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Abstract

Some of the most interesting questions one can ask about early societies are about people
and their relations, and the nature and scale of their organization. In this thesis, we
attempt to answer such questions using ideas mainly from multi-agent systems, game-

theory, and agent-based modeling (ABM).

Specifically, we provide a generic ABM system, AncientS-ABM, for simulating and
evaluating the potential social organization of an artificial ancient society, configured
by available archaeological data. Unlike most existing agent-based models used in ar-
chaeology, our ABM framework includes completely autonomous, utility-based agents.
It also incorporates different social organization paradigms, different decision-making
processes, and also different cultivation technologies used in ancient societies. Equipped
with such paradigms, the model allows us to explore the transition from a simple to a
more complex society by focusing on the historical social dynamics; and to assess the
influence of social organization on agents’ population growth, agent community num-

bers, sizes and distribution.

Our ABM also blends, for the first time, ideas from evolutionary game theory with
multi-agent systems’ self-organization. We model the evolution of social behaviours in
a population of strategically interacting agents in repeated games where they exchange
resources (utility) with others. The results of the games contribute to both the continuous
re-organization of the social structure, and the progressive adoption of the most success-
ful agent strategies. Agent population is not fixed, but fluctuates over time, while agents
in stage games also receive non-static payoffs, in contrast to most games studied in the
literature. To tackle this, we present a novel formulation of the evolutionary dynamics

via assessing agents’ rather than strategies’ fitness.



In addition, AncientS-ABM is able to also simulate societies inter-community inter-
actions, by modeling the exchange and distribution across agent communities. In par-
ticular, we incorporate a trading sub-model by employing different spatial interaction
models for simulating trade across agent settlements, in order to explore the resulting
trading network’s efficiency and its evolution at different points in time. We further
utilize ideas from graph theory to analyze the trading network’s structure, seeking to
provide insights on the artificial society’s organization on a higher level. Finally, we

also extend our ABM by incorporating a natural disaster sub-model.

As a case study, we employ our ABM to evaluate the impact of the implemented so-
cial organization paradigms on an artificial Early Bronze Age “Minoan” society, located
at different geographical parts of the island of Crete, Greece. Model parameter choices
are based on archaeological evidence and studies, but are not biased towards any specific
assumption. Results over a number of different simulation scenarios demonstrate better
sustainability for settlements consisting of and adopting a socio-economic organiza-
tion model based on self-organization, where a “heterarchical” social structure emerges.
Results also demonstrate that successful agent societies adopt an evolutionary approach
where cooperation is an emergent strategic behaviour. In simulation scenarios where the
natural disaster module was enabled, we observe noticeable changes in the settlements’
distribution, relating to significantly higher migration rates immediately after the mod-
eled Theran eruption. In addition, the initially cooperative behaviour is transformed to a
non-cooperative one, thus providing support for archaeological theories suggesting that
the volcanic eruption led to a clear breakdown of the Minoan socio-economic system.
Moreover, we observe that modeling a trading network that favours settlements’ impor-
tance rather than distance between settlement locations, can produce settlement patterns
similar to the one that exist in archaeological record. The existence of some important
resource-distribution centers, with possibly a strong hierarchy during the Early and Mid-
dle Minoan period, as well as significant resource-aggregation centers during the Late

Minoan period, also arise as plausible possibilities via our agent-based model.
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Hepiindn

Mepud amd tar o eVOLAPEPOVTU EQWTAUNTA OYETIXA UE TIC TEMOTEG oVIPOTIVES XOL-
VoV, agopoly TNV QUOT %ol TOV TEOTO 0PYAVWONE TOUS, XAMSC Xl TG OYECELS
UETOED TV MEAWY TOUC. e ouTh TN dlatel3y), TEOooTadACOUE Vol ATaVT|COUUE OE
TETOLN EPWTHUATA YLENOLUOTIOLWVTAS LOEES TPOEPYOUEVES XUPIWE AT TEELG ETLC TNHUOVL-
%0U¢ XAEBOUE: T TOAUTRUXTOPLXS CUC THUNTA, TNV Vewpio Towyvievy, xou TNy povieho-

Tolnon xou tpocopoiwon Bactouévn oe tpdxtopec (Agent-Based Modeling, ABM).

Yuyxexpéva, avamtiioue €va cLo TN (no)\u)npozmopo—xewpm’]g HovTENOTO-
inone, To AncientS-ABM, yia tnv mpocopoiwon xou v alloAdynon tne duvnTixrg
XOWOVIXNS 0pYdvwong wag (teyvntic) apyaioc xovemviag, To onolo umopel vo topa-
uetpomoinUel amd dlordéoida apyatoloyixd dedopéva. e aviideorn ue o TEpLooOTERN
UTdEYOVTOL HOVTEAD BUCIOUEVO OF TEAXTOPES TOU YENOUOTOOUVTAL GTNY UE)OLOAO-
i, TO TEOATOPO-XEVTEIXO GUC TNUS Hog TEPLAOUBAVEL TATIOWS AUTOVOUOUS TEOUXTORES,
Tou ebvon BACLOPEVOL 0TV dPYITEXTOVIXY TIRUXTOPWY U Bdom TN ypnotudtnta. Eniong
EVOWUAUTOVEL OLPORETINE TUPUOELYUAUTA XOWOVIXTS 0pY VKOS, BLUPOPETIXES BLodLXaL-
olec Mdne anogdoewy, xadng xaL BPORETINES YEWRYIXES TEYVOhOYiES (npocxnxég)
Tou THavoTATH YENoLOTOLVTAY 0TS apyaieg xowvmvieg. Egodiaouévo pe tétola
TOEOEYHATAL, TO LOVTEND MG ETUTEETEL VoL OLEPEUVACOUUE T HETAPooT amd Wiar oAt
o€ Wi To EpimhoxT xowwvio e6TIALOVTAUC TNV LOTOPLXY) XOWVWVIXT| SUVOLXT: G TO-
YELOVTOC TNV EXTIUNON TNG EMBEUONS TNG HOWVWVIXAC OPYAVWONS OTNV oVATTUEN
TOU TANUUOUOY TV TEUXTORWY, TOL dELIOU TV XOWOTHTOV-0LUCHGY, AAAY X0t TOU

UEYEDOUC XL TNG XATUVOUNE QUTWY TWV XOWOTHTOV.

Enlong, to wovtého pag ouvoudlel, yio TEOTN Qopd, WEEC and TNV €£eAIKTIKn
Oecwpia maryviov pall Ye oauTh NG AUTo-0pYdVwonNS TON-TOUXTOPIXMY CUC TNUSTLY.
Movtehonoolue Ty eZEMETN TWV XOVWVIXWY CUUTERLPORWY GE £vay TANYUOUS GToa-

TNYWSE CAANAETUOPOUY TRV TRUXTOPWY TOU CUUUETEYOUY OF emavahauSavoueva Tofyvia
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UE To oTtolal AVTUAAACGGOUY TTOPOUS (Xpnotpo’mw) ue dAloug maixtec. H €xPBaon tov
Ty Viwv GUUBEALEL TOCO OTT CUVEY T AVABLOPYAVWGCT] TNG XOWVWVIXHG BOUNG TWY TTEa-
ATOPWY, XL GTNY TEOOBELTIXT| LIOUETNOY TWV TUO ETUTUYNUEVKDY CTRATNYIX®Y AT
Toug TEdxTopeS. O aprludc TV TEOXTOPKY 0To UOVTERO pag Oev efvan oTtadepde,
oM oAAGCEL PE TNV TIdPOBO TOU YEOVOU, €V OL TEEXTOPES AoufBdvouy emiong un
OTUTIXES ATODOCELS, O avTiVEDT) UE To TEPLOGOTERX Taky VoL TTOL UEAETOVTOL OTNY Pi-
Bhoypapla. Autd Uag 00NYNoE GTNV avdyxr VoL TPy OUUE Lol VEX SLTOTWOT TNG
e€ehxTixic SuVaXAC TwY Ty Vioy péow tne extiunone e (cuvdpTnomng) weéletag

TWV TEOXTOPMY XAl OYL TV CTOUTIYIXMY.

Emniéov, To AncientS-ABM unogel va mpocopoldoet xat 51akovotikés oA nAETL-
OpAICELS, LOVIEAOTIOLOVTAS TNV VTOAAOYY) X0 T1) BLOVOUT| TORWY UETAED TwV GLapopwy
XOWOTATWY TEAXTOPWY. MUYXEXQPUIEVA, EVOWUATOVOUUE VO UTO-UOVTENO EUTOPIXMY
CUVOANXY Y, YENOWOTOWOVTNS YVWO T HOVTéAa YwpikrS aAANAenidpaons yio Tny
TEOGOPOIWGT TOL EUTOpioU HETHED TWV OICUMY, TEOXEWEVOU Vo eCETAC TEL 1) AmOoTE-
AECUATIXOTNTO TOU EUTOPOU SXTUOL Xa TG EEMEAC TOU OE BLUPOPETIXG YEOVIXG.
onuela. Enlong, yenowwonowdviag wéeg and tny Jewpla ypapwv, avoahloUUe Tr douy
TOU OIXTOOU EUTOPIXMY CUVUAAXY®Y, ETUOLOXOVINS VO XATUVONGOUUE TNV XOVWVL-
x1) 0pYAVWON TNG TEYYNTAC Xovwviag ot LPniéTtepo eninedo. Télog, emexteivouue

TEQAULTEQ TO UOVTENO HOC, EVOWUATOVOVTIS EVOL UTO-UOVTENO QUOIKNIS KATATTPOPNS.

Q¢ ueAéTn TERIMTWONG, YENOULOTOLOUUE TO LOVTERO OIS YLl VAL AELOAOYICOUUE TOV
AVTEXTUTIO GUYHEXQUIEVOY XOLVWVIXDY 0QYOVOTIXWY DoU®Y ot Wia TEYVNTH ‘Mivewuy’
xowvwvia tng Hedwng Enoync tou Xaixol oty KeAtn. H nopauetponoinon tou po-
viéhou PBaoctleton ot apyonohoyixd cToryela xan HEAETES, ahhd Bev TpoxaTohouBdveEL
OTIOLBATOTE CUYXEXPLEVT apyonoroyixy| Vewplo 1 Topadoyr. Anotehéouoto and op-
AETE DLUPOPETING GEVEQLA TEOCOUOIWONG XATAOELNVIOLY XAADTERT BLwoudTnTaL Yot
TOUG OWOHOUS TEUXTOPWY ToU ULOYETOOV €VOL UOVTEAD XOWVMVLXO-OLXOVOULXAS Op-
Yévwong mou Baclleton TNy ‘auTo-0pYEVWoT, xaL OTOU Lol ‘ETERURYIXT| XOWVWVIXT

ooun| avadveTon. To anoteAcopata delyvouv eniong OTL OL ETTUYNUEVES XOWVOVIES TIEO-
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%(TOpwVY VOVETOOY Lol eEEMXTIXT TROGEYYIOT OTIoL 1) GUVERYAGTa EUPaviCETaL (S ava-
OUOUEVT OTEATNYIXT) CUUTEQLPOEE. X Ta GEVAQLN TPOCOUOIWONG OToL A@inxe Lo
TO UTIO-UOVTEAD QUOLXY|C XATAC TEOPTHG, TUPATNEOVNE Ao UNTES AANXYEC OTNY XATAVO-
Un TV oLUou®Y, Tou oyetilovial ue onuavTixd UYNAGTERA TOGOC TY UETAVAC TEUOT,
ouEowS UETA TNV €xpnin Tou ngoucteiou e Orpac. Emmiéov, 1 apyxd cuvepya-
TIXY| CUUTERLPOPE TWV TRUXTOPWY UETUTEETETAUL OE [LAL 1) CUVERYXTLXY), TUPEYOVTAS
€10l UTOC THPIET OE 0Py UONOYIXES Vewpleg TOU UTOBNAGYOLY OTL 1) €xENET TOU NPoL-
otelou g Ofjpag 00N yNoE GTNY *UTAEEELGT, TOU MIvwinol x0WVeVIXO-0XoVOoULXOU
ocuvoThuatog. Eriong, galvetun mwe 1 poviehonolnon evog SIXTUOU EUTOPIXGMY GUVAA-
Aoy @V OOV ELVOELTOL TEQLOGOTEROD 1) OTUAGIA TWV OWICUWY TORA 1) AMOC TAUCT| UETAUED
Toug, umopel va mopdyel woTiBo avdnTUENG OIoUMY TOEOUOLN UE UTE TOU UTIEEY 0LV
oTo apyatoroyxo apyelo. H Omapln Uepdv onuavTin®y xEVTpwy SLavounc Topwy,
UE EVOEYOUEVWLS Loy LY tepapytar xortd Ty TTodwun xou Meoouvminy| neplodo, aAld xan
OTNUOVTIXOY XEVTPWY CUYXEVTPWONG TOPWY XaTd TNy Owdpxeta tng T oTepoutvmixrg
TEPLOHOOU, TEOXVUTTOLY ETONE WS EVAOYEC UTOVEGELS PECK TNG YPNOTS TOL TEAXTORO-

AEVTEIXOU [AC LOVTEAOL.
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Chapter 1

Introduction

Archaeologists seek to interpret human (pre-)history by providing theories about the
interactions between societies and their natural environment, grounded on archaeolog-
ical evidence. This is accomplished via the use of formalisms and via the constant
re-definition of objectives to be attained, questions to be asked and methods and tech-
niques for answering them. Archaeological theories, however, are generally incomplete,
in the sense that they are based on data that is static: it might reflect the results of the
dynamic interactions among people, materials, monuments, landscapes, and the inhab-
ited environment in general, but not these dynamics themselves. Thus, archaeology has
a difficulty linking cause and effect in the past [[127]. Apart from natural language, an
alternative way to reason about historical and past actions and events from observed
data, is to transform theoretical questions and hypotheses into computational terms; the
aim is to find the means to explore possible answers. Towards this end, computational
modeling and simulation can assist archaeologists on expressing individual or collec-
tive entities, relationships between them or phenomena, allowing them to explore and
test theories against observed data, to conduct plausibility (or improbability) tests, and
experiment with different sets of initial conditions and scenarios to explain particular

sequences of cause and effect [43]].
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One of the pillars of computational modeling, essential for any simulation process, is
of course mathematics, based on variables and their relationships. Equation-based mod-
eling [10] is about defining a recurrence relation of given variables, once one or more
initial values are given (difference/partial difference equations), or about relating some
process or function with its derivative, i.e., its rate of change (differential equations).
For example, logistic or exponential growth equations describe population dynamics,
while predator-prey equation models describe the dynamics in which two populations
interact, one as a predator and the other as prey. Reaction-diffusion equations can de-
scribe the spread of populations in space, when two populations compete for a common
food source (“competition”), or benefit from each other (“symbiosis”). Furthermore,
agent-based modeling (ABMﬂ [140] is a field research methodology originally devel-
oped as part of computational modeling, but widely used by other disciplines, from life
and physical sciences (biology, genetics, physics, chemistry) to environmental and so-
cial sciences (ecology, geosciences, demography, economics, sociology, archaeology).
ABM is quite effective in representing the interactions among acting entities (agents),
that may represent individuals, groups, societies or even nations, since these individual
entities can be represented directly and can possess internal state(s), and a set of be-
haviours or rules that determine how the agent’s state is updated from one time step to
the next. Now, an equation-based modeling system is in general able to report similar
behaviour in the results as an equivalent ABM [18]. Why then not use solely equation-

based models rather than ABMs?

The major difference between these approaches is that the accuracy assessment of
(real) observational data can be much better determined by an ABM, as it can ade-
quately represent situations where small fluctuations in the input data can drive a system
to a completely different state [18]. By contrast, equation-based systems would usually
smooth out such effects, not allowing such out-of-the-norm situations to emerge. More-

over, though equation-based modeling variables allows saving and reusing data while

"We will be using the acronym ABM to refer to both “agent-based modeling” and “agent-based
model(s)”.



the model runs, ABM can incorporate complex agent variables which include both data
and functionality at the same time. This results in an increased descriptive power that
facilitates interdisciplinary research, as it allows the incorporation of concepts used in
various disciplines (regardless of the discipline-specific “language” they were originally
stated in). Such computational realization of conceptual processes can assist researchers
in social sciences to model and simulate real world phenomena. It has to be understood,
however, that ABMs must be run to test whether agents are behaving as their originators
intended, and this has little or nothing to do with how well they might reproduce ob-
servable data [9]. This is not necessarily a drawback: ABM models are not usually built
for prediction per se, but (to a large extent) to feed structured debate and dialogue, and
to provide a tool for apprehending and explaining certain underlying properties (cause
and effect) of the world [46]. Thus, in our view, the key objective of ABM is enriching
our understanding of fundamental processes that appear in a variety of archaeological

applications.

Scholars argue, however, that most agent-based simulation models used in archaeol-
ogy and beyond simply do not define truly autonomous agents [43, 135]], and ideas and
notions from the Mutli-agent Systems (MAS) community and related principles that
study the strategic behaviour of agents, such as game theory, should be followed in the
design of the respective ABMs. This is something we attempted to do in this thesis, as

will become apparent later.

The remainder of this introductory chapter underscores the motivations and ques-
tions which led us to explore research at the borderline of (computational) archaeology
and ABM. It further outlines theoretical and methodological dimensions of the ABM in
archaeological research and briefly outlines our novel model and tool, namely AncientsS-
ABM, that we provide for archaeological inquiry and in particular for the study of past
human societies’ organization. Finally, it concludes by highlighting the main research

contributions of our work and gives an overview of the structure of this thesis.
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1.1 The ABM and MAS approaches in Archaeology and
Beyond

The study of social and environmental change is key to improving our current under-
standing of human behaviour and history. Nowadays, computer science and current in-
formation systems provide us with the opportunity to build virtual laboratories in which
we can address various questions and hypotheses about such transitions. At the same
time, knowledge of historic events that have actually occurred provides the possibility
of interpreting the results, and evaluating the accuracy of specific computational models
or simulations. Thus, it is only natural that, computational archaeology has emerged
as the discipline that focuses on the study of ancient societies via the use of computer
models and simulations [47]. Archaeology is a data-oriented discipline, with a strong
focus on the collection of material information for the study of past human societies.
Computational archaeology builds on this information in order to enhance our under-
standing of the long-term human behaviour and behavioural evolution, via modeling
and simulating the socio-environmental processes at play. It utilizes mathematics, logic,
or even cognition as the means for converting observations and knowledge about nature
into quantalitative research; and scientific inquiry is used in order to produce, test, and

confirm quantitative data and theories.

The concept of ABM has become very popular within (computational) archaeology
over the last two decades [85]. Nowadays, ABMs can incorporate ideas from Artifi-
cial Intelligence (AI) [111] and Multi-agent Systems (MAS) [[142], and define a social
system as a collection of agents, which represent individual entities within a wider popu-
lation. In MAS research, these entities are assumed to be acting autonomously, and may
be able to learn and adapt in their environment. Agent actions occur in time and space,
affecting the wider environment while individuals cooperate and/or compete with each
other. ABMs can model systems that are either highly diverse or heterogeneous in terms

of both agent abilities and underlying environment, and allow the study of interactions
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and (potentially emerging) behaviours that would be difficult to examine by using sim-
ple aggregate styles of representation [9]. ABM is particularly appealing as it promotes
a style of modeling that reflects the characteristics of our real world, in a way that ap-
pears to fit well with existing explanations of how spatial structures such as settlements,
cities, states, our global system and all its natural components evolve. The emerging
popularity of ABM in social sciences, and in particular in (computational) archaeology,
is largely due to its ability to represent individuals and societies, and to encompass the

uncertainties inherent in archaeological theories or findings.

The major trends in recent archaeological simulation are mostly abstract ABMs in-
tended to assist with hypothesis-generation and (to a lesser extent with) hypothesis-
testing. Archaeology-related ABMs are mostly used to understand how certain pro-
cesses work and what sort of changes could plausibly have occurred, rather than com-
paring the output of a simulated process against the archaeological evidence or record;
however, the distinction between hypothesis-testing and theory-building simulation is
not always so clear-cut in practice [85]. In addition, there are many formal systems
competing or combining to provide their elements as theoretical and methodological di-
mensions for structuring ABM. Their relative value is determined by the questions that
need to be answered in each particular situation [99]. In the remainder of this section,

we describe the most important of such formal systems.

In most cases in archaeological research, scholars explore past processes that oc-
curred in a given geographical landscape. An effective means for modeling is the cou-
pling or integration of Geographical Information Systems (GIS) with ABMs when spa-
tial and temporal design and analysis is required [31]. When one or more agent actions
involves movement, when an agent’s location within the environment influences its de-
cision making, or when spatial arrangement of features on the landscape can be altered
by the agents, then a geospatial ABM can better support the research requirements of
the modeler. Moreover, in geospatial ABMs the importance of the spatial resolution

is equally as important as the temporal resolution, where duration and frequency de-



6 CHAPTER 1. INTRODUCTION

scriptive characteristics of events and phenomena are essential for temporal and spatial
(pattern) analysis. Thus, when geographic context constitutes an important aspect of the
conceptual model, the translated computational ABM needs to be coupled or linked with
a GIS computational library, e.g. GeoTools (a Java GIS software library), Java Topology
Suite (JTS), OpenMap, ESRI ArcObjects SDK, and others. Thereby several important
functions of the ABM can be assisted, such as data acquisition, pre-processing or trans-
formation, as well as determining and assessing various inputs and outputs when needed

through spatial analysis tools (e.g., density map, cost distance, least cost path, etc.).

ABMs can also be enhanced via the use of cellular automata (CA) to model complex
systems. Von Neumann and Ulam introduced the concept of cellular automata in the
1940s [96]. CA is an insightful approach for building a system of many agents that
have varying states over time. However, now agents are cells existing on a grid (a
tessellation of n-dimensional Euclidean space), where each cell has a number of states
and a neighbourhood which is a list of adjacent cells. Cell states evolve over a series
of computational time steps; a cell’s new state is a function of all the states in the cells
neighbourhood at the previous time step, along with a set of simple rules for the cell to
follow. Depending on the complexity, patterns may appear from simple specific rules, or
the rules themselves can be classified as ones that evolve quickly into a stable state, into
oscillating structures or into structures that interact in complex ways, and can be relevant
to the study of biology, physics, social sciences and all fields of science [[141]. Using
CA within an ABM allows the conceptualization of a variety of real-world phenomena,

where behavioural patterns are emerging out of the interactions among simple agents.

In a parallel direction, Von Neumann and Morgenstern invented the mathematical
theory of games [131]. Since the 1970s, game theory (GT) became the main instru-
ment for the analysis of the strategic interactions among rational agents, i.e., entities
that encompass preferences or goals and act upon them [95]. Agents can be also de-
scribed by means of an abstract concept called utility, referring to some ranking or scale

of the subjective welfare an agent derives from other agents in the game; while the aim
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of the rational agent is to maximize its expected utility payoff. GT aims to provide an
explanatory account of strategic reasoning based on ‘“rational” actions of agents, and
thus to prescribe “optimal” strategic behaviour for use by agents in games. In situations
where this is not the case, i.e., when actions are not necessarily the results of rational
deliberations by individual agents, but are rather “biologically” attached to particular
strategies used by entire populations, then evolutionary game theory (EGT) can be of
use [122]. EGT originated as an application of GT to biological contexts, arising from
the realization that frequency-dependent “fitness” introduces a strategic aspect to evo-
lution. Although EGT has been mostly applied in the context of evolutionary biology,
it has also recently attracted the interest of social scientists, as “evolution” need not be
strictly biological, but can be also understood as “cultural or social evolution”. Since be-
liefs and norms change over time, EGT can help answer questions about the conditions
under which language, concepts of justice, altruism, and other non-designed general

social phenomena are likely to arise [121].

The above methodological dimensions can effectively structure an ABM, depending
on the theories and hypotheses that need to be modeled. Nevertheless, MAS research
has always been advocating that ABMs should be providing a higher level of abstraction
than the one offered by object-oriented systems [75]. Modeled agents should be capable
of autonomous action, and of maintaining high-level interactions and organizational
relationships with other agents, while being potentially “selfish” [143]]. However, most
mutiagent-based simulation models used in archaeology, simply do not define agents in
the way these are defined in Al or MAS research. Unfortunately, “agents nowadays
constitute a convenient model for representing autonomous entities, but they are not
themselves autonomous in the resulting implementation of these models” [43]. Most
existing ABMs used in archaeology do not incorporate truly autonomous, nor utility-
maximizing agents in their models. This is regrettable, as ABM can clearly benefit
from the progress achieved in modeling (and employing) strategic decision-making in

multi-agent worlds, which is the focus of MAS research in the past decades [[135]].
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In this thesis, we present a functional ABM system prototype that we developed,
called AncientS-ABM, consisting of agents that are completely autonomous, and can
build and maintain complex social structures. Instead of a simple reactive agent ar-
chitecture observed in most ABMs used in archaeology, a utility-based one is actually
applied in our ABM AncientS-ABM is inspired by existing models and specific case
studies, however, it is quite generic, can incorporate a number of different modules (sub-
models) regarding agent organization, their actions and interactions at both the agent and
agent community level, and does not aim to prove or disprove a specific theory. We ar-
gue that, using agent-based models that were built on MAS principles and knowledge
derived from archaeological research—but do not attempt to fit their results to a specific
material culture—allows for the emergence of dynamics for different types of societies
in different types of landscapes, and can help derive knowledge of socio-economic and

socio-ecological systems that are applicable beyond a specific case study.

1.2 Contributions

In this thesis, we examine how methods and techniques from multiple computer science
fields can be combined to deliver an augmented ABM to be effectively utilized in the
archaeological domain. In order to establish an ABM that would actually simulate an
artificial past society in a realistic landscape environment, one should examine many
aspects, and most probably be called to utilize solutions from various fields of computer
science or even other scientific fields. To the best of our knowledge, this is the first
time that a formal agent-based modeling framework for simulating various social or-
ganization paradigms, pondered by available archaeological information, is provided in
the literature. Specifically, we put forward AncientS-ABM, a fully-functional, generic,

and modular ABM system that is easy-to-use by archaeologists, in the sense that it can

ZNote that we do not mean to argue that utility is the main factor driving human behaviour or the
advance of human societies. Nevertheless, utility theory have long been adopted as useful tool in the Al
domain [111].
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be employed for the study of practically any society of choice, can easily incorporate
archaeological evidence or estimates, and can help test proposed archaeological theories

or hypotheses regarding their social organization.

The core of our approach is to formally describe and improve agent-model design,
as a means for developing simulations which can lead us to better understand emer-
gent phenomena associated with the evolution of complex systems, such as artificial
past societies organization. This is achieved by properly introducing and incorporating
MAS ideas and techniques towards enhancing agent sophistication in organizational de-
sign. Importantly in this thesis we adopt and adapt a “self-organized” agent organization
paradigm, where utility-based agents are autonomously organized into a “stratified” so-
cial structure, and continuously re-adapt the emergent structure, if required. In addition,
we incorporate in our ABM a number of different social organization paradigms and
subsistence regimes, along with an alternative evolutionary self-organization paradigm,
inspired by EGT, where agents strategically interact with other agents in their commu-
nity, with a view to study the evolution and adaptation of strategic behaviours of agents,
and the effect these have on the artificial society as a whole. We further embody ap-
proaches and techniques from GIS, in order to properly capture spatial aspects of the
realistic agent environment, agent-agent and agent-environment interactions. Last but
not least, we also adopt methods from graph theory in order to adequately analyze these
interactions at a network representation level. Thus, in this thesis we develop and present
the AncientS-ABM framework, that is able to simulate agency and assess simulation re-

sults towards studying specific properties and patterns of archaeological information.

In Figure [I.1] we provide an overview of the scientific fields that we engaged in this
research, highlighting the main contributions of this thesis towards utilizing agent-based

modeling in archaeology with respect to these fields.



CHAPTER 1. INTRODUCTION
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Figure 1.1: Overview of involved scientific fields and contributions of this thesis.
The main contributions of this thesis can thus be summarized as follows:

1. We showcase how MAS-originating concepts, techniques, and algorithms can be
incorporated in an ABM, as such providing a stepping stone towards the afore-

mentioned [135] ABM-MAS integration vision (Chapters [3}-[6)).

2. We provide a modeling approach that employs autonomous, utility-based agents
(rational utility-maximizers) for modeling their intra-community interactions, un-
like most existing ABMs in archaeology, which employ a simple reactive agent
architecture. Our agents act autonomously towards utility maximization, and can

build and maintain complex social structures (Chapter [3)).

. We incorporate in our ABM a social organization paradigm of agents self-organizing
into a “stratified” social structure, and continuously re-adapting the emergent
structure, if required. The self-organizing social paradigm builds on MAS work [81,
82 for problem-solving and task execution in modern self-organizing agent or-
ganizations. We note that this is the first time a self-organization approach is

incorporated in an ABM system used in archaeology (Chapter [3).
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4. We incorporate a number of additional social organization paradigms and different
subsistence regimes (e.g., cultivation systems) in our modeling approach, aiming
to assess the influence of social organization on agents population growth, agent

community numbers, sizes and distribution (Chapters [3]and @)

5. We define a (somewhat sophisticated) agent decision-making process, which uses
an Markov Decision Process (MDP) to decide on migration (or settlement) poli-
cies, and compare the viability in terms of population growth of the resulting agent

societies against that of myopic agent action selection (Chapter [3).

6. We blend for the first time evolutionary game theory with multi-agent systems’
self-organization for modeling the evolution of social behaviours in a population
of strategically interacting agents. Specifically, we provide a novel evolutionary
self-organization algorithm by simulating repeated “stage games” played by pairs
of strategic agents, by means of which they exchange utility (corresponding to
resources) with others. The results of the games contribute to both the continuous
re-organization of the social structure, and the progressive adoption of the most

successful agent strategies (Chapter 4).

7. We provide a novel model for our evolutionary self-organization approach, where
strategy review and adoption, agent fitness, and the relative success of agents strat-
egy are assessed and performed in various ways. In contrast to most (matrix)
games studied in the game theory and MAS literature, our agents receive non-
static payoffs, depending on their current utility, while the agent population is
not constant, but fluctuates dynamically over time, due to utility-influenced births
and deaths. These facts led us to provide a novel, alternative take on the classic

fitness-based evolution strategy selection process (Chapter [).

8. We conduct a systematic evaluation of the performance of various agent strategies,
assuming several variations in the way agent fitness and agent organization fitness

are defined, as well as in the way agents adopt new strategies, for studying the evo-
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lution and adaptation of strategic behaviours of agents operating in the artificial

communities, and the effect these have on the society as a whole (Chapter 4).

We incorporate a natural disaster sub-model (module) in our ABM, in order to
assess the anticipated social crisis in terms of agents social structure adaptation,
agent community numbers and sizes, migration behaviour and agents strategic be-
haviour evolution, before and after a natural catastrophe event; as well as to pro-
vide insights on how a natural disaster scenario could affect the trading network

behaviour and further the agent communities organization structure (Chapters [5]

and [6)).

We provide a novel trading sub-model (module) that readily incorporates spa-
tial interaction models to simulate agent inter-communities trading interactions.
Moreover, we conduct a systematic evaluation of the agent communities trading
network, aiming to explore the sustainability of agents and agent communities so-
cial organization by evaluating the effects of agent inter-community interactions.
Moreover, we utilize graph theory to further interpret simulation results in terms
of the network’s potential centralization, clustering behaviour, or potential settle-

ment hierarchy during the whole simulation period (Chapter [6).

As a case study, we employ our ABM to assess the intra-settlement and inter-
settlement organization of “Minoan” agents affected by their interactions on agent
and agent community levels, based on actual archaeological data and evidence (or

estimates) on the Minoan civilization (Chapters [3]—[6)).

We obtain intuitions, suggestions, and potentially provide support for existing ar-
chaeological theories. In particular, when agents adopt an “egalitarian” social
organization behaviour, a settlement pattern of many ‘“small-size” settlements is
emerged, while when the self-organization social paradigm is adopted, a “het-
erarchical” social structure emerges, giving rise to fewer but larger settlements

during the Middle — Late Minoan period. In addition, simulation results on inter-



1.2. CONTRIBUTIONS 13

settlement trading interactions suggest that a small number of influential centres
could have existed during the end of the Early Minoan period, where resources
are distributed by these centres to others in the network, with no clearly prominent
settlement sites to which resources are directed. By contrast, the trading network
connections are becoming much denser, and resources are being distributed to-
wards only a few settlements in the network during the Late Minoan period and
after the catastrophic event of the volcanic eruption of Thera, which appears to

have led to a clear breakdown of the Minoan socio-economic system (Chapters [3]

6.

AncientS-ABM is developed using the NetLogo multi-agent programmable model-
ing environment [[139], and it is quite modular and generic and is easy-to-use by archae-
ology scientists. In fact, we followed a common design principle extensively adopted
in the agent-based modeling community [4], known as K.I.S.S (“Keep it simple...and
short”), including variables, constraints and mechanisms required to add to the qual-
ity of the model, while being also able to keep the system theoretically coherent and
tractable in terms of results analysis and interpretation (cause and effect), as well as
computation. Specifically, AncientS-ABM is currently supporting several modules and

methods for its various modeling components, such as:

e migration and cultivation agent actions, with two different cultivation practices

e intra-community and inter-community agent interactions, with several social or-

ganization methods and spatial interaction methods respectively

e several topographical and archaeological spatial data layers, as well as a natu-
ral disaster module, currently supporting a volcanic eruption catastrophe, for the

environment model

In Figure[1.2] we illustrate our ABM framework modularity, by providing a simple
diagram of the various independent components and methods of the agent and environ-

ment models currently developed.
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ABM

Agent Environment

Actions Interactions Data Layers ‘ Natural Disasters

Migration Cultivation lntra-_ Inter-_ Topographical || Archaeological Volcanic Eruption
community community
{_ Myopic Intensive Independent XTENT ‘ Elevation Site Locations Tsunami
MDP Extensive Egalitarian Gravity Slope ‘ ‘ Site Categories ‘f:y Volcanic Ash
Hierarchical Aquifers

Self-Organization Cultivation Systems

. Social Organization Paradigms

Evolutionary Spatial Interaction Models
Self-Organization

Figure 1.2: AncientS-ABM modularity diagram of the various modeling components and meth-
ods currently supported.

1.3 Thesis Outline

The structure of the rest of this thesis is as follows.

