TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER
ENGINEERING

A Functional Geometric Approach to
Distributed Support Vector Machine

(SVM) Classification

Author: Supervisor:
Sofia KAMPIOTI As. Prof. Vasilios SAMOLADAS

Abstract

We live in the information age, and with every passing year, our en-
vironment becomes more and more heavily defined by data, leading to
a major need for better decision-making models. The breakthroughs
in data analytics have already seen through machine learning. Sup-
port vector machines (SVM) are a popular, adaptive, multipurpose
machine learning algorithm with the ability to capture complex re-
lationships between data points without having to perform difficult
transformations. We study the problem of prohibitive communication
costs that a centralized architecture implies if most of the data is gen-
erated or received on different remote machines. The past few years
notable efforts have been made to achieve parallelism on the training
procedure of machine learning models. We propose the use of Func-
tional Geometric Monitoring (FGM) communication protocol which
is used to monitor high-volume, rapid distributed streams to decrease
the communication cost on a distributed SVM architecture. Our main
goal is both to achieve centralized-like prediction loss and to minimize
communication costs. In our proposal, the sklearn library, for central-
ized machine learning, is used in a distributed manner resulting in a
notable speedup for the training procedure.

ACKNOWLEDGEMENTS

"Foremost, I would like to express my sin-
cere gratitude to my supervisor Prof. Vasilis
Samoladas for the continuous support of my
Diploma thesis study and research, for his pa-
tience, motivation, enthusiasm, and immense
knowledge.

Besides my advisor, I would like to thank
the rest of my thesis committee: Prof. Mi-
nos Garofalakis and Antonios Deligiannakis
for their time.

I would also like to thanks my fellow
students, Ilias Balampanis, Edward Epure,
Eftichia Seisaki, for there wonderful collabo-
ration and support during my thesis process

Finally I would like to thanks my family
and friends since this project would have been
impossible without them ”

Contents

1

Introduction

1.1 Related

Work . . .

1.2 Contribution

1.3 Outline

Theoretical Background
2.1 Machine Learning Basics
2.1.1 Types of learning algorithms
2.1.2 Classification 0.
2.2 Support Vector Machines (SVM)
2.2.1 Maximum Margin
2.2.2 Stochastic Gradient Descent
2.3 Functional Geometric Monitoring (FGM)
24 Tools o
2.4.1 Scikit-Learn o 0oL
242 Dask
2.4.3 Scikit-Learn and Dask Connection
Implementation
3.1 Decentralized architecture
3.2 Safe Functiono o
3.3 Basic FGM Protocol for Learning
3.4 SVM-FGM protocol

Experimental Results
4.1 Datasets

4.2 Results

Conclusions

10
12
13
19
21
22
23
23
24

24
24
25
26
27

34
34
35

44

1 Introduction

In an age of ever-increasing information collection and the need to evaluate it,
building systems that utilize the yet untapped and available resources is driv-
ing the development of more sophisticated distributed computing systems.
Driven by this urgent need, and the fact that the demand for processing
training data has outpaced the increase in computation power of comput-
ing machinery, distributing the machine learning workload across multiple
machines, gain a lot of scientific interest. Unfortunately, a major role in
distributed systems performance plays the communication cost, since com-
munication is often the bottleneck of applications and so it directly relates
to energy consumption, network bandwidth usage, and overall running time.

Support Vector Machines (SVM) have a strong theoretical foundation and
a wide variety of applications. On the other hand, the underlying optimiza-
tion problems can be highly demanding in terms of run-time and memory
consumption. Distributed scenarios emerge when data are captured in many
places and their transport and storage to a unique location is undesirable. A
rather straightforward procedure for achieving distribution in SVMs is a sort
of distributed chunking technique where the result of the training procedure
are exchanged with the other nodes.

However, the amount of information that needs to be transmitted might
rapidly make this approach unfeasible in real-world conditions. For this rea-
son, this work focuses on reducing the communication cost and run time du-
ration by implementing Functional Geometric Monitoring (FGM), a protocol
that provides substantial benefits in terms of performance and scalability in
monitoring problems [12].

This work aims to efficiently test distributed SVM in an online manner,
with reduced communication, in a real-time system. We managed to use
sklearn library, a library for centralized machine learning integration, for
distributed online training and achieve rather encouraging results in terms
of speedup and centralized like accuracy.

1.1 Related Work

In the past few years, distributed training SVM models have gained a lot
of interest. Driven by this concept, many different approaches came up, fo-
cusing each time in a different way to accomplice distribution. Particularly,
[10] have proposed distributed technique for training SVMs in sensor net-

works,[19] propose a communication avoiding SVM (CA-SVM) for shared
memory architecture by combining several approaches like the cascade SVM,
DC-SVM, where [11] casts SVM problem as a set of coupled decentralized
convex optimization subproblems with consensus constraints imposed on the
desired classifier parameters. This work contribution, though, focuses on re-
ducing the communication cost of a distributed online SVM training process.

1.2 Contribution

This study aims to utilize the advancements in the field of distributed stream
monitoring for the problem of distributed machine learning classification and
more precisely, Support Vector Machines. The main goal is to practically im-
plement a functional geometric approach to this machine learning algorithm
in a real distributed environment using python Dask. This work efficiently
combines sklearn and Dask to integrate the SVM algorithm in a distributed
online manner. Note that sklearn is a library for centralized machine learn-
ing, but this work proves that sklearn can be also used in a distributed system
and perform equivalently.

1.3 Outline

The rest of this section is focus on describing related work and the contribu-
tion of this work to the distributed SVM concept.

Section 2 describe the theoretical bases, on which the implementation is
based on. The main theoretical concepts are machine learning basics focus-
ing on classification, Support Vector Machines (SVM) and the Functional
Geometric Monitoring protocol (FGM).

Section 3 focuses on the implementation and mainly how distributed SVM
is combined with the FGM protocol to achieve speedup and reduction of the
communication cost.

Later on, section 4 explains the result of this combination and how this
improves communication and archives speedup towards centralized structure.

2 Theoretical Background

This section is dedicated to introducing the main theoretical concepts and
research in which this work is based on. Support Vector Machines (SVM) [3],

and Functional Geometric Monitoring [12] are, as previously mentioned, the
main subjects of this project. So, this section describes the theory of both
algorithms in a way that will help to understand the connection between
the research and the implementation of this work. Note that the theoretical
research, is not constrained into studying only the related work described in
1.1 but is also based to books [1],[9],[11] and Wikipedia [7] research.

2.1 Machine Learning Basics

Machine-learning algorithms are responsible for the vast majority of artificial
intelligence advancements and applications. It is a branch of artificial intelli-
gence based on the idea that systems can learn from data, identify patterns,
and make decisions with minimal human intervention. The process of learn-
ing begins with observations or data, such as examples, direct experience, or
instruction, in order to look for patterns in data and make better decisions in
the future, based on the examples that we provide. The discipline of machine
learning employs various approaches to help computers learn to accomplish
tasks where no fully satisfactory algorithm is available. Machine learning
approaches are divided into three broad categories, depending on the nature
of the "signal” or "feedback” available to the learning system.

2.1.1 Types of learning algorithms

The types of machine learning algorithms differ in their approach, the type
of data they input and output, and the type of task or problem that they
are intended to solve. The following figure indicates the hierarchy of learning

types.

