

[1]

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Predicting the Marketability Potential of Google

Play Apps

DIPLOMA THESIS

Angelos Kartakis

COMMITTEE:

GEORGIOS N. YANNAKAKIS, Associate Professor

MICHAIL G. LAGOUDAKIS, Associate Professor

ANTONIOS LIAPIS, Lecturer (University of Malta)

Chania, September 2020

[2]

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Πρόβλεψη της Δυνατότητας Εμπορικής

Αξιοποίησης Εφαρμογών του Google Play

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Άγγελος Καρτάκης

ΕΠΙΤΡΟΠΗ:

ΓΕΩΡΓΙΟΣ Ν. ΓΙΑΝΝΑΚΑΚΗΣ, Αναπληρωτής Καθηγητής

ΜΙΧΑΗΛ Γ. ΛΑΓΟΥΔΑΚΗΣ, Αναπληρωτής Καθηγητής

ΑΝΤΩΝΙΟΣ ΛΙΑΠΗΣ, Λέκτορας (Πανεπιστήμιο Μάλτας)

Χανιά, Σεπτέμβριος 2020

[3]

[4]

Abstract

In recent years there has been a great increase of interest around the field of smart phone

application development growing to a $33B market. Applications that meet the various needs of

customers are constantly evolving, leading to the development of online application marketplaces,

such as Google Play. In this thesis, we examine the key drivers of app user ratings and propose four

approaches to predict the ability of applications to be valued highly by their users within the app

market, i.e. marketability. To develop these approaches, we leverage the predictive capacity of

Machine Learning algorithms by formalizing the marketability prediction problem as a classification

problem. In particular, we test and compare six Machine Learning algorithms --- i.e. Random Forests,

Decision Trees, Multi-layer Perceptrons, k-Nearest Neighbor, Logistic Regression and Support Vector

Machines --- for their ability to predict the ratings of app users based on a set of app features. By

evaluating the algorithms against real data from Google play, we achieved up to 86% accuracy on

marketability (i.e. user rating) prediction. The proposed solution can be extended to cover other

domains, such as commercial capacity forecasting.

[5]

Περίληψη

Τα τελευταία χρόνια παρατηρείται μεγάλη αύξηση ενδιαφέροντος γύρω από τον τομέα της

ανάπτυξης εφαρμογών. Εφαρμογές χρήσιμες για να καλύπτουν ανάγκες διαφόρων πτυχών

αναπτύσσονται συνεχώς, με άμεση συνέπεια την ανάπτυξη ηλεκτρονικών αγορών, όπως το Google

Play, αγορά αξίας 33 δισεκατομμυρίων δολαρίων. Στην παρούσα διπλωματική εργασία προτείνουμε

προσεγγίσεις για την πρόβλεψη της δυνατότητας εμπορικής αξιοποίησης εφαρμογών που

αναπτύσσονται για την προαναφερθείσα πλατφόρμα. Χρησιμοποιούμε το πλαίσιο της μηχανικής

μάθησης (machine learning), το οποίο προσφέρει καινοτόμες μεθόδους εκμάθησης για την

δημιουργία προβλέψεων. Αξιοποιούνται οι ευρείας χρήσεως αλγόριθμοι Random Forest, Decision

Tree, Multi-layer Perceptron, k-Nearest Neighbor, Logistic Regression και Support Vector Machines

μετατρέποντας το πρόβλημα της δυνατότητας πρόβλεψης εμπορικής δυναμικότητας σε πρόβλημα

κατηγοριοποίησης (classification). Τα αποτελέσματα εξετάζονται και συγκρίνονται εφαρμόζοντας

τεχνικές αξιολόγησης ως προς την απόδοση τους, επιτυγχάνοντας ως και 86% ακρίβεια. Θεωρούμε

ότι η προτεινόμενη προσέγγιση συμβάλει στον βασικό της στόχο και θα μπορούσε να επεκταθεί στο

μέλλον για προσαρμοστικές λύσεις σε περιπτώσεις πρόβλεψης εμπορικής δυναμικότητας,

αξιοποιώντας ακόμα και την εναλλακτική προσέγγιση της μάθησης προτιμήσεων (preference

learning).

[6]

Acknowledgements

First, I would like to thank my advisor Georgios N. Yannakakis for his trust and guidance during the

course of this thesis under the challenging circumstances of the pandemic.

My friends who accompanied me to this journey, together we shared some incredible moments

over the past 5 years.

Last, but not least, I would like to thank my family for the immense support, unconditional love and

constant encouragement.

[7]

TABLE OF CONTENTS

Abstract ... 4

Περίληψη .. 5

Acknowledgements .. 6

CHAPTER 1 .. 8

INTRODUCTION ... 8

CHAPTER 2 .. 10

BACKGROUND ... 10

2.1 Google Play .. 10

2.2 Marketability ... 11

2.3 Data Preparation ... 12

2.4 Machine Learning .. 15

2.5 Related Work ... 26

Summary ... 36

CHAPTER 3 .. 37

OUR APPROACH .. 37

3.1 Overview ... 37

3.2 Data Preprocessing & Data Analysis ... 38

3.3 Proposed Machine Learning Models ... 42

3.4 Performance Evaluation .. 49

CHAPTER 4 .. 51

RESULTS ... 51

Binary Classification Results .. 52

Binary Classification with Threshold (threshold = 0.5).. 60

Binary Classification with Threshold (threshold = 1.0).. 68

Multi-class Classification (Three classes) .. 76

Results Overview ... 83

CHAPTER 5 .. 84

CONCLUSION ... 84

5.1 Summary of Results and Contributions ... 84

5.2 Limitations ... 84

5.3 Future Work .. 84

REFERENCES .. 86

[8]

CHAPTER 1

INTRODUCTION

Smart phones have been widely successful in recent years. A key driver of this success is the ability

of the user to install custom applications (apps) from an online marketplace. Indicatively, Google’s

official market place, i.e. Play store, reached 2.9 million applications by March 2020 counting over 11

billion downloads, with a revenue of $32.8B1.

Considering this significant size and financial growth of app marketplaces, new challenges have

emerged in the current context of mobile apps. For example, to compete in a massive market of apps,

app developers must take into consideration novel aspects, such as user ratings and app adoption. The

analysis and exploitation of these aspects are crucial for shaping the future application development

and roadmap. Specifically, developers or businesses that release applications to the marketplaces view

the user rating scores as indication of their work to be marketed, so-called marketability. Thereafter,

their main goal is to orchestrate a plan to maximize these scores.

Outdated solutions require the manual analysis of user reviews and ratings, which is a time-

consuming and error prone process. Then, the extracted information is used to drive further

development of the applications. In our approach, in order to solve the problem of marketability

prediction and (in part) automate this process, we are based on Machine Learning (ML) algorithms and

their predictive capacity. ML is widely adopted by businesses across industries nowadays, assisting

them to solve complex problems efficiently and accurately.

The purpose of this thesis is to reveal the quantitative factors of marketability by building a

framework based on ML that efficiently predicts user ratings. In particular, this thesis attempts to

answer the following research question:

“Can we efficiently predict the user ratings of applications in Google Play, using

merely the information contained within the app features?”

In this thesis we formalize the aforementioned marketability prediction problem as a classification

problem. For that purpose, we test and compare six state-of-the-art Machine Learning algorithms, i.e.

Random Forest, Decision Tree, Multi-layer Perceptron, k-Nearest Neighbor, Logistic Regression and

Support Vector Machines. By evaluating the algorithms against real structured data from Google store,

1 According to Statista www.statista.com

[9]

we achieved up to 86% accuracy on marketability prediction. These significant results reveal that our

proposed solution can be used to solve the marketability prediction efficiently and accurately. In the

future, we plan to extend our solution to cover other business cases, such as commercial capacity

forecasting.

This thesis consists of the following chapters:

• In Chapter 2, we present the background information needed for this thesis. We give an

overview of the terms and concepts of marketability & Google Play, while we present Machine

Learning framework and state-of-the-art algorithms. Related Work is also discussed in this

chapter, providing additional approaches to the problem.

• In Chapter 3, we dive deep into our proposed approach and the implementation.

• In Chapter 4, we evaluate the results of our approach benchmarking multiple algorithms and

solutions.

• Lastly, Chapter 5 is the conclusion of this thesis illustrating the limitations & future

improvements of our approach.

[10]

CHAPTER 2

BACKGROUND

In this chapter we introduce the main techniques and theoretical background related to the Thesis.

In particular we discuss topics regarding the platform, data preparation, machine learning and

marketability in each of the corresponding sections below.

2.1 Google Play

Google Play, formerly Android Market, is an online platform of services operated and developed by

Google. It serves as the official app store for devices running on "Google certified"--meaning they offer

support for all official apps--Android operating system, enabling users to search and purchase

applications developed with the Android software development kit (SDK) and published through

Google.

By 2017, Google Play featured more than 3.5 million Android applications, with developers from

over 150 locations distributing apps on Google Play. Regarding the applications that are being

marketed developers receive 70% of the application price, while the remaining 30% goes to the

distribution partner and operating fees. This platform, gives the opportunity to developers to set up

sales, with the original price struck out and a banner underneath informing users when the sale ends.

Google Play, also allows developers to release early versions of apps to a selected group of users, as

alpha or beta tests. The ability of pre-ordering a number of selected apps to have the items delivered

as soon as they become available, is provided as well for the users.

According to SensorTower2, $24.8 billion was spent on Google Play in 2018, which is translated to

27.3% growth compared to 2017, exceeding the 75 billion mark on first-time app installs. Google Play

is a platform provisioned to overtake a total revenue of $60 billion by 2023, making it an appealing

choice for programmers to make a turn into app development.

Given the popularity of the service and the future projections of its market potential the creation

of a framework able to predict the demand on a newly developed app, can be of immense importance

for the monetization strategy and marketing campaigns of app developers.

2 Company that provides market intelligence and analytics for the mobile app economy through their software
suite

https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/App_store
https://en.wikipedia.org/wiki/Android_(operating_system)
https://en.wikipedia.org/wiki/Android_software_development
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_testing

[11]

Fig2-1 Google Play logo as obtained from Wikipedia

2.2 Marketability

Marketability is defined as the competitive position of a brand, product, service with respect to a

market (in this case, the Google Play market) and its potential to sell well within this market.

Marketability can be represented in various forms. The cost and the price of a product [1] for example

is considered a form of marketability: offering a product at a higher cost compared to the average

market cost puts the product at a competitive disadvantage (the unfavorable circumstance that causes

the product to underperform in an industry).

