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Abstract
Robust optimization (RO) models have attracted a lot of interest in the area of portfolio
selection. RO extends the framework of traditional portfolio optimization models, incor-
porating uncertainty through a formal and analytical approach into the modeling process.
Although several RO models have been proposed in the literature, comprehensive empirical
assessments of their performance are rather lacking. The objective of this study is to fill in
this gap in the literature. To this end, we consider different types of RO models based on
popular risk measures and conduct an extensive comparative analysis of their performance
using data from the US market during the period 2005–2020. For the analysis, two different
robust versions of the mean–variance model are considered, together with robust models
for conditional value-at-risk and the Omega ratio. The robust versions are compared against
the nominal ones through various portfolio performance metrics, focusing on out-of-sample
results.

Keywords Portfolio selection · Robust optimization · Financial risk management ·
Comparative analysis

1 Introduction

The field of portfolio selection is an active research area, which combines elements and
methodologies from various analytical disciplines, such as optimization, decision analysis,
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riskmanagement, and data science, among others. The seminal approach ofMarkowitz during
the 1950s on the well-known mean–variance model (Markowitz 1952), was the cornerstone
in this area and set the basis for the adoption of quantitative approaches for financial decision-
making. Since then, the field has evolved significantly and numerous advances have been
made in the theory and practice of portfolio selection and management (Kolm et al. 2014),
covering issues related to risk measurement (Ortobelli et al. 2005; Szegö 2002), modeling
issues (Aouni et al. 2018; Mansini et al. 2014), algorithmic developments (Maringer 2007),
and implementations in decision support systems (Xidonas et al. 2011), among others.

Whilemany approaches rely on a deterministic setting based on point risk-return estimates
derived from historical data, considerable emphasis has also been put on the modeling and
treatment of the inherent uncertainty in asset returns, which is a major issue for the success
of portfolio selection models. To this end, various approaches have been proposed, such
as stochastic optimization in a single and multi-objective setting (Abdelaziz et al. 2007;
Abdelaziz andMasmoudi 2014; Pagnoncelli et al. 2009; Popescu 2007). An overview of such
approaches was presented by Masmoudi and Abdelaziz (2018). Other relevant approaches
include fuzzy optimization (Dzuche et al. 2020; Lin and Hsieh 2004; Arenas Parra et al.
2001) and possibilistic mathematical programming (Giove et al. 2006; Liu et al. 2020; Zhang
et al. 2012). A comparison of these frameworks (i.e., stochastic versus fuzzy-possibilistic
programming) can be found in Buckley (1990) and Inuiguchi and Ramík (2000).

As a general tool for optimization under uncertainty, RO has also attracted strong inter-
est among operations researchers (Ben-Tal et al. 2009; Gabrel et al. 2014; Kouvelis and
Yu 1997). In contrast to traditional portfolio optimization approaches which rely on point
estimates for the modeling parameters (i.e., asset returns and covariances), usually specified
through historical data, the framework of RO acknowledges that the inputs are subject to
errors, thus belonging to an uncertainty set around their nominal estimates. RO is closely
related to other methods for optimization under uncertainty, such as stochastic programming.
However, the latter assumes that uncertainty is stochastic and can be described by properly
defined probability distributions (Ben-Tal and Nemirovski 1998), thus leading to solutions
that are feasible in a probabilistic sense. On the other hand, RO provides solutions that are
feasible for all realizations of the uncertain parameters in a pre-specified set Bertsimas et al.
(2011). Moreover, as noted by Vladimirou and Zenios (1997) while stochastic optimization
approaches focus on the expectation of the objective function, RO additionally covers higher
moments.

