA System is consisted of three levels. Each of those levels serves

a different functionality for different types of users. The basic types of users in

the system are administrators, infrastructure owners and customers. The

administrators have the rights to manage their cloud systems that are registered

in LINCA and the users of them, while the infrastructure owners have the

permissions to install and connect their own devices of the same or different

type at the cloud system on which they are registered. The Customers that are

connected to their registered cloud system, have the right to subscribe to

sensors that are connected to their cloud system but also to sensors that are

located to other remote registered cloud systems of LINCA where they are

authorized, in order to receive updates of the sensor’s measurements.

3.2 Functional and Non-Functional System Requirements

System requirements are defined by separating them into functional and
non-functional.

3.2.1 Functional System Requirements

Functional requirements are defined as the processes that must be met

by the system and they are directly related to its implementation. To consider

the system as fully functional, all the requirements of each type of user must be

met. Below, the requirements of each user group is presented separately.

• Customers

1. Sign up - The user in order to sign up to a cloud system, he/she fills

in his/her details, such as name, email, password. In addition, he/she

selects the customer option as his/her type of user. When he/she

completes the necessary information, the administrator of this cloud

system registers him/her to the cloud system as customers and

assigns them their respective roles with their corresponding

permissions.

2. Login - The user enters his/her login details such as email and

password, on the login page in order to log in to his/her cloud system.

Immediately, an authentication process is performed by the cloud

system. If the user is authenticated successfully then he/she can

access the cloud system.

3. Search for available clouds / Subscribe to available clouds - The

graphical interface shows the cloud systems that are registered in the

LINCA and that are available to receive subscriptions requests from

users that belong to other clouds. When requesting subscription to

LINCA SYSTEM REQUIREMENTS AND DESIGN 24

these cloud systems, the corresponding administrator decides

whether to accept the user’s subscription request. If that administrator

decides to accept it, he/she will assign to the user who made the

request the respective roles with their corresponding permissions, in

order to have access to resources of his/her cloud system.

4. Search for Sensors / Subscribe to Sensors - The graphical

interface shows to the user the available cloud systems that are

registered in the LINCA. Then, the user selects the cloud systems

he/she wants to know about their connected sensors, along with the

corresponding sensors’ measurements that the sensors wish to

perform. When the user fills in the necessary information, an

identification process is performed by the cloud system that user is

connected and an authorization process is performed by the cloud

systems that he/she wishes to know about their sensors. After the

successful identification and authorization of user, this user is able to

select the sensors that resulted from the search and create a new

subscription to them. Furthermore, when the user selects the sensors

that they wish to create a subscription of, the user’s sensor

subscription list in Cassandra database is updated with the

corresponding sensor’s information.

5. View sensors’ subscriptions - Through a graphical interface, a user

can view the sensors that they have a subscription to, along with the

cloud systems to which they belong, the owner of them, and the date

of subscription. This list is located on the distributed database of

Cassandra. All of these will be done after the user is successfully

authenticated and authorized by the cloud system in which he/she is

connected.

6. View Sensor Current Measurement - A user, through the graphical

interface, can monitor their sensors’ current measurements that they

subscribed to. This will be done after a user authorization and

authentication check has been performed. The identification process

is performed by the cloud system that the user is connected to, and

an authorized process by the cloud he/she wishes to know about the

sensors current measurements. After the successful identification and

authorization of the user, they can monitor the current measurement

of that sensor of that sensor.

7. View Sensor Statistical Measurements - A user, through the

graphical interface, can monitor the average, minimum and maximum

of the measurements recorded by the sensors that they have

subscribed to. Again, this will be done after a user authentication and

authorization check has been performed. The identification process is

performed by the cloud system that is connected, and an authorization

LINCA SYSTEM REQUIREMENTS AND DESIGN 25

process by the cloud he/she wishes to know about the sensors

statistical measurements. After the successful identification and

authorization of user, he/she can monitor the statistical measurement

of the selected sensor.

• Infrastructure Owners

1. Sign up - The user in order to sign up to a cloud system, he/she

fills in his/her details, such as name, email, password. In addition,

he/she selects the Infrastructure Owner option as his/her type of

user. When he/she completes the necessary information, the

administrator of this cloud system registers him/her to the cloud

system as customers and assigns them their respective roles with

their corresponding permissions.

2. Login - The user enters his/her login details such as email and

password, on the login page in order to log in to his/her cloud

system. Immediately, an authentication process is performed by the

cloud system. If the user is authenticated successfully then he/she

can access the cloud system.

3. Insertion of Sensor - The infrastructure owner has the right to

insert new sensors into the cloud system that he/she is connected.

Specifically, through the graphical interface, the infrastructure

owner selects the type of sensor that he/she will register and then

defines the sensor’s name, identity, and measurements. When the

user fills in the necessary information, an identification and

authorization process is performed by the cloud system that user is

connected. After the successful identification and authorization

process of user, he/she can connect his/her sensors to the cloud

system with the help of IoT Agent Service. IoT Agent Service is

responsible to receive data from the connected cloud’s sensors and

to forward them to Publish/Subscribe Service. The information of

the cloud’s sensors is also stored in the distributed Cassandra

database, in order to be discoverable by authorized users who

belong to other cloud systems of LINCA. The physical device sends

its data to the cloud system’s gateway that it is connected. The

gateway forwards the data it receives to the Sensor Interface

Service (IoT Agent) of this cloud system. There, the service

analyzes the data and detects which sensor it is referring to. Then

Sensor Interface Service updates the corresponding sensor entity

in the Publish/Subscribe Service with the current measurements it

received.

4. Edit registered sensors - The infrastructure owner can edit a

connected sensor by updating its entity in Publish/Subscribe

LINCA SYSTEM REQUIREMENTS AND DESIGN 26

Service. Also, he/she must update the sensor’s information that is

stored Cassandra database.

5. Deletion of registered sensors – The infrastructure owner can

delete a connected sensor by deleting the corresponding sensor

entity in Publish/Subscribe Service. Also, he/she must delete the

corresponding sensor information in Cassandra database.

6. View registered sensors - Through a graphical interface, an

Infrastructure Owner can view the sensors that registered on his/her

cloud system, along with the date of registration. This will be done

after the user is authenticated and authorized by the his/her cloud.

• Administrators

1. Login - The user enters his/her login details such as email and

password, on the login page in order to log in to his/her cloud

system. Immediately, an authentication process is performed by the

cloud system. If the user is authenticated successfully then he/she

can access the cloud system.

2. Insertion of Cloud System- The administrator has the permission

to insert his/her cloud system to LINCA. Specifically, through the

graphical interface, the administrator types the information of

his/her cloud system, such as name, IP-address, owner and

location. When the administrator fills in the necessary information,

an identification and authorization process is performed by his/her

cloud system. After the successful identification and authorization

process of user the cloud’s information is stored in the distributed

Cassandra database, in order to be discoverable by authorized

users who belong to other cloud systems of LINCA.

3. Creation of cloud users - The administrator can create a new user

profile within his/her cloud system User Identification and

Authorization Service and classify them into one of the available

user categories, such as customers and infrastructure owners.

4. Edit cloud users – If it is necessary, the administrator may edit

user’s profile information that are stored in the User Identification

and Authorization Service of his/her cloud system.

5. Deletion of cloud users - If it is necessary, the administrator can

delete a user from his/her cloud system by deleting the

corresponding user’s profile from the User Identification and

Authorization Service of his/her cloud system. By deleting a user

should simultaneously delete the information entities associated

with him/her in the cloud system. In case a customer user is deleted,

LINCA SYSTEM REQUIREMENTS AND DESIGN 27

his/her subscription to the sensors must be deleted too. In case an

infrastructure owner is deleted, the information related to his/her

registered sensors to the cloud system should be deleted at the

same time.

6. System Monitoring - The administrator has the ability, through a

graphical interface, to monitor at any time which users and sensors

are on his/her cloud system. Also, the administrator can monitor at

the same time the workload of virtual machines run by the cloud

system services.

3.2.2 Non-functional System Requirements

The fulfillment of these requirements is not necessary for an application

to perform its essential functionality. However, their degree of fulfillment also
affects the quality of the finished product, especially if it is a commercial
application. These requirements include:

• Performance - Refers to the response speed of the system under
high workload conditions.

• Security - It concerns the security of users, such as their secure

access to the system and the protection of their identity and personal

data. At the same time, it also concerns the protection of the united

system, by preventing access to services and data through the

network from unauthorized sources (services or users). The

infrastructure of the system is developed in order to ensure by the

level of architecture, how all requests between its services are

properly authorized, excluding unauthorized users and services from

accessing system resources online.

• Usability - Specifies how easy the system is to use. This category

includes features such as graphical interfaces and everything else

designed to improve the application experience.

LINCA SYSTEM REQUIREMENTS AND DESIGN 28

3.3 Class Diagram

Figure 6- LINCA Class Diagram

LINCA SYSTEM REQUIREMENTS AND DESIGN 29

In order to understand the functions of each cloud system of LINCA as

well as the correlations of individuals services, a detailed description of the

classes that make up each cloud system, is illustrated above in Figure 6.

Figure 7 – Correlations between classes of LINCA’s cloud system

Each class consists of a header, the attributes and the methods for

managing the attributes of this class.

• Class User - This class is the generalization of cloud system users. It must

be noted that it contains the components that make up each user's profile

in the cloud system, such as username, email and password. Once the user

has been authenticated by the cloud system, thus successfully login into it,

the user continues as an infrastructure owner or a customer, focusing on its

corresponding usage scenarios.

• Class Customer - The customer is a subclass of the user class. Users of

this class focus their attention on the sensors that are registered by the

corresponding infrastructure owners. Also, they can search for available

cloud systems of LINCA, in order to subscribe to them and get access to

their services and devices. In addition, they are able to search for available

sensors that are connected to their subscribed cloud systems and subscribe

to those sensors that they are interested in. If they subscribe to a sensor,

they can monitor its current and statistics measurement.

• Class Infrastructure Owner - The infrastructure owner is also a subclass

of the user class. A user of this class has the ability to insert / edit / delete

sensors in his/her cloud system. One instance of this class is associated

with one instance of cloud class.

• Class Administrator - The system administrator has the ability to register

his/her cloud to LINCA system. Also, they can enter / edit / delete users that

are subscribed and registered to his/her cloud system. In addition,

administrator has the permission for monitoring of users, sensors, service

LINCA SYSTEM REQUIREMENTS AND DESIGN 30

workloads of his/her cloud system. The Administrator class is a subclass of

the user class.

• Class Role - An instance of role class is associated with an instance of

permission class. Hence, a user of the cloud system is assigned a role with

the corresponding permissions. This way the user inherits the

corresponding role’s permissions as well. The system automatically assigns

a role to a user when they create an account in the cloud system in order to

gain access to various cloud system services. The methods used by this

class are about creating and assigning roles to a cloud user.

• Class Permission - The purpose of the Permission class is to describe the

request that the holder has the right to execute. The request made by the

user or service consists of an HTTP action such as GET, PUT, POST,

PATCH, DELETE , in a resource located at the requested service such as

http://cloudB/serviceD/resourceX. This class empowers users, such as

infrastructure owners or customers, to access system services. The

methods in this class relate to creating a permission and assigning it to a

role.

• Class Access Control Rules - After permissions are assigned to a role,

the access control rule class defines the right of the owner of that role to

execute a request. An instance of the Access Control Rule class is

associated with an instance of role class. It is responsible for permitting or

denying access requests, based on the policy that constitutes the instance

of the role. An access control rule follows the XACML standard (eXtensible

Access Control Markup Language), where it is stored and maintained in the

AuthZForce service.

• Class Sensor Subscriptions - Customer of each cloud system can

subscribe to a subset of sensors that are connected to cloud systems of

LINCA. An instance of the Sensor Subscription class concerns only one

customer and contains information on his/her subscriptions to sensors.

When a customer chooses to add a new sensor to his/her existing

subscriptions list, a unique identifier of the sensor and the date of

registration on that sensor, is recorded in a subscription instance. A

customer can monitor his/her subscribed sensors through its subscription

list.

• Class Cloud - This class is the generalization of cloud systems that are

registered in LINCA system. When the administrator of each cloud system

is registering its cloud system to LINCA must provide the attributes that

defines it, such as the cloud ID , cloud name , cloud location, cloud city and

cloud ip-address. Each cloud system may include as many sensors

instances their infrastructure owner wishes.

LINCA SYSTEM REQUIREMENTS AND DESIGN 31

• Class Sensor - This class is the generalization of different sensor models

that are connected to LINCA’s cloud systems. When the infrastructure

owner of each cloud system is registering a sensor to his/her cloud system,

must provide the attributes that defines it , such as the unique sensor ID

and the sensor model. Also, the location and the owner of the sensor are

automatically recorded by the cloud system. That depends on which cloud

system the infrastructure owner logged in (e.g. If the infrastructure owner

entered the cloud system that is located to Chania then the sensor’s location

will be Chania). The cloud system may include as many sensors instances

the infrastructure owner wishes.

• Class Proximity Beacon - An instance of this class represents sensors of

the "Estimote" company, namely "Proximity Beacon" sensors. These

sensors can measure the temperature, the ambient light and the

atmospheric pressure. There respective units of measurement is Celsius,

Lux and Pa.

• Class Historic Data - For a sensor that is connected to a cloud system of

LINCA, a history of data on changes in its attribute values is maintained. An

instance of this class corresponds to only one sensor and contains raw and

aggregated time series data for its measurements. The Cygnus service is

responsible for this operation. Instance of Historical Data Class is used by

the Comet service to extract statistics values, such as average, maximum,

minimum, for measurements of each registered sensor. Class methods

relate to the retrieval and storage of raw and aggregated data in different

sensor instances.

3.4 Use Case Diagram

The functional requirements of customers, infrastructure owners and

administrators that are described Section 3.2.1 are presented below in the form

of Use Case Diagrams.

Customer through graphical interfaces can browse the available cloud

systems that are registered in LINCA and can subscribe to the cloud systems

that he/she wishes to access their services and devices. Also, customer user

through a search engine can query for sensors that are connected to cloud

systems in which he/she is subscribed. In addition, customer can browse a list

with his/her subscribed sensors in order to view sensors’ current and statistics

values. Customer’s functional requirements as explained in more detailed in

Section 3.2.1 are illustrated in Figure 8.

LINCA SYSTEM REQUIREMENTS AND DESIGN 32

Figure 8 – Customer Use Case Diagram

Accordingly, an Infrastructure Owner through graphical interfaces can

register sensors to his/her cloud systems. Also, they can browse a list with

his/her registered sensors in order to edit or delete them. Infrastructure owners’

functional requirements as explained in more detailed in in section 3.2.1 are

illustrated in Figure 9.

