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Abstract

In the realm of artificial intelligence and robotics, the creation of agents capable of
effectively overcoming obstacles is a great challenge. Reinforcement Learning has re-
ceived substantial attention for its capacity to empower machines to learn and adapt
within their surroundings, through interaction with their environment. This has led
to groundbreaking advancements in the domain of autonomous agents. This diploma
thesis embarks on a journey to harness the potential of Reinforcement Learning,
with a specific focus on enabling obstacle overcoming through the utilization of a
Three-Dimensional Humanoid Model, commencing from a walking learning example.
Building on a comprehensive background, encompassing Unity Game Development,
the ML-Agents toolkit, the Anaconda environment for streamlined dependency man-
agement, and the fundamental principles of Reinforcement Learning and the Proxi-
mal Policy Optimization (PPO) algorithm, the stage is set for a deep dive into the
challenges of creating a model able to overcome obstacles. Through a series of ex-
periments, the setup and progress are presented, along with the development of a
reward function and the observation space for our agents. Changes in the environ-
ment are introduced to assess adaptability and resilience of our model, and PPO
hyper-parameters are meticulously tuned for best results. This thesis concludes with
promising outcomes, showcasing the creation of a fully functional model, adaptable
to diverse environments. Furthermore, it outlines future directions for research and
development, aiming to further the quest for intelligent agents capable of undertaking
difficult challenges.



ITepiAndm

YTOV YOPO NG TEYYNTAS VONUOCUVNG XAl TNG QOUTOTIXNG, 1) dnuloupyior Teoxtopwy
XaveY Vo uTepBaivouy eumodLa anoteheouoTid anoterel onpovTin tedxinor. H Evioyu-
i Mddnon (Reinforcement Learning) €yet et Wrodtepn tpocoyy| yio Ty ixavotntd.
NG Vo ETUTEETEL 0TI Unyavég va dodadvouv xon va mpooopudlovial oto Tepl3dhhoy
TOUg PECK TNG AAANAETIOEAOTC TOUG UE auUTO. AUTO €yElL 00N YHOEL OE TEWTOTOPIXES
eZeMelc 6TOV TOpEd TWV QUTOVOUWY TeaxTopwy. H mapodoa Simiwuatiny epyooio
exouvel éva eyyelpnua vo allomolfioel T duvouxt| e Evioyvtiic Mddnong, eotid-
Covtog 6T BuVITOTNTA TNG UTEQPBaoNG eunodiwy Ue yefor eVOC TeLodldo Tatou ovlpe-
TOEWBOUE HOVTEROL, EEXVOVTAS amd €va mapddetypo udinone Badlopatog. XtiCovtug
oe Eva ohoxAnpwuévo undfoadpo, to onolo mepLhopPdver Ty Thatgdoue Unity Game
Development, tnv cpyoheodrixn ML-Agents, to mepi3dhhov Anaconda yio BéATioT
Otayetpton e€opTthoewy xou Tig Yeuehiddels apyéc tne Evioyutuic Mddnone xou tou a-
Ayoplduou Proximal Policy Optimization (PPO), ot mpoinodéoeic eivon étoeg yior pio
Bordid xoTdBUCT| OTIC TROXAHOELS TNG ONtovpYiag evOg HoVTEAOU xavol Vo utepBadvel -
umodia. Méoo amd pia oelpd Telpaudtonv, tapouotdlovTon ot puiuioels xou n Tedodog, poli
UE TN Onuoupyior plag cuvdeTNoNg AvVIUUO3HC XAl TOU YWEOU TURUTNEACEWY YL TOUG
TEdxTORES poc. Eodyovtar ahhayéc oto mepBdAlov yioo TNy a€loAdYNon TG TEoca-
OUOCTIXOTNTUC XU TNG AVUEXTIXOTNTOC TOU HOVTEAOU UOC XOL Ol UTER-TUPUUETEOL TOU
PPO pudpilovtar oyolactixd yia 0 BeAtioTonolnon twv anoteieopdtowy. H napoloa
epYaoiot OAOXANPOVETOL UE TOAAS UTOGY OUEVO ATOTEAEGUOTAL, TOEOUGIALOVTAS T1) OUtoupyla
EVOC TAYPWS AELTOLEY X0 HOVTEAOU, TOOGUPUOCULOU GE DLAPORETIXS TepBdilovTa. Emt-
TAEOV, OXLoYPApEl UEANOVTIXEC XATEVDUVOELS YioL EPEUVOL X0 OVATTULT, UE OTOYO Vo
eVIoYUOEL TNV AvATTUE TN EVGUOY TEUXTORWY LXAVEY VOL AVTHIETOTILOLY BUGKOAES TPOXAT-
OELC.
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Chapter 1

Introduction

In the field of artificial intelligence and robotics, the endeavor to develop agents
with the capacity to navigate within dynamic environments and conquer obstacles
continues to present a substantial and enduring challenge.

Reinforcement Learning (RL) has gained considerable attention for its ability to en-
able machines to learn and adapt to their surroundings through interaction with the
environment and has led to groundbreaking advancements in the field of autonomous
agents.

One particularly intriguing application of RL in robotics is the development of Three-
Dimensional Humanoid Models capable of overcoming obstacles in dynamic environ-
ments. These robots, inspired by the human form, represent a promising avenue for
achieving advanced tasks in a wide range of settings, making them valuable assets in
missions, where human lives could have been endangered.



