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Abstract
Despite empirical successes of recurrent neural networks (RNNs) in natural language processing
(NLP), theoretical understanding of RNNs is still limited due to intrinsically complex non-linear
computations. We systematically analyze RNNs’ behaviors in a ubiquitous NLP task, the sentiment
analysis of movie reviews, via the mapping between a class of RNNs called recurrent arithmetic
circuits (RACs) and a matrix product state. Using the von-Neumann entanglement entropy (EE)
as a proxy for information propagation, we show that single-layer RACs possess a maximum
information propagation capacity, reflected by the saturation of the EE. Enlarging the bond
dimension beyond the EE saturation threshold does not increase model prediction accuracies, so a
minimal model that best estimates the data statistics can be inferred. Although the saturated EE is
smaller than the maximum EE allowed by the area law, our minimal model still achieves ∼99%
training accuracies in realistic sentiment analysis data sets. Thus, low EE is not a warrant against
the adoption of single-layer RACs for NLP. Contrary to a common belief that long-range
information propagation is the main source of RNNs’ successes, we show that single-layer RACs
harness high expressiveness from the subtle interplay between the information propagation and
the word vector embeddings. Our work sheds light on the phenomenology of learning in RACs,
and more generally on the explainability of RNNs for NLP, using tools from many-body quantum
physics.

1. Introduction

The study of many-body quantum physics prompts the development of theoretical and numerical
techniques to compactly represent and analyze quantum states living in an exponentially large Hilbert
space. One of the most prominent examples is a compact representation of a ground state of a
one-dimensional gapped quantum lattice system with local interaction as a matrix product state (MPS),
which can efficiently parametrize an appropriate ground state using resources that grow only linearly with
the system size [1]. Compact representations generalizing MPS to higher dimensional systems include
projected entangled pair state [2], multiscale entanglement renormalization ansatz, which efficiently
parametrize critical high-dimensional systems [3], and, more generally, tensor network (TN) states [4].
These compact state representations drastically reduce the number of parameters from exponential to at
most polynomial in the system size, rendering the analysis and the simulation of many-body quantum
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systems computationally tractable. Dimensionality reduction has enabled insights into a broad range of
many-body quantum phenomena, ranging from quantum phase transitions to topological phases of matter.

On the other hand, machine learning (ML) has also benefitted from algorithms that extract a compact
representation of complex data of interests. In supervised ML, many algorithms efficiently convert a
gigantic set of data-label pair {(Xi, li)}, where Xi ∈ R

d is the ith data vector and li is the scalar label of that
data vector, into a compact representation encoding the relationship between data-label as a conditional
probability P(l|X, θ) parametrized by a set of parameters θ. With the advent of deep learning (DL), a
modern paradigm of ML that imitates computational models of biological neural networks, probabilistic
relationships between data-label pairs as complex and extensive as picture-name matching, sound-text
pairing, or text-speech generation, can be efficiently represented [5]. In fact, the ability of DL to extract a
compact representation of complex data has fueled modern artificial intelligence technologies, including
image recognition, speech recognition, and language translation, to name a few.

Since many-body quantum physics and supervised ML both benefit from a compact representation of
high-dimensional mathematical objects, applying successful techniques from one discipline to the other has
led to a fruitful cross-fertilization. For example, variational ansatz based on artificial neural networks offers
a useful, though less interpretable, representation of complex many-body quantum states [6–8]. Automatic
classification of quantum phases of matter also benefits from supervised ML approaches [9]. In the opposite
direction, techniques from many-body quantum physics can offer novel computational paradigms for
supervised ML. References [10–13] propose TNs as a quantum-inspired supervised ML ansatz that can
achieve high performance in image recognition tasks. Furthermore, entanglement entropy (EE) in quantum
TNs can shed light on the information propagation in the dual artificial neural networks [14, 15]. Such
duality between quantum TNs and artificial neural networks can help scientists scrutinize the inner working
of complex neural network algorithms, providing new tools to tackle the explainability aspects of black-box
DL approaches. Recent work applies quantum techniques to tackle the explainability of image recognition
tasks [12], though the analysis for realistic natural language processing (NLP) tasks is still lacking.

With the goal of investigating the inner working of DL in NLP, we study the behaviors of single-layer
recurrent arithmetic circuits (RACs), a class of recurrent neural networks (RNNs) that can be mapped to an
MPS [14], in a ubiquitous NLP task, the sentiment analysis of movie reviews. The objective of sentiment
analysis is to classify each written review into an appropriate category such as ‘like’ or ‘dislike’. We show
that, by using the EE of the dual MPS as a measure of information propagation in the networks, single-layer
RACs achieve highest prediction accuracies when the information propagation saturates. By saturation we
mean there exists a critical model size χ∗ (measured by the number of hidden neurons) such that larger
models have prediction accuracies and the EE as high as those of the model with size χ∗. Thus, there is a
minimal single-layer RACs model that can best estimate the statistics of sentiment analysis data. The
prediction accuracies are excellent though the saturated EE is below the maximum EE restricted by the area
law of an MPS.

In NLP, another crucial component of successful DL models is a word embedding, a vector
representation of a word that encapsulates word semantics. While the EE analysis reveals the behaviors of
information propagation within single-layer RACs, it disregards the role of word embedding. In this work,
we also analyze the interplay between information propagation and the word embedding. We report that,
with a trainable word embedding, single-layer RACs can achieve higher prediction accuracies at a smaller
EE, compared to those of a model with a fixed embedding. As the EE drops down from its maximum value
to saturation as the model size increases, the word embedding becomes more meaningful (as measured by
the behavior of the cosine similarity between word vector representations). Hence, single-layer RACs have a
trade-off between achieving long-range information propagation and attaining a meaningful word
embedding in sentiment analysis tasks.

Although a long-range correlation in an MPS is bounded above by the area law [16], our results
demonstrate that an MPS can still serve as a useful variational ansatz in a realistic NLP task, provided the
input word embedding is well designed. Recently, TN models for sequence modeling have been proposed
[17–21]; however, most work focus on setting up new TN-based variational ansatz that may not have an
exact mapping to the RNNs counterpart. Albeit interesting, these models do not meet our goal to scrutinize
the inner working of RNNs.