Chapter [2] discusses agency and organizational design through the prism of archae-
ology and computer science, along with an overview of ABM design methodology and

existing examples of archaeology-related ABMs.

Chapter 3| presents our ABM, by describing the agent model, the model’s envi-
ronmental representation, agent intra-community interactions, and their various social
organization-related characteristics. Most importantly, it describes the self-organization
framework incorporated in this thesis; and presents an appropriate evaluation mecha-
nism that measures the utility for agent re-organization decisions. We also present our
specific case study of early Minoan societies, and record the empirical evaluation of our
approach, by first detailing the comparison methods and the simulation parameters for

the various scenarios considered, and then analysing the obtained results.
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Chapter ] extends our ABM framework by blending evolutionary game theory with
multi-agent systems’ self-organization. Our approach models the evolution of social
behaviours in a population of strategically interacting agents (corresponding to house-
holds in the Minoan era). To this end, agents participate in repeated games by means of
which they exchange utility (resources) with others. The games’ outcomes contribute
to both the continuous re-organization of the social structure, and the progressive adop-
tion of the most successful strategies. We also present a systematic evaluation of the
performance of the various strategies, assuming several variations in the way agent and
organization fitness are defined, as well as in the way agents adopt new strategies. We
note, that results demonstrate that strategic cooperation is in fact an emergent behaviour
in contrast to the stage game equilibrium, and one that can better sustain and advance

the agents’ society (e.g., higher population sizes are observed when agents cooperate).

Chapter [5] describes an additional module for out ABM system, incorporating a nat-
ural disaster sub-model. In particular, we enable the natural disaster sub-model dur-
ing our simulations in order to evaluate the extent by which the cataclysmic volcanic
eruption of Thera (Santorini) impacted the Minoan social evolution. To conceptualize
the model, we considered simple processes based on archaeological estimates to model
tsunami and volcanic ash impact on the artificial society and their effects on agriculture
and human life. We also present an evaluation of the performance of different agent
social organization paradigms, in terms of household agents sustainability, agent strate-
gic behaviour, settlements’ numbers and sizes, and migration rates during and after the

volcanic eruption.

Chapter [6] presents a novel agent-based trading module in our ABM framework, for
simulating the exchange and distribution of resources across (agent) settlements in past
societies, that can employ any spatial interaction model of choice. We enable the trading
sub-model to study the settlements’ trading ability and power, given their geolocation
and their position within the trading network, and the structural properties of the network

itself, using as a case study the Minoan society during the Bronze Age, in the wider area
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of “Knossos” at the island of Crete, Greece. Two well-known spatial interaction models,
XTENT and Gravity, are described, adapted and employed for conducting a systematic
evaluation of the dynamic trading network that is formed over time. We also present
and interpret our simulation results, assessing the sustainability of the artificial Minoan
society in terms of population size, number and distribution of agent communities, with
respect to the available archaeological data and spatial interaction model employed. We
further evaluate the resulting trading network’s structure (centrality, clustering, etc.) and
show how it affects inter-settlement organization, providing in the process insights and

support for archaeological hypotheses on the settlement organization in place at the time.

Finally, Chapter [7]concludes this thesis and discusses future research directions.



Chapter 2

Background

In this chapter we provide some background on important concepts and approaches rel-
evant to our research. Specifically, we discuss notions linked to the understanding of the
social organization of a given society, as appear in archaeology and MAS research. We
also provide an overview of agent-based modeling and its design methodology. More-
over, we brief review existing ABMs used in archaeology research; and present a very
basic background on the Minoan civilization and its social organization, as this is our

case study in this thesis.

2.1 Archaeology and Social Organization

Social Archaelogy [[107] seeks to understand the social organization of past societies at
many different points in time. To this purpose, it has strived to define the right questions
to ask, and to devise the means of answering them. It is only natural that different kinds
of society raise different kinds of meaningful questions. For instance, a mobile group
of hunter-gatherers is unlikely to have exhibited a complex centralized organization.
Thus, in order to determine the way many aspects of a societal organization behaves in

practice, one needs a frame of reference, a plausible classification of societies against

17
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which to test hypotheses and ideas.

A society classification system that has found much support in archaeology was the
one proposed by E. R. Service [118,[107]: Bands, small-scale societies of hunters and
gatherers, fewer than 100 people, who move seasonally to exploit resources, and lack
of formal leadership so that there are no marked economic differences in status among
their members. Segmentary societies are larger than bands, but rarely number more
than a few thousand. Their subsistence is based on cultivation and livestock, and are
typically settled farmers or nomad pastoralists with a mobile economy (which exploits
resources in an “intensive” manner). Chiefdoms, on the other hand, operate on the
principle of ranking and difference in social status between their members. There are
lineages, graded on a scale of prestige, and the society be governed by a chief; there
is no true stratification into classes, however. A chiefdom generally has a center of
power and may vary in size. Early states, finally, preserve many of the features of
chiefdoms but the ruler has the explicit authority to establish laws and enforce them
by the use of a standing army. The society is stratified into different classes and is
viewed as a territory owned by the ruling lineage, and populated by tenants who have
the obligation of paying taxes and tolls, developing a complex re-distributive system.
Such societies show a characteristic urban settlement pattern, and often a pronounced
settlement hierarchy exists—with a capital city as a major center, and several regional

centers and villages that were peripheral to that city.

There are sufficiently marked differences between simple and more complex soci-
eties, as increased specialization and intensification takes place among different aspects
of their culture. Nevertheless, the classification system above can admit a given society
into more than one categories. It is far from clear, however, that one should assume

societies evolve from bands to segmentary societies, or from chiefdoms to states [107].

Social archaeology asks a great number of additional questions regarding the nature
and internal organization of the society under study. For instance, are the main social

units, individuals or groups, forming it on a more-or-less equal base, or do prominent



2.2. MULTI-AGENT SYSTEMS AND AGENT ORGANIZATION 19

differences in status, rank, prestige within the society, or perhaps even different social
classes exist? A number of important characteristic features that different kind of so-
cieties exhibit have been described by existing research, but many more are yet to be
discovered [118}107]]. There are many methods for acquiring information regarding the
internal social organization of an early society. Beyond field survey—which aims to dis-
cover mainly a presumed hierarchy of a settlement—making use of settlement pattern
information, written records, oral tradition and approaches from ethno-archaeology are
included as well [[107]. Clearly, the variety of methods used and the inherent uncertainty
of the domain gives rise to a rich space of hypotheses for any given question regarding
the social organization of early societies. This is where multi-agent systems research

can potentially offer a helping hand.

2.2 Multi-agent Systems and Agent Organization

Multi-agent system approaches towards organizational design can be considered to be
either agent-centric or organization-centric [86]. In organization-centric approaches,
the focus of design is the organization which has some rules or norms which the agents
must follow. Thus, the organizational characteristics are imposed on the agents. The
former focus on the social characteristics of agents like joint intentions, social com-
mitment, collective goals and so on. Therefore, the organization is a result of the
social behaviour of the agents and is not created explicitly by the designer. While a
lot of re-organization framework models have been proposed in the MAS community
(Opera [37], OMNI [129]], Norms based [88]], ODML [68], KB-OR [120]), such reorga-
nization methods need to be provided with a particular set of requirements to produce
an agent organization suitable for the respective problem solving process; agents are
not permitted to modify their organizational characteristics that have been pre-designed,
or do not allow flexibility in the interactions. In [36] re-organization issues in agent

societies are discussed, such as how and why organizations change, and how can reor-
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ganization be done dynamically, with minimal interference from the system designer.
They argue that one of the main reasons for having organizations, is to achieve sta-
bility. However, environmental changes and natural system evolution (e.g. population
changes), require the adaptation of organizational structures. Thus, re-organization may
be the answer to changes in an artificial environment of agent societies, if it leads to
increased capacity for survival (vitality) or power to live and grow (energy or utility);
the reorganized instance should perform better in some sense than the original situation,
not only for the organization but for the agent itself, given the assumption and essential

characteristic of agent autonomy in multi-agent systems or models.

The concept of self-organization can be considered as a specific instance of the
agent systems re-organization notion. It is inspired by the spontaneous re-organization
observed in natural systems functioning without any external control, and has subse-
quently successfully been applied in MAS research [35]. Such mechanisms function
without any external control and adapt to changes in the environment through sponta-
neous reorganization. This self-organizing ability makes these natural systems robust to
changing environmental conditions, thus enhancing their survivability. In the context of
computing systems, self-organization refers to the process of the system autonomously
changing its internal organization to handle changing requirements and environmental
conditions. Several approaches have been explored by researchers for developing self-
organizing MAS. Intuitively, in social self-organization methods like the one in [81} [82],
adaptation targets organization-wide characteristics, such as structure, rather than the
individual agent ones. Moreover, in dynamic environments modeling real human soci-
eties, continuous structural self-adaptation is, predictably, almost a necessity in the face
of uncertainty and ever-present change [36l]. Therefore, a structural adaptation method
is preferable to methods modifying particular agent properties, and enables the agents
to choose when and how to adapt—especially when placed in real world, ever-changing
environments. In Section [3.2] we present in detail a self-organization method developed
in this thesis, one which adopts aspects of and builds on the approach of [81, 82]] men-

tioned above.
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2.3 ABM Design Methodology

Agent-based computational experiments simulate the simultaneous (synchronous or asyn-
chronous) operations and interactions of multiple agents, where complex phenomena
may emerge, combining ideas and approaches from formal systems discussed previ-
ously in Section The entire process of building an ABM begins with a conceptual
model, where the main questions or hypotheses of the researcher solidify model ele-
ments (i.e. agent entities), with their attribute characteristics, behavioural and interac-
tion mechanisms among themselves, and the model environment. In this section, we
discuss the design methodology and available architecture for these elements, as well
as a way of making model descriptions more understandable and complete. Moreover,
for a beginner or non-expert in computer programing, there are several modeling sys-
tem tools available to assist the development of an ABM. The subsequent subsections

identify several ABM toolkits widely available and key model design considerations.

2.3.1 Modeling toolkits

Any ABM can be implemented with any object-oriented programing (OOP) language,
since it is developed as a computer program. The concept of “object” in the computer
programming paradigm, is used to describe (perhaps inadequately) data structures that
contain data (fields or attributes) and functions (procedures or methods) that can access
and modify their own data. Thus, the most suitable way to develop ABMs is if we
consider objects as agents. An experienced modeler in OOP can build an ABM from
scratch; however, there are several advantages to utilizing existing modeling tools for
ABM development. Such benefits include reduced time for programming non-specific
parts, e.g. data import/export, graphical user interface (GUI), etc., or the inbuilt imple-
mentation of various procedures, routines or methods needed. Although there are many
toolkits for developing ABMs, we present here just a few of them, selected because

they have up to date active maintenance and development, are widely used with a large
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user community, model libraries, tutorials and documentation, and being also able to be
integrated with GIS extension libraries for geospatial ABM development. However, it
is important for the modeler to always select software based on their purpose, design

objectives and modeling capabilities.

NetLogoE] [125]] is highly recommended for modelers with beginner-level program-
ming skills. It is a multi-agent modeling environment for simulating natural and social
phenomena, has been in continuous development since 1999, and is capable of modeling
relatively complex systems. NetLogo is simple enough for both students and teachers,
yet advanced enough to serve as a powerful tool for researchers in many fields. It has an
extensive documentation, many online tutorials, with a large model library of collected
pre-written ABM simulations, addressing research areas for almost every discipline,
as well as several useful extensions, such as GIS and Networks. NetLogo is an open
source software library and runs on the Java virtual machine, thus it also constitutes a
cross-platform modeling toolkit, while its computer programming language is the Logo

dialect, a programming language designed specifically for ABM.

The Repast Suiteﬂ [100] is a family of advanced, free, and open source ABM and
simulation platforms that have collectively been under continuous development for more
than a decade. It is perhaps the most actively maintained solution for ABM with a large
user community. Repast comes in two editions; the Repast Symphony edition, which
can be used when the modelers’ programming background is limited or when the mod-
eler needs to use rapid prototyping to quickly develop an ABM (using ReLLogo or Java);
and the Repast HPC (Repast for high-performance computing), when the modeler needs
to develop a model of a complex system with a large number of agent interactions and
is also familiar with the C++. The Repast suite provides visual and easy to use capabili-
ties for agent design, behaviour specification, model execution, and results examination.
The modeler may also specify spatial elements of the model (e.g., geographic maps or

networks) and different types of agents with specified behaviours.

ISee http://ccl.northwestern.edu/netlogol
2See https://repast.github.io.
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MASONE] [87] is a multi-agent simulation modeling tool designed to support a large
numbers of agents relatively efficiently on a single machine; it has no capabilities for dis-
tributing models over multiple computers, although an extension for this (D-MASON)
is available. MASON has no domain-specific features unlike the previous toolkits and it
is highly modular and consistent, allowing the modeler to use and recombine different
parts of the system. Moreover, it has a large set of utilities to support model design as
well as several valuable extension packages for geospatial support, for social network
systems analysis, as well as a high performance evolutionary computation system to
discover design solutions for complex ABMs. Thus, a working knowledge of Java is a

requirement for the modeler in order to use MASON.

GAMAE] [123]] is a modeling and simulation development environment for building
spatially explicit agent-based simulations. It is also an open source application soft-
ware based on the architecture provided by EclipseE], where users can undertake most of
the activities related to modeling and simulation, such as editing models and simulat-
ing, visualizing and exploring them using dedicated tools. GAMA is a cross-platform
modeling toolkit, while its computer programming language is GAML, a programming
language designed specifically for the platform. There is also an extensive documenta-
tion and tutorials designed to ease the first contact with it, by identifying tasks of interest
to modelers and how they can be accomplished within GAMA. Currently, GAMA of-
fers advanced visualization features (i.e., different displays composed of several layers,
enhanced 3D visualization) [S5]] and also has several new features that enables the plat-
form to simplify the work in participatory modeling and simulation, allowing human

participants to interact with a simulated environment [[124]].

3See https://cs.gmu.edu/ eclab/projects/mason.
“4See http://gama-platform.org)
>See https://www.eclipse.org.
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2.3.2 Agents, environment and interaction topologies

A typical agent-based model has the following essential features: a set of agents with
their attributes and behaviours, a framework for simulating agents in which they interact
with their environment in addition to other agents and a set of agent relationships, and
methods of interaction in which an underlying topology of connectedness defines how

and with whom agents interact, as shown in Figure 2.1}

Behavioral Rules
State Goals Utihity
Perceptions Actions

Organization

———— - ———
-

Pergeption rad_i;.ls

Environment

Figure 2.1: Virtual structural framework of a typical ABM (adapted from Jennings 2000)

While ABM originates from computer science as a computational modeling ap-
proach, the interdisciplinary nature of ABM may not allow a universally accepted defi-
nition of the term agent. Nonetheless, one of the most widely accepted definitions of an
agent is provided by Jennings [75]]; an agent is a software-based computer system, situ-
ated in some environment, and which is capable of autonomous action in order to meet
its design objectives. Several agenthood properties that come from the above definition,

such as the following:
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autonomy agents are actual problem-solving entities, and have (at least some kind of)
control over their choice of actions and behaviours—i.e., they rely on their own
percepts and deliberations for decision making, and are capable of processing (and

exchanging) information in order to make independent decisions,

heterogeneity agents can be heterogeneous with different attributes and characteristics

which may differ in several ways (e.g. preferences or behaviours), and over time,
pro-activeness an agent can exhibit goal-directed behaviour,
re-activeness an agent is able to perceive and respond (act) within its environment,

social ability an agent can be interactive or communicative, being able to share or ex-

change information with others, and act within a given social environment.

However, agents can possess other properties and depending on the application,
some of their features will be more important than others. Thus, the above list is not
exhaustive or exclusive. Along with agent behavioural characteristics, the structural de-
sign of the agent needs to be described. The appropriate structure of the agent depends
on the nature of the environment modeled. An agent can operate in an environment that
has various properties that influence its behaviour as well as its structural design. Thus,
before designing an agent, the first step is to always specify the environment in which

agents will act, as fully as possible.

According to Russel and Norvig [[111], agent structures and environments vary along
several significant dimensions. Agent environments can be organized according to their

properties like:

fully or partially observable where the agent is either able or unable to gather com-

plete information about the environment,

deterministic or stochastic when only agent actions, along with the current state of the

environment, are able or not to determine the environment’s next state,
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static or dynamic when the agent is the only entity that brings changes on the environ-

ment or when changes in the environment happen while the agent is acting,

discrete or continuous when possible environmental states are finite or not.

Finally, an environment can be obviously single-agent or multi-agent; the later can
be also seen as a competitive or cooperative one, depending on the situation. A simple
case scenario of an ABM environment would be a fully observable, deterministic, static
single agent environment. Perhaps in such an occasion designing the simplest agent
structure could be sufficient, a reactive (or simple reflex) agent. These agents select
actions based on their current perception of the environment, ignoring previous per-
ceptions history. They are based on simple condition-action or if-then-else rules—i.e.,
providing immediate (reflexive) responses to perceptions. Although such an agent de-
sign has a low demand on computational power, the resulting agents are of very limited
sophistication or intelligence. For complex settings, however, a deliberative or rational
(or intelligent) agent needs to be designed. Such an agent is able to store previous per-
ception history, use an internal model, employ some goal information for its decision
making or use a utility function to evaluate how close to its goal the agent is, rather than

simply perceive whether a goal has been achieved or not—and then choose an action.

Now, agent perception (within a sphere of visibility and influence) and action capa-
bilities determine its nature of interaction with the environment and other agents. What
is more, when agents interact there is typically some underlying organizational context,
representing the nature of the relationships among the agents. Thus, the possibility of
specific agent interaction topologies might need to be taken into account prior to model

design [89]], as show in Figure [2.2]

The choice of an agent interaction topology very much depends on the modeler’s
needs. For instance, a grid or lattice interaction topology can be used when an agent
need to be represented either as a grid’s cell (cellular automata) or as an entity situated

in a grid cell, where Von Neumann or Moore neighborhoods can be further taken into
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a) b) c) d)

Figure 2.2: Potential agent interaction topologies for a computational ABM (adapted from Macal
and North 2009)

account (Figure )ﬁ Likewise, a polygonal tilling scheme (employing polylines as
well) can be used when a realistic GIS map need to represent the environmental frame-
work of the model (Figure[2.2b). When the modeler needs the agents to be able to move
and interact within a simple representation of physical space, then the environment can
be represented as an Euclidean 2D (or even (3D) continuous space (Figure 2.2k). Fi-
nally, a network interaction topology can be used for representing (weighted) connec-
tions between the agents (nodes) where both directed and undirected relationships (links

or edges) may exist.

There are several other common structural conventions that may also exist in most
ABM implementations [99]]: a logging mechanism, used to record different parameter
values during model simulation runs for later analysis; a scheduler, responsible for rep-
resenting the temporal aspect of a simulation, i.e., it can be a “time stepped” scheduler,
where agent actions or events (procedure calls) occur in each time (period) increment,
or a “discrete event” scheduler, where several actions or events need to be executed at
a specific time (duration). An optional Graphical User Interface (GUI) is also always
included to facilitate the modeler during the ABM implementation, initialization and
simulation stage. Apart from these elements, it may also be necessary to provide a for-
mal description for an ABM, both for assessing the model design and the dissemination

of the researcher’s work, as explained in the next section.

SWe note that, a triangular, hexagonal, etc. tessellation can be of use instead of a rectangular one.
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2.3.3 Formalizing model design

Building a computational model from an informal theory is not a trivial matter, while
formal theories are often too wide-ranging to put into computational terms. Therefore,
it is necessary to reduce them to a few selected features which contain the essence of
what is being described. To this end, the ODD (Overview, Design concepts, Details)
protocol was developed as a standard format for describing ABMs [56]. ODD provides
a general structure for formulating ABMs by describing models using a three-part ap-
proach involving: (i) an overview of the model, (i1) important design concepts, and (iii)
specific details. Model overview includes a statement of the model’s purpose, a descrip-
tion of the main entities, variables or attributes, temporal and spatial resolution of the
model, and a discussion of the agent activities. Model design concepts include a de-
tailed description on how abstract notions of the model, such as objectives, interaction,
adaptation, stochasticity, observation, a.o have been taken into account and represented
in computational terms. Finally, model details include specific elements regarding the

initial setup configuration, input value definitions, and descriptions of the ABM.

Other modeling aspects, such as calibration (or sensitivity analysis), verification, and
validation can be part of the ABM methodology. Indeed, depending on the case study, a
modeler may calibrate an ABM to specific historical cases, if there is enough supporting
data (deductive reasoning), or sweep a range of parameters over several possible scenar-
ios to identify important thresholds or reveal tradeoffs and inherent uncertainties. ABM
simulations must be reproducible (defining random seeds for the incorporated pseudo
random number sequence generator); but even if they are not, a modeler needs to run a
high number of simulations and examine aggregated parameter values, rather than being
satisfied using just one single run of the model. The true power of the ABM approach
is that one can rigorously incorporate in the model specific research findings within any
given domain, e.g. biology, physics, geography, archaeology, sociology, etc. This ability
brings out the true interdisciplinary nature of ABMs. Thus, it is essential to understand

that ABMs are meant to test whether they are behaving as their modelers intended, and
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not to prove or disprove any specific theory or hypothesis; however, certain simulation

results can potentially provide support or gain new insights to existing theories.

2.4 Related Work: Archaeology-related ABMs

In recent decades, archaeologists have used agent-based models to test possible expla-
nations for the rise and fall of ancient societies. One example of such a system is the
study conducted for the region of the Long House Valley in Arizona, on the reasons
why there have been periods when the Pueblo people lived in compact villages, while in
other times they lived in dispersed hamlets [[/9]. The model results show the importance
of environmental factors related to water availability for these settlement changes. How-
ever, results for 30 different (parametarisation) scenarios of just one run are presented.
Moreover, as in most of the existing models, agents actions in the model are mainly
cultivation/farming and migration, not based upon utility maximisation but rather on

threshold rules. Finally, agents do not interact with each other but act independently[]

A similar (quite well-known) ABM study involved the cause of the collapse of the
Anasazi, around 1,300 CE in Arizona, USA [34, 6l]. Scholars have argued for both a
social and an environmental cause (drought) for the collapse of this society. Simulat-
ing individual decisions of household agents on a very detailed landscape of physical
conditions of the local environment, the authors of [34] refute the hypothesis that envi-
ronmental factors alone account for the collapse. Agents in the Anasazi model (of the
same environmental area with the work of [[79]]), however, once again do not interact
with each other. Agents are simple reactive (i.e., incorporate simple condition-action
rules [[L11]), and their actions mirror a rather “nomadic” style of social organization,
instead of the more complex one that the Anasazi actually evolved until they abandoned
the region around 1,300 BC [57]. A further cause of concern regarding the model’s

accuracy and fairness is that in [6] the authors apparently calibrated the model by mini-

LT3

"Mortality and fertility rates in [79] depend on the agents’ “age”, rather than on production.
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mizing the difference of the simulated and historical data, using only 15 simulations, and
published the best fit, notwithstanding the apparent great variation in their results [[73].
As a result, neither are the agents in the ABM truly autonomous, nor the hypothesis

being studied was appropriately evaluated in that line of work.

The study of the long-term dynamics of human society and in particular the spon-
taneous transition from a relatively simple hunter - gatherer society to one with a more
complex structure has been also tried in the past [38]. The aim of this social simulation
system — Evolution of organized Society (EOS) project — was to investigate the causes
of the emergence of social complexity in Upper Palaeolithic France. Each agent is en-
dowed with a symbolic representation of its environment, its beliefs, about other agents
(the social model) or about resources in the environment (the resource model). An agent
also has a set of (cognitive) rules, which map old beliefs to new ones. To decide what
action to perform, agents have action rules which map beliefs to actions. Agents inhabit
a simulated two-dimensional environment (grid of cells) and have associated skills. The
idea is that an agent will attempt to obtain resources situated in the environment that
come in different types, and only agents of certain types are able to obtain certain re-
sources. The basic form of social structure that emerges, does so because certain re-
sources have a skill profile associated with them. This profile defines, for every type
of capability that agents may possess, how many agents with this skill are required to
obtain the resource. A number of social phenomena were observed in running the EOS
model, as for example “overcrowding” or “clobbering”, when too many agents attempt
to obtain resources in the same locale. However, agents in the model are autonomous
only in the sense of simple reactive agents. Neither learning/adaptation nor a “utility”
function of the agent’s state or actions is introduced. Agents in the EOS model are rather
forced by rules to change their independent state in favour of a recursive development
of a hierarchical structuring of agent groups. Moreover, the authors mention that there
are more than 60 rules including both cognitive and action rules, while none of them
is described; at least for the cognitive part of the agents, there is no reference on the

internal information processing of the agent, including tasks like reasoning, planning
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or problem solving. In order to study the transition from a simple societal organization
to a more complex structure (without adding any bias), simulations should exhibit the
emergence of such a phenomenon, rather than introducing it to the model a priori. In
addition, while population dynamics is an important consideration for the accuracy and

fairness of any ABM simulating a given society [30], this is not mentioned at all in [38]].

Archaeologists are now beginning to make use of spatial information in their models,
through data provided by Geographical Information Systems (GIS). Models like the
CybErosion framework overcomes the limitation of existing landform evolution models
which use an agent-based approach to simulate the dynamic interactions of people with
their landscapes but have typically failed to include human actions, or have done so only
in a static, scenario-based way [132]. The interactions it simulates relate to a few main
processes of food acquisition (hunting, gathering and basic agriculture) in prehistoric
communities. Simulations demonstrate the value of this approach in supporting the
vulnerability of landform evolution to anthropic pressure, and the limitations of existing
models that ignore human and animal agency, and which are likely to produce results
that are both quantitatively and qualitatively different. Although the ABM’s goal-based
agents do not interact with each other they can decide at each time step what action to
select (hunt, forage, collect firewood, other activities) based on their stored energy and

the remaining daylight length.

The Mason-Smithsonian Joint Project on Inner Asia [28]] is a complex social sim-
ulation project aimed at developing a better interdisciplinary scientific understanding
of the rise and fall of polities—national territorial societies with their own system of
government—over a very long time period, in order to examine the social effects of cli-
mate and environmental change. A next model of this project is the Mason Hierarchies
model, developed by adding social and natural features to the simulation. Hierarchies
rather than “households” agents are now present for modeling the explicit emergence
of political entities in the socio-natural landscape. The model-building is based on the

“canonical theory of social complexity” which is formally derived from the authors
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general theory of political uncertainty rather than on a representative MAS or ABM

architectural framework.

MayaSim [63] is a recent example of a simulation model integrating an agent-based,
cellular automata, and network model of the ancient Maya social-ecological system. The
purpose of the model is to better understand the complex dynamics of the Maya social-
ecological system, and to test quantitative indicators of resilience as predictors of the
system’s sustainability or decline. The model examines the relationship between popula-
tion growth, agricultural production, pressure on ecosystem services, forest succession,
value of trade, and the stability of trade networks. These combine to allow utility-based
agents, representing Maya settlements, to develop and expand within a landscape that
changes under climate variation and responds to anthropogenic pressure . Settlement
agents may migrate when population levels decrease below a certain threshold required
to maintain subsistence agriculture. Agent utility function combines weighted functions
for agriculture, ecosystem services, and trade benefit, affected by resource exchange that
occur between settlement agents, that are connected via a network of links that repre-
sent trade routes. It is assumed that when an agent reaches (or drops below) a certain
size, it will add routes (or allow routes to degrade) to nearby agents within a “Moore
neighbourhood” cells (spatial ties). However, agent decisions are hard-coded in the
model e.g., migration or adding new and degrading existing trade route links between
the agents are based on threshold rules, thus compromising agent autonomy. Model
results suggest that the demise of a globally significant settlement node could result in
cascading failure in the whole trading network, while the model itself requires refine-
ment and further calibration in order to be able to reproduce spatial patterns somewhat

analogous to that of the ancient Maya.

The above model essentially constitutes one of the two models we are aware of that
include utility-based agents. The second model we are aware of and can be considered
utility-based, is an ABM aiming to understand the possible mechanisms underlying pe-

riods of aggregation and disaggregation of prehistoric societies in arid environments, not
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aiming to represent a specific case study [74]. Agents in the ABM represent households
making decisions about resource use and migration. Moreover, one or more agents in an
environmental cell represents a settlement, which may exchange resources with other
settlements based on conditional rules. The ABM could explore to some extent how
various assumptions concerning social processes, such as migration, storage, and ex-
change affect the population aggregation and size, and the dispersion of settlements in
a spatially explicit landscape with rainfall variability. Agent interactions in that simple
model, however, are largely determined by rules that are built in the system. Our ABM
presented in this thesis shares several basic features with that of [[74]], but is also in many

ways distinct to that model, as we will be detailing in Section 3.1.

In summary, ABMs nowdays can integrate geospatial information along with archae-
ological evidence, and help researchers gain a better understanding of ancient societies
evolution and environmental processes. However, as it is already understood, most of
existing models do not define agents in the way these are defined in the MAS commu-
nity, perhaps because domain experts in social sciences have a rather vague idea about
what is really allowed or not for defining such models in computational terms [43].
Thus, essential agent features such as autonomy or interaction ability are considered
as “metaphors” in the design level only, and do not appear in the actual system imple-
mentation. Social scientists and archaeologists are interested in understanding human
societies, in particular the mechanisms that allow these systems to self-regulate, and in
the processes that shape and modify rules of behaviour. To aid them in this endeavour,
computer scientists need to build ABMs that are flexible and open; agent behaviours
should be allowed to evolve over time, rather than being pre-determined at design-time.
Moreover, there is an apparent need to develop and study system regulating mechanisms
that are actually emergent from some form of evolution and self-organization of the un-
derlying agent society. Our ABM system presented in this thesis is such an open one,
and can incorporate self-organization mechanisms that allow for flexible agent interac-

tions and the dynamic modification of organizational characteristics.
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2.5 The Minoans and their Social Organization

Several ancient civilizations existed in the Aegean Sea during the Bronze Age, with
the Crete island being associated with the “Minoan” civilization, which came to domi-
nate the islands and the shorelines of the Aegean Seaﬁ A significant shift in the early
Minoans human existence and lifestyle was brought when crop farming was first devel-
oped. Previous reliance on a nomadic hunter-gatherer way of subsistence, was in time
replaced by reliance on the produce of cultivated lands [63]]. These developments are
assumed to have had great impact on the growth of settlements, encouraging the con-
centration of local population. As a result, population density may have been relatively
high, and agricultural activities more intense in the vicinity of settlements, while at the
same time more remote regions were probably losing population, with land that was

potentially quite productive going out of use [30]].

From the sociological point of view, however, we do not have enough information
about what kind of relationships existed between the Minoans or how this ancient civi-
lization was organized before the Post-palatial (Late Minoan) periodﬂ Unlike what was
the case in the Mellars model of the EOS project [38] (see Section [2.4)), the wealth of
environmental resources sustaining the Minoan civilization is not our focus of attention
here. Archaeological evidence strongly suggests that the Minoans were agriculturalists
and pastoralists [66], as well as traders, and their cultural contacts reached far beyond
the island of Crete—from Greece to Egypt to Anatolia [/0]. Moreover, it is gener-
ally believed that there was little internal armed conflict in Minoan Crete itself, until
the following Mycenaean period. Starting from these points of departure, there are

several alternatives (originating in various traditional sociological approaches—social

8The “Eteocretans”, as they were called by Homer long time before the “Minoan” term, that was
coined by Arthur Evans after the mythic “king Minos”, were farmers as well as traders in the whole
Aegean [138]], who had survived a natural catastrophe, possibly an earthquake and an eruption of the
Thera volcano (such an eruption is often identified as a catastrophic natural event leading to the Minoans’
rapid collapse [92]].

Ocf. Tablein Appendixfor the conventional chronology dates (BCE) of the Minoan period used
in our ABM simulation scenarios.
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conflict, functionalism, interactionism, etc.) that may be suggested for the Minoans’
social organization and subsistence [29]. Archaeologists still struggle to find if there
are any signs of a settlement hierarchy in the Pre-palatial (early Middle Minoan) period,
based on the variation of settlement sizes within a region, or by the number of “tholos”
graves in use in each cemetery (which serve as an indirect way of estimating settlement
population) [116]]. In [106, [108]], the authors argue that interactions between different
socio-political entities are of a particular importance in the emergence of complexity
within a society, while some archaeologists argue that a strongly stratified society can

be assumed to have existed well before the end of the Neolithic period [[15]].

Moreover, a series of changes in the Aegean, in particular in the Minoan society,
were triggered by the LM (Late Minoan) IA or ca. 16th c. BCE Santorini eruption [42].
These changes would have caused the breakdown of the Minoan system over the course
of a few generations, during LM IB (15th c. BCE). Archaeologists hypothesize that
the eruption would have initially caused major problems in food production and distri-
bution, undermining central authority and leading to a process of decentralization; this
fragmentation would then have led incrementally to internal conflict. However, despite

the many destructions and abandonments documented, Minoan culture survived.

There is still no agreement on the absolute date of the eruption. Quite a few earth
scientists take the late 17th c. BCE date (between 1630 and 1600 BCE) for granted,
whereas many archaeologists remain to the traditional late 16th c. BCE date, roughly
around 1530-1520 BCE [40]. Despite the absolute date of the eruption, there is little
doubt that the eruption was preceded and probably even triggered by one or more earth-
quakes. However, considering the archaeological record of Bronze Age Crete, careful
analysis of old and new archaeological data suggest that earthquake evidence is patchy,
frequently ambiguous, and generally less spectacular than what popular accounts of Mi-
noan society would expect [78]. Regardless, the Theran eruption continues to trouble
scientists, especially on questions surrounding the volcanic eruption absolute date and

its impact on the ecosystem of the Ancient Mediterranean.



Chapter 3

AncientS-ABM: Simulating Ancient

Societies

In this chapter we describe in detail the core of a functional ABM system prototype for
simulating an artificial ancient society of agents. We focus on using autonomous utility-
maximizing agents for studying historical social dynamics and evaluating the impact of
different social organization paradigms on the artificial past society, in terms of popula-
tion sustainability and agent community sizes for various simulation scenarios. Impor-
tantly, the model incorporates a social organization paradigm of agents self-organizing
into a “stratified” social structure, and continuously re-adapting the emergent structure,
if required. As a case study, we consider an artificial Early Bronze Age “Minoan” so-
ciety residing at the wider area of Malia at the island of Crete during the Bronze Age;
model parameter choices are based on archaeological evidence and studies, but are not

biased towards any specific assumption.

