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A Reconfigurable Logic Based Accelerator for Bioinspired DNN
Architectures with Dendritic Structure and a Novel Learning Rule

by Nikoletta PALATIANA

Artificial Neural Networks (ANNs) have been successfully used in Deep
Learning architectures to solve a variety of challenging machine learning
problems. Nevertheless they usually require a considerable amount of en-
ergy. In addition, they demonstrate weakness in continually learning new
tasks without forgetting the previous ones. They require multiple sets of data
and a considerable amount of trainable parameters. The brain, on the other
hand, operates at a very low energy level without facing problems learning
new things. By drawing inspiration from the human brain and overcom-
ing the limitations of ANNs, the Poirazi lab at IMBB-FORTH developed a
bio-inspired architecture that incorporates the dendritic structure and recep-
tive field, along with a novel approach to Hebbian learning. In this thesis
a lower-level Numpy implementation was developed based on their initial
Keras implementation in order to analyze and understand this model and
its training process in greater depth. This was followed by the design, im-
plementation, and download of an FPGA-based architecture onto the Xilinx
ZCU 102 board for training the ANN. Using the high parallelism and power
efficiency of the FPGA, our architecture has accelerated training and reduced
power consumption. In particular, our proposed FPGA implementation ex-
ecutes an epoch of training (for the MNIST dataset) in only 13.46 seconds
rather than 490 seconds on the CPU (Keras) and 45 seconds on the GPU
(Keras). Furthermore, it achieves 346 times greater energy efficiency than the
CPU implementation (Keras) and 57.5 times greater energy efficiency than
the GPU implementation (Keras).
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by Nikoletta PALATIANA

Τα Artificial Neural Networks (ANNs), έχουν χρησιμοποιηθεί με επιτυχία σε
αρχιτεκτονικές βαθιάς μάθησης για την επίλυση μιας σειράς δύσκολων προβλη-

μάτων μηχανικής μάθησης. Ωστόσο, προκειμένου να επιτύχουν τη μέγιστη από-
δοση, απαιτούν συνήθως σημαντική ποσότητα ενέργειας. Επιπλέον, δυσκολεύον-
ται στην εκμάθηση νέων εργασιών. Απαιτούν μεγάλο όγκο δεδομένων και σημαν-
τικό αριθμό παραμέτρων. Ο εγκέφαλος, από την άλλη πλευρά, λειτουργεί σε πολύ
χαμηλό επίπεδο ενέργειας χωρίς να αντιμετωπίζει προβλήματα στη συνεχή εκμάθηση.
Αντλώντας έμπνευση από τον ανθρώπινο εγκέφαλο και προσπαθώντας να ξεπερασ-

τούν οι περιορισμούς τωνANNs, το εργαστήριο Poirazi στο IMBB-FORTH ανέπ-
τυξε μια βιο-εμπνευσμένη αρχιτεκτονική που ενσωματώνει δενδριτική δομή και re-
ceptive field, μαζί με μια νέα προσέγγιση του Hebbian κανόνα. Με βάση την
αρχική υλοποίηση στο Keras στην παρούσα διπλωματική αναπτύχθηκε μια προσέγ-
γιση σεNumpy προκειμένου να αναλυθεί και να κατανοηθεί σε μεγαλύτερο βάθος
αυτό το μοντέλο και η διαδικασία εκπαίδευσής του. Στη συνέχεια, σχεδιάστηκε,
υλοποιήθηκε και μεταφορτώθηκε στην πλακέτα Xilinx ZCU 102 μια αρχιτεκτονική
βασισμένη σε FPGA για τη διαδικασία εκπαίδευσης αυτού του βιοεμπνευσμένου
ANN. Χρησιμοποιώντας τον υψηλό παραλληλισμό και την αποδοτικότητα ισχύος
της FPGA, η αρχιτεκτονική μας κατάφερε να επιταχύνει την εκπαίδευση και να μειώ-
σει την κατανάλωση ισχύος. Συγκεκριμένα, η προτεινόμενη υλοποίηση FPGA εκ-
τελεί μια εποχή εκπαίδευσης (για το σύνολο δεδομένων MNIST) σε μόλις 13,46
δευτερόλεπτα αντί για 490 δευτερόλεπτα στηνCPU (Keras) και τα 45 δευτερόλεπτα
που απαιτεί η GPU (Keras). Επιπλέον, είναι 346 φορές πιο αποδοτική ενεργειακά
συγκριτικά με την CPU και 57.5 φορές συγκριτικά με την GPU.

HTTPS://WWW.TUC.GR/
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Chapter 1

Introduction

There have been many algorithms developed over the past few decades that
can be used to enable a machine to predict and learn. A subset of artifi-
cial intelligence, machine learning, has been one of the most successful ap-
proaches in recent years. Among the main interests of researchers in this
field is imitating the functions of the human brain. The human brain uses
biological neurons to receive and transmit signals. There are billions of them
inside the brain and they are interconnected. They receive nervous impulses
through their dendrites, process this information in the soma, and then de-
cide whether or not to send a neural impulse through its axon. Through
synapses, nerve impulses are transmitted from one neuron to another. The
most common way to model the human brain in computer science is using
artificial neural networks. They consist of interconnected nodes (neurons)
organized into layers, capable of learning complex patterns and making pre-
dictions from data through training algorithms. Typical ANNs have been
widely and successfully used in demanding machine learning tasks such
as computer vision, speech recognition, autonomous driving, etc. Despite
this, their substantial energy consumption to achieve top performance raises
serious concerns, while on the other hand, the brain consumes very little
power (< 20 watts). In this regard, the question of human brain modeling re-
mains very relevant. To resolve this problem, one approach is that the model
should demonstrate a brain-like behavior based on principles of neurophys-
iology. Then, it is examined whether this approach is beneficial in terms
of less energy consumption, better learning performance, and overcoming
problems such as "transfer learning" and "catastrophic forgetting". Alterna-
tively, a more neuromorphic hardware implementation could reduce energy
consumption contrary to using CPUs and GPUs.

To achieve this, we consulted the opinion paper[1] of S. Chavlis and P. Poirazi

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi


2 Chapter 1. Introduction

and studied their analysis of a bio-inspired neural network so that it could
be combined with an FPGA implementation specifically designed to take ad-
vantage of the bio-inspired features.

1.1 Motivation

The typical artificial neural networks can become highly adept at solving a
specific task, but they are usually unable to transfer those skills to another
task without retraining, referred to as transfer learning, in contrast, the hu-
man brain can be trained to solve a particular problem with a small number
of examples using very little energy and is able to transfer this knowledge
to new tasks without retraining or erasing valuable prior knowledge. We
have billions of neurons in our brains that transmit signals to and from the
brain. Dendrites are structures inside of neurons that facilitate communica-
tion.. Dendrites act as filters by attenuating and modifying signals traveling
to the cell. Even though dendrites do not transmit signals themselves, to
the cell body, when their activity is additive, they can significantly affect the
cell’s activity. Moreover, dendrites are proposed to serve as the fundamental
functional unit of the brain rather than neurons [2][3].

The dendritic structure, as well as other architectures and learning rules de-
rived from biology, have demonstrated promising results in neural networks.
It has been suggested that utilizing dendritic features can minimize resource
requirements while maintaining optimal performance. As a result, challenges
such as the transfer of knowledge and the continuous learning process could
be addressed.

Further, dendritic structures appear to enhance sparsity in biological net-
works, a property associated with improved memory, and learning abilities
[4][5]. Besides saving resources, sparsity enhances the network’s discrimina-
tion capabilities[6] [7], such as the distinction between similar input patterns.
Each soma is connected to its dendrites only, and each dendrite is connected
to its synapses only. For example, leveraging the sparsification of dendritic
ANNs, there is no need for a dropout layer, which is essential in denser coun-
terparts, thus achieving a better saving of resources.

In most cases, ANNs are trained using the backpropagation algorithm. How-
ever, the latter has some drawbacks [8]. Among them is the inefficiency
of calculating gradients for the whole network every time. The network
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must also be symmetric and have multiple labeled training data and itera-
tions. Most importantly, it fails in unsupervised learning. In contrast, biolog-
ical plasticity rules can support both supervised and unsupervised learning.
Therefore, we adopted a method that calculates the error locally within a
layer without propagating the error backward. Our method is based on a bi-
ological property known as the Hebbian law. In accordance with this law, any
two cells or systems of cells that are repeatedly active at the same time tend to
become ’associated,’ so that activity in one facilitates activity in the other. The
Hebbian learning rule reflects a basic principle observed in biological neural
systems, making it a biologically plausible learning model. There’s no need
for labeled data or explicit error signals during training. Additionally, it can
support continuous adaptation and integration of new information.

Hebbian learning, however, tends to strengthen connections between neu-
rons that fire together, which can lead to indiscriminate learning. Because
of this, it might not always capture the exact pattern or feature needed. In
light of this, we decided to examine the algorithm developed by S.Chavlis
and P.Poirazi based on the Hebbian law, which combines a typical artificial
neural network with an unsupervised layer that uses covariance matrix to
determine the relationship between active weights (synapsis) and dendrites.
Chapter 4 will provide a more detailed explanation of this.

As with many ANNs, this model requires a substantial amount of energy and
time as well as resources. Based on Bhaduri’s claim[9] dendritic properties
can efficiently be used for data classification in hardware, and dendritic struc-
tures can reduce training parameters efficiently while maintaining network
quality. Thus, we decided to model this network using an FPGA, following
our goal of reducing energy consumption.

1.2 Scientific Contributions

The thesis model was introduced by the Postdoctoral Researcher S. Chavlis
and the Research Director P. Poirazi, both from the Poirazi lab of Institute
of Molecular Biology and Biotechnology of the Foundation for Research and
Technology-Hellas (IMBB-FORTH). A neuro-inspired ANN architecture that
incorporates dendritic structure and receptive fields was proposed. Regard-
ing the learning rule, classic backpropagation is applied in combination with
an additional learning rule, the so-called ‘Covariance rule’ (plasticity rule)
applied to the first layer of the network. For updating the parameters of

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
http://dendrites.gr/
https://www.imbb.forth.gr/en/
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the network, Adam optimization algorithm is used instead of classical gradi-
ent descent. A high-level software implementation in Keras was developed
by S. Chavlis as a first implementation for the training process of this bio-
inspired model. This implementation serves as a reference for this thesis.
In this thesis, a lower-level implementation in Numpy is developed as the
first step in understanding and analyzing this model and its training pro-
cess in depth. The main algorithms used in the training process are pre-
sented, along with an analysis (profiling) of their usage in terms of execution
time and memory. This thesis aims to build an FPGA-based architecture for
the bio-inspired ANN to accelerate its training process and further reduce
power/energy consumption. Through their high parallelism and power ef-
ficiency, FPGAs are capable of achieving this. In this thesis, the FPGA-based
architecture is designed, implemented, and downloaded onto the Xilinx ZCU
102 evaluation board. By comparing our proposed FPGA implementation
to CPU/GPU (the reference implementation in Keras), we significantly im-
proved latency, throughput, and energy efficiency. The contribution of this
thesis can be summarized as follows:

• Lower-level software implementation for the training process of the
bio-inspired ANN in Numpy.

• System modeling - Profiling.

• Design of the FPGA-based architecture for the training process of the
bio-inspired ANN.

• Implementation of the FPGA-based architecture using Vivado tools.

• Downloading of the FPGA implementation onto Xilinx ZCU 102 board.

• Our proposed FPGA implementation provides a latency speedup of
35.66x over CPUs (Keras) and 5.13x over GPUs (Keras).

• Our proposed FPGA implementation achieves 346 times greater energy
efficiency than the CPU (Keras) and 57.5 times greater energy efficiency
than the GPU (Keras).

1.3 Thesis Outline

• Chapter 2 - Theoretical Background: An introduction to ANNs and
DNNs is provided, as well as an analysis of forward propagation, back-
propagation, and Adam optimization algorithm processes.

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
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• Chapter 3 - Related Work: The related work of certain bio-inspired
models and techniques and some FPGA implementations is described
along with our thesis approach.

• Chapter 4 - System Modeling: In this chapter, there is a detailed ex-
planation of the thesis bio-inspired DNN model, including its features,
connectivity structure, and functionality. An extensive description of
the software (Numpy) implementation, algorithms, tools, and data set
is also provided.

• Chapter 5 - FPGA Implementation: In this chapter, the FPGA-based ar-
chitecture for the training process of the bio-inspired ANN is designed,
implemented using Vivado tools, and downloaded onto the Xilinx ZCU
102 evaluation board. This chapter also provides information about the
Vivado tools, the FPGA platform, the AXI4 Interface Protocol, the PL-
PS communication methods, and the memory configuration.

• Chapter 6 - Results: In this chapter, performance metrics are analyzed,
including throughput, latency, power consumption, and energy con-
sumption, alongside a comparison of our FPGA-based architecture with
CPU and GPU implementations.

• Chapter 7 - Conclusions and Future Work: There is a discussion of
future directions and ideas for possible extensions in this chapter.
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Chapter 2

Theoretical Background

This section analyzes and explains the structure of the neurons and their
functions, making it easier to understand the neural network model and
its organization. In addition, a brief description of the mathematical back-
ground is provided.

2.1 Neuroscience

Neuroscience is a critical field of study that examines the structure and func-
tion of the human brain and nervous system. With the human brain compris-
ing over 80 billion neurons and brain cells, each cell having approximately
a thousand connections to other cells, understanding how neurons combine
synaptic inputs is crucial for comprehending how the brain works. Neurons,
also called nerve cells, are the fundamental units of the nervous system re-
sponsible for receiving and integrating inputs created by the synapses, which
are junctions between two neurons through which they interact. In each den-
drite, there are synapses where the presynaptic neuron meets with another
neuron (post-synaptic) soma or dendrites. A neuron can be simultaneously
presynaptic and post-synaptic in different situations. Therefore, it is essen-
tial to understand that a typical neuron has three essential parts: the axon,
the soma (also known as the cell body), and numerous dendrites.

Axons are the principal transmitting elements of neurons, exhibiting consid-
erable variation in length, with some extending over a meter within the body.
In contrast, dendrites are thin, branch-like structures that emanate from the
cell body of neurons. Dendrites play a crucial role in receiving and process-
ing information from numerous presynaptic inputs, often numbering in the
tens or even hundreds of thousands, via small dendritic processes known as



8 Chapter 2. Theoretical Background

dendritic spines [10]. The integration of this information by dendrites deter-
mines whether a neuron will initiate an action potential, which is an electrical
signal that rapidly propagates along the axon, from its initial segment to the
synapse, where it is transmitted to the post-synaptic cell. The axons of presy-
naptic neurons transmit signals to post-synaptic cells via branches, with a
single axon often forming synapses with up to a thousand post-synaptic neu-
rons.