Another type of marketability is Customer Needs [2], to wit the customers’ motivation that the

product would fulfill their needs. Identical notions to marketability are those of Functionality and

Performance, Quality, and Distribution [3]. More specifically, if the product performs better than

competitive products on the market, this usually means that the product/service it is reliable, durable,

useable and it can reach customers rapidly.. All the types of marketability outlined above, tend to both

form and affect the most important type of marketability regarding a product: its Reputation and

Recognition. Reputation and Recognition responds as the ability of a product to establish reputation

and brand recognition among other products in a competitive market.

In this thesis we focus on the Reputation and Recognition of applications. In this dissertation, these

two aspects of marketability are expressed as self-reported ratings provided by customers of the

Google Play service (apps market)..

2.2.1 Correlation of Marketability & App Rating

The huge pace of development in the mobile app market, has attracted more programmers to

develop applications. Notwithstanding, while there is a solid portion of developers and companies

making extraordinary fortunes over the applications’ market, most developers are battling to retain

their initial investment. Therefore, understanding the factors leading to high-rated apps is the first step

towards successful development and evolution of apps [3],[4].

Google Play Store contains a huge number of Apps. These applications are downloaded and used

by millions of clients. Whenever a user browses, or searches for apps on Play store, a list of apps is

[12]

shown to the user. Generally, a client would prefer to download highly rated applications in light of

the fact that highly rated apps reflect clients’ satisfaction. So as to increase high ratings, application

engineer utilizes various methods and changes other than the application quality itself.

Measuring the success of a software system is difficult as there is neither a universal metric nor a

ranking scheme. Due to the close relationship of an app rating regarding the ability of it to be sold or

marketed, app rating is chosen as proxy for app success. In this case, the main target is the

establishment of a model of effectively predicting application ratings given the application

characteristics. Thus, a newly developed app could get sharply increasing ratings or an already

developed app could test the efficacy of changes leading to the improvement of its rating, with both

cases being associated with the growth of demand, therefore an improvement on apps’ [5]

marketability.

As stated in [5], the rating-based format represents a player’s state with a scalar value or a vector

of values. Ratings are seemingly the predominant practice for quantitatively surveying parts of a user’s

behavior, experience, opinion or emotion. In fact, by far most of user and psychometric studies include

rating questionnaires to extract the opinions, preferences and experiences of experiment participant.

2.3 Data Preparation

In order for empirical research to take place, data availability is mandatory. As soon as, data is

acquired it requires the process of Data Preparation takes place. Data Preparation consists of Data

Discovery (identifying the data), Data Cleaning (or Cleansing), Data Analysis & Data Interpretations.

2.3.1 Data Structure

Data is classified into three main categories based on its structure [6]: structured, semi-structured,

unstructured.

Structured data is the least demanding type of data to search and organize [7], since it is generally

contained in rows and columns and its components can be mapped into pre-defined fields (i.e. CSV,

Excel files)., thereby, making it easier to analyze, search and store. Conversely, unstructured data

cannot be contained in the pre-described form of a database and doesn’t have a related data model,

usually following the structure of a continuous text. The absence of structure makes unstructured data

difficult to search, manage and analyze [8]. Semi-Structured Data is a mix between both of categories

referred above. It has some defining or consistent attributes yet it does not adjust to a structure as

rigid as is expected with a relational database [9].

[13]

In summary, structured data is easily organizable and follows a rigid format; unstructured is

intricate and often qualitative information is impossible to diminish or be organized and semi-

structured data is a fusion of both structured and unstructured data.

2.3.2 Data Cleaning

Data cleaning is a key procedure associated with data analysis, with it being the initial step after

data collection. Data cleaning is the principal step of data preparation task that manages rectifying

inconsistent data, replacing or removing missing values and smoothing out noisy data [10] following

the process seen in Fig.2-2. Missing values are handled in different manners relying upon the

prerequisites set, either by overlooking the tuple, or filling in the missing value with the mean

estimation of the trait, or utilizing a global constant or some different procedures like decision tree or

Bayesian formulae. Noisy data is tackled manually or through various regression or clustering

techniques [10][11]. Then after the observation of the common problems it can be automated. There

are such a large number of procedures -a number related to the size and structure of the data- engaged

with data cleaning, which prepares it for analysis once they are finished.

Data Cleaning is valuable in improving the efficiency -in terms of data quality and accurate depiction

of the given information [11] - of the result of data analysis. The procedure of Data Cleaning may

include the removal of typographical blunders or filling of data missing fields (regarding structured

data). This will be done until the data is reported to meet the data quality criteria [12], which

incorporate; validity, accuracy, completeness, consistency, and uniqueness, defined as:

• Completeness: The proportion of stored data against the potential of “100% complete.

• Uniqueness: It is the inverse of an assessment of the level of duplication.

• Validity: Data conformation to the syntax (format, type, range) of its definition.

• Consistency: The absence of difference, when comparing two or more representations of

a data point against a definition.

• Accuracy: The degree to which data correctly describes the "real world" object or event

being described

[14]

Figure 2-2. A Data-Cleaning Framework adapted from [10]

2.3.3 Data Interpretation and Analysis

Data analysis is, a process that involves examining, and molding collected data for interpretation

[11] to:

• discover relevant information

• draw or propose conclusions

• support decision-making to solve a research problem

The Data Analysis process used for evaluating data leveraging expository and logical reasoning to

examine each of the data component provided. This type of analysis is only one of the numerous steps

that must take place when directing a research experiment. Data from a variety of sources is collected,

inspected, and then broke down to shape findings or conclusions. There is an assortment of explicit

data analysis methods, like data mining, text analytics, and data visualizations.

Data interpretation alludes to the implementation of procedures via which data is looked into in

order to arrive at an informed conclusion. The interpretation of data appoints an importance to the

data investigated and determines its signification and implications [13]. This process involves:

[15]

• taking the result of Data Analysis

• making inferences on the relations studied

• using the above to conclude.

Therefore, before referring to Data Interpretation, Data Analysis has to be conducted first.

Data Analysis is usually the first step taken towards data interpretation. Interpretation involves

attaching meaning and significance to the analysis, explaining descriptive patterns, and looking for

relationships and linkages among descriptive dimensions. Moreover, data interpretation and data

visualization make the data easy to understand, and encourages people to view the data as it provides

a visually appealing summary of the data (i.e. pie charts, histograms, bar charts).

Figure 2-3 Steps in applied survey data analysis. [13]

2.4 Machine Learning

People are not only generators but also consumers of data in need of products and services

specialized for them. As a result, their interests have to be predicted in order to provide them with

personalized services and offerings. Machine Learning is the natural approach to follow in this thesis,

since we have data to analyze, learn and make predictions based on it (i.e. app ratings).

More specifically, Machine learning is not just a database problem; it is the subfield of AI connected

with software that learns from experience [14]. In particular, machine learning methods are already

the best methods available for developing particular types of software, in applications where [14][15]:

1

•Definition of the problem

•Statement of the objectives

2
•Understanding the sample design

3

•Undestand design variables

•Underly constructs & missing data

4
•Analyze the data

5
•Interpret & evaluate the results of the analysis

6
•Report of estimates and inferences from the survey data

[16]

• The application is too complex for people to manually design the algorithm; like perception

and pattern recognition tasks, such as speech recognition and computer vision.

• The application requires that the software customizes to its operational environment after

it is fielded; machine learning, in such an application, provides the mechanism for

adaptation.

In general, Machine Learning is a natural intersection of Computer Science and Statistics [14][15],

and more specifically:

• Statistics are utilized by Machine Learning in constructing mathematical models, tackling

the core task of making inference from a sample.

• Computer Science serves a twofold role:

o First, in training, we need effective algorithms on solving the optimization issues,

as well as storing and processing the massive amount of data we for the most part

have.

o Second, as soon as the training is over, its representation and algorithmic solution

for inference needs to be proficient as well. In some sort of applications, the

efficiency of the learning, its space and time complexity, may be as significant as its

ability to accurately predict.

2.4.1 Supervised Learning

Machine Learning algorithms can be classified into three main types; supervised learning,

unsupervised learning, and reinforcement learning as shown in Fig.2-4. The types of machine learning

algorithms differ in the mathematical approach, type of input/output data, and type of problem that

they are intended to solve. In this thesis the approach adopted for predicting user ratings is Supervised

Learning because of both the acquired data and problem structure, as described below.

[17]

Figure 2-4 Machine Learning algorithm taxonomy

In machine learning every instance of a particular dataset is represented by a set of features, which

are individual measurable properties or characteristics of the phenomenon being observed. The nature

of these features could be continuous, categorical or binary. If instances are given with known labels

(i.e. the corresponding correct outputs) then the learning scheme is known as supervised learning,

while in unsupervised learning approach the instances are unlabeled [16]. In our particular problem,

the input samples correspond to the list of features, while the target outputs correspond to the

annotations of the rating -in this case- for each of the input samples that we are interested to learn to

predict [5]. Therefore, supervised learning algorithms build a mathematical model of a set of data that

contain both the inputs and the desired outputs. In supervised learning, the aim is to learn a mapping

from the input to an output whose correct values are provided by a supervisor [14], as the learner

receives a set of labeled examples as training data and makes predictions for all unseen points [17].

In order to solve a given problem of supervised learning, there is a set of steps that have to take

place as follows (Fig.2-5 illustrates the process):

• the type of training examples must be determined: the user should decide what kind of data

is to be used as a training set

• gather a training set: the training set needs to be representative of the real-world use of the

function

• determine the input feature representation of the learned function: the accuracy of the

learned function depends strongly on how the input object is represented

• determine the structure of the learned function and corresponding learning algorithm

• complete the design: run the learning algorithm on the gathered training set

• evaluate the accuracy of the learned function: the performance of the resulting function

should be measured on a test set that is separate from the training set.

M
ac

h
in

e
Le

ar
n

in
g

Supervised
Learning

Classification
(Categorical)

Regression
(Continuous)Unsupervised

Learning

Reinforcement
Learning

[18]

Figure 2-5 Supervised Machine Learning model [17]

2.4.2 Classification

 Classification is a supervised learning paradigm which learns to categorize a set of data into classes.

It can be performed on both structured or unstructured data with the process starting by predicting

the class (class is a Y collection of outcomes occurring under certain circumstances (e.g. the

High_Rating_Class contains ratings higher than 4.3) of given data points [14]. The classification

predictive modeling is the task of approximating the mapping function from input variables to discrete

output variables. The main goal is to identify which class/category the new data will fall into. The

procedure followed, while approaching a classification problem is shown below in Fig.2-6.

Figure 2-6 Classification Framework

Data

Data
splitting

Training Set
Cross

Validation
Test Set

Model
Evaluation

Performance
measures

Accuracy
Metrics

based on
approach

Statistical
Approaches

[19]

Classification is the key approach used in this thesis by transforming the numeric depiction of

ratings into a nominal scale of separate classes. For instance, ratings of applications can be transformed

from numerical values that lie between 1-5, into “High” and “Low” classes. Classes are easy to analyze

and their use dispenses part of the inter-personal biases introduced with ratings [5].

