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Disaggregated computer architectures eliminate resource fragmentation in next-generation datacenters by

enabling virtual machines to employ resources such as CPUs, memory, and accelerators that are physically

located on different servers. While this paves the way for highly compute- and/or memory-intensive appli-

cations to potentially deploy all CPUs and/or memory resources in a datacenter, it poses a major challenge

to the efficient deployment of hardware accelerators: input/output data can reside on different servers than

the ones hosting accelerator resources, thereby requiring time- and energy-consuming remote data transfers

that diminish the gains of hardware acceleration. Targeting a disaggregated datacenter architecture similar to

the IBM dReDBox disaggregated datacenter prototype, the present work explores the potential of deploying

custom acceleration units adjacently to the disaggregated-memory controller on memory bricks (in dReD-

Box terminology), which is implemented on FPGA technology, to reduce data movement and improve per-

formance and energy efficiency when reconstructing large phylogenies (evolutionary relationships among

organisms). A fundamental computational kernel is the Phylogenetic Likelihood Function (PLF), which dom-

inates the total execution time (up to 95%) of widely used maximum-likelihood methods. Numerous efforts to

boost PLF performance over the years focused on accelerating computation; since the PLF is a data-intensive,

memory-bound operation, performance remains limited by data movement, and memory disaggregation only

exacerbates the problem. We describe two near-memory processing models, one that addresses the problem

of workload distribution to memory bricks, which is particularly tailored toward larger genomes (e.g., plants

and mammals), and one that reduces overall memory requirements through memory-side data interpolation

transparently to the application, thereby allowing the phylogeny size to scale to a larger number of organisms

without requiring additional memory.

CCS Concepts: • Computer systems organization → Architectures; Reconfigurable computing; •

Hardware → Integrated circuits; Reconfigurable logic and FPGAs; Reconfigurable logic applica-

tions;

Additional Key Words and Phrases: Disaggregated datacenter, dReDBox, near-memory processing, phyloge-

netics, RAxML

Authors’ addresses: N. Alachiotis, University of Twente, Enschede 7500, The Netherlands; email: n.alachiotis@utwente.nl;

P. Skrimponis, NYU Tandon School of Engineering, Brooklyn, NY 11201; email: ps3857@nyu.edu; M. Pissadakis, Technical

University of Crete, Chania 73100, Greece; email: epissadakis@gmail.com; D. Pnevmatikatos, National Technical University

of Athens, Athens 15780, Greece; email: pnevmati@cslab.ece.ntua.gr.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International
4.0 License.

© 2021 Copyright held by the owner/author(s).

1936-7406/2021/12-ART25

https://doi.org/10.1145/3484983

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 25. Pub. date: December 2021.

http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3484983
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3484983&domain=pdf&date_stamp=2021-12-27


25:2 N. Alachiotis et al.

ACM Reference format:

Nikolaos Alachiotis, Panagiotis Skrimponis, Manolis Pissadakis, and Dionisios Pnevmatikatos. 2021. Scalable

Phylogeny Reconstruction with Disaggregated Near-memory Processing. ACM Trans. Reconfigurable Technol.

Syst. 15, 3, Article 25 (December 2021), 32 pages.

https://doi.org/10.1145/3484983

1 INTRODUCTION

In computational biology, phylogenetic inference methods are used to reconstruct the evolutionary
history of a collection of organisms based on molecular genetic data (DNA or protein sequences).
An inferred evolutionary history is represented by a phylogeny, or phylogenetic tree, which is an
unrooted bifurcating (binary) tree where the organisms under investigation (taxa) are located at
the leaves, and the inner nodes represent extinct common ancestors. Phylogenetic trees find prac-
tical application in a wide range of scientific and industrial fields, such as conservation biology
(exposing illegal whale hunting [1], prioritizing populations in the wake of the global biodiver-
sity crisis [2, 3]), epidemiology (studying the evolution and dynamics of infectious viruses and
bacteria [4, 5]), forensics (characterizing HIV transmission networks [6]), and drug development
(identifying new medicinal plant species [7], tracing the evolution of antibodies to develop preci-
sion vaccines [8]). Stamatakis [9] provides an overview of significant applications of phylogenetic
trees in medical research, while Bader et al. [10] list prominent industrial applications of high-
performance computing for phylogenetic inference, such as for commercial drug discovery.

Several computationally inexpensive methods to infer phylogenies based on clustering tech-
niques are known, e.g., Neighbor–Joining [11] and the Unweighted Pair Group Method with Arith-
metic mean [12]. However, considerably more advanced methods like Maximum Likelihood

Estimation (MLE) and Bayesian Inference (BI) are preferred in real-world phylogenetic stud-
ies because they yield more robust phylogenies based on a stronger statistical foundation [13]. A
fundamental computational kernel, employed by both MLE and BI phylogenetic methods, is the
Phylogenetic Likelihood Function (PLF) [14], which is used for evaluating a phylogeny by
computing a likelihood score for a given tree topology. The PLF dominates execution times and
memory requirements of the most widely used phylogenetic inference tools, such as BEAST [15],
FastTree [16], RAxML [17], and MrBayes [18] (over 150,000 citations collectively). For these tools,
Izquierdo-Carrasco et al. [19] report that the PLF occupies between 80% and 95% of the total exe-
cution times and over 70% of the total RAM requirements.

Expectedly, numerous efforts have been made to accelerate the PLF, employing various tech-
nologies, from multi-core processors [20, 21] and supercomputers [22, 23], to FPGAs [24, 25] and
GPUs [19, 26], to CGRA-based solutions [27, 28] and dedicated NoCs [29, 30]. These efforts, how-
ever, predominantly concentrated on accelerating computation, thus remaining bounded by the
memory accesses since the PLF is a data-intensive, memory-bound operation. This problem is ex-
pected to intensify as phylogeny sizes continue to grow in terms of number of organisms [31], a
trend that is sustained by continuous advances in DNA sequencing technologies [32], which im-
prove sequencing accuracy and reduce costs. Izquierdo-Carrasco et al. [19] also report that exces-
sive memory requirements, which increase linearly with the number of organisms, represent the
main limiting factor for large-scale, real-world phylogenetic analyses. For instance, an MLE-based
phylogenetic analysis that deployed the PLF to reconstruct the phylogeny of 1,481 species using
genetic material (DNA sequences) that roughly corresponded to the total size of 20,000 human
genes, required 1TB of main memory [19]. These excessive memory requirements indicate that
traditional datacenter architectures, which typically provide between 256 GB and 768 GB of main
memory per server tray, are unlikely to meet the memory demand in future large-scale analyses.
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Disaggregated computer architectures [33–35], which enable virtual machines to employ re-
sources (CPUs, memory, accelerators) that are physically located on different servers, represent
a promising solution to effectively meet memory requirements of future analyses, since an appli-
cation can potentially deploy all memory resources in a data center. This, however, poses a ma-
jor challenge to the efficient deployment of hardware acceleration because input/output data can
reside on different servers than the ones hosting accelerators, hence requiring time- and energy-
consuming, remote-data transfers that can diminish the gains of hardware acceleration.

To this end, the present work explores the potential of performing PLF computations closer
to the data within a FPGA-based computing environment with disaggregated memory to yield
a scalable, as well as both time- and energy-efficient solution. We target a disaggregated com-
puting architecture, similar to the Disaggregated Recursive Datacentre-in-a-Box (dReDBox)
disaggregated datacenter prototype [34] recently presented by IBM, which allows to exploit the
versatility that a software-defined datacenter provides in allocating and managing resources like
compute, memory, and accelerator bricks (dReDBox terminology) on the cloud. Instead of em-
ploying high-performance accelerator bricks that induce remote-data transfers for the PLF, the
underlying idea is to instantiate custom acceleration units, henceforth referred to as Brick Pro-

cessing Units (BPUs), adjacently to the disaggregated-memory controller on each memory brick,
which is implemented on reconfigurable logic. This paves the way for a future-proof, accelerated
solution that efficiently accommodates larger phylogeny sizes by allowing to allocate the required
amount of memory resources with near-data processing capacity in order to reconstruct a phy-
logeny of any size under given constraints, such as analysis time, energy consumption, and cost,
among others.

The contribution of this work is three-fold:

— We present a streaming architecture for the BPU and an effective data allocation scheme
that collectively extend the functionality of disaggregated memory bricks by computing the
PLF using local data. This eliminates the remote-data transfers that would otherwise be
required if discrete accelerator modules were deployed, and allows the aggregate throughput
performance of multiple BPUs to scale linearly with the number of memory bricks.

— We describe a model of bulk-synchronous parallel processing [36] and devise a software/
hardware barrier implementation that alleviates the overhead of synchronization for an in-
creasing number of BPU-equipped memory bricks over several server trays.1 A moderate to
high number of memory bricks (in the hundreds) are expected to be required to accommo-
date analyses of ultra-long sequences [38] or large genomes (plants or mammals).

— We devise a BPU-based data interpolation engine that relies on networks of BPUs to trade
memory for computation. Introducing topology-aware functionality within a memory brick
enables the interpolation engine to operate transparently to the host processor to provide
the illusion of a larger physical memory than actually present in the system. This paves
the way for considerable improvements in energy consumption for large-scale phylogenetic
analyses since only a fraction of the PLF data need to be stored and accessed in main memory,
whereas the rest are computed on-the-fly when needed.