Figure 9 – Infrastructure Owner Use Case Diagram

Lastly, an administrator of cloud system is responsible to register his/her

cloud system in LINCA. Also, an administrator of a cloud system is able to insert

LINCA SYSTEM REQUIREMENTS AND DESIGN 33

/ edit / delete user to his/her cloud system. In addition, they have the ability to

monitor the workload of virtual machines run by his/her cloud system services

and the ability to monitor connected users’ behavior. System Administrators'

functional requirements as explained in more detailed in Section 3.2.1 are

shown in Figure 10.

Figure 10 – Administrator Use Case Diagram

LINCA SYSTEM REQUIREMENTS AND DESIGN 34

3.5 Sequence Diagram

This section shows the sequence diagrams for each type of user. The
sequence diagrams below aim to present the most important system’s functions
for these categories of users.

As local services we define the services that are located to the cloud
system in which the user is connected and makes requests and as remote
services we define the services that are located to a remote cloud system of
LINCA in which the user is interested to access its services.

The main idea of the distributed system is to exploit the features of
Cassandras (e.g. replication, master-less, scalable). Each LINCA’s cloud
system has a node of the Cassandras cluster. A cloud system can become
known in the LINCA system by registering to Cassandra. Automatically it
becomes discoverable by other cloud system of the distributed system.

All requests made by users through the graphical interfaces to protected
services must pass through a common stage. This stage involves user
authentication by the local Keyrock. Once the user has been identified by this
local service, they can proceed to the next stage, the user authorization.

• Registration of cloud system in LINCA

System Administrator of each cloud system is responsible to register
his/her cloud system to LINCA system in order to be discoverable from users
that wish to subscribe to his/her cloud system. Administrator of each cloud
system through the local Web Application can type the information of his/her
cloud system, such as name of system, location, ip address and description (a
text that describes the cloud system) . Web Application forwards the admin’s
request to the local Application Logic in order to route it to the appropriate
services. Then the local Application Logic is responsible to add the OAuth2
token of Administrator to his/her initial request and forward it to the local PEP
Proxy of Register Cloud Service. Local PEP proxy of Register Cloud Service
checks the OAuth2 token in local Keyrock in order to identify who is making this
request. After, the local Keyrock returns the user’s information of this OAuth2
token to local PEP Proxy Register Cloud Service. Immediately, local PEP Proxy
of Register Cloud Service checks in the local AuthZForce Service if the
identified user has the permissions to access the local Register Cloud Service.
After the successful authentication and authorization of the admin user, his/her
initial request is forwarded to the protected service, Register Cloud Service.
This service is responsible to insert the information of admin’s cloud system to
the local node of Cassandra’s cluster.

LINCA SYSTEM REQUIREMENTS AND DESIGN 35

The above procedure is represented as a sequence diagram in Figure
11. The blue dashed lines indicate that the corresponding services are located
to local cloud system. The red boxes represent the services that are responsible
for the authentication and authorization of the requested user.

Figure 11 – Registration of cloud system in LINCA Sequence Diagram

[EdgeDetails] - Admin via Web Application is typing the information of

his/her cloud who wants to register in LINCA.

[RegisterEdge] - Web Application forwards the request to Application

Logic.

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to the

initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user

exist with the corresponding OAuth2 token. If user, exist then Keyrock

returns to PEP proxy the user’s information,

[CheckUserXACML] - PEP proxy checks user’s permissions in

AuthZForce.

[QueryRegisteredEdges] - If AuthZForce returns “Permit” then PEP proxy

forwards the initial user’s request to the protected service , the Register

LINCA SYSTEM REQUIREMENTS AND DESIGN 36

Cloud Service. If AuthZForce returns “Denied” then the PEP proxy will not

forward the initial request.

[RegisterEdge] – Register Cloud Service process the request and imports

the cloud system’s information in Cassandra DB .

[return OK] - In the end, Cassandra DB returns if the insertion was success.

• Querying for Available Cloud Systems in LINCA

A customer has the ability to search for available cloud systems that are
registered in LINCA in order to subscribed to them. Each cloud system is
registered to LINCA by the corresponding administrator as shown in the
previous paragraph. Customer through the local Web Application makes a
query request to find the available LINCA’s cloud systems. Web Application
forwards the customer’s request to the local Application Logic in order to route
it to the appropriate services. Then the local Application Logic add the OAuth2
token of Customer to his/her initial request and forward it to the local PEP Proxy
of Query Available Clouds Service. Local PEP proxy of Query Available Clouds
Service checks the OAuth2 token in local Keyrock in order to identify who is
making this request. After, the local Keyrock returns the user’s information of
this OAuth2 token to local PEP Proxy Query Available Clouds Service.
Immediately, local PEP Proxy of Query Available Clouds Service checks in the
local AuthZForce Service if the identified user has the permissions to access
the local Query Available Clouds Service. After the successful authentication
and authorization of the customer user, his/her initial request is forwarded to
the protected service, the Query Available Clouds Service. This service is
responsible to query for available LINCA’s cloud systems in the local node of
Cassandra’s cluster. This node is responsible for communicating with other
Cassandra’s nodes in order to retrieve the data for the user's request. Using
Cassandras does not require direct access to foreign systems since it is done
directly by Cassandra.

LINCA SYSTEM REQUIREMENTS AND DESIGN 37

 The above procedure is represented as a sequence diagram in Figure
12. The blue dashed lines indicate that the corresponding services are located
to local cloud system. The red boxes represent the services that are responsible
for the authentication and authorization of the requested user.

Figure 12 – Querying for LINCA’s available Cloud Systems Sequence Diagram

[SearchEdges] - User via Web Application wants to search for the Available

Clouds systems in LINCA .

[QueryEdges] - Web Application forwards the request to Application Logic.

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to the

initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user

exist with the corresponding OAuth2 token. If user, exist then Keyrock

returns to PEP proxy the user’s information,

[CheckUserXACML] - PEP proxy checks user’s permissions in

AuthZForce.

[QueryRegisteredEdges] - If AuthZForce returns “Permit” then PEP proxy

forwards the initial user’s request to the protected service , the Query

Available Clouds Service. If AuthZForce returns “Denied” then the PEP

proxy will not forward the initial request.

[QueryEdges] - Query Available Clouds Service process the request and

starts querying for available cloud systems in Cassandra DB.

[getAvailEdges] - In the end, Cassandra DB returns the available cloud

systems.

LINCA SYSTEM REQUIREMENTS AND DESIGN 38

• Subscribe to LINCA’s cloud systems

A customer as shown in previous paragraph he/she can query for

available clouds that are registered in LINCA. After this process, user can

choose the cloud systems that wishes to access their services and devices.

Customer through the local Web Application makes a subscription request to

the LINCA’s cloud system that is interested. Web Application forwards the

customer’s request to the local Application Logic in order to route it to the

appropriate services. Then the local Application Logic add the OAuth2 token of

Customer to his/her initial request and forward it to the local PEP Proxy of Query

Available Clouds Service. Local PEP proxy of Query Available Clouds Service

checks the OAuth2 token in local Keyrock in order to identify who is making this

request. After, the local Keyrock returns the user’s information of this OAuth2

token to local PEP Proxy Query Available Clouds Service. Immediately, local

PEP Proxy of Query Available Clouds Service forward the user’s subscription

request to the cloud system administrator that the customer has chosen to

subscribe with. This cloud system administrator must permit or deny the user’s

subscription request. If this cloud system administrator accepts the subscription

request, then he/she creates a role for the requested user in the Keyrock

Service which is located to his/her cloud system. In the end, the Keyrock

Service creates a XACML file with the permissions of the requested users in

AuthZForce which is also located to the chosen cloud system.

The above procedure is represented as a sequence diagram in Figure

13. The blue dashed lines indicate the corresponding services are located to

local cloud system. The green dashed lines indicate the corresponding services

that are located to the remote cloud system(the system that user is requested

to subscribe).The red boxes represent the services that are responsible for the

authentication and registration of the requested user.

Figure 13 – Subscribe to LINCA’s cloud system Sequence Diagram

LINCA SYSTEM REQUIREMENTS AND DESIGN 39

[chooseOneEdge] - User via Web Application chooses the cloud system

he/she wishes to subscribe for.

[subToEdge] - Web Application forwards the request to Application Logic.

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to the

initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately, Keyrock checks its database if user

exist with the corresponding OAuth2 token. If user, exist then Keyrock

returns to PEP proxy the user’s information,

 [AssignOrgRoles] - Admin of the chosen cloud system processes the

request. If he/she accepts the request, then creates a role in his/her Keyrock

for the user who makes the request.

[CreateUserXACML] - In the end, Keyrock creates a XACML file with the

permissions in AuthZForce.

• Insertion of Sensor in LINCA’s cloud system

Infrastructure owner is responsible to register sensors to his/her cloud
system and make them discoverable to users that are connected to different
cloud systems of LINCA. The Infrastructure Owner through the local Web
Application makes an insert request to register a sensor to his/her cloud
system. Web Application forwards the infrastructure owner’s request to the local
Application Logic in order to route it to the appropriate services. Then the local
Application Logic add the OAuth2 token of Infrastructure Owner to his/her initial
request and forward it to the local PEP Proxy of Register Sensors Service.
Local PEP proxy of Register Sensors Service checks the OAuth2 token in local
Keyrock in order to identify who is making this request. After, the local Keyrock
returns the user’s information of this OAuth2 token to local PEP Proxy Register
Sensors. Immediately, local PEP Proxy of Register Sensors checks in the local
AuthZForce Service if the identified user has the permissions to access the
local Register Sensors Service. After the successful authentication and
authorization of the customer user, his/her initial request is forwarded to the
protected service, the Register Sensors Service. This service is responsible to
insert the sensor’s information in the local node of Cassandra’s cluster in order
to be discoverable from subscribed users that are registered in a remote cloud
system of LINCA. Also, the Register Sensors Service forwards the sensor’s
details to local IoT Agent in order to receive data from this sensor. In addition,
for this sensor, the IoT Agent creates in the local Publish/Subscribe Service a
sensor entity.

The above procedure is represented as a sequence diagram in Figure

14. The blue dashed lines indicate the corresponding services are located to

local cloud system. The red boxes represent the services that are responsible

for the authentication and authorization of the requested user.

LINCA SYSTEM REQUIREMENTS AND DESIGN 40

Figure 14 – Insertion of sensor in LINCA’s cloud system Sequence Diagram

[SensorDetails] - Infrastructure Owner via Web Application is typing the

information of sensor that wants to register to his/her cloud system.

[RegisterSensor] - Web Application forwards the request to Application

Logic.

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to the

initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user

exist with the corresponding OAuth2 token. If user, exist then Keyrock

returns to PEP proxy the user’s information.

[CheckUserXACML] - PEP proxy checks user’s permissions in

AuthZForce.

[RegisterSensorOfEdge] - If AuthZForce returns “Permit” then PEP proxy

forwards the initial user’s request to the protected service , the Register

Sensors Service. If AuthZForce returns “Denied” then the PEP proxy will not

forward the initial request.

[translateSensor] - Register Sensors Service processes the request and

forwards it to IoT Agent .

[InsertSensor] - IoT Agent is responsible to create a sensor entity to

Publish/Subscribe Storage where there are other sensors entities. In this

way when IoT Agent receives data from the registered sensors, it will

LINCA SYSTEM REQUIREMENTS AND DESIGN 41

forward to Publish/Subscribe Service to update the corresponding sensor

entity.

[InsertSensor] - Also Register Sensors Service insert the information of the

registered sensor to the local node of Cassandra’s cluster, so it can be

reached by subscribed users that are registered to remote cloud systems of

LINCA.

• User Authentication-Authorization in LINCA’s cloud systems

The authentication and authorization process of a user is performed in
two levels, locally and distributed.

In the first case, the authentication and authorization process is
performed locally by a single cloud system of LINCA.

This local authentication and authorization process happens when an
administrator of cloud system tries to register his/her system to LINCA, when
an infrastructure owner tries to register sensors to his/her cloud system and
when a customer is querying / subscribing sensors that are connected to
his/her cloud system. Also, this process performed when a customer wants to
retrieve current and historical measurements of a subscribed sensor that is
connected to his/her cloud system of LINCA.

The user through the local Web Application makes a request to a service
in his/her cloud system. Local Web Application forwards the user’s request to
the local Application Logic in order to route it to the appropriate services. Then
the local Application Logic add the OAuth2 token of user to his/her initial request
and forward it to the local PEP Proxy who protects the local service that the
user wants to access. This local PEP proxy checks the OAuth2 token in the
local Keyrock in order to identify who is making this request. After, the local
Keyrock returns the user’s information of this OAuth2 token to local PEP Proxy.
Immediately, local PEP Proxy checks in the local AuthZForce Service if the
identified user has the permissions to access the protected service. After the
successful authentication and authorization of the user, his/her initial request is
forwarded to the protected service. The local authentication and authorization
of user is represented as a sequence diagram in Figure 15a. The blue dashed
lines indicate the corresponding services are located to local cloud system.The
red boxes represent the services that are responsible for the authentication and
authorization of the requested user.

LINCA SYSTEM REQUIREMENTS AND DESIGN 42

Figure 15a – Local Authentication-Authorization process of User Sequence Diagram

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to

user’s initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user

exist with the corresponding OAuth2 token. If user, exist then Keyrock

returns to PEP proxy the user’s information,

[CheckUserXACML] - PEP proxy checks for user’s permissions in

AuthZForce.

In the second case, the authentication and authorization process is

performed distributed by the local cloud system in which the user is connected

and the remote cloud system of LINCA in which user want to access its

services and devices. As explained in Figure 13 ,when user subscribe to a

remote cloud system of LINCA, his/her permissions to this cloud is stored as a

XACML file in the AuthZForce Service of this remote cloud system.

This distributed authentication and authorization process happens when a

customer is connected to his/her cloud system and he/she tries to

query/subscribe to sensors that are connected to a remote cloud system to

LINCA. Also, this process performed when a customer wants to retrieve current

and historical measurements of a subscribed sensor that is connected to a

remote cloud system of LINCA.

The user through the local Web Application is requesting to access sensors

that is connected to a remote cloud system of LINCA. The local Web Application

forwards the user’s request to the local Application Logic in order to route it to

the appropriate services. Then the local Application Logic add the OAuth2 token

of user to his/her initial request and forward it to the local PEP Proxy. This local

LINCA SYSTEM REQUIREMENTS AND DESIGN 43

PEP proxy checks the OAuth2 token in the local Keyrock in order to identify

who is making this request. After, the local Keyrock returns the user’s

information of this OAuth2 token to local PEP Proxy. In this way, the local

Keyrock guarantees that the requested user is registered to its system and is

valid user. Immediately, local PEP Proxy checks in the remote AuthZForce

Service if the identified user has the permissions to access the sensors that are

connected to this remote cloud system. After the successful authentication and

authorization of the user, he/she can query and subscribe the corresponding

remote sensors through the local Query Sensor Service. This service is

responsible to route request to the local node of Cassandra in order to retrieve

the requested sensors. The distributed authentication and authorization

process of user is represented as a sequence diagram in Figure 15b. The blue

dashed lines indicate the corresponding services are located to local cloud

system. The green dashed lines indicate the corresponding services are

located to a remote cloud system. The red boxes represent the services that

are responsible for the authentication and authorization of the requested user.

