TECHNICAL UNIVERSITY OF
CRETE

Electrical and Computer Engineering

Forecasting Promising Biological Simulations at
PhysiBoSS

Diploma Thesis

Effrosyni Anesti

Advisory Committee: Antonios Deligiannakis, Associate Professor (Supervisor)
Michail Lagoudakis, Associate Professor
Vasilios Samoladas, Associate Professor

Chania, February 2020

To Vaggelis

Abstract

Since the existing biological multicellular systems are characterized by high complexity
and heterogeneity, coupled with the fact that there has been a remarkable upsurge in
computer science, in-silico methods based on mathematical models are in a great use.
Specifically, they are particularly helpful when we must deal with diseases that have
abnormal and unpredicted behavior, such as cancer or auto-immune ones. The need for
understanding and curing such kind of diseases, led us to the integration of different
modelling frameworks that take into account the intra- and the extra-cellular
environment, as well as, the interplay between cells. Such an example is PhysiBoSS,
that combines two other well-established frameworks to support its whole functionality
and provide us a cell-fate decision model with an accurate representation of cells’
population variance through the time under a specific treatment and conditions.

Considering the fact that not all PhysiBoSS simulations are hopeful, to facilitate the
procedure of results’ collection and examination, the bad simulations must be excluded.
This thesis’ goal is to design a distributed and parallel system that implements a
forecasting algorithm on a great amount of real-time running simulations and decides
about the sustainability or not of a simulation’s execution and finally maintains only the
top k hopeful ones out of all the initial simulations. The algorithm’s performance was
evaluated both locally and remotely/distributively, giving us very positive results.

Keywords

PhysiBoSS, parameters, TNF, pulse, cancer, cells, alive, simulation, forecasting,
clustering, data analysis, time series, distributed system

Hepidnyn

To yeyovog 6Tt Ta vIdpyovta ProAoyikd TOAVKITTOPO CLGTHTA YopoKTPilovTaL Ao
VYNA TOAVTAOKOTITO KOl ETEPOYEVELD, GE GUVOVACUO LE TN ONUAVTIKN €EEMEN TG
EMGTHUNG TOV VTOAOYIOTAOV, 00NYNCAV TNV ALENUEVT Xpnom TeV in-silico peboddwv,
Boacwopévav oe pobnuotikd poviéha. Xvykekpipéva, gival dlaitepa xpnoueg Otav
TPOKELTOL VO JUAT|GOVUE Y1 aGOEVEIEG UE U1 PLGLOAOYIKY Kot amtpOPAENTN omdKPLoN,
Omm¢ elvar o kapkivog 1 ta awtd-dvocsa voorpato. H avéykn ywo tnv katavonon kot
Bepaneio T€T010V £id0VG GOeVEIDV, 00N YNOE GTN dNUOLPYiL SPOPETIKMV EPYOLEI®V
povteAomoinong, ta omoiot GuVLTOA0YI{ovV TO €vo0- Kot EE®-KVTTAPIKO TTEPBEALOV,
KkaBdg kot v oAAnAenidpaon peta&d Tov kuttdpwv. Eva té€toto mapdaderypa eivat to
PhysiBoSS, to omoio cuvdvdler 600 dAla MO capdc oplouéva epyoreia, yuo vo
vrootpi&el ™V OAN AETOVPYIKOTNTA TOL Kol VO TOPAEEL TEAIKA, €VO HOVTEAO
AmOPOOTG TEPT KVTTAPIKNG HOTpag HECH LG aKPBOUE avamapioTaonS TG LETOPOANG
OV TANOLVGLOV TOV KLTTAPWOV GTO TEPAGLLE TOL XPOVOL, VIO OPIGUEVEG GUVONKES Kol
Oepamneia.

Aappdvovtog voyv To yeYovog 0Tt dev glvar EATIO0POPES OAEG Ol TPOGOUOLDGELS TOV
EPYOAEIOV, TPOKEIUEVOD VOl SIELKOADVOLLE TN S10OIKOGT0 TNG SIOAOYNG KO LEAETNG TV
AMOTELECUATOV, Ol KAKEG TPOGOPOIMGELS Tpénet va eEapedovv. Enopévag, o otdyog
™G mopovoag OWMAMUOTIKNG epyaciog &lvar m oxedloon &vog TopdAAniov Ko
KATOVEUNUEVOV GLGTILATOG, TO 0Toi0 €QapUOlel évav alyopBpo tpoPreyng oe €va
peydAo mTAN00¢ TPEYOVCOV TPOCOUOLUDCEMY KOl OoPaciletl Yo T cuvEyon 1 0L TNG
exTéAEONC NG KAOE piog Kot TEAOG aviyveDEL Kol KPATd LOVO TIG k O EATIO0QOPES €K
TOV OLOOOTOMUEVOL GUVOAOL TTpocopolmcewv. H amddoon tov aryopiBuov eAéyyOnke
TOTIKA KO OTOLOKPLGUEVO/KaTavEUNLEVA, amodidovTag OETIKE amoTeAéGLATA.

AéEeig Kigiowa

PhysiBoSS, napdauetpor, TNF, maiuog, kapkivog, kottapa, (ovtavd, Tpocopoinwon,
TPOPAEYN, OpadOTOINGCT, AVAAVCT| OEG0UEVOV, XPOVOGELPES, KATAVEUNUEVO GUGTILLOL

Acknowledgements

Firstly, I would like to keenly thank my supervisor, professor Antonios Deligiannakis,
both for his supervision and his valuable advice given on my subsequent career. I also
want to thank him for his consistency, as well as, for being present anytime I needed
him, during the preparation of my thesis work.

To continue with, [would like to specifically thank Mr. Mpotsis loannis, member of the
Special Technical Laboratory Staff, since his help on issues considering the Grid
Computer of the Technical University of Crete was highly important.

Moreover, I would like to thank Mrs. Arapi Xenia, member of the Laboratory Teaching
Staff, for her help on various practical issues that emerged during the making of my
thesis work and the postgraduate student and friend of mine Kontaxakis Antonios, who
gave me great help and sped up the process of completing my thesis, by transmitting to
me useful for my thesis knowledge, as well as, for his mental encouragement and
support.

In addition, I owe a great thank to my professors, in general, and the other members of
this department, who contributed to my diploma acquisition and my forming as an
engineer.

Last but not least, I want to thank my family for all the mental and material support
during the whole process of my studies and especially, my father, whose contribution
was immense, my fellow student Rastsinskaya Karina, who helped me finish
successfully and in time my studies, for our collaboration in most of the group
assignments and the laboratory tasks of our department, as well as, Anastasia Palieraki,
an important figure for me, who supported me and helped me in many ways.

Contents

1 INtroduction............ooooiiiiiiiiiiec e 9
1.1 MOBIVATION 1.ttt 9
1.2 OULHNE ..o 10

2. Background ... 11
2.1 Biolo@ical TOOIS.......ciiiiiiiiiiiie it 11

2.1.1 MaBoSS/MaBOSS 2.0....cciiiieiii e 11
2. 1.2 BIOFVM Lottt 12
2.1.3 PRYSICEIL....eiiiiiieeee e 12
2.1.4 PhySiBOSS......oiiii 13
2.2 Distributed Messaging System & Librariesccccocvveeiiieennnnnnn, 16
2.2.1 APACHE KafKaooiiiiiiiiiiiiieeiie e 17
2.2.2 Cppkafka/rdKafka........ccoiiiiiieiiiei s 18
2.2.3 Confluent Kafka.........ooveiiiiii e 19
2.2.4 PANAAS ..ttt ne e 19
2.2.5 MINTAOM. 1.ttt ettt b e sbe et e e be e e nnee e 19
2.3 DAtabasesc.uvveiiieiiiieiiie e e 19
2.3. 1 MONZODB ...t 20
2.4 Forecasting & Time Series ANalysisccocvvevciiieiiiieeeiiieessiieessinnens 21
2.4.1 FOTE@CASTINE ...c.veiiiiietie ettt ettt ettt ettt ettt e b e nne e 21
2.4.2 Time Seri€s ANALYSIS......cciviirieiiiiiieiee e 22
2.4.3 Time Series Forecasting Algorithmscccovvviiiiiiiiici 23

3. System Desi@n..........ccoovviiiiiiiiiii e 25
3.1 PrePrOCESSINE. .. ceeiueeeireeiieeesireesireesreesnee e e e e s e eeneeennee e 25
3.2 SYStemM OVETVIEWcoviiiiiiiiiieiieesieessee s 26
3.3 Data SOUICEevviiieiiiiiiee ettt 26
3.4 Data EdItING......cooiiiiiiie e 27
3.5 Message FOrmatccoooiiiiiiiiiiiiiee e 28
3.6 Message CONSUMING.........cciverieiiriiiiaieesee e 29
3.7 AlGOTTtRML....ceiiiiii e 30

4. Experimental Results...................cccccoiiiiii, 36
4.1 Use Case 1: Average SImulations..........cccceevvvieeiiieeeniieesniiee e 36
4.2 Use Case 2: Promising SImulationscccccovvveiieerineiieenieenninn, 38
4.3 Use Case 3: Non-Promising SImulations...........cccceeereverieeninnnninnn, 40