Ramon y Cajal’s connectional specificity principle [11] postulates that neu-
rons do not form random connections with one another but rather form spe-
cific connections between pre- and post-synaptic neurons, which, in turn,
form a complex network. Synapses, however, are not static but are capable
of undergoing changes in connectivity and characteristics. These alterations,
known as synaptic plasticity, can be pre- or post-synaptic, or both, and may
be of short or long duration. Thus, the remarkable ability of neurons to learn,
memorize, and repair damage is attributed to their capacity for synaptic plas-
ticity.

2.2 Artificial intelligence

Artificial intelligence (AI) refers to the ability of a digital computer or computer-
controlled robot to perform tasks that are usually associated with intelligent
beings. In recent times, the focus of AI researchers has shifted from creat-
ing fully intelligent machines to finding ways of using AI to solve specific
and complex problems. Machine learning is a branch of AI that involves
data analysis. It operates on the principle that systems can learn from data
without explicit programming. With the vast amount of data produced glob-
ally, referred to as Big Data, machine learning can work more efficiently. Us-
ing datasets, machine learning learns patterns and features with the goal of
making predictions about new unseen data based on the knowledge it has
previously acquired. One particularly interesting subset of machine learn-
ing is deep learning. Deep learning involves using multiple layers of simple,
adjustable computing elements. Although deep learning has been around
since the 1970s, it gained popularity in 2011 in the fields of speech recogni-
tion and computer vision. Deep learning is inspired by the human brain as it
attempts to mimic the structure and functions of neural cells, which are the
fundamental units of the nervous system.
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2.3 Classification problem

One of the most common machine learning applications is classification. In
this task, the computer must specify the category the input belongs to, given
k number of categories. A basic example of a classification problem is the
MNIST dataset, which includes images of handwritten digits from 0 to 9.

2.4 Supervised learning

Machine learning involves two major types of learning: supervised and un-
supervised learning. Supervised learning is the process of learning a function
that maps an input to an output based on previously known examples. To
achieve this, a sufficient training set D of pairs of x and y is required, where x
is the sample and y is the categorical label, a real number, or a combination of
both. On the other hand, unsupervised learning is a branch of machine learn-
ing that involves algorithms extracting patterns from unlabeled data. Unlike
supervised learning, it does not require explicit guidance to learn patterns
and relationships among the data.

2.4.1 Simple Neural Network

Neural networks are a type of machine learning used in deep learning algo-
rithms, and they have been inspired by the function of biological neurons.
The Perceptron is the simplest type of neural network [12] [13], introduced
by Frank Rosenblatt in 1957. The Perceptron is a linear binary classifier that
consists of only one layer of input and output nodes. Each input has an asso-
ciated weight. The perceptron operates as the function f (x) that maps inputs
to a single binary value. The input layer merely transmits the inputs and
does not perform any computation, while the output node performs the dot
product between the weights and the inputs. Once the product is computed,
the step function turns the output into either binary 0 or 1.
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FIGURE 2.1: The basic architecture of the perceptron. Source:
[14]

2.4.2 Artificial Neural networks

Structure

The perceptron is a type of neural network with a single computational layer.
It can only distinguish binary values, which makes it useful for binary classi-
fication. However, it has a limitation in that it can only recognize objects that
are linearly separable. In real-world scenarios, there are objects that are non-
linearly separable, meaning they cannot be described with a linear function.
To address this limitation, the Multilayer Perceptron (MLP) was introduced.
The MLP is composed of many perceptrons or neurons, making it a type of
Artificial Neural Network (ANN). A typical ANN is shown in the figure be-
low 2.2.
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FIGURE 2.2: Architecture of an ANN. Source: [15]

The figure illustrates an ANN that comprises an input layer, a hidden layer,
and an output layer. Each neuron in one layer forms connections only to
neurons in the subsequent layer, and all connections have weights assigned
to them. Unlike the perceptron, the ANN does not employ a step function,
which is suitable mostly for linear computations. The use of non-linear ac-
tivation functions plays a critical role in the network’s ability to represent
complex functions. Some of these activation functions will be introduced
later in the document.

Data Handling

Neural networks are a type of supervised learning technique, which means
that in order for them to function properly, they require a large data set. This
data set should be divided into three smaller groups. The first is the training
set, which is the actual set that the model learns from. The second is the
validation set, which is used for fine-tuning the parameters of the model,
such as the hidden units. The third and final set is the test set, which is used
solely to assess the performance of the trained model.

Functionality

The training phase of an ANN involves feeding N pairs of training samples
into the network to minimize the cost function.
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Feedforward

When a neural network is fed data from the training set, it undergoes forward
propagation. The data is received by the input layer and is then propagated
to the hidden layers until it reaches the output layer. The output layer pro-
duces a vector of probabilities, which is also known as scores. The objective is
to obtain the highest score that corresponds to the category label of the data.
To evaluate the result, we need to compute a function that calculates the er-
ror or distance between the output scores and the desired ones. Typically,
the network begins with a larger error that is gradually minimized during
the training process until the model can be considered accurate[16].

Assume that Xi=[X1,X2,. . . ,Xn] represents the inputs (of the input layer), wi1j
represents the weight of node j (j = 1, 2, . . . , q) associated with an input i, and
b1

j represents the bias. A nonlinear activation function φ converts values into
probabilities. The output, Y1

j , of a node j in the first hidden layer (h = 1) is
given by equation:

Y1
j = φ(

n

∑
i=1

(wi1j
· Xi + b1

j )) (2.1)

In the subsequent hidden layers and the output layer (h = 2, 3, . . . ), the out-
put of a node j is expressed by equation:

Yh
j = φ(

m

∑
k=1

(wkh
j
·Yh−1

k + bh
j )), (2.2)

where k corresponds to a node of the previous layer (h− 1), Yh−1
k is the output

of a node k, m indicates the number of nodes in the previous layer and Wkh
j

represents the weight associated between nodes k and j.

There are two common functions for calculating the errors used in different
cases. Means Square Error is generally preferred for regression problems,
while Cross-Entropy is for classification problems. These functions are called
loss function or cost function. In our thesis, we work with a multi-class clas-
sification problem, so we will focus on the Cross-Entropy function, which is
given by the following equation.

Error_Function = − 1
m

m

∑
i=1

n

∑
j=1

(
yij · ln(Ŷij)

)
(2.3)
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The main objective of the backward phase in deep learning is to update the
weights and biases accurately. This is done by calculating a gradient vec-
tor that indicates, for each weight, how much the error would increase or
decrease if the weight is increased by a tiny amount. The weight vector is
then adjusted in the opposite direction to the gradient vector[deep learning
review]. To calculate the gradient of the loss function with respect to the dif-
ferent weights, the chain rule of differential calculus is used. This process is
called the backward phase because the gradients are calculated in the back-
ward direction, starting from the last layer.

The final step is the backpropagation of the error and the update of the
weights.

2.4.3 Backpropagation

The feedforward process is followed by calculating the error. Afterward, the
error signal is propagated backwards to all weights and biases, and based on
that, these parameters are updated to improve the model. The Backpropa-
gation process is based on the Gradient Descent algorithm, in which the gra-
dient of the error function (E) is calculated and a step is taken (by adjusting
the network’s weights and biases) towards the negative direction of the gra-
dient to decrease the error gradually. The process is the same for multi-layer
perceptrons except that the error function is more complex.

Gradients are computed using a technique known as the chain rule. For a
single weight Wkh

j
associated with nodes k (of the previous layer h− 1) and j

(of the current layer h), the gradient is as follows:

∂E
∂wkh

j

=
∂E

∂Zh
j
·

∂Zh
j

∂wkh
j

, (2.4)

where Zh
j refers to the output of a node j (of the current layer h) before ap-

plying an activation function. Zh
j is given by equation:

Zh
j =

m

∑
k=1

(wkh
j
·Yh−1

k + bh
j ) , (2.5)

where m indicates the number of nodes in the previous layer and Yh−1
k is the

output of a node k (of the previous layer h− 1) after applying an activation
function.
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According to the equation 2.5,
∂Zh

j
∂w

kh
j

is computed as follows:

∂Zh
j

∂wkh
j

= Yh−1
k (2.6)

Using equations 2.4 and 2.6, ∂E
∂w

kh
j

can be calculated as follows:

(2.4)⇒ ∂E
∂wkh

j

=
∂E

∂Zh
j
·Yh−1

k (2.7)

Using chain rule method, ∂E
∂Zh

j
can be expressed as follows:

∂E
∂Zh

j
=

∂E
∂Yh

j
·

∂Yh
j

∂Zh
j
=

∂E
∂Yh

j
· φ̂(Zh

j ), (2.8)

where φ̂ is the backward activation function and Yh
j is the output of a node j

after applying an activation function.

Based on equations 2.7 and 2.8, ∂E
∂w

kh
j

can be expressed in the following way:

(2.7)⇒ ∂E
∂wkh

j

=
∂E
∂Yh

j
· φ̂(Zh

j ) ·Yh−1
k (2.9)

The gradient is computed similarly for a single bias bh
j , except that

∂Zh
j

∂bh
j
= 1.

This results in the following calculation of ∂E
∂bh

j
:

∂E
∂bh

j
=

∂E
∂Zh

j
·

∂Zh
j

∂bh
j
=

∂E
∂Zh

j
· 1 (2.10)

According to the equations 2.8 and 2.10:

(2.10)⇒ ∂E
∂bh

j
=

∂E
∂Yh

j
· φ̂(Zh

j ) · 1 (2.11)
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To continue backwards, the Backpropagation process to the previous layer,
∂E

∂Yh−1
j

is calculated as follows:

∂E
∂Yh−1

j

=
∂E

∂Zh
j
·

∂Zh
j

∂Yh−1
j

=
∂E

∂Zh
j
· wkh

j
(2.12)

Backpropagation starts by taking the derivative of the Error function, so the
derivative will vary depending on which error function and activation func-
tion are used. By using sigmoid as the activation function and Binary Cross
Entropy as the Error function, ∂E

∂Yh
j

can be calculated as follows:

∂E
∂Yh

j
= − Yi

Ŷh
j

+
1−Yi

1− Ŷh
j

(2.13)

When using softmax activation function and Multi-Class Cross Entropy, ∂E
∂Zh

j

is computed as follows:
∂E

∂Zh
j
= Ŷh

j −Yi (2.14)

Update of Parameters

As a result of backpropagation, weights and biases are updated as follows:

ŵkh
j
= wkh

j
− α · ∂E

∂wkh
j

, b̂h
j = bh

j − α · ∂E
∂bh

j
, (2.15)

where α is the learning rate. As a general rule, the learning rate should be a
tiny number to incorporate safer steps toward error minimization.

2.4.4 Performance

Every machine learning algorithm needs to be assessed to determine its per-
formance. In classification tasks, the accuracy is a useful metric for this pur-
pose. Accuracy refers to the proportion of examples for which the model
produces the correct output. On the other hand, the error rate, which is the
opposite of accuracy, is also an important metric. Error rate or loss counts
the number of examples for which the model predicts the incorrect output to
the total number of examples. To evaluate an algorithm’s performance, it is
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common to use unseen data, which is a subset of the input data that has no
overlap with the subset used for training.

2.4.5 Activation functions

As we have discussed earlier, when we move from one layer to another in a
neural network, every node passes the weighted sum of the inputs through
a function. In the case of the Perceptron, this function is represented by a
step function. However, to achieve learning in general situations, such as
non-linear regions, more complex functions are used.

Sigmoid

The sigmoid function is so-called because of its S-shaped curve. This function
is typically defined between 0 and 1, which makes it especially useful for
models that output probabilities. The figure below illustrates this concept.

ϕ(x) =
1

1 + ϵ−z (2.16)

FIGURE 2.3: The sigmoid function. Source: [17]

ReLU

One of the most widely used activation functions in deep learning is called
the rectified linear unit (ReLU). This function can be defined as the half-wave
rectifier, which is represented as f (z) = max(z, 0). While the sigmoid func-
tion used to be more popular in the past, ReLU generally performs better
and faster in deep learning networks[[Deep learning,Yann LeCun1,2, Yoshua
Bengio3 & Geoffrey Hinton4,5]].
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R(z) =

z, for z ≥ 0

0, for z ≤ 0
(2.17)

FIGURE 2.4: ReLU vs sigmoid function. Source: [17]

The ReLU function is a mathematical function that behaves linearly for posi-
tive inputs while turning negative inputs to zero. This linear behavior is ben-
eficial when using a gradient-based method to optimize a machine learning
model. ReLU is commonly used in neural networks, however, it has a limi-
tation in that it zeros out all negative values, which can decrease the model’s
ability to learn correctly. This is because zeroing out a node forces it to not
participate in the calculation of the final probabilities, which can negatively
impact the overall performance of the model.

LeakyReLU

The Leaky ReLU addresses the weakness of the ReLU by introducing a small
factor (usually 0.01) to multiply negative values, simulating a leakage effect.

R(z) =

z, for z ≥ 0

αz, for z ≤ 0, with α ≤ 1
(2.18)
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FIGURE 2.5: Leaky RELU vs Relu function. Source : [17]

Softmax

The softmax function is typically used for the final layer of a neural network,
producing the output layer. This function is used specifically for multiclass
classification problems and is a generalization of the sigmoid function, which
is used in logistic regression. It should be noted that the softmax function can
only be used in cases where the classes are mutually exclusive.

In mathematics, Softmax is defined as,

S(y)i =
ϵyi

∑n
j=1(ϵ

yj)
(2.19)

where n is the number of the possible classes, and y is the input vector to the
softmax function, which consists of n elements.

2.4.6 Overfitting

Overfitting occurs when a model fits precisely to the training data set, but it
cannot perform accurately on new and unseen data. To avoid this issue, a
test set is used to verify the model’s generalization with respect to different
and novel data. If a network is overfitted, it cannot make correct predictions
or classify data accurately. A low error rate for the training dataset, followed
by a high error rate for the test dataset, is an indicator of overfitting[18].

2.4.7 Underfitting

Underfitting is a phenomenon that occurs when a neural network is not
trained for a sufficient duration or when the quality and quantity of the
dataset are insufficient to create the correct weights and biases. It is the op-
posite of overfitting.
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FIGURE 2.6: Overfitting. Source: [19]

2.4.8 EarlyStopping

As mentioned earlier, a neural network undergoes training until the desired
error rate is achieved. However, this intense process may result in overfitting
of the model, which means that noise can be incorporated into the training
process. To prevent overfitting, a technique called early stopping is used,
which stops the training of the model before it overfits. One way to avoid
overfitting is to reduce the number of repetitions during the training process,
i.e., the epochs. However, this can lead to underfitting. By using early stop-
ping, a large number of training epochs is still possible, since the training
will stop if the model’s performance becomes steady. However, the risk of
underfitting is still present, and the designer of the model should be aware
of this potential issue.





21

Chapter 3

Related Work

Throughout this chapter, we will present some bioinspired models and tech-
niques, as well as some FPGA implementations.