Classification Algorithms

In this section we outline the various classification methods used in this thesis. These include

decision trees, random forests, k-NN, logistic regression, support vector machines, and multilayered

perceptrons.

• Decision Tree: A decision tree or a classification tree (see an example in Fig. 2-7) follows a tree

structure in which each internal node is labeled one of the input features. Each node that is

labeled with an input feature, as described above, is conjoint with either a subordinate node

labeled with a different input feature or with the target feature, depending on each possible

outcome. Each leaf of the tree is labeled with a class or a probability distribution over the

classes, signifying that the data set has been classified by the tree into either a specific class,

or into a particular probability distribution [19]. A decision tree predicts the label of an

instance, by moving from a root node of a tree towards a leaf. At each node of the path –from

root to leaf--, the successor child is selected based on a splitting of the input space. Usually,

the splitting relates on one of the features of the instance. Seemingly important to note, that

every leaf contains a specific label [20].

Figure 2-7 Example of a Decision Tree deciding if a fruit is tasty [20].

• Random Forest: A Random Forest is an ensemble learning method, which means that it utilizes

multiple learning algorithms to obtain better predictive performance than could be obtained

from any of the constituent learning algorithms alone. Random forests are a combination of

tree predictors such that each tree depends on the values of a random vector sampled

https://en.wikipedia.org/wiki/Predictive_inference

[20]

independently and with the same distribution for all trees in the forest [21]. The idea behind

the Random Forest is the training of many decision trees, each on a random subset of training

set or a random subset of the input features. After a large number of trees is generated, they

vote for the most popular class, aiming at overall accuracy increase [14] as represented in

Fig.2-8.

Figure 2-8 Random Forest framework-acquired from Wikipedia

• K-Nearest Neighbor (k-NN): k-NN is one of the non-parametric classification algorithms as the

algorithm is not based solely on parametrized families of probability distributions (i.e. the

mean and the variance). Its operations instead are based on the nearest neighbor (NN) rule,

that identifies the category of unknown data point on the basis of its nearest neighbor whose

class is already known. In this case of k-nearest neighbor (k-NN), the nearest neighbor is

calculated on the basis of value of k, that specifies how many nearest neighbors need to be

considered to define a class of a sample data point (see Fig.2-9) [22]. The value of k is normally

determined using a validation set or using cross-validation [23]. In binary (two class)

classification problems, it is often helpful to choose k to be an odd number as this eliminates

tied votes.

https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Probability_distribution

[21]

Figure 2-9Example acquired from Wikipedia of k -NN classification. The test sample (green dot)

should be classified either to blue squares or to red triangles. If k = 3 (solid line circle) it is

assigned to the red triangles because there are 2 triangles and only 1 square inside the inner

circle. If k = 5 (dashed line circle) it is assigned to the blue squares (3 squares vs. 2 triangles

inside the outer circle).

Nearest neighbor classifiers are instance-based or lazy learners in that they store all of the

training samples and do not build a classifier until a new (unlabeled) sample needs to be

classified [24].

• Logistic Regression: Logistic Regression is used to model the probability of a certain class or a

binary event such as pass/fail, win/lose, alive/dead or healthy/sick. The method can be

extended to model multiple classes of events as well.. Logistic regression can show which of

the various factors being assessed has the strongest association with an outcome and provides

a measure of the magnitude of the potential influence [25]. The core of Logistic Regression is

the logistic function (or sigmoid curve):

𝒇(𝒙) =
𝑳

𝟏+ⅇ−𝒌(𝒙−𝒙𝟎)
 ,

where X0 is the x value of the sigmoid’s midpoint, L is the curve’s maximum value and k is the

logistic growth rate or steepness of the curve. The logistic function is an S-shaped curve that

can take any real-valued number and maps it into a value between 0 and 1, but never exactly

at those limits. By analyzing the equation −𝑘(𝑥 − 𝑥0) is the actual numerical value that we

want to transform. As shown at the example bellow, is a plot of the numbers between -6 and

6 transformed into the range of 0 and 1 using the logistic function (Fig. 2-10).

[22]

Figure 2-10 Equation of Logistic Function interpretation for L=1,k=1,x0=0, example

acquired from Wikipedia

Logistic regression uses an equation as the representation Input values (x) are combined

linearly using weights or coefficient values to predict an output value (y). An example of logistic

regression equation is shown, below [26]:

𝑦 =
ⅇ(𝑏0+𝑏1⋅𝑥)

1 + ⅇ(𝑏0+𝑏1⋅𝑥)

 Where y is the predicted output, 𝑏0is the bias or intercept term and 𝑏1is the coefficient for

the single input value (x). Each column in the input data has an associated b coefficient (a

constant real value) that must be learned from the training data. The coefficients (b values)

are calculated using maximum-likelihood estimation. Maximum-likelihood estimation is a

method of estimating the parameters of a probability distribution by maximizing a likelihood

function, so that under the assumed statistical model the observed data is most probable; a

common learning algorithm used by a variety of machine learning algorithms.

• Support Vector Machines (SVMs): An SVM is an algorithm set to find an optimal hyperplane

in multidimensional space (the number of dimensions is depended on the number of input

features), distinctly classifying the data points. By referring to an optimal hyperplane, we

consider a hyperplane that maximizes the margin (i.e. the maximum distance between the

data points of the different classes), as shown in Fig.2-11. The defining data points, that affect

the position and orientation of the hyperplane are called Support Vectors. The support vectors

are defined as the boundaries of each class and include the data points that are the closest to

the hyperplane. Support Vector Machines are of significant matter, as they can use both linear

and non-linear data in order to make predictions [5][27][28]

https://en.wikipedia.org/wiki/Estimation_theory
https://en.wikipedia.org/wiki/Statistical_parameter
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Likelihood_function
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Realization_(probability)

[23]

Figure 2-11 SVM model acquired from Wikipedia and edited

• Multi-layer Perceptron (MLP): MLP is an Artificial Neural Network defined by a function

𝑓: 𝑅𝑚 → 𝑅𝑜 , where 𝑚 is the size of input vector and 𝑜 is the size of output vector (i.e. the

result of 𝑓). Given a set of features 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 and a target 𝑦 an MLP can learn a non-

linear function approximator for either classification or regression. On this type of neural

network, multiple hidden layers might exist between the input and output layer increasing the

computational power.

Figure 2-12 One hidden layer MLP with scalar output acquired from sklearn

documentation

[24]

The leftmost layer, known as the input layer, consists of a set of neurons {𝑥𝑖|𝑥1, 𝑥2, … , 𝑥𝑛}

representing the input features. Each neuron in the hidden layer transforms the values from the

previous layer with a weighted linear summation 𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 followed by a non-

linear activation function 𝑔(⋅) = 𝑅 → 𝑅 - In many applications the units of these networks apply

a sigmoid function as an activation function. The output layer receives the values from the last

hidden layer and transforms them into output values [29].

Figure 2-13 Architecture of MLP neural network with one hidden layer acquired from

Wikipedia

Once configured, the neural networks have to be trained on the given dataset, a procedure that

can be achieved by a variety of methods. One state-of-the-art learning technique that is constantly

utilized by MLPs is called back-propagation. In this particular instance, the output we retrieve from

the network is compared to the expected output, thus calculating an error-function. The error is

propagated back through the network, updating the weights based respectively on their

contribution to the error. This process takes place until the MLP is either trained through every

instance of the training data or as long as the error calculation stabilizes around a small value [30].

Classification Algorithm Evaluation

To evaluate the results of the classification algorithms, we used the following performance

measures and techniques [31-34]:

• Cross-Validation (CV): Training an algorithm and evaluating its statistical performance on the

same data yields an overoptimistic result. CV was raised to fix this issue, starting from the

remark that testing the output of the algorithm on new data would yield a good estimate of its

performance [31]. Thus, CV is a very commonly employed technique used to evaluate classifier

performance. Schemes such as k-fold cross-validation are commonly used in classification [32].

The general procedure of k-fold CV is as follows:

o Shuffle the dataset randomly.

[25]

o Split the dataset into k folds

o For each unique fold:

▪ Label a fold as a hold out or test data set

▪ Label the remaining fold as a training data set

▪ Fit a model on the training set and evaluate it on the test set

▪ Retain the evaluation score and discard the model

o Summarize the performance of the model using the sample of model evaluation scores

(e.g. average cross-validation performance)

• Confusion Matrix: A confusion matrix is a specific table layout that allows the visualization of

the performance of a classification algorithm. Each row of the matrix represents the instances

in a predicted class while each column represents the instances in an actual class (or vice versa).

In a confusion matrix, True Positive (tp) and True Negative (tn) values denote the number of

positive and negative instances that are correctly classified. Meanwhile, False Positive (fp) and

False Negative (fn) values denote the number of misclassified negative and positive instances,

respectively, as shown in Table 2-1.

Table 2-1 form of a Binary Classification Confusion Matrix [3 3].

• Accuracy: Accuracy metric measures the ratio of correct predictions over the total number of

instances evaluated, calculated as:

𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

• Precision: Precision measures the positive patterns that are correctly predicted from the total

predicted patterns in a positive class, described by the following equation:

𝑡𝑝

𝑡𝑝 + 𝑓𝑝

• Recall: Recall measures the fraction of positive patterns that are correctly classified, using the

equation bellow:

𝑡𝑝

𝑡𝑝 + 𝑡𝑛

• F1-score: This metric represents the harmonic mean between recall and precision values:

2 ∗ 𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅ⅇ𝑐𝑎𝑙𝑙

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅ⅇ𝑐𝑎𝑙𝑙

https://en.wikipedia.org/wiki/Matrix_(mathematics)

[26]

Once evaluation metrics and techniques are established, Hyperparameter Tuning is a critical step

for achieving higher classification performances in a given task. Every machine learning algorithm has

a set of hyperparameters that need to be optimized for classification performance. Hyperparameter

tuning can be applied in a variety of ways; the two fundamental methods that we follow in this thesis

is Grid Search and Random Search [35]:

• Grid Search: During Grid Search the user specifies a finite set of values for each

hyperparameter, and grid search evaluates the Cartesian product of these sets. This method

suffers from the curse of dimensionality since the required number of function evaluations

grows exponentially with the dimensionality of the configuration space. An additional problem

of grid search is that increasing the resolution of discretization substantially increases the

required number of function evaluations.

• Random Search: random search samples configurations at random until a certain budget for

the search is exhausted. This tuning method works better than grid search when some

hyperparameters are much more important than others. Random search is a useful baseline

because it makes no assumptions on the machine learning algorithm being optimized, and,

given enough resources, it is expected to achieve performance arbitrarily close to near optimal

performance values.