Simulation results demonstrate that self-organized agent populations are the most
successful, growing larger than agents employing different social organization paradigms.
Specifically, self-organization is compared to egalitarian-like and static hierarchical or-

ganization models. The success of this social organization paradigm that gives rise to

36
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“stratified” societies, provides support for so-called “managerial” archaeological the-
ories which assume the existence of different social strata in Early Bronze Age Crete;
and consider this early stratification a pre-requisite for the emergence of the Minoan

Palaces, and the hierarchical social structure evident in later periods [19,152].

Our work here provides several contributions, also illustrated in Figure [3.1] below:

e We present a complete ABM framework that incorporates MAS-originating con-
cepts, techniques, and algorithms. In particular, we employ autonomous, utility-
based agents (rational utility-maximizers) for modeling their intra-community in-
teractions, unlike most existing ABMs in archaeology, which employ a simple

reactive agent architecture.

e We incorporate a number of different social organization paradigms and subsis-

tence regimes (e.g., cultivation systems) in our modeling approach.

e We conduct a systematic evaluation of the influence of the various social organi-
zation paradigms on agents population growth, agent community numbers, sizes

and distribution.

e We specifically incorporate a social organization paradigm of agents self-organizing
into a “stratified” social structure, and continuously re-adapting the emergent
structure, if required. We note that, this is the first time that a self-organization

approach is incorporated in an ABM system used in archaeology.

e We also define an (intelligent) agent decision-making process, which uses an
MDP to decide on migration (or settlement) policies, and compare the viability
in terms of population growth of the resulting agent societies against that of my-

opic agent action selection.

e As a case study, we employ our ABM to assess the intra-settlement organization
of Minoan agents affected by their interactions, based on actual archaeological

data and evidence on the area and period under study.
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As such, in this chapter we put forward AncientS-ABM, a modular and generic
ABM system, that is easy-to-use by archaeologists, and can easily incorporate
archaeological evidence or estimates to help them test proposed archaeological

theories or hypotheses regarding their social organization.
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Figure 3.1: Overview of involved scientific fields and contributions in Chapter

The remainder of this chapter is structured as follows. Section [3.1] presents our
model, by describing its environmental representation, its agents, their actions and in-
teractions. Section[3.2]describes various social organization paradigms and related char-
acteristics. Specifically, it presents the self-organization algorithm incorporated in this
work and an appropriate evaluation mechanism that measures the utility for agent re-
organization decisions. Following that, Section presents our specific case study of
early Minoan societies, and records the empirical evaluation of our approach, by first
detailing the comparison methods and the simulation parameters for the various scenar-
ios considered, and then analysing the obtained results. Finally, Section [3.5] provides an
interpretation overview of our simulations and concludes this work. Parts of the research

described in this chapter appeared originally in [[114)], [20], [21], [26] and [22].
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3.1 A Utility-Based Multi-agent Model

Agents in our ABM correspond to households, which are considered to be the main
social unit of production for the area and period under study [[137]], each containing up
to a maximum number of individuals (household inhabitants). Each household agent
resides in a cell within the environmental grid, with the cell potentially shared by a
number of agents. Adjacent cells occupied by agents make up a settlement—and there is
at least one occupied cell in a settlement. Each agent cultivates a number of cells located
next to the settlement. The number of those “fields” depends on the agent household

size, as we explain further below.

The model then determines how the agent society evolves as follows. At every time
step corresponding to a period of one year, household agent first harvest resources lo-
cated in nearby cells (corresponding to the fields they are cultivating). They then check
whether their harvest (added to any stored resource quantities) satisfies their minimum
perceived needs. If not, they might ask others for help (depending on the social orga-
nization behaviour in effect), or they might even eventually consider moving to another
location or settlement. When the self-organization social paradigm is in use, agents
within a settlement continuously re-assess their relations with others, and this affects
the way resources are ultimately distributed among the community members, leading to

“social mobility” in their relations.

Population size affects the land productivity in two ways: positively, since the con-
tinuous occupation or cultivation of an area by a large populace leads to experience and
subsequent higher crop yield; and negatively, since it also leads to overexploitation of
resources, or to less nearby area available for cultivation, or higher transportation cost
to further away areas cultivation, and thus, (implicitly) induce a lower crop yield. Pop-
ulation levels at a given area are affected by migration, as well as natural population
change by birth and death of agents. Lower amount of resources reduces birth rate and
thus leads to a reduced population size and threatens the agents with extinction. An

abstract overview scheme of the main processes is presented in Figure[3.2] The arrows
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in the figure show how one process affect another in the MAS simulation model.

Cultivation / Overexploitation
(negative feedback)

Production < Population
Cultivation / Experience
(positive feedback)
Migration
Utility Agent Birth / Death
& Organization (social)
Independent Self-Organized

Sharing Hierarchical

Egalitarian

Figure 3.2: The ABM main processes interaction

The ABM allows us to explore the use of different cultivation systems that could be
used by the agents, and thus test their impact on population size and dispersion and soci-
ety’s viability. At its current implementation, it allows the use of two agricultural prac-
tices: intensive farming (‘“garden” cultivation with hand tillage, manuring, weeding, and
watering) and extensive agriculture (large-scale tillage by ox-drawn ards Additionally,
our ABM attempts to assess the influence of different social organization paradigms on
population growth and settlement societies distribution. Importantly, the model allows
us to evaluate the social paradigm of agents self-organizing into an implicit stratified

social structure, and continuously re-adapting the emergent structure, if required.

!These are the agricultural practices in use at the period of interest for our case study here [60 7.
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3.1.1 Model environment and resources

Agents and resources in the multiagent model are located within a three dimensional
space, specified in terms of coordinates and cells. The spatial resolution is 20 x 25km
area with a 100 x 100 m cell size for the grid space. Thus, the landscape consists S0K
cells, while the time slot investigated is ~ 2,000 years (ca. 3,100 to 1,100 BCE), with

annual time steps.
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Figure 3.3: Environmental data layers of the ABM

The ABM environment can be classified as accessible, non-deterministic, since there
is uncertainty about the outcome of a particular action (cultivating, migrating), dynamic
and discrete (as discussed in Section [2.3.2)). The environment has also various data lay-
ers (see Figure [3.3) representing various aspects of the model landscape contributing
indirectly in agent’s decision-making process, like where to settle and/or cultivate. The
input spatial information are derived from current data and are concerning the topogra-

phy, which is today’s Digital Elevation Model (DEM), slope and aquifer locations, such
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as rivers and springs.

Resources exist in cells at fixed locations, and they may vary with respect to the
amount of energy they embody, and their availability through time. The productivity of
an environmental cell (in kg) is a function of the cell’s geo-morphological characteristics
(in particular, land slope) given its location on the map, and the soil fertility, which
depends on the amount of labour applied on the cell by the agents. With more labour
applied on a given cell, there is an increase in cell farming output (as agents get better in
working the land and harvesting their crops). On the other hand, the more a cell is used,

the more its yield is reduced, due to overharvesting (overexploitation).

To model these dependencies, we devised a function (); to describe the agricultural

production quantity or reward of a cell i:

Qi (P)= o

2,u_4ﬂ’maaz 2 4,umaac_3,u uf \
( PmaxQ P Pmax P+'u \\\
(3.1) o

P

where P is the current population size of the corresponding settlement (i.e., number of
individuals residing in the settlement, not the number of household agents i 1s the
initial amount of resources of the cell, ji,,4, 1S the maximum resource level per cell,
P,q: 1s the maximum possible population size per cell, and «; is a real valued weight
in [0, 1] characterizing the agricultural production of cell i. Intuitively, «; represents
the land suitability of a cell for agriculture. We assume that there are no agricultural
activities in areas with slope more than 45 (this is actually a generous assumption,

especially considering the era being modeled). Thus, «; is used to represent the decay

%In Equation [3.1| we use the agents organization population per cell P influence the amount of labour
applied on a cultivating cell, even though any given cell contributes to the utility of a single agent only (cf.
Equation [3.3)), since field cultivation was in many respects communal in those times [126]. Regardless
of that assumption’s validity, this value is essentially “normalized” by the maximum possible population
per cell; thus the @; function’s desired behaviour would have been entirely similar had we used the
household size instead of the settlement population. Moreover, this function is used by all competing
social organization paradigms in our experiments, thus granting none of them an unfair advantage.
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of agricultural land suitability with increasing slopeE]

Equation|3.1|captures the fact that labour applied on a field increases crop yield up to
a point, but at the same time a household cannot productively use a location forever (due
to overexploitation). It was inspired by the logistic map equation, the discrete version
of the logistic differential equation, widely used to model population growth [130]. In
our simulations, a cell’s initial production output (); at a given run (corresponding to
period of 2,000 years) is multiplied with a sample from a standard normal distribution,

and thus varies across runs.

3.1.2 Agents and their actions

Households are utility-based autonomous agents who they can settle (or occasionally
re-settle) and cultivate the land in a specific environmental location. They also possess
an explicit representation of the environmental grid (perception radius), and use this to
choose the best available migration location they can move to, in order to improve their
utility. Thus, the actual agents architecture is a hybrid one, combining properties from
a reactive and a deliberative agent architecture, but they can eventually be classified as
utility-based agents, since their actions (e.g., choosing a migration location, or asking
others for help) seek to maximise the expected value of a given utility function—even

though, at its current implementation, this utility function is rather myopic.

The main preoccupation of the agents is to stay alive by acquiring and consuming
resources harvested from the land. If an agent household fails to acquire enough energy
it will eventually die out, since it will stop procreating, as explained in Sec. below.
Acquiring energy is the only inbuilt goal of the agents. Thus, at every time step, the

agents seek to pick the action b’ that appears to be most rewarding in terms of producing

3We do not take into account “terracing”, a type of farming at sloped planes that have been cut into a
series of successively receding flat surface, which resemble steps.
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resources at a given time step:
V' = argmaxyep, U, (D) (3.2)

where FE, is the set of all energy-generating actions for agent x in the model.

In the case study considered here, agents acquire energy only via harvesting the

lands. Therefore, the (expected) utility U, of the agent z is simply described as follows:

Up=max{» _ Qx, U} (3.3)

k=1

Equation thus determines that the utility of agent  depends on the expected
agricultural production of the cells it cultivates (its total harvested resource amount),
as well as the expected utility U, of a new candidate migrate location (which in turn
depends on the agricultural production quality of the new position). The number of
cells n, that a given agent x is able to cultivate at a given position, depends on its size

and the cultivation system in use, as we detail below.

An agent z needs to be receiving some minimum utility from its cultivated cells,
in order to be fit enough to procreate (see Sec. [3.1.3). The minimum utility (minimum

level of resources) for household agent = containing j individuals is calculated as:

U;hr@s =] XT€Smin (3.4

with res;,;, being the minimum amount of resources (in kg) required by an individual
per year. The value of the res,,;, can be set based on archaeological research estimating

the average yearly food consumption per person during the era in question.

As mentioned, agents employ actions by which they may interact with the environ-
ment. We term these agent — environment actions, to distinguish them from the actions

that agents may use to interact with other agents in the environment. The currently im-
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plemented primary (agent — environment) actions include land cultivation and migration

to another location, if an agent’s current location does not fulfil the agent demands:

Action: Cultivation. An agent may cultivate the land within a specified range from
its settled location, and is able to store any surplus resources in its storage, for up to
y years. The agents are assumed to be “settled farmers” who, however, do not aim to
expand their farming territory more than what they require it to be in order to be able to
sustain themselves. This is because during that era farming activities relied mainly or
entirely on human labour, thus entailing a high cost, and ease of access to the cultivated
lands had to be taken into account [71]]. Therefore, agents in our current implementation,
decide, on a yearly basis, to cultivate only the number of cells deemed necessary in order
to sustain themselves for another year. The number of cells n that a household agent
is able to cultivate are thus calculated by dividing the minimum level of resources U
with the (maximum) harvest amount per cell, provided by the agricultural regime in use
(cf. Sectionbelow). Moreover, if U, > U;’”’es that year, then the surplus resource

amount of U, — U is kept in the agent’s storage for future use.

Action: Migration. If agent x does not receive the minimum level of resources it
requires, U/, for y years in a row (and its storage is empty), it considers migrating
to another location or settlement. At time step ¢, agent x calculates its expected utility
U for the new location at time step t+1, as the average reward of the neighbouring
cells which is defined by Equation [3.1] considering the agent moved to the respective
unused cell (i.e., a cell that does not correspond to cultivated land from any other agent).
The unused cell might lie within another established settlement; in that case, agent x
first considers the average expected utility of agents in the settlement in question. In
both occasions, if the agent’s expected utility U, for the new location is higher than its
current utility U,, the location is considered to be an option for migration. If there are
many such locations, the agent migrates to the one perceived to be the most favourable;
considering the small modeling “landscape’ area, agent’s migration radius r,,,, was set

to full environmental view with negligible resettlement cost (see Section [3.3.1)).
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Apart from the aforementioned implemented actions, yet another “agent — environ-
ment action” that is not, however, under the direct control of the agent, is that of hatch-
ing, i.e., generating offsprings. Hatching does have an impact on the agent utility (since
this is affected by the overall population, via Equation[3.1)), but the agent can only affect
its probability of generating offspring by making sure that he is accumulating enough

utility via the rest of his actions. This will become clear in Section below.

Action: Hatching. A household agent may generate an offspring with some prob-
ability (cf. Section [3.1.3). When an agent generates an offspring, a newborn individual
is added. If the new size of the household is higher than the defined maximum num-
ber of individuals per household, a new agent is created (agent offspring) by splitting
the old household in two random sizes in the same environmental cell. If, by doing
so, the maximum number of agents per cell is reached, the newly created household
(agent) is located in any adjacent cell that has fewer agents than the maximum possible.
The maximum number of agents per cell is derived by dividing the maximum number
of individuals per cell with the maximum number of individuals per household. These

parameters are user-defined and can be set using existing archaeological estimates.

3.1.3 Population dynamics

The total number of agents in the system changes over time, as individuals (inhabitants)
belonging to households are born or die. The death rate ﬂ for an individual belonging to
a household is given by a variable 74..:,, Whose value in our “case study” simulations
was set to 0.002; while the agent procreation ability (determining the annual levels of
births) is based on the amount of energy consumed by the household agent during the

year. Specifically, the birth rate is defined to be:

3 thres
Thirth * Um/Uw

“4Certainly though, when agent’s utility and storage reach to zero, an agent’s individual inevitable
“dies”, thus, is removed by the system (and organization).
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with 7,45, equal to 0.003 for our simulations, where Um is defined as follows:
U, = min{U,, U}

However, whenever U, < U/ the agent attempts to “replenish” U, by acquiring
energy by its storage (or, when the self-organization social behaviour is in use, maybe
by acquiring energy from other agents). These rates, given the specific 7geqtn and rp;-¢n
values used in our simulations, produce a population growth rate (equals to birth rate —
death rate) of 0.001 (0.1%), when households consume adequate resources (i.e., when
they acquire utility equal to U!*"** or more). This corresponds to estimated world-wide

population growth rates during the Bronze Age according to [30]E]

3.1.4 Cultivation systems

Our ABM framework can readily incorporate any ancient technologies that the agents
might have had access to, depending on the era and location being modeled. Cur-
rently, the technologies implemented correspond to two distinct Bronze Age agricultural

regimes [60, [77]]:

Intensive agriculture, where agents cultivate intensively the neighbouring land area,

leading to greater production per hectare, and

Extensive agriculture, where agents can “expand” their cultivated areas, using more

land, but producing less per hectare when compared to the intensive agricultural practice.

The output associated with intensive agriculture in our model is 1, 500kg/ha, while
the production associated with extensive agriculture is 1,000kg/ha. These values are
appropriate estimates for these two cultivation systems, given the period modeled [71].
Intuitively, the number of candidate cultivation cells (or fields) and the expected maxi-

mum energy stored for any agent in the model, depending on the agricultural regime in

3Others estimate growth rates in mainland Greece and the Aegean to be between 0.1% to 0.4% per
year, for long periods during the Neolithic Era and the Bronze Age 2| [76].
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use, is shown in Figure [3.4] assuming a grid (cell) resolution of one hectare (ha). An
example of how these two different agricultural practices are actually used by the agents
is the following: a household agent x with five individuals (; = 5), needs to accumulate
Uthres = 5 x 250 = 1,250kg of resources for the year, assuming res,,;, = 250kg
(cf. Equation. [3.4). If agent = adopts an intensive agricultural strategy (producing
Imaz = 1,500 kg/ha), it chooses one (unoccupied) nearby cell (1 x 1,500 = 1, 500kg)
from its settled location for cultivation, since that much is enough for sustaining its in-
dividuals for the current year (U?""** < 1,500). On the other hand, if agent x adopts an
extensive agricultural strategy (assuming that produces i,,., = 1, 000kg/ha), it chooses
two (unoccupied) nearby cells (2 x 1,000 = 2, 000kg) from its settled location for cul-
tivation, since one cell (ha) is not enough for sustaining its individuals for the current

year (< Uthres), thus expanding its farming land area.
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Figure 3.4: Number of cultivating cells (/eft) and maximum expected resources stored (right) for
a household agent with respect to intensive and extensive agricultural practice.

3.1.5 Relation to existing models

Our ABM was originally inspired by the work of Janssen [74], and thus shares several
basic features with that model. For example, we also model population dynamics, as a
model should do—but via an entirely different population growth function. Our agents
also correspond to households, and they use a similar decision-making process. In par-
ticular, agents in appear to be utility-based to some extent—even though the author

does not use the term “utility” explicitly, and even though interactions in his model (like
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the sharing of resources among the agents, or the exchange of resources among their
settlements) are to a large extent (if not entirely) pre-specified in the system. Apart from

these similarities, the models are distinct to all other aspects.

To begin with, individual members of household agents introduced in that model are
static, not affecting the agent or the ABM in any way. By contrast, individual household
members are present and key in our model, since (a) their number affects the estimated
agricultural production quantity (via Equation 3.1), and (b) for certain social organi-
zation models, they play a crucial role in determining how the accumulated resources
are to be distributed among the agents (c¢f. the “egalitarian” organization model de-
scribed in Section [3.2)). Second, the modeling area in [74] is not an actual landscape,
but a flat 20 x 20 grid (an arrangement which, of course, speeds up the simulations);
while agents cultivate just one cell, the one the agent is currently settling, or the one
the agent is migrating to where renewable resources can be found (after the agents have
consumed/exhausted harvested). Another notable difference between the two models, is
that ours can (and does) incorporate different cultivation systems—our agents use either

intensive or extensive farming, instead of cultivating just one cell.

Moreover, in [74] the production yield (harvest) is exactly the same for each agent
within a settlement (cell), thus potentially violating maximum resource levels of the oc-
cupied cell. Production and thus agent utility is essentially affected by resource regener-
ation rates defined, and the agents make no attempt for actual utility maximization, apart
from considering migration when resources at the current cell are exhausted. Indeed, the
main agents action appears to be migration rather than cultivation, as the reported agent
migrations number is proportional to population size, notwithstanding the fact that a
settled farmers society is being actually modeled. By contrast, agents in our model take
utility-based decisions, at every time step, regarding the appropriate number of cells to
cultivate, given the number of their individuals and the agricultural practice employed,
or by migrating to another location or settlement for farming purposes, if such an option

is deemed beneficial in terms of expected utility. In addition, in [74] the expected agri-
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cultural production is affected by estimated rainfall, reconstructed using modern-day
annual data obtained via the Palmer Drought Severity Index (PDSI). By contrast, there
is no climatic reconstruction in our model, and thus the annual resource production (cf.

Section [3.1.1)) does not depend on the accuracy of any such method.

As a final note, the viability of an “independent” and an “egalitarian-like” social or-
ganization model was examined in [[74]. Interestingly, there was no observed statistically
significant difference among them, as the author notes. Our results, by contrast, indi-
cate that there is in fact a visible difference among these social organization paradigms.
Of course, as outlined in the text, many components and component parameters in our
model are entirely different to those of [[74], and they are also instantiated on different

modeling areas and time periods, thus this discrepancy might not be surprising.

3.2 Modeling Social Organization

Agents in our ABM have also actions by which they interact with each other. These
agent — agent actions correspond to distinct social E] organization paradigms, determin-
ing the way by which distribution of resources takes place among the population. In
our work here, we examine five different social organization paradigms: independent,
sharing, egalitarian, hierarchical and self-organized; by so doing, we shed some light
on crucial aspects of the ancient societal organization, and the relation between crop
yield, resource allocation patterns, and the reproduction and legitimization of author-
ity. Specifically, our ABM can employ the following behavioural modes or resource

distribution schemes:

Independent. Agents acquire (harvest) and consume resources independently. Al-
though their is no distribution of harvest among the agents, the actions (e.g., cultivation
or migration) of the various agents have an impact to the welfare of others and the overall

welfare of the settlement (c¢f. Equations [3.1]and [3.3)).

®More accurately: socio-economic.
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Sharing. Agents distribute energy amounts (produce) within a settlement based
on reciprocity. All stored and newly harvested resources are pooled each year, and
distributed equally among the agents—that is, resources are distributed equally among
household agents in the community. This social paradigm is quite interesting, as it
effectively allows the creation of “poorer” or “wealthier” households, since agents with
fewer individuals gain a survival advantage, albeit a temporary one: they end up getting
comparatively more resources due to the distribution scheme, and can thus better sustain
themselves throughout the next year—but this is an “advantage” they will lose if their

household size increases.

Egalitarian. In this scheme, storage and harvest is pooled each year and distributed
among the agents, but now resource distribution is proportional to their household size—
i.e., it is proportional to the number of the actual individuals in each household. There-
fore, this paradigm mirrors a truly egalitarian society, and no agent gains an advantage

because of the resource distribution scheme.

Self-organized. Agents autonomously re-arrange their relations, and hence the un-
derlying “social network structure” describing these relations, without any external con-
trol. They do so in order to adapt to changes in requirements and environmental condi-
tions. In other words, they constantly re-evaluate and possibly alter their relations with
other agents. These relations determine the way resources are ultimately distributed
among the agents. In the following sub-sections, we provide a detailed description of

the internal process of this social organization paradigm.

Hierarchical (Static). Agents distribute resources based on a fixed hierarchical so-
cial structure. The agents are linked to each other via “static” social relations, which
determine the amount of produce each agent acquires via the distribution scheme. In
our model’s current implementation, the determination of the original relations, and the
actual resource distribution takes place following the same rules as those governing the

self-organized social organization paradigm (described in the subsections below).

Now, the rise of complex societies presents itself as an evolutionary advance. Com-
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plex societies have larger populations than their egalitarian predecessors, and deploy
more powerful productive forces. For example, the emergence of palaces in the Mid-
dle Minoan (MM) period marks a transition from an egalitarian to a more complex,
state-like society with a clear hierarchical structure crowned by a central, administrative
authority [19]]. There is also a belief that stratification in Minoan Crete precedes the
appearance of the palaces by several centuries [52, [14]. In our work here, we exam-
ine whether the adoption of a self-organized agent organization (settlement) will indeed
give rise to a dynamically stratified social structure which will be able to sustain itself

through time.

As mentioned in Section the work of Kota in [81] on “self-organizing agent or-
ganizations” is an example of a recent decentralized structural adaptation mechanism
originating in the multi-agent systems community. In that work, an abstract agent or-
ganization framework for depicting distributed computing systems is introduced, along
with a task environment representation model and a suitable performance evaluation
system. The organization consists of agents providing services and having computa-
tional capacities. The structure of the organization manifests the relations between the
agents, and regulates their interactions. Crucially, the proposed self-organization (struc-
tural adaptation) process is applied individually and locally by all the agents, in order to

improve the organization’s performance.

Our self-organization model here is inspired by the work of Kota. However, we
modify that model in several important ways, as described in detail in Section
below. In effect, and in distinction to Kota’s approach, the self-organization technique
presented here is one that results to the continuous targeted redistribution of wealth (i.e.,
energy resources), so that resources flow from the more wealthy agents to those more
in need within the organization, maintaining a dynamically “stratified” social structure.

This will become clear in the subsections below.
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3.2.1 Relations and interactions

Agents may improve their performance as a “group” (vitality of the settlement) by mod-
ifying the social structure through changes to their relations (re-organization) contin-
uously over time. They need to interact with one another for the proper allocation of
resources. We assume that a shortage in resource where U""* — U, > 0, gives rise to
a task for agent z: the agent needs to accumulate produce equal to the perceived deficit
(task’s resource amount). Agents perform three types of self-organization actions: (1)

execution, (i) allocation, and (iii) adaptation.

As mentioned, fask execution involves the accumulation of produce to cover a per-
ceived deficit. An agent x may execute a task (by consuming energy from its storage),
or re-allocate the task (if its storage = 0) to another capable agent y; and executes it
otherwise. Task execution then means that agent y delivers to  some resource by taking
that amount out of its own storage. If agent y is only able to replenish a portion of the
requested produce allocation task, this is considered a subtask execution. Note that ca-
pable agents in our model (i.e., those with storage > 0) related to agent x, always accept
produce allocation or execution tasks. This is due to an assumption of high degree of
cooperation (sharing) among households for the area and era under study (specifically,
in Greece before the Middle Bronze Age [62]]). Thereafter, agents reorganize and adapt
their relations, maintaining a dynamic stratified social structure. We elaborate on the

adaptation process in the next subsection.

Interactions between agents are therefore regulated by the settlement’s social struc-
ture. Relations among agents are classified into three types (i) acquaintance (aware of
the presence, but having no interaction), (i1) peer (low frequency of interaction); and
(ii1) authority (a superior — subordinate relation, where agents have a higher frequency
of interaction). The authority relation depicts “superior status” of an agent over the
subordinate agent in the context of their social organization, i.e. higher produce trans-
fer amounts are possible than the subordinate agent. The peer relation will be present

between agents who are considered more-or-less equal in status (i.e., energy transfer
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amounts) with respect to each other and is useful to expand vertically the assumed strat-
ified social graph. When no relation exists among two agents, they are considered to be
strangers to each other (belong to another organization or settlement). Note that when
the hierarchical social organization paradigm is in use, the same relation types exist, but

they are “static”—that is, they do not change over time.

Whenever either the hierarchical and self-organized social organization model is
in use, agents are able to create relations with other agents within a community based
on the following process: (i) when an agent migrates to another settlement creates an
authority relation as a “subordinate” to the “superiors” of the settlement, and a ac-
quaintance relation with the rest (however, when the hierarchical social behaviour is
employed, due to the agents relations being “static”’, a peer relation is formed with
non-superior agents rather an acquaintance relation); and (ii) when an agent creates an
“offspring” within the settlement , the new agent creates an authority relation in which
he takes up the role of a “subordinate” to its “superior’” parent agent, a peer relation with

all its parent “subordinate” agents, and an acquaintance relation with the rest.

Moreover, the relations are mutual between the agents; that is, an existing rela-
tion between any two agents is respected by both. Therefore, during the social re-
organization (adaptation) process we describe below, both concerned agents will have

to agree on changing their relation.

3.2.2 Task execution and allocation, and social re-organization

Mirroring the work of Kota [81, [82]], our self-organization algorithm has two main
stages: the task execution and re-allocation mechanism, by which agents deliberate on
how they can allocate produce (energy resources) to other agents to cover their needﬂ

based on their relations; and the re-organization (decentralized structural adaptation)

"We note that the notion of “lineages” for agent organization evolution has been implicitly introduced
in the way agents in need are given priority for asking for help. Specifically, the “older” an agent (in need)
is within the community, the higher in the energy distribution priority queue is placed. This is a social
norm mirroring an indirect “kinship” or “tradition” system, in use within the artificial families.
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one, used by the agents for re-evaluating and potentially altering their relations at every
time step. Let us start by describing the task execution and task allocation stage. The

steps of this mechanism are as follows:

(i) When agent = needs to execute a task, i.e., when U;h”s — U, > 0, it will allocate

the task (or subtask) to self if possible (storage > 0).

(1) Otherwise, agent x will try to allocate the task to one of its capable superiors,
choosing among such superiors randomly. The intuition here is that agents in need

will be asking for help based on the related agent’s status within the community.

(ii1) If neither agent x nor its superiors are capable of executing the task, then x tries to

reallocate it (the whole task or the remaining subtask) to one of its peers.

(iv) If none of its peers is capable of executing the task either, agent x will try to
allocate it to one of its subordinates, who must in turn find other superiors or peers

to allocate the task to.

(v) On the occasions when agent x does not have any superiors, and neither peers
nor subordinates are capable of the task, it checks among its acquaintances for a

capable agent, and tries to form a subordinate relation with an acquaintance agent.

In every assignment of a task to a capable agent, execution (offering of stored en-
ergy amount) takes place, and the storage and utility values of the corresponding agents
are updated. An agent assigns tasks initially to its superiors. In this way, agents with
U = U™ and storage > 0 shall always be on the top of the settlement structure
(elite / authority), and will help support subordinate (poorer) agents (i.e., agents with
U < U™ and storage = 0). Therefore, an agent in need mostly assigns tasks to its
superiors and seldom to its peers or subordinates. Thus, the structure of a settlement
organization influences resource exchanges among the agents, and these exchanges in
turn lead to the formation of a dynamic “stratified” social structure—through the social

re-organization process we describe next.
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To begin, every produce allocation task to a capable agent, i.e., every task execution
action, has an associated load; this load intuitively represents the amount of resources
expected to be returned in the future by the community. The total load [, ;,; added onto
agent x by all other agents within the organization, is the sum of its resources that were

given out to others in that time step:

logor= Y Tes (3.5)

teTy

where res; is the resource amount expended by agent x for executing task ¢, and 7', is the
set of the total tasks executed by x in that time step within the settlement organization. In
what follows, we denote by [, ,, the load added onto agent x solely by assignments from

y. Loads on the various agents are assumed to be known to everyone in the community.

Agents use the information about all their past and current year allocations to re-
evaluate their relations with their subordinates, superiors, peers and acquaintances. This
evaluation is performed during the reorganization stage, and is based on the overall load
between a pair of agents, in case the relation had been different than the current one.
An authority relation means that there is a relative difference in the amount of load
per assigned tasks between them; a superior agent has more tasks assigned, while the
subordinate agent (in need) has less. A peer relation instead implies a relatively equal

amount of load per agent.

It is, therefore, easy to draw a connection between an agent’s load and its perceived
social status. An agent that is able to serve tasks with a high load value, that is, has
enough stored resources to help others in need, should clearly be ranked higher in the
social hierarchy. Intuitively, a high load difference between two agents indicate a differ-

ence in social status.

To sum up, the relation between every pair of agents x and y has to be in one of the
following relation states: acquaintance, peer and authority. For each of these states, the

possible re-organization actions available to an agent y are as follows:
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1. when agent y is an acquaintance of agent x:

(i) form_peer, ,, denoting the formation of a peer relation between the agents,

x7y’

(i) form_auth, ,, denoting the formation of an authority relation, where y is

x’y ’

subordinate of x; and

(iii) no_action.

2. when agent y is a subordinate of agent x:
(i) rmv_auth, ,, denoting the removal of their authority relation and the formation
of an acquaintance relation,

(ii) rmv_authy, , + form_peer, ,, denoting the removal of their authority relation

1’7y’
and the formation of a peer relation between the agents; and

(ii1) no_action.

3. when agent y is a peer of agent x:

(i) rmv_peer, ,, denoting the removal of their peer relation and the formation of

x?y ?
an acquaintance relation,

(ii) rmv_peer, , + form_auth, ,, denoting the removal of their peer relation and

x?y’
the formation of an authority relation between them, where y is subordinate of x;
and

(iii) no_action.

4. when agent y is a superior of agent x:
(i) rmv_auth,, ,, denoting the removal of their authority relation and the formation
of an acquaintance relation,

(ii) rmv_auth,, , + form_peer, ,, denoting the removal of their authority relation

x?y’

and the formation of a peer relation between the agents; and

(i11) no_action.

The above re-organization actions are either “atomic”, e.g., form_auth, , or “compos-
ite”, involving the removal of a relation and its replacement by another, e.g., rmuv_auth,, ,

+form_peer, . Composite actions are necessary as a pair of agents cannot have more
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than one relation (state) with each other. The choice of a re-organization action is
utility-based: actions are selected by the agents according to their utility—that is, the re-
organization action with the higher utility value is executed. The utility of re-organization
action a that modifies the relation between agents x and y at a given state, is evaluated

by agent y via the use of an action evaluation function V' with the general form:

V(a,z,y) = £rdLoad(x,y)+L (3.6)

where rdLoad, , is the relative difference between the load on = and y; and L is an ade-
quate limit ratio (%) for this difference to be evaluated in order to estimate the expected
utility for changing an existing relation. Intuitively, combined with L, the relative differ-
ence is used as a quantitative indicator of quality assurance and control, for the repeated
evaluation of agent relations over time. The effects of the re-organization actions are

deterministic, and result to state transitions, depicted in Figure

m no_action

- form_peer X y
(\no_actlon / acquaintance

rem_peer relation
. -+ .
X
peer relation rem_auth form_auth
rem_peer +
form_auth
rem_auth +
form_peer X. o
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— = reorganization action U
_ - authority (superior - subordinate) no_action

<1--= peer
- - acquaintance

Figure 3.5: Relations state transition.
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Table 3.1l lists the evaluation functions for the five atomic actions. In the case of
the composite actions, the value is simply the sum of the individual evaluations of the
comprising actions. As already mentioned, from all the possible re-organization actions
available to agent y, the one chosen for execution is that with the higher utility value.
We note that the re-organization action evaluation functions we use here are entirely

distinct to those used in the work of Kota [81]].

Action Action Evaluation Function Used
a= form_auth,, | V(a) = (lsot — lyot)/ max{z tot, lytor} — L

a=rmuv_auth,, | V(a)=—(ly,— 1)/ max{l, . 1, .} + L
a= formpeer,, | V(a) = |l ot — lytot]/ max{ s tot; ly ot} + L
a=rmv_peer,, | V(a)=|loy —l,.|/ max{lyy,ly.} — L

a = no_action V(a)=0

Table 3.1: Atomic reorganization actions, and their action evaluation functions.