The remainder of this article is organized as follows: Section 2 describes the mathematical foun-
dation for computing the PLF, while Section 3 presents the dReDBox disaggregated datacenter ar-
chitecture. Section 4 discusses related work on previous acceleration efforts. Thereafter, Section 5
presents the BPU architecture, the data allocation scheme, and the bulk-synchronous parallel pro-
cessing model, while Section 6 describes the BPU-based interpolation engine for lower memory

1A dReDBox server tray can contain up to 16 bricks [37].
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Table 1. List of Acronyms and Abbreviations

AC ACCESS

APV Ancestral probability vector

AVX2 Advanced vector extensions 2

BI Bayesian inference

BPU Brick processing unit

DMC Disaggregated-memory controller

dRedBox Disaggregated recursive datacenter-in-a-Box

EX EXECUTE

FPA Felsenstein’s pruning algorithm

II Initiation interval

MLE Maximum Likelihood Estimation

MSA Multiple sequence alignment

PE Processing element

PLF Phylogenetic likelihood function

PTD Partial traversal descriptor

RF Register file

RT Reduction tree

SPR Subtree pruning and regrafting

VEUPS Vector entry updates per second

Fig. 1. Example of a multiple sequence alignment of 4 sequences (n = 4) with 26 nucleotide characters each

(m = 26).

requirements. Section 7 provides implementation details, and Section 8 presents the experimental
setup and performance evaluation. We conclude in Section 9. A list of abbreviations and acronyms
used throughout the article is provided in Table 1.

2 PHYLOGENETIC LIKELIHOOD FUNCTION

This section introduces the mathematical foundation of the PLF. The starting point for a phylo-
genetic analysis is a list of organisms and their associated DNA sequences. Since these sequences
can differ in length, a multiple sequence alignment (MSA) is computed prior to reconstructing
a phylogenetic tree, i.e., an n ×m matrix of n sequences with m nucleotide characters each. This
is achieved by first determining which nucleotides among the organisms are homologous (share a
common evolutionary history), and then inserting gaps into the sequences in a way that each align-
ment site (a column of the n ×m matrix) conveys information about the history of the organisms
under study. An example of an MSA of four simulated sequences in provided in Figure 1. Some of
the most widely used MSA software tools are MUSCLE [39], MAFFT [40], and ClustalW [41].

When the MSA is created, a phylogenetic tree is reconstructed using an iterative procedure that
employs a tree-search strategy in conjunction with a scoring function. The tree-search strategy,
e.g., nearest neighbor interchange [42], subtree pruning and regrafting (SPR) [43], or tree bi-
section and reconnection [44], is a sequence of topology-rearrangement steps, with every step
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Fig. 2. (A) An SPR iteration applied on a phylogenetic tree with six tips (0–5) and four inner nodes (a − d).

The comprehensive tree (tree before pruning) contains all tip and inner nodes (I). In the pruning step (II),

the subtree that contains tips 2 and 3 and inner nodes b and d is pruned, along with the branches that used

to connect inner node b to the rest of the tree. In the regrafting step (III), the pruned subtree is reattached

to the rest of the tree on the branch that used to connect inner node a to tip 1, creating a new topology.

(B) FPA allows the PLF to be recursively applied on a fixed tree topology to calculate the likelihood of the

tree. For the phylogenetic tree with four tips (A,B,D,E), two inner nodes (C and F ), and a random placement

of the virtual root on the branch connecting inner nodes C and F , two FPA steps are needed before one can

calculate the likelihood of the tree. In FPA step 1, the PLF is used to compute the probability vector of inner

nodeC using the probability vectors of tipsA and B. In FPA step 2, the PLF is used to compute the probability

vector of inner node F using the probability vectors of tips D and E. Thereafter (not shown in the figure), the

likelihood of the tree can be calculated using inner nodes C and F . The light gray lines show the gradual

reduction of the tree to a single branch (the one with the virtual root) using the FPA.

leading to a new tree topology that is evaluated using the scoring function. An SPR step is illus-
trated in Figure 2(A), as an example. It consists of two phases: a subtree is first removed from the
comprehensive tree (pruning, Figure 2(A.II)) and then reattached to another branch (regrafting,
Figure 2(A.III)). This represents one full SPR step that starts from one tree topology and generates
a new one. SPR moves are iteratively applied on a region of the overall tree topology (subtree)
before moving on to another tree region. Throughout tree searching, the tree-search strategy gen-
erates different phylogenies that are qualitatively assessed using the scoring function, with the
aim to find the best-scoring tree, i.e., the topology that best explains (fits) the aligned sequence
data.

As already mentioned, the PLF is employed as the scoring function by all MLE and BI phy-
logenetic inference methods. Computing the PLF relies on Felsenstein’s Pruning Algorithm

(FPA) [14], which computes a likelihood score for a tree topology of any size by recursively apply-
ing the PLF on pairs of child nodes that share an immediate common ancestor until an arbitrarily
placed virtual root is reached. The virtual root is an additional tree node that can be placed any-
where on a tree to direct the FPA algorithm in applying the PLF. Due to mathematical properties of
the evolutionary models used in phylogenetics (time reversibility), the likelihood of the tree does
not change with the position of the virtual root. Figure 2(B) shows the required sequence of PLF
invocations according to FPA to compute the likelihood score of a 4-taxon tree. The process begins
at the tips and proceeds until the initial tree is reduced to a single branch, i.e., the one with the
virtual root. In the first step (FPA step 1 in the figure), the PLF computes the probability vector of
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Fig. 3. Schematic representation of a single FPA step. The child nodes are tips, and the associated aligned

sequences are shown below the probability vectors (adapted from [45]).

inner nodeC based on the tipsA and B. In the next step (FPA step 2 in the figure), the PLF computes
the probability vector of inner node F based on the tips D and E. Thereafter, the likelihood of the
tree can be calculated using inner nodes C and F .

Figure 3 depicts a schematic representation of a single FPA step, e.g., the first step in Figure 2(B).

Each node x is represented by a probability vector �Lx that comprises m entries, where m is the
alignment length. When x is an inner node, such as node C in Figure 2(B), the probability vector

entry �Lx (i ), i = 1...m, contains the four probability values LA, LC , LG , and LT of observing nu-
cleotides A, C , G, and T , respectively, at location i of x based on the observed nucleotides in MSA
column i . The respective probability values per location i of a tip node, such as nodes A and B in
Figure 2(B), are set to 0.0 or 1.0, according to the observed nucleotide character at location i of the
corresponding aligned sequence in the MSA.

Given probability vectors �LA and �LB of child nodes A and B, respectively (see FPA step 1 in

Figure 2(B), for instance), each of the four probability values �Lu
C

(i ), u ∈ N and N = {A,C,G,T },
at location i of the probability vector �LC that describes the immediate common ancestorC is com-
puted using Equation (1):

�Lu
C (i ) = �

�

∑

s ∈N

Pu→s (tl ) × �Ls
A (i )�

�
× �
�

∑

s ∈N

Pu→s (tr ) × �Ls
B (i )�

�
, (1)

where tl and tr are the lengths of the branches that connect parent nodeC with child nodes A and
B, respectively, while Pu→s (t ) is the nucleotide substitution probability for a nucleotideu to mutate
to a nucleotide s given a branch length t . The nucleotide substitution probabilities are computed
using Equation (2):

P (t ) = eQt , (2)

where t is the branch length (it essentially represents the evolutionary time between two nodes),
and Q is a 4 × 4 matrix that describes a statistical model of nucleotide substitution by comprising
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Fig. 4. PLF computation under the Γ model with four discrete rates. Equation (1) is independently computed

for each rate, leading to each APV entry comprising 16 values when DNA data are processed with four

discrete rates.

instantaneous transition probabilities for a nucleotide u to mutate to s within time dt . The most
complex and commonly used nucleotide substitution model is the general time reversible [46].

In real-world analyses, the statistical model of nucleotide substitution is extended by additional
parameters to account for rate heterogeneity among alignment sites, i.e., the biological fact that
genes evolve at different rates. A widely used model to describe rate variation among sites in
practical phylogenetic inference is the Γ model [47], which assumes that rates over sites are random
variables drawn from a Γ distribution, integrating the log-likelihood over the Γ function. To yield a
computationally tractable solution, this integral is approximated by discretizing the Γ function into,
typically, four or eight discrete rates. Computing the PLF under the Γ model entails the calculation
of Equation (1) independently for each discrete rate, resulting to the calculation of a probability

vector �Lx per discrete rate per inner node x , as illustrated in Figure 4 for the case of 4 discrete
rates. When N discrete Γ rates are used for phylogenetic inference based on DNA sequences, each

probability vector entry �Lx (i ) contains a total of N × 4 probability values per genomic location i

(i = 1...m, where m is the MSA length). The entire vector of �Lx (i ) entries (i = 1...m) represents a

tree node and is henceforth referred to as Ancestral Probability Vector (APV), while an �Lx (i )
for a given i is an APV entry.