1.1 Thesis Contribution

In this thesis, we study the problem of obstacle overcoming using a 3D humanoid
model. Using Unity engine and the tools it provides, we manage to train a 3D hu-
manoid model able to successfully overcome obstacles in environments that change
arbitrarily at every try. Taking inspiration from the process of training a model to
walk, we adapt various aspects of the Reinforcement Learning (RL) cycle. This in-
volves significant modifications to the environment, the observations and the reward
mechanisms. Moreover, we meticulously fine-tune the hyper-parameters of the Prox-
imal Policy Optimization (PPO) algorithm to further maximize its performance. By
implementing these strategic modifications, we develop a proficient model that excels
in successfully tackling the designated challenge.

1.2 Thesis Outline

In Chapter 2, we dive into the foundational knowledge required to understand
the subject of this thesis. We discuss the Unity Game Development Engine, the
ML-Agents toolkit, Anaconda, Reinforcement Learning, and Proximal Policy Opti-
mization (PPO). This background information aims to help readers comprehend the
context and tools used in our research.

In Chapter 3, we focus on defining precisely the problem studied and provide an
overview of prior work in the same area. We’ll look into examples similar to our study
and highlight the improvements we aim to make.

Chapter 4 outlines our approach to solving the identified problems. We discuss the
setup, initial progress, reward function, observation space, environmental changes,
and the tuning of PPO hyper-parameters. This section details the methodology,
tools, and techniques employed in our research.

Chapter 5 presents the final results and findings of our research. We analyze the
outcomes of our approach and provide insights into the practical complications of our
work.

In the final Chapter 6, we draw conclusions based on our findings and results of
our research. We also suggest potential directions for future work, focousing on areas
where further research can build upon our findings.



Chapter 2

Background

2.1 Unity Game Development Engine

Unity is an industry-standard game development engine that has rightfully earned
widespread popularity for its versatility, cross-platform compatibility, and extensive
toolset. Initially designed for creating interactive video games, Unity’s capabilities
extend well beyond gaming, making it a versatile choice for researchers and developers
in various domains, including robotics and artificial intelligence [4].

Unity engine has the capabilities to create realistic 3D environments, allowing re-
searchers to simulate complex real-world scenarios for training RL agents. With its
built-in physics engine [0], it allows for the accurate modeling of physical interac-
tions, which is essential for simulating robot movements and dynamics. With the
vast amount of published tutorials and documentations, as well as the well supplied
asset store, it creates a perfect engine to simulate every imaginary or realistic scenario
you can think of.

2.2 ML-Agents Toolkit

Unity’s ML-Agents toolkit (Figure 2.1), an open-source project developed by Unity
Technologies, serves as a bridge between Unity’s rich simulation capabilities and the



field of Reinforcement Learning. ML-Agents empowers researchers and developers to
train and evaluate RL agents in Unity environments efficiently [11].

Key components and functionalities of ML-Agents include:

-Unity Integration: ML-Agents seamlessly integrates with Unity, allowing the cre-
ation of custom learning environments using Unity’s Editor and assets.

-Python API: ML-Agents provides a Python API for training and interacting with
RL agents, enabling the use of popular RL libraries, such as TensorFlow and PyTorch.

-Customizable Agents: Researchers can define custom agent behaviors, includ-
ing neural network architectures, observation spaces, and action spaces, tailored to
specific tasks.

-Learning Algorithms: ML-Agents offers a variety of RL algorithms, including
Proximal Policy Optimization (PPO) and Soft Actor-Critic (SAC), so that researchers
can experiment with different algorithms to suit their objectives.

-Highly Scalable: ML-Agents supports distributed training, making it scalable for
large-scale experiments that require multiple agents and simulations.



Learning Environment

Python API ~ Python Traine }

Figure 2.1: ML-Agents simplified [10]

2.3 Anaconda

Anaconda is a widely-used open-source distribution of software and libraries, designed
to facilitate data science, machine learning, and scientific computing tasks. It tightly
bundles a comprehensive suite of tools and libraries for data analysis, numerical com-
puting, and machine learning into a single, easily manageable package [15].

Anaconda comes with its own package manager called “conda” which simplifies the
installation, updating, and management of various data science and machine learning
packages. Conda also manages dependencies, making it easier to set up and maintain
complex software environments. It offers a great variety of library support and being
able to create isolated virtual environments for different projects (making it possi-
ble to manage different project dependencies separately and avoid conflicts between
packages), it becomes a great tool for a wide range of data analysis and machine
learning tasks.
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2.4 Reinforcement Learning

Reinforcement Learning (RL) is a subfield of machine learning that focuses on en-
abling agents to learn very good (even optimal) decision-making strategies by inter-
acting with an environment [5]. Unlike supervised learning, where models are trained
on labeled data, RL agents learn through trial and error, receiving feedback in the
form of rewards or punishments based on their actions. The fundamental goal of RL
is to find a policy—a mapping from states to actions—that maximizes cumulative
rewards over time.

Key concepts for RL [17]:

-Agent: The learner or decision-maker that interacts with the environment. The
agent takes actions based on its current state and learns over time to maximize
cumulative rewards.

-Environment: The external system with which the agent interacts. It includes all
aspects of the problem, including states, actions, rewards, and transitions.

-State: A representation of the environment’s current situation. States provide the
context for the agent’s decision-making.