Machine Learning

Reinforcement

Unsupervised .
learning

Dimension
Reduction

Classification Regression Clustering

Figure 1: Machine Learning hierarchy

Supervised Learning is a task of learning a function that maps an in-
put to an output based on example input-output pairs. It infers a function
from labeled training data consisting of a set of training examples. In su-
pervised learning, each example is a pair consisting of an input object and a
desired output value.This is usually written as a set of data (z; , t;), where
the inputs are x; , the targets are ¢; , and i runs from 1 to the number of
input dimensions (see notation). A supervised learning algorithm analyzes
the training data and produces an inferred function, which can be used for
mapping new examples. An optimal scenario will allow for the algorithm to
correctly determine the class labels for unseen instances.

Output

((Training Data set) ((pesired 0utout)

:k‘"&‘kk —y ’
oli '..?,'-\-..
e
 FEERN —p — —1 %
' — (i
() ()

Algorithm Processing

Figure 2: Supervised Learning flow

Types of supervised learning algorithms include classification and regres-
sion. Classification algorithms are used when the outputs are restricted to
a limited set of values, and regression algorithms are used when the outputs
may have any numerical value within a range. Classification and regression
are described in more detail later in this section.

Unsupervised Learning is a conceptually different problem to supervised
learning. Unsupervised learning is a type of machine learning that looks for
previously undetected patterns in a data set with no pre-existing labels and
with a minimum of human supervision. In contrast to supervised learning
that usually makes use of human-labeled data, unsupervised learning, tries to
identify similarities between the inputs so that inputs that have something in
common are categorized together. The statistical approach to unsupervised
learning is known as density estimation.

gy

C 0

Input Raw Data Algorlthm Output
‘x_‘: =Unknown Qutput
Y ‘e . «No Training Data Set
..-3% LY
) W'-:-,‘; ro il
v"?}-? NG .
Oy -y‘.?-‘r:’.‘»'-
e
.1

(Interpretation) Processing

Figure 3: Unsupervised Learning flow

Within unsupervised machine learning, there are several different ap-
proaches such as clustering and dimension reduction. Clustering is the as-
signment of objects to homogeneous groups while making sure that objects
in different groups are not similar , when dimension reduction reduces the
number of features under consideration, where each feature is a dimension
that partly represents the objects.

Reinforcement learning fills the gap between supervised learning and
unsupervised learning. Reinforcement learning is usually described in terms
of the interaction between some agent and their environment. The agent
is the learner, and the environment is where it is learning, and what it is
learning about. Reinforcement learning maps states or situations to actions
to maximize a reward function.

Input Raw Data (—(Environment)ﬁ

Reward Best Action
. 4 O A
State Q Selection of

Algorithm

— (Agent)—/

Figure 4: Reinforcement Learning flow

In particular, the algorithm knows the state (the current input), and
the available actions, and it aims to choose the action that maximizes the
reward. The reward is given as feedback to the algorithm to guide future
actions considering that the methods that seem to work should be tried over
and over again, until they are perfected or better solutions are found, and
those that do not work must be discarded.

2.1.2 Classification

Fundamentally, classification is about predicting a label, and regression is
about predicting a quantity. Regression algorithms try to find the best fit
line, which can predict the output more accurately in cases like weather pre-
diction, house price prediction, and similar examples with continuous nature
or real value outputs. On the other hand, classification algorithms try to find
the decision boundary, which can divide the dataset into different classes such
as identification of spam emails, speech recognition, identification of cancer
cells, and any machine learning problem with discrete value as an output.

As initially mentioned, this work is dedicated to managing discrete data
and especially binary nature problems such as identification of spam emails,
hence regression algorithms will not form a part of it. Consequently, there
follows a more thorough description of classification algorithms in order to
understand the main concept and some basic notation, required for the fol-
lowing sections.

10

Classification problem consists of taking input vectors and deciding which
of K classes they belong to, based on training from exemplars of each class.
The most important point about the classification problem is that it is dis-
crete — each example belongs to precisely one class, and the set of classes
covers the whole possible output space. If only two classes are involved the
classification is called binary, otherwise, it is multiclass classification. Since
classification problems refer to different data sets in each individual prob-
lem, there are a variety of classification algorithms such as support vector
machines, linear classifiers, quadratic classifiers, and more. Nevertheless,
each and everyone shares the same fundamental concept that classification
requires and which is hereinafter explained.

There is a basic model that distinguishes classification algorithms from
other supervised learning algorithms. Firstly, the goal in classification is to
take an input vector x and to assign it to one of K discrete classes Cpwhere
k= 1,...,K. The classes are taken to be disjoint, at least in the most
common scenario, so that each input is assigned to one and only one class.
The input space is thereby divided into decision regions whose boundaries
are called decision boundaries or decision surfaces. In this work, we consider
linear models for classification, by which we mean that the decision surfaces
are linear functions of the input vector = and hence are defined by (D — 1)-
dimensional hyperplanes within the D-dimensional input space. Note that
from now on, any referred data set is linearly separable, meaning classes can
be separated exactly by linear decision surfaces.

In the case of two-class problems, is the binary representation in which
there is a single target variable ¢ € 0, 1 such that t = 1 represents class Cjand
t = 0 represents class (. Value of ¢t can be interpreted as the probability
that the class is C, with the values of probability taking only the extreme
values of 0 and 1. In the simplest case, where the model is linear in the
input variables, an appropriate function y(z) is constructed whose values for
new inputs x constitute the predictions for the corresponding values of ¢t and
therefore takes the form:

y(x) = w'x + wy, where y € R

Here w is called a weight vector, and wy (or sometimes b) is a bias. Prac-
tically, an input vector z is assigned to class C; if y(z) > 0 and to class Cy

11

otherwise. The corresponding decision boundary is therefore defined by the
relation y(z) = 0. So, if x is a point on the decision surface, then y(x) = 0,

and so the normal distance from the origin to the decision surface is given
by:

wlz wo

[|w]] [|w]]
Furthermore, note that the value of y(x) gives a signed measure of the per-
pendicular distance r of the point x from the decision surface, as shown at
the following figure.

y =0 Ty
y=10
y < R

Figure 5: Ilustration of the geometry of a linear discriminant function in
two dimensions

Finally, such models have useful analytical and computational properties
but that their practical applicability is limited by the curse of dimensionality.
So, in order to apply such models to large-scale problems, it is necessary to
adapt the basis functions to the data. Support vector machines (SVMs),
discussed in the next section, address this by first defining basis functions
that are centred on the training data points and then selecting a subset of
these during training.

2.2 Support Vector Machines (SVM)

Support vector machine (SVM) is the most popular classifier based on a
linear discriminant function and hence it is a linear classifier. The main

12

property that distinguishes SVM from other classification algorithms is that
the determination of the model parameters corresponds to a convex optimiza-
tion problem, and so any local solution is also a global optimum. SVMs are
the so-called “non-parametric” models, meaning their “learning” (selection,
identification, estimation, training) is a crucial issue since the parameters are
not predefined and their number depends on the training data used. Gen-
erally, in SVM, a data point is viewed as a list of p numbers and the goal
is to separate such points with a (p — 1)-dimensional hyperplane. Since var-
ious hyperplanes can linear separate the given points, the final hyperplane
is determined as the one that represents the largest separation between the
classes. The rest of the section will provide some detail at the support vector
machine, including the concept of maximum margin and Stochastic Gradient
Descent.

2.2.1 Maximum Margin

As previously mentioned, binary classifiers construct a linear model of the
form:
y(z) = wlz +b (2.1)

where b is the bias (previously mentioned and as wg). The training data
set comprises N input vectors xy,...,zy , with corresponding target values
t1,...,ty where t, € —1,1, and new data points x are classified according to
the sign of y(z).