When the branch with the virtual root is reached, following a number of FPA steps, e.g., the
branch that connects inner nodes C and F after the second FPA step in Figure 2(B), a likelihood score

l (i ) per site i is computed based on the probability vector �Lvr at the virtual root using Equation (3):

l (i ) =
∑

s ∈N

π s × �Ls
vr (i ), (3)

where π s , s ∈ N , and N = {A,C,G,T }, are the prior probabilities (typically referred to as base
frequencies) of observing nucleotides A,C ,G, andT at the virtual root, and are empirically drawn
from the MSA. The final likelihood score of the tree is computed as the sum of the logarithm of
the per-site likelihood scores using Equation (4):

LH =
m∑

i=1

loд(l (i )). (4)

It should be noted that state-of-the-art MLE inference programs, such as RAxML [17] (used in
this work as the reference software), deploy a Newton–Raphson iterative procedure to optimize
the branch lengths and improve the final likelihood score given the tree topology and the nu-
cleotide substitution model. Izquierdo-Carrasco et al. [19] report that branch-length optimization
in RAxML, which relies on the PLF to optimize a branch, accounts for approximately 30% of the
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total execution time. Our RAxML profiling analysis (results not shown) revealed that Equation (1)
accounts for 85% of the total execution time, whereas Equations (3) and (4) together account for
less than 4% of the analysis time (only employed at the root for the calculation of the final log-
likelihood score). Thus, our efforts to shift computation to disaggregated memory bricks concen-
trated on Equation (1).

3 THE dReDBox DISAGGREGATED ARCHITECTURE

Typical data centers are usually built by replicating a single (or a few) baseline, monolithic building
blocks (blades), with predetermined and fixed resource ration (i.e., CPU, memory and accelerator
capacity). While this is effective and convenient for quick deployment and logistics, the impact
of this rigidity has important ramifications: it limits system resource utilization, degrades energy
proportionality, and mandates costly upgrade cycles [34, 48].

To overcome the fixed architectural design of traditional data centers and achieve better resource
allocation and proportionality, dReDBox disaggregates all the major resource types into “bricks”.
A flexibly defined set of processor, and FPGA-based memory and accelerator bricks are packaged
in a tray. Trays are used to build tightly-coupled rack-level systems and data centers. The center
of the dReDBox architecture is a high-speed, low-latency opto-electronic fabric that brings phys-
ically distant bricks closely in terms of latency and bandwidth. A software-defined control plane
performs resource allocation and orchestration, and exploits the system flexibility to fulfill the re-
source needs of the applications (or virtual machines) running in the system to form a modular,
vertically-integrated system [49]. A key outcome of the dRedBox is the IBM Thymesis Flow [35]
that achieves similar resource and resource-management flexibility in mainstream IBM systems.

Figure 5 illustrates the dReDBox tray architecture. A tray implements four different networks,
a low-latency high-speed electrical network, an Ethernet network, a low-latency high-speed op-
tical network, and a PCIe network that collectively provide brick-to-brick connectivity. Remote
memory that is mapped to memory bricks on other trays is accessed using optical and electrical
low-latency, high-speed networks. Memory bricks on the same tray are accessed through an elec-
trical circuit crossbar switch (labeled as High Speed Electrical Switch in the figure) that connects
directly to the GTH interface ports available on the programmable logic (PL) of the bricks. On a
fully populated tray hosting 16 bricks, a maximum of 256 optical ports are used to fully intercon-
nect the bricks of each tray. A Mid-Board Optics (MBO) device mounted on every brick converts
the electrical signals coming from the GTH ports and aggregates them into a single fibre ribbon. An
Ethernet (ETH) network is used for regular network communication and board management

communication BMC. Bricks on the same tray interconnect via a PCIe interface. Communica-
tion between bricks on different trays within the same rack is provided via a PCIe switch. The PCIe
interface is used for signalling and interrupts, as well as for attachment to remote peripherals.

Figure 6 illustrates the dReDBox compute brick that represents the main processing block in
the system. It hosts local DDR memory for low-latency and high-bandwidth instruction read and
read/write data access, and Ethernet and PCIe ports for data and system communication and config-
uration. The compute brick communicates with disaggregated memory and accelerator resources
via the “Transaction Glue Logic, a dReDBox-specific IP implemented on the PL, as shown in the
figure. System interconnection to disaggregated resources occurs via multiple ports leading to
circuit-switched tray- and rack-level interconnects.

A key feature of dReDBox is the broad and extensible pool of memory resources. A software or-
chestrator is used to partition and (re)assign these resources among all the compute nodes and their
respective virtual machines in real-time. Figure 7 depicts the memory brick architecture featuring
a Xilinx Zynq Ultrascale+ MPSoC and external DDR/HMC memory chips. This brick supports
multiple communication links that provide a higher aggregated bandwidth to a single compute
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Fig. 5. Sample of the dReDBox tray architecture with multiple bricks interconnected through optical and

electrical interconnection networks.

node or parallel connections to multiple compute nodes. This feature is utilized differently based
on the resource allocation policy. The orchestrator can allocate either shared or private partitions
for each client. Thus, the memory bricks facilitate the communication between multiple compute
nodes through shared memory spaces. Private memory partitions require an extra protection mech-
anism. The glue logic of the memory brick implements both the protection and translation mech-
anism controlled by the orchestrator. The protection mechanism promotes fine-grained memory
allocations, while the translation mechanism maps external memory requests to local addresses,
increasing the flexibility of the system.

Another key element of dReDBox is the accelerator resources that can boost application perfor-
mance on a near-data processing scheme [50]. The dReDBox aims at reducing the communication
overhead between multiple compute nodes using local hardware accelerators deployed on the
dReDBox accelerator bricks. This brick has been used to accelerated applications in various do-
mains, such as machine learning [51], population genomics [52], and phylogenetic inference [53].

Figure 8 illustrates the dReDBox accelerator brick architecture featuring a Xilinx Zynq
Ultrascale+ MPSoC. This system comprises static and dynamic infrastructure. First, the static
infrastructure provides all the required modules to (i) support dynamic hardware reconfiguration;
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Fig. 6. Block diagram of a dReDBox compute brick. The MPSoC integrates an APU for software execution.

The on-chip programmable logic on the SoC is used to host the transaction glue logic, housekeeping state,

and communication logic, required for accessing disaggregated resources. The local DMA engines allow the

system software to efficiently migrate pages from remote memory regions to local DDR memory.

Fig. 7. The architecture of the dReDBox memory brick; the local switch forwards system/application data

to the memory brick glue logic, which interfaces different memory module technologies

(ii) establish communication links with remote compute/memory bricks; (iii) interface with hard-
ware accelerators. To facilitate dynamic partial reconfiguration, dReDBox is using a lightweight
middleware [52] running on the Application Processing Unit (APU). Using the ReFiRe API [52],
an application running on a virtual machine establishes a communication link with the middle-
ware to control the hardware accelerators and perform basic operations. Through this API, the
middleware is: (i) receiving the partial bitstreams, the configuration parameters, and the input data
for each accelerator slot; (ii) storing the received data in the APU-DDR memory; (iii) reconfiguring
the partial reconfigurable region (accelerator slot) through the PCAP-port; and (iv) collecting the
results from each accelerator slot and sends them back to the host. Using the accelerator brick
glue logic, the middleware interfaces with the network interconnects/switch for transferring the
data from/to compute and memory bricks. This work utilizes the ReFiRe framework to deploy
the BPUs in dReDBox as described in Section 7. Second, the dynamic infrastructure (accelerator
slot) is a predefined partially reconfigurable region in the PL that hosts the hardware accelerators.
Figure 8 shows this region that contains a set of high-speed transceivers (e.g., GTHs), registers,
and AXI memory-mapped interfaces. The transceivers provide a direct connection between
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Fig. 8. The architecture of the dReDBox accelerator brick for accommodating application-specific accelera-

tors.

the accelerator brick and remote compute/memory bricks. The AXI-Lite register file provides
monitoring (e.g., debugging) and control of the hardware accelerator through the accelerator
brick glue logic. The AXI memory-mapped interface provides a direct connection to the PL-DDR.

4 RELATED WORK

This section reviews FPGA accelerators for the PLF and algorithms that reduce memory footprint.
Mak and Lam [54] presented an accelerated system for MLE-based phylogeny reconstruction

based on a genetic algorithm [55] that executes in software, coupled with a PLF accelerator mapped
to reconfigurable hardware, reporting up to 100× faster execution than a pure software implemen-
tation [55]. The proposed architecture, however, implements the Jukes–Cantor model [56] of nu-
cleotide substitution, which is rarely employed in real-world analyses due to oversimplifications
in the statistical model of DNA substitution [57]. This work was later extended (Mak and Lam [58])
by introducing an embedded processor onto the FPGA fabric to reduce communication overhead,
as well as by further parallelizing the likelihood computation on the chip. Yet, performance was
measured on trees with as low as 4 taxa, and DNA sequences of up to 500 nucleotide characters.

Alachiotis et al. [24] described a pipelined architecture for computing the PLF on DNA data,
reporting up to 7.5× faster execution than 16 CPU cores when processing 512 taxa. The pro-
posed architecture, however, could only accommodate fully balanced trees, thereby preventing the
seamless integration with tree-search strategies. The authors subsequently presented a topology-
agnostic architecture [45] to address the aforementioned limitation by exploiting PLF parallelism
across alignment sites, rather than tree nodes.