5. Conclusion — Future WorK.........ccoovoeie e 41

5.1 CONCIUSION........utiiiiiiiiiiie et e et e e e e e et e e e e s e eab b e e e e s ennbreeeeaas 41

5.2 Future WOTK ...ooooo oo 41
Bibliography ..o 42
List of Figures
Figure 2.1: Pipeline of the use of MaB0SS 2.0 [2].......ccoovieririieieieie e 11
Figure 2.2: Simulation of oxygen and VEGF diffusion in a large scale [4] 12
Figure 2.3: 3D simulation of adaptive immune response to a heterogeneous tumor
Simulation of oxygen and VEGF diffusion in a large scale [3].........cccocvvvvveiniiinnnnn, 13
Figure 2.4: Schematic Representation of PhySiBOSS [1]ccccoeiviiiiiininiiieicee, 13
Figure 2.5: Folder organization of an example...........ccccovveiiiieiieiccic s 15
Figure 2.6: Sample of a Parameter File ... 15
Figure 2.7: Point-to-point (left) and pub-sub (right) architecture [11]ccccoveneee. 16
Figure 2.8: Kafka ECOSYSIEM [15]ooiiiiiiiiieieieese s 17
Figure 2.9: Anatomy of @ TOPIC [L12]..c..ecveieeeiie e 18
Figure 2.10: Partitions & Brokers [12]cccoeiiiiiiniiiseeieeesese e 18
Figure 2.11: Sliding (up) and Expanding (down) Window [34]ccccccevviiieivenenne. 21
Figure 2.12: seq2seq Schematic Representation [35].........ccccevereniniienininieieiees 23
Figure 3.1: EXample GENEIALON..........cciiiiieiieieiee e 25
Figure 3.2: WhOIe ECOSYSIEIMooiuieiiciic et 26
Figure 3.3: Cells’ Output FOrmatccccoiiiiiiiiiieiescsese e 27
Figure 3.4: Cell CYCIe Map.......c.ccveiieiceceee et 28
Figure 3.5: MeSSage FOIMALccoiiiiiiiiiiieiee e 28
Figure 3.6: PUISEL50 OXY0......ccuiiieiieie ettt ettt 32
Figure 3.7: pulel50 _OXY0.1cooiiiiiiiiiiiesiceeeee et 33
Figure 3.8: PUISEL00 _0XYOccviiieiiieieciie sttt ettt 33
Figure 3.9: Algorithm’s Pseudocode............cooiiiiiiiiiiiiciecc e 34
Figure 4.1: Pulse150_ TNFCONCO.5_0XYOccoviiiiiiiiiiiiniiniesiieieie e 37
Figure 4.2: pulsel50 OXY 0.5, . i 39
FIQUIE 4.3 NOPUISE......eeii bbb 40
List of Tables
Table 3.1: Simulations Dataframe..........ccooieiiiiiiie e 29
Table 3.2: Nominated Dataffameccovveieiieniie e 30
Table 3.3: Maximum Common TIMEPOINT..........ccoveiieiieeiie e 31
Table 4. 1: Average Simulations STatiStICSccevvrereiiiiiiseeee e, 37
Table 4.2: example_spheroid_TNF_pulse150 0xy StatiStiCS..........cccevvevivveriveiiieeninns 38
Table 4.3: example_spheroid_TNF_pulse100-300_dur_conc_oxy Statistics.............. 39

Chapter | Introduction

1. Introduction

More and more efforts and attempts are being made from the scientific community to
utilize in-silico instead of the so far being used in-vivo and in-vitro methods. The in-
silico methods are taking place in virtual biological systems and experiments are
performed on computer or via computer simulations. Such an example is PhysiBoSS
which is a C++ software for multiscale simulation of heterogeneous multi-cellular
systems.

PhysiBoSS is the combination of MaBoSS, a C++ software for simulating continuous
or discrete time Markov processes, applied on a Boolean network, and PhysiCell, a
physics-based cell simulator. Briefly, PhysiBoSS simulates cancer cells and their
biochemical environment, as well. Thus, by running thousands of different simulations,
initialized with different conditions, we are able to generate thousands of different
results and examine them, deciding which conditions are promising and which are not
promising, regarding the cancer cells’ behavior. The effectiveness of this
implementation has been checked and verified with a cell-fate decisions model in
response to TNF (Tumour Necrosis Factor) injection. The problem that arises here is
the fact that, by running a large number of different simulations, finally we get a high
volume of data which cannot be examined one-by-one.

This work focuses on solving that problem by proposing a system for detecting the non-
promising simulations and killing them. To be more specific, we designed a distributed
system in which a number of different modules read data in parallel. Each one of them
maintains the top £ most promising simulations, killing on the fly the rest of the running
simulations, that do not seem to belong to the top & ones.

To verify the functionality and efficiency of our algorithm, we tested it on
approximately 80 GB (GigaBytes) of data, locally and remotely, as well, and the results
seem promising enough, since approximately the 80% — 90% out of all the starting
simulations get killed before the simulation reaches the 40% of the whole procedure,
accelerating it.

1.1 Motivation

Due to the rapid, unpredicted and abnormal development of cancer cells, the need for
representation, integration and treatment of cancer with software tools, was born. There
are several modelling frameworks that have already been integrated and are in use. One
of them is PhysiBoSS that can approach and depict the complexity and heterogeneity
of multicellular biological systems at a quite satisfying level. What this simulator,
finally, offers is a detailed description about each cell’s response over time under some
well-defined conditions. Its results are very realistic, although there are significantly
numerous different combinations that can be made and, by extension, numerous outputs
that are generated. So, the problem that emerges here is that the results are too many to
be examined. For this reason, we propose an algorithm for forecasting biological
simulations within this tool and which can, of course, be used and expanded to other
use cases, as well, to offer a more clear view about which the proper conditions for
cancer cells to get eliminated are. Thus, the examination of the results would be much
easier to be conducted, gathering only the promising simulations. So, the fact that we

Chapter | Introduction

could pitch, at least a little bit, in the effort related to cancer research and treatment,
would be an honor for us and here is where the whole motivation lays.

1.2 Outline

In the current thesis work, in Chapter II all the background theoretical knowledge and
the software tools that were used are mentioned and explained. Furthermore, in Chapter
III an extensive explanation about our whole’s system architecture, as well as, our
algorithm’s implementation is provided. After that, all the experimental, including
quantitative and qualitative results, are illustrated in Chapter IV and we sum up with
the conclusion and future work in Chapter V.

10

Chapter I1 Background

2. Background

We need to mention and clarify some very important for our design tools that were used
and combined to achieve our goal, so as the readers of this thesis be able to keep pace
with our conceptualization.

2.1 Biological Tools

More and more scientists focus on the creation and development of biological tools that
are used in medical research so as to virtually represent through simulations the very
complex and multicellular biological systems (in-silico) on their attempt to find solution
on diseases like cancer and eliminate as well, the in-vivo applied methods. The
significance of such tools can be conceptualized if we only think that we didn’t know
that cells existed until microscopes were invented. Respectively, living in the epoch of
big data and informatics, the design of software biological tools is the logical flow of
things.

2.1.1 MaBoSS/MaBoSS 2.0

MaBoSS [2] stands for Markovian Boolean Stochastic Simulator and as its name
evinces, it is a C++ software open source that simulates continuous or discrete time
Markov processes, which are applied on a Boolean network, namely, it is an
environment for stochastic Boolean modeling. It applies Monte-Carlo algorithm so as
to produce time trajectories, according to some initial conditions [7]. The motivation is
to create a model of signaling pathways, namely, a model that represents the behavior
of cells and provides probabilities about model entities (gene, protein etc.) reaching a
stable state.

Logical Model Egg E‘“3

Mutation
smulations
Drugtreatments
Parameter
sensitivity analysis
Modified Model - i{mheﬂ
i T P N
(MaBoSd) (MaBosS) (MaBoSS)
- Visualizatio !

=

Figure 2.1: Pipeline of the use of MaBoSS 2.0 [2]

11

Chapter I1 Background

The figure above [Figure 2.1] showcases a MaBoSS logical model which is initially
modified by some factors (mutations, drug treatments, sensitivity analysis) and after
some logical equations, finally they gathered in a single command and simulated all
together at once.

MaBoSS has already been considered as a well-defined tool and it is widely used in
biological problems like the cancer-related ones. MaBoSS 2.0 is just an extended
version of MaBoSS. Some of the new characteristics that embeds are visualization,
mutations’ simulations, drug treatments etc.

2.1.2 BioFVM

BioFVM [4] is a parallelized diffusive transport solver for 3D biological simulations.
To be more specific, it is a well-defined and efficient simulator for varying diffusing
substrates by cell and bulk sources in large 3D domains. A 1-hour simulation’s example
is illustrated at Figure 2.2.

BioFVM is a minimal-dependencies simulator, written in C++ and parallelized with
OpenMP. It can be executed on its own or can be adopted and included in other larger
modelling packages, too.

Nl e

A\ : ¢ ¢
-— '

oxygen (mmMg) VEGF (demensioniess)

'. -. .‘
- |

Figure 2.2: Simulation of oxygen and VEGF diffusion in a large scale [4]

2.1.3 PhysiCell

PhysiCell [3] is an open source framework for 3D multicellular simulations. It is a
multi-agent-based modelling tool that embeds the before-mentioned tool, BioFVM and
simulates the tissue-scale behaviors that arise from biological and biophysical cell
processes representing each individual cell/agent as a physical dynamical entity. A
simulation’s example is depicted at Figure 2.3. PhysiCell is an agent-based software
with minimal dependencies written in C++ and is parallelized with OpenMP [8].

12

Chapter I1 Background

0 days 7 days 15 days 21 days
18,317 cells 53,600 cells 91,189 cells 66,978 cells

Figure 2.3: 3D simulation of adaptive immune response to a heterogeneous tumor Simulation of oxygen
and VEGF diffusion in a large scale [8]

2.1.4 PhysiBoSS

The motivation behind the creation of PhysiBoSS is the fact that the multicellular
biological systems are very difficult to be represented due to their complexity and
heterogeneity. Since these systems involve high inter-dependency among the different
biological scales of a cell to be developed, only a multi-scale mathematical model
would be appropriate for that kind of representations. So, its representation with a well-
defined tool that takes into account cell signaling, cell population response and
extracellular environment is highly significant for the scientific community which
occupies with the comprehension, integration and discovery of cancer.

PhysiBoSS [1] (depicted at Figure 2.4) is a C++ software framework that was
developed in 2019. It is an agent-based modelling tool that is used for multiscale
simulations of heterogeneous multi-cellular systems. To be more specific, it creates a
virtual representation of a multi-cellular system, namely, the cells, their intra- and extra-
cellular environment, as well as, the interplay between cells and their surroundings. It
1s an agent-based mathematical model and each agent represents an independent cell.

Physical cells
Atsmech ~PhysiCell

Secretion/Uptake.

Internal signalling
MaBoSS

lNeighbour
%

Alpy
Inputs

IOxygen Glucose|

"lldJ‘ BN

Qutputs

Migration] Survival JQuiescence] Cell death

Figure 2.4: Schematic Representation of PhysiBoSS [1]

13

Chapter I1 Background

The results, after running a PhysiBoSS simulation is to obtain a detailed description of
each agent/cell’s response through time. The whole implementation of PhysiBoSS is
represented with a cell-fate decisions model in response to Tumour Necrosis Factor
(TNF), amultifunctional cytokine that plays an important role in diverse cellular events.

To achieve such a kind of functionality PhysiBoSS is based on two (2) other already
integrated and well-defined software frameworks that we previously presented;
MaBoSS and PhysiCell and more specifically is an adapted version of PhysiCell in
which inside each agent/cell, Boolean network computation is integrated. PhysiBoSS
is the tool, the simulations’ results of which provided us the data, that we handled.