3.1 Towards New Generation, Biologically Plausi-

ble Deep Neural Network Learning

The model described in the work of Anirudh Apparaju & Ognjen Arand-
jelovic[20] describes a biologically plausible artificial neural network that
has a fully connected network structure. The model includes visible neu-
rons, hidden neurons, and output neurons. The hidden layers use a Heb-
bian synaptic plasticity rule as an unsupervised training rule, while stochas-
tic gradient descent is used for training the fully connected perception. The
network uses only forward-propagating signals, meaning that there is no
backpropagation of signals past the final layer. The text also describes how
synapses are modulated by activity of hidden units and how dynamic pro-
cesses are described by differential equations. To speed up the learning pro-
cess, minibatches and proxy ranking are used. The unsupervised algorithm
of the model is designed to find useful representations of raw data without
the need for particular task-specific knowledge. The high-level representa-
tions of convolutional neural networks and early visual processing areas of
animal brains are similar to these representations. The paper proposes a bio-
logically plausible alternative training methodology for artificial neural net-
works. Comparing the proposed methodology to conventional learning on
two widely used public datasets, CIFAR and MNIST, it was found that bio-
logically plausible learning is more robust to data scarcity and noise.
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3.2 Architecture for a hybrid LIF SNN with den-

drites and plasticity rules

Emmanouil Kousanakis, Apostolos Dollas, et al. [21] introduced an FPGA-
based architecture that utilizes a hybrid LIF model with two learning rules
(BCM and homeostatic plasticity) to analyze synapses and dendrites in de-
tail. The model can represent generic neuron characteristics from different
areas of the cerebral cortex. Additionally, the team mapped sparse intercon-
nections into a well-defined memory structure, which can be used to stream
data from an external storage device. By using external memory to feed the
FPGA, the interconnection schemes can be initialized without requiring sys-
tem synthesis, allowing for greater flexibility in the initialization process.

3.3 Online Spatio-Temporal Learning in Deep Neu-

ral Networks

SNNs are neural networks that are based on insights from neuroscience,
which consist of interconnected neurons through synapses. These neurons
maintain a temporal trace of past neuronal events, and learn signals trans-
porting information spatially from the environment or other brain regions
to individual neurons. Although several neuron models have been devel-
oped, the training has often been done with spike-timing-dependent plastic-
ity (STDP) Hebbian rules.

On the other hand, machine learning applications have primarily focused
on incorporating the layered, highly interconnected topology of biological
neural networks into artificial neural networks (ANNs), including recurrent
neural networks (RNNs). However, the ubiquitous error backpropagation
through time (BPTT) algorithm has severe limitations in scenarios involving
online learning. In the work of Bohnstingl, Wozniak, et al, [22], an online
learning methodology is proposed, called Online Spatio-Temporal Learning
(OSTL), for deep recurrent networks of spiking neurons. The OSTL sepa-
rates gradients into spatial and temporal components, allowing for simple
integration into deep learning frameworks with comparable performance to
BPTT. They derive OSTL for deep feed-forward SNNs, shallow feed-forward
SNNs, deep RNNs, and generalize it to generic RNNs. This framework en-
ables efficient online training for temporal data and opens up possibilities for
trainable recurrent networks in low-power IoT and edge AI devices.



3.4. Single-Pass Covariance Matrix Calculation on a Hybrid FPGA/CPU
Platform

23

3.4 Single-Pass Covariance Matrix Calculation on

a Hybrid FPGA/CPU Platform

In a study conducted by the Systems group at ETH Zurich under the support
of Nevis Laboratories at Columbia University [23], a new method has been
proposed for computing the covariance matrix using a hybrid FPGA/CPU
model. In particle physics, the covariance matrix is widely used to reduce
dimensionality and filter data. However, due to the curse of dimension-
ality, which is a phenomenon that occurs exponentially as dimensionality
increases, covariance matrices are computationally complex and memory-
intensive. To overcome this, estimators such as the maximum likelihood es-
timator can be used to approximate the covariance matrix to sufficient accu-
racy, but they can be vulnerable in the presence of non-normally distributed
random variables. A new design has been presented that uses a unique de-
composition of the covariance matrix, which requires only one pass of data
to calculate the covariance matrix. This design has been implemented on a
hybrid FPGA/CPU system and provides a speed-up of up to five orders of
magnitude over previous FPGA implementations.

3.5 Thesis Approach

The aim of this project is to enhance the bio-inspired features of an ANN by
incorporating dendritic structure, receptive field and synaptic plasticity. An
FPGA architecture will be designed to train this network. Dendritic struc-
tures are used to divide an artificial neuron into its soma and dendrites. This
provides sparsity to ANNs, which means that fewer parameters are required
for training them, thereby reducing power consumption. The receptive field
is inspired by the human visual system and offers structured connectivity,
indicating that each neuron is associated with a neighborhood of inputs.
Synaptic plasticity occurs when synapses in a network modify the strength
of their connections without explicit instruction from previous or subsequent
layers. These bio-inspired features have been shown to be useful in a wide
range of tasks, such as continuous learning and noise reduction.

Instead of classical gradient descent, the Adam optimization algorithm is
used for updating training parameters. This algorithm computes individ-
ual adaptive learning rates for each parameter, which is characterized as
more bio-inspired, in accordance with dendrites in biological neurons that
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are responsible for the generation of their own regenerative events (dendritic
spikes).

This thesis aims to design and implement an FPGA-based architecture for
this bio-inspired ANN that will accelerate training and reduce power/energy
consumption further. The high parallelism and power efficiency of FPGAs
will be utilized for this purpose. This bio-inspired model has the potential to
be applied to systems with limited resources, such as portable devices and
mobile phones.
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Chapter 4

System Modeling

Throughout this chapter, we will provide a detailed description of the design
and implementation of this module in order to better understand and ana-
lyze it. For the purpose of studying how the covariance learning rule acts
on dendritic-structured artificial neural networks, the Poirazi lab at IMBB-
FORTH introduced and developed this model in Keras. However, due to the
considerable amount of time needed to train this network, an FPGA was con-
sidered a much more efficient platform. To implement it on an FPGA, the first
step was to rewrite the model in Python using only the Numpy library, then
convert it into a low-level language such as C and implement some functions
in a manner compatible with the hardware.

The profiling of Python’s and C’s implementations will also enable us to the
identification of the processes that consume a significant amount of memory
and time. We can attempt to optimize them at the hardware level.

A key feature of this thesis is that it focuses on the training process for this
bio-inspired ANN model.

4.1 Neuro-inspired ANN model with Covariance

Rule

As mentioned earlier, the model was developed by the Poirazi lab at IMBB-
FORTH, specifically by postdoctoral researcher S. Chavlis and research di-
rector P. Poirazi.

This study integrates two bioinspired features into a common neural net-
work: the dendritic structures of the layers and the receptive field layer
method. This chapter will explain both of them.

http://dendrites.gr/
https://www.imbb.forth.gr/en/
https://www.imbb.forth.gr/en/
https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
https://www.imbb.forth.gr/en/research-en/item/73-panayiota-poirazi
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Based on this model two different approaches were developed regarding the
learning rule.

The first strategy is the classic backpropagation rule of an ANN, which is pre-
sented in Lampros Pantzekos’ thesis, Bioinspired DNN Architectures with
Dendritic Structure, which provides a comprehensive analysis of the strat-
egy and its implementation. The second approach, which is the concept of
this thesis, is the combination of the Covariance Rule and the Backpropaga-
tion Rule. In this case, covariance is applied to the first layer of the network
and backpropagation is applied to the remaining layers.

Furthermore, the Adam optimization algorithm, rather than classic gradient
descent, is selected as the method for updating the network’s parameters
(Weights and biases). This update method computes individual adaptive
learning rates for each parameter. As a result, it tends to be more bio-inspired
since the information is encoded separately from the dendrites rather than
entirely from the neurons themselves.

An important goal of this work is to increase the bio-inspiration in order to
achieve significant resource savings.

It is important to note that some sections of the Lampros Pantzekos’ thesis
have been incorporated into our model to improve reading and understand-
ing. Those are the 4.3.1 , 4.3.2, 4.3.3, 4.3.4

4.1.1 Bio-inspired Features

Dendritic-Structure

A dendrite is a thin extension of a neuron’s cell body that receives signals
from its neighbors. Dendrites are equipped with passive properties that at-
tenuate incoming signals and active mechanisms capable of generating den-
dritic spikes, which enable nonlinear signal processing. Using activation
functions, we can mathematically represent these dendritic features, essen-
tially by treating dendrites as computational nodes.

In a typical artificial neural network (ANN), an artificial neuron is repre-
sented as a single node, with its output prediction computed through an
all-to-all manner of summing weighted inputs from the preceding layer, fol-
lowed by an activation function. This conventional structure requires mil-
lions of trainable parameters.

https://www.linkedin.com/in/lampros-pantzekos/
http://purl.tuc.gr/dl/dias/E3466A49-13C0-41E6-8AC9-484A0C47CFC4
http://purl.tuc.gr/dl/dias/E3466A49-13C0-41E6-8AC9-484A0C47CFC4
https://www.linkedin.com/in/lampros-pantzekos/
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FIGURE 4.1: Dendritic-Structure Layer

In contrast, our model features a dendritic structure, where each artificial
neuron is divided into a soma and its associated dendrites. This transforms
each artificial neuron into a two-layer node structure, with the soma con-
nected solely to its dendrites and each dendrite exclusively linked to its synapses.
This unique design promotes sparsity in our model, resulting in a reduced
need for trainable parameters compared to traditional fully connected ANNs,
leading to significant resource savings.

Receptive Field (RF)

A receptive field is a region of the observed visual space whose luminance
and structural patterns affect a neuron’s activity.In the primary visual cortex,
receptive fields correspond to visual angles and are organized by their posi-
tion in the retina. In fact, different neurons tend to have different receptive
fields and thus select and process specific directional information. The way
we model this is by considering that each soma is related only to a specific
neighborhood across the entire input, and each dendrite receives input from
smaller neighborhoods surrounding each soma. When it comes to training,
sampling of the input data is implemented in a way that areas expected to
contain useful information are primarily selected. For example, in Convo-
lutional Neural Networks (CNNs) random cropping of the input image is
biased to central areas since they have greater chances to contain useful in-
formation.
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Thus, the receptive field, or field of view, is a basic concept in deep CNNs
for a certain layer in the network. Unlike in fully connected networks, where
the value of each unit depends on the entire input to the network, a unit in
neural networks can only depend on a region of the input. This region in the
input is the receptive field for that unit. [24]

Implementation of the Connectivity Structure

In our model, this feature is reflected in how the inputs connect to the first
layer of dendrites. To establish a receptive field, we employ binary masks,
which are matrices sized to equal the product of the number of inputs with
the number of dendrites. Each dendrite comprises 9 synapses, where each
synapse forms a connection with a pixel from the image. The binary mask
differentiates these connections by assigning 1s to indicate the presence and
0s to indicate the absence of a connection. For instance, in the MNIST dataset
with 28*28 pixel images and 2048 dendrites in the 1st layer, the shape of the
mask would be [784, 2048]. If we opt for 9 synapses per dendrite, the mask
would have a total of 9 connections set to 1 for each column.

The model can support three methods for making a receptive field. These are
the serial, semi-random, and random methods. As part of the serial method,
the first pixel is chosen as the center of the neighborhood, which moves on
to the next pixel each time. As part of the random method, the centers are
selected randomly. A third method involves randomly selecting pixels that,
70% of the time, are located in the center of the image. For each soma, we
found its 16 nearest neighbors, which are the dendrites. Then, for each of
these dendrites, we create a neighborhood of nine neighbors, which repre-
sent synapses.
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FIGURE 4.2: Semi-Random allocation of centroids

The described process is illustrated in Figure 4.2, where each soma is repre-
sented as a dot. Notably, 70% of the somas, displayed as red dots, are located
in the [7, 21] range on both the x and y axes, corresponding to the center of
the image. Meanwhile, the remaining 30% , blue dots, are selected randomly
from locations across the entire image.

All these dots collectively form the second layer of the neural network. For
each dot in this layer, a neighborhood of 16 points is created, representing
the dendrites that consist of the first layer in our model. This relationship is
illustrated in the figure below (Figure 4.3), where the blue dot signifies a se-
lected soma from the prior image, and the yellow dots indicate the associated
dendrites.
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FIGURE 4.3: Random allocation of Soma with its dendrites

In the same way, each dendrite has a neighborhood of nine synapses, which
are the connections between the pixels of the image and the dendrite. The
figure 4.4 illustrates this.
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FIGURE 4.4: Dendrite and its synapsis

The mask of the third layer indicates the connections from the first dendritic-
structure layer to the second one, randomly linking each dendrite with 9 so-
mas from the prior layer. Similarly, the mask for the fourth layer functions
similarly to that for the second layer, except that each soma is connected to
eight dendrites. Notably, a mask is unnecessary for the fifth layer.

These masks are set during the initialization process and remain constant
thereafter while the connectivity-structure changes in the nervous system.
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Hebbian Learning

In the book “The Organisation of Behaviour”, Donald O. Hebb proposed a
mechanism to update weights between neurons in a neural network. As a
result of this weight-updating method, neurons were able to learn. The pro-
cess is known as Hebbian Learning. The general principle is that any two
cells that are repeatedly active at the same time will tend to become ’associ-
ated’ so that activity in one facilitates activity in the other. Therefore, cells
that fire together are wired together. This relationship is described by the
following equation.

∆wij = α · xi · yj, (4.1)

where ∆wij represents the change in the synaptic weight between neuron i
and neuron j, α is the learning rate, xi is the activity or output of the presy-
naptic neuron i, yj is the activity or output of the postsynaptic neuron j.

Hebb’s proposition is rooted in the observed biological phenomenon of synap-
tic plasticity. This refers to the ability of the connections (synapses) between
neurons to change in strength over time in response to activity patterns. Ac-
cording to Hebbian learning, synaptic connections are strengthened based on
correlated activity between pre- and postsynaptic neurons. This correlation-
based learning is thought to play a fundamental role in various forms of
learning and memory in the brain. Artificial neural networks can benefit
from this learning rule in several ways. Firstly, it’s biologically plausible.
Moreover, Hebbian learning is unsupervised, meaning it can learn from un-
labeled data without requiring explicit guidance, which simplifies the learn-
ing process and enables the network to recognize underlying patterns and
structures within the data. In addition, Hebbian learning allows continuous
integration of new knowledge over time, making it ideal for scenarios where
the network must continuously learn from incoming data streams without
forgetting previously acquired knowledge. It is important to note, however,
that this rule has several key drawbacks, which call for further investigation
and development. It is possible that the strengthening of connections be-
tween neurons that fire together can lead to indiscriminate learning. As a
result, it may not always capture the precise features or patterns required for
a particular task. For this reason, a more powerful approach was proposed
by S. Chavlis which is mentioned as the Covariance Rule and it is explained
in the following sections.