Zierke and Bakos [25] designed an FPGA accelerator architecture for the PLF, driven by the
requirements of Bayesian Markov Chain Monte Carlo-based inference methods. The architecture
performs numerical scaling to prevent underflow in the case of large phylogenies, achieving up to
8.7× faster processing than the sequential execution of the widely used software tool MrBayes [59].
Bayesian inference methods, however, do not employ numerical optimization routines for branch-
length optimization. Consequently, the employed PLF is less complex than in MLE-based methods,
which typically deploy Newton–Raphson branch-length optimization procedures that rely on the
PLF to improve likelihood scores.

Berger et al. [60] presented an accelerator architecture particularly optimized for 4-state input
data, i.e., nucleotide characters, and described how to efficiently handle n-state data, with n > 4,
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e.g., protein sequences or RNA secondary-structure data. The authors also proposed a flexible
communication mechanism to enable the widely used software RAxML [17] to offload computation
to the FPGA accelerator, reporting up to 4.3× faster processing than a heavily optimized sequential
implementation that employs 256-bit advanced vector extensions intrinsic instructions.

Jin and Bakos [61] extended the BEAGLE [62] library for statistical phylogenetics to support
parallel computation of the PLF on a multi-FPGA platform. Using 32 pipelined processing ele-

ments (PEs) across four FPGAs, the proposed system delivered 40× and 3× faster execution than
BEAGLE’s CPU and GPU implementations, respectively. The authors reported per-PE arithmetic
intensity of 2.03 floating-point operations per byte, and per-FPGA power consumption of 23 Watts,
concluding that a prerequisite to the effective use of data-parallel architectures for improved PLF
performance is to couple high memory bandwidth with high memory efficiency.

While the majority of the aforementioned acceleration efforts mostly focus on the computational
challenges of the PLF, algorithmic solutions that adopt a data-centric approach to improve memory
efficiency and reduce overall memory requirements have also been reported, albeit to a lesser
extent. Stamatakis and Ott [20] initially observed that, when alignments with missing genes are
analyzed, PLF computation times can be considerably reduced by omitting calculations on data
that are not present in the MSA, which are commonly represented in memory as undetermined
characters. Building upon this observation, Stamatakis and Alachiotis [63] introduced a set of
algorithmic rules to search the tree space without requiring to allocate memory for the missing
genes, thereby allowing to reduce the memory footprint proportionally to the amount of missing
data in the MSA.2 These approaches [20, 63], however, can only be applied to analyses of multi-
gene MSAs with missing data, and thus do not represent generic memory-efficient solutions.

Izquierdo-Carrasco and Stamatakis [64] presented a generic method to compute the PLF with
lower memory requirements, which does not depend on specific MSA traits, e.g., missing genes.
Based on feedback by the RAxML community, the authors point out that “memory shortages are
increasingly becoming a problem and represent the main limiting factor for large-scale phyloge-
netic analyses, especially at the genome level”, and identify ancestral probability vectors as the
dominant memory-consumption factor in present phylogenetic analyses. To alleviate this prob-
lem, the study introduced an out-of-core algorithm that only requires a fraction of the probability
vectors to reside in memory at any point in time, whereas the rest are kept in the disk. Various
replacement policies were used in order to exploit tree-search locality, observing up to 5× faster
execution than relying on paging by the operating system.

Izquierdo-Carrasco et al. [65] observed, however, that computing the PLF out-of-core [64] is
impractical, due the fact that a high number of slow read/write operations to/from the disk are re-
quired, leading to an order of magnitude longer execution times. The authors, therefore, proposed
a more efficient approach to reduce memory requirements of large-scale phylogenetic analyses,
which relies on trading memory for processing time. Similarly to the out-of-core approach [64],
only a fraction of the probability vectors are stored in main memory, while the rest are recomputed,
potentially several times, when required by the tree-search strategy, e.g., SPR [43]. The study re-
ported between 14% and 40% longer execution times, on average, due to additional computation,
when three simulated datasets with 1,500, 3,000, and 5,000 taxa are analyzed.

The review of literature on PLF challenges and solutions in this section reveals that research ef-
forts have so far focused on either accelerating computation or reducing memory requirements. To
the best of the author’s knowledge, the work presented here is the first to investigate the potential
of jointly accelerating the PLF while reducing memory requirements via near-memory computa-
tion within a disaggregated computing environment.

2The study reports up to 90% of so-called gappyness in real-world, multi-gene MSAs.
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Fig. 9. (A) Top-level design of the decoupled access/execute BPU architecture. It consists of six ACCESS units

(suffix AC), one EXECUTE unit (PLF_EX), and three register files (RF). The main memory is the off-chip DDR

memory on the brick. (B) PLF_EX pipelined datapath. It computes Equation (1), performs multiplication

with the inverted eigenvector, and scaling (when needed), using IEEE-754 double-precision floating-point

arithmetic units.

5 BRICK PROCESSING UNIT (BPU)

This section introduces the BPU architecture in Section (5.1), presents a brick-aware memory lay-
out in Section (5.2), and describes a bulk-synchronous parallel processing model in Section (5.3).

5.1 BPU Architecture

A practical PLF accelerator architecture that effectively meets critical requirements of large-scale,
real-world analyses requires a highly versatile design that is agnostic to the tree-search strategy to
facilitate cooperation with heuristic algorithms, which are inevitably employed to shorten infer-
ence times for phylogenies with many taxa.3 Furthermore, arithmetic scaling is required to ensure
that the accelerated system remains numerically stable as the number of taxa increases. Driven
by these requirements, we devised a low-latency, highly parallel pipelined architecture to be de-
ployed adjacently to the disaggregated-memory controller (DMC) on dReDBox memory bricks.
The proposed BPU architecture is based on the RAxML PLF kernel, facilitating comparisons with
previous PLF accelerators [24, 45, 60]. In addition, it performs a multiplication with the inverted
eigenvector, a RAxML-specific numerical detail that is related to the calculation of the nucleotide
substitution matrix P (see Equation (1)) based on an eigenvector/eigenvalue decomposition [67].

The BPU architecture, depicted in Figure 9(A), is based on a decoupled access-execute architec-
tural paradigm [68, 69]. It is a dataflow streaming pipeline that consists of six ACCESS units and
one EXECUTE unit, with the ACCESS units denoted in the figure with the suffix _AC , whereas the

3For as low as 50 taxa, the number of possible unrooted trees exceeds the number of atoms in the universe (approx.

1080) [66].
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EXECUTE unit is denoted with the suffix _EX . A single BPU invocation proceeds in two distinct
sequential steps. First, the LM_AC , RM_AC , and EV _AC units retrieve the left and right probabil-
ity matrices (P (tl ) and P (tr ) in Figure 3) and the inverted eigenvector from main memory, and
store them into dedicated register files (denoted with the suffix _RF in the figure). Thereafter, the
FIFO-based LA_AC and LB_AC units fetch the ancestral probability vectors LA and LB (account for
all discrete Γ rates) that correspond to the left and right child nodes, respectively (see Figures 3
and 4), and stream them through the PLF_EX datapath. This computes Equation (1), performs a
multiplication with the inverted eigenvector, and scales up the results when needed. The output,
i.e., the ancestral probability vector LC , is stored back to main memory through the FIFO-based
LC _AC unit. The ACCESS units that prefetch data into the register files do not contain FIFOs.

It should be noted that the FIFOs in the LA_AC , LB_AC , and LC _AC ACCESS units are used to
facilitate the data movement between the memory controllers and the EXECUTE unit in such a
way that processing proceeds as fast as data arrive. Therefore, once a probability is read from a
FIFO, it is used by the EXECUTE unit to perform in parallel all possible arithmetic operations that
use that specific value. In resource-limited devices, however, this might not be possible. In this
case, the FIFO output will have to be stored into dedicated register files for a longer period of time,
and reused for as many clock cycles as required in order to compute the entire output APV entry
(the probabilities for all output nucleotide states).

The PLF_EX pipelined datapath is illustrated in Figure 9(B). It consists of arrays of double-
precision floating-point multipliers to maximize arithmetic intensity. This is achieved by conduct-
ing all possible operations per received datum in parallel, and relying on sum reduction trees
instead of accumulators to yield an efficient pipelined datapath with low initiation interval. Each
multiplier array is composed of N multipliers, where N is the alphabet size in the MSA (N = 4
for DNA, N = 20 for proteins). Each logarithmic adder tree consists of N − 1 adders, yielding a
critical path for calculating the sums of Equation (1) that is proportional to loд2N rather than N .
The PLF_EX architecture can accommodate any number of discrete Γ rates for rate heterogene-
ity among alignment sites when per-rate data for each alignment site are consecutively provided
through the two input streams.

5.2 Brick-aware Memory Layout

Application performance heavily relies on the way data are stored in memory. A common practice
in high performance computing is to allocate an array within a large allocation that is performed
only once, thereby increasing the likelihood that the array is allocated on contiguous physical
pages [70]. In computing environments with disaggregated memory; however, a large allocation
can span multiple physical memory nodes. In dReDBox, a customized system software stack allows
virtual machines and orchestration software to dynamically attach remote memory to compute
bricks. Memory hotplug, i.e., the resizing of memory at the OS level, is supported by an appropri-
ately modified linux kernel for arm64 [71]. A software-defined memory controller supports the
dynamic allocation/deallocation of memory resources to the host operating system running on
a compute brick. Once the hardware glue logic (dReDBox IP termed Transaction Glue Logic) is
configured, the kernel attaches new physical page frames to the page-table pool at run time. Sub-
sequently, a Type-1 hypervisor is configured to dynamically expand the physical memory that is
provided to the hosted virtual machine.