-Action: The choices or decisions made by the agent. Actions influence the environ-
ment and can lead to transitions to different states.

-Reward: A numerical signal provided by the environment after each action, indi-
cating the immediate desirability or quality of the agent’s decision. The goal is to
maximize the cumulative reward over time.

-Policy: A strategy or mapping that defines the agent’s behavior, specifying which
action to take in each state.

-Value Function: A function that estimates the expected cumulative reward an
agent can achieve when starting from a particular state and following a specific policy.
There are two types of value functions: state-value functions and state-action-value
functions.

-Exploration vs. Exploitation: Agents face a trade-off between exploration (try-

ing new actions to discover their consequences) and exploitation (choosing actions
known to yield high rewards).

11



To sum up, the agent makes an action, checks the environment and depending on
changes he gets a reward. Said reward is connected with its end goal, so the agent
gradually learns from experience which action will lead to results with more reward
to gain (Figure 2.2).

Reinforcement Learning cycle

| ’7

state reward action
S[ Rf A!
; Rh-i
__—+—] Environment <«——
" St

Figure 2.2: Here we can see the reinforcement learning cycle [15].
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2.5 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) was introduced by OpenAl in 2017 [16] [14],
focused on finding a stable and efficient way to optimize policies in reinforcement
learning. It is a state-of-the-art reinforcement learning algorithm designed for training
agents to learn policies that maximize expected cumulative rewards in a stable and
sample-efficient manner.

PPO belongs to the family of policy gradient methods. In many of those, policy
updates are unstable, because of the large step size, which leads to bad policy updates
and when this new bad policy is used for learning, then it leads to even worse policy.
If steps are small, then it leads to slower learning [1].

2.5.1 Key Concepts and Techniques

-Policy Optimization: PPO focuses on optimizing the policy, which is a mapping
from states to actions, to improve the agent’s decision-making. It seeks to find a
policy that maximizes expected cumulative rewards.

-Trust Region Optimization: PPO employs a trust region approach to policy
updates, ensuring that the new policy remains close to the old policy. This trust region
constraint prevents overly large policy updates that can lead to training instability.

-Objective Function: PPO uses a surrogate objective function to approximate the
policy improvement. It maximizes the expected advantage (the difference between the
returns of the new policy and the old policy), while staying within the trust region.

-Actor-Critic Architecture: PPO often uses an actor-critic architecture, which
consists of two neural networks. The actor network represents the policy and selects
actions, while the critic network estimates the value (expected cumulative rewards)
of state-action pairs.

-Clipping: PPO introduces a clipping mechanism in the objective function, limiting
the extent to which the policy can change in each update. This clipping reduces the

risk of policy updates that are too aggressive and destabilizing.

-Multiple Epochs: PPO typically conducts multiple optimization epochs per train-
ing iteration, using different batches of data to update the policy. This improves

13



stability and sample efficiency [12].

2.5.2 PPO Pseudo-Code

A simplified pseudo-code providing a basic outline for the PPO algorithm is presented
below.

function PPO(environment, policy_network, value_network, optimizer,
num_episodes, max_steps, gamma, lambda, epsilon_clip):

for episode in range(num_episodes):

state = environment.reset ()
episode_states = []
episode_actions = []
episode_rewards = []
episode_probs = []
episode_values = []

for step in range(max_steps):
#Actor-Critic Architecture: separate networks for the
#policy and the value function.
action, prob, value = policy_network(state)
next_state, reward, done, _ = environment.step(action)
episode_states.append(state)
episode_actions.append(action)
episode_rewards.append(reward)
episode_probs.append (prob)
episode_values.append (value)

state = next_state

if done or step == max_steps - 1:
last_value = 0 if done else value_network(next_state
)
discounted_rewards = calculate_discounted_rewards(
episode_rewards ,gamma, last_value)
advantages = calculate_advantages (discounted_rewards
,episode_values)

optimize_policy(value_network, policy_network,

optimizer , episode_states, episode_actions,
episode_probs, advantages, epsilon_clip)

14



break
def calculate_discounted_rewards (rewards, gamma, last_value):
discounted_rewards = []
running_add = last_value
for r in reversed(rewards):
running_add = running_add * gamma + r
discounted_rewards.insert (0, running_add)

return discounted_rewards

def calculate_advantages (discounted_rewards, values, gamma, lambda):

advantages = []
last_advantage = 0
for i in range(len(discounted_rewards)):
delta = discounted_rewards[i] + gamma * values[i+1] - values
[i]
last_advantage = delta + gamma * lambda * last_advantage

advantages.append(last_advantage)
return advantages

#Policy Optimization: The policy network is updated using a

#combination of surrogate policy loss and value 1loss.

def optimize_policy(value_network, policy_network, optimizer, states
, actions, old_probs, advantages, epsilon_clip):

#Multiple Epochs: Conduct multiple optimization epochs, iterating
#over the dataset multiple times to update the policy.

for _ in range(optimization_epochs):
for i in range(len(states) // batch_size):

start_idx = 1 * batch_size
end_idx = (i + 1) * batch_size
batch_states = states[start_idx:end_idx]
batch_actions = actions[start_idx:end_idx]
batch_old_probs = old_probs[start_idx:end_idx]
batch_advantages = advantages[start_idx:end_idx]
new_probs, new_values = policy_network(batch_states)

ratio = new_probs / batch_old_probs

#Trust Region Optimization and Clipping: the ratio of
#new and old policy probabilities is clipped within a
#certain range to ensure hat policy updates stay within
#a certain range..