Figure 15b – Distributed Authentication-Authorization process of User Sequence Diagram

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to

user’s initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user

exist with the corresponding OAuth2 token. If user, exist then Keyrock

returns to PEP proxy the user’s information,

LINCA SYSTEM REQUIREMENTS AND DESIGN 44

[CheckUserXACML] - PEP proxy checks for user’s permissions in

AuthZForce of the requested remote cloud system.

• Querying sensors in LINCA’s cloud systems

 A customer has the ability to search for sensors that are connected to
his/her cloud system and in others remote cloud systems of LINCA. Customer
through the local Web Application makes a query request to find the sensors in
the desired LINCA’s cloud system.

 Web Application forwards the customer’s request to the local
Application Logic in order to route it to the appropriate services. Then the local
Application Logic add the OAuth2 token of Customer to his/her initial request
and forward it to the local PEP Proxy of Query Sensors Service. The local PEP
proxy of Query Sensors Service checks the OAuth2 token in the local Keyrock
in order to identify who is making this request. After, the local Keyrock returns
the user’s information of this OAuth2 token to local PEP Proxy Query Sensors
Service. If the identified user requested sensors that are connected to a remote
cloud system, the local PEP proxy Query Sensors checks for user’s
permissions in AuthZForce Service of the remote cloud system. Else if the user
requested sensors that are connected to his/her cloud system, the local PEP
proxy Query Sensors checks for user’s permissions in AuthZForce Service of
user’s cloud system. After the successful authentication and authorization of
the customer user, his/her initial request is forwarded to the protected service,
the local Query Sensor Service. This service is responsible to query in the local
node of Cassandra’s cluster for sensors that are connected to different cloud
systems of LINCA.

The above process is represented as a sequence diagram in Figure 16.
The blue dashed lines indicate the corresponding services are located to local
cloud system. The green dashed lines indicate the corresponding services that
are located to the remote cloud system(the system that user is requested to
find its sensors). The red boxes represent the services that are responsible for
the authentication and authorization of the requested user.

LINCA SYSTEM REQUIREMENTS AND DESIGN 45

Figure 16 – Querying sensors in LINCA’s cloud systems Sequence Diagram

[SearchSensors] - User via Web Application chooses the attributes and

the cloud systems of sensor who wants to search.

[QueryEdges] - Web Application forwards the request to Application

Logic.

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to

the initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if

user exist with the corresponding OAuth2 token. If user, exist then

Keyrock returns to PEP proxy the user’s information.

[CheckUserXACML] - If user requested sensors that are connected to

a remote cloud system then PEP proxy checks for user’s permissions in

AuthZForce of the remote cloud. Else PEP proxy checks for user’s

permissions in AuthZForce of local cloud system.

[QueryRegisteredEdges] - If AuthZForce returns “Permit” then PEP

proxy forwards the initial user’s request to the protected service , the

Query Sensor Service of current cloud. If AuthZForce returns “Denied”

then the PEP proxy will not forward the initial request.

[QuerySensors] - After the success authentication and authorization of

the user, Query Sensor Service starts querying for requested sensors in

local node of Cassandra DB .

LINCA SYSTEM REQUIREMENTS AND DESIGN 46

[getAvailSensors] - In the end, Cassandra DB returns the requested

sensor.

• Subscribe to Sensors in LINCA’s cloud systems

A customer as shown in previous paragraph he/she can query for

sensors that are connected to different cloud systems of LINCA. After this

process, user can choose the sensors that wishes to subscribe.

 Customer through the local Web Application makes a subscription
request for the sensors that wishes to subscribe. Web Application forwards the
customer’s request to the local Application Logic in order to route it to the
appropriate services. Then the local Application Logic add the OAuth2 token of
Customer to his/her initial request and forward it to the local PEP Proxy of Query
Sensors Service. The local PEP proxy of Query Sensors Service checks the
OAuth2 token in the local Keyrock in order to identify who is making this
request. After, the local Keyrock returns the user’s information of this OAuth2
token to local PEP Proxy Query Sensors. If the identified user requested to
subscribe to sensors that are connected to a remote cloud system, the local
PEP proxy Query Sensors checks for user’s permissions in AuthZForce Service
of the remote cloud system. Else if the user requested to subscribed to sensors
that are connected to his/her cloud system, the local PEP proxy Query Sensors
checks for user’s permissions in AuthZForce Service of user’s cloud system.
After the successful authentication and authorization of the customer user,
his/her initial request is forwarded to the protected service, the local Query
Sensor Service. If the requested sensors are connected to a remote cloud
system, then the Query Sensor Service is responsible to subscribe the local
Orion Context Broker to the remote Orion Context Broker for the requested
sensors. In this way when the remote Orion Context Broker receives updates
for the subscribed sensors, it will forward them to the local Orion Context
Broker. Also Query Sensor Service is responsible to update user’s subscription
list in the local node of Cassandra’s cluster.

The above process is represented as a sequence diagram in Figure 17.
The blue dashed lines indicate the corresponding services are located to local
cloud system. The green dashed lines indicate the corresponding services that
are located to the remote cloud system(the system that user is requested to
find its sensors). The red boxes represent the services that are responsible for
the authentication and authorization of the requested user.

LINCA SYSTEM REQUIREMENTS AND DESIGN 47

Figure 17 – Subscribe to sensors of LINCA’s cloud systems Sequence Diagram

[chooseSensors] - User via Web Application after the process of searching

, he/she chooses the sensors who wants to subscribe for.

[SubSensors] - Web Application forwards the request to Application Logic.

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to the

initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user

exist with the corresponding OAuth2 token. If user, exist then Keyrock

returns to PEP proxy the user’s information,

[CheckUserXACML] - If user requested to subscribe to sensors that are

connected to a remote cloud system then PEP proxy checks for user’s

permissions in AuthZForce of the remote cloud. Else PEP proxy checks for

user’s permissions in AuthZForce of local cloud system.

[SubscribeSensors] - If AuthZForce returns “Permit” then PEP proxy

forwards the initial user’s request to the protected service , the Query

Sensor Service . If AuthZForce returns “Denied” then the PEP proxy will not

forward the initial request.

[SubBrokersSensors] - If the requested sensors are connected to a remote

cloud system, then the Query Sensor Service is responsible to subscribe

the local Orion Context Broker to the remote Orion Context Broker for the

requested sensors.

 [UpdateUserSubscriptions] . In the end, a request is routed to the local

node of Cassandra DB to update the user’s subscriptions list.

LINCA SYSTEM REQUIREMENTS AND DESIGN 48

• Retrieve Statistic/Current Value of a Sensor in LINCA’s cloud
system

A customer as shown in previous paragraph he/she can subscribe to

sensors that are connected to different cloud systems of LINCA. After this

process, user can retrieve statistic and current value of the his/her subscribed.

Customer through the local Web Application makes a request for the the
sensor that wishes to retrieve its current value or a statistic value. Web
Application forwards the customer’s request to the local Application Logic in
order to route it to the appropriate services. Then the local Application Logic
add the OAuth2 token of Customer to his/her initial request and forward it to the
local PEP Proxy of Comet Service. The local PEP proxy of Comet Service
checks the OAuth2 token in the local Keyrock in order to identify who is making
this request. After, the local Keyrock returns the user’s information of this
OAuth2 token to local PEP Proxy Comet Service. If the identified user
requested to retrieve statistic/current value of sensor that is connected to a
remote cloud system, the local PEP proxy Comet checks for user’s permissions
in AuthZForce Service of the remote cloud system. Else if the identified user
requested to retrieve statistic/current value of sensor that is connected to
his/her cloud system, the local PEP proxy Comet checks for user’s permissions
in AuthZForce Service of user’s cloud system. After the successful
authentication and authorization of the customer user, his/her initial request is
forwarded to the protected service, the local Comet Service. Comet processes
the request and starts querying in History DB for the current/statistic value of
the chosen sensor.

The above process is represented as a sequence diagram in Figure 18.
The blue dashed lines indicate the corresponding services are located to local
cloud system. The green dashed lines indicate the corresponding services that
are located to the remote cloud system (the system that user is requested to
find its sensors). The red boxes represent the services that are responsible for
the authentication and authorization of the requested user

LINCA SYSTEM REQUIREMENTS AND DESIGN 49

Figure 18 – Retrieve Current/Statistic Value of sensor in LINCA’s cloud system Sequence Diagram

[chooseSensors] - User via Web Application chooses from subscribed

sensors list , the sensors who wants to retrieve current value/statistics.

[queryValueSensors] - Web Application forwards the request to Application

Logic.

[HTTPrequest_OAuth2] - Application Logic adds User OAuth2 token to the

initial request and then forwards it to PEP Proxy.

[checkOAUth2 , queryUser , getUserInfo] - PEP proxy checks User

OAuth2 token in Keyrock. Immediately , Keyrock checks its database if user

exist with the corresponding OAuth2 token. If user, exist then Keyrock

returns to PEP proxy the user’s information,

[CheckUserXACML] - PEP proxy checks for user’s permissions in

AuthZForce.

[queryStatisticsOfSensors] - If AuthZForce returns “Permit” then PEP proxy

forwards the initial user’s request to the protected service , Comet . If

LINCA SYSTEM REQUIREMENTS AND DESIGN 50

AuthZForce returns “Denied” then the PEP proxy will not forward the initial

request.

 [queryEntities] - Comet processes the request and starts querying in

History DB for current /statistic value of the chosen sensor.

[getStatisticsValueOfSen] – History DB returns the requested information

to user.

3.6 Architecture Diagram

LINCA is a unified master-less distributed system. The term “master-

less” means that all its clouds which it is consisted of are equal and similar.

These clouds consist of several components which implement front-end and

back-end services. Each cloud of LINCA is based on SOA architecture

principles as explained above in section 2.1. This extends the micro-services

of every cloud system to loosely coupled micro-services which can be

developed, deployed and maintained independently. As a result, in the case of

an error in one micro-service the whole cloud system does not necessarily stop

its functionality.

In addition, LINCA’s clouds can communicate with one another in order

to satisfy the requirements of the different categories of users as described in

section 3.2. This communication is achieved through RESTful communication

over an HTTP protocol as described in section 2.1.1.

In order to describe the architecture of the LINCA system, all is needed

is to describe one of the clouds that are contained in the system due to the

equal and similar characteristics they all have. Initially, the main services of the

abstract LINCA’s cloud-level architecture will be given in section 3.6.1 . Once a

general idea of what the LINCA’s cloud-level abstract architecture main

services is given, a more detailed analysis of the LINCA architecture will be

presented in section 3.6.2.

3.6.1 LINCA’s Abstract Cloud-Level Architecture Diagram

The Figure 19 shows an abstract view of the architecture of an cloud that
is contained in LINCA system.

LINCA SYSTEM REQUIREMENTS AND DESIGN 51

Figure 19 – LINCA’s Abstract Cloud-Level Architecture Diagram

This cloud is consisted of the following main services :

1. User Services – This service is responsible for the graphical interface

of different type of users.

2. Application Logic – This service includes the code for orchestrating

individual services, so that the cloud system can implement the

specified functionality

3. IoT Services – At this type of service the IoT devices are connected.

They send their measurements to each other through gateways. Also,

this service is responsible for registering the IoT devices to its cloud

system and querying for the IoT devices that are in every LINCA’s cloud

system.

4. Database Services – These services are consisted of different types

of databases that each one of them is connected with other services of

the cloud system in order to provide storage functionalities.

5. Cloud Management Services - These services are used by the

administrator, if they wish to register their cloud system to LINCA. Also,

these services are used by the Customer users for querying for

available LINCA’s cloud systems that are registered to it by the

corresponding administrators.

LINCA SYSTEM REQUIREMENTS AND DESIGN 52

6. Sensor Data Management Services – These services are responsible

for storing data to the Database Services that are received from the

Publish/Subscribed Service. Also, they can retrieve history data from

the Database Services.

7. Publish/Subscribe Service – This type of service acts as the context

broker for IoT devices entities. These entities are stored in the Database

Services in the form of JSON. Also, with the assistance of this type of

service, users can subscribe to IoT devices that are located in LINCA’s

cloud systems in order to receive their measurements

8. Security Services - The purpose of these services is to prohibit users

and services from using system functions

The arrows in Figure 19 represent the RESTful inter-communication of

these services over the HTTP protocol. To illustrate this in figure 19, the red

arrows represent the connection of security service with the rest of the services.

3.6.2 LINCA’s Cloud-Level Architecture Diagram

Figure 20 – LINCA’s Cloud-Level Architecture Diagram

LINCA SYSTEM REQUIREMENTS AND DESIGN 53

The Figure 20 illustrates an even more detailed view of cloud

architecture. The arrows represent the RESTful inter-communication of the

above cloud system services over HTTP protocol. For a better explanation of

this, each cloud’s function is represented with a different color, as described

below :

• Red – Identification and Authorization of User for logging into the

system.

[Application Logic , User Identification – Authorization , User DB]

• Blue – Assigning roles and permissions to a user.

[Application Logic , User Identification – Authorization , User DB ,

Authorization Policy Decision Point]

• Light Green – Connecting different types of sensors to the system.

[Things, Gateway, Sensors Interface Service , Policy Enforcement

Point Proxy 5, Publish/Subscribe Service , Publish/Subscribe

Storage]

• Pink – Querying Available Clouds in LINCA system.

[Application Logic, Policy Enforcement Point Proxy 6, Query

Available Clouds Service , Directory DB]

• Purple – Querying Sensors in LINCA system.

[Application Logic, Policy Enforcement Point Proxy 1, Query Sensor

Service , Directory DB]

• Gray – Registering Sensors to its cloud system and in LINCA system.

[Application Logic, Register Sensor Service , Policy Enforcement

Point Proxy 2 , Publish/Subscribe Service, Directory DB]

• Dark Green – Registering cloud system in LINCA system.

[Application Logic, Register Cloud Service , Policy Enforcement

Point Proxy 7 , Directory DB]

• Yellow – Storing sensor data and measurements.

[Data Storage Service , Policy Enforcement Point Proxy 4 ,

Publish/Subscribe Service]

• Orange – Retrieving history data from sensors.

[Data Storage Service , Policy Enforcement Point Proxy 3 , History

Service]

• Black Dashed – Communication between user and system through

web interfaces.