2.5 Related Work

This section presents a number of relevant key studies within the domain of rating prediction.

Firstly, approaches of rating predicting frameworks based on sentiment analysis of reviews are

discussed. Secondly, a proposed research of feature analysis that shows the ways rating is correlated

to them, is presented. Lastly, a rating predicting model using user specific information is analyzed.

2.5.1 Sentiment analysis of reviews

In [36], the authors focus on the sentiment analysis of annotated reviews (specifically in German

Language) to train a model capable of predicting ratings. The structure of the information/data used

is referred bellow:

• all.data: The list of all the written reviews, the application’s name and the given rating.

• all.txt: The list of reviews that were used in the annotation process.

[27]

• all.csv: The list of all annotated subjective phrases and aspects, an ID for each subjective

phrase and the polarity.

• all.rel: A list of all annotated relations between the subjective phrases and their aspects.

 The prediction framework of that study is shown in Fig.2-14 below.

Figure 2-14. Prediction Process adapted from [36].

As the information is gathered, the subjective phrases of the sentences (information of the Reviews)

were annotated and their polarity (i.e. Positive, Negative, Neutral meaning) was determined, creating

an annotated collection of data filtered based on the predefined polarities. Afterwards, the annotated

reviews were assigned to the corresponding ratings giving a clearer statistical view on how the

analyzed reviews correspond to ratings. Thus, the predictor of user ratings was determined.

Regarding the prediction, multi-variate regressors [36] were used, taking into account the numbers

of each positive, negative and neutral polarities (referred to as features). A cost function was resolved,

in search of optimal parameters (tuning the predictor parameters) as well as normalization was applied

[28]

at the values of the features, due to the different amount of reviews between the apps (i.e. some apps

have many more reviews than others).

Two different sets of experiments were conducted In that study. The first set of experiments is used

to assess the significance of sentiment by applying different regression models, as introduced above.

The second set of experiments makes use of other predictors (average based). For each experiment

the Monte Carlo Cross Validation [37] is used as a performance measure. The existence of the polarity

of phrase-level sentiment is mandatory for textually-derived rating prediction to take place as seen

from the results of Tables.2-2 and 2-3.

Table 2-2 Mobile apps rating prediction: Importance of sentiment in the reviews [36].

Table 2-3 Mobile apps rating prediction: Other (average -based) predictors [36].

Similarly, in [38], the authors stem out of the observation that application ratings might differ from

given reviews. Proposing a unified rating system composed by combining the rating given by a user

and a numeric polarity as it is extracted of the reviews only to generate the final rating, their

proposition was based on a combination of sentiment analysis with an optimized probabilistic

approach.

[29]

At the beginning of the process, some words were collected for each category as baseline words

from sentiment-lexicons (SentiWordNet, MPQA and General Inquirer). Then candidate expressions

were generated by splitting reviews into sentences and extracting the ways the words depended to

each other. Due to the fact that a review might contain multiple expressions some reviews considered

inconsistent by not being identified as positive or negative. Thus, the authors ultimately created a

network of inconsistent and a network of consistent expressions---including a set of weighted edges

that denotes the respective relations between the candidate expressions---based on propositional

Logic/Propositional inference.

In the second set of experiments of that study a polarity probability was determined using both the

positive and the negative sensitivity of the expressions, leading to a function. The resulting function

was used by L-BFGS-B [39] algorithm to generate the polarities. Following the procedure Positive and

Negative probabilities are assigned, in order to determine the sentiment of the user reviews. Finally,

the polarity generated is converted to the rating scale (0 to 5), with the final rating of the application

being equal to the mean value of both the scaled polarity and numeric app rating. Below an example

is provided using this technique considering the rating and the review of a unanimous user for the app

Viber.

• The given Rating: 4

• The given Review:

“Pathetic, the new update of the emoticons is stupid. I hate the emoticon panda icon

opening his face that’s really weird, replace that with normal icon.”

A difference is observed between the starred rating and the review written by the user. Following

the procedure described above the probabilistic outcome of the review was 0.135, and the normalized

rating is 0.8. The average of those two numeric values results to 0.4675 which is a rating below average.

Thus, the combined rating limits the level of distinction between the two unique evaluations posted

by the user.

To conclude, both approaches are quite similar on using sentiment analysis and mathematical

models to predict ratings. The main difference between those approaches is the fact that the second

one proposes a new objective rating model based on reviews sentiment analysis, compared to the first

one that makes rating predictions solely based on basic sentiment analysis using regression models.

2.5.2 Feature Analysis of User Ratings

In [40], the authors use different linear and non-linear regression models (Random Forest, Linear

Regression, Support Vector Regression) for identifying the importance of app variables (i.e. app titles,

[30]

number of words in title, digits in title). An additional focus of the study is the extraction of significant

“keywords” (i.e. words from an app title) helpful on achieving higher app ratings. This study identifies

the importance variable for app rating as a regression method. The framework of the proposed model

is shown in Fig.2-15.

Figure 2-15. Research Model adapted from [40].

The model is separated into two sections. In the first section a variety of variables are identified

and then tested across different regression and correlation models. In the second section, keywords

from app titles are processed and various rankings are calculated based on ratings and frequency.

Bellow we provide a brief description of the regression models used in that study:

• Random Forest: Random Forest Regression model was used to determine the significance

of all the variables and their level of affection. This instance was evaluated afterwards

using Mean Squared Error.

• Support Vector Machine (SVM): SVM Regression model was utilized to predict the

significance of all numeric variables.

• Linear Regression: Linear Regression model was also leveraged to exploit the variable

importance of different variables with ratings, using only numeric values.

[31]

• Pearson Correlation: a Pearson Correlation model was applied for computing the

correlation between ratings and binary variables.

Following up are the evaluation techniques used, depending on each model.

• %IncMSE: The higher MSE shows that the variable is more significant while the lower

number shows that variable is less significant.

• RMSE (Root Mean Square Error): calculates the difference of the predicted values and the

estimator

• MAE (Mean Absolute Error): is the average distance between each point and the identity

line.

• p value: p value determines the importance of the results during hypothesis test.

Table 2-4 Random Forest Regression Results [40]

The results of the study (see Table.2-4) show that features such as no_of_reviews, genre,

character_count_in_name, and app_size are predictive factors that influence the most and appear to

highly impact the user ratings of the applications.

[32]

Table 2-5 Linear Regression Results [40]

Based on the linear regression model (see Table 2-5), symbol_count_in_name and type_of_app are

also significant variables compared to the others. Although, the importance of these two variables is

relatively low (3-9%), which is still higher than the coefficient values of the other variables (<2%).

Therefore, the correlation between apps, rating, and other variables is not linear.

Table 2-6 SVR results [40]

Similarly, as the SVR results indicate (Table 2-6), word_count_in_name and content_rating are

significant variables that influence user ratings.

As for the second part of that study---i.e. keyword analysis---the following tables present the core

results of the study. :

[33]

Table 2-7 Keywords with high rating [40]

[34]

Table 2-8 keywords with Low Rating [40]

The results of variable analysis show that there are some factors that might impact the rating of

apps. As app ratings have a small and finite scale, minor changes regarding the rating can contribute

into achieving an improved outcome, thus higher number of downloads and visibility. Thereafter, even

the factors of lower importance are considered important to the domain. The keywords analysis results

(Tables 2-7 and 2-8) show that there are some words that appear mostly on higher rated applications,

while on the other hand there are some keywords appearing mainly to low rated applications.

2.5.3 User specific rating prediction

In [41], the authors treat every unique downloaded application as a feature that describes the

user’s personal preference. First of all, “User-Specific Interest” is defined as the representation of

applications with increased level of relevance for the target user, used to express user’s distinctive

interests. The discussed interface, is built upon the idea of predicting applications’ ratings based on

user-specific information, a framework operating as seen in Fig. 2-16.

[35]

Figure 2-16. Weight-based rating prediction framework [41].

Based on Fig.2-16 information related to each user’s installs-uninstalls log is retrieved from

application marketplaces, and forwarded to a prediction server. Then, the ratings for these apps are

predicted by breaking down usage logs, and user-specific apps. The authors used the Weight-Based

Matrix Factorization (WMF) model, in which the weight of applications was computed based on Term

Frequency Inverse Document Frequency (TF-IDF) algorithm [42].A measurement metric called TMAE

[43] similar to mean absolute error (MAE), was used to measure the difference between the estimated

values and the observed values, utilizing top-k selection process.

The proposal of this research was compared to the existing methods of Probabilistic Matrix

Factorization (PMF) [44] and Kernelized Probabilistic Matrix Factorization (KPMF) [45]. During the

evaluation process, all rating prediction methods are tested on 4 different training sets that are

subdivisions of the starting dataset in the following matter 60%, 70%, 80% and 90%, respectively. In

particular, a dataset deviation of 60% implies that 60% of the known rating serves as an input of the

matrix and is utilized in order to predict missing rating values. The known rating entries occupy 3% of

the total rating matrix. All the experiments were conducted with k = 10. The following results (see

Table 2-9), shows that WMF method improves the results of the rating predictions as it performs better

than the other two methods on every experiment.

[36]

Table 2-9 MAE Accuracy comparison on Rating prediction [41].

2.5.4 Related work compared to our approach

Approach 2.5.1: The research described in this sub-section of related work, focuses mainly on

analyzing textual reviews and predicting ratings, using only this feature as a guideline. On the other

hand, on our approach we do not make use of textual data, contrariwise we take advantage of

structured data that includes information about application features (e.g. number of reviews, size of

app). Furthermore, our approach includes a classification treatment of the problem which is more

effective compared to regression, on experience modeling problems.

Approach 2.5.2: This sub-section’s approach makes use of just nominal features included in

applications’ textual characteristics; and utilizes regression models to make a variety of predictions.

An approach that differs both on the features used, but also on the machine learning model as we

proceed to solve the problem using classification.

Approach 2.5.3: In this case as well, the feature information was different. The users’ log was used as

feature providing a user-specific approach compared to our solution that uses openly accessible

data.

Summary

In this Chapter , we introduced fundamental definitions that are utilized in the thesis, such as

Marketability. We gave a brief description of data structures, therefore introducing the way structured

data is cleansed and interpreted. Also, we provided an extensive analysis of Machine Learning, with a

main focus on paradigms that are used in our approach i.e. Classification, Classification Algorithms,

Evaluation Metrics. Furthermore, related work to the thesis was quoted in order to state the problem

and make an introductory to our approach.