clipped_ratio = clip(ratio, 1 - epsilon_clip, 1 +

15




epsilon_clip)

#0bjective Function: The surrogate objective function 1is

#implemented, where the goal is to maximize the expected

#advantage within the trust region.

surrogate_loss = -min(ratio * batch_advantages,
clipped_ratio * batch_advantages)

value_loss = mse_loss(new_values, batch_advantages)

total_loss = surrogate_loss + value_loss

optimizer.zero_grad ()
total_loss.backward ()
optimizer.step ()

def clip(x, min_value, max_value):
return max(min(x, max_value), min_value)

def mse_loss(predictions, targets):
return ((predictions - targets) *x 2).mean()

2.5.3 PPO Advantages

The methods behind PPO arm PPO with a plethora of advantages [16], making
it known for its sample efficiency. It can achieve good results with fewer samples
compared to some other RL algorithms, making it suitable for real-world applications,
where data collection may be costly or time-consuming. The trust region optimization
and clipping mechanisms in PPO contribute to training stability. PPO tends to
produce smoother learning curves and is less prone to divergence. Lastly, it is versatile
and can be applied to both continuous and discrete action spaces, making it suitable
for a wide range of RL problems. Summing up, PPO has gained its popularity for its
robustness and ease of implementation.

2.5.4 PPO Hyper-parameters

PPO comes with a number of hyper-parameters [13] that the user can tune according
to the exact problem and optimize the results.

Batch Size :
The batch size determines the number of data points used in each training iteration.

16



A larger batch size can enhance training stability, but demands more memory, im-
pacting gradient estimate accuracy and training time.

Buffer Size :

The buffer size sets the maximum number of experiences (state, action, reward, next
state) stored in the replay buffer. The replay buffer retains experiences over time
and is sampled from during training. A larger buffer size improves the quality of
experiences used for training.

Learning Rate :

The learning rate controls the step size at which the model’s parameters are updated
based on computed gradients. A higher learning rate accelerates learning progress,
but may introduce instability or overshooting. Conversely, a lower learning rate en-
sures stability, but might decelerate learning progress.

Beta :

Beta is the coefficient for the entropy term in the loss function. Entropy encourages
exploration by penalizing deterministic (low-entropy) actions. Smaller beta values
promote more exploration, while larger values prioritize exploitation.

Epsilon :

Epsilon serves as the threshold parameter for the “clipping” step in the PPO loss
function. Clipping prevents the policy update from becoming excessively large, en-
hancing stability. It defines a range within which the new policy’s action probabilities
are clipped based on the old policy’s probabilities.

Lambda :

Lambda is the discount factor used to compute advantage estimates. Advantage es-
timates indicate how much better or worse a particular action is compared to the
expected value. When lambda is low, the algorithm prioritizes the current under-
standing of the value function over actual rewards obtained from the environment,
which can lead to bias in the learning process. Conversely, higher values of lambda
prioritize the actual rewards obtained from the environment, potentially introducing
more variance into the learning process.

Number of Epochs :

The number of epochs signifies how many times the entire dataset is used during
one iteration of the training loop. More epochs yield more precise updates, but may
extend training time, while fewer epochs expedite training, but can result in less ac-
curate updates.

17



Gamma :

Gamma is the discount factor used to discount future rewards in reinforcement learn-
ing. It determines the importance of future rewards compared to immediate rewards.
A value closer to 1 indicates that future rewards are highly important, while a value
closer to 0 indicates that only immediate rewards are significant.

2.6 Catastrophic Forgetting

Catastrophic forgetting is a phenomenon in machine learning, where a model rapidly
loses its previously learned knowledge, when it is trained on new data. This issue can
occur when a model is updated or fine-tuned with new data, and the new information
disrupts or erases the previously learned information, making it difficult for the model
to retain knowledge about multiple tasks or domains over time.

Catastrophic forgetting can also affect PPO, especially when the agent needs to adapt

to new tasks or environments, while retaining the knowledge of previously learned
tasks [2].

18



Chapter 3

Problem Statement

The primary objective in this thesis is to train a simulated humanoid agent (Figure
3.1) to overcome obstacles using reinforcement learning. Our 3D humanoid agent has
to be taught how to move forward in an obstacle course, having zero prior knowledge.
Starting from the basics the agent has to learn how to walk and at the same time find
a way to overcome multiple, static, but random, obstacles in a full realistic physics
environment.

At our disposal we have observations, which provide the necessary information about
the environment, actions, which encompass the set of permissible movements, and
decisions the humanoid agent can undertake in response to its observations and the
rewards offered to the agent during approved behavior. To do so, the model has
to be designed using a physics engine, the environment has to be created and the
algorithms have to be implemented.

The foundation of our environment is rooted in a pre-existing ML-Agents Unity en-
vironment known as “walker” and the algorithm chosen to achieve our mission is
the Proximal Policy Optimization (PPO) algorithm. Together, these elements form
the bedrock of our quest to transform an inexperienced 3D humanoid agent into a
proficient obstacle runner through the power of reinforcement learning.

19



Figure 3.1: ML-Agents’ walker agent.

3.1 Related Work

MI-Agents in Unity offers some examples as reference, related to the one we're going
to create, the most notable being the wall jump and walker ones.