Given the assumption that the training data set is linearly separable in
feature space, there exist at least one pair of parameters w and b such that a
function of the form (2.1) satisfies the inequality y(x,) > 0 for points having
t, = +1 and y(z,,) < 0 for points having t,, = —1, so that t,y(x,) > 0 for all
training data points. The equality y(x) = 0 defines the decision boundaries
that help classify the data points also known as hyperplanes.

Practically, there may exist many such solutions that separate the classes
exactly, so there is a need to find the one that will give the smallest general-
ization error. The support vector machine approaches this problem through
the concept of the margin, which is defined to be the smallest distance be-
tween the decision boundary and any of the samples as illustrated in Figure:

13

6. Then the decision boundary is chosen to be the one for which the margin
is maximized.

margin

Figure 6: Illustration of margin and support vectors

Margin is defined as the perpendicular distance between the decision
boundary and the closest of the data points, where the perpendicular dis-
tance of a point x from a hyperplane is given by ||y(z)||/||w|| . Furthermore,
the main interest is focused on solutions for which all data points are cor-
rectly classified, so that we satisfy ¢,y(x,) > 0 for all n. In view of the above
observation, the distance of the point x, to the decision surface is given by:

tny(n) _ tn(wTQb(xn) +0)

lwll [|wl]

(2.2)

As mentioned before, the margin is given by the perpendicular distance to
the closet point x,, from the data set and we need to maximize it. Thus, the
maximum margin is given from the optimization of the parameters w and b,
as follows:

argmax{

The direct solution to thls optimization problem would be very complex since
it involves a quadratic function. So, instead of solving the direct problem
itself, a solution is to solve a converted, equivalent problem. After rescaling
w and b , the distance from any point x, to the decision surface is given
by t,y(x,)/||w||, resulting to the canonical representation of the decision
hyperplane above:

to(whe(z,) +6)>1, n=1,...N (2.4)

14

The optimization problem then simply requires that we maximize ||w||™!,
which is equivalent to minimizing ||w||?> , and so we have to solve the opti-
mization problem
1 2
argmin—||w|| (2.5)
w,b 2

subject to the constraints given by (2.4). One way to solve quadratic opti-
mization problems is via introducing Lagrange multipliers a, > 0, with one
multiplier a,, for each of the constraints in (2.4). Hence, this constrained
optimization problem converts into the Lagrangian function:

Lw,b.a) = fllulP ~ Y aftaw o) +0) -1} (26

where a = (ay, ...,ax)T. Setting the derivatives of L(w, b, a) with respect
to w and b equal to zero, we obtain the following two conditions:

w = Zantngb(xn) (2.7)

N
0= Z antn (2.8)
n=1

Eliminating w and b from L(w, b, a) using these conditions then gives the
dual representation of the maximum margin problem in which we maximize:

E(a) = Z(an) — %Z Z Utk (T, T (2.9)

with respect to the constraints:

a, >0 n=1,...,N, (2.10)
N
> apt, =0 (2.11)

Finally, the sign of y(x) defined by (2.1), can be expressed in terms of the
parameters {a,} as:

y(x) = anta(z,2,) +b (2.12)

A constrained optimization of this form satisfies the Karush-Kuhn-Tucker
(KKT) conditions, which in this case require that the following three prop-
erties hold:

an >0 (2.13)
thy(z,) —1>0 (2.14)
an{toy(z,) —1} =0 (2.15)

Hence, any data point for which a,, = 0 will play no role in making predictions
since it does not appear in the sum in (2.12). On the other hand, the point
that doesn’t satisfy the equality, they satisfy t,y(x,) = 1 so, they correspond
to the points that lie on the maximum margin hyperplanes illustrated in
Figure:6. These points are called support vectors, and they play a major
role in making the prediction since once the model is trained, a significant
proportion of the data points can be discarded and only the support vectors
retained.

So far, the above observations were based on the strong assumption that
the training data points are linearly separable. However, in practice, the class
distributions may overlap. In this case, the exact separation of the training
data is not possible or leads to poor generalization. In order to deal with
this kind of training data, the support vector machine should be modified
in a way that it allows misclassification. Misclassification means that data
points are allowed to be on the ‘wrong side’ of the margin boundary, but
with a penalty that increases with the distance from that boundary. For
the subsequent optimization problem, it is convenient to make this penalty
a linear function of this distance.

The solution is given by slack variables, &, = 0 where n = 1, ..., N, with
one slack variable for each training data point. Hence, the data points that
are on or inside the correct margin boundary are defined by &, = 0 and
&n = |th—y(z,)| for the rest of the points. So, if £, > 1 the point is determined
as misclassified , else if £, = 1 will be on the decision boundary. After taking
into consideration the above observation, the classification constraints (2.4)
is replaced with:

thy(er,) >1-¢, n=1,.,N (2.16)

in which the slack variables are constrained to satisfy &, > 0. Hence, it is
now clear that &, = 0 means the points are correctly classified , 0 < &, <1

16

that the point lies inside the margin but on the correct sight of the decision
boundary and finally those with &, > 1 lie on the wrong side of the decision
boundary, as illustrated in Figure:7.

Figure 7: Tllustration of the slack variables &, > 0. Data points with circles
around them are support vector

This is sometimes described as relaxing the hard margin constraint to
give a soft margin. Now, the minimization problem (2.5) should take into
consideration the penalty for the points that lie on the wrong side of the
margin boundary. Consequently:

N
1
CY bt gllul? (2.17)
n=1

where the parameter C' > 0 controls the trade-off between the slack variable
penalty and the margin. The bigger C gets, the harder the margin is, so
C — oo indicates the earlier support vector machine for separable data.
Finally, to minimization of (2.17) subjects to the constraints (2.16) and also
&, > 0. Correspondingly to (2.6) the Lagrangian function takes the following
form:

N N N
L(w,b,a) = %HwHQ +CZ €n — Z an{tny(zn) =1+ &} — Z fin€n (2.18)
n=1 n=1 n=1

17

where a,, > 0 and u,, > 0 are Lagrange multipliers. Following the same strat-
egy as earlier, the dual Lagrangian takes the below form:

N LN
f}(a) = Z Qy, — 3 Z Z U tpt (T, Ty (2.19)
n=1 n=1 m=1

which is identical to the separable case, except that the constraints are some-
what different. These constraints arise from a combination of the constraints
that refer to the Lagrange multipliers and parameter C'. Therefore, the min-
imization of 2.19 is subject to:

0>a,>C (2.20)

N
> apt, =0 (2.21)
n=1

forn =1,..., N, where () are known as box constraints. This again represents
a quadratic programming problem. As before, a subset of the data points
may have a, = 0, in which case they do not contribute to the predictive
model (2.12) . The remaining data points constitute the support vectors.
These have a,, > 0 and hence :

thy(x,) =1-=2¢&, (2.22)

A rather common problem that support vectors faces is dealing with a non-
linear data set where the data can’t be separated by a straight line and, unlike
the above case, even by relaxing the margins, the data set the generalization
error will still be increased.

Input Space Feature Space

Figure 8: Example of non-linear data set

18

The basic idea in kernels is that when a data set is inseparable in the
current dimensions, add another dimension by mapping the current feature
space in one that could be separable. So, for all x,, and x,, in the input
space X there exists certain functions k(z,,x,,), can be expressed as an
inner product in another space V. The kernel can be written in the form of
a "feature map” X — V which satisfies

(2, Tm) = ((2n), (Tm))s (2.23)

By following the above strategy with changed feature space the dual La-
grangian takes the below form:

B N 1 N N
L(a) = Z an =5 Z Z AnGmtntmk (T, T,) (2.24)
n=1 n=1 m=1

Concluding, there is a lot of theoretical background behind kernel func-
tion,which will not be discussed feather since it is not the subject of this
work.