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
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Covariance Rule

Traditionally, neural networks are able to learn through backpropagation, as
discussed in Chapter 2. Essentially, this method is part of supervised learn-
ing, and it involves comparing the outcome with the expected outcome based
on the input and then making corrections accordingly. In contrast, we incor-
porate non-supervised learning at the first level of the network in this study.
This is referred to as the Covariance Rule.

In order to understand the Covariance Rule we have to understand 3 crucial
concepts. Those are the variance of a variable, the covariance of multiple
variables, and the covariance matrix.

4.1.2 Variance

Variance is a fundamental statistical measure that quantifies the degree of
dispersion or spread of a set of data in a given statistical area. It provides
insight into how individual values in a dataset deviate from the mean (av-
erage) of the dataset. Variance measures how far a set of values spreads out
from the mean.

The symbol for variance is {σ2}.

A lower variance indicates that the values are closer together, while a higher
variance indicates that the values are spread out more. Variance can be used
to measure the accuracy of predictions or the efficiency of a system.

The formula for calculating the variance of a set of n data points {x1, x2, · · · , xn}
is as follows:

σ2 =
1

n− 1

n

∑
i=1

(xi − x)2, (4.2)

where xi is each data point and x is the mean of the data points

4.1.3 Covariance

Covariance is a statistic value that measures how two random variables are
related. It is calculated as the covariance of random variables X and Y, pro-
viding insights into their linear relationship. It determines whether two vari-
ables move in the same direction or in the opposite direction.
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The formula for calculating the covariance between two variables is,

σ(x, y) =
1

n− 1

n

∑
i=1

(xi − x)(yi − y), (4.3)

where n is again the number of observations, xi and yi is the data point, and
x , y are the means of the x and y.

Covariance can be difficult to interpret due to the wide range of possible re-
sults. Its values can range from negative infinity to positive infinity. The
comparison of covariances between datasets with varying scales may result
in misleading results. Therefore, it cannot be used to measure the strength of
a relationship. Rather, it is used to determine the direction of a relationship.
Consequently, we can have 2 possible outcomes for covariances either posi-
tive or negative covariance. Positive covariance occurs when 2 variables tend
to move in the same direction. Higher values of one variable correspond to
higher values of the other. For example, increased study hours often coincide
with higher grades. In contrast, negative covariance indicates that the vari-
ables move in opposite directions. Higher values of one variable correspond
to lower values of the other. For example, increased physical activity often
coincides with decreased body weight.

4.1.4 Covariance Matrix

The covariance matrix is a symmetric matrix that summarizes the covari-
ances between multiple variables. In a dataset with k variables, the covari-
ance matrix provides a comprehensive overview of how each variable co-
varies with every other variable. It is essentially a square matrix where the
diagonal elements represent the variances of individual variables. On the
other hand, the non-diagonal elements represent covariances between vari-
ables.

The covariance matrix is symmetric, reflecting that the covariance between
variables xiyi and xjyj is the same as the covariance between yjxj and yixi.

The covariance matrix is given by the Ci,j = σ(xi, yi), where C ∈ (Rd×d) and
d is the number of the variables.

where n is the number of observations, xi refers to the variable of x and yi to
the variable y, and x y are the mean values of the observations respectively.
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Combining the two formulas above 4.2 and 4.3 , we can now calculate the
Covariance matrix.

C =

[
σ(x, x) σ(x, y)
σ(y, x) σ(y, y)

]
(4.4)

Implementation of the Covariance Rule

The application of this rule in a layer of a model is happening by skipping the
back-propagation method to update the weights and using the covariance
matrix. In our case, we use a 3D covariance, which practically is stuck of
covariance matrices as many as the number of the dendrites of the layer. The
variables of the matrix are the weights of the synapses of each dendrite that
the matrix refers to and the observations are the weights multiplied with the
inputs throughout the batch of each epoch. Then, for each synapse, we find
the summation of the covariance matrix values. In the end, the updates of
the weights are the sum of those summations multiplied by the sigmoid of
the feed-forward.

4.1.5 Reference Model Architecture

Combining all the above we have concluded to the presented neural network

The model consists of 2 dendritic-structure layers. However, a dendritic-
structure layer is equivalent to 2 layers of a typical ANN, because the neuron
is divided into the soma and its dendrites, as previously mentioned.

• 1st dendritic-structure layer: 128 somas with 16 dendrites per soma
(2048 dendrites in total) and 9 synapses per dendrite.

• 2st dendritic-structure layer: 16 somas with 8 dendrites per soma (128
dendrites in total) and 9 synapses per dendrite.

After each layer, the weights are passed through an activation function. Those
are described in section 2.17 and you can apply them to a model. In our case,
ReLU is preferred for all of our layers.

Nevertheless, it suffers from the "Dying ReLU problem," which can be solved
by an improved version of it, called Leaky ReLU. As a result, Leaky ReLU
will serve as the activation function in these layers. In addition, there is an
output layer, at which the scores are converted into probabilities through the
application of the softmax function (2.19). The softmax layer is commonly
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FIGURE 4.5: Model Architecture. Source: [25]

used as the final layer of an ANN model since it is appropriate for multi-
class classification tasks. Therefore, the model contains 5 layers. As input,
this model uses images from the MNIST dataset[26]. In MNIST, each input
image has a size of 28× 28 pixels, which is converted to a one-dimensional ar-
ray of 784 pixels. Detailed information about each layer can be found in table
4.1, which includes the number of input and output nodes within parenthe-
ses. Moreover, the thesis model architecture is illustrated in figure 4.5.

TABLE 4.1: Detailed description of each layer in the model.

Input nodes Output nodes(Units) Activation Function

1 Inputs (784) Dendrites (2048) Leaky ReLU
2 Dendrites (2048) Somas (128) Leaky ReLU
3 Somas (128) Dendrites (128) Leaky ReLU
4 Dendrites (128) Somas (16) Leaky ReLU
5 Somas (16) Output Classes (10) Softmax
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4.2 Software Implementations - Tools used (Keras

- Numpy)

The software implementations include the necessary initialization, training,
and testing procedures. The training procedure differs between the first layer
and consecutive ones. For the first layer, the training steps are Forward prop-
agation and the Covariance Rule, while there is no need for Backpropagation
and Update since the covariance is an unsupervised learning rule that up-
dates the weights. For the rest of the layers, the steps are the common steps of
a DNN (figure 4.6), which are the Full-Forward propagation (Feed-Forward),
Backpropagation, and parameter updating (Adam Algorithm). The Full-
Forward propagation and Covariance rule will be presented in detail in this
thesis while the Backpropagation and the Update will be just mentioned with
a basic explanation as is more detailed in Bioinspired DNN Architectures
with Dendritic Structure[25] thesis.

The testing procedure consists only of Full-Forward propagation.

FIGURE 4.6: The basic steps of training procedure for the Heb-
bian Layer

FIGURE 4.7: The basic steps of training procedure for the rest
of the layers
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The model was first implemented by S. Chavlis in Keras. Keras is a high-
level neural network Application Programming Interface (API) written in
Python. It runs on top of TensorFlow, an open-source machine learning plat-
form that offers multiple abstraction levels for building and training models.
Keras supports fast experimentation with DNNs by providing numerous im-
plementations of commonly used NN building blocks. Based on Keras im-
plementation, Numpy was used to implement the model at a lower level.
Numpy is a Python library for handling large, multi-dimensional arrays and
matrices rapidly and easily. In addition, it provides many computing tools
(such as mathematical functions, random number generators, linear algebra
routines, and more) that can be applied to these matrices and arrays.

Initially, a validity check was conducted on the given Keras code, since it
was in the testing stage. The simplicity of Keras allowed us to conduct fast
experiments with the bio-inspired model and gain a basic understanding of
its features. There were, however, some ambiguities in the Keras’ implemen-
tation due to its abstract nature. Therefore, a lower-level implementation was
necessary. The Numpy implementation is able to provide deeper insight into
the model’s features and function.

4.2.1 Hyperparameter and Training Configuration

A hyperparameter is a parameter that controls the learning process in ma-
chine learning. Our bio-inspired ANN model is trained with the following
settings that were used in Poirazi lab’s Keras implementation as the most
appropriate ones:

• Batch Size (16): The number of training samples that will be processed
in one training iteration.

• Number of Epochs (30): The number of times a neural network is trained
on a whole dataset.

• Number of Classes (10): Number of output nodes in the last layer

• Learning Rate (0.001): It controls how fast the neural network can learn.
Using a small number as the learning rate allows us to minimize net-
work error by taking safer steps.

• Validation Split (0.2): It is the percentage of total training data that will
be used for validation.

https://www.imbb.forth.gr/en/personel-directory/item/1357-chavlis-spyridon
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• Leaky ReLU alpha (0.1): Leaky ReLU (2.18) allows a small slope for
negative values (f(x) = alpha * x if x < 0, f(x) = x if x >= 0).

• Shuffle (True): Whether to shuffle the training data before each epoch.

• ReduceLROnPlateau Callback (applied - patience = 5 epochs): To re-
duce learning rate when a metric (validation error) has stopped im-
proving.

• ReduceEta Callback (applied - patience = 1 epoch): To reduce the learn-
ing rate of the covariance rule when validation error has stopped im-
proving.

• Early Stopping Callback (applied - patience = 10 epochs): To stop train-
ing when a monitored metric (validation error) has stopped improving.

• Adam Optimizer (enabled): Adam optimization algorithm is an itera-
tive optimization algorithm used to minimize the loss function during
the training of neural networks

• Error function (Multi-class Cross entropy 2.3): It measures the differ-
ence between two probability distributions for a given random vari-
able/set of events.

• Accuracy: It measures the number of correct predictions made by our
model in relation to the total number of predictions made.

Data-set

The MNIST database of handwritten digits is used for training and testing.
It includes:

• Training set of 60000 examples. According to the validation split hy-
perparameter (20%), 48000 examples are used for training and 12000
for validation.

• Test set of 10000 examples.

• Images (Inputs) of 28× 28 pixels. Each input image of (28,28) shape is
converted to a one-dimensional input array of 784 input pixels.

Training is conducted in batches of 16 (Batch_size) images. Rather than pass-
ing one image of 784 pixels as an input per training iteration, we pass 16 im-
ages of 784 pixels. In addition, at the end of every epoch, a validation process
is carried out using a separate set of images, in order to evaluate the progress



40 Chapter 4. System Modeling

of the training. After validation is complete, we use some callbacks, such as
ReduceLROnPlateau and Early Stopping, to prevent underfitting and over-
fitting. These specific callbacks are triggered when the validation error stops
improving for a certain number of epochs, thereby reducing the learning rate
or stopping the training earlier.

Data Type

The Keras implementation developed by the Poirazi lab uses float as the
data type. Our Numpy implementation maintains this choice of data type
since the goal of implementing the bio-inspired model in Numpy is to gain
a deeper understanding of its features and training process rather than to
achieve optimizations.

4.3 Numpy Implementation

Our approach is to use the high-level Keras implementation of Poirazi lab
as a reference for developing a lower-level Numpy implementation in order
to gain a more comprehensive understanding of its features and its training
process rather than to optimize it. Also, we will use this as a base to imple-
ment the C program for the hardware design, which is explained in the next
chapter. In the first part of the code, the MNIST dataset is downloaded and
converted from ubyte files to numpy arrays. This conversion facilitates the
processing of data. A float32 data type is used for these numpy arrays, and
their values are normalized to [0,1]. As far as the data labels (targets) are
concerned, they are converted from target vectors to categorical targets (bi-
nary class matrices). Following that, the masks are constructed as described
previously (4.1.1). Model architecture (4.1) is defined as a list that contains
information about each layer. In particular, this list (called architecture) spec-
ifies each layer’s output nodes (units), activation function, mask, and initial-
ization method for its parameters.

4.3.1 Generation of parameters (Initialization phase)

In the initialization process, weight matrices and bias vectors are created for
each layer, depending on its input and output shapes. In the first four lay-
ers, the weights are generated using the ’He normal’ initialization method,
where samples are drawn from a truncated normal distribution centered
at zero with standard deviation given by stddev =

√
2

f an_in . For the final
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layer, the ’Glorot uniform’ initializer (or Xavier uniform initializer) is ap-
plied, which generates weights based on samples drawn from a uniform
distribution within [-limit, limit], where limit =

√
6

( f an_in+ f an_out) . Bias vec-
tors are initialized with zeros at each layer. Selecting an initializer closely
relates to selecting an activation function. "Glorot" (or "Xavier") initialization
is appropriate for NN layers with sigmoid activations. This initializer is also
suitable for the final layer of our model since softmax is a generalization of
sigmoid. The "he" initialization is a modified version of "Glorot", which was
specifically designed for layers using ReLU activation functions. So, it is used
in the first four layers, where leaky ReLU is used (an improved version of
ReLU). Afterward, each weight matrix is filtered (by element-wise multipli-
cation) with its corresponding mask. The weights of non-desired connections
will, therefore, be zero. During the initialization process, all masked weight
matrices and bias vectors are stored in a list called parameters. Using numpy
(4.5), each weight matrix is filtered (with its corresponding mask) and stored
as follows:

parameters[”W”+ str(layer_id)] = np.multiply(parameters[”W”+ str(layer_id)], Mask)
(4.5)

4.3.2 Full-Forward propagation

As described in Section 2.4.2, Full Forward Propagation is used to predict
the outcome in NN models. Each layer’s output is calculated sequentially to
determine the network’s outcome. Specifically, it is calculated by multiplying
its input matrix (Y_prev) by its weight matrix (W_curr) and adding its bias
vector (b_curr). This result (Z_curr) is then passed through an activation
function. The dimensions of these matrices are given in table 4.2. The above
calculation is carried out as follows in Numpy:

Z_curr = numpy.dot(Y_prev, W_curr) + b_curr (4.6)

Y_curr = activation_ f unction(Z_curr), (4.7)

where numpy.dot performs matrix multiplication on matrices W_curr and
Y_prev. Y_prev corresponds to the input of the network in the first layer.

Those equeations are executed for every layer of the model, and together,
they consist of the Forward Propagation algorithm. The output of each layer
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becomes the input of the next one. The only exception is the first layer, which
takes its inputs from the batch of the dataset.

TABLE 4.2: Detailed description of each matrix dimensions in
Full Forward propagation. In the first layer, Y_prev refers to

the input of the network.