The purpose in wall jump (Figure 3.2) is to train an agent to navigate environments,
where wall jumps are required to reach certain locations or avoid obstacles.

The approach involves setting up a simulated environment, where the agent can
interact with walls and learn to perform wall jumps. The agent is able to move
forward, rotate, move sideways, jump and has knowledge of its current position,
objects position and if it is grounded or not, at all times. Agent is rewarded every
time he touches the goal, but loses reward as time passes by and if he falls from the
platform.

The ML-Agents toolkit supports various RL algorithms, such as Proximal Policy

Optimization (PPO), Trust Region Policy Optimization (TRPO), and others. PPO
algorithm was used for this example proving to be up for the specific task, as the

20



Figure 3.2: ML-Agents example wall jump environment.

agent was able to consistently succeed in given mission (Figures 3.3 and 3.4) .

21
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Figure 3.3: ML-Agents example wall jump agent overcoming a wall.

The purpose of the walker example is to train a simulated humanoid agent (Figure
3.5) to control the movements of its joints in order to learn to walk without falling
and reach a target.

The approach involves setting up a 3D simulated environment where the agent (walker)
can take actions to control its movements. The environment includes physics and dy-
namics that simulate the behavior of a realistic humanoid. The agent must learn a
policy that allows it to walk or run towards a target.

The agent has knowledge of position, velocity and angular velocity of each limp
along with the target direction. The agent is rewarded while moving towards the
goal target, maximized when moving straight towards it. The agent can control the
strength applied to its joints. Realistic physics are integrated within the simulation,
using the Unity physics engine. Using the PPO algorithm to train our agent, we get
descent results (Figure 3.6).

22
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Figure 3.4: Environment/cumulative reward graph of wall-jump example

The key idea in this thesis is to get a combination of those two environments [7].
Having a complicated 3D humanoid agent learning how to walk and at the same time
overcome the obstacles ahead.
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Figure 3.5: ML-Agents example walker environment.
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Chapter 4

Approach

4.1 Setup

To commence our experiments several crucial steps need to be taken beforehand.
We must ensure the successful installation of all required programs and libraries
on our system. A need to establish a suitable environment is generated and training
algorithms have to be implemented. This chapter will provide a thorough exploration
of this process, addressing each step in detail.

4.1.1 Installation of Programs and Libraries

To initiate this process, several essential programs must be successfully installed on
our system:

1. Anaconda: As mentioned earlier, Anaconda serves as our project manager. It
allows us to create an isolated environment, in which all our libraries will be
installed. This isolated environment helps manage dependencies and ensures
the installation of the correct versions of libraries.

2. Python: Python is an exceedingly popular programming language, making
it nearly indispensable for Reinforcement Learning, due to its vast array of
libraries and comprehensive documentation.

26



3. Unity: We will be utilizing the Unity engine, renowned for its robust physics
engine and the wide array of assets that enable us to create highly realistic
simulations.

4. ML-Agents: ML-Agents is an open-source toolkit designed for Unity, func-
tioning as a crucial link between Unity and Reinforcement Learning algorithms.

5. Required Python Packages: In addition to the above, several other Python
packages are necessary for data analysis and graph design.

For complete documentation and tutorials on the installation of these programs and
libraries, please refer to the provided links in the Bibliography section at the end of
this thesis [3],[9].

4.1.2 Environment

Building upon the Walker example within ML-Agents and leveraging some of its
valuable assets, we embark on the creation of the environment that will be key to our
work.

Our initial requirement is a 3D humanoid agent, and the one offered by the Walker
example (Figure 3.5) is perfect for our task: a physics-based humanoid agent with
26 degrees of freedom (DOFs). These DOFs correspond to the articulation of the
following body-parts: hips, chest, spine, head, thighs, shins, feet, arms, forearms and
hands.

The agent’s action space remains unaltered. It is able to perform 39 continuous
actions, corresponding to target rotations and strength applicable to the joints, ren-
dering it an exceptionally realistic model. Same goes for the reward function, which
remains for the moment unchanged, checking if the agent is facing towards the target
goal and rewarding the agent if moving towards it. The reward is maximized, when
the agent is moving straight towards it. Walker’s observation space, consisting of
143 variables, is also used for our first try, which consists of information related to
position, velocity and angular velocity of each limp along with the target direction.
Our discount factor (gamma) is set to 0.995, close to 1 to make the agent value future
rewards more, leading to more farsighted decision-making. It is worth noting that all
our modifications and enhancements will be implemented on the foundation of the
Walker example’s assets, ultimately transforming its behavior to cater to our specific
requirements.
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Now, we require an obstacle course in which our agent can undergo training. Our
initial obstacle course comprises 11 obstacles, strategically arranged with varying
levels of difficulty. These obstacles are positioned statically, with a scalable level of
challenge. They are structured such that a low obstacle (Figure 4.1) is followed by
a high one (Figure 4.2), and as we approach the course’s conclusion, the challenges
become progressively more demanding. The low obstacles increase in height, while
the high obstacles are adjusted downward. The courses length is parallel to axis z,
courses width parallel to axis x and obstacles’ height parallel to axis y (Figure 4.3).

Figure 4.1: Our first environment’s low obstacle.
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Figure 4.2: Our first environment’s high obstacle.

Figure 4.3: Our first environment’s axis.