2.2.2 Stochastic Gradient Descent

Machine learning models typically have parameters, for SVM simple case is w
and b, and a cost function to evaluate how good a particular set of parameters
are. Furthermore, the SVM constraints are linear in the unknowns and any
linear constraint defines a convex set. Now, a set of simultaneous linear
constraints defines the intersection of convex sets, so SVM constraints can
be defined as a convex set. The main property that a convex function has is
that a locally optimal point is also globally optimal.

Gradient descent is an optimal algorithm used to minimize some function
by iteratively moving in the direction of the steepest descent as defined by
the negative of the gradient. Hence, gradient descent can be used to update
the parameters of our model. Let’s define W as the model parameters, then
the steps to minimize a cost function J(W) is:

1. Initialize the weights W randomly

2. Calculate the gradients G of cost function with respect to param-
eters. The value of the gradient G depends on the inputs, the current
values of the model parameters, and the cost function.

19

3. Update the weights by an amount proportional to G, W = W —nG,
where 7 is the learning rate which determines the size of the steps we
take to reach a minimum.

4. Repeat until the cost J(W) stops reducing.

Earlier on this section, it was made clear that in SVM the main goal is to
minimizing ||w|[>. An alternative way to represent the minimization problem
is through a simple convex loss function, defined as hinge loss.

Chinge(t, 1) = max(0, 1 — ft) (2.25)
so the minimization problem will have the below form:

it [0 + €Y Cuinge by 0+ 20 +1) (2.26)

Therefore, this form of minimization problem can be solved as a constrained
Optimization problem by using gradient descent and the minimization func-
tion get the following form:

1
JW) = EwTw +C Z max (0,1 — t,w’x,) (2.27)

Furthermore, in real-time applications, the gradient descent can be applied in
the scenario of having to take online decisions. Online SVM training means
that the classifier changes over time, and the distribution is no longer fixed.
Since we need to calculate the gradients for the whole dataset to perform one
parameter update, gradient descent can be very slow.

On the other hand, Stochastic Gradient Descent (SGD) computes the gra-
dient for each update using single training data points x,, (chosen at a ran-
dom) or a mini-batch of the training set. The main idea is that the gradient
calculated this way is a stochastic approximation to the gradient calculated
using the entire training data. Each update is much faster than Gradient
Descent and over many updates, the same general direction is given. So,
even though a higher number of iterations are required to reach the global
minimum, it is still computationally preferred over Gradient Descent. The
main difference in the minimization function is that now it corresponds to a

20

single training data points or a certain mini-batch, meaning instead of com-
puting J(W) we now compute J;(W), for i = 1,..., K, and K the number of
the individual points or the number of mini-batches. Finally since the goal of
this work was to train the classifier in an online fashion, Stochastic Gradient
Descent was used for the training stage.

2.3 Functional Geometric Monitoring (FGM)

Functional Geometric Monitoring, is a method for distributed stream moni-
toring, which is applicable as Geometric Monitoring, and provides substantial
benefits in terms of performance, scalability, and robustness. The strict sep-
aration of concerns between distributed systems issues and the monitoring
problem, is critically important to anyone wishing to implement distributed
monitoring on a general-purpose middle-ware platform.

Geometric Monitoring(GM)

With Geometric Monitoring(GM), an arbitrary global monitoring task can
be split into a set of constraints applied locally on each of the streams. The
constraints are used to locally filter out data increments that do not affect the
monitoring outcome, thus avoiding unnecessary communication. As a result,
it enables monitoring of arbitrary threshold functions over distributed data
streams in an efficient manner. Practically, as data arrives on the streams,
each node verifies that the constraint on its stream has not been violated. The
geometric analysis of the problem guarantees that as long as the constraints
on all the streams are upheld, the result of the query remains unchanged,
and thus no communication is required. If a constraint on one of the streams
is violated, new data is gathered from the streams, the query is reevaluated,
and new constraints are set on the streams.

Functional Geometric Monitoring(FGM)
Functional Geometric Monitoring, is based on the core ideas of Geometric
Monitoring(GM) but instead of a binary constraint, each site is provided with
a complex, non-linear function, which, applied to its local summary vector,
projects it to a real number. The focus of this subsection is to present the
basic principles and protocol of FGM.

Practically, lets assume that there are k distributed sites, and that at each
site, a local stream is generated or collected. The sites collectively monitor

21

the sum of these one-dimensional projections and as long as the global sum
is subzero, the monitoring bounds are guaranteed. Let S;(t), i = 1...k denote
the local state vectors. Every site communicates with a coordinator where
users pose queries on the global stream. The coordinator maintains, for each
site 7, an estimated state vector F; . When a flush occurs, the site transmits
its drift vector X;(t) = S;(t) — E; , and the coordinator updates E; by adding
X; to it, while the site resets X; to 0. Then, the coordinator updates the
global estimate £ = %Zle E;. In geometric monitoring, the correctness
criterion is described as a geometric constraint, of the form S € A, where
A C RP is the admissible region, that is, the set of global stream states where
the constraint holds. The correctness criterion here differs and is based on
the save function concept.

In FGM algorithm, the safe function is a conceptual concept.The system
is in a safe state as long as %Zle X; =8 € A. To guarantee safety FGM
employs a real function ¢ : R” — R depending on A, E and k. Each site
tracks its ¢-value, ¢(X;), as X; is updated. Hence, to guarantee that S € A,
the sign of the sum % Zle X;, which for now one will be referred as v, must
be less or equal to 0. So the safety is maintained as long as v < 0. In other
words, we need to find an A, E, k-safe function.

The FGM algorithm works in rounds to monitor the threshold condition

Z B(X;) <0 (2.28)

and guarantee the desired safety. Generally, the sites perform local updates
and, when necessary, ship the ¢ of there local drift to the coordinator, which
is responsible for monitoring the threshold condition. On the other hand, the
coordinator is collecting information from the workers to compute ¢ and if
the safety is disturbed,) > 0, the coordinator requests the real drift vectors
to recompute global estimate and restore systems safety. In this way the
system stays updated with the minimum communication cost. Later on 3 we
will describe the execution of the FGM algorithm, specifically for distributed,
online Support Vector Machine training.

2.4 Tools

Given the nature of the problem, there is no doubt that the environment
must include tools that allow distributed computing and also support com-
plex workflows, such as machine learning algorithms. An additional factor

22

is the need to produce a project as simple and efficient possible. Therefore,
Python became the more prevalent choice among others, for being an in-
terpreted, high-level programming language with dynamic semantics. Also,
Dask is lightweight python library that provides distribution and can be eas-
ily combined with the Scikit-Learn, which contains a lot of efficient tools for
machine learning and statistical modeling.

2.4.1 Scikit-Learn

Scikit-Learn [13] is a Python module integrating classical machine learning
algorithms in the tightly-knit world of scientific Python packages. It is de-
signed to provide simple and efficient solutions to learning problems, which
is one of the main purposes of this project. Also, provides a wide range
of choices, for all the kind of machine learning problems, such as classifica-
tion, regression, clustering, and more. This thesis is focused on classification
problems and especially on Support Vector Machines. So, from Scikit-Learn,
SGDClassification estimator fits the specifications of the problem since is
a simple approach to discriminative learning of linear classifiers under con-
vex loss functions, such as SVM. The previous section described in detail
Stochastic Gradient Descent and hinge loss, so practically choosing hinge as
loss function for this estimator, automatically results in a linear SVM classi-
fier. Also, to test the implementation, there was a need for several datasets
with different features and sizes. Scikit-Learn includes various random sam-
ple generators that can be used to build artificial datasets of controlled size
and complexity such as make classification.

