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Abstract 

Since the existing biological multicellular systems are characterized by high complexity 

and heterogeneity, coupled with the fact that there has been a remarkable upsurge in 

computer science, in-silico methods based on mathematical models are in a great use. 

Specifically, they are particularly helpful when we must deal with diseases that have 

abnormal and unpredicted behavior, such as cancer or auto-immune ones. The need for 

understanding and curing such kind of diseases, led us to the integration of different 

modelling frameworks that take into account the intra- and the extra-cellular 

environment, as well as, the interplay between cells. Such an example is PhysiBoSS, 

that combines two other well-established frameworks to support its whole functionality 

and provide us a cell-fate decision model with an accurate representation of cells’ 

population variance through the time under a specific treatment and conditions. 

Considering the fact that not all PhysiBoSS simulations are hopeful, to facilitate the 

procedure of results’ collection and examination, the bad simulations must be excluded. 

This thesis’ goal is to design a distributed and parallel system that implements a 

forecasting algorithm on a great amount of real-time running simulations and decides 

about the sustainability or not of a simulation’s execution and finally maintains only the 

top k hopeful ones out of all the initial simulations. The algorithm’s performance was 

evaluated both locally and remotely/distributively, giving us very positive results. 
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Περίληψη 

Το γεγονός ότι τα υπάρχοντα βιολογικά πολυκύτταρα συστήματα χαρακτηρίζονται από 

υψηλή πολυπλοκότητα και ετερογένεια, σε συνδυασμό με τη σημαντική εξέλιξη της 

επιστήμης των υπολογιστών, οδήγησαν στην αυξημένη χρήση των in-silico μεθόδων, 

βασισμένων σε μαθηματικά μοντέλα. Συγκεκριμένα, είναι ιδιαίτερα χρήσιμες όταν 

πρόκειται να μιλήσουμε για ασθένειες με μη φυσιολογική και απρόβλεπτη απόκριση, 

όπως είναι ο καρκίνος ή τα αυτό-άνοσα νοσήματα. Η ανάγκη για την κατανόηση και 

θεραπεία τέτοιου είδους ασθενειών, οδήγησε στη δημιουργία διαφορετικών εργαλείων 

μοντελοποίησης, τα οποία συνυπολογίζουν το ενδο- και εξω-κυτταρικό περιβάλλον, 

καθώς και την αλληλεπίδραση μεταξύ των κυττάρων. Ένα τέτοιο παράδειγμα είναι το 

PhysiBoSS, το οποίο συνδυάζει δύο άλλα ήδη σαφώς ορισμένα εργαλεία, για να 

υποστηρίξει την όλη λειτουργικότητά του και να παράξει τελικά, ένα μοντέλο 

απόφασης περί κυτταρικής μοίρας μέσω μίας ακριβούς αναπαράστασης της μεταβολής 

του πληθυσμού των κυττάρων στο πέρασμα του χρόνου, υπό ορισμένες συνθήκες και 

θεραπεία. 

Λαμβάνοντας υπόψιν το γεγονός ότι δεν είναι ελπιδοφόρες όλες οι προσομοιώσεις του 

εργαλείου, προκειμένου να διευκολύνουμε τη διαδικασία της διαλογής και μελέτης των 

αποτελεσμάτων, οι κακές προσομοιώσεις πρέπει να εξαιρεθούν. Επομένως, ο στόχος 

της παρούσας διπλωματικής εργασίας είναι η σχεδίαση ενός παράλληλου και 

κατανεμημένου συστήματος, το οποίο εφαρμόζει έναν αλγόριθμο πρόβλεψης σε ένα 

μεγάλο πλήθος τρεχουσών προσομοιώσεων και αποφασίζει για τη συνέχιση ή όχι της 

εκτέλεσής της κάθε μίας και τέλος ανιχνεύει και κρατά μόνο τις k πιο ελπιδοφόρες εκ 

του ομαδοποιημένου συνόλου προσομοιώσεων. H απόδοση του αλγορίθμου ελέγχθηκε 

τοπικά και απομακρυσμένα/κατανεμημένα, αποδίδοντας θετικά αποτελέσματα.  
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1. Introduction 

More and more efforts and attempts are being made from the scientific community to 

utilize in-silico instead of the so far being used in-vivo and in-vitro methods. The in-

silico methods are taking place in virtual biological systems and experiments are 

performed on computer or via computer simulations. Such an example is PhysiBoSS 

which is a C++ software for multiscale simulation of heterogeneous multi-cellular 

systems. 

PhysiBoSS is the combination of MaBoSS, a C++ software for simulating continuous 

or discrete time Markov processes, applied on a Boolean network, and PhysiCell, a 

physics-based cell simulator. Briefly, PhysiBoSS simulates cancer cells and their 

biochemical environment, as well. Thus, by running thousands of different simulations, 

initialized with different conditions, we are able to generate thousands of different 

results and examine them, deciding which conditions are promising and which are not 

promising, regarding the cancer cells’ behavior. The effectiveness of this 

implementation has been checked and verified with a cell-fate decisions model in 

response to TNF (Tumour Necrosis Factor) injection. The problem that arises here is 

the fact that, by running a large number of different simulations, finally we get a high 

volume of data which cannot be examined one-by-one. 

This work focuses on solving that problem by proposing a system for detecting the non-

promising simulations and killing them. To be more specific, we designed a distributed 

system in which a number of different modules read data in parallel. Each one of them 

maintains the top k most promising simulations, killing on the fly the rest of the running 

simulations, that do not seem to belong to the top k ones. 

To verify the functionality and efficiency of our algorithm, we tested it on 

approximately 80 GB (GigaBytes) of data, locally and remotely, as well, and the results 

seem promising enough, since approximately the 80% – 90% out of all the starting 

simulations get killed before the simulation reaches the 40% of the whole procedure, 

accelerating it.  

1.1 Motivation 

Due to the rapid, unpredicted and abnormal development of cancer cells, the need for 

representation, integration and treatment of cancer with software tools, was born. There 

are several modelling frameworks that have already been integrated and are in use. One 

of them is PhysiBoSS that can approach and depict the complexity and heterogeneity 

of multicellular biological systems at a quite satisfying level. What this simulator, 

finally, offers is a detailed description about each cell’s response over time under some 

well-defined conditions. Its results are very realistic, although there are significantly 

numerous different combinations that can be made and, by extension, numerous outputs 

that are generated. So, the problem that emerges here is that the results are too many to 

be examined. For this reason, we propose an algorithm for forecasting biological 

simulations within this tool and which can, of course, be used and expanded to other 

use cases, as well, to offer a more clear view about which the proper conditions for 

cancer cells to get eliminated are. Thus, the examination of the results would be much 

easier to be conducted, gathering only the promising simulations. So, the fact that we 
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could pitch, at least a little bit, in the effort related to cancer research and treatment, 

would be an honor for us and here is where the whole motivation lays. 