[37]

CHAPTER 3

OUR APPROACH

Section 2.5 showed that the frameworks for resolving application rating prediction, treat the

problem as either regression, i.e. predicting exact numerical value of ratings, or by analyzing the factors

that affect rating. Our approach, instead, formulates the task as a classification problem, since our

main goal is to investigate applications based on their marketability level. Furthermore, as stated by

Yannakakis & Togelius [5][46], on a common problem of creating player models using ratings, the use

of classes eliminates part of the inter-personal biases introduced with ratings. As player modeling is

similar to customer modeling (both essentially being subclasses of user modeling), classification is

considered to be effective since rating is the feature we focus at.

Thereafter, we survey the ability to predict the predefined rating “hot-zone” (an interval of ratings

that is correlated to marketable apps i.e. The class “High”) of an application based on its features,

answering the core research question about the ability of an application to be effectively marketed on

Google Play.

3.1 Overview

To solve the classification problem at hand, we view the problem as in three different ways: 1) as

a Binary Classification problem, 2) as a Binary Classification problem with a varying threshold between

classes and 3) as a Multiclass Classification problem. In binary classification, the data of Section 3.2 has

been labelled as two classes “Low” and “High” based on the mean count of ratings. The second solution

is binary as well, although applying a threshold that cuts off values with a purpose to observe if better

training is attained, thus better learning. In the last framework, we label the data in three rating classes,

i.e. “Low”, “Mid” and “High”. All three frameworks utilize the same classifiers, cross-validation method,

hyperparameter tuning technique and evaluation approach.

In addition to our formulation of the rating prediction problem, our approach consists of the

following stages:

• Data Preprocessing & Data Analysis.

• Machine Learning phase.

• Evaluation of solutions and models.

[38]

3.2 Data Preprocessing & Data Analysis

To test our approaches we use a dataset from Kaggle, which includes details of the applications on

Google Play. In the dataset used there are 13 features including the application name, the category

each app belongs in, the overall user rating of each app, the number of reviews for each app, the size

of each app, the number of user downloads for each app, the type of each app (Paid, Free), the price

of each app (null in case app is free), the age group each application is targeted at, the secondary

genres an app belongs to (apart from its main category i.e. An application might belong to “Games”

category and on “Family” category as well, with the second one referring to secondary genres), the

date of the last update of each app on the platform, the current version of each app, and the minimum

required Android version for each app in order to operate. The dataset contains information for 10,841

applications by year 2018, split into two data type categories float64 (1) and object (12) as shown in

Table. 3-1.

Table 3-1. Features of the Dataset

At a first glance, rating is the feature with the fewer values compared to the other features. A high

level statistical analysis on the rating of the apps, provided us with the information displayed in Table

3-2.:

Column - Feature (data type) - non null values

•0. App (object) - 10,841 non-null values

•1. Category (object) - 10,841 non-null values

•2. Rating (float64) - 9,367 non-null values

•3. Reviews (object) - 10,841 non-null values

•4. Size (object) - 10,841 non-null values

•5. Installs (object) - 10,841 non-null values

•6. Type (object) - 10,840 non-null values

•7. Price (object) - 10,841 non-null values

•8. Content Rating (object) - 10,840 non-null values

•9. Genres (object) - 10,841 non-null values

•10. Last Updated (object) - 10,841 non-null values

•11. Current Ver (object) - 10,833 non-null values

•12. Android Ver (object) - 10,838 non-null values

[39]

Table 3-2 Description of Rating column (data type float64)

The ratings of the applications in the Google Play store range from 1 to 5, in that case a maximum

value of 19.0 is considered an outlier. When the rating is equal to 19.0, the remaining features of this

entry are filled with inconsistent and incomplete data. The first value of this record is missing (App

name). All the other values are respectively propagated backward starting from "Category" towards

the "Current Ver", and the last column which is "Android Ver" is null. This specific row is removed from

the dataset.

A core challenges in our analysis , is the missing values of ratings , which sum up to 1.474 values

(I.e. 13.5% of all rating values). These rows cannot be used for further Machine Learning processing.

However, to avoid removing this data and lose information (as our dataset has limited size), we decided

to fill the empty values using the median of the remaining ratings, resulting to the rating statistics given

in Table 3-3:

Table 3-3 Description of Rating column after removing row 10,472 (data type float64)

Type, Content Rating, Current Ver. and Android Ver. (6,8,11,12 respectively) features contain 13

empty values in total (less than 0,2% of the rows), considering that it will not affect the dataset.

mean = 4.19 std = 0.53

min =1.0 max = 19.0

mean = 4.20 std = 0.48

min =1.0 max = 5.0

[40]

Therefore, we choose to completely remove them from the dataset. The rating distribution after

removing and modifying the null values is shown in Fig.3-1.

Figure 3-1 Distribution of rating after modifying NaN values.

Similar to the rating feature, other features are cleaned and normalized. Analyzing the dataset, we

decided to focus the data cleaning process on columns that contain values with unwanted characters

as described:

• Size: data entries containing either the character ‘k’ or the symbol ‘M’, referring to ‘kilobytes’

and ‘megabytes’ respectively. The characters were removed and the value was converted to

the corresponding float.

• Installs, Price, Last Updated, Current Ver, Android Ver: Punctuation and special symbols are

removed (i.e. +, {, }, [,]) and the values is casted to floats.

The remaining features (App, Category, Type, Content Rating, Genres, Reviews) did not contain any

character or symbols that required removal. Therefore, label encoding is performed on these features

to map each value to a number. Thus, values that ties or are close to each other losing such information

after encoding.

After the data cleaning and preliminary analysis, we investigated the correlations between the

features.

[41]

Figure 3-2 Feature correlation matrix

For this purpose, we used the Pearson’s correlation coefficient. Pearson’s correlation is calculated

as the covariance of the two variables divided by the product of the standard deviation of each data

sample. Normalization of the covariance between the two variables gives an interpretable score, that

describes the level of correlation. Based on Fig.3-2, the correlation among “Rating” and the other

features is not strong (Mostly around 0.6), besides “Last Updated”, meaning, that features are

dependent upon each other. The strong correlation between “Last Updated” and “Rating” features

(>90%) is of significant importance on predicting “Rating”. Note that Fig.3-2 illustrates that the features

have only positive or null correlations, therefore negative correlations do not exist. This implies that

the features change either in the same direction or there is no relationship between them. In general,

most of the correlations between the features are positive and range from 35% to 70%, not indicating

any strong relations, although can be helpful in matters of pattern recognition. Exceptional case is

“Current Ver” feature that does not correlate at all with any of the other features (Pearson’s

correlation = 0.0)

[42]

3.3 Proposed Machine Learning Models

3.3.1 Classifying Rating

As described on previous sections, the proposed approach implements classification models. The

first step is to classify the Ratings. The splitting criterion used to classify the ratings was the mean value

(Table 3-2 & Figure 3-1). With this approach a balanced dataset is assumed containing almost the same

number of objects per class. For the binary classification, we assigned values that exceeded the rating

of 4.2, in class ‘High’ (5523) and those lower or equal to 4.2 in class ‘Low’ (5307).

Figure 3-3 Rating Binary classification.

On the other hand, to create the binary classification paradigm with a varying threshold we have

set 4.2 as ‘m’ and we dropped from the dataset the data with rating values that belong in the intervals

[m-x, m], [m, m+y], where ‘x’ and ‘y’ are variables defining the range of values to be removed

respectively on left and right side of mean (threshold = y+x) as in Fig.3-4. The condition we tried to

satisfy, was the threshold to cut off the values in a way, that one class would not strongly outnumber

the other (e.g. 80%-20%). Nevertheless, the threshold was assigned on the first case as threshold=0.5

and on the second case as threshold=1.0, as those two thresholds would both satisfy the condition

described above and would be different enough for this move to be meaningful. That way, the first

model would not include the values that belong at [4.0,4.4] and the second model would not include

[43]

the values that belong at [3.5,4.4]. Therefore, we performed a mutual approach on assigning the

classes as the one used above..

Figure 3-4 Threshold creation using the zoomed Fig.3-1.

The outcome is presented, bellow:

• Threshold = 0.5, “High” = 2459, “Low” = 3496

[44]

Figure 3-5 Rating Binary Classification with Threshold=0.5

• Threshold = 1.0, “High” = 2459 – “Low” = 2382

Figure 3-6 Rating Binary Classification with Threshold=1.0

The last approach was the multiclass classification paradigm, creating three classes “Low” (3162),

“Mid” (4375), “High” (3293) using the same approach, of keeping the sizes of the classes as similar as

possible.

[45]

Figure 3-7 Rating Multi -class Classification.

The baseline for each solution was calculated, as follows:

𝑏𝑎𝑠ⅇ𝑙𝑖𝑛ⅇ =
𝑛𝑢𝑚𝑏ⅇ𝑟 ⅇ𝑙ⅇ𝑚ⅇ𝑛𝑡𝑠 𝑜𝑓 𝑡ℎⅇ 𝑏𝑖𝑔𝑔ⅇ𝑟 𝑐𝑙𝑎𝑠𝑠

𝑛𝑢𝑚𝑏ⅇ𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 ⅇ𝑙ⅇ𝑚ⅇ𝑛𝑡𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠ⅇ𝑠

3.3.2 Machine Learning Adaptation

Once the labelling of the data is completed, the next step is to run and test our Machine Learning

algorithms. In our case, we use a variety of popular algorithms-classifiers to predict ratings: those are

Random Forest, Decision Trees, Multi-layer Perceptron, K-Nearest Neighbors, Logistic Regression and

Support Vector Machines. The goal of this step is to find the best classifier for our problem by

benchmarking the aforementioned algorithms based on the accuracy metrics as described in section

2.4.2.

The techniques are divided into two categories:

• Non-deterministic: The results vary in terms of consistency on each execution, due to the

non-deterministic nature of some classifiers. Random Forest, Decision Trees & Multi-layer

Perceptron are the classifiers on this set.

• Deterministic: The results are consistent in every single execution of the algorithm. . The

algorithms of k-Nearest Neighbor, Logistic Regression and Support Vector Machines belong

in this category.

We are handling the randomness of the first set by executing each algorithm ten consecutive times

and keeping track of each iteration’s results. Note that, firstly, we performed hyperparameter tuning

(section 2.4.2) to identify the optimal parameters that maximize the accuracy of each classifier.

As we use six different classifiers that need to be tuned, we leverage advantage of Randomized

Hyperparameter tuning, which utilizes Stratified k-Fold Cross-Validation to evaluate the performance

of the tested parameters (section 2.4.2).

Then, the tuning method is as follows:

• sampled 20 different sets of parameters; from a predefined parameters’ matrix

• tested them

• evaluated them

• and returned the sample that acquired the highest accuracy

We preferred this method rather than exhaustive search (i.e. trying every possible combination of

parameters) because it is less time consuming, but in practice it also yields promising results on

selecting hyperparameters.