[Web-Application , Application Logic]

LINCA SYSTEM REQUIREMENTS AND DESIGN 54

• Purple dashed / Orange Dashed / Gray Dashed / Pink Dashed / Dark

Green Dashed – Checking user permissions in Query / History /

Register service respectively.

[Policy Enforcement Point Proxy 1 / 2 / 3 , User Identification –

Authorization , User DB , Authorization Policy Decision Point]

➢ Database Service

This type of service consists of all the different types of database that exist

in a single LINCA’s cloud system. Each of these databases is connected to

services in order to store the provided data. History DB is used to store sensor

data from Sensor Data Storage Service and provide the stored data to the

History Service. In addition, User DB is used to store the user’s profile

information which is provided from User Identification Service. Furthermore,

Directory DB is used to maintain the sensors information that exist in the overall

LINCA system but also it is used to store all the cloud systems’ information that

is registered in the LINCA system. The Publish/Subscribe Storage is used to

store the sensor entities of its own cloud system. Below, a more detailed

description about these databases is shown:

▪ History DB - This is a non-relational database that contains raw and

aggregated historical data measurements for all the sensors connected in

the system. Sensor Data Storage Service undertakes to receive data

streams from the sensors’ measurements. The data it receives is stored

as raw and aggregated in History DB in order to maintain history of

sensors’ measurements. Also, the History Service provides REST

methods for retrieving information from the History DB.

▪ User DB – This is a relational database used by User Identification and

Authorization Service to store user’s profile information. In more detail,

when a user is sign up to an cloud system the information that provided

such as name, surname, email, password, user category , are stored in

User DB. With this information User identification and Authorization

Service is able to identify a user that tries to log in its cloud system.

▪ Directory DB – Directory DB is a non-relational distributed database.

Each registered cloud system in LINCA consists a node of this distributed

database in order to make insert and query request. It is used by Register

Sensor Service to store sensor’s information that they are connected to its

cloud system. Also, is used by Register Cloud Service to store

information about its clouds systems. In this way , all information about

sensors and clouds that exist in LINCA system is stored in this distributed

database in order to be discoverable from authorized users that are

connected to a remote LINCA’s cloud system. In addition, Query Sensor

Service and Query Available Clouds Service provide REST methods for

LINCA SYSTEM REQUIREMENTS AND DESIGN 55

retrieving information sensors and clouds of LINCA that are maintained in

Directory DB. Furthermore, this database is used to store a list of the

user’s subscribed sensors, as a result when infrastructure owner delete a

sensor from its cloud and it is existing to user’s subscribed sensor list, to

be removed.

▪ Publish/Subscribe Storage – This is a non-relational database that uses

the Publish and Subscribe Service to store the information of the entities

it manages. Each entity that is managed by this service is represented

by one JSON object. This object follows the syntax rules set by NGSI

standard as described in Section 2.2.2 .

➢ Security Service

The purpose of the security service is to prohibit unauthorized users and

services from using the system functions. In Figure 20, it is noted that each

service has its own Policy Enforcement Point Proxy server. These proxy

servers in collaboration with the User Identification-Authorization Service and

the Authorization Policy Decision Point service are responsible for the system’s

security. The intercommunication of these services is analyzed below:

• User Identification-Authorization Service

When registering with the system, the user defines the features that make

up their personal profile such as name, email, password.

Therefore, the user in order to log in to the system, they must first enter

their email and password at the login page. Then, the login request is routed to

the User Identification-Authorization Service via its RESTful interface. As long

as the information provided is valid, the service creates an OAuth2 token that

encrypts the user’s identity. Afterwards, the user is logged in. The User

Identification-Authorization Service is then able to confirm who the user is and

what their roles-permissions are. This is achieved through a REST request that

contains the user’s OAuth2 token. All the user’s profile information is stored in

the User DB as described in Section 3.6.2.

• Authorization Policy Decision Point Service (Authorization PDP)

This service is responsible for approving or rejecting access requests

made by the users to the cloud system services. A decision, either permit or

deny, can be made based on the Access Control Rules (XACML), which results

from the applicable access policies that the roles within the User Identification

-Authorization Service are recommended. A Policy Rule is created by the

user’s role that exists within the User Identification -Authorization service. The

access control rules are created in the Authorization Policy Decision Point

Service and they follow the XACML standards as explained in Section 2.2.2.

This is achieved, through the RESTful communication with the User

Identification-Authorization Service.

LINCA SYSTEM REQUIREMENTS AND DESIGN 56

• Policy Enforcement Point Proxy Server (PEP Proxy Server)

A PEP Proxy server is a server that acts as an intermediary for the user’s

requests and the resources that the user wants to access with it. Each service

that has resources that are unlikely to be accessible by unauthorized services

or users, has a local PEP Proxy server that undertakes to receive and to forward

request to it.

The PEP Proxy Server demands the received HTTP request header to

contain one of the following tokens:

• OAuth2 token - A valid OAuth2 token was created by the User

Authentication and Authorization service upon logging in and

corresponds to a user.

• Master Key - A secret code that is specified when initializing the

Policy Enforcement Proxy Server. Each different Policy Enforcement

Point Server has its own unique master code.

If the above tokens are not contained in the HTTP request header, then

the request is rejected.

As it is presented in Figure 20, any services that are not eligible to

publish its REST interface, such as the Publish/Subscribe Service, Sensor Data

Storage Service, History Service, Query Sensor Service, Query Available

Clouds Service, Sensor Interface Service, Register Sensor Service, Register

Cloud Service, work with a PEP Proxy Server.

In total, seven different PEP Proxy Servers are used in the architecture

as shown on Figure 20. Each one runs on its own docker container. By using

the OAuth2 mechanism as described in Section 2.2.2, the user’s authorization

can be dynamically configured depending on its user’s category as explained

in Section 3.1. According to the above, the user’s access requests must bear

in their header the OAuth2 token, that they received upon logging in.

The PEP Proxy Servers 1, 2,3, 6 and 7, as shown in Figure 20, because

they act as an intermediary for the user’s request and the services that they

provide protection, they need the user's unique OAuth2 token in the header of

their HTTP request in order to authorize and authenticate the user through their

collaboration with User Identification - Authorization Service and Authorization

Decision Point.

On PEP Proxy Servers 4 and 5, as shown in Figure 20, because they

act as intermediary for their protected services and the services that they want

gain access, the service requests header contains the Master key code of the

PEP Proxy Server. Hence, only the corresponding PEP Proxy is responsible

for the security of their protected services because there is no reason to identify

or configure authorization of different ranks of users.

In conclusion, when a user is signed up to a LINCA’s cloud system, their

profile information and permissions are stored and maintained in the

Identification-Authorization Service and the Authorization PDP Service,

LINCA SYSTEM REQUIREMENTS AND DESIGN 57

respectively. When the user routes a login request to the cloud system that they

signed up before, Identification-Authorization Service checks if the requested

user belongs to its cloud system. If the identification is successful, an OAuth2

token, which defines the identity of this user in the cloud system, is returned in

order to make an access request to the services of the cloud system without

exposing their personal information. Then, when the logged in user routes an

access request to an cloud’s service they must provide in the request’s header

their OAuth2 token that they received when they logged in. The PEP proxy that

“protects” the service which the user requested access to, must receive first the

user’s request in order to check who the user is and what permission it has,

with the help of the Identification-Authorization Service and the Authorization

PDP Service. More specifically, the PEP proxy extracts the OAuth2 token from

the user’s request and asks the Identification-Authorization Service who the

user is and what their roles are. After the Identification-Authorization Service

identifies the user, it returns to the PEP proxy the user’s profile information and

roles. Next, the PEP Proxy based on the information that it received from the

Identification-Authorization Service, asks the Authorization PDP if this user has

the permission to access the service that the PEP proxy protects. If the

Authorization PDP returns “Permit” then the PEP Proxy forwards the user’s

initial request to its protected service. Otherwise, if the Authorization PDP return

is “Denied”, the PEP proxy will not forward the request to its protected service.

The above process is represented as workflow in Section 3.5.1 and as an

abstract view in Figure 21 below:

Figure 21 – PEP Proxy Server Function using OAuth2 token

LINCA SYSTEM REQUIREMENTS AND DESIGN 58

 If a user log in to a LINCA’s cloud system and wants to access a service

that is located in a remote cloud system of LINCA, it follows procedure that it

will be describe in Section 4.2.

➢ Publish/Subscribe Service

The Publish/Subscribe Service acts as a mediator for the "Sensor" entities.

These entities are stored in the Publish-Subscribe Storage database in form of

JSON as described in Section 2.1 .

The JSON representation of the "Sensor" entity contains information about

its features:

• Unique sensor identifier (consisting of its name and unique code).

• Device’s model.

• Sensor’s owner.

• Name of the city in which it is located.

• Measuring characteristics (e.g. Temperature, humidity, pressure).

• Unit of measurement (e.g. Celsius, Pa, LUX).

➢ Sensor Data Management Service

This service is responsible for storing data to Database Service that are

received from Publish/Subscribe Service. Also, they can retrieve history data

from Database Service too. It consists of two micro-services as follows:

• Sensor Data Storage Service

This service is responsible for collecting data that are derived from the

sensor measurements. These measurements are administered by the

Publish/Subscribe Service. The aim of this service is to maintain a history

record of the measurements of each sensor in the History DB. By using the

subscription feature of the Publish/Subscribe Service , the Sensor Data Storage

Service is subscribed to all its sensor entities. Each new sensor measurement

that results, triggers one update event from Publish Subscribe Service to the

endpoint of the Data Storage Service. As a result, the service receives data

from all measurements of each particular sensor. The service is able to store

the received data to a wide range of different types of databases like MongoDB,

MySQL etc. The data received by this service through the subscription feature,

is stored in History DB with two different tactics :

• Raw – The data is stored as raw in the measurement’s history of each

particular sensor.

• Aggregated – This data is statistical values deriving from the

combination of the new arrival data , with the existing historical sensor

data. The statistical values are :

LINCA SYSTEM REQUIREMENTS AND DESIGN 59

▪ Maximum value between all samples of a sensor

measurements in the last day/month/year.

▪ Minimum value between all samples of a sensor measurements

in the last day/month/year.

▪ The sum of all samples for a sensor’s measurements in the last

day/month/year.

• Sensor Data Storage Service

This service is the RESTful interface of the system's historical database.

It is connected to the History DB and provides REST methods for retrieving

raw and aggregated historical data of the system’s sensor measurements.

➢ IoT Service

This is the service where the IoT devices are connected to and they send

their measurements through gateways. Furthermore, this service is responsible

for registering that the IoT devices to its cloud system and querying for the IoT

devices that are in every LINCA’s cloud system. This type of service consists

of the following micro-services :

• Query Sensor Service

The purpose of this service is to provide the users a search engine to find

sensors that are connected in their subscribed cloud systems. This service is

responsible for translating a user’s demand and searching for the requested

sensors in the Directory DB. If the user searches for sensors that are only

connected to their cloud system, the identification and authorization process

that is described above is done before the search in the Directory DB. But, if

the user searches for sensors that are located in other LINCA’s cloud systems

the identification and authorization of the user follows the process that will be

explained in Section 4.2.

• Register Sensor Service

This service is connected to the Directory DB and it provides the REST

methods for inserting sensors. It stores the sensors’ information in the Directory

DB in order to be discoverable by the local users and the authorized remote

users. Also, it provides the REST methods for inserting sensors to the

Publish/Subscribe Service in order to forward its sensors’ data to the Sensor

Data Storage Service, which are received from Sensors Interface Service.

• Sensor Interface Service

The purpose of this service is to be able to support different types of

sensors that transmit data through the UltraLight 2.0 protocol. Data is obtained

from the gateways that are connected to the system's Sensor Interface Service.

The Sensor Interface Service receives the physical sensor’s data from the

LINCA SYSTEM REQUIREMENTS AND DESIGN 60

gateways and updates the corresponding sensor that is maintained in the

Publish Subscribe Service. In this way, the sensor entities in the system are

constantly updated with the current measurements of the physical sensors.

➢ Cloud Management Service

This service is used by the administrators of cloud systems, if they wish to

register their cloud system to LINCA. Also, it is used by the Customer users for

querying for available LINCA’s cloud systems that are registered to LINCA

system by the corresponding administrators. This type of service consists of the

following micro-services:

• Query Cloud Service

The purpose of this service is to present to the users the available remote

clouds that are registered in LINCA. After the identification and authorization

process that is described above is done, this service is responsible to search

for the LINCA’s clouds in Directory DB. Afterwards, the users can choose the

remote clouds systems that they are interested in and request subscription from

the corresponding cloud administrator. If a remote administrator accepts the

user’s subscription request then this administrator creates and stores to their

cloud system, the roles and permission of this user. In this way, each cloud’s

administrator can manage the roles and permissions of the remote users that

are subscribed to their cloud system.

• Register Cloud Service

This service is connected to the Directory DB and it provides the REST

methods for inserting the cloud’s information to it . This service stores its cloud’s

information in the Directory DB in order to be discoverable by the authorized

remote users that wish to subscribe to their cloud system. If the administrator

accepts the user’s subscription request that they received from a remote

LINCA’s cloud system, then it creates and stores to their cloud system the roles

and permissions for that remote user. In this way, the administrator of this cloud

can manage the roles and permissions of the remote users that are subscribed

to their cloud system.

➢ Application Logic

Application Logic includes the code for orchestrating individual services, so that

the cloud system can implement the specified functionality.

➢ User Service

This service consists the Web Application of the cloud system. It is

considered part of the Application Logic as it contains the code needed to

implement the graphical interfaces of the cloud system.

LINCA SYSTEM IMPLEMENTATION 61

4 LINCA System Implementation

LINCA is a unified master-less distributed system consisting of different

cloud systems. Each LINCA’s cloud system is deployed as a Virtual Machine

(VM) which are provided from IntelliCloud that is based on OpenStack. The

individual services of each cloud system except from Directory DB are deployed

as docker container. Directory DB was deployed as individual service in every

cloud system. Also, the deployment of these services is based on the following

technologies:

PHP - PHP is a programming language for creating dynamic web pages.

A PHP page is processed by a compatible Web server, such as the Apache

Server, in order to produce the final content in real-time, which will either be

send to the user's browser in an HTML format or transmitted to another PHP

script. The Apache servers’ images are used to produced Apache servers’

containers for the Back-End to handle most REST requests between different

services. Therefore, the PHP and some of its extensions are used. More

specifically:

o cURL - cURL is a PHP library that allows data transfers between

services using various protocols, such as DICT, FTP, FTPS,

HTTP, HTTPS etc.. The library is used in order to call the HTTP

protocol methods, such as POST, GET, DELETE, PATCH, PUT,

directly through the PHP code.

o CassandraDB PHP Library – This library has the role of a driver

to manage the distributed Apache Cassandra Database through a

PHP code. The API provided by this library enables basic

Cassandra functions, such as command queries, writes, updates

etc. The CassandraDB PHP library is used in order to insert and

search the LINCA’s sensors and the cloud systems, where they

are stored the Directory DB. Also, this library is used in order to

update the user’s subscriptions list that is stored in Directory DB

as well.