To elaborate further on how the action evaluation functions work, let us consider
the following examples of their use, assuming L = 60%. Agents = and y may form an
authority relation as long as their relative “total” load difference is > 60%, thus allowing
a positive output value V' > 0 for re-organization action f orm,authw. That is, 1, 4ot
is much larger than [, ;,;. They may form a peer relation (action form_peer, ,) when
their relative “total” load difference is < 60%—i.e., they are of an approximately equal
social status as [, 1o+ is approximately equal to [, +,:, thus allowing a small output value be
subtracted from L. In a similar manner, agents x and y may dissolve an authority relation
as long as their relative current load difference for re-organization action rmuv_auth, ,
allows an output value V' > O0—i.e. [, , is approximately equal to [, , or [, , is greater
to I, and thus there is no reason to believe that agent x is superior to y. Finally, the
agents may dissolve a peer relation (action rmuv_peer, , ) when their relative current load

difference is > 60%, i.e., l,, is larger than [, ,, allowing an output value V' > 0. We

Y,z
need to note here that no_action has a default output value V' = 0, thus, a positive output

value V' > 0 is necessary for an action to be executed.

Notice that the numerator of the relative load difference, between agents that are
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about to form an authority relation (superior — subordinate), does not have an abso-
lute value, as their relation expresses inequality, unlike a peer relation which expresses
equality. Moreover, when agents are considering the formation of another relation, the
total [, ;,+ and [, ;,; loads are used in the calculation, while the pair’s [, , and [, , loads
are used, when agent = considers dissolving a relation with agent y. Intuitively, this is
because dissolving an existing relation is entirely up to the pair of agents that joined the
relation in question. On the other hand, when two agents consider establishing a rela-
tion, the aggregated load from all other agents they are related to within the settlement
has to be taken into account, since such a matter involves the “status” of both agents

within the organization—which is associated with the overall to-date load of the agents.

Notice also that, in reality, both agents x and y would agree on their deliberation on
V' for any action; for instance, they would agree on the value of action form_auth,
i.e., on the utility of agent x being superior to agent y, as they would agree on their eval-
uation for f orm,authw. However, these values need not be calculated twice. Instead,
to avoid redundancy, we ensure that agent y is the one calculating form_auth, , (and,

similarly, rmv_auth, ,, form_peer, ,, and rmv_peer, ), while agent x is the one eval-

x)y’

uating f orm,authw (and, similarly, rmv_auth,, ., form_peer, ., and rmv,peerw).

Y,

Now, given the central role of the limit ratio L used in the social re-organization
decisions above, this model parameter can be actually better understood as being asso-
ciated with a key social organization-related concept. Specifically, it can be easily linked
to a “social barrier” that agents need to overcome in order to achieve social mobility:
the value of any potential changes in social relations, is clearly linked to overcoming
such a barrier (cf. Table . Thus, the value of L represents the “height” of such a
“social barrier”. To put it otherwise, L can be viewed as a metric of the power distance
characterizing a given society. According to [1], the power distance concept represents
the extent to which the less powerful members of a society expect and accept that power
and rights are distributed “unequally”, i.e., the extent to which stratification exists within

a given social group.
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The aforementioned re-organization process is continuous and employable by any
agent on every time step. Moreover, it is key to sustaining the settlement and improving

its viability, as also verified in our simulationsﬂ

3.2.3 Self-organization algorithm modifications

The main modiﬁcation{;] with respect to the self-organization algorithm in [81] are the
following: First, during decision making, an agent assigns tasks initially to its superiors
rather than its subordinates. This is because superiors correspond to the emerging elite
which possesses surplus resources that it could potentially distribute to the poorer strata.
Second, we use a simple, distinct reorganization actions evaluation function V. Our
self-organization method aims to facilitate a targeted redistribution of wealth. Given
this, V' employs the notion of a relative load difference among agents (this is not done
in [81,82]]). Finally, the load associated with a task here is equal only to the resources
amount offered. In particular, there is no “reorganization” load when agents reason
about changing a single relation with all the agents in the settlement, neither a “man-
agement” load. In addition, agents in our model do not have “limited computational
capacities”, neither “communication costs”. This is natural, since agents forge relations

only with neighbours within their settlement organization.

3.3 A Case Study: Simulating the Minoan Society

In this section, we describe the employment of our ABM described above for the sim-
ulation of household agents, residing at the Malia area at the eastern part of the island
of Crete, during the Bronze Age. The exact modeling area is depicted in Figure [3.6] It

includes the Malia-Sissi-Mochos area, and also the Lassithi Plateau (near its center).

8We note that dissolving “improper” existing relations, improves the efficiency of the agents’ decision-
making process, since there are fewer relations to consider when allocating tasks.

There are other minor differences with the work of Kota [81] [82]. For instance, in our model we
replace the notion of the number of time steps that an agent has waiting tasks, with that of an agent having
U < U e (and storage = 0). We do not list these minor differences here.
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Figure 3.6: Modeling environment of the wider area of Malia, Sissi and the Lassithi Plateau,
including known archaeological sites and aquifer locations.

As mentioned in Section [2.5] it is conceivable that interactions between different
socio-political entities are of a particular importance in the emergence of complexity
within a society, while some archaeologists argue that a strongly stratified society can
be assumed to have existed well before the end of the Neolithic period. Although any
such specific hypothesis can of course be the subject of modeling, our main concern
here is to keep our model as generic as possible, in order to obtain clues about the un-
derlying organization of the society and its evolution. In the simulations below, the
simulated time interval (of 2,000 years) spans essentially the entire Minoan period (ca.
3,100-1,100 BCE). Therefore, we are interested in exploring societal organization from
the Early Minoan (EM) period, for which no clear evidence of social stratification ex-
ists [59]], up to the Middle Minoan (MM) and Late Minoan (LM) periods, during which

several localities on the island developed into centers of commerce and handwork, such
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as the Minoan Palacesm Thus, at this stage, we try to explore the social organization
in the micro-level of the artificial society, i.e. the organization evolution through inter-
actions of “household” agents, about which little or no evidence can be obtained, rather

than interactions between “‘settlement” agents in the macro-level.

Now, an ABM applied in social sciences and in particular in archaeological research,
cannot be easily validated via simulation results—especially in situations where little or
no evidence is available (e.g., the social organization of Late Neolithic or Early Bronze
Age societies). Simply put, it is impossible to compare the model input-output transfor-
mations to the corresponding ones of “a real system”, since only assumptions and theo-
ries actually exist. Thus, one should always be very careful with parameter initialisation,
so that these are based on archaeological research respectful to cultural and material ev-
idence. Moreover, special attention should be taken so that parameter calibration does
not bias the results towards confirming a pre-adopted theory or hypothesis. Given the
above, and based on archaeological evidence on the Minoan society, our ABM simula-
tion scenarios and results, that are able to sustain a high number of household agents
and settlement sizes during the MM - LM period rather than the EM period, are also
able to provide proper insights and suggestions on the social dynamics that might have

occurred, during the area and era under study.

Nevertheless, the validation of the structural assumptions of the model itself is an
easier (and almost straightforward) task. For example, we have already seen (cf. Fig-
ure[3.4) that employing extensive instead of intensive agriculture leads to lower amounts
of resources in storage, regardless of the social organization paradigm used. Thus, one
would expect the simulation results to confirm that employing an extensive agricultural
technology will lead to lower crop yield for the agents, compared to that of the intensive
agricultural regime. We now proceed to describe the parameter choices made for our

case study.

10 Archaeologists’ minimal definition of the Minoan palaces describes them as regional centers or set-
tlements that mobilized resources through secondary rural centers i.e. redistribution centers or perhaps
exchange markets [105, 161} [11].
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3.3.1 Model instantiation

Model parameters were initialized to values set so that they correspond to estimates

found in archaeological studies relevant to the period of concern, as follows:

Number of agents: The number of agents in a given settlement is initialized to a ran-
dom number between 1 and 10. This choice originates to the fact that the estimated
population per cell (ha) in an agricultural settlement during the modeled era was from
100 up to 300 [71]. The user-defined variable of maximum number of individuals per
cell was set to 100; thus, the maximum number of agents per settlement’s cell is IOE]

i.e., 100 divided by the maximum number of inhabitants per household (default: 10).

Settlement size: A settlement initially occupies one cell. The number of cells that a
settlement occupies is the smallest integer greater than or equal to its current population
size divided by the maximum number of individuals per cell. Thus, a settlement extends
to a number of cells proportional to that of its agents. Note that the settlement area is

not the same as the farming area corresponding to the settlement (cf. Section [3.1.4).

Resource amount stored and level of resources: The agent can store some resource
amount for a (user defined) number of yrs years. This yrs also corresponds to a set-
tlement period at a specific location after which the agent might consider migration to
another location (if during this period U, is constantly less than U!*"**). In our experi-
ments here we use yrs = 5. The figure of 250kg was also used as the minimum amount
of resources required per individual per year (res,;,), based on [71]. The amount of
resources is defined as the agricultural production R; of an environmental cell ¢ (cf.
Equation [3.1)); however, a cell’s initial resources amount at a given run is multiplied

with a sample from a standard normal distribution, and thus varies across runs.
Agent locations: Household and settlement locations are (pseudo) randomly initialized.

Number of settlements per scenario: This parameter is user-defined. Its default value

""The NetLogo programming environment can support thousands of agents, though RAM limitations
are inherent in the underlying Java VM and/or operating system.
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was set, somewhat arbitrarily, to 2, since so many are known to exist in the archaeolog-

ical record for the area in the beginning of the EM period

Agents migration radius: This is the distance agents can migrate to in one time step.
It is also user-defined. In our simulation experiments here we set it to 25km (i.e., the
entire modeling area), roughly the distance covered when traveling on foot within a
day [12]. Thus, the resettling cost rc for an agent was considered negligible—there is

no requirement for extra time for rest, stops, overnight stays, etc.ﬁ

Agents agricultural practice: As mentioned in Section [3.1.4] intensive agriculture

produces 1, 500kg/ha, while extensive farming leads to a production of 1, 000kg/ha [71].

Social organization paradigms: An agent can make decisions based on one of the
following social organization paradigms: independent, sharing, egalitarian, hierarchical,

and self-organized; for the later, the ratio limit L is user-defined (default: 60%).

3.4 Simulation Scenarios and Results

Various scenarios were taken into account for the experimental setup, with different pa-
rameterisation for: 5 different behavioural modes (i.e., the social organization paradigms
used); 2 different agricultural regimes; and, since spring locations in current days still
bear some relationship to the location of springs during the Minoan times, the proximity
of a new location to an aquifer (spring, river or coast) was also taken into account in
certain simulations [48]. When this is the case, the initial production p of a cell receives
a penalty up to a percent of its value, with cells located outside a 1,250m radius from the
aquifer receiving a 100% initial production penalty. The exact penalty value for cells
within the aforementioned radius, is provided by performing a density analysis of those

locations, a spatial analysis tool that can calculate the density of input features (springs,

12Known archaeological sites information was provided by the GeoSat ReSeArch laboratory, available
from the “Digital Crete” project.
3The resettling cost rc is defined and presented in Chapter@ which was considered in the simulations.
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rivers, sea/coastline) within a radius around each environmental cell. By calculating
density, in a sense one spreads out the input values over a surface. The magnitude at
each aquifer location is distributed throughout the modeled area, and a density value is
calculated for each cell in the environmentE] As already mentioned, at the beginning of
each scenario resources are spread randomly over the land, but with resource amounts

at a particular cell depending on its slope (as discussed in Section [3.1.1J).

Each scenario was simulated for 30 runs, generating a total of 30 x 5 (behavioural
modes) x2 (agricultural practices) x2 (settling near an aquifer requirement or not) =
600 simulation runs. In addition, we experimented further with the “self-organization”
social behaviour, testing 4 different values (10%, 40%, 60% and 90%) of the ratio limit
L for each cultivation system considered, and for 30 simulation runs each, under the
assumption that residing next to an aquifer is a requirement. We run many more simula-
tions for validation and sensitivity analysis purposes of the model that will be discussed
later on. Simulation results were averaged for each time step. In terms of time, the
process can be quite expensive, since a single run (composed of 2,000 yearly time steps)
takes approximately 90 minutes on a single-core 2.6GHz computer. However, by em-
ploying additional computational power, the simulation process can be sped up signifi-
cantly; we utilized the Grid Computer of TUC and by allocating a dedicated dual-core

node of to a run, all 600 runs mentioned above were completed in less than a day.

All output data processing and statistical analysis tasks were performed with the
Model Exploration Module (MEME) of MASS Results visualization (curve and bar
diagrams or histograms) was done in MATLAB’s (R2014b) environment. Moreover,
the random number generators introduced in parts of the model are obviously “pseudo-
random”. Thus, via using the same random “seeds”, one may introduce the same oppor-
tunities for agents in the model simulations—i.e., same “random’ initial agent locations

of the various runs for each different scenario. In this way, our simulations can be

“Density value is computed using Kernel Density Estimation, based on the quartic kernel func-
tion [[119]].
IShttp://mass.aitia.ai/intro/meme
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reproducible by any interested party. In addition, as a post-processing step for better
visualization and reporting purposes, the Savitzky—Golay filter [115] was applied for
smoothing only the curves of simulated data resultsE‘] The filter increases the precision
of the data without distorting their tendency, by fitting successive sub-sets of adjacent

data points with a low-degree polynomial with the method of linear least squares.

We now proceed to discuss our findings with respect to agents social organization
behaviour and the agricultural schemes examined, and try to assess their impact on pop-

ulation sustainability, settlement numbers and sizes for the various scenarios in account.

3.4.1 Civilization sustainability

We begin with presenting our simulation results regarding the effect of the different
social organization paradigms on the agent population as shown in Figure for both
agricultural practices. There was no requirement for settling near an aquifer for these
simulations—i.e., there was no penalty for not settling near an aquifer location. Given
the low population growth rates of the period, and the fact that the geomorphological
characteristics of the area make resources scarce and energy production poor, it is clear
that the population viability and growth observed in the simulations depends solely on

the social organization paradigm in effect, and the agricultural regime used.

Simulation results of Figureindicate that, during the end of the simulation (MM -
LM period), population sizes in societies adopting the self-organization paradigm thrive,
certainly under the intensive agricultural practice. Since self-organization results to a
dynamic hierarchy governing the agents’ relations, this result appears to support the case
for archaeological theories assuming the existence of a “hierarchy-based” economy and
a “stratified” social model; and the belief that stratification in Minoan Crete precedes

the development of centers for higher-order regulation by several centuries [52} 14]].

Error bars corresponding to 95% confidence intervals regarding agent population

16We used MATLAB’s sgolayfilt function with a 3" order polynomial and a frame length of 30 time
steps for all simulation averaged data results.
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Figure 3.7: Agents population (number of households) over 2,000 yearly time steps, wrt. inten-
sive and extensive agricultural practice, without a requirement for settling near an aquifer. Error
bars indicate 95% confidence intervals.

averages are also shown in that figure. In addition, we report that, for essentially any
given simulation run corresponding to a specific pseudo-random seed, at each of which
agents are operating in the same environment with the same opportunities, the ranking
of the various social organization paradigms observed in Figure |3.7|is maintained. That
is, at almost every specific run, the self-organization social paradigm is better than the

other social paradigms, egalitarian ranks second, and so on.

Figure shows that the number of settlements increases over time in proportion to
agent population sizes; and that the number of agents per settlement seems to be higher
when the self-organization social behaviour is adopted, as shown in Figure Dis-
tribution of energy resources based on self-organization of agent relations, gives rise
to dynamically emerging “stratified” social organization, and appears to be better in
sustaining higher population sizes per settlement, especially when the extensive agri-
cultural strategy (leading to less expected production) is employed. By contrast, when
agents adopt the “egalitarian” social organization paradigm, the emerging development

of many “small-size” settlements seems to be the way for survival over time. This fact is

7We do not show error bars for Figure and Figures and (depicting settlements and
agents/settlements). This is to avoid overloading these figures, and because of the apparent overlaps.
We can report however that the standard error observed in those results is at most 1.
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Figure 3.8: (a) Number of settlements and (b) agents per settlement—over 2,000 (yearly) time
steps wrt. intensive and extensive agricultural practice, without a requirement for settling near

an aquifer.

in contrast to archaeological evidence for larger settlements (towns and palaces) eventu-
ally coming to existence during the MM - LM period (ca. 2,000 - 1,100 BCE) [126]@
Thus, though the simulation results of Figure [3.7] seem to not deny the possibility of
viability for an egalitarian societal model, it is highly unlikely that such a model would
have been able to sustain itself for 2,000 years, given its observed “requirement” for

being developed primarily within small settlements.

8During the EM period (ca. 3,100 - 2,000 BCE), however, reviews of archaeological evidence for
the Pre-palatial society visualize a “wholy undifferentiated” landscape, comprising very ‘“‘small-scale
autonomous local units” of a “small-scale intensive farming model”, with no convincing evidence for
“wealthy elites” [S9]]. This society later gave its place to the Minoan Palaces of the MM - LM periods.
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The independent and the sharing social behaviours also achieve numbers of agents
per settlement that are equally high to those achieved by the self-organization one. The
fact, however, is rendered meaningless, since they exhibit much lower numbers of agents
and settlements, and they are not able to follow the population growth estimated for that
period (see Section @) Indeed, this is confirmed in our results of Table @, consid-
ering an average initial population size of Ny = 50 inhabitants over 30 simulation runs

for any given scenario, and a steady growth rate of r = 0.1%. [f]

Aquifer requirement False True

Agricultural practice  Intensive  Extensive  Intensive  Extensive
Independent 238 (64%) 208 (57%) 183 (50%) 139 (39%)
Sharing 173 (48%) 111 (32%) 120 (34%) 75 (23%)
Egalitarian 262 (71%) 252 (68%) 220 (60%) 176 (49%)
Self-organized 278 (715%) 243 (66%) 233 (63%) 172 (48%)

Table 3.2: Individuals population size (and corresponding achieved percentage of estimated ex-
pected population size at the end of the modeled period) per social organization model, wrt. the
cultivation system employed and the requirement for settling near an aquifer being false or true.

As a final note, the overall agent population is growing much larger when the in-
tensive agricultural practice is used rather than the extensive one; this is expected, since

resources harvested each year by agents utilizing extensive farming are generally lower

in quantity (cf. Figure[3.4).

9The steady population growth rate r is achieved assuming agents are consuming adequate resources
(cf. Section [3.1.3). In that case, the expected population size IV after ¢ (yearly) time steps is given by the
equation N = Ny - (1 + r)? (where Ny is the initial population).
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3.4.2 The Importance of aquifers

Landscapes near aquifers are particularly valuable to archaeology, because these en-
vironments were frequently the focus of human occupation and crucial to the rise of
irrigation, agriculture and urban civilisation [107]. In fact, archaeologists consider it
very unlikely that human settlements in the Minoan times were established far from
aquifers [3), 48]. To this end, agents in our model might need to consider the proximity
of an aquifer, when settling to a new location. From this point onwards, all our simu-
lation results will involve scenarios where agents are required to settle near an aquifer,

unless stated otherwise.

Simulation results of Figure [3.9] are entirely similar to the results obtained in Fig-
ures[3.7/and[3.8] thereby corroborating the conclusions drawn above. There is, of course,
one difference. As described earlier, when an agent is required to settle near an aquifer
location, there is a penalty value introduced in the expected production for cells distant
from aquifer locations. Thus, there are limited choices for cells to settle in. Therefore,
it is expected that regardless of the social organization model adopted or agricultural
strategy employed, agents and settlements numbers will drop in this scenario. Results

in Figure 3.9 confirm this intuition.

We also report our findings regarding the agent utility in this scenario (Figure[3.10R).
Although it is slightly decreasing over time@ it is sustained in approximately stable
and equal levels for both the self-organized and egalitarian social behaviours, while it
is considerably lower for the “independent” and “sharing” one—hence explaining the

lower agent population and settlement organization sizes in Figure [3.9]

Moreover, the produce stored by the agents in order to distribute and/or use when
necessity arises, seems to be considerably higher for the self-organized rather than the
egalitarian social organization paradigm for both agricultural strategies employed by the

agents, as presented in Figure [3.10p. Higher storage values that are seen when agents

20This is not unexpected, since, as the individuals’ population increases, overexploitation leads to a
slow production decrease (¢f. Equation[3.1)), and thus to a decay in utility.
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Figure 3.9: Number of (a) agents, (b) settlements, and (c) agents per settlement—over 2,000
(yearly) time steps wrt. intensive and extensive agricultural strategy with a requirement for
settling near an aquifer. Error bars indicate 95% confidence intervals.
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Figure 3.10: (a) Utility and (b) storage values of agents over 2,000 (yearly) time steps wrt.
intensive and extensive agricultural strategy with a requirement for settling near an aquifer.

employ an “independent” social organization are due to their essentially “selfish”, non-
distributive behaviour. Even when the “sharing” social organization paradigm is in use,
higher storage values observed are due to unexploited resources stored by “wealthier”

agents exploiting their limited household sizes.

We close this section by noting that, regardless of aquifer proximity or agricultural
strategy employed, settlements are concentrated near known (depicted) archaeological
sites at the coastal Malia regions, or at the Lassithi plateau (black coloured region in the
middle of the modeling area) presented in Figure [3.11] This is a phenomenon imposed

by the modeling area’s geomorphological characteristics (see Equation [3.1).
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Figure 3.11: Settlement locations proportional to agent population size after 2,000 years; (a)
with and (b) without a requirement for settling near an aquifer, employing a self-organization
behaviour.

3.4.3 Self-organization: validation and insights

We now focus more on the self-organization social organization paradigm. The egal-
itarian and sharing social behaviours, do not actually add any real complexity in the
system’s working process, since agents are essentially offered the same opportunities to
survive. The re-organization of the agents’ relations on the other hand, based on their
past and current experience on the relative difference of exchanged energy and, hence,

their ““social status”, generates a complexity that needs to be appropriately validated.

As such, it is only appropriate that the behaviour of the self-organization paradigm
needs to be studied and validated with respect to the “power distance” concept, which
is central to the essence of stratified societies. In our model, the parameter that is best
associated with the power distance concept is the limit ratio L employed in the re-
organization actions’ evaluation process (c¢f. Section [3.2.2] above). Therefore, in this
section we will try to explore the agents organization’s response to different degrees of

power distance imposed upon the society.

Intuitively, we expect more peer relations to be formed among agents in the orga-
nization, as the power distance grows between superior and subordinate agents in an

authority relation, expanding the (social) organization’s “stratified” structure both hori-
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zontally and vertically. This is due to utility maximization considerations in the individ-
ual and organizational level, and due to the produce redistribution process. Simulation
results show exactly this phenomenon, as we increase the society’s power distance (the

L action evaluation parameter).

Specifically, relation changes to a peer relation within an organization increase pro-
portionally to the power distance rate considered, as shown in Figure [3.12p. When
agents distribute produce with respect to their (type) relations, higher power distance
rates seem to promote the development of additional peer relations among agents, ex-
panding agents in the emerging hierarchy ‘“horizontally”, rather than “vertically” (as

observed for lower power distance rates), a phenomenon that is intuitively correct.
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corresponding overall load of exchanges (which is linked to social status), increase pro-

portionally to the power distance, as presented in Figure [3.13]

Now, although the agents may “expand” their cultivation areas under the extensive
agricultural strategy, they actually “gain” less energy amount harvested and stored (see
Figure [3.4). Thus, the agents are “forced” to reorganize and change their relations
among them even more frequently than under the intensive agricultural regime, in order
to stabilise their produce exchange network, and promote viability both in the individual

and the organizational level (cf. Figure [3.12).

Overall, the range of power distance in the artificial society, appears to have an
impact on an the number of agents’ relation changes, the type of relations the agents
create, and the volume of resources agents exchange with others. We note, however,
that there is a remarkably low average number of relation changes over time—i.e., less

than 3, as seen in Figure [3.12]

By contrast, the range of power distance seems to have a minor impact on the overall
welfare of the agents. As seen in Figure|3.14, agent utility remains almost invariable to
lower or higher power distance among agent relations. Similarly, the produce stored by
the agents (Figure [3.14p), as well as the agents population size, shown in Figure [3.14b,

do not appear to be influenced by the underlying societal power distance.

Further observations

Certainly, from the social sciences perspective, and in particular that of archaeology,
there can be several (subjective) explanations or interpretations arising from any given
simulations result. For example, our simulation results on population growth for the
period under examination, show that both the “egalitarian” and “self-organized” social
models are able to follow the underlying growth rate values (cf. Table [3.2] However,
while the number of agent organizations (settlements) grows with an approximately

equal rate for both the egalitarian and self-organized social organization paradigms, the
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Figure 3.13: (a) Load and () number of peer agents for various power distance rates over 2,000
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Power distance (a) Power distance (b)
—10% 7 —10%
40% 40%
—60% 600 0%
— 0, J— 0,
90% —Storage g 50 90%
2K k=
] 3 40
£ 2
@
%
£ —Utility =30
8 1K . o 20
g &
10
0 500 1000 1500 2000 0 500 1000 1500 2000
time steps time steps

Figure 3.14: (a) Agents utility, storage and (b) population size for various power distance rates
over 2,000 (yearly) time steps wrt. an extensive agricultural practice.
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number of household agents per settlement does not. This is in line with social, and es-
pecially, archaeological theories presuming that complex communities have larger pop-

ulation sizes than their egalitarian predecessors [107]].

In addition, considering that the Minoan Palaces and larger towns are unlikely to
have arisen under an egalitarian social organization of small-size settlements (see Fig-
ure [3.8] and Figure 3.9¢), one could infer that a distributive social organization model
which gave rise to a dynamic social hierarchy, such as the self-organized one studied
here, is more probable to have existed for the 2,000 year period under study. Further-
more, the resource energy stored by the agents in order to distribute and/or use when
necessity comes, seems to be considerably higher for the self-organized rather than for

the egalitarian social organization paradigm in both agricultural practices employed by
the agents (cf. Figure[3.10p).
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ample, a “genuinely superior” agent is one that has subordinate agents only, a “genuinely
subordinate” agent is the one that has only superior agents, and a “genuine peer” agent
is the one that has only peer relations with other agents.) That is, the society is divided
among superiors and subordinates. This is obvious in Figure [3.15 where “genuine”
peer agent types do not exist. Rather, forming a peer relation seems to be the intermedi-

ate step in a social status redistribution process within the settlement.

Thus, with self-organization determining the social relations network, a heterarchi-
cal social structure actually emerges, rather than a clear hierarchical structure evident
in later periods. A heterarchy is a system of organization where its elements are “un-
ranked” (non-hierarchical) or where they possess the potential to be ranked by a number
of different ways [32], e.g., in our case, by the exchanged /oad among agents through-
out the organization’s lifetime. Socially, a heterarchy distributes privilege and decision-
making among the agents, while a hierarchy assigns more power and privilege to the
members higher in the structure. In a heterarchical organization, domination and subor-
dinate relations can be reversed, and privileges or status can be “redistributed” in each

time step, following the needs of the organization.

3.4.4 Self-organization vs static hierarchical structures

As archaeologists assume a hierarchical social structure in later periods of the Cretan
civilisation [19,52], we now focus on a direct comparison of a social organization with
“static” hierarchical relations among agents and a ‘“heterarchical” social structure dy-

namically emerging through the underlying self-organization behaviour.

Agent and settlement population sizes are presented in Figure Although the
growth rate and final population numbers are in general similar, we observe a great
advantage for the self-organization behaviour with respect to population growth, when
settling near an aquifer is not a required behaviour, and an intensive agricultural practice
is used (Figure [3.16f). Settlement numbers are at about the same levels for both social
organization paradigms (Figure [3.16(b)).



80 CHAPTER 3. ANCIENTS-ABM: SIMULATING ANCIENT SOCIETIES

0 #- Self-Organized — Intensive
60 4 Hierarchical Extensive
@ Self-Organized (No aquifer requirement)

# Hierarchical (No aquifer requirement)

(a) 0O 200 400 600 800 1000 1200 1400 1600 1800
time steps

settlements

(b) 200 400 600 800 1000 1200 1400 1600 1800

time steps

04 T gy

14

-
o

agents / settlement
o (o]

A o

(c) 20 200 400 600 800 1000 1200 1400 1600 1800
time steps

Figure 3.16: Number of household (a) agents, (b) settlements and (c) agents per settlement over
2,000 (yearly) time steps wrt. intensive and extensive agricultural strategy, and with settling near
an aquifer being a requirement or not.
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Moreover, in Figure [3.16c we observe that the self-organization social paradigm
appears to have a slight advantage against the static hierarchical one, wrt. settlement
population sizes—regardless of agricultural strategy employed, or of whether settling
near aquifers is a required behaviour. Self-organized agent societies appear, on average,
to be giving rise to larger settlements during their evolution. Note that both the static
hierarchical and the self-organization paradigms, maintain larger settlement population
sizes than the “egalitarian” distributive one (cf. Figure and Figure [3.9¢). How-
ever, agents utility as well as the produce stored by the agents, is at approximately the
same levels per scenario for both the self-organization and the static hierarchical social

organization paradigm as seen in Figure[3.17

Overall, it seems that a static hierarchical structure exhibits a similar viability po-
tential with that of the heterarchical social structure emerging through self-organization
behaviour; however, the later appears to have an advantage in certain scenarios. More-
over, from an archaeological and historical point of view, it is rather improbable that a
static hierarchical structure would have existed in Crete for the entire Bronze Age (the

2,000 years period in question), especially for the geographic area modeled [117].

3.4.5 Agent migrations

Besides agent population numbers and organization sizes, we also examined the patterns
of agent migrations related to the social organization paradigms under study. Overall,
the average number of agent migrations per (yearly) time step is less than 0.05; specif-
ically, it is less than 0.01 for most of the simulation’s time duration, with higher values

recorded at the end of the simulations where more agents are observed (Figure 3.18)).

Although the number of agent migrations seems to be increasing over time along
with population sizes, mainly for the self-organized behaviour and especially when an
extensive agricultural practice is used, agents migration activity can be considered triv-
ial, since an agent considers migrating on average only once in a millennium. Thus, the

migration ability modeled, appears to truly serve as the ultimate workaround for agents,
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Figure 3.17: Agents (a) utility and (b) storage over 2,000 (yearly) time steps wrt. intensive and
extensive agricultural strategy, and with settling near an aquifer being a requirement or not.
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Figure 3.18: Histogram of number of agent migrations per time step for (left) egalitarian and
(right) self-organized social organization paradigms wrt. both agricultural strategies.
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when no other sustainability option is provided by their (social) organization (i.e., not
enough resources are provided/distributed, or “overcrowding” is observed when orga-
nization is at maximum carrying capacity). It is definitely not a major agent activity.
Thus, the population indeed corresponds better to “settled agriculturalists”, rather than

to agents with temporary settlements only.

3.4.6 Non-myopic agent decision-making

In this section, we illustrate the fact that our model can readily support non-myopic agent
action selection. Specifically, we define a simple example for a (sophisticated) agent
decision-making process, which uses a Markov Decision Process (MDP) [104]] to decide
on migration (or settlement) policies, and compare the viability (in terms of population

growth over 2,000 years) of the resulting agent societies against that of myopic ones.

At each time step of the agent decision-making problem, an agent once again needs
to decide on (a) whether it should stay, wait and thus, settle to its current location for at
least yrs years in a row, while cultivating the surrounding area, or (b) migrate to another,
more promising settlement location (and settling there for yrs years). However, the
agent decisions now take the long-term effects of agent actions into account, and arise
as the results of solving finite-horizon MDPs that determine their long-term value —
assuming a specific planning horizon of & decision time steps, or “stages”. Agent actions
result to transitions to specific locations, corresponding to MDP states (and which are
potentially different than the current one). As before, agents can only migrate to states
that correspond to unused cells. The long-term value of being at state s where one
can choose to take some action a (i.e., to settle at s or migrate to one of a number of
candidate locations), can then be determined via the solution of a system of Bellman

optimality equations:

V(s)= mgx{z P,(s,5)(Ra(s,s") + V(s))} (3.7)
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where transitions from s to s’ range over the planning horizon h, R, (s, s') is the immedi-
ate reward resulting from transition to state s'—i.e., the value of cultivating the lands for
yrs years at s’, given the expected agricultural production of the corresponding “field”
cells associated with s’, as described in Section , and P,(s,s') is the transition
probability to " when taking action a at s. The state value V' (s) essentially replaces an

agent’s x myopic estimate of Equation thus, its utility at a given location s is now:
U, =V(s) (3.8)

In our implementation, the MDP solution determining the optimal V() values and mi-
gration policies is provided by the well-known value iteration algorithm [[104]. To keep
things as tractable as possible, state transitions are assumed to be deterministic—i.e.,
P,(s,s’) = 1. Further, we assume that the decision problem is only occurring (and,
subsequently, an MDP needs to be solved) if the agent storage = 0, and his utility from
cultivating the lands at the current location has been dangerously low, i.e., U, < U, ;h’"es,
for at least yrs in a row (in our experiments in this subsection, we set yrs = 10).
Once an MDP solution has been provided for an agent, the agent then follows the re-
sulting policy for h decision steps (each occurring every yrs simulation years); then, if
the conditions above call for a re-evaluation of a settlement policy, yet another MDP is

formulated and solved.

We have made several additional assumptions in order to ensure tractability while
making the decision problem as realistic as possible. An agent’s migration options are
assumed to be restricted by both migration distance and terrain’s elevation. Thus, the
states reachable from a specific state s correspond to locations within a given migration
radius (7,4, = 5km). Even with this restriction, an agent is still able to cover almost
the entire environmental area within 3 migration “hops” (see Figure [3.19). Thus, we

assumed a finite horizon of 3 stages.
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Moreover, we further classify the
states according to environmental eleva-
tion as low, medium, and high elevation
states, and we assume that agent move-
ment is restricted given its current eleva-
tion state, as shown in Figure @ For
instance, if the current (state) location of
the agent is at low elevation level, it can
only transition to a low elevation state or
to a medium elevation state (within its mi-
gration radius), and not to high elevation
ones. These restrictions reflect difficulty
of movement and transport between less
or more mountainous areas. Finally, we

assume that the agent is allowed to transi-

Figure 3.19: An example of states (red dots)
and transition actions (grey lines) for an agent’s
MDP. States of the optimal policy are shown
(white dots).

tion to m states per elevation level at each time step. In our experiments reported below,

m was set to 1 for computational efficiency purposes.

initial ! 1
states

(migration radius) hops

Figure 3.20: States (circles), collections of states (multiple circles) and transition actions (ar-
rows) for an agent’s MDP considering a 3-stage planning horizon.
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. o over 30 simulation runs.
the delays are linked to building the MDP,

only a few seconds—i.e., just a tiny frac-

that is, mainly determining the cells’ immediate rewards, due to speed limitations of the
programmable modeling environment Further problems arise from the fact that (a)
multiple MDPs (corresponding to various agents planning problems) have to be dynam-
ically built at any time step, since the rewards related to a given environmental step are
not static, but fluctuate over time, as the result of the various agents settlement and cul-
tivation actions (Figure |3.21)); and (b) the fact that our ABM employs a fine resolution
actual digital elevation model of the 50K cells modeling area. As a result, an entire
2,000 years simulation run takes on average 7 hours on a 2.6GHz single-core computer,

when using the aforementioned parameter Values

Even with these restrictions in place, our simulation results confirm the intuition that
an ability to “plan-ahead” is beneficial to the agents. Specifically, Figure 3.22| shows
that, when compared to “myopic” agent decisions, societies of agents that use MDPs
for planning migration policies achieve population numbers that are on average higher

across the entire modeling period.