[46]

The visualization of the process described above is depicted in Fig 3-8.

Figure 3-8 Hyperparameter tuning process.

Table 3-5 shows the configuration of the hyperparameters after the tuning, while Table 3-4 outlines

the hyperparameters used per algorithm.

Extraction of optimal Hyperparameters

Highest accuracy on CV process

Randomized Tuning

Random Sample of Hyperparameters Evaluation of Performance for each sample (k-fold CV)

Parameters' Matrix Declaration

Assignment of an interval of possible values for each hyperparameter

Defining Classifier

Fitting the model

[47]

Table 3-4 Description of all the parameters we tuned on every algorithm

Tuned Hyperparameters:

Random Forest

•criterion: The function to measure the quality of a split.

•max_depth: The maximum depth of the tree

•n_estimators: Number of trees in the forest

•min_samples_split: The minimum number of samples required to split an internal node

•min_samples_leaf: The minimum number of samples required to be at a leaf node

•max_features: The number of features to consider when looking for the best split (the search for a split does not stop until at least one valid
partition of the node samples is found, even if it requires to effectively inspect more than max_features.

Decision Tree

•max_depth: The maximum depth of the tree

•max_features: The number of features to consider when looking for the best split

•min_samples_split: The minimum number of samples required to split an internal node

•min_samples_leaf: The minimum number of samples required to be at a leaf node

•splitter: The strategy used to choose the split at each node

•criterion: The function to measure the quality of a split.

Multi-layer Perceptron

•hidden_layer_sizes: number of neurons of each hidden layer.

•solver: The solver for weight optimization.

•learning_rate: Learning rate schedule for weight updates.

•activation: Activation function for the hidden layer.

•alpha: L2 penalty (regularization term) parameter.

Logistic Regression

•penalty: Used to specify the norm used in the penalization

•solver: Algorithm to use in the optimization problem.

•C: Inverse of regularization strength

k-Nearest Neighbor

•n_neighbors: Number of neighbors to get

•metric: The distance metric to use for the tree

•weights: Weight function used in prediction

Support Vector Machines

•C: Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly positive. The penalty is a
squared l2 penalty.

•kernel: Specifies the kernel type to be used in the algorithm

•gamma: Kernel coefficient

[48]

Table 3-5 Tuned Hyperparameters

A few key aspects observed during the parameter tuning process and according to the resulted

parameters (according to Table 3-5) are as follows:

• Whenever the Tree classifiers’ (Random Forest, Decision Tree) “max_depth” parameter

was set at values higher than the number of features, the models would overfit.

• Logistic Regressions’ parameter “C”, appears to be the parameter that affects the tuning

the most.

• K-Nearest Neighbors uses a significant population of neighbors (more than 20) to perform

best.

• Support Vector Machines, appear to provide optimal results in this dataset when using RBF-

kernels.

Binary Classification

•Random Forest: (criterion= 'gini', max_depth = 6 , max_features = 3 , min_samples_leaf = 2 , min_samples_split = 12 ,n_estimators
=1000)

•Decision Tree: (max_features='auto', max_depth=6, min_samples_split=11, splitter='best', min_samples_leaf=2, criterion='gini',
splitter='best')

•Multi-layer Perceptron: (solver = 'lbfgs' , learning_rate= 'adaptive' , hidden_layer_sizes = (8,) ,activation='tanh',alpha=0.01)

•k-Nearest Neigbor: (n_neighbors=25, metric = 'manhattan', weights='uniform')

•Logistic Regression: (penalty ='l1', solver = 'liblinear', C =0.02811768697974228)

•Support Vector Machines: (C = 1000, kernel= 'rbf', gamma = 0.001)

Binary Classification (threshold = 0.5)

•Random Forest: (criterion='gini' , max_depth = 9 , max_features = 'auto' , min_samples_leaf = 5 , min_samples_split = 12
,n_estimators = 1000)

•Decision Tree: (max_features='auto', max_depth=9, min_samples_split=5, splitter='random', min_samples_leaf=3, criterion='entropy',
splitter='best')

•Multi-layer Perceptron: (solver = 'lbfgs' , learning_rate= 'constant' , hidden_layer_sizes = (8,),activation='tanh',alpha=0.1)

•k-Nearest Neigbor: (n_neighbors = 25, metric='euclidean', weights='uniform')

•Logistic Regression: (penalty ='l2', solver='liblinear', C=109.85411419875572)

•Support Vector Machines: (C=1000, kernel='rbf', gamma=0.0001)

Binary Classification(threshold = 1.0)

•Random Forest: (criterion= 'gini' , max_depth = 12 , max_features = 'auto' , min_samples_leaf = 4 , min_samples_split = 10
,n_estimators = 300)

•Decision Tree: (max_features='auto',max_depth=12,min_samples_split=3,splitter='random',min_samples_leaf=4,criterion='gini',
splitter='best')

•Multi-layer Perceptron: (solver = 'lbfgs' , learning_rate= 'adaptive' , hidden_layer_sizes = (8,), activation='tanh',alpha=0.01)

•k-Nearest Neigbor: (n_neighbors = 29, metric='euclidean', weights='uniform')

•Logistic Regression: (penalty='l1', solver='liblinear', C=719.6856730011514)

•Support Vector Machines: (C = 1000, kernel='rbf', gamma = 0.0001)

Multiclass Classification

•Random Forest: (criterion= 'gini' , max_depth = 6 , max_features = 'auto' , min_samples_leaf = 3 , min_samples_split = 10
,n_estimators =300)

•Decision Tree: (max_features=3 ,max_depth=6,min_samples_split=11,splitter='best',min_samples_leaf=3,criterion='gini',
splitter='best')

•Multi-layer Perceptron: (solver = 'adam' , learning_rate= 'adaptive' , hidden_layer_sizes = (8,2),activation='tanh',alpha=0.0001)

•k-Nearest Neigbor: (n_neighbors = 27 , metric= 'manhattan', weights='uniform')

•Logistic Regression: (penalty ='l1', solver='liblinear' , C=0.2682695795279725)

•Support Vector Machines: (C=1000, kernel='rbf', gamma=0.0001)

[49]

• Multi-layer Perceptron appears to perform best with the following architectures: one

hidden layer of 8 neurons in binary classification cases and two hidden layers of 8 and 2

neurons respectively in multiclass classification case (the number of neurons should not

exceed the number of features).

3.4 Performance Evaluation

Using the tuned hyperparameters, we created a Machine Learning framework for general

evaluation purposes, in which every case is using the parameters as described in Table 3-5 in order to

acquire the Confusion Matrices, Classification Reports, CV train & test accuracy diagrams and t-Tests

between, the classifiers results. The process is described in the Fig. 3-9 as follows:

Figure 3-9 Evaluation Framework

Based on this framework, the tuned Hyperparameters are parsed towards the two different

categories of classifiers. The first category of classifiers would be executed ten times each and the

mean scores and metrics for each algorithm would be extracted. On the other hand, the scores and

metrics of the deterministic algorithms would be extracted just by executing each algorithm one time,

since the result would not be different. The final step of the process was the evaluation of the following

measures::

• The Cross-Validation accuracy of both the training & testing process for each algorithm

would be plotted on the same graph (see Results chapter for an extensive analysis). The

[50]

graph is used to give a general performance overview of all algorithms. The Confusion

Matrices showing the actual and predicted number of points for each algorithm.

• The Classification Report for each case, that includes metrics calculated out of the

Confusion Matrices such as Recall, Precision, and f1-score.

• A statistical comparison of the test accuracy results via paired t-tests as depicted in the

template of Table 3-6 (all algorithms are tested for significance in pairs).

 Random

Forest

k-Nearest

Neighbor

Logistic

Regression

Support Vector

Machines

Decision Tree

k-Nearest

Neighbor

RF

vs

kNN

Logistic

Regression

RF

vs

LR

kNN

vs

LR

Support Vector

Machines

RF

vs

SVM

kNN

vs

SVM

LR

vs

SVM

Decision Tree RF

vs

DT

kNN

vs

DT

LR

vs

DT

SVM

vs

DT

Multi-layer

Perceptron

RF

vs

MLP

kNN

vs

MLP

LR

vs

MLP

SVM

vs

MLP

DT

vs

MLP

Table 3-6 t-Test represented application

Each cell of Table 3-6 contains two values: a t-statistic and a p value. If t-statistic<0 then the row

classifier is considered better and if the t-statistic>0 then the column classifier is considered better.

The p-value is used to assess whether the result of t-statistic is random or whether the difference

between two performance entries is significant (in this thesis we use a significance level of 5% i.e.

pbaseline = 0.05).

[51]

CHAPTER 4

RESULTS

In this Chapter we present the key results of our experiments in the following fashion:

• Binary Classification Results

o Confusion matrices and Classification reports for each model used (Fig.4-1 to Fig 4-

12).

o Cross validation train & test accuracy results.

o T-test performed amongst models.

o Overview of solution

• Binary Classification Results (threshold = 0.5)

o Confusion matrices and Classification reports for each model used (Fig.4-14 to 4-

25).

o Cross validation train & test accuracy results.

o T-test performed amongst models.

o Overview of solution

• Binary Classification Results (threshold = 1.0)

o Confusion matrices and Classification reports for each model used (Fig.4-27 to 4-

38).

o Cross validation train & test accuracy results.

o T-test performed amongst models.

o Overview of solution

• Multiclass Classification Results

o Confusion matrices and Classification reports for each model used (Fig.4-40 to 4-

51).

o Cross validation train & test accuracy results.

o T-test performed amongst models.

o Overview of solution

• Overview of solutions

[52]

Binary Classification Results
In the subsection bellow, Figures 4-1 to 4-12 represent the confusion matrices and classification

reports for each classification model used (Binary classification threshold = 0.0)

Random Forest

Figure 4-1 RF confusion matrix

[53]

Figure 4-2 RF classification report

K-Nearest Neighbor

Figure 4-3 kNN confusion matrix

Figure 4-4 kNN confusion matrix

[54]

Logistic Regression

Figure 4-5 LR confusion matrix

Figure 4-6 LR classification report

[55]

Support Vector Machine

Figure 4-7 SVM confusion matrix

Figure 4-8 SVM classification report

[56]

Decision Tree

Figure 4-9 DT confusion matrix

Figure 4-10 DT classification report

[57]

Multi-layer Perceptron (MLP)

Figure 4-11 MLP confusion matrix

Figure 4-12 MLP classification report

[58]

Accuracy Scores

Figure 4-13 Train & Test Cross-Validation Accuracy scores

T-test

Random

Forest

k-Nearest

Neighbor

Logistic

Regression

Support Vector

Machines

Decision Tree

k-Nearest

Neighbor

t = 0.9135

p = 0.3805

Logistic

Regression

t = -0.3486

p = 0.7339

t = -0.884

p = 0.3862

Support Vector

Machines

t = -1.5248

p = 0.1555

t = -1.6954

p = 0.1043

t = -0.722

p = 0.4780

Decision Tree t = -2.9873

p = 0.01502

t = -1.4938
p = 0.1612

t = -0.2326

p = 0.8199

t = 0.8147

p = 0.4308

Multi-layer

Perceptron

t = -9.1173

p = 0.00055

t = -1.7181
p = 0.1133

t = -0.4274

p = 0.6772

t = 0.6074

p = 0.5556

t = -0.6457

p = 0.5315

Table 4-1 performed t-Test results

[59]

By observing the confusion matrices, classification reports, Figure 4-13 and Table 4-1 we come to the

following conclusions for the binary classification results:

• The average accuracy of the binary classification algorithms appears to be 66.8%, with the

worst predicting classifier being KNN (65%) and best SVM (68,5%).