The section 4.1 below, is a presentation of the mapping of LINCA’s cloud

systems services, as shown in Figure 22, to services of FIWARE’s catalogue.

Also, in Section 4.2 the interaction between LINCA’s clouds systems is

presented.

LINCA SYSTEM IMPLEMENTATION 62

4.1 Implementation of LINCA’s Cloud System Services

Figure 22 – Mapping LINCA’s cloud system services with FIWARE’s Services

LINCA's individual cloud systems are developed on Intellicloud virtual

machines (VMs) that use the OpenStack platform. Each cloud system (VM)

has a private and a public IP Address. The communication of individual

LINCA cloud systems is done using the private IP address while the public ip

address is used for the interaction of cloud systems with their users.

Within each cloud system there is a docker that hosts containers with

the corresponding system services. The containers are connected to an

internal network created by the docker and can communicate with each other

via internal ip addresses. The docker uses two ports mechanisms to interact

with its containers, the expose and the publish mechanism. The publish

mechanism can assign a port to a container in order to receive requests from

services outside the local docker container. The expose mechanism can

assign one or more ports to a container to communicate only with containers

that are connected to the local docker network.

Therefore, to access a cloud service, a user must use the public ip

address of the cloud in combination with the publish port assigned to that

service.

Communication between a system service (container) with a service

(container) of another system is carried out using the private ip addresses of

the individual systems along with the publish ports of the corresponding

system services.

LINCA SYSTEM IMPLEMENTATION 63

The docker which hosts system services in the form of containers can

be installed on any computer. DockerHub, which is a publish repository of

images, offers images of FIWARE services to develop into docker containers.

In conclusion, LINCA implementation can be deployed on a group of

computers that can communicate with ip addresses under the same network

and have the docker installed. The mapping of cloud system services with

FIWARE services is as follows:

• User Identification and Authorization Service

This service is a docker container running Keyrock IDM image34.

Keyrock IDM is provided from the FIWARE service and uses the OAuth2

authorization protocol to authenticate users and provide authorization for

access to services of LINCA’s cloud system. The authentication and

authorization of users who wishes to access services of a remote cloud system

is described in section 4.2.

• Registration of the cloud system in Keyrock IDM

The system administrator registers the cloud system in the Keyrock IDM

service. The new system registration is done with the assistance of the

graphical environment provided by Keyrock IDM. When the cloud system is

registered, the Keyrock IDM creates two unique identifiers related to this

system. These two identifiers are named, client_id and client_secret. After

joining the above two identifiers with the ":" symbol between them (i.e.

client_id:client_secret) and encrypting them with the base64 method (i.e.

base64 (client_id: client_sercret)) a new identifier will be created, and it will be

called "Authorization_Basic". For Keyrock IDM, this identifier is the identity of

the cloud system. A connection request to the system must necessarily include

the "Authorization_Basic" in its header.

▪ Registration of a new user in the registered cloud system

The user that is interested in accessing the cloud system should first create

an account with the Keyrock IDM service on that cloud. To do so, they must

complete a registration form where they must enter their details as well as the

user’s group which they want to join. Once this form is completed correctly, the

local administrator will either accept or reject the user’s registration request. If

it is accepted, the Admin will rank them in the user category they have chosen.

The user with "Customer" category is assigned the role of "Customer" while the

user in the "Infrastructure Owner" category is assigned the role of

"Infrastructure Owner". The authentication process begins when the user fills in

the login details (email and password) and requests access to the cloud system.

In more detail, a REST request is executed from the local cloud Application

Logic endpoint to the local cloud Keyrock IDM service. The header of this

request includes the "Authorization_Basic" wich is produced by Keyrock IDM

during the registration. The body contains the user's login information. Upon

successful authentication, the local cloud Keyrock IDM will return an OAuth2

LINCA SYSTEM IMPLEMENTATION 64

token to the endpoint of the local cloud Application Logic and the user will be

able to access the cloud system. A session is then created on the user's server

that stores the user's OAuth2 token (i.e. $ _SESSION [OAuth2_token]). This is

where the first stage of user authentication ends. Next, the cloud application

logic generates a second REST request to the local Keyrock IDM that contains

the user's OAuth2 token. Local Keyrock returns to the local Application logic,

the user roles in the cloud system. Once this is done, if the user’s role is

"Customer" , a $ _SESSION ["User_category"] with the value “Customer” will

be created if the user’s role is "Infrastructure Owner" , a $ _SESSION

["User_category"] with the value “Infrastructure Owner” will be created. This

ensures that the graphical interfaces for the "Customer" category are

accessible only to users with an active session ($ _SESSION

["User_category"]) with the "Customer" value. The same applies to graphical

interfaces for “Infrastructure Owners” . If a user attempts to access a graphical

interface that does not correspond to their user category, then the system

routes them to the original graphical interface where they must enter their login

details again.

▪ User authorization on registered cloud system

Users' access policies to resources are developed by the local Keyrock IDM

in the form of roles-permissions. More specifically, an in-service permission

defines the right of its owner to execute a specific REST request in that service.

o Example: The "Customer_Access" permission specifies the HTTP

request with GET method at URL: http://localhost/CustomerPortal.

 A role holds some permissions. The user assigned to this role also receives

the corresponding permissions.

o Example: The "OrdinaryCustomer" role includes the

"Customer_Access" permission. So, the owner of the

"OrdinaryCustomer" role has the right to make an HTTP request with

GET method at URL: http://localhost /CustomerPortal

 The user with the "Customer" role has the following permissions :

o Use of the Query Available Clouds Service to search available clouds.

(POST request http://localhost/getAvailableClouds.php)

o Use of the Query Sensors Service to search sensors. (POST request

http://localhost/getDesiredIDs.php)

o Use of the Query Sensors Service to search the list with user’s

subscribed sensors. (POST request

http://localhost/getMySensors.php)

o Use of the Query Sensor Service to subscribe to a sensor. (POST

request http://localhost/subcreate.php) . Also, an HTTP request

(POST request v2/Entities) is routed to Publish/Subscribe in order to

receive updates of the subscribed sensor’s measurements.

o Use of the History Service to view statistic values of a subscribed

sensor. (POST request http://localhost/getHistoryValue.php).

LINCA SYSTEM IMPLEMENTATION 65

o Use of the History Service to view current value of a subscribed sensor.

(POST request http://localhost/getCurrentValue.php).

The user with the "Infrastructure Owner" role has the following

permissions :

o Use of the Sensor Interface Service to register a sensor’s drivers to the

local cloud system. (POST request http://localhost/AgentParser.php)

.

o Use of the Register Sensor Service to register a sensor to Directory

DB (Cassandra DB), in order to be discoverable from authorized users

from other clouds. (POST request http://localhost/RegisterSensor.php

).

o Use of the Query Sensors Service to search the list with user’s

registered sensors. (POST request

http://localhost/getInfraSensors.php).

o Use of the History Service to view statistic values of a sensor. (POST

request http://localhost/getHustoryValue.php).

LINCA SYSTEM IMPLEMENTATION 66

35 https://hub.docker.com/r/authzforce/server

o Use of the History Service to view current value of a sensor. (POST

request http://localhost/getCurrentValue.php).

The HTTP methods of the Keyrock IDM service discussed in this section

are described in the REST Table 1 :

Method URL Method Request Header Request Body Method Descr.

POST /auth2/token Authorization:

base64 (client_id:
client_secret)

{

&username="username"
&password= "password"

 }

A valid username

and password
must had given.

Returned an
OAuth2token.

POST /v1/auth/tokens {
 "name":
"admin_username"

"password":"admin_passw
ord" }

Admin
information is
given . Returned

an access
identifier:Χ_subj_

token .

POST /v1/applications/

client_id/
users/user_id/

roles/role_id

X-Auth-

token:Χ_subj_toke
n

 This method

corresponds
“role_id” to user

with id “user_id”.

GET /user?access_tok

en= {OAuth2
token}

Authorization:

base64 (client_id:
client_secret)

 Receives an

OAuth2 token in
its URL. If it is

valid , user’s
information is

returned (User
id, User Roles,
Permissions …)

REST table 1 – Keyrock IDM

• Authorization Policy Decision Point (Authorization PDP)

This service is a docker container running AuthZForce image35. This

service is provided by the FIWARE catalogue and it is the Authorization Policy

Decision Point (PDP) service of the local cloud system. The aim of this service

is to make decisions, permit or deny, about the user’s access requests. The

decision it makes, is based on access rules that are stored in the service. This

access rules follow the XACML standard.

A role that is registered in local cloud Keyrock IDM service is associated

with one of the stored AuthZForce access rules. An access rule describes how

the user request must be standardized for approval. AuthZForce has the

following RESTful interfaces :

LINCA SYSTEM IMPLEMENTATION 67

36 https://hub.docker.com/r/fiware/pep-proxy/

▪ Creating a new role in the local cloud Keyrock IDM service,

automatically triggers a REST request from the local Keyrock IDM

to the AuthZForce Service. This service will create a new access

rule that is associated with the new role from the Keyrock.

▪ The local cloud Policy Enforcement Policy (PEP) Proxy Servers

forward to AuthZForce the user’s access request, in order to be

evaluated for approval or rejection.

• Policy Enforcement Point Proxy Server (PEP Proxy Server)

This service is a docker container running Wilma image36. Wilma PEP

proxy provided by the FIWARE catalogue and is implemented in order to

corporate with the local Keyrock IDM and the local AuthZForce PDP. This

collaboration provides protection to others local services of the cloud system

from local users. The purpose of any PEP Proxy Wilma is to “protect” their

respective services from unauthorized users and services:

o Publish/Subscribe Service

o Sensor Data Storage Service

o History Service

o Register Sensor Service

o Register Cloud Service

o Query Sensors Service

o Query Available Clouds Service

The PEP Proxy Servers 1, 2, 3, 6 and 7, as shown in Figure 20, because

they act as an intermediary for the user’s request and services that they provide

protection, need the user's unique OAuth2 token in the header of its HTTP

request in order to authorize and authenticate user through its collaboration

with User Identification-Authorization Service and Authorization Decision Point

as shown in Figure 23.

Figure 23 – PEP Proxy Wilma using OAuth2 token

LINCA SYSTEM IMPLEMENTATION 68

37 https://hub.docker.com/r/fiware/orion/

On PEP Proxy Servers 4 and 5, as shown in Figure 20, because they

act as intermediary for their protected services and services that want access

to them, the service requests header contains the Master key code of the PEP

Proxy Server, as shown in Figure 24

Figure 24 – PEP Proxy Wilma using Master Key

The authentication and authorization of users who wishes to access

services that are located to a remote LINCA’s cloud system, it will be describe

in section 4.2.

• Publish/Subscribe Service

This service is a docker container running Orion Context Broker image37.

This service is provided by the FIWARE catalogue. It operates according to the

NGSI-2 model data model for managing context information through its

RESTful interface. The service functions are described as follow:

o Create/Update Entities

The task is to design the Orion Context Broker to maintain the NGSI

entities that describe:

A. Every different sensor in local cloud

When a sensor is registered at the local end, an HTTP request is

routed to create a new NGSI "sensor" entity in Orion Broker. This request

is implemented using the POST method. The body of this request

includes the following as shown in Figure 24.

LINCA SYSTEM IMPLEMENTATION 69

Figure 24 – Create/Update request Orion Context Broker

In detail, the features included in the Figure 24 are as follows:

▪ Id – Unique Identifier of the sensor.

▪ Type – Refers to the type of the NGSI entity. The value “Sensor”

indicates that is a sensor entity.

▪ Attributes – Attributes for a particular sensor.

▪ Name – name of the attribute of the sensor.

▪ Type – type of sensor’s attribute.

▪ Value – value of senor’s attribute.

▪ updateAction – Contains the value “Append”. This means

that the above request when is made for the first-time acts

as creation request. This request creates an entity as it is

described in its body. In the case where the entity already

LINCA SYSTEM IMPLEMENTATION 70

exists, the request acts as a update request (changing the

existing entity).

B. Every different sensor in foreign cloud

When a user subscribes to a sensor that is located at a foreign cloud,

the local Orion Context Broker subscribe to the foreign Orion Context

Broker to receive updates for these sensors. Thus, the foreign Orion

Context Broker creates a sensor entity to the local Orion.

o Subscription Entities

Through subscriptions to entities, Orion Context Broker triggers

updates on any changes (the "ONCHANGE" condition) that occur in an

entity's attributes. The update is sent to a predefined - by the subscriber -

URI via a REST request using POST method. The request body contains

the change information which is described with the NGSI-2 information

model. The entity subscription function is used by the local Data Storage

Service. Having the role of subscriber, it receives notifications at its

endpoint about changes in sensor measurements and stores them in the

system's historical database.

Figure 25 – Subscribe request to Orion Context Broker

In detail the features included in the Figure 25 are as follows:

▪ Entities – The entities we subscribe to.

▪ IdPattern – This is the only sensor ID we want to create a

subscription for.

▪ Notifications – This is a feature that contains the information

about the updates it receives.

LINCA SYSTEM IMPLEMENTATION 71

38 https://hub.docker.com/r/fiware/cygnus-ngsi/

▪ httpCustom : This is an http request that we modify

as we want.

▪ url – Indicates the final destination of the updates it

receives. In this case it’s the PEP Proxy of the Data

Storage Service.

▪ Throttling - This is a variable that specifies the frequency at

which updates will be sent to the specified endpoint.

The following REST table 2 shows the REST methods that implement

all the functions of the Orion Context Broker as discussed in this section:

REST table 2 – Orion Context Broker

• Sensor Data Storage Service

This service is a docker container running Cygnus image38. The Cygnus
service is based on the "Apache flume40" architecture and provides various
agents (Agents) responsible for collecting NGSI data streams and storing them
in a predefined (external) database. An agent consists of a listener who is
responsible for receiving the data, a "channel" where the listener forwards the
data, and a "sink" that "receives" the data from the channel in order to store
them in an external database . The components of Cygnus is shown in Figure
26.

Metho

d

URL Method Request Header Request

Body

Method Descr.

POST /v2 /Entities Fiware-

ServicePath:
/Sensors

Diagram

2.1.3.2.1

Creation of

«Sensor» entity.

GET /v2 /Entities /{entity
id}

FiwareServicePat
h: /Sensors

 Recovery of
entity with ID

“entityid” which is
located in

«Sensor» entities.