Forward Matrices Dimensions

1 Y_prev (Layer’s Input) [Batch_Size, Input_nodes]
2 W_curr [Input_nodes, Output_nodes]
3 b_curr [1, Output_nodes]
4 Z_curr [Batch_Size, Output_nodes]
5 Y_curr [Batch_Size, Output_nodes]

Algorithm 1 Full Forward propagation

1: procedure FULL_FORWARD(Input_Value, init_parameters, architecture)
2: Y_curr ← Input_Value
3: for layer_id← 1 to 5 do ▷ for each single layer
4: Y_prev← Y_curr
5: activation← architecture[”activation” + str(layer_id)]
6: W_curr ← parameters[”W” + str(layer_id)]
7: b_curr ← parameters[”b” + str(layer_id)]
8: Z_curr ← np.dot(Y_prev, W_curr) + b_curr
9: if activation == ”leaky_relu” then

10: Y_curr ← leaky_relu(Z_curr)
11: else if activation == ”so f tmax” then
12: Y_curr ← so f tmax(Z_curr)
13: end if
14: f orward_outputs[”Z” + str(layer_id)]← Z_curr
15: f orward_outputs[”Y” + str(layer_id)]← Y_curr
16: end for
17: return f orward_outputs
18: end procedure

4.3.3 Backpropagation

The goal of backpropagation is to minimize the network’s error by adjust-
ing its weights and biases. Gradients in the error function relating to these
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parameters determine the level of adjustment. The backpropagation process
is described in detail in section 2.4.3. The first step of backpropagation is to
calculate the derivative of the error function. In our model, softmax is used
as the activation function of the last layer and multi-class Cross-Entropy is
used as the error function. In this case, ∂E

∂Z can be directly calculated based
on equation 2.14, skipping the calculation of ∂E

∂Y . Using Numpy, it can be cal-
culated as shown in equation 4.11. Using the calculated ∂E

∂Z , the last layer’s
∂E
∂W and ∂E

∂b , as well as the ∂E
∂Y_prev , are calculated. The gradient for W, ∂E

∂W , is
calculated using the equation 2.7, which is based on the chain rule method.
In Numpy, this equation is expressed as follows (4.8):

dW_curr = numpy.dot(Y_prev.T, dZ_curr)/Batch_Size , (4.8)

where Y_prev refers to the output of the previous layer, or, in other words,
the input of the current layer.

Similarly, the gradient for bias, ∂E
∂b , is computed as shown in equation 2.10.

Numpy implements this equation as follows (4.9):

db_curr = numpy.sum(dZ_curr, axis = 0, keepdims = True)/Batch_Size ,
(4.9)

During backpropagation, the error signal is propagated (backwards) from
each layer to the previous one. This can be accomplished by calculating

∂E
∂Y_prev according to equation 2.12. This equation is implemented as follows
in Numpy (4.10):

dY_prev = numpy.dot(dZ_curr, W_curr.T) , (4.10)

The calculated ∂E
∂Y_prev will be used to calculate the ∂E

∂Z of the previous layer.

As for the remaining layers, ∂E
∂W , ∂E

∂b and ∂E
∂Y_prev are calculated using the same

methods as in the last layer. However, ∂E
∂Z is determined differently. In par-

ticular, the chain rule technique is used to calculate it based on equation 2.8.
Since Leaky ReLU serves as the activation function for the rest of the layers,
its backward version is used here. In Numpy, ∂E

∂Z is calculated in the follow-
ing manner (4.11):

dZ_curr =

Y_curr− Input_Label for last (softmax) layer

backward_Leaky_ReLU(dY_curr, Z_curr) for the other layers
(4.11)
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TABLE 4.3: Detailed description of each matrix dimensions in
Backpropagation.

Backpropagation Matrices Dimensions

1 dZ_curr [Batch_Size, Output_nodes]
2 dY_curr [Batch_Size, Output_nodes]
3 dW_curr [Input_nodes, Output_nodes]
4 db_curr [1, Output_nodes]
5 dY_prev [Batch_Size, Input_nodes]

The dimensions of the necessary matrices are given in table 4.3. Each layer of
the Full Backpropagation algorithm (28) begins by loading the weight matrix
of the current layer (W_curr) from the parameters list. Furthermore, the ’ac-
tivated’ output of the previous layer (Y_prev), as well as the ’non-activated’
output of the current layer (Z_curr), are loaded from the forward_outputs
list. In the next step of the algorithm, dZ_curr ( ∂E

∂Z ), dW_curr ( ∂E
∂W ), db_curr

(∂E
∂b ) and dY_prev ( ∂E

∂Y_prev ) are calculated for the last (softmax) layer. The
terms mentioned above are then calculated for each remaining layer. Sepa-
rating the last layer from the others is due to the different calculation method
for dZ_curr (shown in equation 4.11). After each layer’s calculations, the gra-
dients for weights (dW_curr) and bias (db_curr) are stored in the gradients
list. To maintain the sparse connection structure, dW_curr is filtered with
the corresponding mask (from the architecture list) before being stored. , we
present an overview of the backpropagation process for each layer of our
bio-inspired NN.

Algorithm 2 Single layer Backpropagation

1: procedure SINGLE_LAYER_BACKPROPAGATION(dY_curr, W_curr, Z_curr, Y_prev)
2: if Z_curr ≤0 then ▷ backward Leaky ReLU
3: dZ_curr=dY_curr∗0.1
4: else
5: dZ_curr=Z_curr
6: end if
7: dW_curr=np.dot(Y_prev.T, dZ_curr)/Batch_size
8: db_curr=np.sum(dZ_curr, axis=0, keepdims=True)/Batch_size
9: dY_prev=np.dot(dZ_curr, W_curr.T)

10: return dY_prev, dW_curr, db_curr
11: end procedure
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Algorithm 3 Full Backpropagation

1: procedure FULL_BACKPROPAGATION(Input_Value, Input_Label, f orward_outputs,
init_parameters, architecture)

2: for layer_id← 5 to 1 do ▷ starting from the last layer
3: Z_curr ← f orward_outputs[”Z” + str(layer_id)]
4: Y_prev← f orward_outputs[”Y” + str(layer_id− 1)]
5: W_curr ← parameters[”W” + str(layer_id)]
6: if layer_id == 5 then ▷ for the last layer
7: Y_5← f orward_outputs[”Y” + str(layer_id)]
8: dZ_curr ← Y_curr− Input_Label
9: dW_curr ← np.dot(Y_prev.T, dZ_curr)/Batch_size

10: db_curr ← np.sum(dZ_curr, axis=0, keepdims=True)/Batch_size
11: dY_prev← np.dot(dZ_curr, W_curr.T)
12: else ▷ for the layers 4 to 1
13: dY_curr ← dY_prev
14: if Z_curr ≤0 then ▷ backward Leaky ReLU
15: dZ_curr ← dY_curr∗0.1
16: else
17: dZ_curr ← Z_curr
18: end if
19: dW_curr ← np.dot(Y_prev.T, dZ_curr)/Batch_size
20: db_curr ← np.sum(dZ_curr, axis=0, keepdims=True)/Batch_size
21: dY_prev← np.dot(dZ_curr, W_curr.T)
22: end if
23: mask← architecture[”mask” + str(layer_id)] ▷ masking dw
24: dW_curr ← np.multiply(dW_curr, mask)
25: gradients[”dW” + str(layer_id)]← dW_curr
26: gradients[”db” + str(layer_id)]← db_curr
27: end for
28: return gradients
29: end procedure

4.3.4 Update method - Adam Algorithm

As discussed the classical Gradient Descent is inefficient when dealing with
large datasets since it is applied to every single data point. As far as the
Stochastic Gradient Descent is concerned, instead of using the entire dataset
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for each iteration, only a random small batch is selected to calculate the gra-
dient and update the parameters. In this way, it accelerates convergence in
large datasets. However, this update method maintains a single and constant
learning rate for all parameter updates throughout training. In biological
neurons, dendrites support the generation of their own regenerative events
(dendritic spikes). Considering this fact, the Adam optimization algorithm is
chosen as the method for updating network parameters (weights and biases)
iterative based on training data. In this method, individual adaptive learning
rates are computed for each parameter from estimates of the first and second
moments of the gradients. Rather than encoding information entirely from
the neuron, it is encoded separately from its dendrites. As a result, the Adam
algorithm tends to be more bio-inspired than the methods noted above.

Initially, the Numpy implementation of Adam (37) specifies the exponential
decay rates (β1, β2) and the ϵ (to prevent division by zero) based on tested
machine learning problems. For each layer of the network, the gradients for
weights (dW) and biases (db) are retrieved from the ’gradients’ list. The back-
propagation algorithm produces this list. The algorithm updates the first
moment estimates (the mean) of the gradient of the weights (mean_dw) and
biases (mean_db). The second raw moment estimates (the uncentered vari-
ance) of the gradient of the weights (uvar_dw) and biases (uvar_db) are then
updated. In order to keep track of the previous training iteration’s values
for mean_dw, mean_db, uvar_dw, and uvar_db, a list called ’adam_values’
is used. Due to the fact that these moment estimates are initialized as vectors
of 0’s, they are biased towards zeros. To address this issue, the algorithm
computes bias-corrected moment estimates. These are calculated based on
the current training iteration, which is represented by the input variable t.
Finally, the parameters are updated using these bias-corrected moment esti-
mates. The dimensions of the necessary matrices are given in table 4.4.
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Algorithm 4 Adam Optimization Algorithm - Update Algorithm

1: procedure ADAM_UPDATE(Input_Value, parameters, architecture, gradients,
adam_values, learning_rate, t)

2: beta_1← 0.9, beta_2← 0.999, epsilon← 1e− 8
3: for layer_id← 1 to 5 do
4: ▷ load dw and db of current layer
5: dw← gradients[”dW” + str(layer_id)]
6: db← gradients[”db” + str(layer_id)]
7:
8: ▷ update mean of the gradient of weights
9: mean_dw_prev← adam_values[”mean_dw”+str(layer_id)]

10: adam_values[”mean_dw”+str(layer_id)]←
beta_1*mean_dw_prev+(1-beta_1)*dw

11: ▷ update mean of the gradient of biases
12: mean_db_prev← adam_values[”mean_db”+str(layer_id)]
13: adam_values[”mean_db”+str(layer_id)]←

beta_1*mean_db_prev+(1-beta_1)*db
14:
15: ▷ update uncentered variance of the gradient of weights
16: uvar_dw_prev← adam_values[”uvar_dw”+str(layer_id)]
17: uvar_dw_curr ← beta_2*uvar_dw_prev+(1− beta_2)*(dw ∗ ∗2)
18: adam_values[”uvar_dw”+str(layer_id)]←

np.maximum(uvar_dw_prev, uvar_dw_curr)
19: ▷ update uncentered variance of the gradient of biases
20: uvar_db_prev← adam_values[”uvar_db”+str(layer_id)]
21: uvar_db_curr ← beta_2*uvar_db_prev+(1− beta_2)*(db ∗ ∗2)
22: adam_values[”uvar_db”+str(layer_id)]←

np.maximum(uvar_db_prev, uvar_db_curr)
23:
24: ▷ compute bias-corrections
25: mean_dw_c← adam_values[”mean_dw”+str(layer_id)]/

(1-beta_1**t)
26: mean_db_c← adam_values[”mean_db”+str(layer_id)]/

(1-beta_1**t)
27: uvar_dw_c← adam_values[”uvar_dw”+str(layer_id)]/

(1-beta_2**t)
28: uvar_db_c← adam_values[”uvar_db”+str(layer_id)]/

(1-beta_2**t)
29:
30: ▷ update weights and biases
31: mask← architecture[”mask” + str(layer_id)]
32: dw_ f ← np.multiply(learning_rate*(mean_dw_c/(np.sqrt(uvar_dw_c)+epsilon)),

mask)
33: db_ f ← learning_rate*(mean_dw_c/(np.sqrt(uvar_dw_c)+epsilon))
34: parameters[”W”+str(layer_id)]←

parameters[”W”+str(layer_id)]-dw_ f
35: parameters[”b”+str(layer_id)]←

parameters[”b”+str(layer_id)]-db_ f
36: end for
37: return parameters ▷ return updated parameters
38: end procedure
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TABLE 4.4: Detailed description of each matrix dimensions in
Adam Optimization Algorithm.

Adam Algorithm Matrices Dimensions

1 dW (from backpropagation) [Input_nodes, Output_nodes]
2 db (from backpropagation) [1, Output_nodes]
3 mean_dw (mean_dw_c) [Input_nodes, Output_nodes]
4 mean_db (mean_db_c) [1, Output_nodes]
5 uvar_dw (uvar_dw_c) [Input_nodes, Output_nodes]
6 uvar_db (uvar_db_c) [1, Output_nodes]
7 dw_f [Input_nodes, Output_nodes]
8 db_f [1, Output_nodes]

4.3.5 Hebbian layer

As we mentioned earlier our model’s first layer is a Hebbian Layer. This
means that the Covariance Rule is applied in combination with the Feed For-
ward Propagation. The way it works is that we create 3D tensors for the
weights, the inputs, and the masks, and we perform the necessary calcula-
tions on them without the need of looping on different arrays. Practically,
this means that we have a batch, i.e., a stuck of images = 16 matrices with
dimensions equal to units = 2048 and pixels = 784. Then we transpose those
tensors into having the 3D dimension equal to [z,x,y] = [2048, 784, 16]. So we
have stuck on 2048 independent matrices/datasets with the variables being
the pixels and the observations being the batches. However, for the dimen-
sion related to pixels, we select only the 9 synapses that are active, and we
reduce the dimensions of the tensor to [z,x,y] = [2048, 9, 16]. Then, for each
Covariance matrix, we sum column-wise, i.e., for each variable, to obtain the
delta_updates.

Then we average the outcomes of the Feed Forward algorithm from the first
layer to get a mean value for each unit and we pass it through a sigmoid
function. Thereafter we multiply the result with the deltas_updates and the
eta factor. The end product of this process is the update of the weights.

This means that, although we have written much less code, we have abused
the memory. However, in the chapter 5 we will see how we managed to
minimize those tensors and alternate the logic in order to save memory and
reduce computations.
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Algorithm 5 Hebbian Layer

1: procedure HEBBIAN(Input_Value, Mask, Weights, batch_size, units, synapses, etahl)
2: steepness← 100
3: threshold← 0.01
4: f orget← 1

5: ▷ Repeating the tensors into making them 3D and transpose them to
the [units, pixel, batch_size]

6: Weights_tiled← tileAndTranspose(Weights, [units, pixel, batchsize])
7: Inputs_tiled← tileAndTranspose(Input_Value, [units, pixel, batchsize])
8: Mask_tiled← tileAndTranspose(Mask, [units, pixel, batchsize])

9: Weights_masked← np.multiply(Weights_tiled, Mask_tiled)
10: Cov_in← np.multiply(Weights_masked, Inputs_tiled)

11: ▷ Reduce the size of the dimension of units into synapses_number
because this locations only are non zero

12: Cov_in← gatherNonZero(Cov_in, axis = 1)

13: ▷ Cov_out is a tensor of dimension [synapsis, synapsis, units]
14: Cov_out← CovarianceRule3D(Cov_in)

15: ▷ Changes dimensions into [synapsis, units]
16: delta_weights← np.sum(Cov_out, axis = 0)

17: ▷ Scatter deltas into a matrix of dimension[pixels, units]
18: delta_weights← scatter(delta_weights)
19: activities← np.mean(Z_curr, axis = 0, keepdims = True)
20: binary_like_mask← sigmoid(activities, steepness, threshold)

21: updates← np.multiply(delta_weights, binary_like_mask)
22: Weights←Weights ∗ f orget + etahl ∗ updates
23: return Weights, updates
24: end procedure
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4.3.6 Callbacks

Callbacks were also implemented in numpy. The most important callbacks
are the following: ReducePRL which is used to reduce the learning rate when
the cost is not improving and the ReduceEta which is used to reduce the eta
for the Hebbian layer when the cost has stopped being improved. In order
to implement them we had to initialize some parameters at the beginning of
the training process and to check the cost value of the model at the end of
each epoch.