• We accurately predict at least 14% cases above the baseline (on average), so our experiment

is not considered a “coin-flip”.

• The models do not overfit/underfit according to Figure 4-1, as both the train and test

accuracy do not differ significantly.

• The class “Low” is misclassified a lot during the predictions as the instance that acquired the

most accurate prediction was 57% from MLP and worst 34% from RF. In addition, class

“High” appears to be predicted significantly better, with the highest predictions being 98%

(RF) and the lowest being 79% (both KNN and MLP).

• The t-Test (Table 4-1) shows that we are not able to profound any of the classifiers optimal

compared to the others, as in most cases the p-value is large enough to declare that the

result of the comparison is random.

[60]

Binary Classification with Threshold (threshold = 0.5)
In the subsection bellow, Figures 4-14 to 4-25 represent the confusion matrices and classification

reports for each classification model used (Binary classification threshold = 0.5).

Random Forest

Figure 4-14 RF confusion matrix

Figure 4-15 RF classification report

[61]

K-Nearest Neighbor

Figure 4-16 kNN confusion matrix

Figure 4-17 kNN classification report

[62]

Logistic Regression

Figure 4-18 LR confusion matrix

Figure 4-19 LR classification report

[63]

Support Vector Machine

Figure 4-20 SVM confusion matrix

Figure 4-21 SVM classification report

[64]

Decision Tree

Figure 4-22 DT confusion matrix

Figure 4-23 DT classification report

[65]

Multi-layer Perceptron (MLP)

Figure 4-24 MLP confusion matrix

Figure 4-25 MLP classification report

[66]

Accuracy

Figure 4-26 Train & Test Cross-Validation Accuracy scores (Threshold=0.5)

T-test

Random

Forest

k-Nearest

Neighbor

Logistic

Regression

Support Vector

Machines

Decision Tree

k-Nearest

Neighbor

t = 1.6923

p = 0.1112

Logistic

Regression

t = 0.2761

p = 0.7862

t = -1.8911

p = 0.0718

Support Vector

Machines

t = 0.5066

p = 0.6260

t = -0.9066

p = 0.3789

t = 0.3704

p = 0.7162

Decision Tree t = 12.9703

p = 7.42e-05

t = -0.8857
p = 0.3862

t = 1.683

p = 0.1079

t = 0.6257

p = 0.5423

Multi-layer

Perceptron

t = 15.1455

p = 9.81e-05

t = -1.0611
p = 0.3053

t = 0.5781

p = 0.5717

t = -0.0421

p = 0.967

t = -1.0621

p = 0.3049

Table 4-2 performed t-Test results

[67]

By observing the confusion matrices, classification reports, Figure 4-26 and Table 4-2 we come to the

following conclusions for the binary classification results:

• The average accuracy of the binary classification with threshold = 0.5 appears to be 75.9%,

with the worst predicting classifier being KNN (72.5%) and best RF (79.5%).

• We accurately predict at least 16% cases above the baseline (on average) in this solution

too, so our experiment is not considered a “coin-flip”.

• The models do not overfit/underfit according to Figure 4-2, as both the train and test

accuracy do not differ significantly.

• The classifiers seem to predict both “High” and “Low” classes correctly with almost the

same rate. The accuracy for class “High” ranged between 71% (KNN) and 87% (DT), as for

class “Low” it ranged between 61% (DT) and 78% (LR and MLP).

• The t-Test (Table 4-2) shows that we are not able to profound any of the classifiers optimal

compared to the others, as in most cases the p-value is large enough to declare that the

result of the comparison is random.

[68]

Binary Classification with Threshold (threshold = 1.0)
In the subsection bellow, Figures 4-27 to 4-38 represent the confusion matrices and classification

reports for each classification model used (Binary classification threshold = 1.0).

Random Forest

Figure 4-27 RF confusion matrix

Figure 4-28 RF classification report

[69]

K-Nearest Neighbor

Figure 4-29 kNN confusion matrix

Figure 4-30 kNN classification report

[70]

Logistic Regression

Figure 4-31 LR confusion matrix

Figure 4-32 LR classification report

[71]

Support Vector Machine

Figure 4-33 SVM confusion matrix

Figure 4-34 SVM classification report

[72]

Decision Tree

Figure 4-35 DT confusion matrix

Figure 4-36 DT classification report

[73]

Multi-layer Perceptron (MLP)

Figure 4-37 MLP confusion matrix

Figure 4-38 MLP classification report

[74]

Accuracy

Figure 4-39 Train & Test Cross-Validation Accuracy scores (Threshold=1.0)

T-test

Random

Forest

k-Nearest

Neighbor

Logistic

Regression

Support Vector

Machines

Decision Tree

k-Nearest

Neighbor

t = 0.2701

p = 0.7912

Logistic

Regression

t = 0.1819

p = 0.8584

t = -0.1105

p = 0.9131

Support Vector

Machines

t = 0.3864

p = 0.7053

t = 0.1076

p = 0.9154

t = 0.2249

p = 0.8245

Decision Tree t = 9.4828

p = 3e-07

t = 0.2094
p = 0.8364

t = 0.3928

p = 0.6990

t = 0.0618

p = 0.9513

Multi-layer

Perceptron

t = 19.4002

p = 4.51e-07

t = 0.0415
p = 0.9674

t = 0.1591

p = 0.8759

t = -0.0644

p = 0.9496

t = -0.2605

p = 0.7985

Table 4-3 performed t-Test results.

[75]

By observing the confusion matrices, classification reports, Figure 4-39 and Table 4-3 we come to

the following conclusions for the binary classification results:

• The average accuracy of the binary classification with threshold = 1.0 appears to be 85.6%,

with the worst predicting classifier being SVM, DT and MLP (85%) and best RF (87%).

• We accurately predict at least 35% cases above the baseline (on average), so our

experiment is not considered random, presenting the highest gain so far.

• The models do not overfit/underfit according to Figure 4-3, as both the train and test

accuracy do not differ significantly.

• The classifiers seem to predict both “High” and “Low” classes satisfactorily, although class

“High” nearly gets absolute predictions in terms of accuracy. The accuracy for class “High”

ranged between 95% (LR) and 99% (KNN), as for class “Low” it ranged between 72% (KNN,

SVM, DT and MLP) and 77% (LR).

• The t-Test (Table 4-3) shows that we are not able to profound any of the classifiers optimal

compared to the others, as in most cases the p-value is large enough to declare that the

result of the comparison is random.

[76]

Multi-class Classification (Three classes)
In the subsection bellow, Figures 4-40 to 4-51 represent the confusion matrices and classification

reports for each classification model used (Multiclass classification).

Random Forest

Figure 4-40 RF confusion matrix

Figure 4-41 RF classification report

[77]

K-Nearest Neighbor

Figure 4-42 kNN confusion matrix

Figure 4-43 kNN classification report

[78]

Logistic Regression

Figure 4-44 LR confusion matrix

Figure 4-45 LR classification report

[79]

Support Vector Machine

Figure 4-46 SVM confusion matrix

Figure 4-47 SVM confusion matrix

[80]

Decision Tree

Figure 4-48 DT confusion matrix

Figure 4-49 DT classification report

[81]

Multi-layer Perceptron (MLP)

Figure 4-50 MLP confusion matrix

Figure 4-51 MLP classification report

[82]

Accuracy

Figure 4-52 Train & Test Cross-Validation Accuracy scores Multiclass

T-test

Random

Forest

k-Nearest

Neighbor

Logistic

Regression

Support Vector

Machines

Decision Tree

k-Nearest

Neighbor

t = 0.1268

p = 0.9018

Logistic

Regression

t = 0.3706

p = 0.7194

t = 0.1733

p = 0.8643

Support Vector

Machines

t = 1.2534

p = 0.2416

t = 0.761

p = 0.4565

t = 0.5793

p = 0.5695

Decision Tree t = 5.3382

p = 0.00045

t = 0.6453
p = 0.5341

t = 0.3998

p = 0.6832

t = -0.4113

p = 0.6899

Multi-layer

Perceptron

t = 7.4337

p = 0.00153

t = 0.5066
p = 0.6244

t = 0.2601

p = 0.8004

t = -0.5684

p = 0.5834

t = -1.0843

p = 0.3055

Table 4-4 performed t-Test results

[83]

By observing the confusion matrices, classification reports, Figure 4-52 and Table 4-4 we come to

the following conclusions for the binary classification results:

• The average accuracy of the multiclass classification appears to be 56.5%, with the worst

predicting classifier being SVM (54.3%) and best RF (58.5%).

• We accurately predict at least 15% cases above the baseline (on average) once again, so our

experiment is providing some level of predictions.

• The models do not overfit/underfit according to Figure 4-4, as both the train and test accuracy

do not significantly differ.

• The classifiers in this case present the abnormality, that “High” labels are strongly misclassified

as “Low”. Thereafter, “Low” labels misclassified as “High”, but not that intensively. As for

“Mid” labels, they are either classified correctly or “Low” and rarely “High”. Although, almost

no labels (nor “High” or “Low”) are falsely classified as “Mid”.

• The t-Test (Table 4-4) shows that we are not able to profound any of the classifiers optimal

compared to the others, as in most cases the p-value is large enough to declare that the result

of the comparison is random.

Results Overview

After examining each solution independently, we come to compare the solutions and point out a

number of key conclusions. First of all, we observe that within each classification approach we followed

there doesn’t appear a winner-takes-it-all (optimal) algorithm, that significantly outperforms all

others. Another important finding is that it seems that none of the models either overfits or underfits

in any of the solutions. Overall, the threshold we created appears to increase the efficiency of the

models, with the best performing solution amongst all being the binary classification with threshold =

1.0.