RO models have been widely used for portfolio optimization purposes as indicated by the
reviews of Fabozzi et al. (2010) and Xidonas et al. (2020). For instance, Goldfarb and Iyengar
(2003) presented robust formulations for the mean–variance model, the Sharpe ratio, and
value-at-risk (VaR), using ellipsoidal uncertainty sets, whereas Tütüncü and Koenig (2004)
considered interval uncertainty sets for the assets’mean returns and covariancematrix.Robust
mean–variancemodelswere also examined byGarlappi et al. (2007)who also considermodel
uncertainty (i.e., the uncertainty of the return-generating model), as well as by Fliege and
Werner (2014) who reformulatedmean–variance ROmodels in the context of multi-objective
optimization. Beyond the mean–variance model, Ghaoui et al. (2003), Zhu and Fukushima
(2009), and Zymler et al. (2013) presented RO models for VaR-based risk measures, and
Kakouris and Rustem (2014) presented similar models with a copula formulation, whereas
Xidonas et al. (2017) used a multi-objective minimax regret approach in the context of the
mean-absolute deviation model. RO approaches have also been developed for other portfolio
performance measures such as the Omega ratio (Kapsos et al. 2014a) as well as portfolio
selection in the context of expected utility maximization (Caçador et al. 2021).
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Except for the theoretical advances in the development of RO portfolio construction
models, the empirical evaluation of their performance is also important. In the portfolio
optimization literature, many studies can be found presenting comparative results for various
nominal models in different settings (see, for instance, Angelelli et al. 2008; DeMiguel et al.
2007; Gilli and Schumann 2011; Pavlou et al. 2019; Xidonas and Mavrotas 2014). On the
other hand, comparison studies for robust models in a unifying and standardized framework
are rather lacking. For instance, Guastaroba et al. (2011) compared two robust formulations
of conditional value-at-risk (CVaR) to the nominal CVaR model using data from the London
Stock Exchange during the period 1995–2005. Their out-of-sample tests showed that the
nominal and robust portfolios achieved similar performance on five indicators (mean and
median return, standard deviation, semi-standard deviation, Sortino ratio). Kim et al. (2013)
considered robust mean–variance portfolios obtained with box and ellipsoid uncertainty sets,
to examine their characteristics with respect to the fundamental factors of the Fama-French
model. Similar mean–variance robust models were also considered in the comparative anal-
ysis of Kim et al. (2018).

Previous studies such as the ones described above, have focused on specific types of
models and/or uncertainty sets. Thus, the results do not allow for “cross-model” comparisons,
i.e., for which models RO performs better. Motivated by this finding, the objective of this
paper is to present a more comprehensive empirical examination of the performance of RO
portfolio construction models, covering different risk measures and performance metrics.
Moreover, issues not previously examined, like the composition of the portfolios and their
diversification, are also considered in the analysis. The empirical evaluation is based on data
involving the stocks of the Dow Jones Index over the period 2005–2020. A rolling-window
testing approach is employed to examine the performance of the considered models focusing
on their results on out-of-sample tests.

The rest of the paper is organized as follows. Section 2 presents the nominal models
considered in the analysis, as well as their robust counterparts. Section 3 presents data and
the experimental setup, whereas Sect. 4 focuses on the results of the analysis. Finally, Sect. 5
concludes the paper and discusses some future research directions.

2 Portfolio optimizationmodels

For the purposes of the analysis, three popular portfolio optimization models are considered,
namely the mean–variance model, conditional value-at-risk, and the Omega ratio. Except for
their popularity as tools for portfolio construction, the selection of these approaches was also
based on their different underlying principles, which allows us to analyze methodologies
that are fundamentally different instead of just being simple variants of each other. On the
one hand, the mean–variance approach is based on a deviation risk measure. On the other
hand, conditional value-at-risk relies on a tail risk measure, whereas the Omega ratio is a
risk-reward performance measure that incorporates all the higher moments of the returns
distribution. In the following sub-sections, we begin with the presentation of the nominal
portfolio optimization models based on the above approaches and then discuss their robust
counterparts that were used in the analysis. In all cases, it is assumed that short-sales are not
allowed (i.e., the weights of the assets in the portfolios are non-negative).
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2.1 Nominal models

2.1.1 Mean–variance model

The mean–variance (MV) model was introduced by Markowitz (1952) and it is the most
basic and widely used approach for portfolio optimization. Assuming a set of N assets with
expected (mean) returns μ̂ = (μ̂1, . . . , μ̂N ) and covariancematrix of returns �̂, theMVfinds
the asset weights x = (x1, . . . , xN ) ≥ 0 that solve the following quadratic programming
problem:

min x��̂x
s.t. 1x = 1

μ̂x ≥ μ∗
x ≥ 0

(1)

where 1 is a vector of ones and μ∗ is the minimum expected level of return for the portfolio.

2.1.2 Conditional value-at-risk

Despite the fundamental contributions of the MV framework in finance and decision theory,
its reliance on the two first moments (mean, variance) of the returns distribution is often
inadequate to describe the investment preferences and risk attitude of the investors.Moreover,
departures from a normal returns distribution make questionable the use of variance as a
proper risk measure.