Running a simulation

Before we continue, we need to explain how a PhysiBoSS simulation starts running so
that the readers can familiarize themselves with the following work. PhysiBoSS is an
open source tool and can be found on GitHub [9].

PhysiBoSS consists of three (3) executable files:
e PhysiBoSS, which handles the real simulation,
e PhysiBoSS CreatelnitTxtFile, which generates an initial cells’ condition of a
simulation,
e PhysiBoSS Plot, which depicts the cells’ position and condition of a simulation
at specific timepoint.

To properly run a simulation, we need to follow some steps. First of all, simulations are
distributed into well-organized folders regarding the changeable parameter in which we
will refer soon. Inside the main folder is included another folder named BN which
contains the Boolean network configuration files. In addition to that, the main folder
contains the runs folders, as well. Inside each run folder an individual simulation is
included. Each simulation must be prepared before we start running it. Concretely,
inside this folder, we need to generate the initial conditions of cells. That can be
achieved either with the PhysiBoSS CreatelnitTxtFile executable or by using an
already generated one text file, named init.£xt. Furthermore, the most important file that
each simulation must contain is the parameter.xml tile [10], which is the file in which
all possible parameters are defined, namely, the properties of this specific simulation.
The parameter file is composed of four (4) different parts, according to the type of the
parameters to define; simulation, cell properties, network and initial configuration. The
simulation element contains the simulation’s global properties (e.g. output interval,
maximal_time). The cell properties element is related with properties which are
common to all cells (e.g. protein_threshold, cell radius). In the network section of the
parameter file, the properties relative to the Boolean network computation (e.g.
network update step) are defined and in the initial configuration parameters like
tnf concenctration, as well as, the init.txt file we produced. Finally, each run’s folder
must contain an empty output and microutput folder in which the simulation’s output
files will be stored. An example about the precise organization of the simulations is
demonstrated at Figure 2.5, while Figure 2.6 depicts how a parameter file looks like.
More details about parameters, can be found in reference.

14

Chapter 11 Background

example_ spheroid TNF

bn_confefg bn_nodes.bnd it &t output | | pero wput] patameters.xml

Figure 2.5: Folder organization of an example

<?xml version="1.8" ?»
<1-- Global parameters of the simulation (time parameters are in min, distance in microns) --»
«simulation>
<!-- diffusion time scale --»
<time_step> @.92 <«/time_step>
«l-- Time scale of motion, cell wolume changes --»
<mechanics_time_step> 8.1 </mechanics_time_step»
«!-- cell cycle time scale, change of cell phase --»
<cell_cycle_time_step» 2 «/cell_cycle_time_step»
<!-- Time to simulate, 24 h -->
<maximal_time> 1448 </maximal_time>
<!-- write output file of cells positions every 3e min --»
<coutput_interval> 48 </output_interval»
¢!-- parallelization with openmp -->
<number_of_threads> 2 </number_of_threads>
<!-- parallelization with openmp --»
<mode_cell_cycles 1 </mode_cell cycles
<!-- To use with a boolean network implementation --»
<output_densities» 458 </foutput_densities:
¢!-- parallelization with openmp -->
<write_passive_cells» @ </write_passive_cells>
«!-- Discretization size of the microenvironment grid (BioPwM) --»
eminimum_voxel_sizes 15 </minimum_voxel sizes
¢! -- pimensicns of the simulated space -->
<bounding_box_xmin> -580 </bounding_box_xmin:
<bounding box_xmax> 580 </bounding_box_xmax>
<bounding_box_ymin> -58@ </bounding_box_ymin>
<bounding_box_ymax> 588 </bounding_box_ymax>
<bounding box_zmin» -58@ </bounding box_zmin>
<bounding_box_zmax> 588 </bounding_box_.
<!-- Densities to simulate in the micreenviromment -->
<number_of_densities» 2 </number_of_densities»
<density_e» oxygen </density_e>
<density_1> tnf </demsity_1>
<l-- Constant injecticn of densities on the external boundaries --3>
<dirichlet_boundary> @ </dirichlet_boundary>
«!-- when output densities files, don't write all the voxels values, but randomly selected ones --»

ax>

<write_ratio_voxels» @.4 </write_ratio voxels»
</simulation>

«!-- Properties of the first cell line, common te all cells im this type --»
«<cell_properties»
«!-- How much pelarized by defoult --»
<polarity_coefficient» @.1 «/polarity_cocefficient»
<l-- Motility parameters --»
<motility_amplitude_min: @.01 </motility_amplitude_min:
«motility_amplitude_max> 8.81 «</motility_amplitude_max>
<mode_motility> 1 </mede_motility»
«!-- cell-cell adhesicn and repulsion coefficients --»
<homotypic_adhesion_min> 2 </homotypic_adhesion_min>
<homotypic_adhesion_max» 2 </homotypic_adhesion max>
<heterotypic_adhesion_min» 2 </heterctypic_adhesicn_min:
<heterotypic_adhesion_max>» 2 </heterotypic_adhesion_max>
<max_interaction factor> 1.2 </max_interaction_factor>

Figure 2.6: Sample of a Parameter File

15

Chapter 11 Background

2.2 Distributed Messaging System & Libraries

For the needs of this thesis, we used a distributed messaging system, as well as, some
libraries, so as to achieve the desirable results.

When we are dealing with large amount of data, we have two (2) main challenges. The
first challenge is how to collect a large volume of data and the second challenge is to
analyze the collected data. To overcome those challenges, we need a messaging system.
A messaging system is responsible for transferring data from one system/application to
another allowing them not to worry about how to reliably share data, namely, how to
send, distribute, store or manage data. So, a messaging system is useful when we deal
with processing messages. When we are talking about a distributed messaging system,
then we mean that the messaging system is a robust queue, with the FIFO (First-In First-
Out) architecture, containing messages. Messages are queued asynchronously between
client applications and messaging system. A distributed messaging system provides the
assets of reliability, scalability and persistence. Some of the most popular messaging
systems are Kafka, RabbitMQ, JMS (Java Message Service).

There are two (2) types of messaging patterns; Point-to-point and publish-subscribe
messaging system. In both patterns, producers send messages and consumers receive
them.

=

]

Figure 2.7: Point-to-point (left) and pub-sub (right) architecture [11]

On the one hand, in point-to-point (left part of Figure 2.7) communication, producers
called senders produce and send a message to a queue and exact one (1) consumer called
receiver can consume/receive this specific message.

On the other hand, in publish-subscribe (pub-sub) communication, depicted at the right
part of Figure 2.7, all the messages are sent from producers - here called publishers - to
a topic and consumer - here called subscriber - can subscribe to one or more topic and
consume all the messages in this topic. As a result, a message can be consumed from
more than one consumer asynchronously and consumers are able to consume messages
simultaneously or not.

The most commonly used architecture is the pub-sub one, since it gathers a lot of
benefits, some of which are robustness and scalability, it improves testability and
facilitates asynchronous workflows, as well as it supports both offline and online
service.

16

Chapter 11 Background

2.2.1 APACHE Kafka

An example among others of a distributed messaging system follows the pub-sub model
is Apache Kafka. Apache Kafka is a distributed publish-subscribe messaging system
and a robust queue that can handle a high volume of data and enables us to pass
messages from one endpoint to another. Kafka messages are persisted on the disk and
replicated within the cluster to prevent data loss. It is mainly designed for distributed
high throughput systems. Furthermore, we must mention that Kafka is built on top of a
third-party tool, ZooKeeper server, to achieve load balancing. Briefly, ZooKeeper is a
centralized synchronization service which allows a configuration maintenance within
distributed systems (multiple clients to perform simultaneous reads/writes/acts, keeps
track of Kafka cluster etc.).

Figure 2.8 shows the Kafka architecture.

Kafka ecosystem

Consumer Group

-

])
1 1
]]
: H
Producer 1 E Broker 1_|: consumert
1
push msg E - pull msg
e i
Producer2|*.—*:. || Broker2 || <—— consumer2
:] ‘ -
== . 5
1
Producer 3 { | _Broker3 |; > consumer3
e i
‘ ! !

getkatka ‘%, +* update offset

broker id

Figure 2.8: Kafka Ecosystem [15]

Briefly, Kafka consists of certain parts and works as following. One or more Producer-
Publisher instances produce and push messages/records to Kafka. Kafka is a distributed
system, so it can run in multiple different nodes consisted a cluster. Katka’s cluster
stores the received messages in different categories called topics and separates one from
another by name. Each topic is divided into several partitions, depicted in Figure 2.9,
and each one of them can be regarded as a FIFO queue and distributed across brokers
who represent the cluster’s nodes and are responsible for maintaining the published
data. Thus, splitting data into multiple brokers (nodes) we achieve to parallelize a
specific topic consuming messages included in it from different machines
simultaneously or at different times. Consumers pull messages of the topic they
subscribe and start reading data at any time point they want. Finally, it is not necessary
for publishers and consumers to run at the same time. Partitions can be replicated if the
user wants to. To be more specific, partitions are distributed across brokers, so each
broker holds a number of partitions which can be either the leader partition of the topic,
which means this is the real single partition in which a producer writes or the replica
partition which is an exact copy of the leader partition (Figure 2.10). In this way, we

17

Chapter I1 Background

keep backup of each partition and as a result of all data sent from producers, preventing
data loss as well as from leader potential failing (fault-tolerant).

Topic

[Partition AR
o |of1]|2]3|a|s|e|7 8o

s :\
Partition | - Wites
| /

1

Partition
2

o
_—

Oid » New

Figure 2.9: Anatomy of a Topic [12]

Leader (red) and replicas (blue)
—Broker 1 —— —Broker2 — — Broker 3

Partition 0

Partition 2

Figure 2.10: Partitions & Brokers [12]

To sum up, the reason why we chose Kafka for our design is because apart from
gathering all the benefits of a distributed messaging pub-sub system, it is also very fast
since it performs 2 million writes per second and it provides high throughput and low
delay rendering it suitable for real-time data processing.

2.2.2 Cppkafka/rdkafka

Regarding the fact that the data source we used is written in C++, for the producer’s
design we used the cppkafka library, which is freely available on github [16]. Cppkafka
is a version of Apache Kafka, that allows C++ applications to produce and consume
messages using Apache Kafka protocol. Cppkatka’s design is based on the rdkafka
library [17]. According to its creator, librdkafka is a C library implementation of the
Apache Kafka protocol with high performance. Thus, cppkafka library consists a
librdkafka’s wrapper and provides high level consumer and producer interface, as well
as, some other utilities like a buffered producer (which simplifies producer error
handling) and a compacted topic consumer. Cppkafka lets us create Kafka
producers/consumers and configuration with very little code.