The manuscript is organized as follow. We begin with a self-contained background on a probabilistic
sequence modeling and statistical language modeling in section 2. Sequence modeling in the era of RNNs
and how to represent a word meaningfully as a vector are provided in sections 2.1 and 2.2. The mapping
between RACs and MPS as well as the meaning of EE as a proxy for information propagation are discussed
in section 2.3. Section 3 reports numerical methods and the results of RACs performance on sentiment
analysis for the IMDb data set, a standard movie review data set, revealing the information propagation
capacity in RACs. Comments on RACs’ behaviors and the role of word embedding are provided in details in
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the same section. Similar results for a smaller movie review data set [Rotten Tomatoes (RT)] are reported in
the appendix. Finally, we conclude with the discussion and outlook in section 4.

2. Statistical language modeling with RNNs and MPS

Since language is a sequential phenomenon, in which a sequence of words (or alphabets) dictates its
meaning, we first review a statistical approach to model sequences. A central mathematical object for
statistical sequence modeling is the joint probability distribution P(X1:T) ≡ P(X1, X2, . . . , XT) where a
discrete random variable Xt with t ∈ {1, . . . , T} can take a value xt from a finite set SN with N elements.
One can regard the list of correlated random variables X1:T as a discrete time-series. Using Bayes’ rules, the
joint distribution can be factorized into the product of conditional probabilities, conditioned on the
knowledge of the past, as

P(X1:T) = P (X1) P
(
X2|X1

)
P(X3|X1:2) . . .P

(
XT |X1:T−1

)
, (1)

where X1:t denotes the sequence of random variables in the first t steps; i.e. X1:t ≡ (X1, X2, . . . , Xt). However,
given a time series data, inferring the conditional distribution P

(
XT |X1:T−1

)
from occurrence frequency of a

long data sequence can be impractical, as each realization X1:T−1 = (x1, x2, . . . , xT−1) typically occurs with a
relative frequency ∼N1−T (assuming Xt is uniformly distributed over SN), which is exponentially small in T.

One may assume a short temporal correlation in the sequence, so that the conditional probabilities
depend only on the n previous steps

P(XT|X1:T−1) ≈ P(XT|XT−n:T−1). (2)

For a small n, a realization XT−n:T−1 = (xT−n, . . . , xT−1) now occurs with a non-negligible frequency
∼N−n � N1−T, rendering the estimation of (2) manageable. For n = 1, (2) is the familiar Markov
assumption, which gives a Markovian approximation of a stochastic process X1:T in (1).

In the context of NLP, a probabilistic model that prescribes probabilities to sequences of words (or
alphabets) is called a language model [22]. Predicting the next word (or alphabet), given a sequence of
previous words (or alphabets) is one important example with myriad applications. A model that predicts
the next word based only on the last n − 1 words according to (2) is called an n-gram language model.

However, even with a small n = 4, constructing a 4-gram model from a gigantic text, such as all the
Wikipedia’s English articles, can be impractical. Consider a random variable Xt in (1) which now takes a
realization as a word wt from SN, a dictionary with N words. Oxford English dictionary contains
N = 171, 476 ≈ 105 English words that are currently used [23]. In this case, the frequency of occurrence of

a sequence of four words (wt−4,wt−3,wt−2,wt−1) can be vanishingly small ∼ N−4 ≈
(
105

)−4
= 10−20,

rendering the estimation of P(Xt|Xt−4:t−1) impractical. In addition, accurate prediction of the next word
often depends on the words that appear in the far past. For instance, the prediction accounting for the
subject-verb agreement in ‘this example that we demonstrate for you . . . ’ can be syntactically wrong if the
model retains only the last few words, whose prediction would be ‘are’. It requires a 7-gram model to
correctly predict ‘is’ in this example. Therefore, to construct a useful language model, one needs to devise a
computational approach that can encapsulate a long-range correlation in a sequence of words, while also
circumventing the sparsity of a long sequence problem. This can be achieved with RNNs, which we now
discuss.

2.1. Statistical language modeling with RNNs
Rather than conditioning the prediction task on a window of size n as in an n-gram language model, RNNs
allow conditioning the prediction on all previous words that appear in a text, approximating (1) while
requiring only finite computational resources. RNNs can also perform the next item prediction as it is
widely used to estimate the conditional probability P(XT|X1:T−1); however, one ubiquitous yet simpler task
in NLP is to estimate P(σ|w1:T), where σ is a discrete quantity that characterizes a sequence of words w1:T of
length T. We will focus on characterizing the sentiment of written sentences, a task termed sentiment
analysis in NLP, in which σ is a binary variable that takes a value 0 if a given sequence has a negative
sentiment, and a value 1 if a given sequence has a positive sentiment. This task can be used, for example, to
automatically rate product reviews or analyze news sentiment.

We now describe the simplest (Elman’s/vanilla) RNN that is typically adopted to approximate
conditional probabilities. Figure 1 shows a recurrent computational unit that estimates P(σ|w1:T). At every
time step, except the first and the last, this recurrent computational unit computes from an input Φ(wt) of
dimension dI and a hidden or latent vector ht−1 of dimension dH a non-linear output function f, called
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Figure 1. A schematic for the sentiment analysis (binary classification) of a word sequence w1:T performed by a vanilla RNN,
which outputs the probability that the sequence has a positive sentiment σ ∈ [0, 1]. Each word wt is embedded as a vector
Φ(wt) ∈ R

dI , with dI of around 300–500 for other large language modeling tasks [24, 25]. The recurrent computation is iterated
from a dynamical system ht = f

(
WHht−1, W IΦ (wt )

)
∈ R

dH , with some non-linear map (activation function)
f : RdH × R

dI → R
dH . In the last time step t = T, when sentiment classification is performed, one computes the sigmoid function

σ
(

WOhT + bO
)

which assigns the probability that the sequence w1:T has a positive sentiment.

output hidden vector ht of dimension dH,

ht ≡ f (W IΦ(wt), WHht−1, b). (3)

Here WI is the input weight matrix with dimension dH × dI that aggregate signals from the input vector
Φ(wt), WH is the weight matrix aggregating the signals from the hidden vector whose dimension is
dH × dH, and b is the so called bias with dimension dH. The non-linear activation function f imitates the
behaviors of biological neurons, such that the weighted input and the weighted hidden vector are summed
together (mimicking aggregation of potentials), while the bias (representing the background neuron’s
potential) is added to the aggregated weighted sum. In Elman’s RNNs, each component s(i)

t of the
aggregated sum st = WIΦ(wt) + WHht−1 + b represents a total potential each hidden neuron
i ∈ {1, . . . , dH} experiences, which triggers each hidden neuron to be activated and outputs a
corresponding component of the hidden vector into the next time step as h(i)

t = f (s(i)
t ). The notation in the

last equality and (3) signifies that the same activation function f is applied identically to every hidden
neuron. Standard non-linear activation function f motivated by neurobiology is a sigmoid function or
tanh function, whereas modern ML typically employs rectified linear unit defined by f(x) = Max{0, x} and
its variants [5, 26].