Also, the early stop callback, which stops the training process if the cost value
has not been improved after a predefined number of epochs, is implemented.
In particular, we have set this number to ten. In addition, the time callback,
which shows how much time is needed for each epoch, was applied.

Finally, the checker callback was deployed, which stores the weights that give
the minimum value of accuracy and checks recurrently if better accuracy is
achieved to update the weights respectively.

4.3.7 Validation

The validation process in an Artificial Neural Network (ANN) is a critical
component in gauging the model’s effectiveness and generalization capabil-
ity. The dataset is typically partitioned into three subsets: training, valida-
tion, and test sets. The training set is used to train the model, while the val-
idation set is employed to assess performance during training and fine-tune
hyperparameters. The test set remains untouched until the final evaluation
to ensure an unbiased assessment.

As the model undergoes training, periodic evaluations occur on the valida-
tion set. Performance metrics like accuracy and loss are monitored, serving
as indicators of how well the model generalizes to new, unseen data. If degra-
dation in performance is observed on the validation set, adjustments to the
model or training process may be necessary to counter overfitting.

Crucially, the validation set plays a pivotal role in hyperparameter tuning.
Different configurations are tested, and the validation set’s performance aids
in identifying optimal hyperparameters, such as learning rates or regulariza-
tion strengths, ensuring the model’s robustness.
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Once training and tuning are complete, the final model evaluation transpires
on the test set. This set, unseen during training, provides an unbiased mea-
sure of the model’s real-world performance. Throughout this process, the
validation set acts as a guide, helping strike a balance between model com-
plexity and generalization, ultimately yielding a well-performing neural net-
work.

4.4 Profiling

The process of profiling involves analyzing the function calls, the execution
duration of functions, the usage of particular instructions and the memory.
These parameters are measured in real-time, i.e., while the program is run-
ning. Profiling assists engineers in identifying the routines that consume a
disproportionately higher amount of time or memory and optimizing them.
As shown in figure 4.8, most of the training time (approximately 96%) is con-
sumed by the Hebbian layer while 4% is consumed by the Forward, Back-
ward propagation, update of the weights using the Adam algorithm, and
callbacks.

96%
4%

Hebbian layer
Other

FIGURE 4.8: Analysis of how Numpy implementation con-
sumes training time.

Considering that the Hebbian layer consumes almost the whole time of the
epoch, profiling and analyzing this function is essential to keep us informed
when high-time consumption is happening. Attention should be paid to the
latter, in the sense that we try to optimize it in Hardware. Figure 4.9 illus-
trates the analysis of the time spent when we call each individual process of
Hebbian.
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FIGURE 4.9: An analysis of the impact of the Hebbian’s layer
(inner) functions.

As we can see, 44%, i.e., almost half the time of the Hebbian layer, is con-
sumed by the computations of the stuck with covariance matrices (cov3D).
The other half-time goes to functions like np.multiply, which are element-
wise multiplications of matrices. Those are the masks and the computation
of the final weights. In addition, a significant amount of time is consumed
in np.tiles, which makes a 3D tensor based on copies of a 2D matrix. As we
have already mentioned, this process is memory-consuming, but here we can
see that it is also very time-consuming. Whereas the rest of the functions that
are used in the Hebbian layer, such as the gather and clip functions and oth-
ers, affect less the execution time. In addition all of these functions are a part
of a greater function which can be parallelized as it is explained in the next
chapter5.

If we analyze further the Hebbian layer and go deep into the cov3D function,
we will see that 80% of the function time goes to the np.cov function. So if
we make the calculation

np.covTime ∗ 3DCovarianceTime ∗ HebbianTime ∗ TrainingTime, (4.12)

, where np.covTime is the time percentage consumed by np.cov inside the
3DCov function. The 3DCovarianceTime is the percentage of 3DCov inside
the Hebbian layer. The HebbianTime is the time consumed by the Hebbian
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layer during the total training time. Using the equation below:

0.8 ∗ 44.6 ∗ 0.96 ∗ 1 = 0.34

we can see that only the np.cov function consumes 34% of the whole training
process of our network.

4.4.1 Memory Profiling

Considering all the matrices required for one training iteration in our bio-
inspired ANN implemented in Numpy, we calculated that approximately
36.6 MB of memory will be required. Approximately 98% of the memory
required is determined by the size of the weight matrices. We mean by this
that the sizes of the dw, mean_dw, and uvar_dw matrices are equal to the
sizes of their respective weight matrices. Our ideal scenario will be to limit
our data size (for each training iteration) to less than 4 MB, so that we can
store all the data in BRAMs of FPGA. BRAMs are located in the PL (pro-
grammable logic) part of the FPGA and provide huge bandwidth. We will
discuss in depth the BRAMs and our FPGA design in the following chapter.
The bio-inspired ANN we developed is sparse due to its dendritic structure.
It is important to emphasize that masks remain stable throughout the train-
ing process. As a result, once the weight matrices have been masked, they
contain a large number of zero values that remain zero throughout the train-
ing process. However, we use them in their original dimensions in Numpy,
which consumes a considerable amount of memory. By considering only the
non-zero (masked) values of the weight matrices (after masking), which are
actually used for the calculations, the weight matrices are drastically reduced
in size. By using this method, approximately 1.07 MB of memory will be re-
quired, which is less than 4 MB. The next chapter will provide a detailed
explanation of how this method can be applied to weight matrices.

4.5 Discussion

Amdahl’s Law[27] is a formula used to determine the maximum theoretical
speedup that can be obtained by improving a particular part of a system.
This formula is expressed as follows:

S =
1

1− P
, (4.13)
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where S represents the maximum theoretical speed-up and P is the fraction
that represents the benefits from the improvement of the system resources.

As a result of this formula and the analysis of the main processes in figure
4.8, the maximum theoretical speed-up of the Hebbian algorithm process is
calculated as follows:

S = 1
1−(96%)

= 25×. However, because we optimize other parts of our net-
works, such as forward propagation, backward propagation, and update,
we can achieve a far greater speedup, which approximately is 3% of our
network. For a deeper analysis one can address to the "Bioinspired DNN
Architectures with Dendritic Structure thesis" [25]. S = 1

1−(96%+3%)
= 100×.

Therefore, the optimization can result in a maximum theoretical speed-up of
100 times for our model’s training process. In reality, this speed-up is unreal-
istic since it ignores the overhead associated with communication and other
real-world factors. Nonetheless, this large theoretical speed-up serves to
demonstrate that our model’s training process can be parallelized to a great
extent. By utilizing the high parallelism capabilities of FPGAs, an implemen-
tation of this model based on FPGA technology can significantly accelerate
training.
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Chapter 5

FPGA Implementation

The following chapter introduces the FPGA-based architecture of the training
process of the bio-inspired ANN. The implementation was performed using
the Vivado tools and subsequently executed to the Xilinx ZCU 102 evaluation
board. Detailed explanations are provided regarding the design and execu-
tion of the training algorithm, as well as the methods employed to achieve
parallelization at the computational level. Additionally, this chapter offers
insights into the Vivado tools employed for design implementation, the ZCU
102 platform, the AXI4 Interface Protocol, communication methods between
PL-PS, and memory configuration.
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5.1 FPGA Platforms

FIGURE 5.1: Zynq UltraScale+ MPSoC Top-Level Block Dia-
gramZCU102 Evaluation Board

This thesis is focused on the utilization of the Xilinx ZCU102 evaluation
board [28], widely known for its robust architecture tailored for rapid pro-
totyping. At its core lies the Zynq® UltraScale+™ XCZU9EG-2FFVB1156E
MPSoC, seamlessly integrating a potent processing system (PS) with user-
programmable logic (PL) within a single device. This convergence empowers
developers with a versatile platform featuring high-speed DDR4 SODIMM
and component memory interfaces, FMC expansion ports, multi-gigabit per
second serial transceivers, a rich array of peripheral interfaces, and FPGA

https://docs.xilinx.com/v/u/en-US/ug1182-zcu102-eval-bd 
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TABLE 5.1: ZCU102 Specifications.

Feature Resource Count

Logic Cells 599550
Flip-Flops 548160
DSP Slices 2520
LUTs 274080
BRAMs 912
Block RAM 4MB
PS DDR 4GB
PL DDR 512MB

logic for customizable designs, facilitating agile prototyping endeavors. Note-
worthy, elements of the PS include a quad-core 64-bit ARMv8-A Cortex-A53
(application processing unit - APU), a dual-core 32-bit ARM v7-R Cortex-R5
(real-time processing unit - RPU), and an ARM Mali-400 MP2 graphics pro-
cessing unit (GPU), each contributing to the board’s formidable processing
capabilities.

5.2 Tools Used

The hardware implementation of this thesis was developed using the Xilinx
design suite[29], which is compatible with the zcu102. The Design Suite was
supported and fully licensed by the Technical University of Crete Micropro-
cessors & Hardware Lab (MHL). This suite offers three key tools. The first
one is the HLS tool, facilitating user to start the design with no prior expe-
rience in low-level hardware design. Implementation and improvement of
the design is achieved by writing code in C/C++. The Vivado HLS converts
the C/C++ into VHDL/Verilog script. Afterward, this script act as an in-
put in the second tool of the Xilinx package, which is the Vivado IDE. This
app is used for the block design of the components of the FPGAs and their
connectivity. The third tool that we used is the Vivado SDK. It is the part
where the configuration of the FPGA takes place and where the code for the
functionality and the control of the system is written.
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5.3 FPGA Design

Initially, this thesis was designed by combining the IP block of the Hebbian
layer with the architecture of the previously mentioned thesis[25] Figure 5.2.
This resulted in the design illustrated in Figure 5.3. However, when this was
implemented, the design failed to pass through the Vivado SDK implemen-
tation due to failing endpoints. Upon investigating this error, we discovered
that our design faced a failing issue with the communication between PS and
PL. This meant that despite the placing of our design was successful the re-
sources were not enough for the routing of the design.

FIGURE 5.2: Inital FPGA Design - Architecture.
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FIGURE 5.3: Inital FPGA Design - Architecture Combined with
Hebbian layer.

To address this issue, the first step was to apply Vivados’ strategies to prior-
itize routing rather than timing. Since this was not sufficient, the next step
was to reduce the IP block’s optimizations to free up some resources. Even
so, our design continued to fail, so we decided to start designing based on
Hebbian’s requirements from the beginning.

As a result, we present our next and final approach to the design of the FPGA
in figure 5.4 from a block design perspective. In the following figure the For-
ward Propagation block refers to the Forward Propagation algorithm 17, the
Hebbian Layer to the Hebbian Algorithm using Covarince matrices 23, the
Backpropagation block to the Backpropagatin algorithm 28 and the Adam-
Update block to the update algoirthm 37.
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FIGURE 5.4: Final FPGA Design - Architecture combined with
Hebbian layer.

5.3.1 Vivado High-Level Synthesis (HLS)

Vivado High-Level Synthesis (HLS) is a tool from Xilinx that allows design-
ers to write C, C++, and SystemC code and convert it into RTL (register-
transfer level) code that can be implemented on Xilinx FPGAs. It is a tool
that allows designing, optimizing, and verifying designs at a high level of
abstraction, which results in work at a higher level of productivity. Vivado
HLS provides several features to help designers write high-level code that
can be translated into efficient RTL.
One key feature of the HLS is that it supports the simulation of the source
code and it can estimate the clock speeds and hardware resources that are
needed for the design. Also, it can provide a visual analysis of each simula-
tion and notify the designer of timing or data dependencies.
Another feature is the automatic hardware/software partitioning, which pro-
vides memory management and support for various design methodologies
such as pipelining and dataflow. Additionally, Vivado HLS includes a wide
range of optimization techniques to automatically improve the performance
of designs, including resource sharing, loop unrolling, and pipelining. One
of the key benefits of using Vivado HLS is that it allows working at a higher
level of abstraction, which can remarkably reduce the time and effort re-
quired to design, verify, and implement FPGA-based systems.
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Last but not least, Xilinx HLS can export the source code as an IP block that
can be used further as a part of a larger and more abstract block design in the
Vivado IDE.

Directives and Pragmas

Pragmas in High-Level Synthesis (HLS) provide additional information to
the HLS tool that can influence the design implementation. The designer
uses pragmas to specify how the tool should optimize and map the design
into the target architecture. Pragmas also control the schedule of the oper-
ations, pipeline the loops, and handle the design’s memory. They can help
improve the FPGA’s performance and resource utilization. It is important to
understand the behavior and impact of the pragmas on the design.

A list of the most significant directives is provided below:

• HLS Interface: Is used for specifying the IP block’s interface (inputs-
outputs) and is used only for top-level functions.

• HLS Unroll: Is used to unroll a loop. Instead of executing consecutively
the code included in a loop, multiple copies of the loop body are created
in the RTL design. In this way, loops are forced to be executed together
at the same time.
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FIGURE 5.5: Unroll Pragma - Unroll for-loops to create multiple
instances of the loop body. Source: [30]

• HLS Pipeline: Allows concurrent execution of operations to reduce the
initiation interval (II) for a loop. A pipelined function or loop can pro-
cess new inputs every <N> clock cycles, where <N> is the II of the loop
or function. The maximum II one can achieve is 1 which means the
function or loop processes a new input every clock cycle. You can spec-
ify the initiation interval through the use of the II option for the pragma.
In nested loops, the outside loop is pipelined and all the inside loops
are unrolled.

• HLS Array_Partition: Splits an array into smaller arrays or individual
elements as it is depicted in the following graph.
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FIGURE 5.6: Array_Partitioning Pragma - Partitions large ar-
rays into multiple smaller arrays to improve access to data and

remove block RAM bottlenecks. Source: [30]

As a result, RTL is deployed with multiple small memories or multiple
registers contrary to one large memory. This increases effectively the
number of read and write ports on the storage. The design may be
able to achieve higher throughput. However, it is necessary to have a
greater number of memory instances or registers.