2.4.2 Dask

Dask [1] can be considered as Hadoop/Spark equivalent for python. It is a
simple tool for data processing and is able to either be run on a local computer
or be scaled up to run on a cluster. It is an easy-to-use tool since it provides
advanced parallelism for analytics, enabling performance at scale with mini-
mal rewriting. The past few years Dask has been extended with a distributed
memory scheduler. This enables Dask’s existing parallel algorithms to scale
across 10s to 100s of nodes, and support distributed computing. In addition
to the above, another essential feature, for this project, is that workers can
communicate with each other to share data. This removes central bottlenecks
for data transfer and offers the opportunity to apply the FGM protocol.

23

2.4.3 Scikit-Learn and Dask Connection

Scikit-learn uses joblib for single-machine parallelism. This supports training
most estimators (anything that accepts an n_jobs parameter) using all the
cores of your laptop or workstation. Alternatively, Scikit-Learn can use Dask
for parallelism. This offers the ability to train those estimators using all the
cores of your cluster without significantly changing code. Considering, this
connection and the features each of them individually provides, there is no
doubt that they get above the specifications described earlier on.

3 Implementation

This section describes the basic FGM protocol (without rebalancing) for
distributively training SVM, in an online manner. First, there is a description
of the final model that combines SVM-FGM protocol focused on the way that
these two algorithms were combined to produce rather encouraging results
and then a description of the main tools used for this implementation. The
distributed SVM algorithm is based on the averaging model where the global
estimate is computed as the average of the individual models computed in
each node. Given this structure, FGM applies on when the nodes will send
their local model to make the communication as meaningful as possible.
Later follows a more thorough description which will help to understand the
results in section 4.

3.1 Decentralized architecture

It must be clear by now, that the main purpose of this work is to empirically
confirm the communication gains for Distributed SVM via FGM protocol. In
the general case, Distributed SVM structure constructs from one coordinator
and multiple, n, workers. Each worker performs online training, in order to
update its local model and after each update ships the updated model to the
coordinator. Then, the coordinator computes the estimated model from the
average of the models received (Figure 9).