DELE

TE

/v2 /Entities /{entity

id}

FiwareServicePat

h: /Sensors

 Deletion of entity

with ID “entityid”
which is located in

«Sensor» entities.

LINCA SYSTEM IMPLEMENTATION 72

Figure 26 – Cygnus

Cygnus provides various specialized agents to collect and maintain

NGSI data in the following database - repository services:

• HDFS Hadoop - file sharing system.

• MySQL - relational database.

• CKAN - Open Data Platform.

• MongoDB - NoSQL database for documents.

• Kafka - Subscription Message Broker.

• DynamoDB - Cloud-based NoSQL database from Amazon Web

Services.

• CarTo - Database specializing in geographic data.

For example, in the scenario where we need to store NGSI feeds in a

DynamoDB database, we will need to use a specialized "DynamoDB agent" of

the Cygnus service. Similar to the MongoDB database storage scenario, we will

need a specialized "MongoDB agent". In this work we have put in place a

specialized agent (Cygnus) for storing raw and aggregated data in the historical

database of the MongoDB system.

By using the subscription function of the Orion Context Broker service,

the agent subscribes to all Orion sensor entities. So, with every change that

happens to the value of a sensor attribute, an update is triggered from Orion to

the endpoint of the agent subscriber. The agent thus receives all measurements

of the system's sensors each time they occur.

It then has the responsibility of storing the measurements as raw and

aggregated data in the historical database. In this way the agent maintains a

time series data for the measurements of each different sensor.

In order to store aggregated information :

For each different sensor, different variables are maintained in the

database that relate to:

▪ The maximum value of the sensor measurements for the last

month / day / hour.

▪ The minimum value of the sensor measurements for the last

month / day / hour.

LINCA SYSTEM IMPLEMENTATION 73

▪ The sum of the sensor measurements for the last month / day

/ hour.

Example :

Suppose that the maximum temperature of the sensor with "urn: ngsi-ld:

tl: beacon: 001" identifier for this month is kept in the variable

"MAX_temperature_ urn: ngsi-ld: tl: beacon: 001_September" within the history

DB and has the value "34". The agent receives an alert with the new " urn: ngsi-

ld: tl: beacon: 001" sensor temperature measurement set to "36". The agent will

update the variable for the maximum sensor temperature for this month from

"34" to "36".

With this tactic, a request to retrieve the maximum / minimum / average

measurement of a sensor for any month / day / hour can be executed instantly

once there is a Pro-aggregation. Otherwise, we would have to recover a fairly

large number of raw metrics between the time frame we are interested in

(maybe thousands of metrics) and export - at that time - with some MAX / MIN

/ AVERAGE algorithm to the desired value (Much more time consuming).

At this point, as the operation of a Cygnus agent has become more

understandable, it is worthwhile to note one more positive thing that it offers on

an architectural level. As explained at the beginning of the section the agent

consists of a listener, a channel and a "sink". The channel acts as a temporary

repository of data received by the listener (the size of the channel memory is

set when the agent is initialized), Sink undertakes to "retrieve" the temporary

data in the channel and store it in the external database. This way, a failed

record (eg network delay, database overload, etc.) can be repeated without

losing data.

The REST method provided by the service for receiving and storing

NGSI feeds is described in the following REST table 3.

REST table 3 - Cygnus

Method URL Method Request Header Request

Body

Method Descr.

POST /notify Endpoint of the

subscriber of this
service. Subscribed

data streams are sent
for storage.

LINCA SYSTEM IMPLEMENTATION 74

39 https://hub.docker.com/r/fiware/sth-comet/
40 https://hub.docker.com/r/fiware/iotagent-ul/

• History Service

This service is a docker container running Comet image39. FIWARE-

COMET is a service provided by FIWARE. It is locally linked to the MongoDB

(History DB).

With its RESTful interface, it retrieves raw and aggregated historical

information which is stored in the MongoDB (HistoryDB).

This information has been stored on a historical basis by the Cygnus

agent as we saw in the previous section. The REST API of the service is

described in the following REST table 4:

REST table 4 – STH Comet

• Sensor Interface Service

This service is a docker container running IoT-Agent image40. This service

is provided by FIWARE and it aims to provide:

▪ Provide a sensor insertion mechanism to the infrastructure owners

according to their specifications so that customer can find the registered

devices.

▪ Recovery and translation of data sent by the sensors and then

forwarded to the Publish Subscribe service.

The sensor is inserted by using the graphical interface where it gives the

infrastructure owner the choice to select the cloud they wish to insert the sensor

Method URL Method Request

Header

Request

Body

Method Descr.

GET /STH/v1/contextEntities/
type/ Sensor/ id/
{Sensor_id}

/attributes/{temperature}
&LastN=1

 Request for retrieving
the current value of
temperature from a

sensor with the ID
“Sensor_Id”.

GET /STH/v1/contextEntities/
type/ Sensor/ id/ {Sensor

id}
/attributes/{temperature}/

aggrMethod={max/min/avg}
&aggrPeriod= {Hour}

&dateFrom ={2019-09-
01T00:00:00.000Z}

&dateTo ={2019-09-
2T23:59:59.999Z}

 Request for retrieving
the min/max/sum from

historical data of a
sensor with the ID

“Sensor_Id”. Τhe
“aggrMethod” takes

values like “sum”,
“max”, “min”. The

“aggrPeriod” takes
values like “month”,
“day”, “hour”.

LINCA SYSTEM IMPLEMENTATION 75

41 42 43 44 https://hub.docker.com/r/webdevops/php-apache

and then to complete the sensor characteristics. This allows the infrastructure

owners to easily insert sensors at the clouds that are authorized.

• Query Sensors Service

This service is a docker container running Apache Server image41. The

purpose of the service is to provide the users with a specified search engine so

the users can find the devices they need.

The sensors can be selected by the user, firstly by choosing their cloud

that they are located at, through the graphical interface. In addition, they can

choose the type of sensors’ measurements. In this way, the user can easily

search for sensors in LINCA’s clouds. Before the search starts, an

authentication and authorization process is executed, in order to check if user

is authorized at the LINCA’s clouds that wants to search for their connected

sensors. The service communicates with the Directory DB to retrieve sensors

from the requested LINCA’s clouds.

• Query Available Clouds Service

This service is a docker container running Apache Server image42. In

this service a user can search for any available clouds that are registered in

LINCA system. They can choose in which one they want to subscribe to. If the

corresponding cloud admin accept the user’s subscription request, then the

user can query for the sensors in admin’s cloud.

• Register Sensor Service

This service is a docker container running Apache Server image43. The

purpose of this service is to provide users with a specified graphical interface

so users can register their sensors to their connected LINCA’s cloud system.

In the graphical interface, Infrastructure Owners can fill the information

that are related to their sensors, such as name, id, owner details and type of

measurements. Also, this service communicates with the Directory DB in order

the infrastructure Owners to insert their sensors information to it. In this way

authorized users can search for sensors that are connected in their authorized

LINCA’s cloud systems.

This service is also used to update the customer’s subscription list in

Directory DB. For example, when a customer creates a subscription to a

sensor, a request is routed from Register Sensor Service to Directory DB to

update the user’s subscription list.

• Register Cloud Service

This service is a docker container running Apache Server image44. In

this service, a user-admin can register his/her cloud’s information in LINCA in

order to be discoverable by others remote authorized users . An authorized

LINCA SYSTEM IMPLEMENTATION 76

user means that it made a subscription request to this admin’s cloud and this

admin accept it and created for this user roles-permissions

4.2 LINCA’s Cloud Systems Interaction

LINCA’s is a master-less distributed system that is consisted of with

identical and equal cloud systems. These clouds systems can interact with each

other through RESTful communication in order to satisfy the demands of user

categories that described in Section 3.1. More specifically, LINCA’s cloud

systems interact with each other when:

• A Customer user is searching for the available cloud systems that are

registered in LINCA.

• A user wants to subscribe to remote cloud systems in order to access

their services and devices.

• Authentication and Authorization process of user takes place, in order

to get access to remote services

• A Customer user is searching for sensors that are connected to remote

cloud systems.

• A customer is subscribed to sensors that are connected to remote

cloud systems and their data bust be fetched by user’s cloud system

in order to provide the sensors’ updates to the subscriber.

Figure 27 – LINCA’s cloud systems interaction

LINCA SYSTEM IMPLEMENTATION 77

The Figure 27 illustrates a view of the LINCA’s clouds system interaction.

Arrows represent the RESTful communication over HTTP protocol of:

• Services that are in the same cloud system.

▪ Red Dashed Arrows : communication of security

service with the other services as described in section

4.1.

▪ Black Arrows : communication between the rest

services of the cloud system as described in section

4.1.

• Services that are in different cloud system.

▪ Red Arrows : communication between security services

of each cloud system in order to register, authenticate

and authorize user in a remote cloud system.

▪ Green Arrows : communication between Database

Services of each cloud system. More specifically ,

Directory DB of each cloud system is a node of

Cassandra’s ring. After the authorization and

authentication process user can seek sensors that are

connected to LINCA.

▪ Yellow Arrows : communication between

Publish/Subscribe Services of each cloud systems in

order to retrieve updates of subscribed sensors’

measurements.

The connection of services of the same cloud system is explained in

section 4.1. In addition, we will describe the communication between remote

services(services that are located in different LINCA’s cloud systems).

• Interaction of Security Services

Each Security Service is consisted from 4 micro services as described

in Section 3.6.2. These micro services are the User Identification and

Authorization Service, Policy Enforcement Point Proxy Server (PEP Proxy),

and Authorization Policy Decision Point (Authorization PDP).

As shown in Figure 13 ,when user subscribe to a remote cloud system

of LINCA, his/her permissions for this cloud is stored as a XACML file in the

AuthZForce Service of this remote cloud system.

In this way, the cloud system that the user is connected, and he/she

routes requests to services of remote cloud system, is responsible for the user

authentication and the remote cloud system that user wants to access its

services , is responsible for user authorization because it maintains user’s

permissions in its Authorization PDP Service.

 A security service communicate with other security service of different cloud

system when a customer through his/her cloud system tries to query or

LINCA SYSTEM IMPLEMENTATION 78

subscribe to sensors that are connected to a remote cloud system to LINCA.

Also, this process performed when a customer wants to retrieve current and

statistic value of a subscribed sensor that is connected to a remote cloud

system of LINCA.

When a user is trying to log in to his/her cloud system the local

Identification-Authorization Service checks if the requested user belongs to its

cloud system. If the identification is successful, an OAuth2 token is returned,

which defines the identity of this user in his/her cloud system.

When the logged in user wishes to query or subscribe sensors that is

connected to a remote cloud system of LINCA, must provide in the request’s

header his/her OAuth2 token that received when he/she logged in. The local

PEP proxy Query Sensor receives first the user’s request in order to check to

its cloud system who the user is and what permission it has to the remote cloud

in wich the requested sensors are connected. Actually, the PEP proxy Query

Sensor extracts the OAuth2 token from the user’s request and asks the

Identification-Authorization Service which is located to user’s cloud system (the

cloud system that is connected and can route request) who the user is. After

the Identification-Authorization Service identifies the user, it returns to the local

PEP proxy Query Sensor the user’s profile information. Next, the local PEP

Proxy Query Sensor based on the information that it received from the

Identification-Authorization Service, asks the Authorization PDP Service that is

located to the remote cloud, if this user has the permission to query or subscribe

sensors of this cloud. If the Authorization PDP returns “Permit” then the local

PEP Proxy Query Sensor forwards the user’s initial request to the local Query

Sensor Service. Otherwise, if the Authorization PDP return is “Denied”, the PEP

proxy will not forward the request. Then, the local Query Sensor Service is

searching in the local node of the Cassandra (Directory DB) the sensors of the

remote cloud. The above process is represented as workflow in Section 3.5

and as an abstract view in Figure 28 below:

LINCA SYSTEM IMPLEMENTATION 79

Figure 28 – PEP Proxy using OAuth2 between remote LINCA’s cloud systems

• Interaction of Public/Subscribe Services

Each Publish/Subscribe Service consists the Orion Context Broker

Service ,as described in Section 3.6.2 . The communication between Publish

Subscribe Services that are located to different clouds is explained in the

following Scenario :

• Scenario

o An Infrastructure Owner is connected to CLOUD 1, as shown in Figure

27, and is authorized to register its sensors, “Sensor1” and “Sensor2”

to its cloud system. As result, these sensors send data to Sensors

Interface Service through gateways in ordered to forwarded to

Publish/Subscribe Service. The two services that were mentioned

above are located to CLOUD 1.

o User A is connected to CLOUD 2 and he/she routes a subscription

request to CLOUD 1.

o We assume that the Admin of CLOUD 1 accepts the request and

he/she assign roles and permission to User A. As a result, user A has

the permission to query and subscribe to sensors that are connected

to CLOUD 1.

o User A through his local system (CLOUD 2) routes request in order to

subscribe sensors “Sensor1” and “Sensor2” that are located to

CLOUD 1.

o After the authentication and authorization mechanism that explained

above (Interaction of Security Services), user A is successfully

LINCA SYSTEM IMPLEMENTATION 80

subscribed to these sensors. More specifically, Publish/Subscribe

Service of CLOUD 1 is subscribed to Publish/Subscribe of CLOUD 2

for the “Sensor1” and Sensor2”.

When “Sensor1” or “Sensor2” send new measurements to their

Publish/Subscribe Service (CLOUD 1) , then this service forwards the new

measurements to the subscribers of these sensors. So, Publish/Subscribe

Service of CLOUD 1 will forward the measurements to Publish/Subscribe

Service of CLOUD 2. In addition, Publish/Subscribe Service of CLOUD 2 will

forward these measurements to the Sensor Data Storage Service of CLOUD 2

in order to store them in History DB. This procedure is repeated for every new

measurement from “Sensor1” and “Sensor2”.

• Interaction of Database Services

Each Database Service consists a Directory DB. This database is an

implementation of Cassandra Database. Each Directory DB that is located to every

cloud system of LINCA corresponds to a node of Cassandra’s ring. The

communication in Cassandra ring is described in Section 2.5.1. Authorized users can

query LINCA’s sensors through the local node of Cassandra Cluster. Unauthorized

user cannot get access to the any node of Cassandra’s ring because the only way to

get access to them is through Register Sensor Service, Register Cloud Service, Query

Sensor Service ,Query Available Clouds Service which are protected by Security

Services.

4.3 Docker and Virtual Machine Interaction

LINCA's individual cloud systems are developed on Intellicloud virtual

machines (VMs) that use the OpenStack platform. The individual services of

each cloud system are deployed as docker containers except from Directory

DB (Cassandra) which is a deployed as a service in the Virtual Machine (VM),

as shown in Figure 29. Each cloud system (VM) has a private and a public IP

Address. The communication between cloud-cloud and cloud-user is done by

using the public IP address.