1.2 Outline 

In the current thesis work, in Chapter II all the background theoretical knowledge and 

the software tools that were used are mentioned and explained. Furthermore, in Chapter 

III an extensive explanation about our whole’s system architecture, as well as, our 

algorithm’s implementation is provided. After that, all the experimental, including 

quantitative and qualitative results, are illustrated in Chapter IV and we sum up with 

the conclusion and future work in Chapter V. 
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2. Background 

We need to mention and clarify some very important for our design tools that were used 

and combined to achieve our goal, so as the readers of this thesis be able to keep pace 

with our conceptualization. 

2.1 Biological Tools 

More and more scientists focus on the creation and development of biological tools that 

are used in medical research so as to virtually represent through simulations the very 

complex and multicellular biological systems (in-silico) on their attempt to find solution 

on diseases like cancer and eliminate as well, the in-vivo applied methods. The 

significance of such tools can be conceptualized if we only think that we didn’t know 

that cells existed until microscopes were invented. Respectively, living in the epoch of 

big data and informatics, the design of software biological tools is the logical flow of 

things. 

2.1.1 MaBoSS/MaBoSS 2.0 

MaBoSS [2] stands for Markovian Boolean Stochastic Simulator and as its name 

evinces, it is a C++ software open source that simulates continuous or discrete time 

Markov processes, which are applied on a Boolean network, namely, it is an 

environment for stochastic Boolean modeling. It applies Monte-Carlo algorithm so as 

to produce time trajectories, according to some initial conditions [7]. The motivation is 

to create a model of signaling pathways, namely, a model that represents the behavior 

of cells and provides probabilities about model entities (gene, protein etc.) reaching a 

stable state. 

Figure 2.1: Pipeline of the use of MaBoSS 2.0 [2] 
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The figure above [Figure 2.1] showcases a MaBoSS logical model which is initially 

modified by some factors (mutations, drug treatments, sensitivity analysis) and after 

some logical equations, finally they gathered in a single command and simulated all 

together at once. 

MaBoSS has already been considered as a well-defined tool and it is widely used in 

biological problems like the cancer-related ones. MaBoSS 2.0 is just an extended 

version of MaBoSS. Some of the new characteristics that embeds are visualization, 

mutations’ simulations, drug treatments etc. 

2.1.2 BioFVM 

BioFVM [4] is a parallelized diffusive transport solver for 3D biological simulations. 

To be more specific, it is a well-defined and efficient simulator for varying diffusing 

substrates by cell and bulk sources in large 3D domains. A 1-hour simulation’s example 

is illustrated at Figure 2.2.  

BioFVM is a minimal-dependencies simulator, written in C++ and parallelized with 

OpenMP. It can be executed on its own or can be adopted and included in other larger 

modelling packages, too. 

Figure 2.2: Simulation of oxygen and VEGF diffusion in a large scale [4] 

2.1.3 PhysiCell 

PhysiCell [3] is an open source framework for 3D multicellular simulations. It is a 

multi-agent-based modelling tool that embeds the before-mentioned tool, BioFVM and 

simulates the tissue-scale behaviors that arise from biological and biophysical cell 

processes representing each individual cell/agent as a physical dynamical entity. A 

simulation’s example is depicted at Figure 2.3. PhysiCell is an agent-based software 

with minimal dependencies written in C++ and is parallelized with OpenMP [8]. 
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Figure 2.3: 3D simulation of adaptive immune response to a heterogeneous tumor Simulation of oxygen 

and VEGF diffusion in a large scale [8] 

2.1.4 PhysiBoSS 

The motivation behind the creation of PhysiBoSS is the fact that the multicellular 

biological systems are very difficult to be represented due to their complexity and 

heterogeneity. Since these systems involve high inter-dependency among the different 

biological scales of a cell to be developed, only a multi-scale mathematical model 

would be appropriate for that kind of representations. So, its representation with a well-

defined tool that takes into account cell signaling, cell population response and 

extracellular environment is highly significant for the scientific community which 

occupies with the comprehension, integration and discovery of cancer. 

PhysiBoSS [1] (depicted at Figure 2.4) is a C++ software framework that was 

developed in 2019. It is an agent-based modelling tool that is used for multiscale 

simulations of heterogeneous multi-cellular systems. To be more specific, it creates a 

virtual representation of a multi-cellular system, namely, the cells, their intra- and extra-

cellular environment, as well as, the interplay between cells and their surroundings. It 

is an agent-based mathematical model and each agent represents an independent cell. 

Figure 2.4: Schematic Representation of PhysiBoSS [1] 
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The results, after running a PhysiBoSS simulation is to obtain a detailed description of 

each agent/cell’s response through time. The whole implementation of PhysiBoSS is 

represented with a cell-fate decisions model in response to Tumour Necrosis Factor 

(TNF), a multifunctional cytokine that plays an important role in diverse cellular events. 

To achieve such a kind of functionality PhysiBoSS is based on two (2) other already 

integrated and well-defined software frameworks that we previously presented; 

MaBoSS and PhysiCell and more specifically is an adapted version of PhysiCell in 

which inside each agent/cell, Boolean network computation is integrated. PhysiBoSS 

is the tool, the simulations’ results of which provided us the data, that we handled. 

Running a simulation 

Before we continue, we need to explain how a PhysiBoSS simulation starts running so 

that the readers can familiarize themselves with the following work. PhysiBoSS is an 

open source tool and can be found on GitHub [9]. 

PhysiBoSS consists of three (3) executable files: 

• PhysiBoSS, which handles the real simulation, 

• PhysiBoSS_CreateInitTxtFile, which generates an initial cells’ condition of a 

simulation, 

• PhysiBoSS_Plot, which depicts the cells’ position and condition of a simulation 

at specific timepoint.  

To properly run a simulation, we need to follow some steps. First of all, simulations are 

distributed into well-organized folders regarding the changeable parameter in which we 

will refer soon. Inside the main folder is included another folder named BN which 

contains the Boolean network configuration files. In addition to that, the main folder 

contains the runs folders, as well. Inside each run folder an individual simulation is 

included. Each simulation must be prepared before we start running it. Concretely, 

inside this folder, we need to generate the initial conditions of cells. That can be 

achieved either with the PhysiBoSS_CreateInitTxtFile executable or by using an 

already generated one text file, named init.txt. Furthermore, the most important file that 

each simulation must contain is the parameter.xml file [10], which is the file in which 

all possible parameters are defined, namely, the properties of this specific simulation. 