Since the 1990s much attention has been given to tail risk measures, which enable the
consideration of extreme losses. Value-at-risk (VaR) is the most well-known such measure.
At a given confidence level β, VaRβ is the maximum expected loss over a time period.
Despite its widespread use, VaR has received criticism as being an incoherent risk measure
(Artzner et al. 1999). Moreover, the use of VaR in an optimization context is a difficult
task, because it requires the solution of a non-convex problem (Babat et al. 2018). As an
alternative, Rockafellar and Uryasev (2000) introduced conditional VaR (CVaR), defined as
the conditional expectation of the loss of a portfolio that is at least equal to VaR. Formally,
for a continuous probability distribution of asset returns, the CVaR at the β% confidence
level for a portfolio with composition x, is defined as:

CVaRβ(x) = 1

1 − β

∫
f (x,r)≥αβ(x)

f (x, r)p(r)dr (2)

where r is the vector of random assets’ returns, p(r) is the associated probability density
function, f (x, r) denotes the portfolio loss function, and αβ(x) denotes the VaRβ threshold
for the portfolio weights x.

Since the VaR function αβ(x) does not have an analytical expression, Rockafellar and
Uryasev (2000) showed that it is simpler to employ the definition:

CVaRβ(x) = min
α

{
α + 1

1 − β

∫
r
[ f (x, r) − α]+ p(r)dr

}
= min

α
Fβ(x, α) (3)

where [z]+ = max{0, z}.
Except for being a coherent riskmeasure, CVaR is easy to use for portfolio optimization, as

it only requires the solution of a linear programming problem.More specifically, denoting by
R a T ×N matrix with T realizations of asset returns (e.g., over T time periods), the portfolio
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composition x that optimizes CVaR at the β confidence level, while having a minimum level
of expected return μ∗, is obtained through the solution of the following linear program:

min α + 1
(1−β)T 1y

s.t. α + y + Rx ≥ 0

μ̂x ≥ μ∗

1x = 1

x, y ≥ 0, α ∈ R

(4)

where α is a decision variable representing VaRβ and y = (y1, . . . , yT ) is a vector of decision
variables representing the losses that are at least equal to VaRβ .

2.1.3 Omega ratio

The Omega ratio is a risk-reward ratio, first proposed by Shadwick and Keating (2002). In the
context of the Omega ratio, risk represents the expected losses that exceed a given threshold
τ , whereas reward is the expected gain over the threshold. Formally, the Omega ratio can be
defined as follows (Kapsos et al. 2014a; Shadwick and Keating 2002):

Ωτ (x) =
∫ +∞
τ

[1 − F(r)]dr∫ τ

−∞ F(r)dr
= μ̂x − τ

E([τ − Rx]+)
+ 1 (5)

where F(r) is the cumulative distribution function of the portfolio returns and E([τ −Rx]+)

represents the expected loss above the threshold τ .
Compared to other risk-reward performance indicators, such as the Sharpe ratio, Omega

takes into consideration all the higher moments of the returns distribution and it is partic-
ularly attractive for strongly asymmetric distributions (Balder and Schweizer 2017), as it
distinguishes between upside gains and downside risk.

Given the above definition of the Omega ratio, its optimization in the context of portfolio
selection appears to be a non-linear and non-convex problem. Mausser et al. (2006) pre-
sented a linear programming formulation based on the transformation proposed by Charnes
and Cooper (1962) for solving fractional optimization problems. This approach works when
the Omega ratio exceeds one, whereas, for other cases, the authors discuss alternatives based
on non-linear programming, integer programming, and optimization heuristics. To overcome
these limitations, Kapsos et al. (2014b) showed that Omega ratio maximization can be con-
sidered in the form of the following parametric optimization problem:

max
x≥0

{
δ(μ̂x − τ) − (1 − δ)E[(τ − Rx)+]} (6)

Solving this problem for different values of the parameter δ ∈ [0, 1] and keeping the solution
that yields the highest objective function value, provides the portfolio weights that maximize
the Omega ratio. It is worth noting that for a discrete probability distribution, problem (6) is
expressed in linear programming form. In the present study, we employ this approach with
τ = 0.

2.2 Robust models

RO extends the framework of traditional optimization models, by incorporating uncertainty
as a parameter of the problem. RO models can be considered as worst-case formulations of
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the original problem as far as the deviations of the parameters from their nominal values are
concerned. In the context of RO, the uncertain parameters are assumed to belong to an uncer-
tainty set, defined based on domain knowledge and information regarding the probability
distributions of the parameters.