• HLS Inline: Function is detached from the hierarchy. After inlining, the
function is dissolved into the calling function, and it no longer appears
as a separate hierarchy level in the RTL. As a result, the resources can
be assigned more efficiently to different functions. Additionally, when
a function loses its hierarchy, all directives from the top-level function
are applied to the inner function.

• HLS Dataflow: Enhances the concurrency of RTL implementations by
allowing functions and loops to overlap in their operation, increasing
the overall throughput of the design. DATAFLOW optimization effec-
tiveness is based upon the flow of the data from one task to another
within the design. DATAFLOW optimization cannot be performed us-
ing the HLS tool due to the following coding styles.

Limitations of Control-Driven Task-Level Parallelism for additional de-
tails are the following:.
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– Single-producer-consumer violations

– Feedback between tasks

– Conditional execution of tasks

– Loops with multiple exit conditions

FIGURE 5.7: Dataflow Pragma - Enables task level pipelining,
allowing functions and loops to execute concurrently. Used to

optimize throughouput and/or latency. Source: [30]

HLS Implementation

As we discussed in the previous chapter, our algorithm was converted from
Python high level libraries into a simpler and more understandable code.
The algorithms must, however, be transformed into lower-level code in C
language to be eligible for implementation and development on an FPGA.
Optimizations should be considered during algorithm design. First, we no-
ticed that our matrices, which were at this point 3-dimensional, contained
multiple zeros. Thus, we realized that we had a collection of data that did not
provide any information to our network. As a solution, we decided to keep
two matrices with less data instead of one large matrix with sparse data.
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FIGURE 5.8: Illustrates the final matrices we use for weights.
From 1 big matrix to 2 smaller ones

Therefore, instead of a matrix with the shape of [pixels, units] which in our
case is equal to [784,2048] and requires 6.42 MB of memory, we use a matrix
with the location of the synapses and one with the weights of the synapses
that correspond to those locations. Those matrices have the shape of [pixels,
synapses] where the synapses are at least one order of magnitude smaller
than the units. So, in this case, we have 2 matrices of shape = [2048,9], which
both require 0.04 MB of memory.

It is important to point out that a short type could be used to store the data in
the location matrix so that each slot only requires two bytes rather than four.
However, for greater network compatibility, we decided to use the 4-byte
option and store the location as an integer. Consequently, we only required
0.02 MB instead of 6.42 MB for the weights of the first layer.

Altering the covariance algorithm’s logic was the next key concept that we
decided to consider. In the previous chapter 4.3.5, we discussed the need for
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two 3D matrices to parallelize computations. For example, to feed the co-
variance algorithm, element-wise multiplications of weights and inputs are
facilitated by 3D matrices whose shape is [batch_size, pixels, units]. To pro-
duce a 3D matrix, as illustrated above, multiple copies of a 2D matrix are
required. The following figure provides a better understanding of the con-
cept, where we can see that the Input tensor is multiplied by the Weights
tensor to create the 3D input for the covariance rule.

FIGURE 5.9: 3D Covariance Input

To avoid all this, we decided to keep the initial 2D matrices and change the
algorithm to satisfy those dimensions. So, we decided that some parts should
be implemented more sequentially. We then optimized and parallelized them
in our FPGA based on Vivado tools.
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FIGURE 5.10: Hebbian - Covariance Algorithm
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Algorithm 6 Hebbian Layer Using Covariance Rule

1: procedure HEBBIAN

2: a1← 1/16
3: a2← 1/(16− 1)
4: ▷ Finds mean of batches for each unit
5: for j← 0 to 2048 do
6: for i← 0 to 16 do
7: sumPerUnit[j]← sumPerUnit[j] + Z1[i][j]
8: end for
9: mask[j]← sumPerUnit[j] ∗ a1

10: end for

11: ▷ Pass the mask through a sigmoid function
12: for i← 0 to 2048 do
13: mask[j]← 1.0/(1 + hls :: exp f (−100 ∗ (mask[u]− 0.01)))
14: end for
15: ▷ 3D Covariance Rule applied
16: for u← 0 to 2048 do
17: ▷ Starts to compute 2D covariance for each unit
18: for s← 0 to 9 do
19: ▷ Find the correct pixel from the image
20: pixel ← wlo1[s][u]
21: weight = W1_value[s][u]

▷ Creating the input of the covariance the rows are the batches and
the columns are the synapses

22: for b← 0 to 16 do
23: inputCov[b][s]← Xinput[b][pixel] ∗ wvalue;
24: end for
25: end for

▷ Covariance of 2D matrix - gives the relationship of every synapse
through the batch

26: for j← 0 to 9 do
27: for i← 0 to 16 do
28: sum[j]← sum[j] + inputCov[i][j]
29: end for
30: avg[j]← sum[j] ∗ a1
31: end for
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Algorithm 7 Part 2

32: for j← 0 to 9 do
33: for i← 0 to 16 do
34: mx[i][j]← inputCov[i][j]− avg[j]
35: end for
36: end for
37: ▷ Covariance Output
38: for i← 0 to 9 do
39: for j← 0 to 9 do
40: for k← 0 to do
41: tempmul[k]← mx[k][i] ∗mx[k][j]
42: end for
43: for k← 0 to do
44: mout[i][j]← (mout[i][j] + tempmul[k])
45: end for
46: mout[i][j]← a2 ∗mout[i][j]
47: end for
48: end for
49: for s1← 0 to 9 do
50: for s2← 0 to 9 do
51: dW1[u][s]← dW1[u][s] + mout[s][s2]
52: end for
53: dW1[u][s]← dW1[u][s] ∗mask[u]
54: W1_updated[u][s]←W1_value[u][s] + (etahl ∗ dW1[u][s])
55: end for
56: end for
57: return
58: end procedure

Having implemented the C algorithm and tested it against the numpy results
on the same dataset, we began optimizing the actual code.

Initially, we isolated the identical computations occurring in every loop. There-
fore, to minimize computation time, we excluded them from the loop and
performed the calculations only once at the beginning of the program.

Then, as an optimization strategy, we began implementing the appropriate
Vivado directives in our code. Each time a change was made we analyzed
both synthesis and analysis tabs to understand how the design was affected.
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So the first thing was to organize the code into functions and create hier-
archies inside our FPGA. This helped to easily apply directives targeted to
specific parts of our design. For instance, one of the most crucial directives is
Dataflow. Despite the fact that it does not impact the latency of the design, it
did improve the throughput. We can calculate the Clock Cycles by using the
following equation.
CCtotal = latency + ((batchesPerEpoch− 1) ∗ interval)

In particular, in our design, we have a latency of around 567066 Clock cycles
but we have an interval of 252618 so the total clock cycles for one epoch is
CCtotal = 567066+((3000− 1) ∗ 252618) instead of CCtotal = (3000 * 567066)
which was at the beginning where interval and latency are equal. This is
illustrated in the figure 5.12

This could not be possible without incorporating the separate functions in
combination with the Dataflow pragma. However, Dataflow Pragma utiliza-
tion follows a set of predefined rules, as listed earlier, thus we were forced to
increase the memory usage of some data that were handled by more than one
functions. For example, the weights of the first layer and its location matrix
are used both by the Forward propagation and by the Covariance Rule, so
in order to be able to use Dataflow, we had to store 2 different matrices with
the same data that will be read by different functions. In this way, memory
cohesion is preserved. In figure 5.11 we show how the data moves inside
those functions.
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FIGURE 5.11: Functions and DataFlow
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FIGURE 5.12: DataFlow impact on our design

The use of Pipeline Pragma was another optimization utilized. Incorporating
this directive into the for-loop gives results as if concurrent operations of the
loop are allowed. In this section, we demonstrate only two cases of using it
among multiple times its utilization in our project. In addition, it plays an
important role in the covariance algorithm and the feed-forward algorithm.
In the absence of this pragma, every load, store and computation would be
executed in a similar manner to a CPU, in other words, sequentially. Further,
we should note that when the pipeline pragma is applied within a nested
loop inside the inner loop, a loop unrolling is performed. As a consequence,
we should also utilize the memory partitioning pragma to access more mem-
ory data and optimize performance.

As discussed earlier, our model has sparse connectivity, so when calculating
the output of the layer, we should consider only the related inputs (neurons).
In order to accomplish this, we have two different matrices, one for storing
the weight values and one for determining what input these values corre-
spond to. Below, a flowchart shows how each output is calculated.
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FIGURE 5.13: Flowchart of forward algorithm

This order of calculation allows us to accomplish two things. The first is that
for the same unit the Wlock and Wmask remain the same, which allows us
to apply them to the whole batch. The second is that it facilitates the opti-
mization of the process, as we can parallelize it without spending excessive
resources. We applied the pipeline inside each synapse so that we can see
that each synapse has a pipeline of units, as illustrated in Figure 5.14, and
each unit has parallel computations, as illustrated in Figure 5.15.
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FIGURE 5.14: Pipeline of each Synapse

FIGURE 5.15: Loop Unroll impact on our design

To summarize, by examining the Synthesis5.17 and Analysis5.16 tool in the
Vivado HLS, we can observe that our design achieves a latency of 563343
clock cycles with a 10 nanosecond clock. Furthermore, we have an interval
of 252318, which was our main objective to reduce. In our FPGA, this is de-
termined by the Covariance Rule, which is the slowest part. As well, we can
see that the resources are kept below 60%. This is considered as a condition
for the next step, which if met, the design could be successful. We can see that
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we have negative slack which is automatically corrected when we export the
IP.

FIGURE 5.16: Analysis Tab of our HLS Design

FIGURE 5.17: Synthesis Tab of our HLS Design
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5.3.2 Vivado IDE and Design Architecture

Since we have already discussed our IP Block on the PL, we can now analyze
our Vivado architecture and its interface. As it is shown in figure 5.18 our IP
communicates with the PS using a DMA and 2 FIFOs.

DMA

The AXI DMA is a Xilinx IP core enabling high-bandwidth memory access
for AXI4-Stream peripherals. It facilitates data movement between memory
and peripherals, with MM2S and S2MM channels operating independently.
It offers burst mapping, queueing, and byte-level realignment. Configurable
in polling, interrupt, or Scatter-Gather modes, it starts transactions by writ-
ing to its registers. DMA transfers up to 1024 bits per cycle on a memory
bus.

FIFO

FIFOs are used in FPGAs to store and retrieve data in an order. They are
designed to consume as little memory as possible. FIFOs are useful since
the IP(PL) and PS have different clock domains. FIFOs also act as temporary
storage buffers, allowing data to be temporarily stored when the rate of data
production exceeds the rate of consumption or vice versa. This helps in de-
coupling data sources and sinks, improving overall system performance. An
IP, for example, can produce results faster than the processor can consume
them. By using FIFO, the IP will not be stalled by the PS.

Master-Slave Protocol

A Master-Slave protocol refers to a communication scheme in which one de-
vice initiates and controls communication with another device, known as the
slave. The master device transmits commands and data, while the slave de-
vice responds to these commands and performs the requested actions. It is
commonly used in memory interfaces, peripheral communication, and bus
architectures.

In Xilinx devices, the Master-Slave protocol is utilized extensively within the
context of various interfaces, including AXI (Advanced eXtensible Interface),
memory interfaces, and peripheral interfaces. For example, in an AXI-based
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system, the AXI master initiates read or write transactions to access memory-
mapped registers or memory locations, while the AXI slave responds to these
transactions by performing the requested data transfers or operations.

AXI4 Interface Protocol

AXI4[31], an evolution from AXI3, boosts interconnect performance and effi-
ciency, especially in multi-master setups. It introduces features like extended
burst lengths (up to 256 beats), Quality of Service signaling, and support for
multiple region interfaces.

As a simplified version of AXI4, AXI4-Lite is designed for components with
simpler interfaces. Transactions are limited to one burst length, with data
accesses matching the bus width and no exclusive accesses. It is ideal for
simple, low-throughput memory-mapped communication, such as control
signals of a memory-mapped module.

AXI4-Stream facilitates one-way data transfers from master to slave, mini-
mizing signal routing. It accommodates single or multiple data streams over
shared wires, and various data widths within the same interconnect. It’s par-
ticularly well-suited for FPGA implementations and high-speed streaming
data.

Architecture - Design explanation

Having discussed all of the above, we can now describe our design in more
detail. Two axis Stream ports are provided, one for sending data to the PL
and one for receiving it. These ports are connected to the DMA, which is
responsible for moving data between the DDR and PL. Zynq is not aware
that the DMA is connecting with two FIFOS. A FIFO is used for incoming
data and another for outgoing data. All interrupts are also connected in order
to be able to use either the polling method or the interrupt method.

Additionally in our system, we implemented data packing between the pro-
cessor system (PS) and the programmable logic (PL) in order to maximize
data transfer efficiency and system performance. By combining multiple data
items into a single transfer, we can fully utilize the available bandwidth be-
tween the PS and PL, reducing overhead and latency associated with individ-
ual transfers. This approach also allows for better resource utilization within
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the FPGA, enabling parallel processing of multiple data items and improv-
ing overall system throughput. Additionally, data packing facilitates syn-
chronization between the PS and PL by ensuring that related data items are
transferred together, enhancing system reliability and predictability. There-
fore, we have used a data packing of 64 bits, which means that we have com-
bined two variables. Even though Zynq’s HP port can support a maximum
memory bus size of 128 bits, we observed no significant improvement, so we
decided to maintain the 64-bit data width.

This increased the bandwidth of our design, and there are several other ways
to accomplish this. Despite this, we chose not to dive further into this matter,
instead choosing to optimize the firmware on the processor and IP rather
than create a complex communication design that would be difficult to scale
and maintain.

Design Steps

Once the Block design was completed, we had to validate it by passing it
through Syntheses, which transforms the RTL design into an array of gates.
Here are the first results of logic utilization and timing analysis, which are
more reliable after the implementation of our design on the FPGA resources.
Placement and routing are the steps involved in the implementation of our
design. Typically the first step is the optimization of the netlist created by
synthesis, then it places the netlist on the FPGA cells and then builds the in-
terconnection between those cells. Following the implementation step, the
timing analysis and utilization report should be reviewed. It is not guaran-
teed that the system will behave as expected if those steps do not succeed.
As part of this step, we can also check whether there is space for increasing
the clock in order to optimize the design time-wise. This can be calculated
by using the 5.1 equation[32].

fmax =
1

T −WNS
, (5.1)

where WNS is the worst negative slack and T is the period of the current
clock.

For example, in our case, we started with a clock at 100MHz and observed
that the design’s WNS was 1.613ns. So, we applied this equation and in-
creased our clock to 119MHz, which dropped the training time. However,
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more details will be discussed in the next chapter.

Bitstream generation was the last step. After all these steps were completed
successfully, we programmed our system’s processor using the Vivado SDK.