The parameter file is composed of four (4) different parts, according to the type of the 

parameters to define; simulation, cell properties, network and initial configuration. The 

simulation element contains the simulation’s global properties (e.g. output_interval, 

maximal_time). The cell properties element is related with properties which are 

common to all cells (e.g. protein_threshold, cell_radius). In the network section of the 

parameter file, the properties relative to the Boolean network computation (e.g. 

network_update_step) are defined and in the initial configuration parameters like 

tnf_concenctration, as well as, the init.txt file we produced. Finally, each run’s folder 

must contain an empty output and microutput folder in which the simulation’s output 

files will be stored. An example about the precise organization of the simulations is 

demonstrated at Figure 2.5, while Figure 2.6 depicts how a parameter file looks like. 

More details about parameters, can be found in reference. 
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Figure 2.5: Folder organization of an example 

 

 
Figure 2.6: Sample of a Parameter File
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2.2 Distributed Messaging System & Libraries 

For the needs of this thesis, we used a distributed messaging system, as well as, some 

libraries, so as to achieve the desirable results. 

When we are dealing with large amount of data, we have two (2) main challenges. The 

first challenge is how to collect a large volume of data and the second challenge is to 

analyze the collected data. To overcome those challenges, we need a messaging system. 

A messaging system is responsible for transferring data from one system/application to 

another allowing them not to worry about how to reliably share data, namely, how to 

send, distribute, store or manage data. So, a messaging system is useful when we deal 

with processing messages. When we are talking about a distributed messaging system, 

then we mean that the messaging system is a robust queue, with the FIFO (First-In First-

Out) architecture, containing messages. Messages are queued asynchronously between 

client applications and messaging system. A distributed messaging system provides the 

assets of reliability, scalability and persistence. Some of the most popular messaging 

systems are Kafka, RabbitMQ, JMS (Java Message Service). 

There are two (2) types of messaging patterns; Point-to-point and publish-subscribe 

messaging system. In both patterns, producers send messages and consumers receive 

them. 

 

Figure 2.7: Point-to-point (left) and pub-sub (right) architecture [11] 

 

On the one hand, in point-to-point (left part of Figure 2.7) communication, producers 

called senders produce and send a message to a queue and exact one (1) consumer called 

receiver can consume/receive this specific message. 

On the other hand, in publish-subscribe (pub-sub) communication, depicted at the right 

part of Figure 2.7, all the messages are sent from producers - here called publishers - to 

a topic and consumer - here called subscriber - can subscribe to one or more topic and 

consume all the messages in this topic. As a result, a message can be consumed from 

more than one consumer asynchronously and consumers are able to consume messages 

simultaneously or not. 

The most commonly used architecture is the pub-sub one, since it gathers a lot of 

benefits, some of which are robustness and scalability, it improves testability and 

facilitates asynchronous workflows, as well as it supports both offline and online 

service. 
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2.2.1 APACHE Kafka 

An example among others of a distributed messaging system follows the pub-sub model 

is Apache Kafka. Apache Kafka is a distributed publish-subscribe messaging system 

and a robust queue that can handle a high volume of data and enables us to pass 

messages from one endpoint to another. Kafka messages are persisted on the disk and 

replicated within the cluster to prevent data loss. It is mainly designed for distributed 

high throughput systems. Furthermore, we must mention that Kafka is built on top of a 

third-party tool, ZooKeeper server, to achieve load balancing. Briefly, ZooKeeper is a 

centralized synchronization service which allows a configuration maintenance within 

distributed systems (multiple clients to perform simultaneous reads/writes/acts, keeps 

track of Kafka cluster etc.). 

Figure 2.8 shows the Kafka architecture. 

Figure 2.8: Kafka Ecosystem [15] 

Briefly, Kafka consists of certain parts and works as following. One or more Producer-

Publisher instances produce and push messages/records to Kafka. Kafka is a distributed 

system, so it can run in multiple different nodes consisted a cluster. Kafka’s cluster 

stores the received messages in different categories called topics and separates one from 

another by name. Each topic is divided into several partitions, depicted in Figure 2.9, 

and each one of them can be regarded as a FIFO queue and distributed across brokers 

who represent the cluster’s nodes and are responsible for maintaining the published 

data. Thus, splitting data into multiple brokers (nodes) we achieve to parallelize a 

specific topic consuming messages included in it from different machines 

simultaneously or at different times. Consumers pull messages of the topic they 

subscribe and start reading data at any time point they want. Finally, it is not necessary 

for publishers and consumers to run at the same time. Partitions can be replicated if the 

user wants to. To be more specific, partitions are distributed across brokers, so each 

broker holds a number of partitions which can be either the leader partition of the topic, 

which means this is the real single partition in which a producer writes or the replica 

partition which is an exact copy of the leader partition (Figure 2.10). In this way, we 
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keep backup of each partition and as a result of all data sent from producers, preventing 

data loss as well as from leader potential failing (fault-tolerant). 

Figure 2.9: Anatomy of a Topic [12] 

 
Figure 2.10: Partitions & Brokers [12] 

To sum up, the reason why we chose Kafka for our design is because apart from 

gathering all the benefits of a distributed messaging pub-sub system, it is also very fast 

since it performs 2 million writes per second and it provides high throughput and low 

delay rendering it suitable for real-time data processing. 

2.2.2 Cppkafka/rdkafka 

Regarding the fact that the data source we used is written in C++, for the producer’s 

design we used the cppkafka library, which is freely available on github [16]. Cppkafka 

is a version of Apache Kafka, that allows C++ applications to produce and consume 

messages using Apache Kafka protocol. Cppkafka’s design is based on the rdkafka 

library [17]. According to its creator, librdkafka is a C library implementation of the 

Apache Kafka protocol with high performance. Thus, cppkafka library consists a 

librdkafka’s wrapper and provides high level consumer and producer interface, as well 

as, some other utilities like a buffered producer (which simplifies producer error 

handling) and a compacted topic consumer. Cppkafka lets us create Kafka 

producers/consumers and configuration with very little code. 
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2.2.3 Confluent Kafka 

For the consumer’s design we used Confluent Python Kafka [18] so as to make good 

use of some specific modules that python has at its disposal, ideal for time series data 

analysis (pandas DataFrame, Numpy, scipy). Confluent Kafka is one out of the three 

released and reliable python libraries high level clients for Apache Kafka; Kafka-

Python, PyKafka and Confluent Python Kafka. The reason why we chose the last one, 

is because its performance is better than the other two. It is offered by Confluent 

Platform, a platform for real-time and historical events, to build real-time data pipelines 

and streaming applications, founded by the Apache Kafka’s creators, as a wrapper 

around librdkafka that we mentioned before [page 18]. 