2ISee, e.g., https://github.com/NetLogo/NetLogo/issues/402.

220f course, several efforts could have been undertaken to speed-up the process of dynamically defining
and solving the MDPs—e.g., via re-using MDPs already solved for agents operating in nearby regions
and nearby time steps. However, this is not the focus of our work here: our experiments in this section
simply intended to demonstrate that our model can readily incorporate non-myopic agent deliberations.
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Figure 3.22: Number of household agents over 2,000 yearly time steps, using an intensive agri-
cultural strategy, with a requirement for settling near an aquifer, using an MDP for decision-
making or not. Error shading areas indicate 95% confidence intervals.

3.5 Conclusions

In this chapter, we attempted to showcase how to incorporate MAS-originating con-
cepts and algorithms in archaeology-related ABMs. To that end, we designed and im-
plemented a generic ABM system for archaeology research, adopting a utility-based
agent architecture. Moreover, we incorporated into our ABM an appropriately modi-
fied self-organization method originally proposed for current agent organizations. Self-
organization mechanisms have been observed in nature and biology and subsequently
successfully applied in MAS research. Equipping ABM with such mechanisms can
address problems that concern the emergence of system dynamics describing how the
individual components interact with and respond to each other and their environment.
However, such mechanisms had not been applied and tested in an archaeology simula-

tions system before.

We employed our system in order to gain new insights into the social organization
and agricultural activities of Minoan households residing at the wider area of Malia in

Crete during the Bronze Age. Indeed, simulation results show that agent societies that
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adopt self-organization exhibit an increased viability over the entire 2,000 years of this
period. Now, self-organization gives rise, naturally, to implicit agent hierarchies. As
explained in Section however, the wealthy are assumed to be helping out agents in
need. Thus, our results here should by no means be interpreted as providing evidence for
the sustainability of exploitative hierarchical societies. Rather, they could be interpreted

as an indication that targeted wealth redistribution works better than a blind one.

Simulation results demonstrate that when agents adopt an “egalitarian” social orga-
nization paradigm, the emerging development of many “small-size” settlements seems
to be the way for survival over time, while “self-organized” agent societies appear to
be giving rise to larger settlements during their evolution. Moreover, simulation re-
sults indicate that a heterarchical social structure, having emerged by the continuous
re-adaptation of social relations among Minoan households, might well have existed in
the area of study. This fact is in line with archaeological evidence for larger settlements
(towns and palaces) eventually coming to existence during the MM - LM period, where

a more varied and dynamic social structure is now suggested [41].



Chapter 4

An Evolutionary Game-theoretic

Extension

As understood in the previous chapter, the various social organization paradigms ex-
plored assume a cooperative attitude on behalf of the agents. Specifically, agents were
assumed to be willing to provide resources out of their stock in order to help agents in
need, and such transfers drive the evolution of the social structure. In reality though,
people are often driven by more individualistic instincts and exhibit more egotistic so-
cietal behaviour. Indeed, the evolution of civilisation and state appears to be driven
by opposing, both competitive and cooperative, processes, which regulate behavioural
relationships in a society [38| [118]]. Therefore, if one is to model societal transfor-
mation accurately, agent behaviour has to be analysed from a strategic perspective as
well. Assuming that agent interactions are based on rational decision-making, but are
also influenced by their very effect on the society as a whole, then the evolution of the
social dynamics can be studied via a game-theoretic approach [51]. It is anticipated
that incorporating ideas from game theory and MAS research in ABMs can enhance
agent sophistication, and contribute on the application of strategic principles for select-
ing among agent behaviours [135]. In this chapter, we adopt such an approach and

provide an alternative agent self-organization social paradigm. Agent self-organization

89
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is driven by the interactions of strategic agents operating within a given social organiza-
tion group, and the effects these interactions have on agent utility. As such, the evolution
of the social hierarchies is driven by the interaction of agent strategies in an evolutionary
game-theoretic (EGT) sense [[122, [134]. This allows us to study the evolution and adap-
tation of strategic behaviours of agents operating in the artificial ancient community, and

the effect these have on the society as a whole.

In more detail, we simulate repeated “stage games” played by pairs of agents, cor-
responding to “households” residing in Minoan settlements located at the wider area of
Malia, in the island of Crete, same as in the case study of the previous chapter. Intu-
itively, the games model “resource exchanges” (utility transfers) among the households.
The results of each game played contribute to the continuous alteration of the social
structure, given the evolution of the differences in relative “wealth” among the agents.
In contrast to most matrix games studied in the literature [[103], our agents receive non-
static payoffs (depending on their current utility, largely acquired via working the lands).
Moreover, agent population is not constant, but fluctuates dynamically over time, due
to utility-influenced births and deaths. Therefore, a strategy’s reproductive success de-
pends on dynamic payoffs, and thus agents using the same strategy do not necessarily
receive the same payoff when interacting with others. This in effect lead us to an al-
ternative model to the classic fitness-based evolution strategy selection: formulate the

evolutionary dynamics based on evaluating agents’, rather than strategies’ fitness.

An agent employs a specific strategy when playing in the stage games and after a
series of (yearly) time steps, agents assess and possibly modify their strategies (strategy
review stage); strategy review and adoption is performed in various ways. Specifically,
agent fitness can be evaluated with respect to solely the reward achieved in the games
or the overall utility of the strategic agent (derived from game-playing and land cultiva-
tion), thus exploring the potential differentiation on the strategic behaviours adopted by
the agents in the long-term. The relative success of the agent’s current strategy (agent

fitness) can be assessed at either the community (settlement) or the societal level, with
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respect to the average fitness of all strategic agents at that level, or the average fitness
of agents adopting this particular strategy; while the adoption of an alternative strategy

can be deterministic or stochastic.

We conduct a systematic evaluation of the performance of the various strategies and
their adaptation methods. Our simulation results show that strategic agent populations
are better sustained when agents base their strategy review decisions on the relative
success of their current strategy with respect to the success of agents employing the same
strategy; when the success of strategies is assessed at the community, rather than the
entire societal level; and when strategy adoption is stochastic, rather than deterministic.
Moreover, it is interesting to see that in the corresponding scenarios, agent populations
converge to adopting cooperative strategies, despite this behaviour being in contrast to

that prescribed by the stage game equilibrium.

Our work in this chapter provides several contributions, also illustrated in Figure 4.1]

below:

e We extend our ABM framework that employs autonomous, utility-based agents,
that are also able to self-organize, based on the interaction of agent strategic be-

haviours, in an evolutionary game-theoretic (EGT) sense.

e We blend for the first time evolutionary game theory with multi-agent systems’
self-organization for modeling the evolution of strategic behaviours in a popula-
tion of self-organized agents; specifically, we provide a novel evolutionary self-
organization algorithm by simulating repeated “‘stage games” played by pairs of
strategic agents, by means of which they exchange utility (corresponding to re-

sources) with others.

e We provide an novel model for the evolutionary self-organization approach, where
strategy review and adoption, agent fitness and the relative success of agents strat-
egy are assessed and performed in various ways, which also differ considerably

to those used in usual EGT approaches. This is because agents receive non-static
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payoffs and their population is not constant, in contrast to most matrix games

studied in the literature.

e We conduct a systematic evaluation of the performance of various agent strategies,
assuming several scenarios, for studying the evolution and adaptation of strategic
behaviours of household agents operating in Minoan artificial communities, and

the effect these have on the sustainability of the Minoan society as a whole.
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Figure 4.1: Overview of involved scientific fields and contributions in Chapter

The remainder of this chapter is structured as follows. Section provides a brief
overview on the application of evolutionary game theory in social sciences, and in partic-
ular archaeology, as well as a summarized review of related examples in archaeological
ABMs. Sections {.2]and[4.3|present our ABM’s evolutionary game-theoretic extension,
coining an alternative self-organization framework: one that is driven by the interactions
of strategic agents operating within a social organization group. Section4.4Jthen records
the empirical evaluation of our new approach—by first detailing the simulation parame-
ters for the various scenarios considered, and then analysing the obtained results for our

specific case study for an artificial society in a part of Minoan Crete. Finally, Section[4.5]
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concludes this work by providing main outcomes of our work presented here. Parts of

the research described in this chapter appeared originally in [23]], [24] and [25].

4.1 Related Work

There have been calls for the application of “evolutionary” concepts in the study of
sociocultural phenomena, and the development of archaeological theories in that direc-
tion [44]. The “mathematics” of evolution are the subject of evolutionary game theory
(EGT) [51,1134]. EGT originated as an application of the mathematical theory of games
to biological contexts, arising from the realization that frequency-dependent fitness in-
troduces a strategic aspect to evolution [94]]. The interest among social scientists in a
theory with explicit biological roots derives from the fact that the “evolution” treated
by EGT is understood as cultural evolution, where this refers to changes in beliefs, be-
haviours and norms over time. Moreover, the rationality assumptions underlying EGT
are, in many cases, more appropriate for the modeling of social systems than those as-
sumptions underlying the traditional theory of games [94]. Thus, EGT imagines that the
game is played over and over again by socially conditioned players (agents), each “pre-
programmed” to some behaviour—formally a strategy in the game—and one assumes
some evolutionary selection process operates over time on the population distribution of
behaviours [134]]. As such, EGT takes an interest in the replicator dynamics by which
strategies evolve. Such dynamics typically assume that the share of the population us-
ing each strategy grows at a rate proportional to its current payoff, so that strategies
providing the greatest utility against an aggregate previous period statistic grow most
rapidly [51]. It is conceivable that taking evolutionary concepts into account in an ar-
chaeological theory in a principled manner, would require dealing with the “mathemat-

ics” of evolution.

The only archaeological related ABM that we are aware of implicitly adopting an

evolutionary game-theoretic approach is that of [80]. The ABM is based on a mathe-
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matical model of a repeated “public goods game” put forward by [67], implementing
a “birth-death” (Moran) process for studying selection dynamics in a finite population.
The model simulates a voluntaristic process in which members of a society would pre-
fer to live in hierarchically structured group, if “leaders” can reduce the likelihood of
failures in cooperation due to free-riding or lack of coordination. The ABM in [80]
adopts and adapt this game-theoretic model into an agent-based simulation, consider-
ing a simple reflex agent architecture, where “household” agents can exist in 3 states:
thriving, just getting by, and perishing, depending on current resources stored. Agents
reproduce according to a growth rate that provides for an approximately stable global
population. Moreover, all payoffs (costs and benefits) from the game are statically ex-
pressed in resources (calories), representing punishment and tax payment costs, from
and to the group “leader”, for household agents that refuse or are unable to pay a full
contribution, or for monitoring other group members to make sure that they contribute to
the public good [80]. The authors examine the game-theoretic model’s empirical plau-
sibility by mapping it into a specific place and time, that is, in southwestern Colorado,
known as the central Mesa Verde Region of the US Southwest, between about AD 600
and AD 1200. Simulation results of average number of strategic agents, groups and
agents per group, from 36 different simulation scenarios (setup) are interpreted against
archaeological evidence, suggesting that the early appearance of leadership in the mod-
eling area could be explained by voluntaristic processes; however, the authors argue that
larger group sizes and greater evidence for hierarchy observed, may require a model that

explicitly incorporates inter-group competition.

Although there are numerous related works on “standard” EGT approaches applied
on MAS and ABM, such as models to determine suitable “fairness” utility functions [33]]
or introducing behavioural diversity to study the co-evolution of a social network struc-
ture [128]], we are not aware of any archaeological ABM that explicitly adopts an evo-

lutionary game-theoretic approach.
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4.2 Agent Strategies and the Resources Distribution Game

In this chapter, we explore an artificial society’s evolutionary dynamics with respect to
various cooperative or not agent behaviours. Thus, we need to introduce the ABM’s
main characteristics in terms of (evolutionary) game theory. Agents are considered as
“players” in “stage games” that take place every time step corresponding to one year.
In any such game, agents exchange (harvested) resources among them as follows. An
agent’s decisions regarding transferring resources to others correspond to its strategic
“actions” in the games, and similarly, agent rewards (resource amounts transferred) are
considered as “payoffs”. Each game is between two agents, with agents belonging to
the same settlement. At any given time step, however, a single player may be interacting
at a one-on-one basis with many other agents within the settlement simultaneously. As
such, multiple stage games are taking place simultaneously within each settlement. A
player remembers its interaction history with every other agent, allowing this history to
be taken into account by a player’s (long-term) strategy. We assume a finite, but not

fixed, population size, since new agents are created or old ones cease to exist.

In many domains, replication by way of simple biological reproduction is not a com-
pelling parable for how behaviours spread in a population. In social sciences in general,
replication by way of imitation and enforcement of successful behaviours is more ap-
propriate [134]]. In our work also, payoffs correspond to the decision makers’ utility
from interactions, and the replication mechanism is based on imitation and reinforce-
ment of successful behaviours. In particular, each agent is “genetically” programmed
to play originally some pure strategy k, and agent offsprings inherit the strategy the
agent currently plays. An agent playing repeated stage games with opponents, sticks to
some pure strategy for some time period consisting of several years, and then reviews
its strategy, which sometimes results in a change of strategy. In our approach, we as-
sume three simple player strategic behaviours: a cooperative one, C', willing to share
resources with another player; a defective one, D, refusing to share resources; and one

which starts with cooperation and then behaves as the other player did in the previous
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game round, namely Tit-for-Tat, T'F'T [5]. Considering these different strategic agent
types as playing games against each other, we explore the evolutionary dynamics which
arise. Agents payoff is interpreted as fitness, depending on the relative proportions of
the different strategies in the population. Success in game playing improves utility, and
is translated into reproductive success; strategic agents that do well over time reproduce
more, while the ones that do poorly are outcompeted. This is straightforward natural
selection [[102]. As such, household agents’ effective strategies continue to be used, and

ineffective ones are dropped. We now describe the games setting in more detail.

The set of pure strategies K consists of {C, D, TFT'}, and an agent that uses pure
strategy k € K is a k-strategist. A T'F'T-strategist adopts C' when playing for the first
time, and in every further interaction adopts C' if the opponent used C’; and D if the
opponent used D in the previous interaction. Therefore, agent actions can be condensed
to C' and D. Furthermore, we assume that a stage game takes place (among household
agents in a settlement) as follows: any pair of agents contract to exchange a “share” of
their utility. Suppose a pair of agents x and y exchange ¢, and €, respectively. Assuming
that each fulfills their end of the deal, thus, “cooperating”, then each receives a payoff
calculated as the exchange received minus the one offered, e.g. ¢, — ¢, for agent .
Suppose that agent y “defects” and does not deliver as promised, then the defector will
receive the respective payoff of the opponent’s exchange, <., while the cooperator, agent
x, will lose as much as the exchange offered, —¢,. If both defect, then no one gains or
loses anything. If we assume agent = and y payoffs as r, and r, respectively, the generic
normal-form representation of a game between the agents is shown below in Table
the arrows imply that defection is the dominant strategy for any agent (agents have
incentives to “move” towards defection), and mutual defection is the only strong Nash
equilibrium. Note, however, that each stage game is one with “dynamic” payoffs (since

rewards depend on the current agents utility).

Considering that there are v players in a settlement, an agent interacts pairwise with

all other v — 1 agents in the settlement. An agent is assumed to be willing to offer to
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Table 4.1: Equilibria of the distribution game

Player y
D
Ty=E&gz —Ey—> Ty ==¢Ey
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opponents a portion of its total payoff, depending on the number of its individuals, ~,
that “live” in the household. Thus, the exchange ¢, offered from a household agent z, is

a function of the agent’s current utility U, and k, and has the following form:

Us

UESICES) @D

Ep =

For example, a household agent with 5 individuals, is willing to contribute to its v —1
“opponents”, U, /6 of its utility, offering to each of its opponents (U, /6)/(v — 1) reward
during a game interaction. Note that Equation depends on agent utility U,, which
depends on resources harvested, and not just on resources received through games. At
the end of each year, agents update their utility and reorganize their relations, based
on their accumulated rewards via the games. The total payoff r(z) from games for a

k-strategist x at time ¢ is:

ri(z) =Y ra(i, ) (4.2)

YyeO
where O is the set of x’s opponents at ¢ and ¢, j are the actions prescribed by z’s and y’s

strategies during an interaction. The updated utility U,, of an agent x is calculated as:

Uy, = U, + r(x) 4.3)

Note that for a D-strategic agent z, it is U, > U, always, as such a player is unwilling to

make any exchange, but may receive some reward from a cooperative contracted agent.
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4.3 Replicator Dynamics

Now, the classic evolutionary model of replicator dynamics, assumes that a homoge-
neous population playing a particular strategy grows in proportion to how well that
strategy is doing relative to the mean strategy population performance [S1]]. Since the
agent population in our ABM is not constant, but fluctuates depending on agent utility,
and since agents do not “identify” with strategies (but may adopt other strategies over
time), we formulate the evolutionary dynamics based on evaluating agents’, rather than
strategies’ fitness. Therefore, at any given time step ¢, the current fitness f;(z) of an
agent x , is calculated as:

filz) =U, 4.4)

Although we believe it is more natural for an agent to evaluate its fitness based on its
utility, since population growth is utility-dependent in our ABM, in order to be in line
with classic EGT approaches, in some simulation scenarios we also considered agent
fitness to be based solely on its total reward from games it participated in. In those

scenarios, agent = calculates its fitness at time ¢ as:
fi(z) = r(x) 4.5)

At the end of some time period 7', during which the agent plays games using strategy
k, agent x evaluates its current fitness with respect to the average fitness of the organi-
zation, before (possibly) switching to any other strategy. The average fitness F' of the

organization over the period 7', is calculated as:

1 fi()
F=- > T (4.6)

VxeSVteT ‘

where S = {x1, xs, ...x, } is the set of all household agents in the organization, consid-
ering each agent’s lifetime during period 7'. The term “organization” may actually refer

to either the settlement in which x belongs, or the entire society of agents (across all
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settlements). Although agents always play games only with other agents in their settle-
ment, in some simulation scenarios the set S in Equation above refers to the entire
society. This attempts to capture the fact that the views of the entire society regarding
the value of the various behaviours (strategies), could weigh on an agent ’s deliberations
regarding the adoption of a specific “attitude” towards others. Moreover, assuming that
agent x reviewing its strategy is currently a k-strategist, in some simulation scenarios we
also calculate /' with respect to the set S, of k-strategists in the organization (settlement
or society). That is, in Equation 4.6 we replace S (the set of agents in the organization)
with Sy (the set of agents in the organization that share x’s strategy). This attempts
to evaluate how well x is doing with respect to agents exhibiting the same “attitude”

towards others.

Agent z will consider switching to some other strategy, only if f;(z)—F < 0, i.e., its
fitness is less than the average fitness of the organization under examination (settlement
or entire society) during the previous period 7'. If that condition holds, = can choose to
deterministically switch to some other pure strategy | with maxz{F;}, | € K, where F,
is the average fitness of the [-strategic agents in the organization; or it can stochastically
switch to strategy [ with probability py; (k, ! € K), based on the percentage of [-strategic

agents (or [-strategists) in the organization, calculated as follows:

S
pri(x) = ’n—l‘ 4.7)

Note that, in that case, py is considered to be the probability that a reviewing k-strategist

does not change strategy.

Regardless of the strategy review scenario used, self-organization is now driven by
the interactions of strategic agents operating within a given social organization group.
However, the re-organization (decentralized structural adaptation) stage, used for re-
evaluating and potentially altering agent relations, is the same as described in the previ-

ous chapter (cf. Section [3.2)).
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4.4 Simulation Scenarios and Results

In this section, we describe the employment of our extended ABM presented above for
the simulation of the evolution of “household” agent societies, considering the same
modeling environment as in the simulation scenarios of the previous section, i.e., the
wider area of Malia region at the island of Crete during the Minoan period. Model
parameters were initialized to values set so that they correspond to estimates found in
archaeological studies relevant to the period of study. The ABM’s initial settings are the
same as in the simulations in the previous chapter for evaluation purposes; specifically,
strategic agents are assumed to cultivate the landscape by employing an “intensive”

agricultural practice, with a requirement for settling near an aquifer location.

We conduct a systematic evaluation on the impact of the evolutionary self-organization
social paradigm to population viability. Specifically, agents play games and (i) never
review their strategy (cf. Sec. [#.4.1); (ii) review their strategy and perhaps determin-
istically switch to another (c¢f. Sec. f.4.2); or (iii) review their strategy and perhaps
stochastically switch to another (cf. Sec.d.4.3)). Furthermore, we consider strategy re-
view time periods of either ' = 8 or T = 16 years. Each scenario was simulated for
thirty (30) runs, for a total of 990 simulation runs =30 (no review) + 30 x 2 (strategy
review options) X 2 (fitness function evaluated wrt. U or r;) X 2 (time periods 7" = 8
or T = 16) x 2 (organization considered at the settlement or the societal level) x 2
(agents considered in the organization, all or only “same”-strategists). In terms of time,
the process can be quite expensive, since a single run (composed of 2,000 time steps)
takes approximately 40min on a single core 2,6 GHz computer; by employing, however,
additional computational power, i.e., via allocating a dedicated dual-core node of TUC
Grid computer to a run, all 990 runs mentioned above were completed in less than a
day. Results visualization was done in MATLAB (R2014b) environment. In all figures,
results are averages over 30 simulation runs across a period of 2, 000 years. Moreover,
one may reproduce our simulation results via using the same random “seeds” that we

used for the random number generators introduced in parts of our model.
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In our simulations, we compare the performance (in terms of population growth
achieved) of strategic agents that play games and use self-organization, which we term
“SO evolutionary” agents, against those that (i) are benevolent and self-organize, simply
termed “SO” agents; or (ii) adopt the “independent” social behaviour, trying to maxi-
mize their utility without interacting with others (cf. [3.2). Moreover, we report on the
fraction of the population that adopts a cooperative attitude at each scenario. In order to
not to clutter our results’ figures below, we will depict shaded areas that correspond to
95% confidence intervals around lines corresponding to agent populations adopting an
evolutionary approach (the “SO evolutionary” D-, C-, and T F'T-strategic agents), and
their aggregate line (marked “SO evolutionary”), and not for the SO or “independent”
agents. Moreover, in order to assist the reader, in all figures the legends are ranked in

accordance to the relative performance of their corresponding behavioural methods.

4.4.1 No strategy review

In our first scenario, there is no strategy review for the “SO evolutionary” agents. Results

of this scenario are shown in Figure We can observe that as time passes agent popu-
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Figure 4.2: (a) Agent population, and (b) percentage of agent behaviours, for the no strategy
review scenario.
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lation increases, with a rate that ranges between those of the extremes in the model—i.e.,
benevolent “SO” agents that always help each other, and “independent” (Figure {4.2al),
while their social behaviour remains proportionally stable, i.e. ~ 50% of the agents co-
operate or defect (Figure 4.2b)). Note that, in that figure the percentage of cooperative or
defective behaviour depicted, includes the current C' or D actions of the T F'T'-strategists
(since they adopt C' or D depending on their past opponent action). Moreover, we report

that 7' F'T'-strategists actually exhibit ~ 60% cooperative behaviour here.

Let us now discuss our findings for the rest of the scenarios in turn. In all the fol-
lowing corresponding scenarios (sub) figures, we adopt the following notation: F' ~ U,
where agents fitness function is calculated by their updated utility (Equation 4.4); F' ~
R, where agents fitness function is calculated by their total accumulated reward (Equa-

tion[4.5); 7' = 8 and T = 16 for strategy review periods of 8 or 16 years respectively.

4.4.2 Deterministic strategy review

In this section we simulate agents which review their strategy k and, deterministically
switch to strategy [ with max{F;}, | € K, where F] is the average fitness of the [-
strategic agents in the organization, where the organization is either the agents settlement

to or the entire society.

Strategy review wrt. settlement performance

Here, the average total fitness (Equation [4.6) is calculated with respect to all household
agents within the settlement (S in Equation 4.6|is the set of all agents in the settlement).
Simulation results are shown in Figure We observe an overall decline of the average
population of “SO evolutionary” agents, with respect to the scenario of Figure 4.2] for
most of the scenarios in this category (except for the scenario of Figure#.3¢c). Moreover,
the average number of D-strategic agents increases significantly, irrespective of agent’s

strategy review time period and fitness function.
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Figure 4.3: Agent population for scenarios with deterministic strategy review and F' calculated
across all agents in the settlement.

Results for the two scenarios where ' ~ R (Figures [4.3b] and [4.3d), are as antici-
pated by the game equilibrium (Table {.T). When F' ~ U (Figures .33 and 4.3c), we
observe that cooperative behaviour is not completely extinct. However, agents adopt, on
average, a defective behaviour; ~ 60% of the agents defect, irrespective of 1" values, as
shown in Figure.4] In general, all scenarios in this category exhibit an overall defective
behaviour with low average number of agents, similar to the “independent” behaviour

mean population size.
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Figure 4.4: Percentage of average cooperative and defective behaviour of strategic agents (in-
cluding that of T'F'T" agents), for scenarios with deterministic strategy review and F' calculated
across all agents in the settlement.

We have also simulated scenarios where any k-strategist evaluates its strategy’s per-
formance with respect to the average fitness of the rest of k-strategists in the settlement.
We do not present the corresponding figures here (c¢f. Figure [B.I]in the Appendix [B)),

since we observe a similar behaviour with the results in this category (Figure 4.3).

Strategy review wrt. society performance

In this subsection, the average organizational fitness (Equation[4.6)) is evaluated by any
k-strategist with respect to either the set S of all agents in the entire society, or the set

S of agents in the society that adopt the same strategy as k.

When the average organizational fitness is calculated with respect to all household
agents within the society and F' ~ U (Figure 4.5)) , percentages of average defective
behaviour, are slightly higher than the value observed for the corresponding scenarios
of Figure 3] up to ~ 65%, irrespective of T" values. On the other hand, when ' ~ R
(Figure [4.6) , the average “SO evolutionary” agents population is lower than the base
“no strategy review” scenario (cf. Figure[.2)), and at most equal with the “independent”

behaviour, when 7" = 16 years (Figure 4.6b). Moreover, the “SO evolutionary” agents
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Figure 4.5: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of T'F'I" agents), for scenarios with deterministic
strategy review and F' ~ U calculated across all agents in the society.

are mostly D-strategists or T'F"T-strategists that adopt defective actions. However, when
agents review their strategy more frequently, i.e., T = 8 years (¢f. Figure 4.6a), we
report that a small fraction (= 5%) of T'FT-strategists adopt, on average, a cooperative

behaviour rather than a totally defective one observed in the corresponding scenarios of

Figures [4.6b} [4.3b|and 4.3d] where F' ~ R.

Moreover, percentages of average cooperative behaviour of strategic agents appear
to be slightly higher when agents evaluate their fitness with respect to the average fitness

of household agents in the settlement rather than the entire society and F' ~ U (cf.
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Figure 4.6: Agent population for scenarios with deterministic strategy review and F' ~ R calcu-
lated across all agents in the society.

Figures @ and @ This is interesting, and somewhat reassuring, since it does not seem
realistic that agents would have had information about the strategic views of household

agents in other settlements, for the period under study.

Simulation results where a k-strategist considers the set S; of k strategic agents

within the organization for fitness evaluation are presented in Figure

We observe that average population of “SO evolutionary” agents are similar to the
previous scenarios category (cf: Figure {.5). When F' ~ U, the percentage of average
defective behaviour (including that of the 7' F'T-strategists) is similar with the previous
scenarios of Figure 4.5] ranging from ~ 65% up to ~ 70%. Specifically, we observe
a significantly lower average numbers of C'-strategists in comparison with the previous

corresponding scenario (Figure 4.5), and even lower when 7" = 16 (Figure [4.7c).

By contrast, when F' ~ R, although average population of “SO evolutionary” agents
is similar to the previous scenarios category (cf. Figure {.7b), when 7" = 16 years (cf.
Figure 4.7d), corresponding average number of agents is noticeably higher than before

(and where all strategic agents defect).
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Figure 4.7: Agent population for scenarios with deterministic strategy review and F' calculated
across agents in the society that share the same strategy.

As a final note, we report that “SO evolutionary” agents are able to sustain higher
average population size with respect to the previous scenarios category (cf. Figure {.3)),

and even higher than the first scenario (c¢f. Figure[d.2), when 7' = 8 years and F' ~ U
(cf- Figures and [4.74).
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4.4.3 Stochastic strategy review

From this point onwards, we simulate scenarios as before, with the difference that now
agents review their strategy k and stochastically switch to strategy [ with a probability
pri, k.l € K, based on the percentage of [-strategic agents in the organization (cf.

Equation 4.7)).

Strategy review wrt. settlement performance

In Figure 4.8] we present simulation results for scenarios where the agents review their
strategy stochastically, while evaluating the average fitness of all strategic agents in the

settlement organization.

When F' ~ U, we observe an slight increase in the average number of agents adopt-
ing a cooperative strategy with respect to the corresponding scenarios of Figure [4.3]
where agents review their strategy deterministically. Specifically, when 1" = 16 years,
the average numbers of D-strategists decrease contrariwise (Figure d.8c]). Moreover, the

average numbers of 7T'F'I'-strategic agents is observed to have declined.

We also report that agents in the model adopt, on average, a cooperative behaviour
(including that of the T'F'T'-strategic agents) of ~ 35% and ~ 50% per time step, for
review time periods 7' = 8 and 1" = 16 years respectively, when I' ~ U, rather than
a totally defective behaviour when £’ ~ R. In general though, the average population
of “SO evolutionary” agents is again lower than in the first scenario (c¢f. Figure {.2a),

except when agent review their strategy more often and /' ~ U (cf. Figure 4.8a)).

Simulation results for the scenarios where k-strategists evaluate their current perfor-
mance considering the set of S, agents within the settlement are shown in Figure 4.9
We observe a dramatic decline on the average numbers of D-strategists, irrespective of

review time periods and agent fitness function calculation method.
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Figure 4.8: Agent population for scenarios with sfochastic strategy review and F' calculated
across all agents in the settlement.

Interestingly, agents in these scenarios present the highest rates of cooperative be-
haviour observed, ~ 55 — 70% and ~ 40 — 60% when F' ~ U and F' ~ R respectively.
When F' ~ U, we observe a dramatic increase on the average number of C-strategists,
especially when T' = 8 years (¢f. Figure 4.94). Likewise, when F' ~ R, a remarkable
increase on the average number of 7' F'T'-strategists is observed, especially when 7" = 16
years (cf. Figure d.9g); although 7' F'T'-strategists constitute ~ 25% and ~ 50% of the
overall agent population when F' ~ R and 1" = 8 and T = 16 years respectively, they

adopt on average a cooperative behaviour by ~ 95 — 100%.
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Figure 4.9: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of T'F'T" agents), for scenarios with stochastic
strategy review and F' calculated across agents in the settlement that share the same strategy.
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We note that the highest average population of “SO evolutionary” households and
rates of cooperation behaviour among the agents, across all simulated scenarios, appears

in this case—and in particular in the scenario of Figure |4.9a

Strategy review wrt. society performance

Here agents again switch their strategy stochastically, but first evaluate their perfor-
mance with respect to the average performance of the society; they initially consider all

agents instead of the ones only within their settlement. Results are shown in Figure [d.10]
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Figure 4.10: Agent population for scenarios with stochastic strategy review and F' calculated
across all agents in the society.
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We observe that average number of “SO evolutionary” agents for scenarios where
F ~ U 1s similar to the one of the “no strategy review” scenario (Figure 4.2)), especially
when 7' = 8 years; in this case, we also observe the lowest percentages of average

cooperative behaviour, that is ~ 25% (cf. Figure 4.10a)).

By contrast, the average population size of strategic agents for scenarios where F' ~
R 1s much lower and similar to the “independent” social paradigm’s, and even lower
when 7" = 8 (¢f. Figure 4.10b). Interestingly, while a totally defective behaviour is
observed to be adopted for scenarios when F' ~ R and agents review their strategy
with respect to the settlement performance (cf. Figure d.§), here emergent cooperative

behaviour is observed and adopted on average by ~ 5 — 10% of the agents.

Results for scenarios where k-strategists consider the set of S; agents within the
society for their fitness evaluation, are shown in Figure B.11] We observe similar av-
erage population sizes with the corresponding scenarios of the previous category (Fig-
ure 4.10). Interestingly, when ' ~ U (Figure 4.11b| and {.11f), the percentages of

average cooperative behaviour (including that of the 7'F"-strategic agents) increase

(up to ~ 35 — 45%) with respect to the scenarios of the Figure #.10} in contrast with
scenarios when F' ~ R, corresponding percentages of average cooperative behaviour
are increased, from ~ 5 — 10% up to ~ 15 — 25% for review time periods 7" = 16 and

T = 8 years respectively.

4.4.4 Discussion

We can report that cooperative behaviour is emergent in 24 out of the 33 scenarios,
with highest average rates observed when agent interactions are local and updating is
stochastic, as shown in Table @ Cooperation is more prevalent when £’ ~ U rather
than F' ~ R. This is quite natural: one expects agents that evaluate fitness taking into
account their reward in games only, to tend to become more aggressive or opportunistic;

while taking into account their overall utility tends to smoothen such behaviours.
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Figure 4.11: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of T'F'T" agents), for scenarios with stochastic
strategy review, and F' calculated across agents in the entire society that share the same strategy.
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Deterministic Stochastic

Cooperation

Group | Society | Group | Society
rates (%)

S 1Sk | S [ Se| S |Sk| S| Sk
F~U,T=8 | 383735373470 |24 |34
F~U,T=16 4425|3727 49|56 |42 46
F~RT=8]0]0 70| 0|37 10|23
F~RT=16|02]0]0,0/60| 7 |14

Table 4.2: Average cooperative behaviour rates for all scenarios, where every k-strategist consid-
ers either the set Sy, of k-strategists or the set S of all agents within the settlement organization
or the entire society, reviewing its strategy either deterministically or stochastically.