With (3) as a computational building block, one can iterate the computation recursively taking into
account all the inputs in the sequence Φ1:T ≡ (Φ(w1), . . . ,Φ(wT )) of size T, provided a hidden vector h0

was initialized. Due to the recursive structure, it is plausible that information in the far past can influence
the output vector at the last step hT. This manifestation of long-term temporal dependencies through a
recursive computation circumvents the problem of an astronomical number of parameters needed to model
a long sequence encountered in the previous section. Here one only requires to store the bias vector b of
dimension dH, W I of dimension dH × dI, and W H of dimension dH × dH, all of which are independent of
the sequence length T.

The simplest sentiment analysis task, which we focus on, is a binary classification task where there are
only two sentiments σ ∈ {0, 1}. In such case, the final hidden vector will be passed to the classification
neuron with the output weight W O whose dimension is 1 × dH together with the added scalar bias bO as the
aggregated signal of the classification neuron sO = W OhT + bO before the classification neuron predicts a
number σ̂θ ∈ [0, 1] computed from the sigmoid activation function

σ̂θ ≡
1

1 + exp(−sO)
, (4)

where we denote the set of all parameters in this RNN that influences the value of this last neuron as
θ ≡ {b, W I, W H, W O, bO}.

To train the model, one adjusts parameters θ ≡ {b, W I, W H, W O, bO} to minimize the cost (loss)
function C which accumulates the amount of mismatches between the true sentiment σ(wm) associated
with the mth sequence wm ≡ w1:T,m = (w1,w2, . . . ,wT)m and the RNNs’ sentiment prediction σ̂θ(wm), for
all sequences in the training sample m ∈ {1, . . . , M}. For a binary classification task with the probabilistic
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prediction given by (4), the cost function is typically taken as the binary cross-entropy

C ≡ 1

M

M∑
m=1

(
σ(wm) log [σ̂θ(wm)] + (1 − σ(wm)) log [1 − σ̂θ(wm)]

)
. (5)

In a movie review task, for example, M can be the number of written reviews with predetermined
sentiments from M different reviewers that encapsulates a reasonable relationship between word sequences
and their associated sentiments.

Note that minimizing the cross-entropy C ≡ HRNNθ
(P) between the empirical distribution P(σ|w1:T)

constructed from the training data and the distribution predicted by the RNN parametrized by θ, denoted
by RNNθ(σ|w1:T), is equivalent to minimizing the Kullback–Leibler (KL) divergence DKL

(
P‖RNNθ

)
[27,

28]. Since the KL divergence reflects the dissimilarity between the two distributions, the optimization
(minimization) procedure of the cost function (5) would search for a vanilla RNN parametrized by θ∗ that
estimates well the empirical distribution P(σ|w1:T). Provided the training data is properly curated and the
optimization procedure (e.g., gradient methods and their modern variants [5, 26]) is reliable, one shall
arrive at a reasonable statistical relationship between a long sequence of words and its associated sentiment
parametrized by an RNN with a finite number of parameters θ∗. In other words,

P(σ|w1:T) ≈ RNNθ∗(σ|w1:T ). (6)

This is the main philosophy behind statistical language modeling using RNNs.

2.2. On the word vector embedding Φ

Suppose one randomly assigns or ‘tokenizes’ each word with a unique integer wi ∈ {1, . . . , N}, where
1 � i � N with N being the size of the dictionary. Then each written review is represented by a sequence of
integers w1:T = (w1, . . . ,wT). Here, the length of each review is forced to be T, by padding 0’s at the
beginning of the review if its length is less than T, or by selecting only the first T words if its length is
greater than T. For example, for T = 6, the sentence ‘Physics is beautiful’ can be encoded as
w1:T = (0, 0, 0, 532, 3, 46), where ‘Physics’ = 532, ‘is’ = 3, and ‘beautiful’ = 46. The tokenization process,
however, artificially introduces the notion of distance between two words that does not encode word
semantics.

How shall one mathematically represent words so that their semantics are encoded? A widely-adopted
solution is to embed a word w as a vector Φ(w) ∈ R

dI . By representing a word as a vector embedded in dI

dimensions, words with similar meanings that co-occur frequently in the same context can be assigned
unique vectors such that their pairwise Euclidean distance are small. Also, a negative cosine similarity of the
embeddings of the two words wa,wb computed from

sim (Φ(wa),Φ(wb)) =
Φ(wa)

‖Φ(wa)‖2
· Φ(wb)

‖Φ(wb)‖2
(7)

can signify that wa and wb rarely co-occur in the same context, and hence could have opposite meanings.
There are a few methods to numerically obtain an embedding Φ that effectively represents word

semantics [24, 25, 29]. A simple yet classic Word2vec method [24], which is also adopted in our numerical
experiments, is to assign the embedding function Φ as a matrix of size dI × N, so that the ith column of Φ
corresponds to the word vector Φ(wi) of the word wi. The embedding dimension dI is a hyper-parameter
that can be tuned to best suit the problem. The matrix elements in Φ are treated as variational parameters
to be optimized along with the optimization of the RNN for a language modeling task of interests. For
example, to perform a sentiment analysis using a vanilla RNN without knowing a priori the embedding
matrix, one would add the matrix elements of Φ into the trainable parameters θ̃ ≡ {θ,Φ} = {b, W I, WH,
WO, bO,Φ}. In this way, training the RNN according to section 2.1 will not only yield the network
parameters, but also the word vector embedding. With a sufficiently large and well curated training data set,
one expects that the embedding matrix Φ would effectively encapsulate word semantics in the dictionary of
interests.