5.3.3 Vivado SDK

With the Vivado SDK, one can control and program the FPGA processor.
Each component in the FPGA is memory mapped, and using the Vivado
SDK, we can write software applications that interact with those hardware
components. This interaction may involve reading from or writing to regis-
ters, controlling peripherals, and managing data flow between the processor
and the FPGA fabric.

We used an SD card to pass the dataset to the DDR. For the Weights, we
created header files that should be initialized every time with the random al-
gorithm. Our program first initializes the memory, then initializes the DMA
and the IP, and then starts sending and receiving data. The following table
presents in detail what those data are and in what order they are sent. Every
time an epoch is finished our program prints the average accuracy and error
of our training. Our program works by polling the IP in order to check if
it is finished and to send new data to it. As a future work, interrupts may
be introduced in order to run some validation tests while the next epoch is
running in the PL.
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FIGURE 5.19: FlowChart of the microcontroller-With red color
is the part that we removed later and is explained below

After analyzing the initial run of our program, we noticed that a significant
portion of each epoch’s time was being consumed by data copying. We real-
ized the urgent need for optimization. It was estimated that approximately
one-third of the total epoch time was devoted to this task, which was an un-
acceptable loss of time. Theoretically, we could make our design 1.5 times
faster based on Amdahl’s Law.

Our solution involved a drastic redesign: instead of employing two sepa-
rate matrices that required copying between them, we adopted a single array
with dimensions matching the maximum size between these matrices. As a
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result of this new approach, data is overwritten in place rather than dupli-
cated.

After designing our matrix layout, we separated the data into alternating sec-
tions and stable sections based on the layout of our matrix. As a result, in or-
der to transmit or receive data over IP, we only need to handle the necessary
bytes that are passed to the DMA. In this way, we significantly reduced un-
necessary operations. By distinguishing between alternating and stable data
as well as common and differently interpreted data zones, we’ve devised a
systematic strategy for efficient data flow within our program.

After incorporating all these methods and techniques, we managed to reach
the 1.5x speed-up theoretical limit and our time per epoch had decreased
from 28 seconds to 19 seconds.
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FIGURE 5.18: Bio-inspired ANN Block Design for FPGA
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Chapter 6

Results

In this chapter, we will discuss the findings of our study. First, we will pro-
vide details about the specifications of the CPU and GPU that we used in our
comparative analysis. Next, we will analyze the resource utilization required
for our architecture implementation on the FPGA with plate number 1. Then,
we will thoroughly examine the performance metrics used for comparisons.
Finally, we’ll compare the results of our bio-inspired ANN’s FPGA-based
architecture with those of CPU and GPU implementations, which we devel-
oped using Keras.

6.1 Specification of Compared Platforms

6.1.1 AMD Ryzen™ 7 3700X

Despite the fact that CPU-based applications are easier to implement, their
low parallelism and high power consumption make them inefficient in terms
of both time and energy. The following table 6.1 presents CPU platform spec-
ifications.

TABLE 6.1: AMD Ryzen™ 7 3700X Specifications

AMD Ryzen™ 7 3700X

Total Cores 8
Total Threads 16
Processor Base Frequency 3.60 GHz
Max Turbo Frequency 4.40 GHz
TDP 65 W
Max Memory Bandwidth 47.68 GiB/s
Lithography 7nm
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6.1.2 NVIDIA GeForce GTX 1050 Ti

GPUs are capable of parallel processing, delivering incredible acceleration
when the same workload must be executed many times in rapid succes-
sion. Their disadvantage is that they tend to consume a large amount of
energy/power. In table 6.2, below, the specifications of NVIDIA GeForce
GTX 1050 Ti are described.

TABLE 6.2: GPU Specifications

NVIDIA GeForce GTX 1050 Ti

CUDA Cores 768
GPU Memory 4 GB GDDR5
Boost Clock 1392 MHz
Memory Interface 128-bit
Memory Bandwidth 112 GB/s
Power Consumption 75 W

6.1.3 NVIDIA GeForce RTX 3060 12 GB

NVIDIA RTX series demonstrates a significant difference against the GTX
series concerning the core they employ. The CUDA cores, as shown in ta-
ble 6.2, are the processing units in the NVIDIA GTX series, which are in
charge of executing parallel tasks. Whereas, Tensor cores, found in newer
NVIDIA GPUs like those in the RTX series, table 6.3, are ideal for deep learn-
ing tasks, particularly for operations involving tensors (multi-dimensional
arrays). Having more CUDA cores and dedicated Tensor cores typically re-
sults in quicker training and inference times. GPUs equipped with special-
ized Tensor cores, such as those found in NVIDIA’s RTX series, are capable of
accelerating specific deep learning tasks, particularly those related to train-
ing and inference. This acceleration is achieved through techniques such as
mixed-precision training and tensor core-based matrix multiplication.

Below is a table with RTX series GPU platform specifications.
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TABLE 6.3: GPU Specifications

NVIDIA GeForce RTX 3060

Tensor Cores 768
GPU Memory 12 GB GDDR6
Boost Clock 1320 MHz
Memory Interface 192-bit
Memory Bandwidth 360 GB/s
Power Consumption 170 W

6.1.4 Zynq UltraScale+ MPSoC ZCU102

The purpose of this section is to present the final resource utilization of our
FPGA-based architecture that have been ported to ZCU-102 FPGA (in table
6.4).

TABLE 6.4: FPGA-based architecture (ZCU 102) - Resources
Utilization

Clock Frequency 150 MHz
BRAM Usage (%) 64%
DSPs Usage (%) 7%
FF Usage (%) 16%
LUTs Usage (%) 49%

6.2 Throughput and Latency Speedup

6.2.1 Latency

Latency refers to the time required to accomplish a single task. As defined
in this thesis, latency is the time it takes for a specific platform to perform
training on a batch of images (16 images).

6.2.2 Throughput

In general, throughput is a measure of how many units of information a sys-
tem can process in a given amount of time. In other words, it refers to the
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maximum rate of processing. In our case, throughput is measured as the
number of batches trained per second.

Throughput =
Batches

Time(sec)
, (6.1)

where a batch consists of 16 images.

6.3 Energy Consumption

Energy consumption (6.2) refers to the amount of energy required to com-
plete a particular task in a given amount of time. The amount of energy
is typically measured in Joules (J) or KiloJoules (kJ). It is also important to
maintain this parameter at the lowest level possible.

E = P · T, (6.2)

where E represents the energy in Joules, P indicates the required power for
the device to function and T is the time needed to execute the task.

The Images/Joule metric can be calculated as follows:

Images
Joule

= max(
Throughput

Power
,

1
Power · Latency

) (6.3)

6.4 Power Consumption

Power consumption refers to the amount of electrical energy used by a device
over time, typically measured in Watts (W) or kiloWatts (kW). It’s a critical
factor to consider because it affects not only the performance and longevity
of devices but also their environmental impact and operating costs.

For example, in portable electronics like smartphones and laptops, minimiz-
ing power consumption is essential for extending battery life. Devices with
lower power consumption can run longer on a single charge, making them
more convenient and efficient for users. Additionally, reducing power usage
in these devices helps decrease energy waste and increase energy efficiency.
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6.5 Performance Analysis for all Platforms

This section compares our FPGA-based architecture against Keras imple-
mentations using CPUs and GPUs. A summary of the performance analysis
can be found in 6.5. In the comparisons below, we use the CPU implementa-
tion in Keras as the reference implementation. With our architecture, we see
significant improvements in latency (fig. 6.1) and throughput (fig. 6.2).

TABLE 6.5: Performance Evaluation and Comparison - The
FPGA-based architecture (ZCU 102 board) compared to Keras-
Tensorflow running on both CPU and GPU. Numpy results are
not included since the goal of Numpy implementation was to
gain a better understanding of the bio-inspired ANN model

rather than to optimize it.

CPU GPU GTX GPU RTX FPGA

Clock Frequency (MHz) 3600 1392 1320 150
Throughput (Batches/s) 6.25 42.85 66.67 222.88
Throughput Speedup 1x 6.82x 10.67 35.66x
Latency (ms) 160 23 15 4.49
Latency Speedup 1x 6.96x 10.67 35.66x
Epoch execution time (s) 490 70 45 13.46
Total On-Chip Power (Watt) 65 75 170 6.69
Power Efficiency 1x 0.87x 0.38x 9.71x
Energy Consumption (Joule)
per Batch

10.04 1.73 2.55 0.03

Energy Efficiency 1x 6.01x 4.08x 346x
Images/Joule 0.096 0.571 0.39 33.30

6.5.1 Comparison of FPGA and CPU/GPU versions

In this section, we provide several diagrams to illustrate our design charac-
teristics concerning the latency, throughput, time execution and some energy
metrics.



88 Chapter 6. Results

Latency
0

50

100

150
160

23
15

4.5

m
se

c

CPU GPU(GTX) GPU(RTX) FPGA

FIGURE 6.1: An analysis of the Latency of the compared plat-
forms.
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FIGURE 6.2: An analysis of the Throughput of the compared
platforms.
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FIGURE 6.3: An analysis of the training execution time for an
epoch of the compared platforms.

Our design achieves epoch training in 13.46 seconds, compared to 490 sec-
onds for the CPU and 40 seconds for the RTX series GPU for the entire MNIST
dataset (fig.6.3).
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FIGURE 6.4: An analysis of the training execution time for the
total training of the compared platforms.

The impact of the FPGA is prominent in the timing section when we consider
the length of time required for the entire process of training the network. For
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example, in a CPU, it would take 4 hours to train this network of 30 epochs,
while in an FPGA, it only takes 6 minutes. In GPU, it would take 22 minutes
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FIGURE 6.5: An analysis of the Power Consumption of the com-
pared platforms.
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FIGURE 6.6: An analysis of the Energy Consumption per batch
of the compared platforms.
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FIGURE 6.7: An analysis of the Images/Joule metric of the com-
pared platforms.

Furthermore, the proposed architecture consumes less power than the CPU
implementation or GPU implementation (fig. 6.5), requiring only 6.69 Watts
rather than 65 Watts and 75 Watts, respectively. A notable aspect of our FPGA
design is its energy efficiency (6.6), which is 346 times greater than CPU effi-
ciency and 85 times higher than GPU efficiency.
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FIGURE 6.8: An analysis of the Accuracy in training and vali-
dation of the compared platforms.
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Training Error
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FIGURE 6.9: An analysis of the Error in training and validation
of the compared platforms.

As far as training and validation error/accuracy (fig. 6.9, 6.8) are concerned,
our FPGA-based architecture yields similar outcomes when compared to im-
plementations on both CPUs and GPUs. The training of the network is con-
sidered to be successful, albeit the task was not particularly complex.

The results of this study indicate that even though FPGAs require signifi-
cant learning efforts, they are still able to deliver better performance when
it comes to latency and energy efficiency when compared to conventional
CPUs.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Artificial neural networks (ANNs) are a technology inspired by the brain
and have found applications in various fields, including computer vision and
natural language processing. ANNs are great at recognizing images, under-
standing speech, and detecting anomalies due to their ability to learn com-
plex patterns and connections from vast amounts of data. However, experts
believe that ANNs still have potential for further advancement, and research
is focused on improving their performance, efficiency, and interpretability.
This involves exploring new network structures like convolutional and re-
current networks and more bio-inspired approaches.

Researchers are also using hardware accelerators to increase the efficiency
of neural network computations. Field-Programmable Gate Arrays (FPGAs)
have emerged as a promising platform for accelerating artificial neural net-
work inference. FPGAs can be customized to optimize the hardware archi-
tecture for specific neural network models, bypassing the traditional use of
CPUs or GPUs to achieve significant improvements in speed and energy effi-
ciency. FPGAs are highly compatible with resource-limited settings, making
them a perfect fit for edge computing and IoT implementations.

The aim of the thesis was to build an FPGA-based implementation of a bio-
inspired ANN training process to enhance its energy/power efficiency and
speed up the training process. The ANN model was originally developed
using Keras by Postdoctoral Researcher S. Chavlis and Research Director P.
Poirazi. The model was rewritten using plain Python and the Numpy library
to allow for a more detailed examination and greater comprehension of the
ANN’s biologically-inspired architecture.
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The training process was redesigned using Vivado HLS, which involved a
different approach to the Hebbian rule, forward propagation, backpropaga-
tion, and updating of the network’s parameters (using the Adam optimiza-
tion algorithm). Pipelining, dataflow, loop unrolling, and array partitioning
were applied to boost efficiency and maximize performance. The FPGA ar-
chitecture was implemented within the Vivado IDE’s graphical interface, and
a microcontroller was programmed to handle communication with the IP.

Comparing the FPGA design with the CPU implementation (in Keras) on the
MNIST dataset revealed significant improvements in latency and through-
put with speedups of 35.66x. As a result, an epoch of training is completed
in only 13.46 seconds, as opposed to 490 seconds on a CPU. GPU imple-
mentation achieved a 10.67x speedup in latency and throughput over CPU
implementation, executing an epoch of training in 40 seconds. The FPGA
design’s most notable feature is its high energy efficiency, which is 346 times
greater than that of CPUs and 85 times greater than that of GPUs. In terms of
accuracy/error results in training and validation, the FPGA implementation
reaches the same level of performance as the CPU/GPU implementation.

7.2 Future Work

7.2.1 Rewiring

In the model, masks remain constant while connectivity structure typically
changes in neuroscience. It would be interesting to develop a corresponding
bio-inspired ANN, in which the masks (connectivity structure) are modified
at regular intervals during training. This feature is called rewiring and seems
to be a logical next step in our design, as communication between the PS-PL,
the Vivado block design, and the IP would not need to be modified at all.

7.2.2 Interrupts instead of polling method

The transition from polling to interrupt-driven programming can greatly en-
hance the performance of embedded systems programs. Unlike the polling
method, the interrupt method only interrupts the processor when necessary,
which reduces overhead and improves efficiency. By incorporating inter-
rupts, system resources can be utilized more efficiently, allowing the proces-
sor to handle additional tasks while waiting for external events. For instance,



7.2. Future Work 95

using this approach, we can allow the microcontroller to perform other com-
putations such as the processing of the validation set, until it is time to ac-
quire the IP results.

7.2.3 Abstracted design

Incorporating more abstract design strategies that promote versatility and
adaptability can be highly beneficial in embedded systems programming. By
shifting to a higher level of abstraction in our design approach, we can eas-
ily adapt programs to different hardware platforms and requirements. This
abstract layer would allow us to modify our network without having to de-
sign the FPGA from scratch. Additionally, our design achieves a significant
speedup, which can enable neuroscientists to experiment with alternative
structures and hyper-parameters of the network more efficiently.

7.2.4 Larger scale implementation

Our model is based on nature and has five layers, making it a small DNN.
To compare it with current state-of-the-art models, we need to implement it
on a larger scale, which requires adding more layers. Alternatively, we can
replace the last dense layer of a large CNN with our small bio-inspired ANN.
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