The interactive target, initially employed in the Walker’s example for the agent to
follow, has been transformed into a non-interactive static element, serving as the goal
within our obstacle course. Due to parallelization and experience sharing multiple
agents can interact with the environment simultaneously and share their experiences
with each other, allowing each agent to explore the environment independently, thus

29



contributing different perspectives on how to solve the task. Recognizing that the use
of multiple agents yields faster results, we opt to clone the agent 10 times, creating
the first training environment for our agent (Figure 4.4).

Figure 4.4: Our first environment created for agent’s training sessions.

4.2 Initial Progress

For our agent, taking its first steps was relatively straightforward, as it was already
pre-programmed to learn this fundamental skill. Learning how to walk was a rapid
process, but challenges began to emerge upon encountering the first obstacle. Sur-
prisingly, the agent quickly adapted to overcome this obstacle. However, after several
hours of training, we observed a noteworthy outcome.

After approximately fifteen hours of training, our agent began to exploit the obstacles
strategically, maximizing its rewards. Specifically, it devised a method to progress
toward the target, while seemingly stuck in the initial obstacle of the course (video
[3]). By doing so, it could achieve the maximum possible reward with each step as
the agent according to Unity engine had speed towards the target. As the agent was
blocked and leaning on the first obstacle, it never reached the target, nor lost balance.
This approach resulted in remarkably long runs (reaching the max steps set for each
simulation) and an unusually high accumulation of rewards (Figure 4.5).
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While this behavior was technically correct, given our initial reward function, it did
not align with our desired objectives. It was time to redesign our own reward function,
and come up with one that would motivate the agent to learn the specific behaviors
we required.

Figure 4.5: Agents getting stuck on first obstacle to maximize reward gained.
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4.3 Designing a New Reward Function

Determining when and how we reward our agents stands as one of the critical aspects
in reinforcement learning, and, in my experience, it is often one of the most challenging
aspects to manage. Simplifying our reward function made it easier for the agent to
exploit the function by learning unintended actions, while increasing its complexity,
resulted in unexpected agent behaviors. Achieving the right balance in our reward
function required a thorough understanding of the agent’s goals and a process of trial
and error, until we reached the desired outcome.

4.3.1 Reward Function Implementation

The precise objective for the agent is to reach the end of the obstacle course. Achiev-
ing this goal involves a combination of three essential components: directing the agent
toward the endpoint, ensuring the agent maintains a certain level of velocity, and en-
suring that the agent continuously progresses toward the goal. It is on these three
fundamental principles that we have founded our reward function.

So our reward function consists of three parts according to these three rules:

1. lookAtTargetReward : This component provides a reward between zero and
one, based on the alignment of the agent’s vector with the direction of the goal.
It is computed by taking the dot product of the agent’s direction vector and
the goal’s direction vector. The dot product’s range is from —1 to +1. Adding
1 shifts the range from 0 to 2, and multiplying by 0.5 scales it to a range from
0 to 1.
Formula: ((|agentDirectionV ector| x |goal DirectionV ector| x cosf) + 1) x 0.5
where 6 is the angle between the two vectors.

2. matchSpeedReward : This component delivers a reward between zero and
one, dependent on how closely the agent’s speed matches our desired speed
(desired speed is set for our experiments to 5m/s). This allows us to control
the agent’s velocity. The reward calculation begins by measuring the Euclidean
distance (denoted as D) between our agent’s velocity and the desired goal ve-
locity, limiting the range from 0 to the goal velocity. We then compute a value
that decreases as the difference between the velocities increases.

The formula employed is : 1 — (D/targetSpeed)?.
Starting at 1, it decreases, as the discrepancy between the velocities widens.
The square exponent emphasizes the reduction in reward as the velocities drift
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further apart.

The final result represents a reward, value that approaches 1, when the actual
velocity perfectly matches the goal velocity and approaches 0 as the deviation
between the two velocities increases.

3. distanceTraveledReward : This component awards a reward between zero
and one, based on the agent’s proximity to the goal. The closer the agent
is to the goal, the higher the reward, encouraging the agent to continuously
move toward the end of the obstacle course. To calculate this reward, we di-
vide the agent’s z axis distance by the goal’s z axis distance (goal is static so
goalZdistance is a fixed value), as our obstacle course is parallel to the z axis.
A small constant (0.01) is added to prevent the reward value from starting at
zero. The square root is applied to ensure that the reward does not approach
zero too quickly at the beginning.

Formula: \/ agentZ Distance/goal Z distance + 0.01

The mentioned components must be provided at the same time for our agent to work
properly. So our final reward is the product of the three components, with a range
from 0 to 1.

4.3.2 Outcomes of the New Reward Function

With the implementation of the new reward function, our agent demonstrated sig-
nificant progress in learning and successfully overcoming static obstacles (Figures 4.7
4.8)

The plotted data (Figure 4.6) illustrates that the agent underwent training for 80
million steps (averaging approximately 2 million steps per hour, totaling around 40
hours of training). It achieved commendable results in terms of the cumulative reward
gained. However, an anomaly is noticeable at around 60 million steps, as indicated
in the graph, where there is a sudden drop in cumulative reward. This dip occurred
due to a system crash that prevented the saving of the neural network tensor. After
the system reboot, training resumed from a previous value.
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Figure 4.6: Environment/cumulative reward graph after reward function changes
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Figure 4.7: Reward function change. Low obstacle overcoming
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Figure 4.8: Reward function change. High obstacle overcoming
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4.4 QObservation Space

While our agent has become proficient at overcoming obstacles, a crucial consideration
arises: What if the position of the obstacles were to change, even slightly?