LINCA SYSTEM IMPLEMENTATION 81

 Figure 29 – Docker of LINCA’s cloud system

 The containers are connected to an internal network created by the docker and

can communicate with each other via internal ip addresses. The docker uses

two ports mechanisms to interact with its containers, the expose and the publish

mechanism. The expose mechanism can assign one or more ports to a

container to communicate only with containers that are connected to the

internal docker network. The Figure 30 represents the communication of docker

containers (cloud services) over the internal docker network. Containers of this

docker network can communicate with each other via internal ip addresses (e.g.

Container 1 internal ip address is 172.18.1.5) along the exposed ports (e.g.

Container 1 exposed port is 8060). Also, a docker container (e.g. Container 2)

can exposed one or more ports.

Figure 30 – Docker Network

LINCA SYSTEM IMPLEMENTATION 82

The publish mechanism is a way of binding host machine port to a

running docker container port. In other words, when a port of docker container

is published, it is mapped to a specific port of the host machine. In this way

docker containers can receive requests from services that are outside the

docker internal network.

Therefore, a user in order to access a cloud service that is deployed as

docker container, he/she must use the public ip address of the cloud system

(VM) along with the published port of the docker container in which the service

is running. The Figure 31 shows that the published port 8061 of Container 4

and is mapped to the host port 80. As a result, the Container 4 can receive

requests from services outside the internal docker network. The requests can

be sent through the public ip of the host machine along with the published port

of Container 4 (e.g. 147.27.50.200:8061).

Figure 31 – Communication of docker container with outside world

The docker service can be installed on any computer. Also, DockerHub,

which is a publish repository of images, offers images of FIWARE services in

order to develop them as docker containers. In conclusion, LINCA can be

implemented deployed on any group of computers that can communicate under

the same network and have the docker service installed.

BACK END PERFORMANCE 83

5. Back – End Performance

Each of the cloud systems was developed on Intellicloud of Technical

University of Crete. In total, 3 virtual machines are used. Each of this machine

consists a docker machine and Apache Cassandra Database. In every docker

machine there are 22 docker containers where the following services are

executed:

• Web Application

• Application Logic

• Query Sensor Service

• Query Available Cloud Service

• Register Sensor Service

• Register Cloud Service

• STH-Comet Service

• Cygnus Service

• Orion Context Broker Service

• Sensor Interface Service

• PEP Proxy for each protected service,7 in total.

• Keyrock IDM

• AuthZForce

• MySQL Database

• MongoDB, 2 in total.

The technical features of the above virtual machines are as follows:

CPU 4 VCPU

Memory 8GB

HDD 80GB

OS Ubuntu 16.04 LTS

The Apache Benchmark tool was installed and used in each virtual

machine, in order to determine the performance of the system under real

conditions. This tool can create quite a few simultaneous requests. Also, it

can create heavy workloads on each system service individually by specifying

the number of requests to be served and how many of them will be executed

at the same time.

In each of the following experiments, 2000 requests are made to each

system’s service. These requests are repeated with different number of

concurrencies. The measurements refer to the execution time per request that

occurred and are divided into categories according to their concurrency.

These categories are as follows:

BACK END PERFORMANCE 84

As local services we define the services that are located to the cloud
system in which the user is connected and makes requests and as remote
services we define the services that are located to a remote cloud system of
LINCA in which the user is interested to access its services.

5.1. Experiment 1 – Query Sensors in Local Cloud System

Scenario - The user through the graphical interface is querying for sensors

based on desired features, that are connected to his/her local cloud system. A

local cloud system defines the cloud where the user logs in and makes

requests. For this experiment, the local cloud is called Athens with ip address

http://147.27.50.200.

Services - User via Web Application chooses the attributes of the sensors

that wishes to search and are connected to his/her local cloud. The Web

Application forwards the request to Application Logic. After, the Application

Logic adds User OAuth2 token to the initial user’s request and then forwards it

to the local PEP Proxy that “protects” the local Query Sensor Service. Next, this

PEP proxy checks User OAuth2 token in local Keyrock. Immediately, local

Keyrock checks its database if user exist with the corresponding OAuth2 token.

If user, exist then it returns to local PEP proxy the user’s information. In addition,

PEP proxy checks for user’s permissions in local AuthZForce PDP Service. If

local AuthZForce returns “Permit” then the PEP proxy forwards the initial user’s

request to the protected service, the local Query Sensor Service. If local

AuthZForce returns “Denied” then the PEP proxy will not forward the initial

request. After the successful user authentication and authorization, the local

Query Sensor Service starts to query Directory DB for the desired sensors that

are connected to the local cloud. In the end, Directory DB returns the desired

sensors that are connected to the local cloud. The above workflow is

represented in Section 3.5.

Details - The request examined in this experiment, concerns finding

sensors at the user's local cloud (ip address: http://147.27.50.200) that

measure temperature and pressure. The query was made on a collection of

900 sensor entities (virtual, in order the response to be realistic) with only three

of them meeting the query criteria.

REST - POST http://147.27.50.200:8060/getDesiredIDs, with request body

(city=Athens && measurement= Temperature && measurement = Pressure).

BACK END PERFORMANCE 85

Results - The results for the execution time per request are listed in the

following Figure 32.

Figure 32 – Execution time per request for querying sensors in Local Cloud System

5.2. Experiment 2 - Query Sensors in Remote Cloud System

 Scenario - The user through the graphical interface is querying for sensors

based on desired features, that are connected to a remote cloud system. A

remote cloud system defines the cloud in which user is not directly connected

but is authorized to query for its sensors through user’s local cloud. For this

experiment, the local cloud is called Athens with ip address http://147.27.50.200

and the remote cloud is called Chania with ip address http://147.27.50.199.

Services - User via local Web Application chooses the attributes of the

sensors that wishes to search and the remote cloud that their connected. The

local Web Application forwards the request to local Application Logic. After, the

local Application Logic adds User OAuth2 token to the initial user’s request and

then forwards it to the local PEP Proxy that “protects” the local Query Sensor

Service. Next, this PEP proxy checks User OAuth2 token in local Keyrock.

Immediately, local Keyrock checks its database if user exist with the

corresponding OAuth2 token. If user, exist then it returns to local PEP proxy the

user’s information. In addition, local PEP proxy checks for user’s permissions

in AuthZForce PDP Service that is located to the remote cloud that user wants

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Query Sensors in Local Cloud System
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 86

to find its devices. If remote AuthZForce returns “Permit” then the local PEP

proxy forwards the initial user’s request to the protected service, the local Query

Sensor Service. If remote AuthZForce returns “Denied” then the PEP proxy will

not forward the initial request. After the successful user authentication and

authorization, the local Query Sensor Service starts to query Directory DB for

the desired sensors that are connected to the remote cloud. In the end,

Directory DB returns the desired sensors that are connected to remote cloud.

The above workflow is represented in Section 3.5.

Details - The request examined in this experiment, concerns finding

sensors at the user's remote cloud (ip address: http://147.27.50.199) that

measure temperature and pressure. The query was made on a collection of

900 sensor entities (virtual, in order the response to be realistic) with only three

of them meeting the query criteria.

REST - POST http://147.27.50.200:8060/getDesiredIDs, with request body

(city=Chania && measurement= Temperature && measurement = Pressure).

Results - The results for the execution time per request are listed in the

following Figure 33.

Figure 33 – Execution time per request for querying sensors in Remote Cloud System

By computing the average execution time per request of Experiment 1 and

Experiment 2, we notice a difference between their average execution time of

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Query Sensors in Remote Cloud System
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 87

each concurrency category. This difference is due to the connection time that

Experiment 2 needs to authenticate-authorize a user in a remote cloud and to

query for sensors that are connected to this remote cloud. The results for the

average execution time per request of Experiment 1 and Experiment 2 are

shown in the following Figure 34.

Figure 34 – Average execution time per request for querying sensors in Local Cloud System and in

Remote Cloud system

5.3. Experiment 3 – Retrieve Maximum Value of Local Sensor

 Scenario - The user through the graphical interface requests the

maximum temperature measurements of his/her subscribed sensor “urn:ngsi-

ld:t:beacon:1”, every hour of the last 24 hours. This sensor is connected to

user’s local cloud system.

Services – User via local Web Application chooses from subscribed

sensors list the sensor “urn:ngsi-ld:t:beacon:1” in order to retrieve its maximum

temperature measurements of every hour of the last 24 hours. Local Web

Application forwards the request to local Application Logic. Local Application

Logic adds User OAuth2 token to the initial request and then forwards it to local

PEP Proxy. Local PEP proxy checks User OAuth2 token in local Keyrock.

Immediately, local Keyrock checks its database if user exist with the

corresponding OAuth2 token. If user, exist then local Keyrock returns to local

PEP proxy the user’s information. Local PEP proxy checks for user’s

permissions in local AuthZForce PDP. If local AuthZForce returns “Permit” then

local PEP proxy forwards the initial user’s request to the protected service, local

STH-Comet. If local AuthZForce returns “Denied” then the local PEP proxy will

not forward the initial request. Comet processes the request and starts querying

0

1000

2000

3000

4000

5000

6000

Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

1617.050525 1720.331166

2633.271636

5753.985493

1074.157079 1059.33967

1659.902951

2827.031016

A
V

ER
A

G
E

R
ES

P
O

N
SE

 T
IM

E
(M

S)

Average Execution Time for
Sensor Query

Query Remote Sensors

Query Local Sensors

BACK END PERFORMANCE 88

in History DB for the maximum temperature measurements of the chosen

sensor. At last, History DB returns the requested information. The above

workflow is represented in Section 3.5.

REST - GET “147.27.50.200:8666/STH/v1/contextEntities/type/Sensor

/id/urn:ngsild:t:beacon:1/attributes/Τemperature?aggrMethod=max&aggrPerio

d=hour&dateFrom=2019-08-24T10:25:00.000Z&dateTo=2019-08-

25T10:25:00.000Z".

Results - The results for the execution time per request are listed in the

following Figure 35.

Figure 35 – Execution time per request for retrieving maximum value of sensor

5.4. Experiment 4 - Retrieve Maximum Value of Remote Sensor

 Scenario - The user through the graphical interface requests the

maximum temperature measurements of his/her subscribed sensor “urn:ngsi-

ld:t:beacon:251”, every hour of the last 24 hours. This sensor is connected to

a remote cloud system.

Services – User via local Web Application chooses from subscribed

sensors list the sensor “urn:ngsi-ld:t:beacon:251” in order to retrieve its

maximum temperature measurements of every hour of the last 24 hours. Local

Web Application forwards the request to local Application Logic. Local

Application Logic adds User OAuth2 token to the initial request and then

forwards it to local PEP Proxy. Local PEP proxy checks User OAuth2 token in

local Keyrock. Immediately, local Keyrock checks its database if user exist with

the corresponding OAuth2 token. If user, exist then local Keyrock returns to

local PEP proxy the user’s information. In addition, local PEP proxy checks for

0

2000

4000

6000

8000

10000

12000

14000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Retrieve Maximum Value Of Local Sensor
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 89

user’s permissions in AuthZForce PDP Service that is located to the remote

cloud in which the subscribed sensor is connected. If remote AuthZForce

returns “Permit” then local PEP proxy forwards the initial user’s request to the

protected service, local STH-Comet. If local AuthZForce returns “Denied” then

the local PEP proxy will not forward the initial request. Comet processes the

request and starts querying in History DB for the maximum temperature

measurements of the chosen sensor. At last, History DB returns the requested

information. The above workflow is represented in Section 3.5.

REST - GET “147.27.50.200:8666/STH/v1/contextEntities/type/Sensor

/id/urn:ngsild:t:beacon:251/attributes/Τemperature?aggrMethod=max&aggrPe

riod=hour&dateFrom=2019-08-24T10:25:00.000Z&dateTo=2019-08-

25T10:25:00.000Z".

Results - The results for the execution time per request are listed in the

following Figure 36.

Figure 36 – Execution time per request for retrieving maximum value of sensor

By computing the average execution time per request of Experiment 3 and

Experiment 4, we notice a difference between their average execution time of

each concurrency category. This difference is due to the connection time that

Experiment 4 needs to authenticate-authorize a user in a remote cloud. The

results for the average execution time per request of Experiment 3 and

Experiment 4 are shown in the following Figure 37.

0

2000

4000

6000

8000

10000

12000

14000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Retrieve Maximum Value Of Remote Sensor
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 90

Figure 37 – Average execution time per request for retrieving max value of sensor in Local Cloud

System and in Remote Cloud system

5.5. Experiment 5 - Retrieve Current Value of Local Sensor

 Scenario - The user, through the graphical interface, requests the current

temperature measurement of his/her subscribed sensor “urn:ngsi-

ld:t:beacon:13”. This sensor is connected to user’s local cloud system.

Services – User via local Web Application chooses from subscribed

sensors list the sensor “urn:ngsi-ld:t:beacon:13” in order to retrieve its current

temperature measurements. Local Web Application forwards the request to

local Application Logic. Local Application Logic adds User OAuth2 token to the

initial request and then forwards it to local PEP Proxy. Local PEP proxy checks

User OAuth2 token in local Keyrock. Immediately, local Keyrock checks its

database if user exist with the corresponding OAuth2 token. If user, exist then

local Keyrock returns to local PEP proxy the user’s information. Local PEP

proxy checks for user’s permissions in local AuthZForce PDP. If local

AuthZForce returns “Permit” then local PEP proxy forwards the initial user’s

request to the protected service, local STH-Comet. If local AuthZForce returns

“Denied” then the local PEP proxy will not forward the initial request. Comet

processes the request and starts querying in History DB for the current

temperature measurements of the chosen sensor. At last, History DB returns

the requested information. The above workflow is represented in Section 3.5.

0

1000

2000

3000

4000

5000

6000

7000

Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

2157.942471
2351.907454

3502.448224

6692.282641

1614.128564 1690.915958

2529.07954

3765.328164

A
V

ER
A

G
E

R
ES

P
O

N
SE

 T
IM

E
(M

S)

Average Execution Time of Retrieve Max Value Sensor

Retrieve Max Value
of Remote Sensor

"Retrieve Max
Value of Local
Sensor"

BACK END PERFORMANCE 91

REST - GET “147.27.50.200:8666/STH/v1/contextEntities/type/Sensor

/id/urn:ngsi-ld:t:beacon:13/attributes/Τemperature?LastN=1".

Results - The results for the execution time per request are listed in the

following Figure 38.

Figure 38 – Execution time per request for retrieving current value of local sensor

5.6. Experiment 6 - Retrieve Current Value of Remote Sensor

 Scenario - The user, through the graphical interface, requests the current

temperature measurement of his/her subscribed sensor “urn:ngsi-

ld:t:beacon:251”. This sensor is connected to a remote cloud system.