18

Chapter 11 Background

2.2.3 Confluent Kafka

For the consumer’s design we used Confluent Python Kafka [18] so as to make good
use of some specific modules that python has at its disposal, ideal for time series data
analysis (pandas DataFrame, Numpy, scipy). Confluent Kafka is one out of the three
released and reliable python libraries high level clients for Apache Kafka; Kafka-
Python, PyKafka and Confluent Python Kafka. The reason why we chose the last one,
is because its performance is better than the other two. It is offered by Confluent
Platform, a platform for real-time and historical events, to build real-time data pipelines
and streaming applications, founded by the Apache Kafka’s creators, as a wrapper
around librdkafka that we mentioned before [page 18].

2.2.4 Pandas

The most important tool we used to append, manage and recall stored data was pandas
[27]. In 2008, an open source software library written for the Python language, called
pandas, was developed. To be more specific, pandas is a package for easy data
manipulating and analysis, suitable for data science through Python. It provides high-
performance, as well as, flexible and expressive data structures. It seems to be the
fundamental high-level building block for doing data analysis using Python. The
DataFrame [28] is one of the most important data structure pandas provides us and the
main data structure we used during our design for the data analysis and processing part.
It is a two-dimensional, size-mutable table in which data is stored in well-defined
labeled axes (columns and rows). The structure can be accessed anytime either by using
the axes’ labels, the index or the specific numerical position.

2.2.5 Minidom

Minidom [29] stands for Minimal DOM (Document Object Model). It is a library
provided by Python language, to describe, access, manipulate and process XML
documents using its functions, properties and variables [30]. In case users do not feel
comfortable with minidom, they can use the ElementTree of type Element.

2.3 Databases

A database (db) is an organized structure which includes stored data. The main structure
to represent a database is a table, namely, an infrastructure which is modeled in rows
and columns, to make processing and data querying efficient. Thus, we can store data
and easily access, manage, modify, update, and generally, control them. There are two
(2) kinds of database models; SQL (Structure Query Language) and NoSQL databases.
For our architecture, we used a NoSQL database.

19

Chapter 11 Background

2.3.1 MongoDB

The last tool we used to complete our design was a NoSQL database, MongoDB [32],
which is the most popular and commonly used NoSQL database. MongoDB is a
document-based database. To be more specific, in MongoDB we can store data in
JSON-like format and have the right to access them as well as edit them whenever and
from wherever we need to.

Since we wanted to access MongoDB from a python script, we used PyMongo, a driver
to access MongoDB from Python. The only limitation about its use, is that we have to
first start a mongod instance, a server that runs as a background process, so as to handle
data requests, manage data access and generally perform background management
operations.

20

Chapter 11 Background
2.4 Forecasting & Time Series Analysis

2.4.1 Forecasting

Forecasting is the process of making predictions about the future response of the
variable of interest by analyzing its past trends. Nowadays, forecasting is ubiquitous,
since it is used and it is desirable to be used in many fields (e.g. finance, meteorology).
There are many and different forecasting algorithms, some of which will be presented
afterwards. A good general pattern we could use so as to be able to do a prediction is
firstly, to visualize data in a time series plot and after that, capture and model the
underlying patterns if these exist (e.g. sines). We could say that the two (2) prominent
forecasting methodologies that exist, divided into two (2) types of classes:

1. Classical/Statistical (Moving Average, ARMA, ARIMA, Exponential

Smoothing, Theta)
2. Machine and Deep Learning (Quantile Regression Forecast, Recurrent Neural
Networks, seq2seq)

The question that arises here, is which one of the forecasting techniques and models is
the best for the forecasting the use case that we are challenged to confront with. This
depends on multitude of different factors, like how much historic data is available,
which are our constraints, if there is any correlation with variables and others. So, to
find the one that suits the problem we are dealing with, we have to compare the
“nominated” different forecasting approaches. To achieve that we need to do
chronological testing, named backtesting. To do that, we must train on a time series of
events, up to a certain point and then tests subsequently. There are two (2) approaches
of chronological testing, the sliding and the expanding window, when it comes for high
frequency data testing and for data that does not come so often and the historical data
points are limited, respectively. However, we will not do a further analysis on that issue
at the moment. We just provide a figure for each method at Figure 2.11.

Time Pressnt

Pass 1 [N

Pass2 [N

Pass 3 I

Pass 4 /7
—

Pass 5

Dropped - Training Forecasting

Time Pres_gnt

Pass 1 [N

Pass 2 [

pass 3 [

pass 4 [

pass 5 [N

- Training Forecasting
Figure 2.11: Sliding (up) and Expanding (down) Window [34]

21

Chapter 11 Background

2.4.2 Time Series Analysis

We already mentioned the significance of forecasting. We now expand to time series
forecasting. A time series is a set of observations taken at specified times, usually, at
equal intervals (e.g. x-axis gets the time, divided into equal intervals). Time series is
used to predict the future values of a variable based on the previous observed values
and generally the independent variable is time. So, time series analysis is the procedure
in which we analyze time series data in order to come to some meaningful conclusions.
Its significance lays on business forecasting, understanding past behavior, planning
future, evaluating current accomplishments.

When we are dealing with time series, there are some characteristics that we need to
consider. These components of time series are trend, seasonality, irregularity, cyclic,
autocorrelation and stationarity. Briefly:
e Trend: the movement to relatively lower (downtrend) or higher (uptrend) values
over a «longy» period of time.
e Seasonality: a repeating pattern within a fixed time period (periodic).
e Irregularity: erratic response through time (noise).
e Cyclic: repeating up and down movements.
e Autocorrelation: similarity between some observations through time.
e Stationarity: when time series has a particular behavior over time, there is a very
high probability that it will follow the same in the future, namely, the non-
changing over time statistical properties of time series.

Although time series analysis is a very useful procedure, there are some cases in which
we should not apply it, for example, when the values are constant or they are in the
form of functions (e.g. sine).

Before we move on, we must inevitably take a moment to examine more elaborately
stationarity which is a very important characteristic of time series analysis and must
always be present. Stationarity has three (3) very strict criteria:

1. Constant mean/average according to the time
2. Constant variance, namely, the distance from the mean according to the time
3. Autocovariance which is independent on time

To check if stationarity is or is not present in our time series, we can check it either with
rolling statistics or with DF (Dickey-Fuller) test. Briefly, the first method plots the
moving average or variance, depicting if it varies through time. At the second one, we
do the null hypothesis that our model is not stationary and after doing the test we get
some critical results which depending on their values, evince if the model is stationary
or not.

So, in this way we can check for our time series modelling stationarity presence and if
it is not, then after some transformations we can make it stationary, so as to continue
the procedure.

22

Chapter 11 Background

2.4.3 Time Series Forecasting Algorithms

As we already mentioned, there are lots of time series forecasting algorithms, statistical
or machine or deep learning ones. Here we will introduce some already implemented
and effective ones excluding the naive classical forecast which is that today’s value will
hold for tomorrow.

Fast Fourier Transformation

FFT is an easy, understandable and simple way for forecasting. Actually, it is a
decomposition into a series of sine functions, and we use it when periodicity exists. To
be more specific, what we do is to run FFT on input data, filter out the low amplitude
or the high frequency components, which are, apparently, the noise, we get some
sinusoid functions from which we pick the first (1%') n most significant ones, we apply
on them forecasting (move our phase forward), we run the inverse of FFT on filtered
data and finally we have the profit. Considering we are living in an imperfect world,
the existed periodicity in the input data, will have deviation and as a result the
forecasting data will have inexpediency. The solution to this problem is to iteratively
compensate input data with error until no spikes exist.

Sequence to sequence (seq2seq)

It is a very powerful technique of forecasting with deep learning and it was published
by Google to solve the machine translation problems. The key idea is the fact that by
nature all the time series data we collect is not continuous. It is discretized data points
on which we applied interpolation. So, what we do is to perform forecasting per input,
since we have well-defined data points, by combining the history. To be more specific,
the data points are dependent to each other. The value of the current time may depend
on the value of the past timepoints. We can extend the past however long we want to.
The context for each item is the output from the previous step. Thus, a neural network
consisted of two (2) components, encoder and decoder, is drawn, depicted at Figure
2.12.

Encoder Decoder
Forecast Forecast Forecast Forecast Forecast
1 2 3 4 n
2
h1 h2 h‘3 hm HI_O HA1 H2 H3 Hn
|l\[‘1\ll "‘P“‘ Input Input Start lv(’;ul Input Input Input

Figure 2.12: seq2seq Schematic Representation [35]

23

Chapter 11 Background

Moving Average

Moving average is one of the most known techniques in time series modelling. This
approach just states that the next observations will be the mean of all the past ones.
Although it is a very simple and naive approach, it is in use and it efficiently works.

ARIMA

ARIMA model stands for AutoRegressive Integrated Moving Average and it is an
extension of ARMA (AutoRegressive Moving Average) model. In this kind of model,
we assume that the current value depends on its previous values with its own lags.
Because the term AR, ARIMA is a linear regression model. Afterwards, we add the
moving average model we presented above and finally the order of integration to
achieve the desirable prediction on the input data.

24

Chapter 111 System Design

3. System Design

Reaching the implementation part, this thesis’ goal was the development of a
forecasting algorithm, which supports local and remote communication, and which
keeps only the top & out of the N initial running simulations killing in real-time the rest
ones.

3.1 Preprocessing

The very first thing we had to do was to find a way to easily generate thousands of
different “parameters.xml” files (already explained in page 14). To achieve that, we
used Python’s module “minidom”, which is a minimal implementation of the Document
Object Model interface [29]. Briefly, we created a python script that, with the use of the
minidom methods [30], describes the general structure of this xml file including all the
different elements and initialized in the most frequently used values. After that, we
created a second python script which according to the parameter or parameters that the
user wants to change, as well as, the varying range and step each one of them, it calls
the previous script and generates the different parameters.xml files. In addition to that,
not only does it create them, but, also, it creates the whole tree of a completed example,
containing all the necessary directories and files, as well as, allocating them properly
into the run folders. After generating an adequate amount of ready-to-run simulations,
we distributed them into a 44-node cluster, and received approximately 80 GB data
with different parameters’ combination. With the use of a python script we translated
the data into figures so as to depict the simulations’ response through time and to be
more specific, the number of alive, apoptotic and necrotic cells within a day (1440
minutes).

exampleGenerator

> example_spheroid_TNF

BN) run™N

bu_conf.cfg bu_nodes.bnd UILIXY gutput micrompw | parameters.xm|

Figure 3.1: Example Generator

25

Chapter 111 System Design

3.2 System Overview

Since having and knowing the efficiency of a high volume of data, we then proceeded
to our system’s design.