Despite the empirical success of statistical language modeling using vanilla RNNs together with the
well-trained word embedding as explained above, highly-nonlinear iterations of (3) by standard activation
functions render the analysis of how RNNs approximate empirical sequence distributions very challenging.
In the following, we review recent attempts to analyze the expressiveness of RNNs (i.e. the set of function
that can be effectively parametrized by RNNs) with a specific activation function, through the mapping to
their dual the TN counterparts.
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2.3. Recurrent arithmetic circuit (RAC) and the mapping to matrix product state (MPS)
Consider the activation function defined by the Hadamard product

fRAC(a, b) = a 
 b, (8)

which is the element-wise multiplication f (i)
RAC(a, b) ≡ a(i) · b(i). RNNs with RAC activation function, known

as RACs, have recently received increasing attention and share computational paradigm similar to the
multiplicative RNNs [30–33]. More importantly, references [14, 15] show that a single-layer RAC can be
mapped to the dual MPS, taking the inspiration from the tensor train (TT) decomposition of [34]. By
studying RACs, the analysis of learning in RNNs for temporal data can thus be performed from many-body
quantum physics perspectives. For instance, one can compute the EE of the dual MPS, which is a measure
of the amount of temporal correlation that can be supported by the network [14, 15]. The larger the EE
means that the output of network computation crucially depends on the temporal data in the further past,
enabling the network to have a longer-range memory.

The TN diagrams in figure 2 summarize the equivalence between the computation of the standard
RNNs-based sentiment analysis with RAC activation function and that of the dual MPS. By defining the
tensor of rank 3 of the form

Ast
αtαt−1

≡
dH∑

α̃t−1,̃st=1

WH
α̃t−1αt−1

δαt α̃t−1 s̃t W
I
s̃t st

, (9)

where δjkl is 1 if j = k = l and is 0 otherwise, the state evolution by one time step can be computed by the
tensor contraction between the hidden vector ht−1, the tensor Ast

αtαt−1
, and the input word vector Φ(wt),

resulting in the tensor of rank 1 describing the hidden vector of the next time step whose component αt is
given by

h(αt)
t =

dH∑
αt−1=1

dI∑
st=1

h(αt−1)
t−1 Ast

αtαt−1
Φ(st )(wt)

=

dH∑
α̃t−1,̃st=1

dH∑
αt−1=1

dI∑
st=1

(
WH

α̃t−1αt−1
h(αt−1)

t−1

)
δαt α̃t−1 s̃t

(
W I

s̃t st
Φ(st )(wt)

)

=
(
WHht−1

)(αt ) ·
(

W IΦ(wt)
)(αt )

= f (αt )
RAC(WHht−1, W IΦ(wt)).

Therefore, given a sequence (Φ(w1), . . . ,Φ(wT)) and the initialization of the hidden vector h0 with
dimension dH, the output hidden vector at time T can be computed from the contraction between the
translational invariant MPS

ΨsT ...s2s1
αTα0

≡
dH∑

α1,α2,...,αT−1=1

AsT
αTαT−1

. . .As2
α2α1

As1
α1α0

, (10)

the tensor of rank T constructed from the input sequence

ΦsT ...s2s1 ≡ Φ(sT )(wT) . . .Φ(s2)(w2)Φ(s1)(w1), (11)

and the initial hidden vector h0 as follows

h(αT )
T =

dH∑
α0=1

dI∑
s1,s2,...,sT=1

(ΦsT ...s2s1 )
(
ΨsT ...s2s1

αTα0

)
h(α0)

0 . (12)

The last equality is compactly represented by the standard TN graphical notation as shown in figure 2(b),
whose building block is the tensor A of (9) represented graphically in figure 2(c). For sentiment analysis
using binary classification, the final contraction (12) will then be used to compute the probability that the
input sequence w1:T has a positive sentiment through the usual sigmoid activation function as in (4). Note
that, in many-body quantum physics language, the dimension of the hidden unit dH is in fact the bond
dimension χ ≡ dH of the MPS.

2.4. Entanglement entropy of the MPS as a proxy for information propagation in RAC
Since the fundamental building block of the computation is the translational invariant MPS, we can
compute the EE by partitioning the MPS into two subsystems through the standard
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Figure 2. The graphical representation of the mapping between a single-layer RACs for sentiment analysis task (a) to the dual
MPS (b). As a fundamental building block, the translational invariant MPS (without the contraction by boundary vector h0)
consists of the rank-3 tensor Ast

αtαt−1
≡

∑dH
α̃t−1 ,̃st=1WH

α̃t−1αt−1
δαt α̃t−1 s̃t W I

s̃t st
, where the triangle in (c) represents the tensor of rank 3

defined by δjkl which is equal to 1 if j = k = l and is 0 otherwise. The structure of the building block in (c) arises from the
Hadamard product imposed by RAC activation function in (a). Here we denote χ as the bond dimension of the MPS, which is
equal to dH, the number of hidden units of RACs in (a). The vertical bond in (c) has the dimension dI, identical to that of the
word vector embedding Φ.

Schmidt-decomposition, and compute the resulting von-Neumann entropy [35]. However, the MPS in (10)
still has an open boundary. To make the boundary close and properly compute the EE, one needs to
contract the indices α0, and αT by vectors of dimension χ = dH. In the limit T � 1, this choice of vectors
should not significantly affect the EE if the partition is made at half of the chain. The details on an
appropriate choice of vectors for contraction to close the boundary in our numerical experiments will be
discussed in the following section. Suppose now that the contraction has been properly made and the MPS
with a close boundary is given by Ψ̃sT ...s2s1 , then the corresponding quantum state of the MPS is

|Ψ̃〉MPS =

dI∑
s1,...,sT=1

Ψ̃sT ...s2s1 |sT〉 ⊗ · · · ⊗ |s2〉 ⊗ |s1〉, (13)

which has the Schmidt decomposition (singular value decomposition) for the bipartition at the T/2�th
bond into the left and right sectors as

|Ψ̃〉MPS =

r∑
i=1

λi |φL
i 〉 ⊗ |φR

i 〉 , (14)

where the Schmidt coefficients λi’s are the real, non-negative singular values satisfying
∑r

i=1λ
2
i = 1, and r is

the Schmidt rank (Schmidt number). The Schmidt rank r is 1 only for a product state and is greater than 1
when a state has the two subsystems that are entangled.