Services – User via local Web Application chooses from subscribed

sensors list the sensor “urn:ngsi-ld:t:beacon:251” in order to retrieve its current

temperature measurement. Local Web Application forwards the request to local

Application Logic. Local Application Logic adds User OAuth2 token to the initial

request and then forwards it to local PEP Proxy. Local PEP proxy checks User

OAuth2 token in local Keyrock. Immediately, local Keyrock checks its database

if user exist with the corresponding OAuth2 token. If user, exist then local

Keyrock returns to local PEP proxy the user’s information. In addition, local PEP

proxy checks for user’s permissions in AuthZForce PDP Service that is located

to the remote cloud in which the subscribed sensor is connected. If remote

AuthZForce returns “Permit” then local PEP proxy forwards the initial user’s

request to the protected service, local STH-Comet. If local AuthZForce returns

“Denied” then the local PEP proxy will not forward the initial request. Comet

processes the request and starts querying in History DB for the current

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Retrieve Currrent Value Of Local Sensor
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 92

temperature measurement. At last, History DB returns the requested

information. The above workflow is represented in Section 3.5.

REST - GET “147.27.50.200:8666/STH/v1/contextEntities/type/Sensor

/id/urn:ngsi-ld:t:beacon:251/attributes/Τemperature?LastN=1".

Results - The results for the execution time per request are listed in the

following Figure 39.

Figure 39 – Execution time per request for retrieving current value of remote sensor

By computing the average execution time per request of Experiment 5 and

Experiment 6, we notice a difference between their average execution time of

each concurrency category. This difference is due to the connection time that

Experiment 6 needs to authenticate-authorize a user in a remote cloud. The

results for the average execution time per request of Experiment 5 and

Experiment 6 are shown in the following Figure 40

0

2000

4000

6000

8000

10000

12000

14000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Retrieve Current Value Of Remote Sensor
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 93

Figure 40 – Average execution time per request for retrieving current value of sensor in Local Cloud

System and in Remote Cloud system

5.7. Experiment 7 – Subscribe to Local Sensor

Scenario - The user that is connected to his/her local cloud system, wants

to subscribe to a sensor that is connected to his/her local cloud. The ID of this

local sensor is “urn:ngsi-ld:t:beacon:1”. The user routes a subscription request

to the local service that is responsible to subscribe the user to the requested

local sensor. Before this, user’s request must pass through the security services

of his/her local system. Local cloud system is the system in which the user is

connected and he/she has the permissions to query and subscribe local

sensors. For this experiment, the local cloud is called Athens with ip address

http://147.27.50.200.

Services – User via local Web Application after the process of querying
sensors, he/she chooses to subscribe to sensor “urn:ngsi-ld:t:beacon:251” who
is connected to his/her local cloud system. Local Web Application forwards the
request to local Application Logic. Local Application Logic adds User OAuth2
token to the initial request and then forwards it to local PEP Proxy. Local PEP
proxy checks User OAuth2 token in local Keyrock. Immediately, local Keyrock
checks its database if user exist with the corresponding OAuth2 token. If user,
exist then local Keyrock returns to local PEP proxy the user’s information. Then
local PEP proxy checks for user’s permissions in local AuthZForce PDP. If local
AuthZForce returns “Permit” then local PEP proxy forwards the initial user’s
request to the protected service, the local Query Sensor Service. If AuthZForce

0

1000

2000

3000

4000

5000

6000

7000

8000

Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

2158.504252 2348.228614

3499.890945

7397.253627

1614.690345 1687.237119

2526.522261

4470.29915

A
V

ER
A

G
E

R
ES

P
O

N
SE

 T
IM

E
(M

S)

Average Execution Time of Retrieve Current Value Sensor

Retrieve Current Value
of Remote Sensor

"Retrieve Current
Value of Local Sensor"

BACK END PERFORMANCE 94

returns “Denied” then the PEP proxy will not forward the initial request. Also
Query Sensor Service is responsible to update user’s subscription list in the
local node of Cassandra’s cluster. The above workflow is represented in
Section 3.5.

REST - POST http://147.27.50.200/Subcreate, with body request

(user=athens@customer.com , city= Athens, sensor = urn:ngsi-ld:t:beacon:1).

Results - The results for the execution time per request are listed in the

following Figure 41.

Figure 41 – Execution time per request for subscribing sensor in local cloud system

5.8. Experiment 8 – Subscribe to Remote Sensor

Scenario - The user that is connected to his/her local cloud system,

wants to subscribe to a sensor that is connected to a remote cloud system.

The ID of this remote sensor is “urn:ngsi-ld:t:beacon:256”. The user routes

a subscription request to the local service that is responsible to subscribe

the user to the remote requested sensor. Before this, user’s request must

pass through the security services of his/her local system and through the

security services of remote cloud in which the requested sensor is

connected. Local cloud system is the system in which the user is connected

and he/she routes subscription request to the remote cloud. For this

experiment, the remote cloud is called Chania with ip address

0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Subscribe to Local Sensor
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 95

http://147.27.50.199 and the local cloud is called Athens with ip address

http://147.27.50.200

Services – User via local Web Application after the process of querying

sensors, he/she chooses to subscribe to sensor “urn:ngsi-ld:t:beacon:256”

who is connected to a remote cloud system. Local Web Application

forwards the request to local Application Logic. Local Application Logic adds

User OAuth2 token to the initial request and then forwards it to local PEP

Proxy. Local PEP proxy checks User OAuth2 token in local Keyrock.

Immediately, local Keyrock checks its database if user exist with the

corresponding OAuth2 token. If user, exist then local Keyrock returns to

local PEP proxy the user’s information. Then local PEP proxy checks for

user’s permissions in the remote AuthZForce PDP Service that is located to

the remote cloud system in which the requested sensors are connected. If

remote AuthZForce returns “Permit” then local PEP proxy forwards the initial

user’s request to the protected service, the local Query Sensor Service. If

remote AuthZForce returns “Denied” then the PEP proxy will not forward the

initial request. The local Query Sensor Service is responsible to subscribe

the local Orion Context Broker to the remote Orion Context Broker for the

sensors that user wants to subscribe. In this way when the remote Orion

Context Broker receives updates from the requested sensors , it will forward

them to the local Orion Context Broker.Also Query Sensor Service is

responsible to update user’s subscription list in the local node of

Cassandra’s cluster. The above workflow is represented in Section 3.5.

REST - POST http://147.27.50.200/Subcreate, with body request

(user=athens@customer.com , city=Chania, sensor=urn:ngsi-ld:t:beacon:256).

Results - The results for the execution time per request are listed in the

following Figure 42.

BACK END PERFORMANCE 96

Figure 42 – Execution time per request for subscribing sensor in remote cloud system

By computing the average execution time per request of Experiment 7 and

Experiment 8, we notice a difference between their average execution time of

each concurrency category. This difference is due to the connection time that

Experiment 8 needs to authenticate-authorize a user in the remote cloud. The

results for the average execution time per request of Experiment 7 and

Experiment 8 are shown in the following Figure 43.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Subscribe to Remote Sensor
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 97

Figure 43 – Average execution time per request for subscribing sensor in Local Cloud System and in

Remote Cloud system

5.9. Experiment 9 – Register Cloud System to LINCA

Scenario – An administrator of a cloud system wants to register his/her

cloud in the LINCA ecosystem. In order to do this, he/she must route request

to the appropriate local service that is connected to the local node of

Cassandras cluster. This service will register the cloud system’s information to

Cassandra cluster in order to be discoverable from other existing cloud systems

of LINCA. Before the above process the admin’s request must pass through

the security services of his/her system. The name of his/her cloud is called

Athens with ip address 147.24.50.200.

Services – Admin via local Web Application is typing the information of

his/her cloud who wants to register in the LINCA system. Local Web Application

forwards the request to local Application Logic. Local Application Logic adds

User OAuth2 token to the initial request and then forwards it to local PEP Proxy.

Local PEP proxy checks User OAuth2 token in local Keyrock. Immediately,

local Keyrock checks its database if user exist with the corresponding OAuth2

token. If user, exist then local Keyrock returns to local PEP proxy the user’s

information. Local PEP proxy checks user’s permissions in local AuthZForce. If

local AuthZForce returns “Permit” then local PEP proxy forwards the initial

0

2000

4000

6000

8000

10000

12000

14000

16000

Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

2370.575788
3219.851426

7275.056528

14453.82541

1826.761881
2558.85993

6301.687844

11526.87094

A
V

ER
A

G
E

R
ES

P
O

N
SE

 T
IM

E
(M

S)

Average Execution Time of Subscribe to Sensor

Subscribe Remote
Sensor

Subscribe Local
Sensor

BACK END PERFORMANCE 98

user’s request to the protected service, the local Register Cloud Service. If local

AuthZForce returns “Denied” then the local PEP proxy will not forward the initial

request. Local Register Cloud Service process the request and imports the

cloud’s information in Directory DB in order to be discoverable from remote

users. In the end, Directory DB returns if the insertion was success. The above

workflow is represented in Section 3.5.

REST - POST http://147.27.50.200/InsertNode with body request

(name=Athens, address= http://147.27.50.200, longitude=27.8, latitude=18.1).

Results - The results for the execution time per request are listed in the

following Figure 44.

Figure 44 – Execution time per request for inserting a Cloud System in LINCA

The results for the average execution time per request of Experiment 9 and

are shown in the following Figure 45.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000

R
ES

P
O

N
SE

 T
IM

E
(M

S)

REQUESTS

Register Cloud System in LINCA
Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

BACK END PERFORMANCE 99

Figure 45 – Average execution time per request for registering a Cloud System in LINCA

0

500

1000

1500

2000

2500

Concurrency 1 Concurrency 50 Concurrency 100 Concurrency 150

1077.874437 1134.992496

1700.271136

2316.5998

A
V

ER
A

G
E

R
ES

P
O

N
SE

 T
IM

E
(M

S)

Average Execution Time of Register a Cloud System
in LINCA

Register Cloud
System in Linca

CONCLUSIONS 100

6. Conclusions

For this thesis, we introduced and implement a master-less distributed

system, named LINCA. The development of LINCA in the cloud computing

through FIWARE has the advantage of using its services. Keyrock Identity

Manager , Wilma PEP Proxy, AuthZForce provide security to LINCA’s cloud

systems as a result to the overall LINCA. Orion Context Broker provides

subscriptions features in order to retrieve sensors that are connected to its

cloud system or in a remote cloud system. Cygnus is responsible to store and

maintain the sensors that are received from Orion Context Broker and the STH-

Comet is responsible to retrieve history data measurements of these stored

sensors.

The sensor interface service as implemented is not a generic solution for

sensor interfaces in the system as it is adapted to work only for “Proximity

Beacon” sensor devices of “Estimote” company. Its development was carried

out with the intention of demonstrating the system using the physical devices

we had at our disposal (Proximity Beacons).

Also, one of the main components of LINCA that make it a master-less

distributed system is Apache Cassandra. Cassandra is a master-less

distributed database consists of nodes that form a cluster , called Cassandra

ring. Each of these nodes is located at every LINCA’s cloud system. In this way

, users can query for sensors that are connected to its cloud system or to remote

cloud systems. In addition, users can search for the available cloud systems

that are registered in LINCA system.

Of course, the use of Service-Oriented Architecture (SOA), and more

specifically the use of RESTful services, assist with the communication

between services and thus the development of the service that is responsible

for the orchestration of services in each cloud system. A great advantage of this

architecture was the flexibility to use different programming languages for each

cloud system operation as well as ease in modification of individual cloud’s

services without affecting the whole system.

Summarizing our conclusions , LINCA is a system where different cloud

systems can interact with others clouds under security in order to provide their

sensors and services. Each of this system is capable of handling large number

of devices while the functions it provides are executed in real time even for large

number of users.

FUTURE WORK 101

7. Future Work

The design and implementation of the system can be considered that meets

the Functional System Requirements that are explained in Section 3.2.1, by

achieving the development of a fully scalable, distributed, master-less IoT

System for cloud system management and the management of their

connected devices following the three architectural model. However, the work

as it has been done within a specific time as a result to give place for some

issues as future work:

• Deployment of LINCA system in Kubernetes - Kubernetes automates

deploying, scaling and managing the individual containerized

applications on a cluster of virtual servers. Kubernetes also lets you

automatically handle networking, storage, logs, alerting for all particular

containers.

• Deployment of Sensor Interface based on Back End Device

Management (IDAS) of FIWARE – A general solution for secure

connection of devices to their cloud systems can be the FIWARE Back

End Device Management – IDAS instead of the existing sensor interface

service that are located in every cloud system. IDAS has the ability to

receive data and translate specific IoT protocols (LoRaWAN0.1, HTTP,

MQTT, CoaP) into the NGSI information protocol, that is the FIWARE

data representation-exchange standard. In addition, the IDAS service

has its own protection mechanism as it only receives data from the

registered physical devices that the infrastructure owners registered to

their cloud systems.

• Integration of Algorithm to exploit stored device data - This can be

achieved by developing a service and integrating to it a new algorithm ,

which will exploit the available data of the devices that are stored in

LINCA system in an interesting way.

• Change communication protocol to HTTPS - All requests between

system services are handled using the HTTP protocol. An important

improvement in system security is that to change the communication

protocol to HTTPS due to it is a more secure protocol for the

transmission of "sensitive" information.

REFERENCES 102

8. References

[1] Koundourakis X.: Design and Implementation of Service Oriented

Architecture for Deploying IoT Applications in the Cloud, Diploma Thesis,

School of Electrical and Computer Engineering, Technical University of Crete,

February 2019.(Technical Report TR-TUC-ISL-02-2019)

[2] Mike P. Papazoglou, Willem-Jan van den Heuvelm, Service oriented

architectures: approaches, technologies and research issues, in: The VLDB

Journal (2007), doi: 10.1007/s00778-007-0044-3.

[3] Euripides G.M. Petrakis, Stelios Sotiriadis, Theodoros Soultanopoulos,

Pelagia Tsiachri Rentaa, Rajkumar Buyyac, Nik Bessis Internet of Things as a

Service (iTaaS): Challenges and solutions for management of sensor data on

the cloud and the fog, doi:10.1016/j.iot.2018.09.009.

 http://www.intelligence.tuc.gr/~petrakis/publications/iTaaS.pdf

[4] Krishna Nadiminti, Marcos Dias de Assunção, and Rajkumar Buyya,

Distributed Systems and Recent Innovations: Challenges and Benefits (2014)

[5] Swati Gupta, Kuntal Saroha, Bhawna, Fundamental Research of Distributed

Database, IJCSMS International Journal of Computer Science and

Management Studies, Vol. 11, Issue 02, Aug 2011