APATHE Kafka

Figure 3.2: Whole Ecosystem

The algorithm should be used in a remote communication, too. So, we needed to create
a distributed message passing system to support that. To achieve that, we used Apache
Kafka (page 17). In particular, the whole system’s design follows the structure depicted
in Figure 3.2.

The concept is the following. We start running N different simulations. We distribute
them in different machines to be executed. We must be able to handle them in a parallel
way. Each simulation is manipulated by a specific consumer’s instance. Each
consumer’s instance handles X different simulations and applies the forecasting
algorithm on them. Locally, the consumers announce the top k simulations and send
them to a database. Finally, the last module TOP_K retrieves the locally top £ lists from
the database and decides the final top k out of the N initial simulations.

Hereupon, we discuss the individual parts.

3.3 Data Source

Firstly, we have the PhysiBoSS simulator and we need to send data to Kafka, by the
time they are generated. We thus interloped inside the PhysiBoSS software and more
specifically, within the WriteCellReport function which is implemented in the
cell _container.cpp file, to create the producer, using a high-level producer architecture
supported from cppkatka Apache Kafka client library, specifically designed for C/C++
applications. The producer’s part includes the configuration part in which we define the
broker or the brokers, namely, the machine’s IP address in which ZooKeeper and Katka
servers are running, as well as, we set the port on which the Kafka server is listening
for connections, allowing the broker to be moved to a different host/port without
confusing consumers. Regarding this configuration, we create a producer instance.
Also, if the desirable topic in which we want to send the messages does not exist, then
we create it. After that we are ready to produce and flush the message to a specific
partition. The partition number, according to our design, is randomly generated. So, we
do not know in which topic’s partition each simulation is. Although the producer’s

26

Chapter 111 System Design

configuration is ready to push messages to Kafka, before we send them, we need to edit
them somehow.

3.4 Data Editing

PhysiBoSS generates data which are stored inside the two (2) output folders; microutput
and output. The one that needs our attention is the output folder. In this folder are stored
the data related to cells, while the other one gathers the molecules’ information. The
file that supports the information about cells is a .txt file and it looks like the one
depicted in Figure 3.3. The rate that these files are generated is defined by the
output_interval parameter the value of which is assigned inside the parameter.xml file.
All the simulations are considered to last 1440 minutes (1 day). So, considering that
the time step, meaning, the output_interval has the value 30 (minutes) then 49 files will
be generated (1440/30 + 1), one for each timestamp with the first one (1) come at
timepoint 0 and the last one at timepoint 1440.

By the time a cells_*.txt file is generated, we read it line-by-line. From each line we
extract only the useful for us information which is the phase. Phase carries the
information about the state in which each agent/cell is oriented, for the specific
timepoint we examine. The phase is represented with an integer code, each one of which
describes a different state. We can see the correspondence among PhysiBoSS integer
codes and PhysiCell cell states at Figure 3.4.

ime; ID; x;y;z;radius;volume total;radius nuclear;contact ECM;freezer;polarized fraction;motility;cell line;Cell cell;phasejCycle;NFkB
50;-51.3206;-4.61239,-63.4215;8.5;2572.44;5.11093;0;0;0.1;0.01;0;2.6464;1;0;-1
1;-37.43397,-33.3428,-64.6656;9.8791,4036.69;5.94016;0;0;0.1,;0.01;0;2.67582;0,;0;-1
2;-37.66;-13.829;-086.4675;8.5;2572.44;5.11093;0;0;0.1;0.01;0;2.65012;1;0;-1

3 -5132;0.472886;-85.5926;8.93255;2985.53;5.37104;0;0;0.1;0.01;0;2.4953;0
4 -48691;20.6064;-84.33759;10.0373;4235.84;6.03528;0;0;0.1;0.01;0;3.05361;0
-8021;-40.6281;-87.2579;9.31441;3384.97;5.60062;0;0;0.1;0.01;0;2.8081
-5456;-22.4016,-85.933;8.72424,;2781.45;5.24576;0;0,0.1,0.01;0;4.239586
.0298;-8.41815,-84.5089;8.68751,2746.47;5.22367;0;0;0.1;0.01;0;4.1069
-3025710.7176;-685.9715;6.9461;2999.09;5.37916;0;0;0.1;0.01;0;3.39456,;0,0;-1
©9;-22.2958;28.7601;-64.0031;9.1147;3171.67;5.48054;0;0;0.1;0.01;0;3.81391;0;0;-1
10;-8.64437;-49.3344,-63.4162;10.3831,;4666.689;6.24321;0;0;0.1;0.01;073.€0858,;0,0;-1
11;-7.09671;-30.7516,-67.1641;9.25676,3322.5;5.56596;0;0;0.1;0.0170;4.75339;0;0;-1
12;-6.50614;-16.6166;-66.2506;58.92614;2979.06;5.36716;0;0;0. .01;0;5.07848
13;-6.55273;0.139274;-85.5164;10.1914;4433.594;6.12794;0;0;0.1;0.01;0;5.02053
14;-7.56441;20.0313;-83.7587;10.1998;4444.92;6.13299;0;0;0.1;0.01;0;5.00831;
15;-7.67702;38.293;-83.9338;9.71243;3837.71;5.83994;0;0;0.1;0.01;0;3.32165;
16;7.44445;-40.87;-85.9511;10.0896,;4302.4;6.06673;0;0;0.1;0.01;0;4.84768;0;0

©.40276;-24.2342,-63.4865;10.0954,;4309.62;6.07022;0;0;0.1;0.01;0;76.03818,;0,0;-1
6.72537;-6.01744;-65.68347;8.76963,;2825.09;5.27305;0;0;0.1;0.01;0;73.89397;0;0;-1
19:,6.47914;10.9385;-66.7566;5.73724;2793.9;5.25358;0;0;0.1,;0.01;0;2.66741;0,0;-1
7.75366;27.7551;-87.3932;8.584193;2895.54;5.31652;0;0,;0.1;0.01;07;3.18335;0
21;8.87651;45.3857;-83.5773;10.2972;4573.47;6.19156;0;0;0.1;0.01;0;3.802;0
22;20.2418;-49.154;-84.45652;5.44966;3534.57;5.68194;0;0;0.1
23;23.3363;-34.0333,-86.6651;10.0918;4305.21;6.06805;0;0;0.1;0.01;0;5.1230
24;20.6083;-15.7285;-84.9688;8.5;2572.44;5.11093;0;0;0.1;0.01;0;3.28161;1;0;
25;22.4796;3.45145;-86.8633;8.58914,2654.22;5.16453;0;0;0.1,0.01;0;3.5917;0;
26;23.633;20.3931,-84.4861;8.68816,;2941.2;5.34432;0;0;0.1,;0.01;0;4.47596;0;0;
27;23.5491;37.7414;-64.8626;9.8457;3997.67;5.92008;0;0;0.1;0.01;0;73.69262;0;0;-1
28;36.3515;-40.1916,;-63.649;9.99562,41683.29;6.01022;0;0;0.1;0.01;0;3.7€5818;0;0;-1
29;35.4709;-25.54368,;-686.1256;6.5;2572.44,5.110093;0;0;0.1;0.01;0;3.01551;1;0;-1
30;37.2092;-5.59643;-85.3022;10.2046;4451.15;6.13588;0;0;0.1;0.01;0;2.529833; ;
31;36.5584;10.8587;-83.596595;10.2277;4481.49;6.14977;0;0;0.1;0.01;073.93953;0
32;37.5893;26.9807,;-83.927;10.0868;4298.82;6.06505;0;0;0.1;
33;-70.5277;-14.7649;-69.3765;9.3986,3477.59;5.65124;0;0;
34;-57.8121;-39.4461,;-71.3458;9.97762;4160.73;5.9994;0;0;

0
;0.
0

0
35;-56.6684;-25.1883;-72.4934;9.30194;3371.39;5.59312;0,;0;0.1;0.01;0;3.99619
36;-54.7581;-8.89582;-70.6532;8.5;2572.44;5.11093;0;0;0.1;0.01;0;4.50407;1;0;-1
37:-56.2927;9.85667,-69.7953;10.3383,4626.45;6.21627;0;0;0.1;0.01;0;3.50748;0;0;-1
38;-57.7911;28.4754,;-71.50568;8.5;2572.44;5.11093;0;0;0.1;0.01;0;2.15643;1;0;-1
39;-54.6542746.9027;-66.5617;9.52835,;3623.61;5.72926;0;0;0.1;0.01;073.23974;0;0;-1

1

40;-41.548;-51.3145;-72.6756;9.08313;3139.03;5.46155;0;0;0.1;0.01;0;2.11194;0;0;-1
41;-41.3985;-30.4538;-70.9856;9.44447;3528.75;5.67882;0;0;0.1;0.01;0;5.73716;0;0;-1
542;-42.2318;-16.6243;-69.6692;10.4347,;475%.14;6.27423;0;0,0.1;0.01;0;6.85618;0,0;-1

Figure 3.3: Cells’ Output Format

27

Chapter 111 System Design

Thus, regarding the phase’s integer code, we map it to the appropriate category among
the three general ones; “Alive”, “Apoptotic” and “Necrotic” and count the number of
agents/cells included in each one of the aforementioned categories for each timestamp.
Obviously, at the first timepoint (timepoint = 0) all the agents/cells belong to the state
“Live”, so, all the cells have phase that corresponds to the “Alive” category. Therefore,
at timepoint = 0 we meet the total amount of starting agents/cells.

"Ki¢7 positive premitotic"

"Ki¢7 positive postmitotic"

"Kig7 positive"

"Kié7 negative"

"G0G1 phase™

"GO0 phase"

"Gl:phase"

"Gla phase"

"Glb phase"

"Glc phase"

"S phase"
"G?M_phase"

"GZ phase"

"M phase"

"'_ivell
"apoptotic”
"necrotic swelling"
"necrotic lysed"
"necrotic"
"debris"

Figure 3.4: Cell Cycle Map

3.5 Message Format

At the next step, we needed an identifier which would uniquely determine a specific
simulation. For this reason, we used the pid (process identifier) using the usual function
getpid(). The whole processing that takes place at the consumer, is done according to
these pids so as to be able to separate the simulations from each other. At this point we
need to mention that the pid is recognizable only to processes that run in the same
machine. Otherwise, in other machines, it is just a number and they cannot be managed,
using their pids. So, we need some information to be able to know in which simulation
each pid corresponds. For this reason, the second field — after pid - we need to send, is
the path, which includes the information about the exact location of a specific
simulation, as well as, the number of the specific simulations of a concrete example. In
this way, we cover the case of different simulations, from different examples, but with
the same run’s folder number, are simultaneously running, without the user’s confusing.