Formally, given an objective function f (x) tominimize subject to constraints gi (x,ui ) ≤ 0
with uncertain parameters ui taking values in uncertainty sets Ui (i = 1, . . . ,m), the general
RO formulation is:

min f (x)
s.t. gi (x,ui ) ≤ 0, ∀ui ∈ Ui , i = 1, . . . ,m

(7)

In such a ROmodel, the goal is to identify an optimal solution among the solutions which
are feasible for all realizations of the parameters ui ∈ Ui . If the uncertainty sets Ui are
continuous, then (7) has an infinite number of constraints, which implies that the RO model
offers some “feasibility protection” when the parameters are not known exactly (Bertsimas
et al. 2011). It may seem, however, that expressing a standard optimization problem in the
framework of RO leads to a substantial increase in computational complexity. Nevertheless,
most ROmodels are in fact of similar complexity as their nominal counterparts. For instance,
in the context of portfolio optimization Goldfarb and Iyengar (2003) point out that a wide
range of RO problems can be cast as second-order cone programs (SOCPs) that can be easily
solved with existing algorithms (Lobo et al. 1998; Nesterov and Nemirovskii 1994; Sturm
1999).

The subsequent sub-sections present the RO counterparts of the portfolio construction
models described in Sect. 2.1.

2.2.1 Mean–variance with box uncertainty

The simplest approach to incorporate the uncertainty that arises due to the estimation
of parameters of the MV model, is to impose protection if the estimated assets’ returns
μ̂1, . . . , μ̂N are not significantly different from their true values μ1, . . . , μN . To this end,
the following uncertainty set can be defined (Fabozzi et al. 2007):

U = {μ | |μi − μ̂i | ≤ εi , i = 1, . . . , N } (8)

where εi is the bound that defines themaximumacceptable discrepancy between the estimated
and the actual returns. Following Fabozzi et al. (2007), we adopt the specification εi =
1.96si/

√
T , where T is the sample size used in the estimation and si is the estimated standard

deviation of asset’s i returns. This specification defines ε on the basis of a 95% confidence
interval around the mean.

With the above uncertainty set (8), we consider a variant of the RO model with box
uncertainty (MVBU) presented by Fabozzi et al. (2007), assuming no short sales, as follows:

min εx + x��̂x
s.t. μ̂x ≥ μ∗

1x = 1
x ≥ 0

(9)

As explained in Fabozzi et al. (2007), in this model assets having a larger estimation error εi
are penalized in the objective, thus leading to lower portfolio allocations for these assets.
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2.2.2 Mean–variance with ellipsoidal uncertainty

Despite its simplicity, the box uncertainty set (8) does not consider the correlations among
the assets’ returns. Ellipsoidal uncertainty sets overcome this limitation and they have been
widely used for applications of RO models in portfolio construction (Fabozzi et al. 2007;
Goldfarb and Iyengar 2003; Kolbert and Wormald 2010; Scherer 2007; Ye et al. 2012). In
accordance with previous studies, we consider the following ellipsoidal uncertainty set:

U =
{
μ | (μ − μ̂)��−1

μ (μ − μ̂) ≤ ε2
}

(10)

where �μ represents the covariance matrix of the errors in the estimation of the expected
returns. Setting ε equal to theα-th percentile of theχ2 distributionwith N degrees of freedom,
implies that the α% of the estimated expected returns will lie inside U .

With the above uncertainty set, the RO portfolio selection model is expressed as follows
(model MVEU):

min x��̂x + ε
√
x��μx

s.t. μ̂x ≥ μ∗
1x = 1
x ≥ 0

(11)

In comparison to the nominal MV model (1), the objective function of the robust coun-
terpart MVEU incorporates the penalty term ε

√
x��μx into the objective, accounting for

the estimation risk, with ε serving as a risk aversion parameter. In the present analysis �μ

is specified as a diagonal matrix with the variances of the assets returns at the diagonal.
Despite its non-linear nature, the MVEU model can be solved efficiently as a second-order
cone programming problem (Goldfarb and Iyengar 2003; Kolbert and Wormald 2010).