Since the allocated memory at the application level is transparently mapped to physical memory
segments on dReDBox memory bricks, deploying BPUs to boost performance of phylogenetic anal-
yses requires a brick-aware memory layout that eliminates remote-memory accesses. To achieve
this, BPUs need to exclusively operate on local data (same memory brick), irrespective of the align-
ment size, the MSA data type (DNA or protein), the number of discrete Γ rates, and the tree-search
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Fig. 10. (A) RAxML memory layout for an APV entry. Every access to external memory on the same brick

reads/writes 128-bit words (bit-width of the memory controller bus interface). (B) Standard RAxML memory

layout for n − 2 inner nodes and m sites. (C) Naive memory layout on two memory bricks. (D) Proposed

brick-aware, interleaved memory layout.

strategy. Figure 10(A) shows the RAxML memory layout for an APV entry when processing DNA
data (states A, C, G, and T) using theGTR + Γ model with four discrete rates. It comprises 16 prob-
ability values, one per state per rate, thus occupying 128 bytes. Given an MSA of n sequences and
m alignment sites, RAxML allocates a large contiguous memory space to store all n−2 APVs, each
comprisingm entries, as depicted in Figure 10(B). A naive memory allocation will distribute APVs
to memory bricks, as illustrated in Figure 10(C) for two memory bricks: one stores the first r APVs,
while the other stores the remaining n − 2 − r APVs. Expectedly, the possibility that all APVs in-
volved in a single PLF invocation (two input child nodes and one output parent node) reside on the
same memory brick diminishes with an increasing number of memory bricks, far less for all PLF
invocations. Figure 10(D) demonstrates the proposed brick-aware memory layout that interleaves
entries from all APVs on every memory brick. This distributes APV entries to memory bricks at
site-level granularity: one memory brick stores the first t entries from all APVs in Figure 10, while
the other stores the remaining m − t entries (see also Figure 11(A) for another example).

Parallelism in computing the PLF is more efficiently exploited across sites, where computation
is embarrassingly parallel, rather than across tree nodes, which imposes a sequential order of op-
erations since a parent cannot be computed prior to its two child nodes. The proposed interleaved
memory layout allows BPUs to operate in parallel and exclusively on local data, with each BPU
only processing the APV entries that reside on the same brick. It also eliminates the need to re-
locate APVs when the topology is altered during tree searching, since each memory brick hosts
corresponding fractions of all APVs.

5.3 Bulk-synchronous Parallel Processing

Processing requests to BPUs are issued sequentially while tree searching advances toward topolo-
gies with better likelihood scores. Every PLF invocation is served by all BPUs operating in parallel.
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Fig. 11. (A) A 5-node subtree and a PTD with two PLF calls. (B) Two dReDBox server trays, one hosting a

compute and a memory brick, and one hosting two memory bricks. Two BPUs per memory brick operate

in data-parallel mode through dedicated memory ports. Synchronization is required after every PLF call,

lowering the computation-to-synchronization ratio. (C) PTD-sized workload per BPU, allowing processing

to proceed beyond a single PLF call within the same PTD to improve the computation-to-synchronization

ratio.

Each BPU computes the fraction of the parent APV that resides on the same memory brick using
the respective fractions of the children APVs, which also reside in the same physical address space.
BPUs are accessing local data through physical addressing, which simplifies system design and
improves performance since no virtual address translation is required. The compute brick (runs
RAxML) is accessing APVs via virtual addresses, deploying the POSIX-compliant Unix system call
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mmap() to create a new mapping in the virtual address space for each remote-memory segment in
every memory brick. This introduces the need for synchronization to maintain a coherent view of
the shared address space between the compute brick and the BPUs on the memory bricks.

To this end, we employ a form of bulk-synchronous processing [36] in which BPUs operate in-
dependently between barriers to ensure that the application does not read stale APV entries. How-
ever, synchronization overhead increases with the number of memory bricks, while the workload
per BPU decreases, which can lead to an unfavorable computation-to-synchronization ratio for the
PLF. To improve this, we employ a coarse-grained model of execution that increases the workload
per BPU, and employ a software/hardware barrier implementation that reduces the overhead of
synchronization.

We exploit the so-called partial traversal descriptor (PTD) that is created by RAxML to invoke
the PLF after every SPR iteration. A PTD contains an ordered sequence of the PLF calls that are
required in order to update a number of APVs such that they reflect all the topological changes
introduced by the most recent SPR iteration. In Figure 2(A), for example, after the pruning step, the
virtual root is placed on the new branch that connects nodes a and c to optimize its length. After
the regrafting step, the virtual root is placed on each of the two new branches. When the virtual
root (vr ) is placed on the branch that connects nodes a and b, the PTD consists of three entries:

PTD = {[a, 0, c], [b, 1, d], [vr, a, b]},

with each entry Ti = [ parent , le f tChild , riдthChild ] describing a single PLF call via a triplet of
node indices for the parent and the two children (see also Figure 11(A) for another example). Ex-
tending the BPU architecture to proceed beyond a singleTi before synchronizing, as demonstrated
in Figure 11(C), allows to amortize the cost of synchronization by enclosing PTD-sized workloads
within barriers, rather than requiring synchronization after every PLF call (Figure 11(B)). This is
possible because each memory brick stores corresponding fractions of APV entries from all tree
nodes, as shown in Figure 11(A). These corresponding APV entries refer to the same genomic re-
gion in the input sequences and are used together in PLF computations. Thus, once the BPU has
finished processing the APV parts of entry Ti (data that reside on the same memory brick where
the BPU is located), it can proceed with processing the APV parts of the entry Ti+1 in the PTD
because the combination of tree nodes to be combined next is found in the PTD, and all input data
already reside on the memory brick. Because PLF computation across different genomic locations
is embarrassingly parallel, this extends to computation across BPUs on different memory bricks,
which is enabled by the memory layout depicted in Figure 11(A). Therefore, synchronization is
only required at the end of the PTD, as illustrated in Figure 11(C).

To reduce the synchronization overhead, we devised a software/hardware centralized barrier
implementation that is composed of three levels, as shown in Figure 11(B). In Level 0, BPUs on
the same memory brick (each assigned a dedicated memory port) synchronize at the hardware
level. A done flag per memory brick is raised to notify the BPU runtime. A counting barrier is
employed in Level 1 to synchronize memory bricks. The runtime deploys a dedicated thread in
busy-wait mode to monitor progress through an array of done flags. Monitoring starts prior to
initiating computation on BPUs to eliminate the risk of processing finishing before the runtime is
in monitoring mode. In Level 2, the runtime synchronizes with RAxML through a sense-reversal
barrier to avoid potential deadlock problems that arise when sequential barriers are used.

6 MEMORY COMPRESSION

In this section, we describe a PLF-specific data interpolation engine that employs BPUs to reduce
the amount of allocated physical memory in phylogenetic analyses with many taxa. Section 6.1
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Fig. 12. (A) A fully balanced 8-taxon tree where only a subset of the inner nodes are stored in memory (light

gray circles). The rest of the nodes (white circles) are recomputed when needed. (B) Two memory bricks with

a 3-BPU reduction tree on each brick. Given s sites, memory brick 0 computes in the range [0 .. s/2 − 1],

while memory brick 1 computes in the range [s/2 .. s − 1].

presents the underlying idea, while Section 6.2 introduces the required architecture extensions to
create a solution that is transparent to the application running on a compute brick.

6.1 Underlying Idea

To reduce memory requirements, we exploit the observation by Izquierdo-Carrasco et al. [65] that
trading memory resources for processing time is possible because a parent node can be recom-
puted at any point in time based on child nodes that reside in memory. The authors employed a
CPU for recomputing parent vectors that are not stored in memory, expectedly observing slower
processing overall (up to 40%). Our approach builds upon this observation to create an ecosystem
of BPUs on disaggregated memory bricks that collectively allow to conduct large-scale phyloge-
netic analyses with lower memory requirements, and additionally alleviate the recomputation cost
through parallel processing on deep pipelines of BPU reduction trees.

Figure 12 demonstrates the underlying idea based on an unrooted, fully balanced, 8-taxon phylo-
genetic tree (Figure 12(A)), and two disaggregated memory bricks hosting a 3-BPU reduction tree
each (Figure 12(B)). Light gray circles represent tips or inner nodes with allocated memory space
for their ancestral probability vectors (APVs), whereas blank circles indicate phylogenetic tree
nodes that do not reside in memory. The dotted-line rings indicate which nodes belong to the
same generation (equal distance from the virtual root in terms of number of branches). Comput-
ing the log-likelihood score for this topology requires the calculation of the APVs of nodes a and
h. Before calculating the APV of node a, for instance, its child nodes need to be recomputed, since
they are not stored in memory. Without a BPU-based datapath that computes across generations
at our disposal (Figure 12(B)), the immediate children of node a, which are nodes b and e , need
to be calculated and stored in memory. The depicted BPU-based datapaths, however, can directly
compute the APV of node a, for which dedicated memory space is allocated, using the APVs of
nodes c , d , f , and д, which also reside in memory, without the need to store the APVs of nodes b
and e in memory at any point in time. These vectors are calculated and flow through the pipelined
BPU-based reduction trees, temporarily residing in FIFOs until node a is computed. Exploiting the
data allocation scheme described in Section 5.2, BPU reduction trees on distinct memory bricks
can operate in parallel on different fractions of APVs that are stored locally, paving the way for a
practical solution that reduces memory requirements in a time- and energy-efficient way.