Finally, concatenating all the necessary information, meaning pid, path, timepoint, as
well as, alive, apoptotic and necrotic cells’ number we counted previously, we are ready
to send the message depicted in Figure 3.5 to Kafka.

pid | path | timepoint | aliveNO | apoptoticNO [necroticNO

Figure 3.5: Message Format

28

Chapter 111 System Design

3.6 Message Consuming

The next step is message consumption. As we already mentioned, the tool, we used to
consume the messages, is Confluent’s Kafka Python. The first thing that we must do is
to start running the consumer instances, with each one of them having as argument the
partition’s id from which they will pull messages. So, it is concluded that the number
of partitions and the number of consumers coincide. The very first thing we do, after
decoding the pulled message is to create a dictionary with values, the discrete elements
of the message and inserts it into the desirable database.

Each partition is a well-defined queue that keeps messages following the FIFO (First
In First Out) structure. The content of each partition is not only messages coming from
different simulations, namely, different pids, but also from probably different
timepoints, since not necessarily all simulations started simultaneously or even that they
have the same output interval parameter. For example, a specific partition may include
data coming from simulation X and simulation Y, with the X simulation having as
output interval 30 minutes and Y 40 minutes. Also, the last received message from X
may be at timepoint 120 and from Y at timepoint 160. For this reason, when we
consume the messages, we do a linear interpolation among the last valid and the current
timepoint for this specific simulation generating intermediate values.

All the different coming simulations are stored in a dataframe called “Simulations” (see
Table 3.1). This data structure has as index the “Time” (for the needs of the example
we depict the Time column with step 30) and as name columns all the different
simulations/pids the specific consumer manages. Each pid column carries its personal
alive statistics located at the respective time index.

PIDo PID1 PID:z PIDn
Time
0 Aliveo,o Alivei,o Alivez,o Aliven,o
30 Aliveo,zo Alive1,so Alivez, 3o Aliven,so
60 Aliveo,so Alive1,s0 Alivez,so Aliven,so
ap Aliveo,so Alive1,s0 Alivez, oo Aliven,so
1440 Aliveo,1aa0 Alivevr,14aa0 Alivez,1440 Aliven, 1440

Table 3.1: Simulations Dataframe

At this point we need to mention that the statistics are normalized so as they can be
comparable to the cells of another simulation which has different number of starting
agents. For example, the simulation X may have 1000 starting agents instead of the
simulation Y which has 2000, a fact that makes the two (2) simulations incomparable
to each other and all the following computations wrong. For this reason, we normalize
each statistic with the number of its simulation’s starting agents. Thus, all the
simulations the consumer handles, have “1” as alive cells number at “0” timepoint.

29

Chapter 111 System Design

In addition to the “Simulations™ dataframe, we have another one data structure, too, the
“Nominated” one. At Table 3.2 we provide a numerical example of how this table looks
during the procedure. Initially, the table’s values are zero (0). Each row of the
“Nominated” dataframe contains information about a simulation’s pid, as well as, its
score. To be more specific, the DownTrend represents the last numerical distance
among a simulation X and the threshold, a simulation that is used as a ruler to decide if
a simulation deserves to live or not. The CountDown represents the “chances to life”.

PID DownTrend CountDown
index
0 Pid4 0.5 1
1 Pid2 0.25 2
2 Pid100 0.4 4
M Pid5 1 5

Table 3.2: Nominated Dataframe

Finally, the last data structure we use is a list named top k& which includes every moment
the best & pids/simulations of the measurements.

Having mentioned all the necessary information and tools that were used, we can now
pass to the algorithm’s analysis and explanation.

3.7 Algorithm

First of all, the consumer is divided into the following cases:

e [If (timepoint == 0)
e [If (timepoint > 0)

Considering the first case, if the received message, at the time’s field has the value “0”,
that means that this is the first received message for this specific simulation. So, we
create a new column in the “Simulations” dataframe with column name, this
simulation’s pid and we append the normalized number of alive cells at the first (1%)
row (time = 0). Also, we append it as a new row to the “Nominated” dataframe with
the DownTrend and CountDown be initially zero (0). Subsequently, we check if the
top_k list is full or not. If it is not, then we insert the pid to the top k list. The first &
different pids/simulations that come, appended to the top £ list.

So, in this case we should not apply the predicting algorithm since, at zero (0) timepoint
all cells are alive in every simulation. Also, if the total amount of simulations that the
consumer handles is less or equal to k, then the algorithm is not applied again.

Now, considering the second case, for every received message with timepoint greater
than the initial one and under the circumstance that top k list is full, we apply the
algorithm so as to judge if the simulation should be added to the top £ list replacing the
threshold, get killed or stay alive.

30

Chapter 111 System Design

The first thing we should do is to set the threshold, namely, the worst out of the best &
simulations listed in the top k. To achieve that, we should do two (2) procedures. The
first one is to find out the minimum last received valid timepoint among the top & ones.
The second one is to find the worst simulation, namely, the simulation with the most
alive cells at the timestamp we found as minimum in the previous procedure. It is
important to do our calculations at the same timestamps, otherwise the measurements
have no sense (see Table 3.3).

PIDo PID1 PID2 PIDn
Time
0 Aliveoo Alivei,o Alivez,o Aliven,o
30 Aliveo,3o Alive1,3o Alivez,zo Aliven,3o
60 Aliveiso Alivezso Aliven,so
90 Alive,s0 Aliven,s0
1440

Table 3.3: Maximum Common Timepoint

Consequently, knowing that the top £ list is full and ignoring the cases where time is
zero (0), we must check if the threshold has already generated value for the time of the
current simulation.

If yes, then we compare at this specific timepoint the number of the alive cells of the
current simulation with the ones of the threshold. If the simulation’s alive cells are less
than the threshold’s, then we throw out of the top_ £ list the until now threshold and we
replace it with the current simulation’s pid. Now, the new threshold is the current
simulation. Otherwise, if the new one is not better than the worst out of the best one,
then we check its score. Concretely, if the DownTrend, namely, the downward trend of
this specific simulation in relation with the threshold, is greater than the one in a
previous timepoint, that means that the simulation’s course is rising and for this reason,
we increase its CountDown by one, updating the Nominated dataframe not only for the
CountDown, but for the new numerical distance as well. Afterwards, we check if it is
high time the simulation should be killed. Specifically, if the CountDown of the under-
examination simulation reached the 5, that means that the life chances, namely, the
tolerance for this specific simulation, finished and for this reason it should be killed.

The killing part varies according to the design. To be more specific, if the whole
procedure takes place in a local server without more than ones different ips interfere,
then we can simply kill the simulation regarding to its pid calling the ki// function which
is an attribute of the os module in Python. If the simulations are distributed into different
machines, as well as, the consumers, then we should transfer the killing information
through Kafka and by the time the message is consumed, then a flag is raised and the
under execution PhysiBoSS instance gets killed. Finally, if the whole procedure takes
place in a cluster or grid computer, then we can just kill this specific simulation’s jobid
by calling the appropriate function depending on the used resource manager (for us was

31

Chapter 111 System Design

TORQUE as resource manager and qdel as the killing command) avoiding thus, the use
of extra Kafka resources and as a result the whole system’s complexity to be increased.

A question that emerges from the whole procedure is why we decided to show some
tolerance to the potential non-hopeful simulations inducing as a result time delay.

The reason why we did this, is lying on several factors. One of the most important,
which can nowhere and never can be disregarded is the noise. For example, the
simulation depicted on Figure 3.6 has a little bit of an unpredicted response through
time since it has great fluctuation. If we compare this one to the one depicted on Figure
3.7, then it will be killed for sure and there is no reason for CountDown to exist.
However, if we compare it with the Figure 3.8, totally ignoring the tolerance, then at
the timepoint 200 Figure 3.8 will beat the Figure 3.6. However, finally, the one that
should have survived is the Figure 3.6. Considering the tolerance, then we have the
desired results.

To sum up, if we avoid this tolerance, we kill simulations earlier, but with the cost that
maybe a dead simulation was, finally, better than one of the k ones which survived. So,
we prefer to sacrifice time instead of better results. After different experiments, we
decided that countdown 5 is a good tolerance for average simulations. Of course, this
can be modified considering the simulations’ nature and how competitive they are to
each other.

14{}0 A 1 1 1 1 1 1 1 _
— alive
1200 - — necrotic -
— apoptotic
1000 - -
w
= 800 - -
[
Y
S 600 - -
=
400 - -
200 - -
0 | 1 1 1 1 1 1 1 '
0 200 400 600 800 1000 1200 1400 1600
time (min)

Figure 3.6: pulse150_oxy0

32

Chapter 111 System Design

14(}[} | 1 1 1 1 1 1 1 _
— alive
1200 - — necrotic -
— apoptotic
1000 - -
u
= 800 - -
wr
e
S 600 - -
=
400 - -
200 - -
0 | 1 1 1 1 1 1 1 -
0 200 400 600 800 1000 1200 1400 1600
time (min)

Figure 3.7: pule150_oxy0.1

14(}0 | 1 1 1 1 1 1 1 _
— alive
1200 - — hecrotic -
— apoptotic
1000 - -
n
= 800 - -
w
M
© 600 - -
=
400 - -
200 - -
0 T 1 1 1 1 1 1 1 -
0 200 400 600 800 1000 1200 1400 1600
time (min)

Figure 3.8: Pulse100_oxy0

Back to our algorithm, if it is decided that the simulation must be killed, then we drop
any existed information about it in the database and the “Simulations” dataframe, as
well as, we generate a .txt file in which information about the killed simulations is
included.

The procedure is repeated until the consumer has pulled all the messages. Figure 3.9
contains the pseudocode of the consuming procedure.