The von-Neumann (entanglement) entropy is a well-defined measure of entanglement between the two
subsystems and can be calculated as

S = −
r∑

i=1

λ2
i log2 λ

2
i . (15)

Importantly, this EE, when translated into the RNN language, can quantify the amount of temporal
correlation between the signal in the earlier times {h1, . . . , hT/2�} and the signal in the later times
{hT/2�+1, . . . , hT}, also known as start–end separation rank [14, 36]. If the EE is zero, the signals in the
earlier and the later times are statistically independent. The prediction task from models with vanishing EE
thus has a short-term memory, neglecting the knowledge in the past t < T/2�. One then would expect the
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models with larger EE to be more desirable in encapsulating long-range sequence correlations. We shall
then intuitively interpret the EE computed from (15) as the proxy for information propagation in the RACs
networks. RACs that possess low EE might have a low expressiveness (high bias in statistical learning theory
framework), and thus are unable to efficiently approximate data distribution with long-range statistical
correlations.

It is well known that an MPS obeys the area law of EE, which constrains the upper bound on EE as
S = O(log2(χ)) [37]. In fact, the state with the maximum entropy in (15) is attained with the value log2(χ)
when all the Schmidt coefficients are identically 1/

√
χ with the Schmidt rank r = χ.9 Since the upper

bound is independent of the system size T, temporal data with long-range statistical correlation might not
be efficiently approximated by an MPS (or, equivalently, single-layer RACs) variational ansatz. This result
seems to warrant a no-go statement for using MPS to model sequential data with long-range correlation.
Alternative models that can incorporate long-range correlation, such as deep RACs, have been theoretically
analyzed, though no experimental results on these network performance on realistic temporal data sets have
been reported [14, 15, 36].

However, thus far, the analysis on the expressive power of single-layer RACs concerns only that of the
recurrent units, not of the combined system that includes a representation Φ of the input embedding. In
practice, even in simple RNNs, incorporating trainable word embedding function Φ into the model can
tremendously increase the prediction accuracy. In the following section, we shall investigate, in realistic
sequence modeling settings, whether low EE of models alone suffices to enforce a no-go theorem for such
models. The answer is an affirmative no, and single-layer RACs are still useful in realistic sequence modeling
tasks.

3. Sentiment analysis by single-layer RACs with an entanglement entropy below
the area law: numerical experiments

In this section, we first provide the details of our numerical experiments to analyze the behaviors of
single-layer RACs for sentiment analysis in realistic movie reviews data sets. Then, we discuss the
importance of additive biases in RAC activation function, and elucidate how to convert RACs with additive
biases into MPS for the purpose of EE analysis. We then report the behaviors of single-layer RACs together
with their EE. First, we show that when a pre-trained word vector embedding Φ is fixed, the prediction
accuracies strongly correlate with the amount of information propagation within RACs as measured by the
EE. Interestingly, the high prediction accuracies saturate when the EE saturates, enabling one to determine
the minimal model (model with the smallest bond dimension χ∗ that saturates the EE) that can best
approximate the statistics of sequential data. This EE saturation is a reflection of the convergence of
entanglement spectrum to the limiting entanglement spectrum that we numerically report. Second, when
the embedding layer is trained along with RACs, there is an intriguing interplay between RACs and the
embedding layer such that, even when the EE drops, the prediction accuracy is boosted. Contrary to a
common belief that long-range information propagation in the network is the main source of RNN’s
expressiveness, we show that, when the bond dimension is large, RACs harness its high expressiveness from
meaningful word embeddings.

3.1. Details of the numerical experiments
In the main text, we use the IMDb movies and critic reviews data set, which is one of the standard data sets
for sentiment analysis using binary classification [38]. The training set and the test set contain M = 40 000
and 10 000 different samples respectively. Both sets are approximately balanced: the ratio of positive to
negative reviews in the training and the test set are given by, respectively, 20 027:19 973 and 4913:5027. The
length of each review is set to T = 50 and the dictionary size is N = 10 000. We also perform sentiment
analysis on the RT data set using the same methodology which leads to similar conclusions as the ones
presented in this section. The details and the results for RT data sets are shown in the appendix.

To train the model, we implement single-layer RACs using Keras [39] which is a high-level API of
TensorFlow. Batch training is deployed with 200 epochs with the batch size of 128. An early stopping is
applied to terminate the training process if the change in the cost function after four epochs is smaller than
0.001. The cost function is optimized using Adam optimizer. The optimization process is repeated 50 times,
each with a random initialization of the variational parameters, and the averaged prediction accuracies for
the training and the test data set are obtained for each number of hidden neurons dH.

9 The discrete distribution Pi that maximizes the Shannon’s entropy −
∑m

i=1Pi log2 Pi is the uniform distribution Pi = 1/m.

8



New J. Phys. 24 (2022) 053032 J Tangpanitanon et al

Figure 3. (a) The modified translational invariant MPS in a close boundary for calculating the EE of RACs with additive biases
bI, bH. (b) The tensor Ãst

αtαt−1
is defined according to (20), which consists of the contraction between δjkl and the modified weight

matrices W̃H, W̃ I of (16).

Figure 4. The behaviors of trained RACs with additive biases for sentiment analysis of the IMDb data set, when the fixed
pre-trained word embedding has dimension dI = 4. (Left) The prediction accuracies saturate when the EE saturates. The critical
bond dimension χ∗ ≈ 20, at which the EE is maximal, enables one to infer a minimal single-layer RACs model for IMDb
sentiment analysis. The average maximum EE S̄max, which is below the upper bound from the area law, is attained when χ�χ∗.
(Right) Above the critical bond dimension, the Schmidt coefficients collapse onto the limiting entanglement spectrum λ̄∗

i that
sets the slowest exponential decay rate of the Schmidt coefficients. Here, the average maximum Schmidt coefficients for
χ = 5, 10, 15, 20, 30, 40 are λ̄max(χ) ≈ 0.75, 0.63, 0.58, 0.51, 0.51, 0.52, respectively. The average are taken over 50 trained models;
each begins with a random initialization of RACs with additive biases. The error bars for λi are not shown for the clarity of
presentation.