Moreover, since the non-strategic, cooperation-oriented ‘“‘self-organizing” agents,
and the non-interacting, “independent” agents, can be viewed as constituting two near-
extremes in terms of strategic behaviour, it is expected that the average aggregate popu-
lation of the strategic agents will lie largely between their corresponding ones; indeed,
simulation results confirm this intuition. Furthermore, when F' ~ U, the error shad-
ing areas for the “SO evolutionary” lines overlap with 13 out of 16 of the “SO” ones
towards the end of the simulation (last 500 years), and with 9 out of 16 of the “SO”
lines, when F' ~ R. Therefore, in many cases strategic populations can do even better
than non-strategic ones. Moreover, we can report that average numbers for settlements
and agents per settlement for the “evolutionary self-organization” social paradigm are
approximately 5 and 12, respectively, which are similar to the ones of the “simple” self-

organization one, approximately 6 and 12, respectively (cf. Figure [3.9)in Section [3.4).

Overall, scenarios that sustain a higher average population of “SO evolutionary”
agents, are mainly those where agent fitness is evaluated with respect to their utility. This
choice of conditioning strategy evolution on overall utility rather than reward is justified
from the results, while it does make sense from a socio-economic perspective: you
choose how much to “exchange” based on your overall well-being. Better performance
is observed when agent fitness is evaluated to that of the settlement group, rather than

the entire society, with respect to the average fitness (corresponding to utility) of only
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agents adopting the agent’s current strategy; and the adoption of an alternative strategy
is stochastic. In addition, percentages of average cooperative behaviour of strategic
agents are higher when agents evaluate their fitness with respect to the average fitness of
household agents in the settlement rather than the entire society; as mentioned earlier,
this is reassuring in the sense that, agents would have had incomplete information about
the strategic views of other household agents in other settlements, for the period under
study. Notably, however, the scenario with high percentages of emergent cooperative

behaviour also appears better in sustaining higher agents population (cf. Figure #.9a).

We also report that the resulting social structure is indeed correlated with the agents’
strategic behaviour. In Figure we report that the number of peer related agents are
higher on average when F' ~ U, while the number of superior or subordinate agents are
higher on average when I’ ~ R. This is quite expected, since when F' ~ U agents are
more cooperative, rendering the differences in utility among them less acute—and thus

the authority relations are fewer in that case.
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Figure 4.12: Average number of (a) peer and (b) authority related agents per settlement for
scenarios where F' ~ U and F' ~ R, over 2,000 (yearly) time steps.
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4.4.5 Sensitivity analysis

In this section we apply a sensitivity analysis process to determine how sensitive our
ABM is to the particular set of initial conditions that we used. Specifically, we examine
the impact of varying the model parameters on model results. Specifically, recall that
we considered an initial number of approximately 10 agents on average in the model
environment (c¢f. Section [3.3.1), and a uniform distribution of initial strategies. We
wish to investigate if a higher initial agent population and a different initial distribution
of strategies will affect the results. We also wish to examine whether adding some
randomness on agent behaviours affects simulation results. To this purpose, we re-
ran all experiments in Section [4.4] changing initial conditions or adding randomness.
However, we restrict our presentation to scenarios of Figure f.9—i.e., scenarios with
stochastic strategy review and [’ calculated across agents in the settlement that share
the same strategy, since these were shown to sustain a higher agent population size and

higher percentage of emergent cooperative behaviour (cf. Table 4.2).

Number of agents

Our simulation experiments involve an initial average population of 100 agents. Simula-

tion results of agent population for the corresponding scenarios of Figure 4.9 are shown
in Figure [d.13]

We now observe that, when F' ~ U, agents adopt lower rates of average cooper-
ative behaviour, from ~ 55 — 70% (cf. Figures [4.95 and {.9f) down to ~ 15 — 20%
(Figures [4.13b] and .131]). In scenarios where F' ~ R, the adopted average coopera-
tive behaviour is further reduced down to ~ 5 — 10% (Figures [4.13d| and 4.13h)) from
~ 40 — 60% (cf. Figures[4.9d| and [4.9h)). Interestingly, we report that when F' ~ R,
T F'T-strategists drop down to ~ 5 — 15% from ~ 25 — 50% (cf. Figures {.9c|and {.9g))
of the overall agent population (for 7" = 8 and 1" = 16 years respectively). Additionally,

they also exhibit lower rates of cooperative behaviour (from ~ 95% down to ~ 65%).
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Figure 4.13: Agent population of initially 100 agents (right) and percentage of average coop-
erative and defective behaviour of agents (left, including that of T F'T'-strategists), for scenarios
with stochastic strategy review and F' calculated across agents in the seftlement that share the
same strategy.
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Notably, however, the highest average cooperation rates and average population of
“SO evolutionary” household agents, across all simulated scenarios appears in this case,
similarly to the corresponding scenarios of Figure[d.9] Although we observe lower levels
of corresponding average cooperative behaviour, that seem to be decreased with time,
we do not anticipate that a higher initial population of agents will substantially change

the conclusions drawn from our simulations here.

Distribution of strategies

In this section we shall assume an environment with initially 10 agents on average and
different initial distribution of strategies. We conduct three different sets of experiments,
each one with different initial distribution of strategies, giving higher rates to each one

of the assumed agent strategic behaviours.

For the first set of experiments we assume an initial distribution of 90% C'-strategists,
10% D-strategists and 10% T F'T-strategists. Intuitively, we expect higher rates of av-
erage cooperative behaviour, since agents in the corresponding scenarios of Figure
adopt the highest ones observed in our simulations. Indeed, we observe that agents in
these scenarios adopt higher rates of average cooperative behaviour; however, the av-
erage populations of “SO evolutionary”” household agents are in the same range as the
ones in the corresponding simulation scenarios. Simulation results for the respective

scenarios are not shown here, but can be found in the Appendix [B| (Figure [B.2))

For the second set of experiments we assume an initial distribution of 90% D-
strategists, 10% C-strategists and 10% T F'T-strategists. Naturally, we now expect lower
rates of cooperative behaviour (and, accordingly, higher rates of defective behaviour).
Indeed, agents in these scenarios adopt lower cooperative behaviour than the corre-
sponding scenarios of Figure 4.9} simulation results for these scenarios can be found
in the Appendix [B] (Figure B.3). Again, we observe that the average populations of “SO
evolutionary” household agents for these scenarios are in the same range as the ones of

the corresponding scenarios.
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For the last set of experiments here, we assume an initial distribution of 90% T'F'T-
strategists, 10% D-strategists and 10% C'-strategists. Now, T'F'T" strategy is an effective
technique for reducing conflict within a population and can be successful, provided that
some necessary conditions apply; being nice, retaliating, forgiving and non-envious [J5].
Since the optimal strategy for an agent depends on its initial popularity (and on the
length of the game), the specific experimental setting (favouring 7°F'T") establishes very
favourable conditions under which cooperation in the simulated society based on reci-
procity may emerge and evolve. Simulation results for these scenarios are shown in Fig-
ure We report that agents now adopt a cooperative behaviour that is even higher
than the corresponding scenarios of Figure

Interestingly, the average populations of “SO evolutionary” agents are remarkably
higher than the ones of the corresponding scenarios of Figure 4.9} irrespective of review
time periods and agent fitness function calculation method. We note that the population
growth rate achieved by the ‘SO evolutionary” household agents for the scenarios of
Figure 4.14] is on average 0.083%, a very high rate that is both higher than the one
achieved by the “SO” agents, which was 0.077%, and also closer to 0.1%, which is the

maximum growth rate considered in our simulations (cf. Section 3.1.3).

Randomness

In this section we again simulate agents with the same setup as in the scenarios of
Figure 4.9, however, while an agent, when facing another in a game, still selects an ex-
change behaviour that is in line with its strategy, there is now a possibility of randomly
selecting the opposite (cooperative or defective) behaviour than the one currently de-
fined by its strategy. This somewhat mirrors situations where agents “make mistakes”
or have “a trembling hand” [S1]. We conduct two different sets of experiments, one
with lower (20%) and one with higher (40%) error rates, signifying the probability of

selecting the opposite action (of course, the strategy of the agent remains unaltered).
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Figure 4.14: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (left, including that of T'F'I" agents), for scenarios involving an initial
rate of 90% of T F'T-strategists, with stochastic strategy review and F' calculated across agents
in the settlement that share the same strategy.
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In simulation scenarios with 20% error rate, we observe that when F' ~ U, the “SO
evolutionary” household agents are able to achieve slightly higher population sizes on
average than the ones of the corresponding scenarios of Figure and with somewhat
higher average rates of cooperation behaviour. By contrast, when ' ~ R, we observe
that agents adopt remarkably higher rates of defective behaviour than the correspond-
ing scenarios of Figure and there is a lower average number of “SO evolutionary”
household agents, similar to the “independent” behaviour mean population size. Simu-

lation results for these scenarios can be found in the Appendix [B| (Figure [B.4).

For the second set of experiments, we adopt a 40% error rate. Simulation results
for these scenarios are shown in Figure When F' ~ U, we observe that the aver-
age population sizes of “SO evolutionary” household agents are somewhat in the same
range with the ones of the corresponding scenarios of Figure #.9 We also report a
lower average number of 7" F'T'-strategists and a higher average number of C-strategists,
particularly when 7' = 8 years, thus, rendering higher average cooperation rates from
~ 60% up to ~ 80%. When F' ~ R, and particularly when 7" = 16 (Figure {4.15g),
we observe a low average number of “SO evolutionary” agents, even lower than the “in-
dependent” behaviour mean population size. In addition, while the average number of
C-strategists is the same as in the corresponding scenario (cf. Figure[4.9g)), we observe a

lower average number of 7' -strategists and a higher average number of D-strategists.

Overall, however, adding more or less randomness “uniformly” in agent actions does
not appear to significantly affect our simulation results, since rates of average cooper-
ative behaviour of strategic agents exhibit the same trend with the ones of the corre-
sponding scenarios of Figure [4.9] that is, lower when F' ~ R and higher when F' ~ U,
respectively. However, there is a perceived difference of average agent population; we
observe a slightly higher average number of agents when I’ ~ U, while when F' ~ R,
and in particular when 7' = 16 (c¢f. Figure 4.15g), the average population size of “SO
evolutionary” agents drops by ~ 15% with respect to average agent population for the

corresponding scenario of Figure #.9g
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4.5 Conclusions

Building on key EGT concepts, in this chapter we simulated a series of repeated games
with non-static payoffs, played among a finite but not constant population of autonomous
strategic agents, representing Minoan “households”. In particular, we simulated the
households’ behavioural evolution when interacting by exchanging resources among
themselves by assuming that exchanges are modeled via two-player games, and consid-
ering various scenarios and initialization setups. The strategic agent interactions, and
their effects on agent utility, drive the continuous re-organization of the social structure,
and naturally lead to the survival of the most successful strategies. The focus on agent,
rather than strategy, fitness, is a departure from “standard” EGT, and allows us to deal

with problems like the one here.

Our results indicate that scenarios that are better in sustaining higher agents popu-
lation are those at which agents adopt new strategies in a stochastic manner and agent
performance is compared to that of their immediate community—especially to that of
agents in the group that adopt the same strategic behaviour—rather than the entire so-
ciety. In these scenarios, agent populations converge to adopting cooperative strategies,
despite this behaviour being in contrast to that prescribed by the stage game Nash equi-
librium. Furthermore, results are in line with the view that, though complex societies
emerge to a large extent due to conflict and competition, these social conditions sel-
dom exist without cooperative agreements, alliances and cooperation networks in soci-

eties [I118} 58]].



Chapter 5

Incorporating a Natural Disaster

component

In this chapter we further extent our ABM system by employing a natural disaster com-
ponent for simulating the effect of such a catastrophe on the social organization of an
artificial past society. In particular, we study the extent by which the cataclysmic vol-
canic eruption of Thera (Santorini) impacted the Minoan social evolution. Considering
agriculture as the main production activity sustaining the human population, we evalu-
ate the volcanic eruption impact on “household” agents social organization, focusing on

the wider area of Malia region at the island of Crete.

Results over a number of different simulation scenarios demonstrate that household
agents are able to sustain themselves after the natural catastrophe event. However, in
some scenarios we observe noticeable changes in the settlements’ distribution, relating
to significantly higher migration rates immediately after the eruption. Moreover, the
eruption appears to have had a strong impact on social behaviour, transforming the ini-
tially cooperative agents’ behaviour to a non-cooperative one. This provides support
for archaeological theories suggesting that the Theran eruption led to an apparent break-

down of the Minoan socio-economic system, partly due to inner community competition
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and conflicts.

Our work in this chapter provides certain contributions, also illustrated in Figure

below:

e We incorporate spatial analysis techniques to our data model, towards the devel-
opment of a simple natural disaster module representing a volcanic eruption catas-

trophe, able to also capture associated sudden-onset and slow-onset disasters.

e We employ a natural disaster module into archaeological agent-based simulations
for assessing the imminent social crisis in terms of agents social structure adapta-
tion, agent community numbers and sizes, migration behaviour and agents strate-

gic behaviour evolution, before and after a natural catastrophe event.

e We conduct a systematic evaluation of several natural disaster scenarios on social
change, based on archaeologically traceable environmental and human impact of

the mid-2nd millennium BCE Santorini eruption to the Minoan civilization.

explore specific properties and
patterns of archaeological information

adopt and adapt discipline
RN oriented approaches to model
agents and their interaction
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© Archaeology

Modeling , () simulate and assess ABM
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Geographical computational archaeology
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capture agent environment

Figure 5.1: Overview of involved scientific fields and contributions in Chapter
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The remainder of this chapter is structured as follows. Section [5.1] provides an
overview on the archaeological background regarding the natural disaster modeled,
based on archaeological evidence about the volcanic eruption of Santorini island. In
section[5.2]presents associated characteristics of the respective natural disaster that were
taken into account for transforming the conceptual model to computational terms. Sec-
tion then records our evaluation on the impact of the simulated natural disaster on
the artificial Minoan society—by first detailing the simulation parameters for the various
scenarios considered, and then analysing the obtained results for our case study. Finally,
Section [5.4] concludes this work by providing main outcomes of our work presented

here. Parts of the research described in this chapter appeared originally in [27].

5.1 Background

As already mentioned in Section [2.5] a series of changes in the Minoan society were
triggered by the LM (Late Minoan) IA or ca. 16th c. BCE Santorini eruption. These
changes would have caused the breakdown of the Minoan system over the course of
a few generations, during LM IB (15th c. BCE). Archaeologists hypothesize that the
eruption would have initially caused major problems in food production and distribu-
tion, undermining central authority and leading to a process of decentralization; this
fragmentation would then have led incrementally to internal conflict. However, despite

the many destructions and abandonments documented, Minoan culture survived.

Moreover, there is also no doubt that during the eruption large amounts of ash and
pumice were emitted. Deposits of tephra originating from the Minoan Santorini erup-
tion have been found dispersed in many Cretan sites. However, distinct volcanic ash
layers are not apparent in the open hilly landscape of Crete [17]. While ash veils from
a volcanic eruption normally clear up within a few years, dendrochronological work
suggests limited plant growth for up to a decade [7], rendering its impact detrimental to

farms, at least on the eastern half of island of Crete.
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It may further be assumed that the eruption was accompanied by one or more tsunamis
[112]. Tsunami generation and simulations suggest that the north coast of Crete was
struck by highly variable wave amplitudes, ranging from a few to almost 30m with
inundations of up to 300m inland, considering caldera collapse [101]. However, new
evidence suggests that tsunamis can only have been caused by pyroclastic flows, where

reasonable estimates reach up to a maximum of 10-12m height [98].

Based on the above, we may now form and describe the conceptual natural disaster
sub-model incorporated in our ABM system, in an attempt to provide insights to whether
the effects of the Santorini eruption set in motion the process that led to the breakdown

of Minoan society in ca. 1450 BCE.

5.2 Modeling the Volcanic Eruption of Thera

We assume that the natural disaster sub-model takes effect at 1630 BCE, that is, ap-
proximately the date of the eruption estimated by earth scientists [40]]. In order to con-
ceptualize the model, we considered associated sudden-onset disasters, such as tsunami,
and slow-onset disasters, such as the volcanic ash, and their effects on agriculture and
human life. To that end, we assume and model the following simple processes based on

archaeological estimates (cf. previous Section [5.1):

Tsunami We assume slr meters sea-level rise (including 2m rise on today elevation),
with inundations of ind meters inland in order to define tsunami-affected areas on
the model’s environmental grid. The agricultural impact to the respective areas is
assumed to be rendering associated agricultural fields useless for up to 20 years.
Human (immediate) impact is also assumed to create 10-15% fatalities (mortal-

ity) at the tsunami affected areas, linearly decreasing with distance to coastline

(Figure[5.2a).

Volcanic ash Considering that the volcanic ash layer is smaller at higher elevations and
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clears up within 2-3 years, we assume the environmental impact of the eruption to
be a limited growth to all agricultural fields in the model area for up to 10 years.
The agricultural impact is considered to affect environmental cells inversely linear
to elevation (Figure[5.2b). For simplicity, no immediate human impact is assumed

by the volcanic ash emission process.
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Figure 5.2: (a) Human impact of tsunami (sudden-onset) and (b) agricultural impact of volcanic
ash (slow-onset) disasters in our modeling area, associated with the volcanic eruption process,
incorporated in the natural disaster module.

We apply simple spatial analysis to the various environmental feature data in order
to model the above processes as parts of our simple natural disaster module; results of
the analysis are shown in Figure [5.2] The respective component is incorporated in our
ABM system for studying and evaluating the impact of the volcanic eruption of Thera
on different social organization paradigms of Minoan household agents located in the

wider area of Malia at the island of Crete (see Figure [3.6).
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5.3 Simulation Experiments and Results

Model parameters are initialized to values that correspond to archaeological records
or estimates found in archaeological studies relevant to the period of concern efc. (cf.
Section [3.3.1)). Thus, in our default case volcanic eruption scenarios category, we set
slr = 10m sea-level rise, with inundations of ind = 300m for the definition of the
tsunami affected areas, based on archaeological estimates. We also define another
2 volcanic eruption scenarios categories, the extreme and the realistic case, as will
be explained later on. In all simulation experiments below, an infensive agricultural
regime is employed by household agents, and it is also required that agent settlements
are built near aquifer locations. Mortality rates for the natural disaster sub-model—
that is, the probability of annual deaths among household individuals located at the
tsunami-affected area—were initialized to 10% and 15%. Moreover, we evaluate the
performance of agents that use a self-organized social behaviour against those that self-
organize but do not change their relations (hierarchical), in terms of population growth

achieved.

Overall, 12 experimental scenarios were simulated, and each scenario was simulated
for 30 runs, for a total of 360 simulation runs = 30 x 2 (agent organization paradigms)
% 3 (volcanic eruption scenarios) x 2 (mortality rates). In all figures below, we depict
shaded areas that correspond to 95% confidence intervals around lines corresponding to

average number of household agents, number of settlements and settlement sizes.

5.3.1 Default case scenarios

For the default case volcanic eruption scenarios, we report that average agent population
size (number of households) increases with time, regardless of mortality rates, exhibit-
ing similar viability potential for both the self-organization and hierarchical organization
structures, as shown in Figure Additionally, we observe no human losses; during

simulation runs, no household agent was settled at tsunami-affected areas at the time of
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the eruption, where fatalities are introduced by the model.
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Figure 5.3: Number of household agents over 2000 (yearly) time steps for the default case
scenario, considering 10% mortality rate.

We do observe, however, an increase of 60% on the average number of settlements
(Figure[5.4). This is due to higher migration rates observed immediately after the erup-

tion, as further stated in our observations.

Moreover, we report an overall decline of 30% on the average number of household
agents per settlement after the eruption (Figure [5.5)). Therefore, changes in settlement
numbers and sizes are observed due to the agricultural impact of the eruption; more and
smaller size settlements continue to cultivate the land after the eruption. Intuitively, one
could assume that the layering of volcanic ash and the subsequent degradation of soil

quality led to increased migration.

We note that, in all simulation results we resented above, the performance of the
self-organized social organization paradigm appears to be (slightly) better in sustaining
higher agent population and settlement sizes than the (static) hierarchical one. More-

over, simulation scenarios considering 15% mortality rate exhibit a similar behaviour,
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Figure 5.4: Number of agent settlements over 2000 (yearly) time steps for the default case
scenario, considering 10% mortality rate.

thus, they are not presented here. Now, since no human losses are observed for the de-
fault case scenarios, we attempted to manually “move” (set) at the time of the eruption
existing agent settlements to tsunami affected areas, in order to evaluate the human im-
pact of the natural disaster on the artificial society. We assume the following two (2)
alternative scenario cases: (i) moving the closest existing settlement to the geographical
location of the archaeological site of Malia; and (ii) moving two (2) closest existing

settlements to randomly selected tsunami affected geographical locations.

In what follows, we refer to the former scenarios category (i) as extreme case sce-
narios, where the impact of the tsunami waves at the archaeological settlement of Malia
presupposes an unrealistic parameterization to the natural disaster sub-model; the site
is located in an elevation of slr = 18m (wave height) and a distance from the coast
tnd = 670m (inundation). We also refer to scenarios category (ii) as realistic case sce-
narios, since the default setup of the natural disaster sub-model was used (sir = 10

and ind = 300). Moreover, we present simulation results where 15% mortality rate was
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Figure 5.5: Number of agents per settlement over 2000 (yearly) time steps for the default case
scenario, considering 10% mortality rate.

introduced and not for 10% mortality rate. In both cases, however, simulation results ex-
hibit similar effects; nevertheless, those are more intense and noticeable for the former

(15% mortality rate), and thus, discussed here.

5.3.2 Alternative scenarios

Simulation results on average household agents’ population size are illustrated in Fig-
ure[5.6] We observe that agent population size is now reduced for both the self-organization
and hierarchical social organization paradigms, reaching up to ~ 8% death toll for the
extreme case scenario (Figure[5.6a) and up to ~ 16% for the realistic case scenario (Fig-
ure [5.6b), respectively. This is due the fact that 2 out of 3 settlements on average (over

30 runs) were struck by the tsunami waves.

By contrast, we observe an increase on the average number of settlements of ~ 90%
for the extreme case scenario and of ~ 150% for the realistic case scenario, respectively,

as depicted in Figure For the realistic case scenario, in particular, we observe more
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Figure 5.6: Number of agents over 2000 (yearly) time steps for (a) the extreme case scenario and
(b) the realistic case scenario, considering 15% mortality rate.

settlements after the volcanic eruption for household agents adopting the self-organized

social behaviour, rather than the hierarchical (static) one.
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Figure 5.7: Number of settlements over 2000 (yearly) time steps for (a) the extreme case scenario
and (b) the realistic case scenario, considering 15% mortality rate.

In addition, we observe an even more abrupt decline on the average number of house-
hold agents per settlement (settlement size) after the eruption, of ~ 40% for the extreme

case scenario (Figure and of ~ 55% for the realistic case scenario (Figure[5.8D)),
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Figure 5.8: Settlement sizes over 2000 (yearly) time steps for (a) the extreme case scenario and
(b) the realistic case scenario, considering 15% mortality rate.

Therefore, we observe a totally changed landscape consisting of many “small-size”
settlements after the eruption rather than a few and higher in size communities before
the eruption. This major change is a result of the environmental impact by the volcanic
ash and pumice, as well as the human impact attributed to the tsunami waves that struck
settlements located near to the coast. As a result, we observe that household agents are
being “forced” to migrate to other (better) environmental areas due to impact of the nat-
ural hazard on agriculture and subsequent production damage and loss. We report that
before the eruption, migration rate for the agents—that is, average number of households
out of the total number of households that migrate annually to other locations—was ~
1%; while immediately after the eruption, migration rates were increased to ~ 15%, ~

20% and ~ 25% for the default, extreme, and realistic case scenarios, respectively.

Moreover, since household agents are able to store any surplus resources in their
storage, for up to several years (default: 5), we report on the average amount of re-
sources stored before and after the time of the eruption, in order to further examine the
high migration rates and percentage of household agents being potentially “undernour-
ished”. The average amount of resources stored by household agents during the sim-

ulation period is similar for all scenarios, however, agents adopting the self-organized
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social behaviour appear to have an advantage on the amounts they were able to store
after the volcanic eruption. In particular, storage average values drop to ~ 95% imme-
diately after the time of the eruption; however, self-organized household agents succeed
to store even more than before the eruption, after a few decades from the time of the
eruption until the end of the Minoan period, while hierarchically organized agents also
manage to bounce back in terms of food stored (Figure[5.9). Moreover, we observe that
after the eruption, storage values are slightly higher for agents adopting a self-organized

social behaviour than agents employing a static hierarchical social paradigm.
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Figure 5.9: Agent average storage over 2000 (yearly) time steps for the realistic case scenario,
considering 15% mortality rate.

Certainly, the impact of a natural disaster on a human society tends to affect also
aspects of its community life, since essential functions of the society (such as the allo-
cation of resources) are interrupted or destroyed. Therefore, in order to assess the social
crisis potentially caused by the volcanic eruption impact on the artificial society, we
also provide simulation results employing our alternative agent self-organization social
paradigm that is driven by the interactions of strategic agents operating within a given

social organization group, as described previously in Chapter [}
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5.3.3 Social impact

We simulate additional scenarios, considering that the agents employ an “evolutionary”
self-organization social paradigm; however, the number of initial settlements are now
set to 20. In this way the evolution of strategic agents’ behaviour during the simulation
can be better observed. To this end, we evaluate the performance of agents that play

games and self-organize, in terms of population growth achieved.

In particular, we examine the evolutionary self-organization social behaviour setting
that was able to achieve the most cooperative behaviour observed. In the previous chap-
ter, we have shown that agent populations converge to adopting cooperative strategies,
despite this behaviour being in contrast to that prescribed by the stage game equilib-
rium. In particular, cooperative behaviour was more widespread when agent fitness was
evaluated among other strategic agent in their community with respect to their overall

utility rather than their immediate reward, and the adoption of alternative strategies was

stochastic (cf. Section4.4).

The viability results are similar with the previous ones presented here; the intuition
and conclusions drawn from the previous results do not change. Interestingly, however,
we observe that the average number of household agents adopting a defective behaviour

after the eruption is increased and exceeds those that adopt a cooperative one (Fig-
ure[5.10)

This indicates that the eruption also had a strong impact on the social behaviour of
the household agent communities. This observation is in line with the fact that conflict
usually arises due to problems with the allocation of resources for rehabilitation after a

disaster, given its impact on natural resources [40].

"'We assume the same strategic actions for the agents as the ones presented in Section cooperation
(C), defection (D) and equivalent retaliation (T F'T).
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Figure 5.10: Strategic agent population over 2000 (yearly) time steps for the default case sce-
nario, considering 15% mortality rate.

5.4 Conclusions

In this chapter, we attempted to deepen our understanding of the Bronze Age Minoan
civilization’s decline by incorporating natural disaster module in our ABM system for
simulating various scenarios. Specifically, we explored whether the Minoan eruption of
the Thera volcano was a catalyst, through its environmental and human impact, which
triggered a disintegration process in early Minoan communities. Household agents were
assumed to be located in the wider area of the Malia region at the island of Crete, em-
ploying different social organization paradigms. We tried to assess the imminent social
crisis in terms of household and settlement sizes, migration behaviour, and evolution of

agent strategic behaviour, before and after the eruption.

Simulation results over a number of different scenarios show higher non-cooperative
household agent numbers after the eruption. This result potentially provides support to
archaeological hypotheses of decentralization, which led to political fragmentation and

internal conflict with increasing competition, largely related to the acquisition of re-
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sources [42]. Moreover, we observed a significant change in settlement distribution pat-
terns, an effect of high mobility and crop loss rates, rendering a landscape with higher
number of “small-size” settlements during the LM period. Archaeologists argue that
the number of settlements or households, of ritual sites and of funerary sites that were
abandoned during LM IA is considerable, however, they cannot yet distinguish archae-
ologically between a mature (i.e., prior the eruption) and final (i.e., contemporary to the
eruption) abandonment [40]]. In addition, in our simulations increased storage amounts
were also observed after the eruption, suggesting collection of resources organized on
a greater scale. Surprisingly, recent excavations have brought evidence pinpointing to-
wards an increase in storage space in the mature LM IB phase, while the reduction in
population size, change in the distribution of human groups, including their mobility
patterns, and the conversion of food into direct and indirect storage, are all features evi-
denced during LM IB [42]. Overall, simulation results suggest that the Theran eruption

led to a gradual breakdown of the pre-eruption Minoan socio-economic system.



Chapter 6

Simulating Trade across Agent

Communities

In this chapter we put forward a novel agent-based trading module, for simulating the
exchange and distribution of resources across settlements in past societies. The mod-
ule is incorporated in our ABM system populated with autonomous, utility-maximizing
agents corresponding to households; and can employ any spatial interaction model of
choice. As such, it allows the study of the settlements’ trading ability and power, given
their geo-location and their position within the trading network, and the structural prop-
erties of the network itself. We use as a case study the Minoan society during the Bronze
Age, in the wider area of Knossos at the island of Crete, Greece. We instantiate two
well-known spatial interaction sub-models, XTENT and Gravity, and conduct a system-
atic evaluation of the dynamic trading network that is formed over time. Our simulations
assess the sustainability of the artificial Minoan society in terms of population size, num-
ber and distribution of agent communities, with respect to the available archaeological
data and spatial interaction model employed; and, further, evaluate the resulting trading
network’s structure (centrality, clustering, efc.) and how it affects inter-settlement orga-
nization, providing in the process insights and support for archaeological hypotheses on

the settlement organization in place at the time.

139
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Simulation results show that modeling a trading network that takes into account
mainly the settlements’ “importance” (e.g., in terms of population size or lifetime) rather
than solely the distance between settlement locations, can produce settlement patterns
similar to the one that exist in archaeological record. However, this is most appropriate
when the settlements’ importance is known or can be derived based on archaeological
evidence, thus allowing such a trading model to better capture the trend in settlement
numbers that exist in the archaeological record. By contrast, when settlements’ impor-
tance is not known, or cannot be properly modeled, then a trading network model should

favour the distance between settlements rather than their importance.

Overall, the evolution of the values of the graph-theoretic indices characterizing our
simulations’ network, (i.e., clustering coefficient, in-degree and out-degree centrality)
indicate that the Minoan’s trading network (at the modeling area) was affected by the
Theran volcanic eruption. Specifically, it appears that the trading network in the Late
Minoan (LM) period becomes clearly more dense, while it seems that there exist only
a few “important centres” at the time, which is in line with the archaeological record.
Moreover, it appears that the network’s structure and interaction patterns are to an extent

reversed after the Theran eruption, when compared to those in effect in earlier periods.

The main contributions of our work in this chapter can be summarized as follows,

also illustrated in Figure [6.1] below:

e We provide a novel trading model that readily incorporates spatial interaction
paradigms to simulate trade among self-organized communities of autonomous

utility-based agents.

e We incorporate a natural disaster sub-model into the ABM, to provide insights on
how a natural disaster scenario could have affected the trading network behaviour

and further the agent communities organization structure.

e We utilize graph theory to analyze the trading network, and thus interpret simula-

tion results in terms of the network’s potential centralization, clustering behaviour
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or potential settlement organization during the whole simulation period.

e Our systematic study of the dynamic trading network provides support to certain

archaeological hypotheses related to the period and modeling area of study.

e We exploit simulation results to derive intuitions regarding the appropriateness of

different spatial interaction models.
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Figure 6.1: Overview of involved scientific fields and contributions in Chapter@

The remainder of this chapter is structured as follows. Section provides a brief
overview of formal techniques available for the study of trade in archaeology, and of
existing examples of related archaeological ABMs in the literature. Section [6.2] presents
the theoretical background of the modeling process that was followed for developing
the trading network across settlements, based on both the XTENT and Gravity spa-
tial interaction models. There, we also introduce several concepts from network and
graph theory required for the analysis of the resulting trading network. Section [6.3|then
presents our specific case study of early Minoan societies located at the wider central

area of Knossos in the island of Crete. In addition, we record the empirical evaluation
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of the various trading models, in terms of potential settlement centralization and orga-
nization emerged during the Minoan period, by first detailing the simulation parameters
for the various scenarios considered, and then analysing the obtained results. Finally,

Section [6.5]concludes this work, and provides a brief discussion on simulation results.

6.1 Background

Certainly, in the absence of written records it is not easy to determine what were the
mechanisms of trade, or what was the nature of the exchange relationship. However,
several formal techniques are available for the study of trade, such as the development
of a distribution map for finds or materials, within a specific geographic area [107]]. Con-
sidering such distribution maps, pondered by fall-off analysis, the quantity of a traded

material usually declines as the distance from the source increases.

For instance, let us consider a “down-the-line” trading system [107]. If one site, e.g.
village, receives its supplies of a raw material down a linear trading network from its
neighbour site up the line, it may retain a given proportion of the material for its own
use, and trade the remainder to its neighbour site down the line. If each village does the
same, an exponential fall-off curve will result, as illustrated in Figure@ In some cases,
however, there are regularities in the way in which the decrease occurs, and this pattern
can inform us about the mechanism by which a material reached its destination. As an
example, a different distribution system, through major and minor sites, would produce
a different fall-off pattern, in particular, a multi-modal fall-off curve, since lower-order
settlements tend to exchange with higher-order centres, even if the latter lies further
from the source than an accessible lower-order settlement (Figure [6.2). We note at this
point that in the rest of this paper we shall use the term “settlement” to refer to any site

category, such as village, town, or city.