33

Chapter 111 System Design

Create a mongo client
Create a db and make a connection to it

Pull message
Decode message

pid := msgl0]
path := msg[l]

alive := msqg[2]
apoptotic := msgl[3]
necrotic := msgl[4]

Store data in mongoDB

IF (time == 0) THEN
norm value := alive
alive := alive/norm value

Create new column in simulations Dataframe, named with sim's PID
ppend data in simulations Dataframe
Create new row in nominated Dataframe
IF {tOp_k NOT FULL) THEN
top k.append(pid)
ENDIF
CONTINUE consuming
ENDIF

For every other timepoint > 0
alive := alive/norm value
Interpolate the intermediate values

IF {top_k is FULL) THEN
FOR simulation in top k
minimum := find the maximum last common timepoint
ENDFOR
FOR simulation in top k
threshold := find the worst of the top k
swap positions(top k[0], threshold)
ENDFOR
IF (minimum > 0 AND (pid NOT IN top_k)) THEN
IF (simulations.at[time,threshold] EXISTS) THEN
IF (alive < simulations.at[time,threshold]) THEN
top k[0] := pid
ELSE

IF (nominated.at[pid,DownTrend] < round{alive - simulations.at[time,threshold])) THEN

nominated.at[pid, CountDown] 4= 1

nominated.at[pid, DownTrend] := round(alive - simulations.at[time,threshold])
ENDIF
ENDIF
ELSE
maxTime := simulations[threshold].last walid index()

IF (simulations.at[maxTime,pid] < simulations.at[maxTime,threshold]) THEN
top_k[0] := pid
ELSE

IF (nominated.at[pid,DownTrend] < round{alive - simulations.at[maxTime,threshold])) THEN

nominated.at[pid, CountDown] += 1

nominated.at[pid, DownTrend] := roundf{alive - simulations.at[maxTime,threshold])

ENDIF

ENDIF

ENDIF

IF (nominated.at[pid,CountDown] »= 5) THEN
kill simulation pid
delete info in mongoDB
delete simulations[pid]
write simulations info in a file

ENDIF

ENDIF

END
Figure 3.9: Algorithm's Pseudocode

34

Chapter 111 System Design

After that, the last module in the whole system, 7OP K module, just proclaims the best
k out of all the received locally top £’s taking into account the last alive’s value. If there
is overlapping among some simulations at the last timepoint’s value, then we can either
permit k to be extended or randomly choose just £ among the best, depending on the
user’s need. Also, TOP K module supports the opportunity of a report file creation, in
which there is included information about the survival simulations, as well as, survival
simulations representation with a figure (e.g. Figure 3.6), if the user gives the
appropriate arguments when calling TOP_K (python3 top_k_global.py -f=report.txt -p)

35

Chapter 1V Experimental Results

4. Experimental Results

What we, finally, expect from our whole design is:

= Effectiveness, regarding the simulations’ survival rate

= Time performance, regarding the average killing timepoint
= Distributed functionality

= Parallelization computing

To verify the effectiveness, as well as, to test the whole performance of our design, we
brought about an amount of experiments. The experiments took place locally and
remotely, as well, so as to confirm its functionality gives promising results not only for
a few simulations running in a local computer, but for high volume data running
distributed into different servers, too.

At this point we need to mention that for the needs of the experimental part, we used a
grid computer. This execution platform consisted of a local server and forty-four (44)
independent to each other nodes each one of them consisted of 4 processors. So, the
maximum number of simulations that we could simultaneously run was:

4 ppn X 44 nodes = 176 real — time distibuted running simulations,
where ppn stands for processor per node.

The local server communicates with the nodes using TORQUE [39] and openMPI.
Thus, the local server has the ability to start, hold, cancel and monitor jobs. Some of
the experiments conducted in a computer grid and some others in a local computer using
two (2) virtual machines — with different IPs - one (1) for the producing and one (1) for
the consuming part. Also, all the measurements were done under the circumstance that:
k =5 and the number of the simultaneously running consumers were three (3).

To verify the functionality of the design we had to check it in a varying amount of
simulations and consider both the average and the extreme cases, too. In this way, we
divided the experiments into three (3) general categories according to the simulations’
nature; average, promising and non-promising.

4.1 Use Case 1: Average Simulations

For our first (1%') scenario, we tested the system’s performance for simulations that their
number of alive cells have average response through time, like the one depicted in
Figure 4.1.

36

Chapter 1V Experimental Results

140{] A 1 1 1 1 1 1 1 _
— alive
1200 - — necrotic -
— apoptotic
1000 - -
wn
S 800 - -
L
[T
© 600 - -
=
400 - -
200 - -
0 T 1 1 1 1 1 1 1 '
0 200 400 600 800 1000 1200 1400 1600
time (min)

Figure 4.1: Pulse150 TNFconc0.5_oxyO

For the needs of this group of experiments we used simulations from different
examples, starting with a random set of parameters. Also, we made sure that the
output_interval parameter, namely, the parameter that defines the sampling time, differs
among simulations so as to ensure that it does efficiently covered this case, too. In
addition to that, we took measurements for two (2) well-defined examples, too,
pulse25 600 conc and pulse5-1400 conc in which the changeable parameters were
the time_add_tnf, which defines the interval among pulses and the tnf concentration,
which constitutes the dosage of the medicine at each pulse. The statistics that we
received from them were the ones that are presented in Table 4. 1.

#Top K Average
Examples # Simulations | # Consumers | # Survived # Dead (global) Ifri!ling
ime
5/113
random 230 3 5/54 215 5 20.85%
5/63
pulse5- 0
1400 conc 176 3 30 146 5 22.2%
5/30
g;?iii; 96 3 6/31 80 5 | 25.83%
- 5/35

Table 4. 1: Average Simulations Statistics

From the measurements we can conclude that for the average cases, the algorithm’s
efficiency is very high, since for all the above examples the final number of simulations
was equal to the k. As for the time, the average killing timepoint was, approximately,
300 - 380 minutes and considering to the whole procedure lasts 1440 minutes, this is a

37

Chapter 1V Experimental Results

very satisfying killing percentage, since the average simulation gets killed before the
half of the whole procedure.

4.2 Use Case 2: Promising Simulations

There are cases that a specific group of simulations modify only one parameter in a
range where the step is very small in order to better capture transition effects and finally
find where the threshold is (see Figure 4.2).

A very important simulation’s parameter is oxygen_necrotic which is an environmental
cause of necrosis happening in real life. Knowing that the zero (0) value means that
there is no way to go to necrosis by lack of oxygen and that only values below two (2)
give proliferative outcomes, we created a clustering of one thousand (1000) ready to
run simulations (example spheroid TNF pulsel50 oxy) with all the parameters being
the same and the only changeable parameter being the oxygen necrotic in a range of 0
to 1 with step 0.001.

Thus, using three (3) consumers and randomly” allocating the simulations into three (3)
partitions, we received the following results for varying cases of CountDown:

#Top K Average
CountDown # Simulations # Consumers # Survived | # Dead Killing
(global) Time
5 1000 3 989 11 979 | 33.712%
3 1000 3 543 457 543 9%
2 1000 3 416 584 416 5.2%
1 1000 3 248 752 248 2.75%

Table 4.2: example_spheroid_TNF_pulse150_oxy Statistics

The above table gathers the results we received for CountDown giving the values 5, 3,
2 and 1. As we can see, in the case of CountDown being 5 the simulations that survived
are 989 out of the initial 1000 simulations, which means than only the 11 died.
However, we can see that neither the global module could do something significantly
better, since it ignored only the 10 of the 989. The average timepoint that these
simulations were killed was 485.45 minutes, which means that each simulation got
killed at the 33.712% of the whole procedure.

Thus, we concluded that we need a stricter tolerance than the average used one, 5. So,
we repeated the same experiment for CountDown being 3. In this case the results are
very interesting. First of all, we can notice that the difference between the dead ones
with tolerance 5 and the dead ones with tolerance 3 is significant, since this time
547/1000 got killed instead of the 11 of the previous measurement. Finally, the global
Top K module is forced to surpass the k since at the last timepoint much more
simulations ended up with the same alive cells’ value. The remarkable part is that all
the simulations that globally survived are exactly the summary of the locally survived
ones with the average deciding time being approximately at 130 minutes out of the 1440
minutes, which is the whole simulation’s duration. Similar were the results, while we
were decreasing the tolerance. In this point, we need to mention that we applied a
recursive procedure in order to find the last timestamp for which the simulations are

* We considered to maintain the same allocation for all the different values of CountDown to have a clear view
about the results.

38

Chapter 1V Experimental Results

overlapped and by extension the threshold. It is important we mention that, we found
out that 242 out of the 1000 simulations were totally identical considering the number
of the alive cells, since from the second timepoint and after all the cells fell into
necrosis. Below we cite the statistics of another example consisted of /200 simulations
in which we vary the oxygen necrotic (0, 0.9, 0.1), the time add tnf (100, 300, 50),
the duration_add tnf (5, 15, 5) and the tnf concentration (0.1, 0.8, 0.1) parameters.

Again, the simulations are randomly allocated into three (3) partitions:

. . . # Top K Av.er.age
CountDown # Simulations # Consumers # Survived | # Dead Killing
(global) Time
305/335
5 1200 3 430/445 | 120 1080 | 22.17%
345/420
304/335
2 1200 3 430/445 | 121 1079 | 10.49%
345/420
110/335
1 1200 3 105/445 | 904 296 3.05%
81/420

Table 4.3: example_spheroid TNF_pulse100-300_dur_conc_oxy Statistics

Most of the simulations’ response for both examples were looking like Figure 4.2. We
can conclude that from the second timepoint and ahead, most cells fall into necrosis
statement.

14{][] A 1 1 1 1 1 1 1 -
— alive
1200 - — necrotic -
— apoptotic
1000 - -
w
= 800 - -
L
M
S 600 - -
=
400 - -
200 - -
G 71 1 1 1 1 1 1 1 I
0 200 400 600 800 1000 1200 1400 1600
time (min)

Figure 4.2: pulse150_oxy_0.5

Generally, in such cases where we try to find out a threshold in a very tight range, the
more we decrease the tolerance, the better results we get. So, we can totally ignore it to
save time and limit the results. Another solution would be instead of using the alive
cells as ruler at the global Top K, we could use the number of apoptotic or necrotic cells

39

Chapter 1V Experimental Results

if we care about them, but this depends on what the user needs. The conclusion in that
scenarios is that, inevitably the ones we kill are also good, but they did not survive
because better ones existed.

4.3 Use Case 3: Non-Promising Simulations

In this scenario, we do the hypothesis that all simulations are bad. According to our
algorithm’s current design some of them and specifically &, will survive since, right
now the algorithm makes sure to return the top & out of all the received ones. So, for
the case that all simulations of a specific classification are going to have a bad
performance, namely, non-promising ones with response as the one depicted at Figure
4.3, then the best & of the worst inevitably will survive.