3.2. Entanglement entropy of single-layer RACs with additive biases
It is important to note that for RACs not to suffer from the vanishing or exploding gradient problem during
model training10, we found that it is crucial to add trainable bias vectors bH, bI ∈ R

χ to the aggregated
inputs of the RAC activation function. In particular, to achieve model trainability in practice requires the
time evolution of the form ht ≡ fRAC(WIΦ(wt) + bI, WHht−1 + bH). Fortunately, recasting the recurrent
computation with additive bias vectors as the MPS structure only requires a minor modification to the
prescriptions in the previous section, which we now discuss (figure 3).

Define the new input and hidden weight matrices as

(16)

10 Since RACs iteratively multiply signals, backpropagation during gradient computation can lead to the iterated product of very small
numbers or very large numbers for poorly initialized training parameters, leading to vanishing or exploding gradients problem respec-
tively. Adding a trainable bias is a way to control the scale of multiplicative iteration and help mitigate the vanishing or exploding
gradients problem.

9
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Define also the new word vector embedding and the new hidden vector

Φ̃(wt) ≡
[
Φ(wt)

1

]
, h̃t ≡

[
ht

1

]
. (17)

These definitions give

W̃ IΦ̃(wt) =

⎡
⎣ W IΦ(wt) + bI

1

⎤
⎦ , W̃Hh̃t =

⎡
⎣ WHht + bH

1

⎤
⎦ . (18)

Therefore,

h̃t =
(

W̃Hh̃t−1

)


(

W̃ IΦ̃(wt)
)
=

⎡
⎣ fRAC(WHht−1 + bH, W IΦ(wt) + bI)

1

⎤
⎦ . (19)

The last equality states that the time evolution from RAC with the bias vectors of the original problem can
be encoded into the time evolution from standard RAC (without additive biases) in one higher dimension,
resulting in the translational invariant MPS with the following tensor as a building block

Ãst
αtαt−1

≡
χ+1∑

α̃t−1,̃st=1

W̃H
α̃t−1αt−1

δαt α̃t−1 s̃t W̃
I
s̃t st

, (20)

where the input index st now takes the value from {1, . . . ,χ+ 1}.
After we obtain all the variational parameters including bI, bH at the end of a training procedure with

Adam optimizer, Ãst
αtαt−1

that defines the MPS/TT with an open boundary can be constructed. The EE is
computed according to section 2.4, where we close the left and the right boundary by the contraction with
the boundary vectors ω̃L, ω̃R ∈ R

χ+1 defined by

ω̃L ≡ h̃0 =

[
0
1

]
, ω̃R ≡

[
1
1

]
. (21)

ω̃L is chosen as the left boundary vector because the initial hidden vector h0 fed into vanilla RNNs is
typically chosen to be a zero vector, whereas ω̃R is chosen as the right boundary vector to ensure that all the
output components are taken into account. But, in the large T limit, these choices should not significantly
change the EE when the bipartition is taken at the bond T/2�, which are far away from the boundary.

3.3. RACs with a pre-trained embedding layer
To isolate the interaction between RACs and the embedding layer, we pre-train the word embedding Φ

(recall section 2.2) independently from RACs. First, we train Φ on the IMDb training data with a flatten
layer publicly available in Keras, while the output is still the sigmoid function discussed earlier. The flatten
layer contains no trainable parameters and as a result the classification accuracy is optimized based solely on
the trainable word embedding. After we train the embedding layer for 100 epochs with the early stopping
criterion explained in section 3.1, we arrive at a pre-trained Φ that is not specifically optimized for RACs,
thereby isolating the expressiveness that could arise from the interaction between RACs and the embedding
layer. After we obtain this pre-trained embedding layer Φ, Φ is fixed and training optimizes only weights
and biases of RACs. Figure 4 (left) shows the prediction accuracies and the EE as a function of the bond
dimension χ for embedding dimension dI = 4. It can be seen that from bond dimension 1 to approximately
20, the training accuracy increases monotonically from 87.1% to 91.5% while the test accuracy increases
from 84.7% to 86.3%. Both quantities saturate at χ ≈ 20 ≡ χ∗. The EE also increases rapidly before the
onset of the accuracy saturation, then for χ > χ∗ it saturates at the (average) maximum value of
S̄max ≈ 2.53. The results suggest a critical model size χ∗ such that RACs expressiveness is maximal. Above
this critical size both the prediction accuracies and the EE saturate. For practical purposes, this critical size
χ∗ is valuable for identifying a minimal single-layer RACs model that can best estimate the statistics of
IMDb training data set.

For the IMDb data set, the minimal model size for single-layer RACs with a fixed pre-trained
embedding with dI = 4 is χ∗ ≈ 20. We also observe similar behaviors on the saturation of prediction
accuracies that correspond to the saturation of EE for larger pre-trained embeddings with dI = 8, 16, 32
with the average maximum EE of S̄max ≈ 3.87, 4.86, 5.09, respectively. For larger embedding dimensions,
not only the maximum EE increases, the critical bond dimensions and the saturated prediction accuracies
also increase (not shown here due to redundancy of the plots). These results are not specific to the IMDb
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Figure 5. The behaviors of RACs with additive biases for sentiment analysis of the IMDb data set, when the word embedding of
dimension dI = 4 is trained together with RACs. (Left) The prediction accuracies slowly increase when the EE drops down from
the maximum value S̄max ≈ 1.17 at χ ≈ 5 to the saturated value 0.8S̄max at χ ≈ 20, after which the accuracies also saturate. The
saturated EE here is much smaller than that of the fixed embedding case, suggesting that the expressivity is harnessed from a
more meaningful representation Φ. (Right) The cosine similarity between the two word embedding computed from (7) reveals
that indeed the expressivity is boosted via meaningful word embeddings, which arise in larger single-layer RACs.

data set, as we observe similar trends in single-layer RACs with a fixed pre-trained embedding in a smaller
RT movie review data set as well. The results for the RT data set is provided in the appendix.11

To understand how the EE becomes saturated above a critical bond dimension χ∗, we investigate the
behaviors of the average Schmidt coefficients for the model size from χ = 5 to χ = 40. Interestingly,
figure 4 (right) reveals that above the critical model size, the larger values of the entanglement spectrum
(the function defined by the Schmidt coefficients indexed in a descending order) all collapse onto a limiting
entanglement spectrum λ̄∗

i , which exhibits the slowest possible exponential decay rate of the Schmidt
coefficients. Thus this limiting entanglement spectrum λ̄∗

i defines the average maximum EE achievable by
our MPS ansatz for this data set, whose value is given by