An N -input processing datapath on a memory brick interconnects N − 1 BPU instances to
construct a balanced BPU tree that can compute the APV of the common ancestor of X inner
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Fig. 13. Topology-aware, memory-brick architecture that hides its processing capacity from the phyloge-

netic software executing on a compute node. The BPU-based datapath facilitates transparent memory-side

compression of PLF data.

nodes under any relationship among them with a latency of O (log2 N ), as long as the following is
true: X � N . Given a fixed tree topology and placement of the virtual root, the BPU tree height
reduced by one (log2 N −1) indicates the number of generations that can efficiently be recomputed
on the memory brick. As already mentioned; however, a practical phylogenetic analysis relies on
a tree-search strategy to explore the tree space, which alters the tree topology after each step.
Furthermore, optimizing the length of a branch requires to relocate the virtual root to the spe-
cific branch prior to initiating any number of optimization iterations. In the following section, we
describe a set of extensions to the memory-brick architecture in order to facilitate the transpar-
ent deployment of BPU reduction trees for lowering overall memory requirements when the tree
topology and the location of the virtual root change during tree searching.

6.2 Memory-brick Architecture

The primary aim at devising a transparent memory-side interpolation engine for APVs is to create
a disaggregated computing system that provides the illusion that all computation is performed on
processors using more memory than actually installed in the system. The phylogenetic application
that runs on a compute brick and calls the PLF while searching the tree space is oblivious to the
existence of processing units (BPU reduction trees) on the memory bricks. This requires that all
the BPU reduction trees that are deployed on different memory bricks collectively operate as one
interpolation engine that computes parent APVs using child probability vectors stored in memory.
A prerequisite to allow disaggregated BPU reduction trees to operate in this manner is to devise a
topology-aware memory-brick architecture that keeps track of the newly constructed evolutionary
relationships after each topology-alteration step.

Our approach exploits again the RAxML PTD that is created after every SPR iteration to call the
PLF (recall Section 5.3). Figure 13 illustrates the proposed memory-brick architecture that monitors
the PTD and initiates computation locally, and only when required, in order to ensure that the
phylogenetic software remains unaware of the memory brick’s processing capacity, while at the
same time a reduced amount of memory operations are issued. A dedicated memory space, denoted
TreeMap in the figure, provides the required topology-aware functionality per memory brick. A
TreeMap entry (TME) describes an inner node through the following fields: (a) the start address
of its probability vector (pAddr), (b) the node indices of the left and right child nodes (leID and
riID), (c) the start addresses of the probability vectors at the left and right child nodes (leAddr and
riAddr), and (d) a 1-bit flag that indicates whether memory is allocated for the node’s probability
vector (mapF). Given S taxa, the TreeMap contains S − 1 entries to account for the S − 2 inner
nodes (unrooted tree topology) and the virtual root. The PTD_Monitor parses eachTi entry of the
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PTD, and updates the TreeMap accordingly, ensuring that the memory brick is aware of the tree
topology at all times. For everyTi , the PTD_Monitor calculates the index pI D for the TreeMap entry
to update as follows:

pI D = parentID − S,
where parentID is the node index that is retrieved from Ti .

If the mapF flag in the entry to be updated is not set, indicating no allocated memory space for
the node’s probability vector, the memory brick does not perform any computation, despite the
fact that RAxML has issued a PLF call. In this case, only the fields that describe the child nodes are
updated. RAxML practically perceives this call as a no-latency operation, since updating a TreeMap
entry takes only a few clock cycles. When memory has been allocated for the parentID node, i.e.,
mapF = 1, the PTD_Monitor executes the recursive operation iterativePLF (pI D ) (see pseudocode
for the case of a datapath with a single BPU in Algorithm 1) to infer the sequence of PLF operations
that need to be conducted on the BPU _Tree to update the probability vector at the parentID node.

ALGORITHM 1: Pseudocode of the iterativePLF recursive function that is implemented by the

PTD_Monitor to construct the partial traversal descriptor (partial_PTD) and compute the PLF on a mem-

ory brick.

Data: T r eeMap memory and pI D node index to compute its probability vector

Result: PTD to be processed on the memory brick

T MEi ← T r eeMap (pI D )
lef t N ode ← T MEi .le I D

if lef t N ode .mapF == 0 then
iter ativeP LF (lef t N ode )

end

r iдht N ode ← T MEi .r i I D

if r iдht N ode .mapF == 0 then
iter ativeP LF (r iдht N ode )

end

T ′
j
.pAddr ← T MEi .pAddr

T ′
j
.leAddr ← T MEi .leAddr

T ′
j
.r iAddr ← T MEi .r iAddr

BPU _T r ee (T ′
j
)

The total amount of physical memory used for storing APVs of inner nodes is a function of
the desired compression ratio. The assignment of memory slots to inner nodes is arbitrary, since
the tree topology changes dynamically through heuristic-based tree searching, and hence no a-

priori assumption about inferred evolutionary relationships among inner nodes can be exploited.
This raises the possibility of constructing partial traversal descriptors that comprise consecutive
PLF operations for nodes without allocated memory space, the size of which is larger than the
BPU_Tree depth. This requires the temporary allocation of memory slots to store these probability
vectors, thereby slightly reducing the effect of compression, as will be explained in Section 8.

7 IMPLEMENTATION

The BPU harware architecture is described using high-level synthesis based on Xilinx Vivado HLS
2018.3. It is a dataflow architecture (HLS DATAFLOW) of interconnected pipelined units (ACCESS
and EXECUTE) that communicate via AXI4-Stream channels (HLS INTERFACE axis). All ACCESS
units are fully pipelined with initiation interval of 1 clock cycle (HLS PIPELINE II=1). The EXE-
CUTE unit is also pipelined, with an initiation interval of 16 clock cycles (HLS PIPELINE II=16),
due to the fact that an entire probability vector entry (4 discrete rates× 4 DNA states) is checked for
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arithmetic scaling. Recall that arithmetic scaling is required to prevent arithmetic underflow when
the number of taxa increases. The BPU implements the same scaling logic used by RAxML, which
scales up all 16 values in an APV entry when needed, i.e., when one probability is below a prede-
fined threshold. While this is not necessary, and one could easily scale up only the probabilities
under the threshold, scaling up the entire APV entry simplifies the arithmetic operations required
for the final likelihood calculation at the virtual root. The BPU pipeline in the EXECUTE unit ex-
ploits the maximum degree of parallelism for Equation (1), calculating one probability per clock
cycle, thus requiring a total of 16 clock cycles before the entire APV entry is calculated and the
decision to scale up or not can be taken. The EXECUTE unit comprises multiple double-precision
floating-point arithmetic units operating in parallel (HLS ARRAY_PARTITION and HLS UNROLL),
achieving arithmetic intensity of 1.88 and 2.81 floating-point operations per byte when a single
BPU and a 3-BPU reduction tree are used, respectively.

To test the BPU in a disaggregated-computing environment, we employed an FPGA-based emu-
lation platform [72] formed by two ZCU102 evaluation boards interconnected over a Small Form-
factor Pluggable 10-Gbps link. Each board features a Zynq Ultrascale+ MPSoC, which is the same
MPSoC architecture that hosts the Transaction Glue Logic (Section 5.2) on every dReDBoX brick.
In our experimental setup, one board assumes the role of a compute brick and runs Ubuntu 16.04 on
its application processing unit, an ARM Cortex-A53 64-bit quad-core processor, while the other rep-
resents a memory brick that hosts memory and BPUs. The emulation platform runs the dReDBoX
system software stack using the modified linux kernel for memory hotplug support [71]. We have
also integrated the REMAP remote-memory manager IP [73] that enables the operating system to
perceive remote-memory segments (physical memory on the memory brick) as paged memory.

We used Xilinx SDSoC 2018.3 to design and optimize the data-motion network that serves mem-
ory requests from the ACCESS units. The data-motion network provides an AXI master bus inter-
face for prefetching the transition probability matrices and the inverted eigenvector (ZERO_COPY
directive). For the APVs, we sequentialized the access pattern and indicated that data reside in
physically contiguous memory, which, in combination with the COPY directive, deploys an effi-
cient DMA engine that generates burst transfers through a streaming interface. The initiation
interval (II) of the BPU pipeline is 16 clock cycles, which is defined by the APV entry size (16
double-precision floating-point values). When a BPU operates at 200 MHz, this leads to a maxi-
mum theoretical throughput performance of 12.5 × 106 APV entry updates per second, which is
frequently measured in VEUPS (Vector Entry Updates Per Second). The BPU effective throughput
is 12.41×106 VEUPS (99.2% of the theoretical peak), which indicates that the data-motion network
introduces negligible overhead.

To assess BPU performance as a dedicated accelerator under a memory system with a wider
interface, we used Xilinx SDAccel 2018.3 to create a BPU design point for an Amazon EC2 F1
instance, targeting the Virtex Ultrascale+ AWS-VU9P-F1 datacenter-level acceleration board that
provides four 512-bit memory interfaces. We modified the ACCESS/EXECUTE units and all inter-
nal AXI4-Stream channels to map to the full data width on the memory controller, and employed
three memory interfaces for the APVs. The transition probability matrices and the inverted eigen-
vector are prefetched through the memory interface employed for the parent APV (output). The
512-bit width allows the II to be as low as 2 clock cycles, which yields a maximum theoretical
throughput of 111 × 106 VEUPS at 222 MHz. When the 512-bit BPU is deployed on a f1.2×large
instance (one PCIe-attached FPGA), the effective throughput is 83.36 × 106 VEUPS (75.1% of the
theoretical peak). Note that BPU computations are initiated through the OpenCL API.