24

FEED

| DATASET-1 WORKER 1
SPLIT DATA .~
oricinAL 3 DATASET-2 WORKER 1
TRAINING [
DATA 4RSS
~~~~~~
A DATASET-3 WORKER 1
[ ] [ ]
[ ] [ ]
[ ] [ ]
‘\
9 DATASET-n WORKER 1

Figure 9: Distributed SVM

Hence, the goal is to prevent the enormous cost of constantly shipping
the whole model and let the workers communicate when the model is truly
outdated using the FGM protocol.

3.2 Safe Function

Starting the analysis of the FGM algorithm, the safe function is a conceptual
concept.The configuration of the system of k sites is a (kD)-dimensional
vector consisting of the concatenation of the k local drift vectors, X; . The
system is in safe state as long as

k

E + Z=T1X =SeA (3.1)

To guarantee that a configuration is safe, FGM employs a real function ¢ :

RP — R, depending on A, E and k. Each site tracks its ¢-value, ¢(X;), as

X, is updated. System safety is guaranteed by tracking the sign of the sum

Y = Zle ¢(X;). In particular, we need to guarantee that ¢» < 0 implies
S e A

There was a need to select the one safe function that fits the criteria of

the SVM training. One of the simplest (A, E, k)-safe functions for this kind

25



of monitoring is:

E
¢(x) = max{—e||E|| — PIE le+ E|| — (1+ ¢)[|E} (3.2)
which is based on the distance of the two vectors E,  (where E is represents
the global estimate and @ the drift vector) regarding a threshold e.

3.3 Basic FGM Protocol for Learning

FGM Protocol
The FGM protocol works in rounds to monitor the threshold condition

Z $(X;) <0 (3.3)

to detect where the local training models of each worker has changed signif-
icantly to perform communication. Fxecution of rounds

At the beginning of a round, the coordinator knows the current state of the
system E = S, selects a (A, E, k)-safe function ¢ as defined above. Note
that ¢ = Zle #(X;) , at each point in time. Therefore, the FGM protocol
steps are:

1. Coordinator ships ¢ to every worker (or just E) and local workers
initialize their drift vectors to 0. Hence, initially ) = k¢(E),where k
is the number of workers, and subrounds begin.

2. A number of subrounds is initiated to be described below. When all
the subrounds ends, meaning that local training models changed in a
way that ¢ > e, k¢(0), where e, is related to the desired quantization
for monitoring . (for this work e,;=0.01)

3. Finally, coordinator ends the rounds by collecting all the drift vectors
and updates E.

Ezecution of subrounds

The purpose of the subrounds is to monitor the condition ¢y < 0 coarsely,
with a precision of roughly 6, performing as little communication as possible.
Subrounds are executed as follows:

26



1. The coordinator knows the value ¢ and computes the subround ’s quan-

tum 6 = —% and ships 6 to each local worker. Furthermore, the coor-
dinator initializes a counter ¢ = 0. Now, each worker records its initial
value z; = ¢(X;), where 2k = — 3% 2z and initializes a counter
C;, = 0.

2. Each local worker ¢ maintains its local drift vector X;, as it updates the
local model by performing partial_fit over a mini-batch of data. When
X, is updated, worker ¢ updates its local counter as follows:

¢; == max{c;, LW 1} (3.4)

If this update increases the counter, the local worker sends a message
to the coordinator, with the increases to ¢;.

3. When the coordinator receives a message with a counter increment
from some worker, it adds the increment to its counter c. If ¢ exceeds
k, the coordinator finishes the subround by collecting all ¢(X;) from
all local workers, recomputing ¢. If ¢ > ey k¢(0), the subrounds end,
else another subround begins. During the execution of a subround,
if ¢ < k then Zle »(X;) < 0. Note that, in FGM protocol there
are two kinds of communications. Downstream communication which
consists of messages from local nodes to the coordinator and upstream
communication which consists of messages from the coordinator to local
nodes.

3.4 SVM-FGM protocol

The implementation of SVM-FGM protocol is based on sklearn and Dask.
Although sklearn is a library used for a centralized machine learning task,
was adapted in a distributed online training scenario with the use of Dask.
Note that the classic fit function that sklearn provides couldn’t be used since
is an online SVM algorithm and fit can’t support multiple fitting on the same
model. Fortunately, the SGDClassifier estimator provides partial fit which
is specifically used for this kind of task since it allows fitting the same model
multiple times with different training samples. The SGDClassifier estimator
implements regularized linear models with stochastic gradient descent learn-
ing including SVM and it was preferred over other sklearn estimators for

27



SVM for providing partial fitting. On the other hand, Dask is in charge of
the distribution. Dask initializes a distributed cluster with the given number
of workers and threads for each worker. Workers can directly exchange mes-
sages with the Dask scheduler through build-in communication but this is
not the case for communication between workers. Since the FGM coordina-
tor is implemented as a dask worker, there was a need for a worker to worker
communication which has been provided by Dask Pub-Sub pattern. Later
on, follows a thorough explanation for both partial fit and worker-to-worker
communication to finally present the SVM-FGM protocol implementation.

Partial Fit The SGDClassifier estimator implements regularized linear
models with stochastic gradient descent learning and includes partial_fit()
function to support online machine learning. This function performs one
epoch of stochastic gradient descent on given samples, so there is no guar-
antee that the minimum of the cost function is reached. On the other hand,
partial fit will correct the model one step towards as new data arrive.
This is especially useful when the whole dataset is too big to fit in memory
at once. This method has some performance and numerical stability over-
head, hence as the experiments also indicate, partial fit is not crucially
increasing the training time when the batch size increases significantly. The
above figure (10) illustrates the time that one partial fit needs for different
sizes of mini-batches.

28



Partial fit pehaviour over time

200

175

150

125

100

75

number of data trained

50

8

125 150 175 200 225 250 275 300 325
Time in msec

Figure 10: Partial fit behaviour for different sizes of mini-batches.Nearly
10x the batch size is only increasing the time for nearly 2 times.

Worker-to-worker communication Worker-to-worker communication is
the communication directly between workers without involving the scheduler
at all. So, Dask implements the Publish-Subscribe pattern, providing an
additional channel of communication between ongoing tasks. This allows
workers to directly communicate data between each other with a typical
Publish-Subscribe pattern. It involves two components, Pub objects, into
which we put data and Sub objects, from which we collect data. The dask
workers submit 2 different kind of jobs, the coordinator function and the
worker function. Note that dask sees the coordinator as a worker, so the
communication between workers and coordinator can be simply performed
via Publish-Subscribe pattern. In particular, coordinator creates a subject for
each kind of messages needed for the upstream and downstream communi-
cation. For upstream communication messages we have one publisher (coor-
dinator) and multiple subscribers (workers), where for the downstream com-

29



munication multiple publishers (workers) and one subscriber(coordinator).
So the publisher /publishers simply pushes a message into the pub-sub buffer
created for this kind of messages(each subject is a different buffer), and the
relevant subscriber /subscribers receives it by getting the first element of the
buffered messages. Generally, pub-sub follow the FIFO concept, so the first
message pushed into the buffer is also the first one out. For now when up-

stream and downstream communication is referred, it indicates the Pub-Sub
communication

publishes subscribes
Publisher <‘:| Subscriber
(Sender) :> (Receiver)
receives
) subscribes
publishes <|:l
Publisher Subscriber
(Sender) TOPIC :> (Receiver)
receives
subscribes
publishes <:|
Publisher :> Subscriber
(Sender) receives (Receiver)
N—

Figure 11: Tlustration of Publish-Subscribe pattern

Setup
Applying the FGM protocol in the distributed SVM communication, results
in a new distributed structure that includes downstream and upstream com-

munication between the workers and the coordinator as illustrated in (Figure
12).

30



FEED

& — DOWNSTREAM
)
A DATASET-1 WORKER 1 4— UPsTREAM
SPLIT DATA
oricinAL 5  DATASET-2 WORKER 2
TRAINING [ COORDINATOR
DATA
~~~~~~~~~ T
~~~~~ :
A DATASET-3 WORKER 3 i
SVM model
° °
° °
° °
‘\
9 DATASET-n WORKER n

Figure 12: Distributed SVM with FGM protocol

Therefore, the system consists of multiple k£ workers and one coordinator
that orchestrates them. At the beginning of the implementation a Dask
distributed cluster is created with k+1 workers and one thread per worker.
A large training dataset is split into m equal parts (in this case m=100)
and each of the chunk is randomly assigned to one worker, such that all
the workers come up with the same number of chunks. Furthermore, the
workers read the first chunk, assigned to them, and splits it into smaller
parts, mini-batches. Then, the coordinator requests that each and every
worker "warms up” by training their local classifier with the first mini-batch,
in order to initialize their models. Workers sends back to the coordinator
their parameters and the coordinator computes the global estimate. After
the "warm up” phase, the FGM protocol is applied.