Now, to the best of our knowledge, the only archaeology-related ABM that utilizes

a spatial interaction model, is that of [54]. The ABM simulates movement of trav-
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Figure 6.2: Relationship between settlement organization, type of exchange, and supply, for re-
sources traded on land. (Left) Down-the-line exchange of village site. (Right) Exchange between
lower-order with the higher-order sites. Adapted from [[107]].

ellers (agents) between settlement locations known through archaeological field survey
in specific regions of Central Greece during the Geometric period and Central Italy dur-
ing Protohistory. The author utilizes an entropy-maximizing model, that is, the Gravity
spatial interaction model, in order to ultimately rank the settlements by the number of
times they emerged as most “important” in the various metrics of the travellers network.
Agents in the ABM are only able to travel to settlements around their neighbourhood
and only to the most attractive site out of three potential destinations. Although the fac-
tual description of the ABM is missing, since the author argues that the mathematics in
the ABM are not the most important consideration, but rather the description of how the

agents interact, some indicative results are presented and discussed

"We could not conduct further analysis or validation of the specific ABM, since the URL of the ABM
source code no longer exists.
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6.2 Modeling the Trading Process

A possible solution to conceptualize exchange and distribution of resources (flows) be-
tween settlements, relies on using a spatial interaction model [107, [110]. The basic
assumption regarding spatial interaction models is that flows are a function of the at-
tributes TW; of the origin location ¢, and the attributes I¥/; of the destination location j
and the "friction” of distance D, ; between the concerned origin and destination loca-

tions. The general formulation of the spatial interaction model is as follows [110]:

L = f(W;,W;, D, ;) (6.1)

In our work here, I; ; represents a measure of “attractiveness” corresponding to the
probability of trade between settlements ¢ and j. D, ; is the distance between the set-
tlement locations Variables W; or I¥/; are used to express a measure of “importance”
for settlement ¢ and 7, respectively. Attributes often used to express such variables are
socio-economic in nature, such as population or gross domestic product in modern so-

cieties.

Since we are calculating settlements’ interaction probability at any given time step ¢

during the simulation, we consider the following attributes:

e P, defined as the ratio of the population (inhabitants) of settlement 5 with respect

to the total population at time ¢, and

e [, defined as the ratio of the number of time steps that settlement j has existed

so far up to .

Then, at any given time step ¢, we define the importance W, of a settlement location

7 as follows:

>The distance factor D; ; is measured as the Euclidean (linear) distance for simplicity. This distance
can be alternatively measured as the Least Cost Path between two settlement locations, considering slope
and elevation as cost surfaces, however, with significantly higher computational cost.
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Wis =/ Pje - /K (6.2)

For example, if at time step ¢t = 1000, .S; settlements exist in the ABM environmental
area, where ¢+ = 1, 2 and the total population is 8000 inhabitants, assuming that S; has
a population of 2880 inhabitants and a lifetime of 810 years and S, has a population of
5120 inhabitants and a lifetime of 360 years up to current (annual) time step ¢, then W, ,

is calculated as follows:

2880 810
=./P K =4/—— 4/——=06-09=0.54
Wi1000 = v/ Pi,1000 - v/ K1,1000 3000 1000 0.6-09=0.5
5120 360
W- =/ P v/ K =4/——4/——=0.8-0.6 =048
21000 = v/ Pa,1000 - v/ K2,1000 000 1000

Thus, settlement S; has a higher weight (importance) than settlement S5, even though
S has an almost double population size than S}, due to the higher lifetime of S; during

the simulation.

Now, past societies of the first farmers in different parts of the world, may be gener-
ally described as independent sedentary and relatively egalitarian communities without
any strongly centralized organization [[107]. Following the development of farming, in
many cases, the farming economy underwent a process of intensification, associated
with developing exchange. Given this, we make the following assumption: at any given
time step ¢, each (household) agent within a settlement 7 is socially contracted as a com-
munity member to give away a portion of its stored surplus ps (e.g., 20% or 80%) to be
communally pooled as the corresponding settlement trading resources N, ; and be traded
away by the settlement later on. We note that the percentage of surplus resources that

an agent is able to give away is user-defined in our ABM.

For instance, if at time ¢ = 1400, settlement Ss3 has i = {1, 2, 3} household agents,

where each agent has st; surplus resources in its storage, e.g., st; = 100, sty = 200, st3
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= 50, while the user-defined percentage of stored surplus to be given away is ps = 20%,

then the settlement’s overall trading resources unit Ns3 1409 are calculated as follows:

3
Ns3ia00 = ps - » st = 0.2+ (100 + 200 4 50) = 70
i=1
Then, since the level of interaction or “attractiveness” /;; of settlement ¢ corresponds
to the probability of trading with any other settlement j, settlement ¢ can ultimately trade
and exchange resources F;;; with settlement j at time step ¢, by distributing its trading

resources /V; ; based on its interaction probability /;; ;, as follows:

]i,j,t : Ni,t
n
> i dige

To give some intuition on the calculation of E; ;; let us provide another example;

Ejju = (6.3)

however, in order to not overload notation, we are dropping the ¢ index, when this is not
required. Thus, if we consider a set of potentially interacting settlements S; where i =
{1,2,3,4,5} and I, ; is provided by some spatial interaction model, e.g., the XTENT
or Gravity used in this work, so that [; o = 0.2, I 3 = 0.6, [; 4 = 0.8, I; 5 = 0.4 then
settlement 57 will distribute a portion of its trading resources, e.g., N7 = 200 (in kg) to

settlement S5, as follows:

Iio- Ny 0.2 -200
By = = — — 920
> I 02+06+084+04

J=1

As such, S; will give away 10% of its overall trading resources to settlement So,
30% to settlement S3, 40% to settlement S, and 20% to settlement S5—in the event that
trade occurs with the corresponding probabilities. Similarly, when the trading process
is over, settlement ¢ will proportionally distribute the “public good” payoff among its
household agents, based on their number of inhabitants. Let us now elaborate on the

XTENT and Gravity spatial interaction models, immediately below.
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6.2.1 The XTENT model

The XTENT model asserts some relationship of settlement size and distance, whereby
the larger dominates the smaller if the distance between them is sufficiently small,
whereas the smaller retains autonomy if that distance is large enough [109]. Thus, it
assumes that a large centre will dominate a small one if they are close together; in
political terms the smaller site has no independent or autonomous existence. This ap-
proach overcomes the limitation of the Thiessen polygons method, where territories are
assigned irrespective of the size of the settlement, and where there are no dominant or
subordinate settlements, allowing a simple approximation of the political reality and a

hypothetical political map to be constructed [107].

In our ABM, the “attractiveness” determining the level of trading interaction of set-
tlement ¢ (origin location) with settlement j (destination location) that relies on the
XTENT formula, is proportional to the importance of the destination location and de-

clines linearly with their distance, as follows:

Ii,j = WB —m:- D@j (64)

J

where [ and m are constants used to adjust the required level of the effect that the
importance WW; of settlement j and the distance D; ; have on the overall “attraction” be-
tween settlements ¢ and j, respectively. Of course, one has to experiment with specific
values for # and m to reflect the required attraction between settlements ¢ and j. More-
over, in order to turn /; jinto a meaningful trading probability between settlements 7 and

7 we choose to scale its value to [0;1] (min-max normalization).

Given the [; ;’s, we are able to provide visualization intuitions about settlement terri-
tories by coloring each “cell” in the modeling area with the same color of the settlement
which is mostly attracted to (in this way the territory of some smaller settlement is sim-
ply absorbed to that of its adjacent larger one). For instance, if we assume thirty (30)

different settlements as destination locations j and that origin locations ¢ are all other
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landscape cells in our modeling area in this paper, considering 5 = 1.5 and m = 0.005,
then the XTENT model provides a landscape partitioning (territories) for the trading

process as the one illustrated in Figure [6.3]
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]
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Figure 6.3: Visualization of “territories” of 30 different settlements (of type village, town or
city) within the modeling area, considering the XTENT spatial interaction model, considering
8 = 1.5 and m = 0.005.

In the example of Figure [6.3] each settlement is depicted with a unique coloured
circle, where its size represent its importance with respect to its type (village, town or
city in this example), while its territory (landscape partitioning) is depicted with the
same color. In particular, settlement 8 (of type village), located near the centre of the
modeling area, will most probably trade with settlement 32 (city) or even settlement 10
(village), since it is attracted to settlements that are relatively close in range, undervalu-

ing the importance of settlements that are further away.
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6.2.2 The Gravity model

The Gravity model is the most common formulation of the spatial interaction method [[72,
69]]. It is named as such because it uses a similar formulation as the Newton’s law of
gravity. The “attractiveness” between the locations of origin (of trade) ¢ and destination
J that relies on the Gravity model is proportional to importance, and inversely propor-

tional to their respective distance [[110]:

Lj = W;/Dj} (6.5)

In the above formula we do not take into account the importance of the origin set-
tlement IV, since we need to model the trading probability and the “attraction” of the
destination settlement 7, same as in the XTENT formula, thus the “attractiveness” be-
tween settlements ¢ and j is not reciprocal. One would of course need to experiment
with A in order to efficiently reflect the required (growing) effect that distance have to
the trading probability between settlements ¢ and j. In our simulations experiments and

same as with the XTENT model, I; ; is also scaled to [0;1] (min-max normalization).

Let as also provide visualization intuitions about settlement territories relaying on
the Gravity model, by assuming the same thirty (30) different settlements as in the pre-
vious example (c¢f. Figure[6.3)) as destination locations, and origin locations to be any
landscape cell in the modeling area, considering A = 0.2. Now, settlement 8 (village)
will most probably trade with settlement 32 (city) or even settlement 30 (town), since it
is attracted with settlements of high importance, that is of type city or town, despite its

distance from them.

6.2.3 Discussion on spatial interaction models used

In the simulation scenarios described later on, we consider two different views on the

trading probability between settlements; one favouring the distance between settlements
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Figure 6.4: Visualization of “territories” of 30 different settlements (of type village, town, city)
within the modeling area, considering the Gravity spatial model, considering A = 0.2.

rather than its importance, relying on the XTENT model with 5 = 1.5 and m = 0.005
(Equation[6.4), and another favouring the importance of settlement locations rather than
the distance between them, enabled by the Gravity model with A = 0.2 (Equation [6.5).
We will observe these models’ effect on settlement organization and distribution patterns

in our simulation results.

The aim of assigning the specific values of 5 and m for the XTENT model, and of
A for the Gravity model, is to adequately model the required trade-off between settle-
ments distance and importance for the specific case study’s geographic area described
later on (maximum distance of about 40 km). To provide an intuition on the two different
views on the trading probability between settlements, let us assume that the probabil-
ity distribution of “importance” for a potential destination settlement is as illustrated in
Figure [6.5] (the blue dashed sinusoidal curve). The corresponding probability distribu-
tion of interaction of an origin settlement with the respective destination location is then

depicted with the red and yellow curve, considering the XTENT and Gravity models,
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respectively. As shown in Figure [6.5] the distance between the origin and destination
settlements has a greater role when the XTENT method is employed, while it has a

lesser impact when the Gravity model is in use.
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Figure 6.5: Probability distribution of importance of a potential destination settlement location
and the corresponding distribution probability of interaction of an origin settlement location,
considering the XTENT model with 5 = 1.5, m = 0.005 and the Gravity model with A = 0.2.

6.2.4 Graph theory for trading network analysis

In our ABM, settlements interact with several other settlements, formulating a different
trading network at every given time step during the simulation, based on the enabled
trading scheme (XTENT or Gravity model). What we need to explore in such a dynamic
trading network of settlements, is whether and to what degree some settlements are
more important or central than others, based on their trading interactions; and whether

settlements tend to create groups characterised by a relatively high density of trading
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interactions. Thus, in order to better understand and provide insights on the consequence
of patterns of interaction between settlements, we adopt in our work some of the main

approaches that network and graph theory has developed. We describe these below.

To begin with, a trading network can naturally be represented by a graph. A graph
consists of a set of points and a set of edges or ties connecting pairs of points. In our
case, each settlement in the trading network corresponds to a point in the graph and each

trading interaction corresponds to an edge that connects a pair of settlement locations.

A fundamental measurement concept for the analysis of network graphs is centrality,
that can highlight important information about the network organization and its struc-
ture [49]]. Centrality index describe point locations in terms of how close they are to
the “centre” of the network activity. Thus, settlements who have more interaction ties
(edges) to other settlements may be in advantaged positions. Because they have many
interaction ties, they may have access to more of the exchanged resources over the net-

work as a whole, and hence are less dependent on other settlements [64].

Whenever two settlements trade, they are directly connected by an edge, and thus,
they are adjacent. The number of other settlements to which a given settlement is ad-
jacent is called the degree of that settlement. A simple and effective measure of a set-
tlement’s centrality is its degree. Since resources can be exchanged in a single edge
direction towards another settlement, the temporal trading network of the ABM is rep-
resented as a “directed” graph and it is important to distinguish centrality based on
in-degree, from centrality based on out-degree. If settlements receive many interaction
ties, they can be described as prominent, or having high prestige, since many other set-
tlements seek to direct resources to them, and this may indicate their importance [64].
Settlements with high out-degree centrality are able to distribute resources to many other
settlements, or make many other settlements aware of their resource exchange potential,
thus being more influential than settlements with low out-degree centrality; although it
might matter to which settlement they are distributing resources, this measure does not

take that into account [64]].
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Let us now assume that a potential trading network is formulated with n number
of settlements S; (network nodes), at a specific time step during the simulation in our
ABM. This snapshot of the trading network can be represented as a directed graph,
where numerous trading interactions occur between settlements. The in-degree or out-
degree centrality index Cp(.S;) is the number of incoming or outgoing trading edges,

respectively, for a settlement S; [49]:
Cp(S;) =Y _tr(S:, S;) (6.6)
i=1

where, tr(S;,S;) = 1 if and only if S; and .S; interact (trade resources) and thus,
connected by a tie or edge; and ¢r(S;, S;) = 0, otherwise. The magnitude of C'p(S;) for
a settlement j partly depends of the size of the trading network on which it is calculated.
However, since our trading network is dynamic and constantly changes during its evo-
lution, it is desirable to have a measure that is independent of network size. Thus, we

calculate the relative degree centrality C'p'(S;) for a settlement j, which is defined as:

Cp'(S;) = i 6.7)

The effect of network size has been removed by normalizing with max Cp(S;) =
n — 1, since any given settlement S; can at most be adjacent to n — 1 other settlements
in the trading network graph. Overall, the degree of a settlement point can be viewed as

an index of its potential trading activity.

Another view of settlement point centrality, within a “directed” network graph, is
based on the frequency with which a settlement S}, falls between pairs of other set-
tlements on the shortest or “geodesic” paths connecting them, defined as the relative

betweenness centrality index [[136]:
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Cp'(Sk) =

where g;; is the number of geodesics linking .S; and S, ¢;;(Sk) is the number of
geodesics linking S; and S; that contain Sy, and, b;; is the probability that point Sy, falls
on a randomly selected geodesic linking S; with S;. Similarly to the relative degree
centrality Cp’(S) of a settlement Sy, the measure is also independent of the dynamic
trading network size, since it is normalized by the maximum betweenness centrality of a
settlement Sk, thatis (n;—1)(no — 1) — (ng— 1), where n is the number of settlements
with outgoing edges, n; the number of settlements with incoming trading links and ng
the number of settlements with reciprocated edges [[136]]. A settlement point in such a
position of high relative betweenness centrality can influence other nearby settlements
by holding resources in exchange, exhibiting a potential for control of their distribution.

It is this potential for control that defines the centrality of these settlements.

Now, when centrality is applied to the whole trading network graph, such a measure
should index the degree to which the centrality of the most central settlement exceeds
the centrality of all other settlements, and it is expressed as a ratio of that excess to
its maximum possible value for the network graph containing the observed number of
settlement points [49]. Thus, the relative degree graph centrality index varies between 0

and 1, and is defined as follows:

O = TialC0/(5°) = Co'(S)
max 1L, [Co'(57) — Co/(S))]

(6.9)

where n is the number of settlement points, C'p’(.S;) is the relative degree centrality
defined above for settlement S;, and Cp'(S*) is the largest value of Cp'(S;) for any
settlement in the trading network graph. The maximum possible sum of differences

in settlement relative degree centrality, max Y ., [Cp’(S*) — Cp'(S;)], is reduced to

n2—3n+2
n—1

= n — 2 for the relative degree graph centrality index [49].
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Similarly, the relative betweenness graph centrality index varies between 0 and 1,

and is defined as follows:

2. CB'(57) = Cp'(5))]

C8 = x>, (05 (5 — G5 (5]

(6.10)

where n is the number of settlement points, C'5'(.S;) is the relative betweenness
centrality for settlement S; and C'z'(S*) is the largest value of C'5'(.S;) for any settlement
in the trading network graph. The maximum possible sum of differences in settlement
relative betweenness centrality, that is, max y . [C5'(S*)—Cp'(S;)] is reduced to n—1

for the relative degree graph centrality index [136].

Then, high relative in-degree or out-degree graph centrality means that there are few
settlements of high importance, or highly influential settlements respectively, in the trad-
ing network (and thus the most prominent or influential settlement in the network really
“stands out”, making the value of the numerator in Equation [6.9] go up). On the other
hand, low relative in-degree or out-degree graph centrality means that there are many
settlements with a similar level of influence or importance. Accordingly, high relative
betweenness graph centrality means that there are few settlements with high potential for
control in the trading network, while low relative betweenness graph centrality means

that there are many settlements that exhibit a similar potential for control in the network.

To provide visualization intuitions on the relative network graph centrality [49] we
present a snapshot of the trading network developed during a random simulation run.
In the example of Figure [6.6] each settlement node in the trading network is depicted
with a circle, where its size and color represents its relative centrality value [0; 1], with
white color corresponding to the minimum value (0) and black color corresponding to
the maximum centrality value (1). Figure [6.6a) illustrates a trading network of settle-
ments with high relative graph centrality, while the one in Figure [6.6b| shows the same

network but with low relative graph centrality.
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(b)

Figure 6.6: (a) High and (b) low relative graph centrality indices of a trading network of settle-
ment nodes, represented as circles and trading connections as links between them. Settlement
nodes size and color represent their centrality value, from minimum (white) to maximum (black).

Besides the above relative graph centrality indices that will be used to evaluate the
settlement trading network structural evolution, the degree to which settlements in the
network graph tend to cluster together is also examined in our work, by calculating the

network’s average clustering coefficient [133]:

é:lz:ci 6.11)

where 7 is the number of settlements in the trading network graph and C; is the num-
ber of ties between settlement S;’s neighbours, divided by the total number of possible
trading edges between its neighbours. C; represents how connected settlement S; neigh-
bours’ are. Thus, the network’s average clustering coefficient C measures the degree to

which settlements tend to cluster together within the trading network.
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6.3 Case study: the Minoan society in Central Crete

There is not enough information about what kind of relationships existed between the
Minoans or how this ancient civilization was organized before the Post-palatial” (Late
Minoan) period. The sophistication of the Minoan culture and its trading capacity is
evidenced by the presence of writing (mostly found on various types of administrative
clay tablets). The content of the Minoan texts that have been unearthed is predomi-
nantly economic (inventories of goods or resources) and religious. Scholars argue that
even if relations among (and possibly within) the various towns and cities continued
to be contentious and competitive, a common architectural language was beginning
to emerge [93]. This new architectural language marks the beginning of a specifi-
cally Minoan identity, which defines a clear indication that each household was not a
self-sufficient, totally independent economic unit, but that it was involved in exchange.
Moreover, for the later Neolithic and Early Bronze Age, stylistic and petrographic anal-
yses suggest a low-volume circulation of ceramic vessels, compatible with “gift ex-
change” economies, over short and long distances between different communities within
and occasionally beyond the island [[126]. This evidence allows us to conceivably model

such relations as resource exchanges.

We note, however, that we do not intend to generally reduce human relations to ex-
change, as if human ties to society can be imagined in the same terms as a business
deal [S3]. Nevertheless, even Aristotle was speculating along similar lines in his treatise
on Politics. At first, he suggested, families or households must have produced every-
thing they needed for themselves. Gradually, some would presumably have specialized,
some growing corn, others making wine, swapping or trading one for the other [8, 53].
Therefore, although we do not have a clear picture of how human relations (interac-
tions) were actually formed in prehistoric time periods, we need to have a conceivable
conceptual model in mind, and that is done with the simplest possible way: to model
trading among them as an exchange of resources—thus, giving us the ability to encode

the conceptual model as an ABM encompassing various spatial interaction models for
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the resource exchange process, enabling us to explore a range of the its corresponding

trading network structure in turn.

In addition, archaeologists argue that Minoan palaces are considered to be one of the
central factors in bringing about social transformation in the Minoan civilization [19].
In their view, the construction of Minoan palaces came about through a socio-political
“quantum leap” from Chiefdom to State. This leap involved also the introduction of
writing, the first centrally organized religion (the peak sanctuaries), and the develop-
ment of social hierarchy and interacting social networks. Moreover, the size of such
“grand” public structures at several sites requires both a considerable population and
a social cohesion, and it can reasonably be assumed that there were different levels of

importance, i.e. a hierarchy of sites [39].

Starting from the above archaeological information about the Minoan society sub-
sistence and assumptions during their evolution, and associated archaeological data, we
shall try to assess the resulting trading network structure over time and its effect on
the Minoan society social organization at the community level, providing insights on

settlement clustering and organization during the Bronze Age.

6.3.1 Model environment

The environment is considered to be the geographic area of the wider region of Knossos,
located approximately in central part of the island of Crete. As a result, known habitation
sites of the Minoan period where identified, categorized and geolocalized, acquired by
the “Digital Crete” projectE] Agents are located within a 40x30 km area with one (1)
hectare cell size for the grid space. Moreover, the environment has also associated data
layers representing topographical aspects of the model landscape, such as elevation,
slope and aquifer locations, contributing indirectly in agent’s decision-making process,

like where to settle and/or cultivate (Figure [6.7).

3See http://digitalcrete.ims.forth.gr
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Figure 6.7: Modeling area and its topographical features at central Crete, Greece

6.3.2 Model instantiation

The estimated per hectare population for an agricultural Minoan settlement during the
modeled era ranges from 100 up to 400 [71]. In our simulation experiments below, we
assume a density coefficient of 250 people per hectare, that is, the maximum number of
inhabitants per grid cell [39]]. Moreover, the number of household inhabitants in a given
settlement cell is initialized to a random number between 1 and 10. As a consequence,
the maximum number of household agents per settlement’s cell is 25, i.e., 250 divided
by the maximum number of inhabitants per household, that is 10. Household and set-
tlements number and location are initialized based on archaeological record, i.e., the
number of settlements per scenario is set to 21, which are located at known habitation

site locations.
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Initial cell resources at a given simulation run are based on archaeological estimates
on production yield per hectare (ha) pondered by the agricultural regime employed by
the agents. As already noted, agents cultivation systems, can be either “intensive”, pro-
ducing 1500kg/ha or “‘extensive”, leading to a production of 1000kg/ha on an annual
basis (¢f. Section [3.1.4). In our simulations below, we assume that household agents

employ an intensive agricultural practice.

Agent migration radius, that is, the distance that a household agent can migrate to
in one time step is set to the full environmental area (= 40 km). An agent may migrate
only to a cell where known habitation sites exist, based on the archaeological survey
conducted in the specific geographic area. However, we assume a resettlement cost rc
for an agent ¢, which intuitively reflects the decay of potential resources at destination

location with increasing distance:

re; =1 — ¢ 00059 (6.12)

where ¢ is the distance (in km) of the agent to the respective migrating settlement
location. The rate parameter of C' function above is defined as 0.005 in order to achieve
arelatively gradual decay of destination resources for an agent, i.e., model a resettlement

cost of about 20% of agent resources at 40km away.

As a final note, we consider a dynamic population growth, based on the amount of
resources consumed by a household agent during the year. We consider a population
growth rate of about 0.1%, when households consume adequate resources, same as in

the simulations of previous chapters (cf. Section [3.1.3).

6.4 Simulation Scenarios and Results

We simulate trading across settlements of household agents that employ a “self-organization”

social behaviour, as described in Section[3.2] Various scenarios were taken into account
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for the experimental setup, with different parameterization. Specifically, the main sim-

ulation scenarios are for our:

e two spatial interaction models, the XTENT and Gravity ones, and

e two different ways to characterize the importance of settlements, one based on
Equation[6.2] and one based solely on available archaeological data (“site category

bias” below)

‘We note that the natural disaster module is also enabled in our simulations, in an
attempt to provide insights to whether the effects of the volcanic eruption of Thera (San-
torini) affected the trading network behaviour (cf. Section[5.2] However, human impact,
immediately after the Theran volcanic eruption, is assumed to achieve a mortality rate
of 15% at the whole environmental area, due to one or more earthquakes that the erup-
tion was preceded by (and probably even triggered by) and also due to large amounts of
ash and pumice that were emitted. Thus, at the time step of the catastrophic event, each
inhabitant in our modeling area has a 15% probability of dying. This is in contrast to the
simulation scenarios considered in Chapter [5| where such a mortality rate was assumed

only at the tsunami affected areas, linearly decreasing with distance to coastline.

Simulation results are averages for each time step over 30 simulation runs across a
period of 2,000 years (cf. Table in Appendix |Al for the conventional chronology
dates (BCE) of the Minoan period used in our ABM simulation scenarios). Moreover,
in all figures below, we depict shaded areas that correspond to 95% confidence intervals
around lines corresponding to agent or network characteristics. In order to assist the
reader, in all figures the legends are also ranked in accordance to the relative perfor-

mance of the corresponding agent or trading network behavioural characteristic.

In terms of simulation time, the process can be quite expensive, since a single run
(composed of 2,000 yearly time steps) takes approximately 24 hours on a single core 2.6
GHz computer. However, by utilizing the Grid computer of the Technical University of

Crete (TUC), all the above 120 simulation runs were executed on thirty (30) dual-core
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(2.6GHz) nodes (with 4GB ram each) in just two (2) days (this would have required

otherwise four (4) months on a single-core computer).

We now proceed to discuss our findings regarding the trading network analysis per-
formed on our area and era of interest, based on the spatial interaction models enabled

and the available archaeological data.

6.4.1 Civilization sustainability and trading network evolution

We begin with presenting our findings regarding the effect of the different spatial in-
teraction models on household agent population, settlements number, and their size.
Simulation results are presented in Figure |6.8| for both the XTENT and Gravity models,
considering a low percentage of stored surplus trading scheme, i.e. ps = 20%, while
agents in the model can settle or migrate only to known archaeological site locations at
any specific time step. The 20% ps value is in our view a realistic assumption for the

age and subsistence regimes studied, given that no sea trade is modeled in this work.
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Figure 6.8: (a) Number of settlements and (b) settlements size over 2,000 yearly time steps
(Minoan period), considering the XTENT and Gravity spatial interaction models.

When the XTENT spatial interaction model is used, we observe that the number of
settlements remains almost constant until the end of the Early Minoan (EM) period, and

then gradually increases over time, especially during the Middle Minoan (MM) period
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and even more after the volcanic eruption and Late Minoan I (LM I) period (Figure[6.8a).
The number of agents (households) per settlement also appears to increase until the end
of the EM period, and then gradually drops in the MM period. Immediately after the
volcanic eruption, settlement sizes abruptly drop for a few decades, and start again to

gradually increase during LM IT and LM III periods (Figure [6.8b).

Then, when the Gravity model is employed for the trading process across settle-
ments, we observe a similar behaviour with that of XTENT for settlement numbers and
sizes, although the number of settlements is slightly lower than the XTENT model dur-
ing the EM period, and then slowly increases over time, until the end of the MM period
(Figure . For both spatial interaction models, however, we observe an increase on
settlements number and a gradual decline in settlement sizes during the MM period,
due to the availability of a lot more known site locations for migration (cf. Figure [A.]]
in Appendix [A). We also observe a relatively constant number of settlements after the
volcanic eruption until the end of the LM period, with the XTENT model having higher
numbers at about 80 settlements and the Gravity model at about 40 settlements on aver-
age. On the other hand, the number of agents per settlement is slowly increasing after
the volcanic eruption until the end of the LM period, with the Gravity model achieving

higher numbers of household agents on average than the XTENT model (Figure [6.8b).

Overall, a higher number of settlements is observed after the EM period, with an
in-parallel decline on the number of households (agents) per settlement. The increasing
trend of settlement numbers is in line with the archaeological record, at least until the
LM I period, when actual settlement numbers abruptly decline until the beginning of
the LM II period (see Figure [A.T]in Appendix [A]), and then settlement numbers start to

increase again until the LM III period.

We also report that the overall household agent population is constantly increasing at
a dynamic population growth rate from about 820 initial agents to about 3450 and 2950
agents for the XTENT and Gravity spatial interaction models, respectively, with only an

abrupt and short decline immediately after the volcanic eruption (Figure[6.9a). Further-



164 CHAPTER 6. SIMULATING TRADE ACROSS AGENT COMMUNITIES

more, the stored surplus of agents is gradually decreasing during the whole simulation
period, from about one ton to one half of a ton per household for both the XTENT and
Gravity spatial interaction models, with only an abrupt increase immediately after the
volcanic eruption of Thera and then again gradually decreasing until the end of the LM
period (Figure [6.9b). This “shock™ on the average storage of households immediately
after the volcanic eruption, seems to ultimately affect the settlement trading network,
since changes in clustering and centralization rates are observed during the LM period,

as it will be explained later on.
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Figure 6.9: (a) Population and (b) average storage of household agents over 2,000 yearly time
steps (Minoan period), considering the XTENT and Gravity spatial interaction models.

Let us now proceed on the study of the structural behaviour of our settlement trad-
ing network. In Figure [6.10] we present the average relative in-degree and out-degree
network graph centralities during the 2,000 years simulation period. When the XTENT
model is employed, the relative in-degree graph centrality gradually drops from about
25% to 20% until the end of the EM period (see Figure while the relative out-
degree graph centrality gradually increases from about 20% up to 55% in the same time
period (see Figure [6.10b)); thereafter the relative out-degree graph centrality gradually
declines to about 40% until the end of the MM period, abruptly declinesﬂ immediately

4Short “jumps” observed in the figures immediately after the volcanic eruption are not real, but a
result of the Savitzky—Golay smoothing filter applied on the data [115]]. The filter increases the precision
of the data without distorting their tendency, by fitting successive sub-sets of adjacent data points with a
low-degree polynomial with the method of linear least squares.
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after the volcanic eruption to about 20% and then again increases to up to 30% until the
end of the LM period. The relative in-degree graph centrality is kept almost constant to
about 20% until the end of the LM period, with an abrupt and short decline immediately

after the volcanic eruption.
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Figure 6.10: (a) Relative in-degree and (b) relative out-degree graph centrality indexes of the
trading network over 2,000 yearly time steps (Minoan period), considering the XTENT and
Gravity spatial interaction models.

Low relative in-degree graph centrality rates observed during the EM and MM peri-
ods (under XTENT) suggest that there are no clearly “prominent” settlements, meaning
that, there are no central attractors considering the other settlements in the trading net-
work. On the other hand, the in-parallel high relative out-degree graph centrality rates
during the same period, indicate that there are a few settlements that are considered in-
fluential in terms of resource distribution. Therefore, one could assume that a settlement
organization of distributing resources by these influencial settlements in the trading net-

work is implied, at least before the volcanic eruption of Thera or the LM period.

Using the Gravity model, the relative in-degree graph centrality gradually increases
from about 40% to 75% until the end of LM period, however, with an abrupt fall and
rise immediately after the volcanic eruption (Figure [6.10a). By contrast, the relative
out-degree graph centrality slowly decreases from about 30% to 15% during the whole
period, with an abrupt decline immediately after the volcanic eruption (Figure [6.10b).
These high relative in-degree graph centrality rates (under Gravity) suggest that there
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are only a few “prominent” settlements in the network, implying the possibility of a
settlement hierarchy where resources are traded towards these important settlements by
other settlements in the trading network. Notice however that this assumes an “attrac-
tiveness” of the sites given their 1¥; importance defined via Equation [6.2] and not the
known category of the archaeological sites. In the next section, we see that the “conclu-
sions” obtained with the Gravity model are quite different when the real sites’ category
is taken into account; and that in that case they are more in agreement with those of the

XTENT model.

Moreover, the relative graph centrality based on betweenness is considerably low
regarding both XTENT and Gravity models, as presented in Figure This means
that most of the trading connections can be made in the trading network without the aid
of an intermediary settlement. Thus, there do not appear to exist settlements with much
potential of controlling the inter-settlement trade. As such, there is a need to further

study if there are other group formation phenomena at work, which need to be captured.

Studying the average clustering coefficient of the trading network graph (Figure|6.11b)),
we observe that when the Gravity model is employed, it is relatively low (below 40%)
until the beginning of LM period, while it is relatively high after the volcanic eruption
(more than 40%) until the end of the LM period. When the XTENT model is employed
for the trading process, we observe that the average clustering coefficient of the network
graph gradually declines from about 50% to 10% until the end of middle EM period;
however, it then gradually increases to about 40% until the end of the LM period, with

an abrupt and short fall immediately after the volcanic eruption.

Thus, for both the XTENT and Gravity models, the observed settlement trading
clustering behaviour after the volcanic eruption until the end of LM period, implies a
more dense trading activity between settlements at the time, raising the possibility of
more settlement clusters in the trading network. Assuming that such settlement clusters
were around large towns, cities, or palaces, this trading network clustering behaviour

has a correspondence to the archaeological record (Figure [A.I] Appendix [A), since just
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Figure 6.11: (a) Relative betweenness graph centrality and (b) average clustering coefficient of
the trading network over 2,000 yearly time steps (Minoan period), considering the XTENT and
Gravity spatial interaction models.

two cities are known to have existed during the EM period (Archanes and Knossos),
while several large towns, cities and palaces were flourishing in the area during the MM

and LM periods (Knossos, Malia, Archanes and Galatas).

Finally, for interest, we also conducted additional experiments considering the same
simulation scenarios, however, with a higher percentage of stored surplus trading scheme,
i.e. ps =80%. Simulation results exhibit similar behaviour with no remarkable differ-
ences, besides the average storage per household agent, where even lower amounts of
resources stored are observed for the scenario of trading a higher portion of stored sur-
plus. Corresponding results figures are presented in Appendix |[C| since their behaviour
is entirely similar with simulation scenarios considering a lower percentage of stored
surplus trading scheme. This similarity in the trading behaviour observed in the results
where ps = 80% 1is justified, since the trading network structure naturally takes into ac-
count only the number and density of trading interactions between settlements, and not

the volume of resources exchanged within the trading network as well.