S̄max = −
χ∗∑

i=1

λ̄∗2
i log2 λ̄

∗2
i . (22)

This unique explainability of RACs allows us to infer a minimal RNNs-based model with the minimal
number of hidden neurons d∗

H + 1 = χ∗ for a given task, which is not possible with standard RNNs. From
statistical learning theory point of view, the limiting function λ̄∗

i determines the bias (in the bias-variance
tradeoff sense) of single-layer RACs, which constrains the information propagation capacity as measured by
the average maximum EE (22). It is interesting to note that the maximum EE is below the upper bound
from the area law of log2(χ), as S̄max ≈ 1.17 < 4.32 ≈ log2(χ = 20). Hence, a realistic sequence modeling
task such as sentiment analysis can still achieve high prediction accuracies using easily trainable RACs, even
when the maximum information propagation is bounded above. In fact, the embedding layer Φ plays a
crucial role in attaining high expressive power, as we show next.

3.4. The interplay between RACs and the word embedding
To analyze the interplay between the recurrent units in RACs and the embedding layer Φ, we now train both
components simultaneously. The prediction accuracy and the EE as a function of the bond dimension is
depicted in figure 5 (left). It can be seen that the training and the test accuracy rapidly increases to 98.3%
and 90%, respectively, at χ = 5. The training accuracy then saturates and fluctuates mildly around 98.5%
for χ > 5, while the test accuracy slowly increases for χ ∈ [5, 20], after which it saturates at around 90.5%
accuracy. Despite being simple, our model is ranked 21 (out of 35) in top-performing models (measured by
test accuracy) for IMDb sentiment analysis [40]. The best performing model [41] achieving the test
accuracy of 97.2% also uses simple neural network architecture but with the improved quality of the word
embeddings. Interestingly, unlike in the fixed word embedding case where the maximum of EE is attained at
its saturation, here the EE attains its maximum at χ ≈ 5 at the value of S̄max ≈ 1.17 before dropping down
and saturating at 0.8S̄max when χ ≈ 20, after which it fluctuates mildly around the saturated value.
Although the EE drops after its peak value, the prediction accuracies counter-intuitively increase. Also,

11 For the embedding dimension 4, the critical bond dimension for RT movie data set is χ∗ ≈ 40, beyond which the EE very slowly
increases and plateaus out at the maximum value of 1.
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compared to the fixed embedding case, S̄max here is smaller and the prediction accuracies, especially the
training accuracy, are higher. These behaviors also arise in larger word embedding size of dI = 8, 16, 32,
though the maximum EE at the peak are larger and occurs at a larger bond dimension for a larger model
(the plots are not shown here due to redundancy). The larger model also attains higher saturated prediction
accuracies. These results suggest that information propagation or long-range temporal correlation in
sequence modeling is not the main source of expressiveness in estimating the distribution P(σ|w1:T) in
sentiment analysis tasks. In fact, the drop in the EE as the accuracies increase suggests that single-layer
RACs must have gained the expressivity through the word embedding Φ.

To test the hypothesis, we plot the cosine similarity (7) between embedding vectors of two opposite
words that most frequently appear and tends to have a strong influence on the review sentiment, i.e.
‘boring’ and ‘interesting’, ‘worst’ and ‘best’, depicted in figure 5 (right). We see that the cosine similarity
drops monotonically with the bond dimension and saturates at χ ≈ 5. This might suggest that for χ < 5,
the prediction accuracy stems mostly from the temporal correlation in RACs, while at χ � 5, the word
embedding layer better learns word semantics and start to contribute to higher prediction accuracy.

4. Discussion and outlook

We have recasted single-layer RACs with additive biases as the dual MPSs for the EE analysis of a real-world
sequence modeling task, the sentiment analysis of large realistic movie review data sets. The results elucidate
that, although the EE of the models is bounded above, single-layer RACs can harness their expressive power
from trainable word embedding Φ, achieving considerably high prediction accuracies. Even for a fixed word
embedding, single-layer RACs can already achieve high prediction accuracies that saturate when the EE
saturates at its maximum value S̄max. This S̄max allows one to identify the minimal bond dimension χ∗ that
RACs can best approximate the sentiment distribution of data sequence P(σ|w1:T). This S̄max is also below
the upper bound of the area law for EE of an MPS. Therefore, for sentiment analysis tasks, a low EE is not a
warrant to disregard simple yet easily trainable models such as single-layer RACs. Importantly, the crucial
interplay between information propagation in the recurrent networks (as reflected by the EE) and the
meaningful word embedding Φ enables single-layer RACs to very well estimate the sentiment distribution
of word sequence P(σ|w1:T). Our analysis also quantitatively reveals the nature of movie review sentiment
analysis that NLP practitioners are intuitively aware of; reading only a few statements that contain
meaningful keywords might be an efficient strategy to correctly classify the sentiment of a long review.

Despite the simplicity of our single-layer architecture with low-dimensional word embeddings, we still
achieve the test accuracy of 90.5% for the sentiment analysis of the IMDb data set, placing our minimal
model in the list of top-performing models [40]. Some top-performing models utilize powerful modern
neural network architectures such as graph neural networks [42] or transformers [43, 44]. All of which still
lack explainability. It is interesting to note that some simple models, such as classic LSTM architectures
(with high quality word embeddings) [45, 46], are also in the top-performing list. Remarkably, the best
performing model utilizes a very simple neural architecture with the emphasis on constructing highest
quality word embeddings [41]. This observation agrees with our quantitative evidence that long-range
information propagation is not the main source for RNNs’ successes in sentiment analysis, but high model
expressiveness can be attained from the subtle interplay between the information propagation and the
quality of word vector embeddings.