2.2.4 Pandas  

The most important tool we used to append, manage and recall stored data was pandas 

[27]. In 2008, an open source software library written for the Python language, called 

pandas, was developed. To be more specific, pandas is a package for easy data 

manipulating and analysis, suitable for data science through Python. It provides high-

performance, as well as, flexible and expressive data structures. It seems to be the 

fundamental high-level building block for doing data analysis using Python. The 

DataFrame [28] is one of the most important data structure pandas provides us and the 

main data structure we used during our design for the data analysis and processing part. 

It is a two-dimensional, size-mutable table in which data is stored in well-defined 

labeled axes (columns and rows). The structure can be accessed anytime either by using 

the axes’ labels, the index or the specific numerical position. 

2.2.5 Minidom 

Minidom [29] stands for Minimal DOM (Document Object Model). It is a library 

provided by Python language, to describe, access, manipulate and process XML 

documents using its functions, properties and variables [30]. In case users do not feel 

comfortable with minidom, they can use the ElementTree of type Element. 

2.3 Databases 

A database (db) is an organized structure which includes stored data. The main structure 

to represent a database is a table, namely, an infrastructure which is modeled in rows 

and columns, to make processing and data querying efficient. Thus, we can store data 

and easily access, manage, modify, update, and generally, control them. There are two 

(2) kinds of database models; SQL (Structure Query Language) and NoSQL databases. 

For our architecture, we used a NoSQL database. 



Chapter II    Background 

20 

 

2.3.1 MongoDB 

The last tool we used to complete our design was a NoSQL database, MongoDB [32], 

which is the most popular and commonly used NoSQL database. MongoDB is a 

document-based database. To be more specific, in MongoDB we can store data in 

JSON-like format and have the right to access them as well as edit them whenever and 

from wherever we need to. 

Since we wanted to access MongoDB from a python script, we used PyMongo, a driver 

to access MongoDB from Python. The only limitation about its use, is that we have to 

first start a mongod instance, a server that runs as a background process, so as to handle 

data requests, manage data access and generally perform background management 

operations. 
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2.4 Forecasting & Time Series Analysis 

2.4.1 Forecasting 

Forecasting is the process of making predictions about the future response of the 

variable of interest by analyzing its past trends. Nowadays, forecasting is ubiquitous, 

since it is used and it is desirable to be used in many fields (e.g. finance, meteorology). 

There are many and different forecasting algorithms, some of which will be presented 

afterwards. A good general pattern we could use so as to be able to do a prediction is 

firstly, to visualize data in a time series plot and after that, capture and model the 

underlying patterns if these exist (e.g. sines). We could say that the two (2) prominent 

forecasting methodologies that exist, divided into two (2) types of classes: 

1. Classical/Statistical (Moving Average, ARMA, ARIMA, Exponential 

Smoothing, Theta) 

2. Machine and Deep Learning (Quantile Regression Forecast, Recurrent Neural 

Networks, seq2seq)  

The question that arises here, is which one of the forecasting techniques and models is 

the best for the forecasting the use case that we are challenged to confront with. This 

depends on multitude of different factors, like how much historic data is available, 

which are our constraints, if there is any correlation with variables and others. So, to 

find the one that suits the problem we are dealing with, we have to compare the 

“nominated” different forecasting approaches. To achieve that we need to do 

chronological testing, named backtesting. To do that, we must train on a time series of 

events, up to a certain point and then tests subsequently. There are two (2) approaches 

of chronological testing, the sliding and the expanding window, when it comes for high 

frequency data testing and for data that does not come so often and the historical data 

points are limited, respectively. However, we will not do a further analysis on that issue 

at the moment. We just provide a figure for each method at Figure 2.11. 

 

Figure 2.11: Sliding (up) and Expanding (down) Window [34] 
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2.4.2 Time Series Analysis 

We already mentioned the significance of forecasting. We now expand to time series 

forecasting. A time series is a set of observations taken at specified times, usually, at 

equal intervals (e.g. x-axis gets the time, divided into equal intervals). Time series is 

used to predict the future values of a variable based on the previous observed values 

and generally the independent variable is time. So, time series analysis is the procedure 

in which we analyze time series data in order to come to some meaningful conclusions. 

Its significance lays on business forecasting, understanding past behavior, planning 

future, evaluating current accomplishments. 

When we are dealing with time series, there are some characteristics that we need to 

consider. These components of time series are trend, seasonality, irregularity, cyclic, 

autocorrelation and stationarity. Briefly: 

• Trend: the movement to relatively lower (downtrend) or higher (uptrend) values 

over a «long» period of time. 

• Seasonality: a repeating pattern within a fixed time period (periodic). 

• Irregularity: erratic response through time (noise). 

• Cyclic: repeating up and down movements. 

• Autocorrelation: similarity between some observations through time. 

• Stationarity: when time series has a particular behavior over time, there is a very 

high probability that it will follow the same in the future, namely, the non-

changing over time statistical properties of time series. 

Although time series analysis is a very useful procedure, there are some cases in which 

we should not apply it, for example, when the values are constant or they are in the 

form of functions (e.g. sine). 

Before we move on, we must inevitably take a moment to examine more elaborately 

stationarity which is a very important characteristic of time series analysis and must 

always be present. Stationarity has three (3) very strict criteria: 

1. Constant mean/average according to the time  

2. Constant variance, namely, the distance from the mean according to the time 

3. Autocovariance which is independent on time 

To check if stationarity is or is not present in our time series, we can check it either with 

rolling statistics or with DF (Dickey-Fuller) test. Briefly, the first method plots the 

moving average or variance, depicting if it varies through time. At the second one, we 

do the null hypothesis that our model is not stationary and after doing the test we get 

some critical results which depending on their values, evince if the model is stationary 

or not.  

So, in this way we can check for our time series modelling stationarity presence and if 

it is not, then after some transformations we can make it stationary, so as to continue 

the procedure. 
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2.4.3 Time Series Forecasting Algorithms 

As we already mentioned, there are lots of time series forecasting algorithms, statistical 

or machine or deep learning ones. Here we will introduce some already implemented 

and effective ones excluding the naïve classical forecast which is that today’s value will 

hold for tomorrow. 

Fast Fourier Transformation 

FFT is an easy, understandable and simple way for forecasting. Actually, it is a 

decomposition into a series of sine functions, and we use it when periodicity exists. To 

be more specific, what we do is to run FFT on input data, filter out the low amplitude 

or the high frequency components, which are, apparently, the noise, we get some 

sinusoid functions from which we pick the first (1st) n most significant ones, we apply 

on them forecasting (move our phase forward), we run the inverse of FFT on filtered 

data and finally we have the profit. Considering we are living in an imperfect world, 

the existed periodicity in the input data, will have deviation and as a result the 

forecasting data will have inexpediency. The solution to this problem is to iteratively 

compensate input data with error until no spikes exist. 