Despite the fact that the accuracy levels seem to differ for each solution, a compelling notice is the

fact that the solutions’ average gain considering the baseline is about the same on each case. The

exception to the outcome mentioned above is the binary classification with threshold = 1.0, where the

gain appears to be doubled compared to the other solutions. Thereafter, we came to realize that this

classification approach performs best. We underline at this point that all of the models come with a

certain level of accurate predictions, high enough to reject the possibility of the experiments being

“coin-flips”.

[84]

CHAPTER 5

CONCLUSION

5.1 Summary of Results and Contributions

Going back to our basic research question of Chapter 1, “Can we efficiently predict the user Ratings

of applications in Google Play, using the information within their features?” the answer appears to be

affirmative. As discussed in Results (Chapter 4), a solution capable of predicting satisfactorily ratings

based on the other features of applications, is plausible reaching up to 87% accuracy. Overall, it seems

we can predict user ratings to a good degree, focusing mainly on creating a good solution model rather

than aiming to finding the classifier that optimizes the output to the maximum in this specific case. As

six of the most-widely used classifiers were utilized, the results show that well-tuned algorithms would

solve our problem achieving almost the same results. In summary it appears that we can offer an

efficient solution on predicting ratings, taking advantage of a different perspective compared to

existing studies (see Related Work Section 2.5).

5.2 Limitations

The methods utilized in this thesis are general and commonly used in a variety of similar Machine

Learning problems. Both the technique of creating a threshold and the algorithms used, however, were

modified and adapted to solve the problem of ratings prediction. Thresholds and algorithms are

problem dependent, therefore proper parametrization is mandatory in each different case study or

domain we tackle. On the other hand, the evaluation techniques and metrics can be applied on every

problem as they use the information acquired from the tuned step and do not have to be modified.

Finally, the obtained results appear to be solid within this dataset; we do not know, however, to which

extend this approach would be applicable to other datasets containing user ratings about apps or

other domains (beyond apps) containing user ratings.

5.3 Future Work

In this final section of the thesis we suggest a number of possible areas for the extension of our

approach in the short-term future..

[85]

• Google Play is not the only platform used to market applications. The markets vary

depending on the devices’ manufacturer, thereafter the existence of App Store and App

Gallery could not be ignored. As a future step, a similar research could take place using

datasets referred to other markets. Therefore, our aims is to compare the results for each

given case and conclude firstly on how feasible is to create a marketable application

amongst all the different platforms and secondly to derive the common factors that make

an application marketable in this case.

• Besides Google Play, other platforms take advantage of similar rating systems. Another

possible approach would be to try applying our frameworks with proper tuning on different

markets (e.g. AirBnB) and examine the appropriateness and generality of our approach

beyond software apps.

• A study we consider for future work is to approach this problem from a different (ordinal)

perspective using Preference Learning, —which is another subfield of Machine (supervised)

Learning. Preference learning is a classification method based on observed preference

information which builds and learns from ordinal data. In such a case, user ratings (ordinal

by nature) would be converted to ordinal data and treated as pairwise preferences.

According to [5][46][47], Preference Learning is far more suitable than classification in

instances of modeling experience. Preference learning methods are stated to lead to more

efficient, generic and robust models which capture more information about the ideal

expected result.

[86]

REFERENCES

[1] Damodaran, Aswath. "Marketability and value: Measuring the illiquidity discount." Available at

SSRN 841484 (2005).

[2] Srinivasan, V., William S. Lovejoy, and David Beach. "Integrated product design for marketability

and manufacturing." Journal of Marketing Research 34.1 (1997).

[3] Knotts, Tami L., Stephen C. Jones, and Gerald G. Udell. "Innovation evaluation and product

marketability." Marketing Management Journal, Fall 19.2 (2009).

[4] Tian, Yuan, et al. "What are the characteristics of high-rated apps? a case study on free android

applications." 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME).

IEEE, 2015.

[5] Yannakakis, Georgios N., and Julian Togelius. Artificial intelligence and games. Vol. 2. New York:

Springer, 2018.

[6] Chakraborty, Supriya, and Nabendu Chaki. "A survey on the semi-structured data

models." Computer Information Systems–Analysis and Technologies. Springer, Berlin, Heidelberg,

2011. 257-266.

[7] Arasu, Arvind, and Hector Garcia-Molina. "Extracting structured data from web

pages." Proceedings of the 2003 ACM SIGMOD international conference on Management of data.

2003.

[8] Blumberg, Robert, and Shaku Atre. "The problem with unstructured data." Dm Review 13.42-49

(2003): 62.

[9] Buneman, Peter. "Semistructured data." Proceedings of the sixteenth ACM SIGACT-SIGMOD-

SIGART symposium on Principles of database systems. 1997.

[10] Van den Broeck, Jan, et al. "Data cleaning: detecting, diagnosing, and editing data

abnormalities." PLoS Med 2.10 (2005): e267.

[11] Osborne, Jason W. Best practices in data cleaning: A complete guide to everything you need to

do before and after collecting your data. Sage, 2013.

[12] Angeles, Pilar, and Lachlan M. MacKinnon. "Detection and Resolution of Data Inconsistencies,

and Data Integration using Data Quality Criteria." QUATIC 2004: Conference for Quality in Information

and Communications Technology. 2004.

[13] Heeringa, Steven G., Brady T. West, and Patricia A. Berglund. Applied survey data analysis. CRC

press, 2017.

[14] Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.

[15] Mitchell, T. "The discipline of machine learning (Technical Report CMUML-06-108)." (2006).

[16] Muhammad, Iqbal, and Zhu Yan. "SUPERVISED MACHINE LEARNING APPROACHES: A

SURVEY." ICTACT Journal on Soft Computing 5.3 (2015).

[17] Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar. "Foundations of machine

learning.[Sl]." (2012): 18.

[19] Safavian, S. Rasoul, and David Landgrebe. "A survey of decision tree classifier

methodology." IEEE transactions on systems, man, and cybernetics 21.3 (1991): 660-674.

[20] Shalev-Shwartz, Shai, and Shai Ben-David. Understanding machine learning: From theory to

algorithms. Cambridge university press, 2014.

[87]

[21] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

[22] Bhatia, Nitin. "Survey of nearest neighbor techniques." arXiv preprint arXiv:1007.0085 (2010).

[23] Aly, Mohamed. "Survey on multiclass classification methods." Neural Netw 19 (2005): 1-9.

[24] Kumar, Raj, and Rajesh Verma. "Classification algorithms for data mining: A survey." International

Journal of Innovations in Engineering and Technology (IJIET) 1.2 (2012): 7-14.

[25] Tolles, Juliana, and William J. Meurer. "Logistic regression: relating patient characteristics to

outcomes." Jama 316.5 (2016): 533-534.

[26] An, Anthony B. "Performing logistic regression on survey data with the new SURVEYLOGISTIC

procedure." Proceedings of the twenty-seventh annual SAS® users group international conference.

SAS Institute Inc. Cary, NC, 2002.

[27] Nayak, Janmenjoy, Bighnaraj Naik, and H. Behera. "A comprehensive survey on support vector

machine in data mining tasks: applications & challenges." International Journal of Database Theory

and Application 8.1 (2015): 169-186.

[28] Pradhan, Ashis. "Support vector machine-a survey." International Journal of Emerging

Technology and Advanced Engineering 2.8 (2012): 82-85.

[29] Pedregosa, Fabian, et al. "Scikit-learn: Machine learning in Python." the Journal of machine
Learning research 12 (2011): 2825-2830.

[30] Wankhede, Sonali B. "Analytical study of neural network techniques: SOM, MLP and classifier-a
survey." IOSR Journal of Computer Engineering 16.3 (2014): 86-92.

[31] Arlot, Sylvain, and Alain Celisse. "A survey of cross-validation procedures for model

selection." Statistics surveys 4 (2010): 40-79.

[32] Moreno-Torres, Jose García, José A. Sáez, and Francisco Herrera. "Study on the impact of

partition-induced dataset shift on $ k $-fold cross-validation." IEEE Transactions on Neural Networks

and Learning Systems 23.8 (2012): 1304-1312.

[33] Hossin, Mohammad, and M. N. Sulaiman. "A review on evaluation metrics for data classification

evaluations." International Journal of Data Mining & Knowledge Management Process 5.2 (2015): 1.

[34] Lever, Jake, Martin Krzywinski, and Naomi Altman. "Classification evaluation." (2016): 603-604.

[35] Feurer, Matthias, and Frank Hutter. "Hyperparameter optimization." Automated Machine Learning.

Springer, Cham, 2019. 3-33.

[36] Monett, Dagmar, and Hermann Stolte. "Predicting star ratings based on annotated reviews of

mobile apps." 2016 Federated Conference on Computer Science and Information Systems (FedCSIS).

IEEE, 2016.

[37] Xu, Qing-Song, and Yi-Zeng Liang. "Monte Carlo cross validation." Chemometrics and Intelligent

Laboratory Systems 56.1 (2001): 1-11.

[38] Islam, Mir Riyanul. "Numeric rating of Apps on Google Play Store by sentiment analysis on user

reviews." 2014 International Conference on Electrical Engineering and Information & Communication

Technology. IEEE, 2014.

[39] Zhu, Ciyou, et al. "Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-

constrained optimization." ACM Transactions on Mathematical Software (TOMS) 23.4 (1997): 550-

560.

[40] Mahmood, Ahsan. "Identifying the influence of various factor of apps on google play apps

ratings." Journal of Data, Information and Management 2.1 (2020): 15-23.

[41] Meng, Jingke, et al. "User-specific rating prediction for mobile applications via weight-based

matrix factorization." 2016 IEEE International Conference on Web Services (ICWS). IEEE, 2016.

[88]

[42] Christian, Hans, Mikhael Pramodana Agus, and Derwin Suhartono. "Single document automatic

text summarization using term frequency-inverse document frequency (TF-IDF)." ComTech:

Computer, Mathematics and Engineering Applications 7.4 (2016): 285-294.

[43] Imran, Saif, et al. "Depth coefficients for depth completion." 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). IEEE, 2019.

[44] Zhou, Tinghui, et al. "Kernelized probabilistic matrix factorization: Exploiting graphs and side

information." Proceedings of the 2012 SIAM international Conference on Data mining. Society for

Industrial and Applied Mathematics, 2012.

[45] Mnih, Andriy, and Russ R. Salakhutdinov. "Probabilistic matrix factorization." Advances in neural

information processing systems. 2008.

[46] Yannakakis, Georgios N., Roddy Cowie, and Carlos Busso. "The ordinal nature of emotions: An

emerging approach." IEEE Transactions on Affective Computing (2018).

[47] Melhart, David, et al. "Your gameplay says it all: modelling motivation in Tom Clancy’s the

division." 2019 IEEE Conference on Games (CoG). IEEE, 2019.