In all of the above simulation scenarios, we used attributes relating to settlement’s
population and lifetime during the simulation period for calculating the importance W;

of a settlement ¢, given Equation [6.2] In the following simulation scenarios, we fix the
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W; values with known archaeological site categories. This will enable us compare the
settlements trading network organization structure developed, based on archaeological
estimates on settlement types, with the one autonomously developed during the simula-

tions described above.

6.4.2 Site category bias

Let us first assume a simple, broad classification of settlement types rather than specific
site categories, which corresponds roughly to the site hierarchy put forward by [39],
based on archaeological estimates: village (or settlement or hamlet), corresponding to
less than 3.5 ha in size, hosting fewer than 88 households / 875 inhabitants on average;
city (or large town or town), corresponding to less than 25 ha in size, having fewer than
625 households / 6250 inhabitants on average; and palace (or capital town), correspond-
ing to greater than 25 ha in size, with more than 625 households / 6250 inhabitants on
average. Based on this classification of settlement types, instead of using Equation [6.2]
we express IW; of any settlement point location ¢ as a weight in [0; 1], by mapping the

corresponding known archaeological site type E] as follows:

e W; = 0.5 when the corresponding archaeological site category is a village,
e W, = 0.7 when the corresponding archaeological site category is a city, and

o W; = 0.9 when the corresponding archaeological site category is a palace

As such, the “attractiveness” or the probability of trade for any settlement in the trad-
ing network, is biased by the corresponding known archaeological site category. Thus,
in the following simulation scenarios, settlement importance is based on archaeological
evidence on the settlement type at any any given time step and geographic location. The
rest of the experimental setup is exactly the same as the simulation scenarios discussed

in the previous section.

SWe remind the reader that all potential settlement locations correspond to actual settlement sites.
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To begin with, simulation results on agent settlements number and size are presented
in Figure for both the XTENT and Gravity models. We observe that the number
of settlements remains relatively constant until the end of the EM period, similarly to
the previous scenarios, where settlement importance was calculated by its own dynamic

characteristics, i.e., population.
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Figure 6.12: (@) Number of settlements and () settlements size over 2,000 yearly time steps
(Minoan period), considering known archaeological site categories for both the XTENT and
Gravity spatial interaction models.

Regarding the XTENT model, we observe a similar behaviour with scenarios not be-
ing biased by site categories, where a gradual increase of settlement numbers over time
is noticed, especially during the MM period and even more after the volcanic eruption
and LM I period (Figure[6.12a). Similarly, the number of agents per settlement increases
until the end of the EM period, and then declines during the MM period. This is due
to the high migration rates (because of population growth) observed to more (known)
settlement locations available during that period. Moreover, settlement sizes abruptly
drop immediately after the volcanic eruption, however, then gradually increase until the

end of LM period (Figure [6.12b).

When the Gravity model is employed, we observe a similar behaviour with the
XTENT model in settlement numbers and sizes, although the number of settlements
slightly declines at the end of the MM period, and drops further immediately after the

volcanic eruption; and then remains relatively constant until the end of the LM period
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(Figure [6.12a). Thus, in contrast to the previous scenarios, where no bias by known
archaeological site categories was introduced, an entirely different behaviour is now ob-
served. That is, a significant difference in settlement numbers is observed, growing up
to about 115 settlements during the end of the MM period, and holding up to about 90
settlements until the end of the LM period, while just a number of about 25 and 40 was
observed in the previous scenarios (cf. Figure [6.8a). We note that this trend in settle-
ment numbers is surprisingly very similar to the one that exists in the archaeological
record for the specific environmental area during the whole Minoan period, with the
only difference being a substantial decline reported at the end of LM I period in the ar-
chaeological record — and which was due to unknown “external” eventsE] Higher values
in settlement numbers exist in the archaeological record, suggesting that a higher popu-
lation growth rate (> 0.1%) probably should have been used during our simulations (we

chose to follow [30]]).

On the other hand, the numbers of agents per settlement tends to increase until the
end of the EM period, and then abruptly declines at the beginning of the MM period
from about 120 to 30 households and further decline during the MM III period down
to 25. The number of households per settlement, however, is slowly increasing after
the volcanic eruption until the end of the LM period, with the Gravity model not being
able to achieve higher numbers of household agents per settlement on average than the
XTENT model (Figure[6.12b)).

We also report that the overall number of households (i.e., the agent population) is
constantly increasing during the whole time period, same as in the scenarios without
bias from known archaeological site categories, being able to even achieve higher pop-
ulation sizes, from about 820 initial households to about 3500 and 3700 agents for the
XTENT and Gravity spatial interaction models, respectively, with only an abrupt and

short decline immediately after the volcanic eruption, as shown in Figure

® Archaeologists assume that a wave of fire destructions affected Cretan settlements during and at the
end of LM IB, that have variously been attributed to internal revolt, Mycenaean invasion, or to a major
natural disaster involving earthquakes [40].
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Figure 6.13: (a) Household agents and (/) inhabitants population sizes over 2,000 yearly time
steps, considering known archaeological site categories for both the XTENT and Gravity spatial
interaction models.

We note that, when the Gravity model is employed for simulating a trading network,
where settlement importance is based on archaeological evidence, it appears to be better
in sustaining higher population sizes after the crisis of the volcanic eruption of Thera,
with respect to the XTENT model that favours the distance between settlements rather

than their importance. This is unlike to what was the case without the site category bias
(cf. Figure

Regarding the structural behaviour of the settlement trading network, the relative
in-degree and out-degree graph centralities are presented in Figure [6.14] The XTENT
model exhibits a very similar behaviour to the one without known site types bias (cf.
Figure[6.10). Interestingly, the Gravity model is now showing a similar behaviour to the
XTENT model, that is, it exhibits lower rates of in-degree and higher rates of relative
out-degree centrality. The low relative in-degree graph centrality rates during the EM
and MM periods, imply that there are no “prominent” settlements. By contrast, the
high relative in-degree graph centrality rates observed in the trading network after the
volcanic eruption and during the LM period, suggest that there are certain “prominent”

settlements in the trading network. On the other hand, the low relative out-degree graph

"The corresponding individuals’ population size for the case without bias is shown in Figure
Appendix [C]



172 CHAPTER 6. SIMULATING TRADE ACROSS AGENT COMMUNITIES

®
o
T

_GraVity model i i i‘} Volcanic Eruption —XTENT model 3 i ii Volcanic Eruption
—XTENT model | | i —Gravity model i | i

CEMIN
' TMM -l
/

(2]
o
T

= HLMI-
‘ H

!
|
TEMII
!

N
o

‘ ‘
VEMIILE
‘ ‘

In-degree centrality (%)
Out-degree centrality (%)

[N]
o

‘
I MM -

i
HLM -
i

1 L L L Iy I} L L L L \I ]
3100 2600 2100 1600 1100 3100 2600 2100 1600 1100

years (BCE) years (BCE)
(a) (b)

Figure 6.14: (a) Relative in-degree and (b) relative out-degree graph centrality indexes of the
trading network over 2,000 yearly time steps (Minoan period), considering known archaeological
site categories for both the XTENT and Gravity spatial interaction models.

centrality rates during the LM period, indicate that there are many settlements with a
similar degree of “influence” in terms of resource distribution. Therefore, one could
assume that a settlement hierarchy where resources are traded towards the (few) most

important settlements in the trading network is implied during the LM period.

Moreover, the relative betweenness network centrality is low for both XTENT and
Gravity models, as presented in Figure [6.15a] even lower than scenarios without site
category bias (cf. Figure[6.1Ta)), suggesting even less potential for control on the flow of
resources traded between settlements. However, there is a structural basis for assuming
that certain settlements with the highest relative betweenness centrality in the society
are “different” from the other settlements in the area, at least during the EM and MM
period. Indeed, in Figure [6.16] we show a snapshot of a simulation run during the end
of the EM period using the Gravity model, where settlements with the highest relative
betweenness centrality (Figure are among the ones with the highest relative out-
degree centrality (Figure [6.14a)). In such a case, the trading network conceivably has a
structure that allows us to assume a settlement hierarchy where resources are distributed

by these most influential settlements to others in the network (during the EM period).
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Figure 6.15: (a) Relative betweenness graph centrality and (b) average clustering coefficient of
the trading network over 2,000 yearly time steps (Minoan period), considering known archaeo-
logical site categories for both the XTENT and Gravity spatial interaction models.

Regarding the average clustering coefficient of the trading network graph (Figure[6.15b)),
we observe that the Gravity model has again a similar behaviour to the XTENT model,
that is, it gradually declines from about 50% to 10% until the end of middle EM pe-
riod, and gradually increases to more than 50% until the end of the LM period, with
an abrupt and short fall immediately after the volcanic eruption. The low clusterization
thus observed in the trading network until the end of the EM period may suggest that
the trading network connections are losing density until the end of the EM period. The
network’s clusterization appears to be recovered in the MM period, and even more in
the LM period, indicating the possibility of more dense settlement clusters in the trading
network, where resources are traded towards the few most important settlements within
these clusters (those with high relative in-degree graph centrality). There seems to be
a correspondence with the archaeological record, enhancing such a possibility—since
several towns, cities or palaces are recorded during the MM and LM period, while just

a two towns exist during the EM period, as previously noted.

Concluding this section, we remind here the reader that the Gravity model is able
to better capture the trend in settlement numbers that exist in archaeological record.
This is a reason to believe that, in this case, Gravity allows us to better interpret the

structure and dynamics of the formed trading network. The “unchanged” behaviour of
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(@) (b)

Figure 6.16: (a) Relative out-degree and (b) relative betweenness graph centrality of the trading
network from a snapshot of a simulation run during the end of the EM period using the Gravity
model. Settlement nodes are represented as circles and trading connections as links between
them, where their size and color represents their centrality value, from minimum (white) to
maximum (black).

the XTENT model is justified, since it favours the distance between settlements rather
than their importance. Thus, it should be used in cases where settlements importance is

not known, or cannot be properly modeled.

6.5 Conclusions

In this chapter, we presented an artificial community trading module for modeling inter-
settlements interactions, incorporated to our developed ABM system that we provide for
archaeological simulationsﬂ In particular, we model inter-community trading interac-
tions by incorporating a trading sub-model, employing two well-known spatial interac-
tion models, XTENT and Gravity. The simulations’ aim was to assess the sustainability
of the artificial society in terms of population size, number and distribution of agent
communities with respect to both spatial interaction models, to analyse the resulting

trading network structure during its evolution over time, and to draw interesting conclu-

8The source code of the ABM and its associated data are available here!


http://www.intelligence.tuc.gr/~angelos/AncientS-ABM.zip
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sions (or, rather, sketch out interesting hypotheses) about the settlements’ hierarchy, via
annotating our results with the archaeological record. Although in this work we consider
the density of trading interactions between agent communities in the network, we intend
in the future to represent the dynamic trading network as a “weighted” directed network
graph, in order to also take into account the amount or volume of resources exchanged

during trade.

As a case study we considered the Bronze Age Minoan civilization and as the ABM’s
environmental area we considered the geographic area of the wider region around Knos-
sos, located in the central part of the island of Crete, Greece. Simulation results show
that when settlements’ importance is known or properly inferred (based on archaeolog-
ical data or evidence), modeling a trading network relying on the Gravity model can
produce settlement patterns similar to the one that exist in archaeological record for the
area under study (see Figure [6.12a)), since it favours settlements importance rather than
the distance between settlements. Otherwise, if solely settlement locations are known,
then the XTENT model can produce acceptable results on simulating the trading activity

between them.

When the known sites” importance is used in our simulations, the high relative out-
degree centrality rates observed in the trading network, along with the low clustering
coefficient observed during the end of the EM period, suggests that a small number of
influential centres could have existed, linked to a settlement hierarchy where resources
are distributed by these influential settlements to others in the network—but there are
no clearly prominent centres to which resources are directed. Interestingly, after the
catastrophic event of the volcanic eruption of Thera and during the LM period, the trad-
ing network connections are becoming much denser, and resources are now being dis-
tributed towards only a few settlements in the network. We note that these results are in
line with archaeological theories suggesting that already during the EM period regional
powers existed in the area, while after the MM period the actual settlements hierar-

chy was transformed, with subsequent radical changes in their trading network, affected
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by settlement numbers and sizes as well as natural disaster events (as also indicated by
Figures and|[6.15]in our work here). Specifically, archaeologists argue that indepen-
dent political units and centres of the EM and early MM period, were incorporated into a
”Knossian” state during late MM and early LM periods by being demoted to secondary
centres while others were promoted from tertiary to secondary centres in an attempt to
undermine local traditional power relations, rendering, thereafter, the system unstable
and hence vulnerable [40]]. Thus, large and comparatively well integrated polities that
existed until the end of the MM period in Central Crete were incorporated into a larger
political framework and a territorial state headed by Knossos [39]. Given the above
simulation results, our ABM appears to be able to provide support for those theories to

some extent.



Chapter 7

Conclusions

In this thesis we presented a novel ABM system for delivering insights and “in silico”
interpretations for archaeological inquiry, regarding the social dynamics of artificial past
societies, and based on the archaeological record for the geographic space and era under
study. Building a computational model from an archaeological theory is not a trivial
matter, while formal theories are often too wide ranging to be put into computational
terms. One major issue with agent-based modeling in archaeology, is that the state-
of-the-art models oversimplify agency, and do not define agents in the way these are
defined in the MAS community; and thus, do not allow essential agent features, such as
autonomy or interaction ability, to appear in the actual system implementation. Social
scientists and archaeologists, however, are interested in understanding human societies,
in particular the mechanisms that allow these systems to self-regulate, and the processes
that shape and form their internal structure and organization. Thus, it is not the benefit of
such an endeavour to diminish the autonomy of the agents or to drop it from the model

altogether.

Accordingly, we equip social archaeologists with AncientS-ABM, an autonomous
agents-based simulation system that is flexible and open, enhanced by ideas and ap-

proaches from Computer Science and MAS. Agents in our ABM system are endowed

177
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with a utility-based architecture and can incorporate self-organization mechanisms and
game-theoretic approaches that allow for strategic agent interactions and the dynamic
modification of the organizational characteristics. Simulation results demonstrate that
it can be readily applied in large, real-world geographic environments and time peri-
ods, delivering “macroscopic” structures that can provide insights or suggestions for
the assumed theoretical ones, and help achieve better utilization of archaeological data
on various “microscopic” hypotheses, regarding the artificial past society organization.
Besides archaeology-related fields, our ABM can be used as the basis for application
systems to other (computational) social sciences fields that span from social networks,
to education, to epidemiology, and to environmental and human geography, as we elabo-
rate below. Indeed, the space for modifications, extensions and applications of this work

is very rich.

This final thesis chapter is organized as follows. Section provides a summary
of our thesis, highlighting the most important points linked to each chapter. Then, in
Section [/.2| we discuss potential extensions of our research, as well as its application to

other computing or non-computing disciplines.

7.1 Thesis Summary

In the beginning of this thesis, we introduced the reader on the importance of under-
standing the evolutionary emergence of human social organization and the inherent un-
certainty that exist in archaeological theories regarding early and past societies. Specif-
ically, we set the theoretical background behind our research, and stress the weakness
of current agent-based simulation systems on modeling the internal structure towards
the formal design of agency. Most existing ABM frameworks in archaeology consider a
simple (reflex) agent design in order to avoid the aggregate problem becoming too diffi-
cult to be examined (mathematically). We present and provide an agent-based modeling

framework, rooted in MAS approaches towards agent organizational design, and pro-
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pose detailed solutions for each shortcoming encountered, by utilizing methodological
approaches from other computer science-related fields (such as graph theory), as well.
For each of the proposed solutions, we conducted extensive simulations of the respective
enhanced ABM to evaluate both the theoretical mechanisms themselves in terms of their
modeled behaviour accuracy, and their effect on the organization and evolution of the
artificial past society, based on the archaeological record of the simulated past society
and era. Simulation results indicate that the incorporation of our methods can lead to
“macroscopic” structures that are able to provide insights and deepen our understand-
ing on the processes leading to emergent organization patterns at different levels of the
artificial society. In particular, results demonstrated that when agents adopt an “egali-
tarian” social organization paradigm, the emerging development of many ‘“‘small-size”
settlements appear to be the way for survival over time; when the ‘“self-organization”
social paradigm is adopted, a “heterarchical” social structure emerges, giving rise to

larger settlements during their evolution.

In more detail, in Chapter [3) we presented in detail the core of a readily appli-
cable ABM framework for simulating the social dynamics of an artificial society of
agents. We implemented autonomous, utility-based agents (rational utility-maximizers)
for modeling their intra-community interactions, unlike most existing ABMs in archae-
ology. Although our ABM system is currently limited to cultivation and migration agent
actions only, we do incorporate a number of different social organization paradigms
and cultivation systems in our modeling approach. Most importantly, we presented an
agent organization paradigm of agents self-organizing into a “stratified” social structure,
and continuously re-adapting the emergent structure, if required. The proposed self-
organization algorithm comes with desirable theoretical properties, specifically agent
spontaneous re-organization, without any external control, and robustness to changing
conditions, thus enhancing agent survivability. We also note that, this is the first time
that a self-organization approach is incorporated in an ABM system used in archaeol-
ogy. We further defined an (intelligent) agent decision-making process, using an MDP

to decide on migration (or settlement) policies. We conducted a systematic evaluation
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of the influence of the various social organization paradigms on the artificial past soci-
ety, in terms of population sustainability and agent community sizes, aiming to study
the historical social dynamics. As a case study, we employed our ABM system to as-
sess intra-settlement organization of an artificial Minoan society residing at the wider
area of Malia at the island of Crete during the Bronze Age. Model parameters were
initialized based on available archaeological data on the area and period under study.
Simulation results demonstrate that self-organized agent populations were the most suc-
cessful, growing larger than agents employing different social organization paradigms,
indicating that a heterarchical social structure, having emerged by the continuous re-
adaptation of social relations among Minoan households, might well have existed in the
area of study. This fact is in line with archaeological evidence for larger settlements
(towns and palaces) eventually coming to existence during the MM-LM period, where

a more varied and dynamic social structure is now suggested [41].

Furthermore, in Chapter [, we presented an alternative self-organization agent orga-
nization paradigm, by incorporating an evolutionary game-theoretic approach for mod-
eling the evolution of strategic behaviours in a population of self-organized agents. The
reason was a main drawback on the specification of the internal “microscopic” struc-
ture of agent organization, in which a cooperative attitude on behalf of the agents was
assumed, willing to always provide available resources out of their stock to help other
community members in need. In particular, we provided an novel evolutionary self-
organization algorithm by simulating repeated “stage games” played by pairs of strate-
gic agents, assuming cooperative, defective and equivalent retaliation strategies on be-
half of the agents, being also able to adopt other strategies over time. Agents in our
ABM system required to receive non-static payoffs and their population was not con-
stant during simulation, in contrast to most matrix games studied in the literature, thus
we formulated the evolutionary dynamics based on evaluating agents’, rather than strate-
gies’ fitness. We also assumed different variations for agent fitness function and strategy
review and adoption processes. We finally conducted a systematic evaluation of the per-

formance of strategic household agents operating in Minoan artificial communities, by
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studying the evolution and adaptation of strategic behaviours and the effect these have
on the sustainability of the Minoan society as a whole. Simulation results indicate that
agent populations are better sustained when agents base their strategy review decisions
on the relative success of their current strategy with respect to the success of agents em-
ploying the same strategy in their settlement community, and when strategy adoption is
stochastic, rather than deterministic. Interestingly, in those scenarios, agent populations
also converge to adopting cooperative strategies, despite this behaviour being in contrast

to their stage game equilibrium.

In Chapter[5] we incorporated a natural disaster module in our ABM system, for as-
sessing the imminent social crisis on the artificial agent society. Specifically, we utilized
spatial analysis techniques for the specification and development of the respective com-
ponent, implementing a volcanic eruption catastrophe, that captures associated sudden-
onset (tsunami) and slow-onset (volcanic ash) disasters. We employed our extended
ABM system to assess the impact of the natural disaster on different social organiza-
tion behaviours, along with population sustainability of Minoan household agents, in
terms of agent community numbers and sizes, migration behaviour and agents strate-
gic behaviour evolution, before and after the catastrophic event. We also conducted a
systematic evaluation of several natural disaster scenarios on social change, based on
archaeologically traceable environmental and human impact of the mid-2nd millennium
BCE Santorini eruption to the Minoan civilization. Simulation results demonstrate that
“self-organized” household agents are able to sustain themselves after the volcanic erup-
tion, however, with noticeable changes in the settlements’ distribution. A strong impact
on social behaviour is further observed, transforming the initially cooperative agents’
behaviour to a non-cooperative one, suggesting that the Theran eruption led to a gradual

breakdown of the Minoan socio-economic system.

Finally, in Chapter[6] we further extended our ABM system by incorporating a novel
“trading” module for simulating agent inter-communities trading interactions. We em-

ployed the trading module with two different spatial interaction models, the XTENT and
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Gravity, for studying household agent settlements’ trading network, considering as a
case study the Minoan society during the Bronze Age, in the wider area of Knossos
at the island of Crete, Greece. We conducted a systematic analysis of the trading net-
work formulated over time, given agent settlements geo-location and position within the
trading network, and the structural properties of the network itself, by utilizing graph
theory. We interpreted simulation results in terms of the network’s potential centraliza-
tion, clustering behaviour or potential settlement organization during the whole simula-
tion period, and intuitions were provided regarding the appropriateness of the different

spatial interaction models.

Simulation results demonstrated that modeling a trading network by employing the
Gravity model, thus, giving more weight to the “importance” of settlements than to
the distance between them, macroscopic settlement patterns appear to be similar to the
ones that exist in the archaeological record. However, this is most appropriate when
the importance of settlements is known or can be derived based on archaeological data,
otherwise, when settlement locations are only known, then the XTENT model is is prob-
ably adequate, favouring as it does the distance between settlements and not than their
importance. Results also indicated that the evolution of the values of the graph-theoretic
indices characterizing the settlements’ trading network was affected by the Theran vol-
canic eruption. In particular, it appears that the network’s structure and interaction pat-
terns are to an extent reversed after the Theran eruption, when compared to those in

effect in earlier periods.

As a note, we stress that all of our ABM simulation results do not aim to prove or
disprove any particular archaeological theory; the potential congruence between simu-
lated macroscopic structures and the ones assumed in certain archaeological hypothe-
ses proves, however, our ABM’s “generative sufficiency”, without of course excluding
the fact that (partially) alternative “microscopic” specifications could equally generate
similar macroscopic structures and dynamics [45]. Regardless, we believe we have ad-

equately shown that our work can provide researchers with useful intuitions, and can be
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used to test and provide support to alternative or competing archaeological hypotheses.
What is left is to further enhance our ABM and deploy it in different past societies and

eras, or even in other disciplines and fields, as we explain below.

7.2 Future Research Directions

Our work in this thesis opens up a host of possibilities for future work, and opens the

way for entirely novel research directions.

To begin, our framework allows one to run more simulation scenarios with a vari-
ety of initialization setups. This is useful due to the conditional nature of agent-based
simulation’s results, that is, their dependency to the input values. As such, one needs to
conduct “calibration” when sufficiently detailed empirical data available to “fix” the val-
ues of the parameters; or to conduct a sensitivity or “robustness” analysis, to determine
the results’ dependency on the internal structure of the ABM [91]. We have already con-
ducted and presented a basic sensitivity analysis for our ABM (cf. Section[4.4.5and also
Section [3.4.2)), but a more extensive one would be useful for evaluating how sensitive
our simulation results are when varying additional ABM parameters. Such parameters
may include more or fewer number of agents with different ranges of migration capa-
bilities, different cell output values per cultivation system or different aquifer proximity

radius and resettlement cost values, and so on.

An interesting extension of our work would be to equip our ABM with an additional
environmental module, able to incorporate environmental information such as vegeta-
tion data, geological information, or reconstructed climatic data, in case any such kind
of information is available for the case study under examination. This would allow one

to model additional agent—environment interaction processes.

Moreover, future extensions include modeling additional types of agent utility-generating
activities besides cultivation, such animal husbandry, hunting or even fishing in environ-

mental locations near coastline areas. It is also interesting to incorporate formal mech-
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anisms for modeling the use of advanced equipment, craft specialization, or variable
manpower. To this end, different types of agents with corresponding skills can also be
employed or even emerge during the simulation, such as administrators, craftsmen or
religious practitioners, depending on the overall agricultural surplus of an agent organi-
zation, parameterized based on available archaeological or historical records regarding

the political and economic relations of the respective case study under examination.

Furthermore, one could employ our ABM to examine additional (perhaps highly
complex) strategic behaviour used by agents during exchanges in the resource distri-
bution game (cf. Section @), both at the household or settlement level. Moreover,
an agent can be modeled to play the resource distribution game with a specific num-
ber of other agents in the organization, based on some probability, in the occasion of
large-scale simulation experiments, lowering as such the computational time needed to

perform such extensive simulations.

Additional mechanisms for resource exchange and trade can be also incorporated
in our ABM framework. A more elaborate trading module could for instance include
trading processes from external sources. We already have a specific plan regarding how
to extend our trading model to include maritime/sea trade, and its effects in coastal
settlements; rendering potentially higher surplus resources, thus agent utility, in those
settlement locations than others in the mainland. It could also consider the proximity to
religious centres or peak sanctuaries, and based on a sample from a noise distribution
for specifying additional trading resources. In particular, the amount of resources U£™**

that a settlement ¢ receives by external trading can be formulated as:

Ut =W, - G(u,0)/ D (7.1)

where W; is the importance of settlement ¢, GG is the value of a sample from a Gaussian
noise distribution with mean p and standard deviation o, based on the overall amount of

surplus resources at the current time, D; is the (minimum) distance from settlement ¢ to
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the coastline or to the religious center (peak sanctuary), and p is a constant used to adjust
the required level of the effect that the importance W; of settlement 7 and the distance D;
have on the overall trading interaction, that is on the acquisition of external additional
resource by settlement 7 (similarly to Equation [6.5). Of course, such a mechanism has
to also be parameterized based on available archaeological data for the artificial society
under study, and potentially to be affected or informed by the enabled instance of the

natural disaster module (i.e. the volcanic eruption of Thera, in this case study).

Moreover, we intend to run simulation scenarios on (artificial) past societies in dif-
ferent geographical space and time, where sufficient archaeological data is available for
testing and assessing ABM results with respect to related archaeological hypotheses
regarding their social organization. For example, it is of much interest the social organi-
zation during the Ottoman centuries in the island of Crete (ca. 17th—19th c. CE), where
a complete historical record exists, regarding multi-cultural habitation sites, census data,
inhabitants religion and numbers, and so onE] Another case study is the “Neolithic Thes-
saly”, Greece, a significant region for the understanding of the development of the grad-
ual Neolithization of Europe around ca. 6000 BCE, where related habitation sites are
available—however, with scarce information regarding their intra- and inter-community
social organizationE] Moreover, a recent research project has been initiated aiming to

examine the social dynamics of early Egypt, based on an ABM approachE]

We also aspire to deploy our ABM as a fully modular archaeology agent-based sim-
ulation system on the web, that can be extensible and able to easily carry out simulations
for a given sort of archaeological hypothesis and theory, regarding the social organiza-
tion and trading behaviour in past societies—in small and wide exchange networks, and
in any geographical area of interest. However, since the entire process will need higher

performance than one could get out of a typical workstation, there is a need to employ

I'The historical record is available by the GeoSat ReSearch laboratory from the Digital Crete project
(http://digitalcrete.ims.forth.gr).

“The archaeological record is available by the GeoSat ReSeArch laboratory form the IGEAN project
(https://igean.ims.forth.gr).

“For more information on the project visit http://www.nitschke-lab.uct.ac.za/nitschke/research.


http://digitalcrete.ims.forth.gr/tourkology_habitation_search.php?l=1
https://igean.ims.forth.gr/?q=en
http://www.nitschke-lab.uct.ac.za/nitschke/research
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additional computational power, by utilizing the power of high performance or Grid
computing, where specific instances of the ABM and corresponding simulation scenar-
ios can be allocated to dedicated cluster nodes, delivering aggregated ABM results in an
efficient and practical way to the end-user. Scholars using the system would be able to
add and manipulate components and agent and system-level parameters, in order to test
and obtain intuitions and insights about the implications of their own behavioural and

environmental assumptions.

On the other hand, our work can be also adopted in alternative application areas.
Our ABM approach is rooted in MAS and can be effectively used in (computational)
social sciences and sociology-related areas, that span from social networks, to educa-
tion, to epidemiology, and to environmental and human geography. Social networks and
their analysis can take advantage of our utility-based self-organized agent organization
paradigm, where agents can be represented as nodes in the social network graph. In
general, social networks are indeed self-organizing, emergent, and complex, and macro-
scopic patterns may appear from the local interaction of the agents (nodes) that make up
the network system [97]. Moreover, the “power distance” notion in our (evolutionary)
self-organizing algorithm (cf. Section can also be utilized to study the evolution of
social norms, or the conditions under which social norms will be established eventually
in “dynamic” agent networks, thus, the convergence to certain social norms (see a pri-
mary example in [45]). In addition, the geospatial aspect of our ABM system, along with
the incorporated social organization paradigms and spatial interaction models can also
assist the demographic behaviour and analysis of a given existing or historical (agent)
population residing at a specific landscape: for instance, one could modify and employ
our ABM to study spatial or temporal changes in response to real quantifiable agent data

characteristics (such as birth, death, migration, aging, and so on) [13].

Furthermore, the ABM system can be also readily adapted and incorporated in
education-related systems. A learning framework can be developed based on our ap-

proach, one that will allow students in primary and secondary schools to explore the
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organization of past societies within a real geographic environment, and to study their
evolution in time and explain the dynamics that guide this evolution. Such a framework
can promote coding and computational thinking in schools via, for instance, “serious
gaming” in which students can explore an ancient civilization based on the available
archaeological evidence and historical records, promoting inquiry-based learning, and
offering the ground of rich explanations and insightful interpretations regarding existing

archaeological or historical theories.

Another research direction can be the use of our (adapted) ABM for epidemiology—
that is, for the study of epidemic dynamics, depicting at the same time the spatial spread
of a disease. The model can provide a systematic way to evaluate competing interven-
tion strategies, as well as to design an effective policy response, based on the different
agent types and relations provided by our self-organization algorithm, thus giving rise

to different susceptibility levels (for a recent example see [S0]).

Another promising area for extending our research is geography and ecology. Our
geospatial ABM can provide the core of various agent-agent and agent-environment in-
teractions for studying the influence of an artificial agent society has on the space they
occupy, and also could be informed by a complete geostatistical analysis [83}84]. More-
over, several aspects of our ABM approach, such as the utility-based agent architecture,
can also be adapted in order to assist in urban planning and growth, and in the general
modeling of processes related to residential development within an urban system (for

example see [[16, [113]]).

As a final note, we consider our work to be a stepping stone towards a greater vi-
sion with three axes or plans of action: (i) to pursue the study and formulation of ar-
chaeological theories and hypotheses on the organization of past human societies; (ii) to
provide intuitions, ideas, and algorithms for modeling agent organizations and the emer-
gence of agent collaboration in MAS; and (iii) to focus on devising novel algorithms for
adaptation and self-organization methods, with potential application on interdisciplinary

agent-based models.
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Figure A.1: (a) Settlement numbers that exist in the archaeological record for the modeling area
of Chapter[6] during the Minoan period. Data were provided by the GeoSat ReSeArch laboratory
from the “Digital Crete” project.
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Chronology Relative Manning McEnroe Simplified
(Platon) chronology (1995) [90] (2010) [93] date
Protominoan Age Early Minoan
Phase I EM I 3100 - 2700 3100 - 3100 - 2700
Phsae 11 EM 11 2700 - 2200 - 2200 2700 - 2200
Phase 111 EM 11 2200 - 2050 2200 - 2200 - 2000
Minoan Age Middle Minoan
(Palace period)
Pre-palace MM IA 2050 - 1925 - 1900 2000 - 1900
Old-palace MM IB 1925 - 1900 1900 - 1900 - 1875
Phase 1
Old-palace MM IIA 1900 - - 1875 - 1800
Phase 11
Old-palace MM IIB -1750 - 1750 1800 - 1720
Phase 11
New-palace MM I1IA 1750 - 1700 1750 - 1720 - 1680
Phase 1
New-palace MM I11IB 1700 - 1675 - 1700 1680 - 1650
Phase 1

Late Minoan
New-palace LM IA 1675 - 1600 1700 - 1580 1650 - 1550
Phase I1
New-palace LM IB 1600 - 1490 1580 - 1490 1550 - 1470
Phase 11
New-palace LM I 1490 - 1435 1490 - 1360 1470 - 1405
Phase 111
Post-palace LM IIIA 1435 - 1360 1360 - 1405 - 1325
Phase 1
Post-palace LM IIIB 1360 - 1200 - 1200 1325 - 1190
Phase 11
Post-palace LM llIC 1200 - 1100 1200 - 1100 1190 - 1100
Phase 11

Table A.1: Absolute and relative chronology and dates for the Minoan period (BCE) suggested
by archaeologists, along with the simplified (conventional) date used in our ABM simulation

scenarios.
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Figure B.1: Agent population (right) and percentage of average cooperative and defective be-
haviour of strategic agents (leff), including that of T'F'I" agents), for scenarios with deterministic
strategy review and F' calculated across agents in the settlement that share the same strategy.
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rate of 90% of D-strategists, with stochastic strategy review and F’' calculated across agents in
the settlement that share the same strategy.
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Figure C.1: Population sizes over 2,000 yearly time steps (Minoan period), considering the
XTENT and Gravity spatial interaction models, with a lower percentage (20%) of stored surplus
trading scheme.
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Figure C.2: (a) Population and (b) average storage of household agents over 2,000 yearly time
steps (Minoan period), considering the XTENT and Gravity spatial interaction models, with a
higher percentage (80%) of stored surplus trading scheme.
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Figure C.3: (@) Number of settlements and (b) settlements size over 2,000 yearly time steps
(Minoan period), considering the XTENT and Gravity spatial interaction models, with a higher
percentage (80%) of stored surplus trading scheme.
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Figure C.4: (a) Relative in-degree and (b) relative out-degree graph centrality indices of the
trading network over 2,000 years (Minoan period), considering the XTENT and Gravity spatial
interaction models, with a higher percentage (80%) of stored surplus trading scheme.
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