Practically, each worker distributively trains his local model, given a ran-
domly assigned chunks from the original dataset by using partial fit. As the
FGM protocol requires, while the local model changes, the worker updates
its local counter as given in (3.4), and if this update increases the counter,
the worker sends a message to the coordinator (downstream), with the in-
crease. The coordinator receives a message with a counter increment from
some worker, and it adds the increment to its counter c. If ¢ exceeds k, the
coordinator requests (upstream) from the workers to compute the safe func-

31



tion given the local drift, ¢(X;). Workers perform upstream communication
to send the ¢(X;) to the coordinator. The coordinator monitors the thresh-
old condition of the sum of the ¢(Xi) and, if a violation occurs, request the
local drifts in order to recompute the global estimate which then broadcasts
to all the workers. The workers receives the global estimate, they initialize
their model and continue with the training procedure. Overall, only if the
local model changes significantly the system performs costly communication.
All the above can be described by Algorithm 3.4 . Note that S; is the local
model and X; the drift vector. Also the ml parameters are the coefficients
(weights) and the intercept (bias), as defined by the SVM algorithm.

32



Algorithm 1 SVM-FGM
Initialization at the coordinator

1: Starting k workers

Subscribe to all the subject into which the workers will Publish
Warming up the global clf and end up with parameters coef, interc
E « [coef,interc] , c + 0, 9 + ko¢(E), 0 + %

Publish E and 6 to all workers and start the first round

A. Worker i on receiving E and 6 at the start of a new round:

1: update the local model: S; «+ F
2: quantum < 0 , ¢; < 0, z; < ¢(X;)

B. Worker on receiving 6 at the start of a new subround:
1: ¢ < 0, quantum <+ 0, z; + ¢(X;)

C. Worker i on observing data at time t:

1: load mini-batch batch;

2: if batch; # None then

update the local model S; by partial fit with batch;
4 compute drift X; =5, — F

5 ObservedBatches < ObservedBatches + 1
6: compute ¢; pe, = max{c;, L%J}

7: if ¢; pew > ¢; then
8

9

Increment; < ¢; new — Ci

Ci <= Cipew
10: Publish Increment; to the coordinator
11: end if
12: end if

D. Coordinator on receiving an increment:
1: ¢ < c+ Increment;
2: if ¢ > k then
3: request and collect all ¢(X;)from all workers

4 U 25:1 O(X5)

5: if ¢ < k¢(FE) then

6: request and collect all X; from all workers

7 E+ E+1y" X,

8: update k <number of pending workers

9: 0,0+ ko(E), 0 &
10: Publish E and 0 to all workers and start a new round

(code A)

11: else
12: 0,0« &
13: Publish 6 to all workers to start a new subround(code B)
14: end if
15: end if

33



4 Experimental Results

This section presents the practical performance of SVM-FGM protocol, in a
real distributed environment. The main goal is to empirically confirm the
performance gains against a centralized (sequential) structure.

4.1 Datasets

The datasets were generated with the use of sklearn random sample genera-
tors. These generators can be used to build artificial datasets of controlled
size and complexity. Since the main subject is to test classification over a
dataset, function make_classification was used. This function generates a
random n-class classification problem given parameters that specify the size
and the nature of the problem and balance and the desired noise and balance.

The system was tested with 3 different datasets with the same number
of samples and features but different percentage of noise. The noise is deter-
mined by using different values for flip_y parameter which gives the fraction
of samples whose class is assigned randomly. Larger values introduce noise
in the labels and make the classification task harder.

Datasetl The dataset used for this experiment has the following parame-
ters:

e number of samples: 30000

e number of features: 1000

weights: 50-50 (balanced dataset)

flipy O

Dataset2 The dataset used for this experiment has the following parame-
ters:

e number of samples: 30000

e number of features: 1000

e weights: 50-50 (balanced dataset)

o flipy: 0.1

34



Dataset3 The dataset used for this experiment has the following parame-
ters:

e number of samples: 30000
e number of features: 1000
e weights: 50-50 (balanced dataset)

o flipy: 0.2

4.2 Results

The presentation was illustrated via jupyter notebook and pyplot library. It’s
important to mention that the Pub-Sub structure requires a small timeout
penalty when receiving messages. The following experiments show that the
time and hence the speedup is not proportional to the number of workers since
when the number of workers increases so does the communication, leading
to a bigger timeout penalty.

Also, one of the parameters that affect the communication, hence the
performance of the distributed architecture is the threshold, e, that changes
the sensibility on the changes that occurred at the local model. Higher
values of e make the protocol more resistant to local model changes, so the
communication occurs more rarely, where on the other hand lower values of
e makes it more sensible resulting in frequent communication. Figure (13)
illustrates how the communication and time changes with different threshold
values.

35



1 Rounds/Time for distributed for different threshold values

—— 0.01
60 . pa
— 0.3

—— 08
50

40

Rounds
w
(=]

20

10

0.0 25 5.0 75 100 125 150
Time(s)

Figure 13: Rounds/Time distributed for different threshold values

It is clear that really small values of threshold results in a centralized
like behavior and extremely high communication. For now on the selected
threshold is a medium threshold value, e=0.3, to illustrate the average case
scenario.

Below there is an illustration of the performance of the system when a
different number of workers is chosen.

e Dataset 1

36



Total time for 1 and 2 passes on the dataset/workers Total accuracy for 1 and 2 passes on the dataset/workers

-

| _/
094 _.r"/ ——————— _'_/
20 —
094
s 003 /'
— —— 1stpass o
o 2
: +— 2nd pass o /
£ —— centr1 g 093 /
F 10 - centr2 LS

092

5 ! l
o9z / — 1t pass\ /
—+— 2nd pass [
001 centr 1 K‘/
o centr 2

5 10 15 20 P53 30 5 10 15 20 25 30
Number of workers Number of werkers

Figure 14: 1.An illustration of the performance of the SVM-FGM protocol
for different number of workers, 2. The accuracy for different number of
workers. Both for 2 passes of the same dataset without noise

e Dataset 2

Total time for 1 and 2 passes on the dataset/workers Total accuracy for 1 and 2 passes on the dataset/workers

o —— <
——

0.88 "
Cal

20

0.86

15

—_ —+— 1stpass > 0.84
n o
‘; -— 2nd pass ©
£ —— centrl 2
= 10 —— centr2 kS 0.82
s 0.80
—+— 1stpass
—— 2Ind pass
0.78 centr 1
0 centr 2
5 10 15 20 25 30 5 10 15 20 25 30
Number of workers Number of workers

Figure 15: 1.An illustration of the performance of the SVM-FGM protocol
for different number of workers, 2. The accuracy for different number of
workers. Both for 2 passes of the same dataset with noise 0.1

e Dataset 3

37



Total time for 1 and 2 passes on the dataset/workers Total accuracy for 1 and 2 passes on the dataset/workers

0.84 / — \
20 /‘"*-_‘
-
0.82 —

15

—s— 1st pass —e— 1st pass

— >
w1
‘; —— 2nd pass E 080 —— 2nd pass
£ —— centr1 ] —— centrl
= 10 ——. centr2? £ —— centr2
0.78
5
0.76
__________ . ly S
0 =
5 10 15 20 25 30 5 10 15 20 25 30
Number of workers Number of workers

Figure 16: 1.An illustration of the performance of the SVM-FGM protocol
for different number of workers, 2. The accuracy for different number of
workers. Both for 2 passes of the same dataset with noise 0.2

To count the speedup of the system, we added the time for the second pass
to the first one to get the total time needed for 2 passes and compared it with
the total time that the centralized architecture needs. So, below is illustrated
the speedup for the 3 different noise states.

e Dataset 1

38



Speed-up for 2 passes on the dataset/workers

70 /"\

50

Arriiemens

40

Speed up - centralized/distributed time

5 10 15 20 25 30
Number of workers

Figure 17: An illustration of the speedup for different number of workers
with no noise

e Dataset 2

Speed-up for 2 passes on the dataset/workers

//\J’\

50

a0

Speed up - centralized/distributed time

5 10 15 20 25 30
Number of workers

Figure 18: An illustration of the speedup for different number of workers
with 0.1 noise

e Dataset 3

39



Speed-up for 2 passes on the dataset/workers

%) @
o0 =1

w
=}

s
S

Speed up - centralized/distributed time
L F)
w w

[
=]

[l
0

5 10 15 20 25 30
Number of workers

Figure 19: An illustration of the speedup for different number of workers
with 0.2 noise

The second pass is used in order to reach a better, much smoother ac-
curacy, that converges to the maximum accuracy for this dataset. Also, the
total time for 2 passes doesn’t affect much the speedup since the total time for
2 passes in a distributed manner results also to a superlinear speed towards
1 pass of the centralized.

Note that the number of nodes doesn’t affect much the total time of the
distributed system. This due to the almost standard overhead that Dask
with Pub-Sub pattern adds to the system. The above figure illustrates the
time that coordinator needs for different phases,

e start time: the time needed to begin the process of the round and warm
up.

e wait time: the time that the coordinator processes a small amount of
bits, and mainly waits for a significant change to occur

e process time: the time that the coordinator need to collect information
from the workers and perform computation.

the table that illustrate the times for each number of workers :

e Dataset 1

40