It would be interesting to generalize the current analysis to deep (multi-layer) RACs models [36] to see
the interplay between long-range information propagation in the recurrent networks and the meaningful
word embedding in other realistic NLP tasks, such as sequence to sequence modeling. Perhaps one could
also find a minimal deep RACs model that reproduces the power-law decay in the mutual information
between characters, which is a feature of classical English texts [47, 48]. Recently, variants of standard
many-body quantum states have been analyzed as highly expressive variational ansatz to estimate
probability distribution [13, 19, 49]; it’d also be interesting to implement such models for realistic NLP
tasks and investigate how word embedding could help boost models prediction accuracy. Lastly, regarding
the limiting entanglement spectrum that sets the maximum EE of single-layer RACs, theoretical
understanding of such entanglement spectrum may hint at the minimum bias (in the bias-variance tradeoff
sense) attainable by RACs to estimate a data distribution, which could provide a guideline to systematically
study the expressive power of RNNs from statistical learning theory viewpoints.
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Appendix. Sentiment analysis results for the Rotten Tomatoes movie review data set

To show that our conclusions apply to other data set, here we report similar results for sentiment analysis of
the RT movie review data set. RT movie review data set is a smaller standard data set for sentiment analysis
using binary classification [50]. The training set and the test set contain M = 8400 and 2662 different
samples respectively. Both sets are balanced such that each set contains an equal number of positive and
negative reviews. The length of each review is set to T = 20 and the dictionary size is N = 3000. Similar
training procedure to those in the main text is applied. The batch size, however, is set to 32 for this smaller
data set.

Figure A1 (left) shows the prediction accuracy and the EE as a function of the bond dimension χ for
embedding dimension dI = 4. It can be seen that from bond dimension 1 to approximately 40, the training
accuracy increases monotonically from 82.2% to 99.3% while the test accuracy drops from 71.8% to 69.1%.
Both quantities saturate at χ ≈ 40 ≡ χ∗. The increase in the training accuracy and the decrease in the test
accuracy as the number of model parameters increases suggests that the model is overfitting, which can
perhaps be alleviated by adding dropout though it is not clear whether RACs with dropout can be mapped
to MPS. On the other hand, the EE increases rapidly before the onset of the prediction accuracy saturation
at χ∗, beyond which it almost plateaus out at large χ. The results suggest a critical model size χ∗ such that
RACs expressiveness is maximal. Above this critical size the prediction accuracies saturate, and the EE
increases very slowly or plateaus out. Similar to the IMDb data set, this critical size χ∗ is valuable for
identifying a minimal model that can achieve highest training accuracies for this class of model architecture.

For RT data set, the minimal model size for single-layer RACs with a fixed pre-trained embedding with
dI = 4 is χ∗ ≈ 40. We also observe similar behaviors on the saturation of prediction accuracies that
correspond to the saturation of EE for larger pre-trained embeddings with dI = 8, 16, 32 with the average
maximum EE of S̄max ≈ 3.90, 4.14, 4.38, respectively. For larger embedding dimensions, not only the
maximum EE increases, the critical bond dimensions and the saturated prediction accuracies are also larger
(not shown here due to redundancy of the plots.)

Figure A1 (right) reveals that above the critical model size χ∗, the Schmidt coefficients (indexed in a
descending order) are converging towards the limiting λ̄∗

i , which, similar to the IMDb data set in the main
text, constrains the slowest possible exponential decay rate of the Schmidt coefficients. This limiting
entanglement spectrum λ̄∗

i should constrain the average maximum EE according to (22) and also defines
the bias (in the bias-variance tradeoff sense) in the RACs architecture for sentiment analysis modeling.
Similar to the IMDb data set, we also note that the maximum EE is below the upper bound from the area
law of log2(χ), as S̄max ≈ 1.20 < 5.32 ≈ log2(χ = 40).

To analyze the interplay between RACs and the embedding layer, we now train both components
simultaneously. The prediction accuracy and the EE as a function of the bond dimension is depicted in
figure A2 (left). It can be seen that the training accuracy increases monotonically to saturation with a
99.10% accuracy at χ ≈ 5, while the test accuracy rapidly increases to 67% at χ = 5 then gradually
increases to saturation with a 70% accuracy at χ ≈ 20. On the other hand, the EE displays a peak at χ ≈ 5
before dropping rather steadily to saturation at ≈0.8S̄max at χ ≈ 20, after which it fluctuates mildly around
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Figure A1. The behaviors of trained RACs with additive biases for sentiment analysis of the RT data set, when the fixed
pre-trained word embedding has dimension dI = 4. (Left) The prediction accuracies saturate when the EE very slowly increases
to saturation. The critical bond dimension χ∗ ≈ 40, after which the EE very slowly increases and eventually saturates, enables
one to infer a minimal single-layer RACs model for this data set. The average maximum EE S̄max, which is below the upper bound
from the area law, is attained when χ � χ∗. (Right) Above the critical bond dimension, the Schmidt coefficients almost collapse
onto the limiting entanglement spectrum λ̄∗

i that sets the slowest exponential decay rate of the Schmidt coefficients. Here, the
average maximum Schmidt coefficients for χ = 10, 20, 30, 40, 50, 60, 70 are λ̄max(χ) ≈ 0.69, 0.48, 0.37, 0.30, 0.28, 0.27, 0.25,
respectively. The average are taken over 50 trained models; each begins with a random initialization of RACs with additive biases.
The error bars for λi are not shown for the clarity of presentation.

Figure A2. The behaviors of RACs with additive biases for sentiment analysis of the RT data set, when the word embedding of
dimension dI = 4 is trained together with RACs. (Left) The prediction accuracies slowly increase when the EE drops down from
the maximum value S̄max ≈ 1.20 at χ ≈ 5 to the saturated value 0.8S̄max at χ ≈ 20, after which the accuracies also saturate. The
saturated EE here is much smaller than that of the fixed embedding case, suggesting that the expressivity is harnessed from a
more meaningful representation Φ. (Right) The cosine similarity between the two word embedding computed from (7) reveals
that indeed the expressivity is boosted via meaningful word embeddings, which arise in larger single-layer RACs.

the saturated value. The test accuracy in our simple setting is comparable to the last entry in the
state-of-the-art list for RT sentiment analysis [51], which achieves 76% test accuracy using graph
convolutional neural network architecture [52].

Similar to IMDb data set in the main text, the EE drops after its peak value, while the prediction
accuracies increase. These behaviors also arise in larger word embedding sizes, though the maximum EE at
the peak are larger (dI = 8, 16, 32, S̄max ≈ 1.68, 2.08, 2.51) and occurs at a larger bond dimension for a
larger model (plots are not shown here due to redundancy). The decay in the EE that corresponds to the
increase in the prediction accuracies can be attributed to a more meaningful word embedding Φ, as shown
in the cosine similarity plots between embedding vectors of the two opposite words, depicted in figure A2
(right).
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