Sequence to sequence (seq2seq) 

It is a very powerful technique of forecasting with deep learning and it was published 

by Google to solve the machine translation problems. The key idea is the fact that by 

nature all the time series data we collect is not continuous. It is discretized data points 

on which we applied interpolation. So, what we do is to perform forecasting per input, 

since we have well-defined data points, by combining the history. To be more specific, 

the data points are dependent to each other. The value of the current time may depend 

on the value of the past timepoints. We can extend the past however long we want to. 

The context for each item is the output from the previous step. Thus, a neural network 

consisted of two (2) components, encoder and decoder, is drawn, depicted at Figure 

2.12. 

 
Figure 2.12: seq2seq Schematic Representation [35]    



Chapter II    Background 

24 

 

Moving Average 

Moving average is one of the most known techniques in time series modelling. This 

approach just states that the next observations will be the mean of all the past ones. 

Although it is a very simple and naive approach, it is in use and it efficiently works. 

ARIMA 

ARIMA model stands for AutoRegressive Integrated Moving Average and it is an 

extension of ARMA (AutoRegressive Moving Average) model. In this kind of model, 

we assume that the current value depends on its previous values with its own lags. 

Because the term AR, ARIMA is a linear regression model. Afterwards, we add the 

moving average model we presented above and finally the order of integration to 

achieve the desirable prediction on the input data. 
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3. System Design 

Reaching the implementation part, this thesis’ goal was the development of a 

forecasting algorithm, which supports local and remote communication, and which 

keeps only the top k out of the N initial running simulations killing in real-time the rest 

ones. 

3.1 Preprocessing 

The very first thing we had to do was to find a way to easily generate thousands of 

different “parameters.xml” files (already explained in page 14). To achieve that, we 

used Python’s module “minidom”, which is a minimal implementation of the Document 

Object Model interface [29]. Briefly, we created a python script that, with the use of the 

minidom methods [30], describes the general structure of this xml file including all the 

different elements and initialized in the most frequently used values. After that, we 

created a second python script which according to the parameter or parameters that the 

user wants to change, as well as, the varying range and step each one of them, it calls 

the previous script and generates the different parameters.xml files. In addition to that, 

not only does it create them, but, also, it creates the whole tree of a completed example, 

containing all the necessary directories and files, as well as, allocating them properly 

into the run folders. After generating an adequate amount of ready-to-run simulations, 

we distributed them into a 44-node cluster, and received approximately 80 GB data 

with different parameters’ combination. With the use of a python script we translated 

the data into figures so as to depict the simulations’ response through time and to be 

more specific, the number of alive, apoptotic and necrotic cells within a day (1440 

minutes). 

 

Figure 3.1: Example Generator 



Chapter III    System Design 

26 

 

3.2 System Overview 

Since having and knowing the efficiency of a high volume of data, we then proceeded 

to our system’s design. 

 

Figure 3.2: Whole Ecosystem 

The algorithm should be used in a remote communication, too. So, we needed to create 

a distributed message passing system to support that. To achieve that, we used Apache 

Kafka (page 17). In particular, the whole system’s design follows the structure depicted 

in Figure 3.2. 

The concept is the following. We start running N different simulations. We distribute 

them in different machines to be executed. We must be able to handle them in a parallel 

way. Each simulation is manipulated by a specific consumer’s instance. Each 

consumer’s instance handles X different simulations and applies the forecasting 

algorithm on them. Locally, the consumers announce the top_k simulations and send 

them to a database. Finally, the last module TOP_K retrieves the locally top_k lists from 

the database and decides the final top_k out of the N initial simulations.    

Hereupon, we discuss the individual parts. 

3.3 Data Source 

Firstly, we have the PhysiBoSS simulator and we need to send data to Kafka, by the 

time they are generated. We thus interloped inside the PhysiBoSS software and more 

specifically, within the WriteCellReport function which is implemented in the 

cell_container.cpp file, to create the producer, using a high-level producer architecture 

supported from cppkafka Apache Kafka client library, specifically designed for C/C++ 

applications. The producer’s part includes the configuration part in which we define the 

broker or the brokers, namely, the machine’s IP address in which ZooKeeper and Kafka 

servers are running, as well as, we set the port on which the Kafka server is listening 

for connections, allowing the broker to be moved to a different host/port without 

confusing consumers. Regarding this configuration, we create a producer instance. 

Also, if the desirable topic in which we want to send the messages does not exist, then 

we create it. After that we are ready to produce and flush the message to a specific 

partition. The partition number, according to our design, is randomly generated. So, we 

do not know in which topic’s partition each simulation is. Although the producer’s 
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configuration is ready to push messages to Kafka, before we send them, we need to edit 

them somehow. 

3.4 Data Editing 

PhysiBoSS generates data which are stored inside the two (2) output folders; microutput 

and output. The one that needs our attention is the output folder. In this folder are stored 

the data related to cells, while the other one gathers the molecules’ information. The 

file that supports the information about cells is a .txt file and it looks like the one 

depicted in Figure 3.3. The rate that these files are generated is defined by the 

output_interval parameter the value of which is assigned inside the parameter.xml file. 

All the simulations are considered to last 1440 minutes (1 day). So, considering that 

the time step, meaning, the output_interval has the value 30 (minutes) then 49 files will 

be generated (1440 30 + 1⁄ ), one for each timestamp with the first one (1) come at 

timepoint 0 and the last one at timepoint 1440. 

 By the time a cells_*.txt file is generated, we read it line-by-line. From each line we 

extract only the useful for us information which is the phase. Phase carries the 

information about the state in which each agent/cell is oriented, for the specific 

timepoint we examine. The phase is represented with an integer code, each one of which 

describes a different state. We can see the correspondence among PhysiBoSS integer 

codes and PhysiCell cell states at Figure 3.4. 

Figure 3.3: Cells’ Output Format 
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Thus, regarding the phase’s integer code, we map it to the appropriate category among 

the three general ones; “Alive”, “Apoptotic” and “Necrotic” and count the number of 

agents/cells included in each one of the aforementioned categories for each timestamp. 

Obviously, at the first timepoint (timepoint = 0) all the agents/cells belong to the state 

“Live”, so, all the cells have phase that corresponds to the “Alive” category. Therefore, 

at timepoint = 0 we meet the total amount of starting agents/cells.    

   Figure 3.4: Cell Cycle Map  

3.5 Message Format 

At the next step, we needed an identifier which would uniquely determine a specific 

simulation. For this reason, we used the pid (process identifier) using the usual function 

getpid(). The whole processing that takes place at the consumer, is done according to 

these pids so as to be able to separate the simulations from each other. At this point we 

need to mention that the pid is recognizable only to processes that run in the same 

machine. Otherwise, in other machines, it is just a number and they cannot be managed, 

using their pids. So, we need some information to be able to know in which simulation 

each pid corresponds. For this reason, the second field – after pid - we need to send, is 

the path, which includes the information about the exact location of a specific 

simulation, as well as, the number of the specific simulations of a concrete example. In 

this way, we cover the case of different simulations, from different examples, but with 

the same run’s folder number, are simultaneously running, without the user’s confusing. 