Table 2 provides performance and resource utilization of the application-specific processing
logic on the memory brick when 1–4 BPUs operate in parallel (as depicted in Figure 11(B)),
and when a 3-BPU reduction tree is used (as depicted in Figure 12). The table also provides the
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Table 2. Performance and Resource Utilization for Various BPU Configurations on the Zynq

Ultrascale+ MPSoC: 1-4 BPUs in Parallel and a 3-BPU Reduction Tree (RT)

1 BPU 2 BPUs 3 BPUs 4 BPUs 3-BPU RT

Freq. (MHz) 100/150/200 100/150/200 100/150 100/150 100/150

Power (W) 1.7/3/3.5 3.5/4.8/6.1 5.1/6.9 6.7/7.5 4.1/5.9

II (cycles) 16 16 16 16 16

BW (GB/s) 2.4/3.6/4.8 4.8/7.2/9.6 7.2/10.8 9.6/14.4 4/6

LUTs (274,080) 16.13%–17.57% 33.06%–36.05% 48.31%–51.61% 63.34%–67.69% 44.82%–48.17%

FFs (548,160) 9.79%–12.73% 26.52%–32.40% 37.83%–42.45% 48.74%–54.89% 28.56%–33.18%

DSPs (2,520) 7.18% 14.37% 21.55% 28.73% 21.55%

BRAMs (912) 3.95% 6.74% 9.05% 10.86% 9.92%

The bandwidth values (“BW”) refer to the maximum memory bandwidth that can be utilized.

Table 3. Performance and Resource Utilization for the REMAP Inter-brick

Communication Controller [73] and two Memory-brick Configurations with 4 BPUs

in Parallel and a 3-BPU Reduction tree (RT) on the Zynq Ultrascale+ MPSoC

REMAP IP [73] on Memory Brick with

Compute Brick Memory Brick 4 BPUs 3-BPU RT

Frequency (MHz) 100 100 100 150

Power (W) 5.0 5.6 8.1 8.4

II (cycles) n/a 16 16

BW (GB/s) 1.2 (between nodes) 9.5 5.9

LUTs (274,080) 6.13% 8.03% 69.71% 55.39%

FFs (548,160) 4.93% 6.68% 53.77% 38.91%

DSPs (2,520) 0.12% 0.12% 28.85% 21.67%

BRAMs (912) 21.27% 13.76% 24.62% 23.68%

The bandwidth values (“BW”) refer to the maximum memory bandwidth that can be utilized.

maximum memory bandwidth that the BPUs can collectively utilize on the memory node, as well
as the peak BPU-induced dynamic power overhead, which was measured using a digital power me-
ter. Note that Xilinx SDSoC only allows to choose from a pre-defined set of target clock frequencies
for hardware generation. When 3 or 4 BPUs were placed on the memory brick, increased routing
prevented the successful generation of hardware that could be clocked at 200 MHz. In this case, the
next highest target clock frequency setting was used, i.e., 150 MHz. Table 3 provides performance
and resource utilization for the REMAP [72] IP blocks on the compute brick and the memory brick,
as well as the total amount of occupied resources on the memory brick when 4 BPUs operate in
parallel and when a 3-BPU reduction tree is used. Table 4 provides performance and resource uti-
lization of two possible configurations of the accelerator brick, one implemented on the Zynq Ultra-
scale+ MPSoC (ZCU102) and one implemented on the AWS-VU9P-F1 (henceforth denoted EC2-F1).

8 PERFORMANCE EVALUATION

8.1 Brick Performance Scaling and Time Breakdown

To assess datacenter-scale performance, we devise a hybrid evaluation methodology that com-
bines native execution on our emulation platform (Section 7) and EC2-F1 instances, with simu-
lation of the behavior of multiple accelerator/memory bricks for different inter-brick bandwidth
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Table 4. Performance and Resource

Utilization of Accelerator Brick

Configurations on ZCU102 (Same Platform

as the Compute and the Memory Bricks)

and EC2-F1 (f1.2×large)

Accelerator Brick

ZCU102 EC2-F1

Frequency (MHz) 150 222

Power (Watts) 8.1 6.367

II (clock c.) 16 2

APV-Entries/c 0.25 0.5

LUTs (%) 67.69 10.33

FFs (%) 54.89 10.10

DSPs (%) 21.55 21.20

BRAMs (%) 9.05 1.65

configurations. Figure 14(A) illustrates aggregate throughput performance for up to 512 bricks
as a percentage of the theoretical peak of the total amount of deployed custom hardware, while
Figure 15 provides a time breakdown for the same accelerator-/memory-brick configurations for a
fixed bandwidth. The inter-node bandwidth configurations of 4.2 Gbps, 9.1 Gbps, 19.6 Gbps, and 40
Gbps refer to our in-house emulation platform, the REMAP disaggregated-memory controller by
Theodoropoulos et al. [73], the Marlin RDMA-based communication primitives by Cheng-Chun et
al. [74], and Microsoft’s Configurable Cloud architecture by Caulfield et al. [33], respectively.

As shown in Figure 14(A) and (B), user-level accelerator-brick performance (observed by the
compute brick) is at most 43.9% and 9.4% of the theoretical peak on the ZCU102 and the EC2-F1,
respectively, due to the required inter-brick data transfers (Figure 15(A) and (B)). The proposed
bulk-synchronous parallel processing model and brick-aware memory layout are also employed
for execution on accelerator bricks, with every accelerator brick communicating with a dedicated
memory brick in full-duplex mode while amortizing the data-transfer time for two of the three
APVs (one input and one output) through overlapping with processing. In every PLF call, the cor-
responding parts of two input APVs need to be transferred from a memory brick to an accelerator
brick, and the computed part of the output APV is transferred back to a memory brick. Recall that
every APV entry is 128 bytes (Section 5.2) and every accelerator brick receives, calculates, and
transfers back a large number of APV entries per PLF call, depending on the sequence length and
the number of accelerator bricks. This leads to inter-brick data transfers limiting the effective BPU
throughput on accelerator bricks irrespective of the number accelerator bricks, as can be observed
in Figure 14(A) and (B).

Figure 14(C)–(E) show near-peak BPU performance in three different memory-brick configura-
tions, unburdened by inter-brick data transfers, and limited only by the synchronization overhead
that increases with the number of bricks, as shown in Figure 15(C)–(E), respectively. Furthermore,
it can be observed that memory-brick configurations with more than one BPU scale better, as they
benefit the most from hardware-level synchronization (Level 0 in Figure 11(B)). For instance, a to-
tal of 512 BPUs in a 1-BPU-per-brick configuration (Figure 14(C)) achieve 53.5% of the theoretical
peak, whereas the same number of BPUs deployed in pairs (Figure 14(D), 256 bricks) or in groups
of four (Figure 14(E), 128 bricks) deliver 62.9% and 65.9%, respectively.
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Fig. 14. Accelerator/memory brick performance as percentage of the theoretical peak (based on the total

amount of deployed custom hardware) for different inter-brick bandwidth configurations.

8.2 Brick Performance and Energy Efficiency Comparison

Figure 16(A) provides a FLOPS comparison between the EC2-F1-based accelerator brick and the
three ZCU102-based memory-brick configurations. When the inter-brick bandwidth is 4.2 Gbps
(emulation platform), the best-performing memory-brick configuration (4BPUs, 150MHz) is up to
12.9× faster than the accelerator brick, delivering up to 792.8 GFLOPS (512 BPUs, 128 memory
bricks). With an inter-brick bandwidth of 40 Gbps, BPU processing on memory bricks is up to
67.2% faster than the accelerator brick, delivering up to 2,426.4 GFLOPS (1,526 BPUs, 384 memory
bricks).

Figure 16(B) demonstrates the effect of PTD (Partial Traversal Descriptor) size on the aggre-
gate throughput of memory and accelerator bricks. The PTD size improves the computation-to-
synchronization ratio and allows performance to scale better with the number of bricks by alle-
viating the effect of synchronization. Using RAxML and simulated datasets with up to 1,000 taxa,
we find that, while PTD sizes vary between 1 and n − 1 PLF calls per run, where n is the number
of taxa, over 90% of the PTDs comprise between 2 and 8 PLF calls. The average-case scenarios of
PTDs with 5 and 10 PLF calls, depicted in Figure 16(B), reveal 3.3× and 4.6× higher memory-brick
performance over the single-PLF-per-PTD case, respectively, when 1,024 bricks are deployed (the
respective improvement for the accelerator brick is 3.1× and 4.2×).
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Fig. 15. Accelerator/memory brick time breakdown for the 40-Gbps bandwidth configuration. Processing

includes local-data access times.