n_workers rounds subrounds start time wait fime process time sub process time_round

Figure 20: The average times for 15 runs for each number of workers.

and the corresponding plot:

Time needed for different stages of coordinator
regarding the number of workers

10
_ — start_time
0.8 — wait_time
—— process_time_sub
06 \ —— process_time_round
o 04
o _
@ 1
E 02
=
0.0
—0.2
0.4
5 10 15 20 25 30
Workers

Figure 21: The average times for 15 runs for each number of workers. There
are tree plots one for each phase.

e Dataset 2

41



n_workers rounds subrounds start e wait_time process_time_sub process time_round

Figure 22: The average times for 15 runs for each number of workers.

The corresponding plot:

Time needed for different stages of coordinator
regarding the number of workers

10
— start_time
oel -\ — wait_time
—— process_time_sub
06 —— process_time_round
T 04
u
2
g 02
I'E e —— ———
0.0
—0.2
—0.4
5 10 15 20 25 30
Workers

Figure 23: The average times for 15 runs for each number of workers. There
are tree plots one for each phase.

e Dataset 3

42



n_workers rounds subrounds start time wait time process time sub process time_round

Figure 24: The average times for 15 runs for each number of workers.

The corresponding plot:

Time needed for different stages of coordinator

1o regarding the number of workers

— start_time
0.8 wait_time
—— process_time_sub
0.6 —— process_time_round
o 04
T
=
U 02
£
= e ——— e |
0.0
-0.2
—-0.4
5 10 15 20 25 30

Workers

Figure 25: The average times for 15 runs for each number of workers. There
are tree plots one for each phase.

As illustrated in the above plot,wait_time decreases when the number of
workers increase due to the reduced number of chunks that each worker has to
process. Apparently, even thought the wait_time decreases the process_time
for the subrounds and the process time for rounds increase due to the work
load that the coordinator needs to handle when processing the messages.

The experimental results indicated that in this work, with the use of func-
tional geometric monitoring method we both achieved superlinear speedup
and centralized like accuracy, with a minimum communication cost. Also

43



indicates that sklearn can perform equivalently in a distributed system when
using Dask and averaging model. The average cases that performs better in
most case includes the use of 0.3 threshold and workers.

Superlinear Speedup The case when the parallel execution of a per-
sistent algorithm can obtain a superlinear speedup due to utilizing more
cache memory. Since more cache memory is used in parallel execution, for
some region of problem size, it can store the whole problem size, while the
sequential execution cannot. In this case, the supper-linear speedup may
occur cause the overlap of CPU/IO that the distributed architecture per-
forms doesn’t occur in the centralized structure, resulting to a much lower
execution time than the minimum expected (Centralized time execution
(teent)pernumbero fworkers : t.ent/k)

5 Conclusions

Distributed Support Vector Machine is mainly solved by a sort of distributed
chunking technique where the result of the training procedure is combined
by using an averaging protocol. Although previous approaches resulted in a
centralized-like efficiency, none of them takes into consideration the commu-
nication cost of a distributed structure. This work proposed an SVM-FGM
averaging protocol that achieves high predictive performance, yet requires
substantially less communication than any other contemporary static or dis-
tributed averaging SVM protocol. In addition to the reduced communication,
experimental results showed that a significantly high speedup, in fact super-
linear speedup, has been accomplished establishing that SVM-FGM protocol
is indeed suitable for real-time application.

Although SVM-FGM protocol achieved high performance, it still has
plenty of room for improvement. First of all, a interesting work will be
to achieve an inversely proportional relation between time and number of
workers, so that the system performs better for larger systems. Additionally,
machine learning includes a wide range of different algorithms that corre-
spond to different problems each time. Hence, a very interesting study could
be to practically test other distributed machine learning algorithms and eval-
uate the results to test machine learning - FGM applicability.

44



References

1]

[12]

Christopher M. Bishop. Pattern recognition and machine learning. en.
Information science and statistics. New York: Springer, 2006. ISBN:
978-0-387-31073-2.

Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. en.
Cambridge, UK ; New York: Cambridge University Press, 2004. ISBN:
978-0-521-83378-3.

Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. en.
In: Machine Learning 20.3 (Sept. 1995), pp. 273-297. 1sSN: 0885-6125,
1573-0565. DOI: 10.1007/BF00994018. URL: http://link.springer.
com/10.1007/BF00994018 (visited on 07/06/2020).

Dask: Scalable analytics in Python. URL: https://dask.org/ (visited
on 06/29/2020).

Futures — Dask 2.19.0+6.97158f470.dirty documentation. URL: https:
//docs.dask.org/en/latest/futures.html (visited on 06/29/2020).

Gradient Descent — ML Glossary documentation. URL: https://ml-
cheatsheet . readthedocs.io/en/latest/gradient_descent.html

(visited on 06/18,/2020).

Machine learning. en. Page Version ID: 960955284. June 2020. URL:
https : //en . wikipedia . org/w/ index . php ? title =Machine _
learning&oldid=960955284 (visited on 06/06/2020).

Michael E. Mavroforakis and Sergios Theodoridis. “A Geometric Ap-
proach to Support Vector Machine(SVM) Classification.pdf”. In: IEEE.

Mohri Mehryar, Rostamizadeh Afshin, and Talwalkar Ameet. Founda-
tions of Machine Learning.

A. Navia-Vazquez et al. “Distributed Support Vector Machines.pdf”.
In:

A. Forero Pedro, Alfonso Cano, and Georgios B. Giannakis. “Consensus-
Based Distributed Support Vector Machines”. In: URL: http://www.

jmlr.org/papers/volumell/forerol0a/forerolOa.pdf (visited on
09/29/2019).

Vasilis Samoladas and Minos Garofalakis. “Functional Geometric Mon-
itoring for Distributed Streams”. In: EDBT2019. Lisbon, Portugal: sub-
mitted to.

45


https://doi.org/10.1007/BF00994018
http://link.springer.com/10.1007/BF00994018
http://link.springer.com/10.1007/BF00994018
https://dask.org/
https://docs.dask.org/en/latest/futures.html
https://docs.dask.org/en/latest/futures.html
https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
https://ml-cheatsheet.readthedocs.io/en/latest/gradient_descent.html
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=960955284
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=960955284
http://www.jmlr.org/papers/volume11/forero10a/forero10a.pdf
http://www.jmlr.org/papers/volume11/forero10a/forero10a.pdf

[13]

[14]

[15]

[16]

[18]

[19]

[20]

scikit-learn: machine learning in Python — scikit-learn 0.23.1 docu-
mentation. URL: https://scikit-learn. org/stable/index.html
(visited on 06,/29,/2020).

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. en. Cambridge: Cambridge University
Press, 2014. 1sSBN: 978-1-107-29801-9. por: 10.1017/CB09781107298019.
URL: http://ebooks . cambridge . org/ref/id/CB09781107298019
(visited on 06/29/2020).

Izchak Sharfman, Assaf Schuster, and Daniel Keren. ““A geometric ap-

proach to monitoring threshold functions over distributed data streams””.
In: SIGMOD. 2006.

Izchak Sharfman, Assaf Schuster, and Daniel Keren. ““A geometric ap-

proach to monitoring threshold functions over distributed data streams””.
In: ACM Trans. Database Syst. 32.4 (2007).

sklearn.linear_model. SGDClassifier — scikit-learn 0.23.1 documenta-
tion. URL: https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.SGDClassifier.html (visited on 06/29/2020).

Supervised learning. en. Page Version ID: 956197838. May 2020. URL:
https://en.wikipedia.org/w/index . php?title=Supervised_
learning&oldid=956197838 (visited on 06,/06/2020).

Yang You et al. “CA-SVM: Communication-Avoiding Support Vec-
tor Machines on Distributed Systems”. en. In: 2015 IEEFE Interna-
tional Parallel and Distributed Processing Symposium. Hyderabad, In-
dia: IEEE, May 2015, pp. 847-859. 1SBN: 978-1-4799-8649-1. DOTI: 10.
1109 / IPDPS . 2015 . 117. URL: http : // ieeexplore . ieee . org/
document/7161571/ (visited on 11/19/2019).

Yumao Lu, V. Roychowdhury, and L. Vandenberghe. “Distributed Par-
allel Support Vector Machines in Strongly Connected Networks”. en.
In: IEEE Transactions on Neural Networks 19.7 (July 2008), pp. 1167—
1178. 18sN: 1045-9227, 1941-0093. DOT: 10.1109/TNN. 2007 .2000061.
URL: http://ieeexplore.ieee.org/document/4470008/ (visited on
11/19/2019).

46


https://scikit-learn.org/stable/index.html
https://doi.org/10.1017/CBO9781107298019
http://ebooks.cambridge.org/ref/id/CBO9781107298019
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://en.wikipedia.org/w/index.php?title=Supervised_learning&oldid=956197838
https://en.wikipedia.org/w/index.php?title=Supervised_learning&oldid=956197838
https://doi.org/10.1109/IPDPS.2015.117
https://doi.org/10.1109/IPDPS.2015.117
http://ieeexplore.ieee.org/document/7161571/
http://ieeexplore.ieee.org/document/7161571/
https://doi.org/10.1109/TNN.2007.2000061
http://ieeexplore.ieee.org/document/4470008/

	Introduction
	Related Work
	Contribution
	Outline

	Theoretical Background
	Machine Learning Basics
	Types of learning algorithms
	Classification

	Support Vector Machines (SVM)
	Maximum Margin
	Stochastic Gradient Descent 

	Functional Geometric Monitoring (FGM)
	Tools
	Scikit-Learn
	Dask
	Scikit-Learn and Dask Connection


	Implementation
	Decentralized architecture
	Safe Function
	Basic FGM Protocol for Learning
	SVM-FGM protocol

	Experimental Results
	Datasets
	Results

	Conclusions