Finally, concatenating all the necessary information, meaning pid, path, timepoint, as 

well as, alive, apoptotic and necrotic cells’ number we counted previously, we are ready 

to send the message depicted in Figure 3.5 to Kafka. 

Figure 3.5: Message Format 
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3.6 Message Consuming 

The next step is message consumption. As we already mentioned, the tool, we used to 

consume the messages, is Confluent’s Kafka Python. The first thing that we must do is 

to start running the consumer instances, with each one of them having as argument the 

partition’s id from which they will pull messages. So, it is concluded that the number 

of partitions and the number of consumers coincide. The very first thing we do, after 

decoding the pulled message is to create a dictionary with values, the discrete elements 

of the message and inserts it into the desirable database. 

Each partition is a well-defined queue that keeps messages following the FIFO (First 

In First Out) structure. The content of each partition is not only messages coming from 

different simulations, namely, different pids, but also from probably different 

timepoints, since not necessarily all simulations started simultaneously or even that they 

have the same output interval parameter. For example, a specific partition may include 

data coming from simulation X and simulation Y, with the X simulation having as 

output interval 30 minutes and Y 40 minutes. Also, the last received message from X 

may be at timepoint 120 and from Y at timepoint 160. For this reason, when we 

consume the messages, we do a linear interpolation among the last valid and the current 

timepoint for this specific simulation generating intermediate values. 

All the different coming simulations are stored in a dataframe called “Simulations” (see 

Table 3.1). This data structure has as index the “Time” (for the needs of the example 

we depict the Time column with step 30) and as name columns all the different 

simulations/pids the specific consumer manages. Each pid column carries its personal 

alive statistics located at the respective time index. 

 
Table 3.1: Simulations Dataframe 

At this point we need to mention that the statistics are normalized so as they can be 

comparable to the cells of another simulation which has different number of starting 

agents. For example, the simulation X may have 1000 starting agents instead of the 

simulation Y which has 2000, a fact that makes the two (2) simulations incomparable 

to each other and all the following computations wrong. For this reason, we normalize 

each statistic with the number of its simulation’s starting agents. Thus, all the 

simulations the consumer handles, have “1” as alive cells number at “0” timepoint. 
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In addition to the “Simulations” dataframe, we have another one data structure, too, the 

“Nominated” one. At Table 3.2 we provide a numerical example of how this table looks 

during the procedure. Initially, the table’s values are zero (0). Each row of the 

“Nominated” dataframe contains information about a simulation’s pid, as well as, its 

score. To be more specific, the DownTrend represents the last numerical distance 

among a simulation X and the threshold, a simulation that is used as a ruler to decide if 

a simulation deserves to live or not. The CountDown represents the “chances to life”. 

 

Table 3.2: Nominated Dataframe 

Finally, the last data structure we use is a list named top_k which includes every moment 

the best k pids/simulations of the measurements.  

Having mentioned all the necessary information and tools that were used, we can now 

pass to the algorithm’s analysis and explanation. 

3.7 Algorithm   

First of all, the consumer is divided into the following cases: 

• If (timepoint == 0) 

• If (timepoint > 0) 

Considering the first case, if the received message, at the time’s field has the value “0”, 

that means that this is the first received message for this specific simulation. So, we 

create a new column in the “Simulations” dataframe with column name, this 

simulation’s pid and we append the normalized number of alive cells at the first (1st) 

row (time = 0). Also, we append it as a new row to the “Nominated” dataframe with 

the DownTrend and CountDown be initially zero (0). Subsequently, we check if the 

top_k list is full or not. If it is not, then we insert the pid to the top_k list. The first k 

different pids/simulations that come, appended to the top_k list. 

So, in this case we should not apply the predicting algorithm since, at zero (0) timepoint 

all cells are alive in every simulation. Also, if the total amount of simulations that the 

consumer handles is less or equal to k, then the algorithm is not applied again. 

Now, considering the second case, for every received message with timepoint greater 

than the initial one and under the circumstance that top_k list is full, we apply the 

algorithm so as to judge if the simulation should be added to the top_k list replacing the 

threshold, get killed or stay alive. 
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The first thing we should do is to set the threshold, namely, the worst out of the best k 

simulations listed in the top_k. To achieve that, we should do two (2) procedures. The 

first one is to find out the minimum last received valid timepoint among the top_k ones. 

The second one is to find the worst simulation, namely, the simulation with the most 

alive cells at the timestamp we found as minimum in the previous procedure. It is 

important to do our calculations at the same timestamps, otherwise the measurements 

have no sense (see Table 3.3). 

Table 3.3: Maximum Common Timepoint 

Consequently, knowing that the top_k list is full and ignoring the cases where time is 

zero (0), we must check if the threshold has already generated value for the time of the 

current simulation. 

If yes, then we compare at this specific timepoint the number of the alive cells of the 

current simulation with the ones of the threshold. If the simulation’s alive cells are less 

than the threshold’s, then we throw out of the top_k list the until now threshold and we 

replace it with the current simulation’s pid. Now, the new threshold is the current 

simulation. Otherwise, if the new one is not better than the worst out of the best one, 

then we check its score. Concretely, if the DownTrend, namely, the downward trend of 

this specific simulation in relation with the threshold, is greater than the one in a 

previous timepoint, that means that the simulation’s course is rising and for this reason, 

we increase its CountDown by one, updating the Nominated dataframe not only for the 

CountDown, but for the new numerical distance as well. Afterwards, we check if it is 

high time the simulation should be killed. Specifically, if the CountDown of the under-

examination simulation reached the 5, that means that the life chances, namely, the 

tolerance for this specific simulation, finished and for this reason it should be killed. 

The killing part varies according to the design. To be more specific, if the whole 

procedure takes place in a local server without more than ones different ips interfere, 

then we can simply kill the simulation regarding to its pid calling the kill function which 

is an attribute of the os module in Python. If the simulations are distributed into different 

machines, as well as, the consumers, then we should transfer the killing information 

through Kafka and by the time the message is consumed, then a flag is raised and the 

under execution PhysiBoSS instance gets killed. Finally, if the whole procedure takes 

place in a cluster or grid computer, then we can just kill this specific simulation’s jobid 

by calling the appropriate function depending on the used resource manager (for us was 
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TORQUE as resource manager and qdel as the killing command) avoiding thus, the use 

of extra Kafka resources and as a result the whole system’s complexity to be increased. 