Currently, our agent lacks the capability to discern the locations of obstacles, and its
learning is solely based on repetitive exposure to the same course. Consequently, it
remains ill-equipped to adapt to dynamic environments. To address this challenge
and enable our agent to excel in dynamic settings, we must enhance its observation
space, equipping it with the comprehensive information it requires.

4.4.1 Implementation of the Observation Space

In all living beings, there exists a crucial sensory ability, called proprioception. Al-
though it may not be widely recognized, because we often take it for granted, it is the
very sense that enables us to move and accomplish tasks. Proprioception, in essence,
is the sensory capacity that allows us to perceive the location, movement, and actions
of different parts of our body. It encompasses a complex range of sensations, includ-
ing the perception of joint positions, movements, muscle forces, and efforts. These
are precisely the elements our agent requires, in addition to information on the goal
direction and awareness of the obstacles it must confront.

The extent to which our agent possesses information is crucial. Too little of it can
lead to insufficient data, while an excess of information may necessitate significantly
more training time, potentially hindering the learning process, due to an inability to
discern which details are useful. So, we have to find a balance.

Consequently, our observation space consists of the following:

e For each part of the agent’s body (16 body parts), we acquire its location (3),
velocity (3), angular velocity (3), and whether it is in contact with the ground
(1). For 13 of those (excluding the hips and the hands) we also acquire rotation
(4) and strength applied (1).

Total number of variables for body parts 225.

e The distance between our agent and the goal of the obstacle course (1).
e The goal position (3).

e The agent’s average velocity (3).
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e The desired velocity for our agent to match (3).
e The rotation of the agent’s hips (4) and head (4).

e The position of the next obstacle in the course, considering its coordinates on
the y and z axes, as well as its height (3).

This comprehensive observation space comprises a total of 246 variables, provid-
ing our agent with the necessary information for its task.

4.4.2 Observation Space Implementation Results

The enhancement of the observation space had a significant positive impact on the
agent’s training times. By providing information about obstacles, the training pro-
cess became approximately three times faster, when utilizing the same static obstacle
course. Importantly, the improvements did not seem to produce any noticeable alter-
ations in the learned behavior of the agent.

The agent consistently attains an average reward of about 500, which signifies its
capability to overcome obstacles effectively. With these enhancements, this level of
proficiency can be achieved after only 5 million steps (equivalent to 2.5 hours of
training), whereas without these improvements, it required approximately 13 million
steps (or 7.5 hours) to reach a similar level of competence (Figures 4.9 and 4.10).

Figure 4.9 displays the cumulative reward in the environment, where the red curve

represents the previous setup (Figure 4.6) and the green curve represents the same
graph after the observation space changes.
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Figure 4.9: Comparison between reward accumulation with new and old observation

space
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Figure 4.10: Agent getting over a low obstacle and under a high one

40



4.5 Implementation of Environmental Changes

A completely static environment does not align with our objectives, and it is essential
to introduce alterations to our obstacle course. We aim for each episode to present
a different obstacle course, necessitating our agent to learn a policy that relies on
observations rather than relying solely on accumulated experience from the same
course.

To achieve this, the positions and heights of our 10 obstacles are randomized every
time the environment resets. This approach ensures that a distinct obstacle course is
generated at the commencement of each episode. Each of the 10 obstacles individually
receives values for these variables within the specified bounds, allowing us to assess
entirely different scenarios as the need arises.

However, the last obstacle remains static, serving a dual purpose. Firstly, we check
the height that our agent is not able to surpass due to its body properties. Over-
coming this obstacle demands complex actions, and witnessing the agent successfully
overcoming it would be a remarkable achievement. Secondly, it serves as an indicator
of whether the agent successfully accomplishes its task, reaching the end of the ob-
stacle course. The implementation of our observation space allows us to detect when
the agent’s torso surmounts this final obstacle, triggering a warning that indicates the
absence of another obstacle in the sequence. As a side note, it’s worth mentioning
that printing information during training sessions is memory-intensive, so we’ve relied
on Unity’s warnings as a more resource-efficient option.

In Figure 4.11, we present an illustrative example of our new training environment.

These environmental changes have imposed a considerable challenge on our agent’s
performance, as the difficulty level has increased significantly. The graphs obtained
after the implementation of these changes aptly reflect this heightened complexity.

In Figure 4.12, we observe the outcomes of four distinct training sessions using the
same settings, as well as the graph after observation space changes from figure 4.9), to
use as reference. It is immediately apparent that our learning time has significantly
increased. This extended learning time is a foreseeable consequence, considering
that our agent’s task has become notably more challenging with the obstacle course
changing in every episode.

Another noteworthy observation is the sharp decline in cumulative reward seen in
training sessions 2 and 4. This decline is attributed to the phenomenon known as
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Figure 4.11: Different scale and position of obstacles for each agent

catastrophic forgetting, a challenge that the PPO algorithm can encounter (further
elaborated in the background chapter).
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Figure 4.12: Training sessions after changes in obstacle course

4.6 Tuning PPO Hyper-parameters

To enable our agent to effectively adapt to the new challenges posed by the evolv-
ing problem difficulty, we must dive deeper into the optimization of the Proximal
Policy Optimization (PPO) algorithm’s hyper-parameters. Fine-tuning these hyper-
parameters for our specific task is crucial for our agent’s learning process. Although
we discussed PPO hyper-parameters in the background section, we will now explore
them from an experimental perspective and examine their precise roles.
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Let’s take a sample from our project (Figure 4.13) and analyse them with testing.