Figure 16(C) and (D) provides comparisons of energy efficiency (FLOPS/Watt) between the
ZCU102-based accelerator brick and the three memory-brick configurations for 4.2 Gbps and 40
Gbps inter-brick bandwidth configurations, respectively. Remote-data transfers reduce energy ef-
ficiency by up to an order of magnitude, with the most energy-efficient memory-brick configura-
tion (2 BPUs, 200 MHz) achieving 1.794 GFLOPS/Watt (irrespective of inter-brick bandwidth) in
comparison with 116.991 MFLOPS/Watt and 878.445 MFLOPS/Watt achieved by the accelerator
brick under 4.2 Gbps and 40 Gbps bandwidth configurations, respectively. The synchronization
overhead increases with the number of memory/accelerator bricks, which prevents FLOPS perfor-
mance from scaling, thereby diminishing the energy-efficiency gap when the number of bricks
increases to 512 or higher.

Overall, Figure 16 shows that memory-brick configurations with one or more BPUs achieve
higher throughput performance and energy efficiency than more powerful accelerator-brick con-
figurations. This is because of the limited number of inter-brick data transfers that are required
when BPUs are deployed on memory bricks. The memory-aware memory layout allows all BPUs
in a memory brick to operate on local data on the same memory brick, thereby considerably reduc-
ing the time and energy spent on inter-brick data transfers. Accelerator-brick configurations can
not avoid this time/energy overhead per PLF call, achieving overall lower throughput and energy
efficiency than memory-brick configurations.
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Fig. 16. (A) FLOPS performance comparison. (B) Performance scaling with the PTD size (number of PLF calls).

(C) Energy efficiency under 4.2 Gbps inter-brick bandwidth. (D) Energy efficiency under 40 Gbps inter-brick

bandwidth.

8.3 Memory-side Compression/Decompression

To evaluate the proposed compression/decompression scheme, we execute the standard RAxML
version 8.2.12 [17] on the compute brick, while the memory brick hosts the 3-BPU reduction tree
with topology-aware functionality (Figure 13). RAxML was used to perform full phylogenetic anal-
yses of two simulated datasets with a different number of DNA sequences (50 and 100) and the
same alignment length (1,000 sites). Figure 17 shows the total execution time required per dataset
to compute the PLF using the 3-BPU datapath on the memory brick when the compression ratio
increases up to 2.5 (with respect to the RAxML full memory requirements per dataset). The figure
also provides the respective execution time when the same compression scheme is implemented
in a software-only environment on a Dell PowerEdge R530 rack server with two 10-core Intel
Xeon E5-2630v4 CPUs (20 threads per CPU) running at 2.2 GHz (base), and 128 GB of DDR4 main
memory. We employ the fastest parallel implementation of RAxML, which uses Posix threads and
Advanced Vector Extensions 2 (AVX2), for these measurements. In addition, the figure illustrates
the reduction in energy consumption (note the secondary vertical axis) that is achieved by recom-
puting ancestral probability vectors on an as-needed basis on the memory node, instead of using
1 and 2 CPU cores. Power consumption of the Dell server was monitored using the Dell Remote

Access Controller (iDRAC), i.e., a controller card embedded in the motherboard.
As can be observed in Figure 17(A) for the 50-taxon phylogenetic analysis, trading compu-

tation time for memory introduces a relatively low recomputation overhead to the CPU-only
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Fig. 17. Time-memory trade-off for the phylogenetic analysis of simulated datasets with 50 (A) and 100 (B)

sequences (length 1,000 sites), as the compression ratio increases to 2.5. The 50-taxon software-only analysis

employed 1 CPU core, whereas the respective 100-taxon one utilized 2 CPU cores.

implementation (less than 5%) when the compression ratio remains under 1.84, whereas for larger
compression ratios, the recomputation overhead approaches 30%. When the ancestral probability
vectors are recomputed on the memory node; however, we achieve improved performance, with
up to 34% shorter execution times, due to the effective utilization of the deeper application-specific
pipeline that the interconnected BPUs form on the memory node. Based on the power overhead
that the 3-BPU tree adds to the disaggregated memory node itself (4.1 W, operating at 100 MHz),4

and the respective power overhead that a CPU core using AVX2 instructions adds to the rack
server (14 W),5 we estimate that the proposed memory-side compression/decompression scheme
achieves up to 6.9 times lower energy consumption for the computation of the PLF, with the CPU
core and the 3-BPU tree consuming a total of 3.619 kJ and 0.527 kJ when the compression ratio
is 2.5, respectively. Similar energy savings are achieved when the phylogeny size increases, as
can be observed in Figure 17(B) for the 100-taxon analysis. Furthermore, the figure reveals that,
when the compression ratio is 2.27, a disaggregated memory node with a 3-BPU tree exhibits
comparable performance with 2 CPU cores using AVX2 (the memory node requires less than 3%
longer execution time), while achieving 6.6 times lower energy consumption, with the 2 CPU
cores and the 3-BPU tree now consuming 25.674 kJ and 3.869 kJ, respectively.

8.4 Comparison with Software and other Accelerators

Table 5 compares the proposed BPU architecture on the ZCU102 and the EC2-F1 with RAxML [17]
and previous FPGA accelerators [24, 45, 60] in terms of VEUPS and VEUPS/Watt. We employ a
Dell PowerEdge R530 rack server with two 10-core Intel Xeon E5-2630v4 CPUs running at 2.2 GHz
as the test platform. We deploy the fastest RAxML implementation, which uses Posix threads and
AVX2 extensions, while setting CPU affinity per thread (RAxML-provided option for performance).
Power consumption of the Dell server was monitored using the iDRAC, a controller card embedded
in the motherboard.6

As can be observed in the table, two BPUs on a ZCU102 achieve approximately the same through-
put performance as the fastest RAxML execution on a ×86 core, and more than two times higher

4The static power consumption of the ZCU102 board before programming is 22.6 W.
5The iDRAC reports power consumption of 112 W for the rack server when unloaded.
6The iDRAC reports 112 W power consumption when the server is unloaded. The ZCU102 static power consumption before

programming is 22.6 W.
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Table 5. Comparison of Throughput (VEUPS) and Energy Efficiency

(VEUPS/Watt)

Implementation Information VEUPS×106 VEUPS×106/Watt

RAxML-AVX2
(PowerEdge R530)

1 thread 24.054 1.718

4 threads 89.132 2.122

20 threads 329.582 2.746

Alachiotis et al. [24] 284 MHz 17.750 n/a

Alachiotis et al. [45] 101 MHz 25.250 n/a

Berger et al. [60] 167 MHz 18.385 n/a

1 BPU (ZCU102) 200 MHz 12.414 3.547

2 BPUs (ZCU102) 200 MHz 24.765 4.059

4 BPUs (ZCU102) 150 MHz 27.124 3.617

1 BPU (EC2-F1) 222 MHz 83.362 13.093

The BPUs operate on local data for this comparison. Designs [24, 45], [60] are

mapped on Virtex5.

energy efficiency. While throughput performance of the PowerEdge server increases with the num-
ber of threads, energy efficiency does not improve significantly. The fastest BPU configuration in
this study, on an EC2-F1 instance, achieves nearly the same throughput performance as four ×86
cores and 6.2× higher energy efficiency, delivering up to 13 × 106 VEUPS per Watt. Therefore, a
major advantage of the BPU architecture over multi-core processors, irrespective of whether it
is deployed in a near-memory configuration or as a dedicated accelerator, is the higher energy
efficiency.

Throughput comparisons with other hardware accelerators show that one BPU does not outper-
form previous architectures. However, such comparisons should take into account the practical
limitations introduced in each design. The first accelerator architecture by Alachiotis et al. [24],
for instance, could only process fully balanced phylogenetic trees, thereby limiting its applicability
in real-world studies. Alachiotis et al. [45] addressed that limitation but did not support scaling,
thereby restricting its application to phylogenetic trees with a small number of sequences. Berger
et al. [60] presented an optimized accelerator for any tree topology and number of sequences, but,
similarly to the previous accelerator architectures [24, 45], the architecture does not accommo-
date statistical models for rate heterogeneity. All aforementioned limitations are addressed in the
BPU architecture, and the support of rate heterogeneity with four discrete Γ rates, as required by
RAxML, leads to the BPU performing at least four times more operations per alignment site than
the previous accelerator architectures in this comparison.

9 CONCLUSIONS

This work presented a custom architecture for a fundamental computational kernel in phyloge-
netics, and described an efficient memory layout that eliminates remote-data transfers on data-
centers with disaggregated memory. We devised a bulk-synchronous parallel model of execution
with a favorable computation-to-synchronization ratio, observing an order of magnitude better
performance and energy efficiency when computing on local data instead of conducting explicit
data transfers between remote accelerator and memory resources. We found that performance and
power efficiency improves by an order of magnitude when computing on local data instead of con-
ducting explicit data transfers between disaggregated compute and memory resources. Moreover,
we described an effective way to deploy interconnected BPUs that operate similarly to a data inter-
polation engine transparently to the user application, leading to further performance and power
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efficiency improvements, as well as up to 2.5 times lower memory requirements, thereby paving
the way for reconstructing even larger phylogenies.

As future work, we intend to explore the potential of deploying 3D-stacked DRAMs on disag-
gregated memory nodes, and assess performance and energy gains from deploying the proposed
application-specific accelerator architecture directly on the logic-in-memory layer. Furthermore,
we intend to adapt the proposed custom logic for protein and RNA data. In addition, we intend
to devise near-memory processing solutions for more scientific-computing kernels that are bound
by memory access.
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