A question that emerges from the whole procedure is why we decided to show some 

tolerance to the potential non-hopeful simulations inducing as a result time delay. 

The reason why we did this, is lying on several factors. One of the most important, 

which can nowhere and never can be disregarded is the noise. For example, the 

simulation depicted on Figure 3.6 has a little bit of an unpredicted response through 

time since it has great fluctuation. If we compare this one to the one depicted on Figure 

3.7, then it will be killed for sure and there is no reason for CountDown to exist. 

However, if we compare it with the Figure 3.8, totally ignoring the tolerance, then at 

the timepoint 200 Figure 3.8 will beat the Figure 3.6. However, finally, the one that 

should have survived is the Figure 3.6. Considering the tolerance, then we have the 

desired results. 

To sum up, if we avoid this tolerance, we kill simulations earlier, but with the cost that 

maybe a dead simulation was, finally, better than one of the k ones which survived. So, 

we prefer to sacrifice time instead of better results. After different experiments, we 

decided that countdown 5 is a good tolerance for average simulations. Of course, this 

can be modified considering the simulations’ nature and how competitive they are to 

each other. 

Figure 3.6: pulse150_oxy0 
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Figure 3.7: pule150_oxy0.1 

Figure 3.8: Pulse100_oxy0 

Back to our algorithm, if it is decided that the simulation must be killed, then we drop 

any existed information about it in the database and the “Simulations” dataframe, as 

well as, we generate a .txt file in which information about the killed simulations is 

included. 

The procedure is repeated until the consumer has pulled all the messages. Figure 3.9 

contains the pseudocode of the consuming procedure. 

 



Chapter III    System Design 

34 

 

Figure 3.9: Algorithm’s Pseudocode 
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After that, the last module in the whole system, TOP_K module, just proclaims the best 

k out of all the received locally top_k’s taking into account the last alive’s value. If there 

is overlapping among some simulations at the last timepoint’s value, then we can either 

permit k to be extended or randomly choose just k among the best, depending on the 

user’s need. Also, TOP_K module supports the opportunity of a report file creation, in 

which there is included information about the survival simulations, as well as, survival 

simulations representation with a figure (e.g. Figure 3.6), if the user gives the 

appropriate arguments when calling TOP_K (python3 top_k_global.py -f=report.txt -p) 
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4. Experimental Results 

What we, finally, expect from our whole design is: 

▪ Effectiveness, regarding the simulations’ survival rate 

▪ Time performance, regarding the average killing timepoint 

▪ Distributed functionality 

▪ Parallelization computing 

To verify the effectiveness, as well as, to test the whole performance of our design, we 

brought about an amount of experiments. The experiments took place locally and 

remotely, as well, so as to confirm its functionality gives promising results not only for 

a few simulations running in a local computer, but for high volume data running 

distributed into different servers, too.  

At this point we need to mention that for the needs of the experimental part, we used a 

grid computer. This execution platform consisted of a local server and forty-four (44) 

independent to each other nodes each one of them consisted of 4 processors. So, the 

maximum number of simulations that we could simultaneously run was: 

4 𝑝𝑝𝑛 × 44 𝑛𝑜𝑑𝑒𝑠 = 176 𝑟𝑒𝑎𝑙 − 𝑡𝑖𝑚𝑒 𝑑𝑖𝑠𝑡𝑖𝑏𝑢𝑡𝑒𝑑 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠, 

where ppn stands for processor per node. 

The local server communicates with the nodes using TORQUE [39] and openMPI. 

Thus, the local server has the ability to start, hold, cancel and monitor jobs. Some of 

the experiments conducted in a computer grid and some others in a local computer using 

two (2) virtual machines – with different IPs - one (1) for the producing and one (1) for 

the consuming part. Also, all the measurements were done under the circumstance that: 

k = 5 and the number of the simultaneously running consumers were three (3).  

To verify the functionality of the design we had to check it in a varying amount of 

simulations and consider both the average and the extreme cases, too. In this way, we 

divided the experiments into three (3) general categories according to the simulations’ 

nature; average, promising and non-promising. 

4.1 Use Case 1: Average Simulations 

For our first (1st) scenario, we tested the system’s performance for simulations that their 

number of alive cells have average response through time, like the one depicted in 

Figure 4.1. 
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Figure 4.1: Pulse150_ TNFconc0.5_oxy0 

For the needs of this group of experiments we used simulations from different 

examples, starting with a random set of parameters. Also, we made sure that the 

output_interval parameter, namely, the parameter that defines the sampling time, differs 

among simulations so as to ensure that it does efficiently covered this case, too. In 

addition to that, we took measurements for two (2) well-defined examples, too, 

pulse25_600_conc and pulse5-1400_conc in which the changeable parameters were  

the time_add_tnf, which defines the interval among pulses and the tnf_concentration, 

which constitutes the dosage of the medicine at each pulse. The statistics that we 

received from them were the ones that are presented in Table 4. 1. 

Table 4. 1: Average Simulations Statistics 

From the measurements we can conclude that for the average cases, the algorithm’s 

efficiency is very high, since for all the above examples the final number of simulations 

was equal to the k. As for the time, the average killing timepoint was, approximately, 

300 - 380 minutes and considering to the whole procedure lasts 1440 minutes, this is a 

Examples # Simulations # Consumers # Survived # Dead # Top K 

(global) 

Average 

Killing 

Time 

random  230 3 
5/113 

215 5 20.85% 5/54 
5/63 

pulse5-

1400_conc 
176 3 30 146 5 22.2% 

pulse25-

600_conc 
96 3 

5/30 
80 5 25.83̅% 6/31 

5/35 
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very satisfying killing percentage, since the average simulation gets killed before the 

half of the whole procedure. 

4.2 Use Case 2: Promising Simulations 

There are cases that a specific group of simulations modify only one parameter in a 

range where the step is very small in order to better capture transition effects and finally 

find where the threshold is (see Figure 4.2). 

A very important simulation’s parameter is oxygen_necrotic which is an environmental 

cause of necrosis happening in real life. Knowing that the zero (0) value means that 

there is no way to go to necrosis by lack of oxygen and that only values below two (2) 

give proliferative outcomes, we created a clustering of one thousand (1000) ready to 

run simulations (example_spheroid_TNF_pulse150_oxy) with all the parameters being 

the same and the only changeable parameter being the oxygen_necrotic in a range of 0 

to 1 with step 0.001. 

Thus, using three (3) consumers and randomly* allocating the simulations into three (3) 

partitions, we received the following results for varying cases of CountDown: 

CountDown # Simulations # Consumers # Survived # Dead 
# Top K 

(global) 

Average 

Killing 

Time 

5 1000 3 989 11 979 33.712̅̅̅̅ % 
3 1000 3 543 457 543 9% 
2 1000 3 416 584 416 5.2% 
1 1000 3 248 752 248 2.75% 

Table 4.2: example_spheroid_TNF_pulse150_oxy Statistics 

The above table gathers the results we received for CountDown giving the values 5, 3, 
2 and 1. As we can see, in the case of CountDown being 5 the simulations that survived 

are 989 out of the initial 1000 simulations, which means than only the 11 died. 