2048
20430
3.00045

Figure 4.13: PPO hyper-parameters

The first three parameters (batch_size, buffer_size and learning rate) are the most
influential ones.

Batch Size (batch_size = 2048):

A larger batch size contributes to a more stable policy update. However, the chosen
value of 2048 is also mindful of our system’s memory constraints, ensuring that the
batch size does not overextend to more than 80% of available memory. This balance
aims to promote stable training while optimizing the utilization of system resources.

Buffer Size (buffer_size = 20480):

The buffer size determines the size of the experience replay buffer, which stores past
experiences for training the policy. A larger buffer size allows the agent to learn from
a more diverse set of experiences, which can improve sample efficiency and stability
during training. The buffer size has to be batch — sizeused x number_of _replays, so
10x provides a good balance between diversity and memory efficiency.
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Learning Rate (learning rate = 0.00045):

A smaller learning rate (0.00045) is chosen to ensure stability, allowing the model to
make smaller, more controlled steps towards an improved policy. In Figure 4.14 we
can observe the influence of the learning rate on our environment’s cumulative reward
graph. The purple curve represents our fastest learning rate (0.00099), causing our
plot to rapidly ascend to its peak before undergoing a swift decline. In contrast, the
orange curve (learning_rate = 0.00005) illustrates the effects of our slowest learning
rate, where minimal learning progress was evident, even after eight hours of training.

Beta (beta = 0.005):
The value of 0.005 is the median of allowed values, so it strikes a balance between
promoting exploration and exploiting the current policy.

Epsilon (epsilon = 0.2):
The value of 0.2 helps to prevent overly large policy updates that might destabilize
training. It ensures that the policy updates stay within a relatively safe range.

Lambda (lambda = 0.95):
With the value of 0.95 the algorithm gives more weight to the actual rewards when es-
timating advantages, while providing a reasonable balance between bias and variance.

Number of Epochs (num_epoch = 3):
A moderate value like 3 strikes a balance between using enough computation to learn
from the data without over fitting to it.

Learning Rate Schedule (learning rate_schedule = linear):

The learning rate schedule dictates how the learning rate changes over time. In this
case, it follows a linear schedule, meaning the learning rate decreases linearly as train-
ing progresses. Such schedules help fine-tune the balance between exploration and
exploitation over time.

Gamma (gamma = 0.995):

Gamma is the discount factor used to weigh the value of future rewards. It varies
between 0 and 1. With a high gamma (0.995) we emphasize in long-term rewards
instead of short term ones.
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graph.
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Chapter 5

Final Results

With the knowledge our experiments provided, extensive trial and error, and countless
hours of simulations (Figure 5.1), we have succeeded in constructing several models
with commendable performance.
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Figure 5.1: A fraction of the experimental simulations we run.
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From those we will choose and analyze our best one. Having the most training
hours and no interruptions or problems in the process, it’s a model worth noticing
(Figure 5.2).
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Figure 5.2: Our best training session (more than 40 hours of training).
After more than 40 hours of training, our agent demonstrates a consistent ability

to overcome obstacles within the moderately challenging environment we’ve designed,
effectively fulfilling its intended task.
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Some samples of agent behavior are presented below, but there are more in the
thesis video archive [3].

At the beginning of each episode, our agent tends to promptly drop to its knees
(Figure 5.3). The reason for this behavior could be better stability or simply to
navigate more efficiently under high obstacles, although we can only speculate.

Figure 5.3: Agent’s behavior when starting the course.

Our agent is already at its knees from the start, making it easier to deal with high
obstacles. Notice that the agent is arching its head backward, followed by its torso,
before reverting to its “normal” walking position (Figure 5.4).

When dealing with low obstacles, a fascinating observation emerges. Our agent,
typically in a knelt position, anticipates the approach of a low obstacle and initiates
a sequence of jumps even before reaching it, akin to a triple jump athlete. Following
the obstacle’s traversal, the agent seamlessly transitions back to its regular “walking”
position (Figure 5.5).
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Figure 5.4: Overcoming a high obstacle.
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Figure 5.5: Low obstacle overcoming.
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Chapter 6

Conclusion and Future work

6.1 Summary

In this concluding chapter, we revisit our endeavor into reinforcement learning for
obstacle overcoming using a three-dimensional humanoid model. The goal of this
thesis was to create a 3D model able to overcome obstacles. To do so, starting from a
walking example, we created the training environment, set the goals and the rewards,
and made every change needed for our agent to succeed in overcoming a course filled
with obstacles. Based on our experiments, if the goals are clear, and the resources
are sufficient, the capabilities of reinforcement learning seem limitless.

6.2 Future Work

The way the project is implemented, brings forward opportunities, where several
aspects could be improved. Some future work would be to make our agent more
like a human being. We could provide the agent with machine vision to identify the
obstacles, get the information needed and then pass it to the observation space.

Another great improvement would also be to add different kinds of obstacles, so that

our agent has the ability to learn how to navigate around them, when possible. This
would make the task a lot harder though.
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Lastly, a lot of similar stages can be set and a lot of similar tasks can be achieved,
including taking trained models and applying them to real world. That would require
a substantial amount of resources, so trained models’ value has to be essential.
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