For this reason, we suggest that algorithm has an initial threshold, so as to finally none
non-promising simulation stays alive even if it was the best out of the worst.
Regarding the standard threshold, that could be either a simulation loaded from the
memory or the 1 (the number of starting agents) to every timepoint. In both cases we
have a good time saving solution.

In the specific case that the user needs to keep some of the non-hopeful ones, because
they want to depict the general response through time of a cluster, then they can ignore
the standard threshold.

5000 | 1 1 1 1 1 1 1 L
— alive
— necrotic
4000 - — apoptotic
2 3000 - -
@
L]
e
(]
S 2000 - -
1000 - -
0 | 1]] 1 1 1 1 -
0 200 400 600 800 1000 1200 1400 1600
time (min)

Figure 4.3: nopulse

Concluding with the experimental part, we need to highlight that the results depend on
how competitive simulations’ nature is, but, generally, we can express that the
efficiency is good, thinking that all the non-hopeful simulations are killed and
specifically before the half of the whole simulation’s duration.

40

Chapter V Conclusion — Future Work
5. Conclusion — Future Work

5.1 Conclusion

Concluding, in this diploma thesis we designed an algorithm that collects through
Apache Kafka the statistics of all real time running simulations in a parallel way. The
parallelization level depends on the number of running consumers. Every consumer’s
instance continuously compares the simulations one to another attending to keep locally
the top k ones at all moments. The ones that are excluded from the top £ list do not seem
to be promising enough to be completed and thus they get killed. After all consumers
are completed, they send their top £ list to the global Top £ module which compares the
individual received top k and decides the final top k simulations regarding on the alive
cells’ number at the last timepoint. In case that there is an overlapping among
simulations, then the global Top & can either keep randomly & ones or permit & to be
increased as much as it is demanded to cover all and not let one simulation be excluded.
The design supports both local and remote communication.

We verified its performance, by running the algorithm repetitively for an adequate
number of different clustered examples (approximately 80 GB data), trying to include
good, average and bad simulations, too, so as to test it to every possible combination of
simulations and to take into account extreme cases, like all real time running
simulations to be promising.

The results were hopeful for the final number of surviving simulations considering the
initial number, as well as for the average time that the simulations get killed, achieving
to gather results before each simulation reaches the 40% of the whole procedure.

5.2 Future Work

The performance as well as the complexity of the current algorithm could possibly be
improved under some modifications. First of all, we could store all the real-time from
N running PhysiBoSS instances generated data into a buffer/queue and this
buffer/queue would be considered to be the only producer of the whole system. Thus,
we reduce currently used Kafka resources and specifically producers, and by extension
the whole complexity from N to 1. As for the messages’ allocation from the producer
to the partitions, instead of it being random, a more sophisticated implementation (e.g.
Hashing) could be used. Furthermore, an essential improvement would be that the local
top k instances continuously report the k best simulations to the global Top £ module
(real-time top-k monitoring) which would also have the permission to kill the
simulations that locally belong to the top-k list, but not globally. As a result, we would
manage to reduce the overhead and increase the performance. In this way, we could
ignore the database, that we use right now. Finally, probably the most important
improvement would be to embed the whole system inside the Apache Flink framework,
which is specifically designed to permit distributed processes, considering that it offers
stateful computations over unbounded and bounded data streams with high
performance and speed.

41

Bibliography

[1] G. Letort, A. Montagud, G. Stoll, R. Heiland, E. Barillot, P. Macklin, A. Zinovyeyv,
L. Calzone, PhysiBoSS: a multi-scale agent-based modelling framework
integrating physical dimension and cell signalling (2018)

[2] G. Stoll, B. Caron, E. Viara, A. Dugourd, A. Zinovev, A. Naldi, G. Kroemer, E.
Barillot, L. Calzone, MaBoSS 2.0: an environment for stochastic Boolean
modeling (2017)

[3] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, P. Macklin,
PhysiCell: An open source physics-based cell simulator for 3-D multicellular
systems (2018)

[4] A. Ghaffarizadeh, S. H. Friedman, P. Macklin BioFVM: an efficient, parallelized
diffusive transport solver for 3-D biological simulations (2015)

[5] N. Giatrakos, A. Deligiannakis, M. Garofalakis, 1. Sharfman, A. Schuster,
Prediction — Based Geometric Monitoring Over Distributed Data Streams (2012)

[6] B. Babcock, C. Olston, Distributed Top — K Monitoring (2003)

[7] https://maboss.curie.fr/

[8] http://physicell.org/

[9] https://github.com/sysbio-curie/PhysiBoSS

[10] https://github.com/gletort/PhysiBoSS/wiki/Parameters

[11] https://www.slideshare.net/rahuldausa/introduction-to-kafka-and-zookeeper

[12] https://sookocheff.com/post/kafka/kafka-in-a-nutshell/

[13] https://www.tutorialspoint.com/apache kafka/index.htm

[14] https://kafka.apache.org/quickstart

[15] https://www.tutorialspoint.com/apache_kafka/apache kafka_cluster_architecture.
htm

[16] https://github.com/mfontanini/cppkafka

[17] https://github.com/edenhill/librdkafka

[18] https://github.com/confluentinc/confluent-kafka-python

[19] https://timber.io/blog/hello-world-in-kafka-using-python/

[20] https://www.programcreek.com/python/example/98440/kafka.KafkaConsumer

[21] https://buildmedia.readthedocs.org/media/pdf/kafka-python/master/kafka-
python.pdf

[22] https://docs.confluent.io/5.0.0/clients/confluent-kafka-python/index.html

[23] https://towardsdatascience.com/kafka-python-explained-in-10-lines-of-code-
800e3e07dadl

[24] https://kafka-python.readthedocs.io/en/master/index.html

[25] https://towardsdatascience.com/getting-started-with-apache-kafka-in-python-
604b3250aa05

[26] https://matplotlib.org/3.1.1/tutorials/introductory/pyplot.html

[27] https://pandas.pydata.org/
[28] https://pandas.pydata.org/pandas-

docs/stable/reference/api/pandas.DataFrame.html

[29] https://docs.python.org/2/library/xml.dom.minidom.html
[30] http://epydoc.sourceforge.net/stdlib/xml.dom.minidom.Document-class.html
[31] https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/

[32] https://www.w3schools.com/python/python_mongodb_getstarted.asp

42

https://maboss.curie.fr/
http://physicell.org/
https://github.com/sysbio-curie/PhysiBoSS
https://github.com/gletort/PhysiBoSS/wiki/Parameters
https://www.slideshare.net/rahuldausa/introduction-to-kafka-and-zookeeper
https://sookocheff.com/post/kafka/kafka-in-a-nutshell/
https://www.tutorialspoint.com/apache_kafka/index.htm
https://kafka.apache.org/quickstart
https://www.tutorialspoint.com/apache_kafka/apache_kafka_cluster_architecture.htm
https://www.tutorialspoint.com/apache_kafka/apache_kafka_cluster_architecture.htm
https://github.com/mfontanini/cppkafka
https://github.com/edenhill/librdkafka
https://github.com/confluentinc/confluent-kafka-python
https://timber.io/blog/hello-world-in-kafka-using-python/
https://www.programcreek.com/python/example/98440/kafka.KafkaConsumer
https://buildmedia.readthedocs.org/media/pdf/kafka-python/master/kafka-python.pdf
https://buildmedia.readthedocs.org/media/pdf/kafka-python/master/kafka-python.pdf
https://docs.confluent.io/5.0.0/clients/confluent-kafka-python/index.html
https://towardsdatascience.com/kafka-python-explained-in-10-lines-of-code-800e3e07dad1
https://towardsdatascience.com/kafka-python-explained-in-10-lines-of-code-800e3e07dad1
https://kafka-python.readthedocs.io/en/master/index.html
https://towardsdatascience.com/getting-started-with-apache-kafka-in-python-604b3250aa05
https://towardsdatascience.com/getting-started-with-apache-kafka-in-python-604b3250aa05
https://matplotlib.org/3.1.1/tutorials/introductory/pyplot.html
https://pandas.pydata.org/
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
https://docs.python.org/2/library/xml.dom.minidom.html
http://epydoc.sourceforge.net/stdlib/xml.dom.minidom.Document-class.html
https://docs.mongodb.com/manual/tutorial/install-mongodb-on-ubuntu/
https://www.w3schools.com/python/python_mongodb_getstarted.asp

[33] https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-
forecasting-70d476btfe775

[34] https://www.youtube.com/watch?v=bn8rVBulcFg

[35] https://www.youtube.com/watch?v=VYpAodcdFfA

[36] https://www.youtube.com/watch?v=e8Yw4alG16Q

[37] https://hpcc.usc.edu/support/documentation/running-a-job-on-the-hpcc-cluster-
using-pbs/

[38] https://www.jlab.org/hpc/PBS/gsub.html

[39] http://docs.adaptivecomputing.com/torque/6-0-
2/adminGuide/help.htm#topics/torque/2-jobs/multiJobSubmission.htm

[40] https://slurm.schedmd.com/sbatch.html

[41] https://www.altair.com/pdfs/pbsworks/PBSUserGuide18.2.pdf

[42] https://kb.iu.edu/d/avmy

[43] http://www.gnu.org/software/make/manual/html_node/Automatic-
Variables.html#Automatic-Variables

[44] https://www.tutorialspoint.com/cplusplus/index.htm

[45] http://www.cplusplus.com/doc/tutorial/

43

https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775
https://towardsdatascience.com/the-complete-guide-to-time-series-analysis-and-forecasting-70d476bfe775
https://www.youtube.com/watch?v=bn8rVBuIcFg
https://www.youtube.com/watch?v=VYpAodcdFfA
https://www.youtube.com/watch?v=e8Yw4alG16Q
https://hpcc.usc.edu/support/documentation/running-a-job-on-the-hpcc-cluster-using-pbs/
https://hpcc.usc.edu/support/documentation/running-a-job-on-the-hpcc-cluster-using-pbs/
https://www.jlab.org/hpc/PBS/qsub.html
http://docs.adaptivecomputing.com/torque/6-0-2/adminGuide/help.htm#topics/torque/2-jobs/multiJobSubmission.htm
http://docs.adaptivecomputing.com/torque/6-0-2/adminGuide/help.htm#topics/torque/2-jobs/multiJobSubmission.htm
https://www.altair.com/pdfs/pbsworks/PBSUserGuide18.2.pdf
https://kb.iu.edu/d/avmy
http://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables
http://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html#Automatic-Variables
https://www.tutorialspoint.com/cplusplus/index.htm
http://www.cplusplus.com/doc/tutorial/