However, we can see that neither the global module could do something significantly 

better, since it ignored only the 10 of the 989. The average timepoint that these 

simulations were killed was 485. 45̅̅̅̅  minutes, which means that each simulation got 

killed at the 33.712̅̅̅̅ % of the whole procedure. 

Thus, we concluded that we need a stricter tolerance than the average used one, 5. So, 

we repeated the same experiment for CountDown being 3. In this case the results are 

very interesting. First of all, we can notice that the difference between the dead ones 

with tolerance 5 and the dead ones with tolerance 3 is significant, since this time 

547/1000 got killed instead of the 11 of the previous measurement. Finally, the global 

Top K module is forced to surpass the k since at the last timepoint much more 

simulations ended up with the same alive cells’ value. The remarkable part is that all 

the simulations that globally survived are exactly the summary of the locally survived 

ones with the average deciding time being approximately at 130 minutes out of the 1440 

minutes, which is the whole simulation’s duration. Similar were the results, while we 

were decreasing the tolerance. In this point, we need to mention that we applied a 

recursive procedure in order to find the last timestamp for which the simulations are 

 
* We considered to maintain the same allocation for all the different values of CountDown to have a clear view 

about the results. 
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overlapped and by extension the threshold. It is important we mention that, we found 

out that 242 out of the 1000 simulations were totally identical considering the number 

of the alive cells, since from the second timepoint and after all the cells fell into 

necrosis. Below we cite the statistics of another example consisted of 1200 simulations 

in which we vary the oxygen_necrotic (0, 0.9, 0.1), the time_add_tnf (100, 300, 50), 

the duration_add_tnf (5, 15, 5) and the tnf_concentration (0.1, 0.8, 0.1) parameters. 

Again, the simulations are randomly allocated into three (3) partitions: 

CountDown # Simulations # Consumers # Survived # Dead 
# Top K 

(global) 

Average 

Killing 

Time 

5 1200 3 
305/335 

120 1080 22.17% 430/445 
345/420 

2 1200 3 
304/335 

121 1079 10.49% 430/445 
345/420 

1 1200 3 
110/335 

904 296 3.05% 105/445 
81/420 

Table 4.3: example_spheroid_TNF_pulse100-300_dur_conc_oxy Statistics 

Most of the simulations’ response for both examples were looking like Figure 4.2. We 

can conclude that from the second timepoint and ahead, most cells fall into necrosis 

statement. 
  

Figure 4.2: pulse150_oxy_0.5 

Generally, in such cases where we try to find out a threshold in a very tight range, the 

more we decrease the tolerance, the better results we get. So, we can totally ignore it to 

save time and limit the results. Another solution would be instead of using the alive 

cells as ruler at the global Top K, we could use the number of apoptotic or necrotic cells 
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if we care about them, but this depends on what the user needs. The conclusion in that 

scenarios is that, inevitably the ones we kill are also good, but they did not survive 

because better ones existed. 

4.3 Use Case 3: Non-Promising Simulations 

In this scenario, we do the hypothesis that all simulations are bad. According to our 

algorithm’s current design some of them and specifically k, will survive since, right 

now the algorithm makes sure to return the top k out of all the received ones. So, for 

the case that all simulations of a specific classification are going to have a bad 

performance, namely, non-promising ones with response as the one depicted at Figure 

4.3, then the best k of the worst inevitably will survive. 

For this reason, we suggest that algorithm has an initial threshold, so as to finally none 

non-promising simulation stays alive even if it was the best out of the worst.  

Regarding the standard threshold, that could be either a simulation loaded from the 

memory or the 1 (the number of starting agents) to every timepoint. In both cases we 

have a good time saving solution. 

In the specific case that the user needs to keep some of the non-hopeful ones, because 

they want to depict the general response through time of a cluster, then they can ignore 

the standard threshold. 

Figure 4.3: nopulse 

 

Concluding with the experimental part, we need to highlight that the results depend on 

how competitive simulations’ nature is, but, generally, we can express that the 

efficiency is good, thinking that all the non-hopeful simulations are killed and 

specifically before the half of the whole simulation’s duration. 
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5. Conclusion – Future Work 

5.1 Conclusion 

Concluding, in this diploma thesis we designed an algorithm that collects through 

Apache Kafka the statistics of all real time running simulations in a parallel way. The 

parallelization level depends on the number of running consumers. Every consumer’s 

instance continuously compares the simulations one to another attending to keep locally 

the top k ones at all moments. The ones that are excluded from the top k list do not seem 

to be promising enough to be completed and thus they get killed. After all consumers 

are completed, they send their top k list to the global Top k module which compares the 

individual received top k and decides the final top k simulations regarding on the alive 

cells’ number at the last timepoint. In case that there is an overlapping among 

simulations, then the global Top k can either keep randomly k ones or permit k to be 

increased as much as it is demanded to cover all and not let one simulation be excluded. 

The design supports both local and remote communication. 

We verified its performance, by running the algorithm repetitively for an adequate 

number of different clustered examples (approximately 80 GB data), trying to include 

good, average and bad simulations, too, so as to test it to every possible combination of 

simulations and to take into account extreme cases, like all real time running 

simulations to be promising. 

The results were hopeful for the final number of surviving simulations considering the 

initial number, as well as for the average time that the simulations get killed, achieving 

to gather results before each simulation reaches the 40% of the whole procedure. 

5.2 Future Work 

The performance as well as the complexity of the current algorithm could possibly be 

improved under some modifications. First of all, we could store all the real-time from 

N running PhysiBoSS instances generated data into a buffer/queue and this 

buffer/queue would be considered to be the only producer of the whole system. Thus, 

we reduce currently used Kafka resources and specifically producers, and by extension 

the whole complexity from N to 1. As for the messages’ allocation from the producer 

to the partitions, instead of it being random, a more sophisticated implementation (e.g. 

Hashing) could be used. Furthermore, an essential improvement would be that the local 

top k instances continuously report the k best simulations to the global Top k module 

(real-time top-k monitoring) which would also have the permission to kill the 

simulations that locally belong to the top-k list, but not globally. As a result, we would 

manage to reduce the overhead and increase the performance. In this way, we could 

ignore the database, that we use right now. Finally, probably the most important 

improvement would be to embed the whole system inside the Apache Flink framework, 

which is specifically designed to permit distributed processes, considering that it offers 

stateful computations over unbounded and bounded data streams with high 

performance and speed. 
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