2.2.3 Worst-case CVaR

In the present study, the worst-case CVaR approach of Zhu and Fukushima (2009) is used as
a robust counterpart of the CVaR model. With a probability density function of the portfolio
return p ∈ R, Zhu and Fukushima (2009) defined theworst-case CVaR (WCVaR) as follows:

WCVaRβ(x) = sup
p∈P

CVaRβ(x) (12)

where P is the set of probability distributions to which the uncertain (random) portfolio
returns belong to. Following the setting of Zhu and Fukushima (2009), a mixture distribution
uncertainty set is employed, which is defined as a convex combination of M distributions
p1, . . . , pM . With such a specification for the uncertainty set, WCVaR is given by:

WCVaRβ(x) = min
α

max
k=1,...,M

Fk
β (x, α) (13)

where Fk
β (x, α) is given as in (3) with probability distribution pk . The above optimization

problem can be expressed in a linear programming fashion as follows:

min θ

s.t. α + 1
(1−β)T k y

k ≤ θ k = 1, . . . , M

α + yk + Rkx ≥ 0 k = 1, . . . , M
μ̂kx ≥ μ∗ k = 1, . . . , M
1x = 1
x, y1, . . . , yk ≥ 0, α, θ ∈ R

(14)
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2.2.4 Worst-case Omega ratio

As introduced in Sect. 2.1.3, the Omega ratio relies on the probability distribution of asset
returns. To account for inexact knowledge of this distribution in the context of RO, we
employ the concept of the worst-case Omega ratio (WCOR) as defined by Kapsos et al.
(2014a). Formally, using a discrete analog of (5), WCOR is defined as follows:

WCORτ (x) ≡ inf
p∈P

μ̂px − τ

Ep[(τ − Rx)+] (15)

where μ̂p denotes the expected returns vector estimated under probability distribution p,
and P is the set of probability distributions. Thus, the RO counterpart of the Omega ratio
optimization problem (6) is:

max
x≥0

min
p∈P

{
δ(μ̂px − τ) − (1 − δ)Ep[(τ − Rx)+]} (16)

Similarly to the WCOR model, a mixture distribution is employed for modeling uncer-
tainty. With this type of uncertainty set, problem (16) can be stated as follows:

max θ

s.t. δ(μ̂kx − τ) − (1 − δ)Ek[(τ − Rkx)+] ≥ θ, k = 1, . . . , M
1x = 1
x ≥ 0, θ ∈ R

(17)

3 Experimental setup

The nominal and robust models described in the previous section are compared through an
extensive empirical evaluation of the resulting portfolios, in terms of their characteristics and
performance. This section describes the setting of the comparative analysis (i.e., the data and
evaluation approach).

3.1 Data and evaluation approach

The analysis is based on a data set that comprises 30 stocks of the Dow Jones Index (the index
constituents as of the end of 2020), starting from January 1, 2005 up to June 30, 2020. Daily
returns data for the stocks were obtained from Yahoo Finance. The period of the analysis
allows the consideration of periods characterized by different patterns (i.e., both bullish and
bearish periods), thus enabling the investigation of the performance of portfolio optimization
models under varying conditions in the financial markets.

To test the performance of the models, we follow a rolling-window approach similar to
the one used by Gilli and Schumann (2011), with all tests done on a quarterly basis. More
specifically, starting from the end of 2005, data for one year (2005q1–2005q4) are used as
inputs to solve the optimization models and construct optimal portfolios (estimation period),
whereas the performance of the portfolios is evaluated over the subsequent quarter (out-of-
sample testing in 2006q1). The procedure is then repeated moving the time window one
quarter ahead at each repetition of the process (e.g., the second run uses 2005q2–2006q1 for
portfolio construction and2006q2 for testing).Overall, 58 test cases are examined through this
procedure. This rolling-window approach enables the testing of the models under different
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market conditions, including cases where portfolios are constructed during a bullish market
and tested in a bearish environment (and vice versa).

In each run of the above process, the models described in Sect. 2 are applied, namely
the nominal MV, CVaR, and Omega (OR) optimization models, the MV model with box
and ellipsoidal uncertainty sets (MVBU and MVEU, respectively), as well as the worst-
case CVaR and worst-case Omega ratio approaches (WCVaR and WCOR, respectively). For
the latter two models (WCVaR, WCOR), four mixture distributions are used (i.e., M = 4)
corresponding to the data for the four quarters in each estimation period. All CVaR models
and results are based on a 95% confidence level. While the Omega ratio models (OR and
WCOR) lead to the construction of a single portfolio at each replication of the rolling-window
approach, the nominal and robust MV and CVaR models are used to construct 50 portfolios
on the Pareto frontier (efficient portfolios). However, the resulting efficient frontiers are
not directly comparable in terms of their risk-return patterns. To overcome this issue, five
portfolios are selected from the universe of 50 portfolios constructed by each model at each
test. The selection is based on matching the portfolios from the different models in terms of
their risk profile. Thismatching is performed based on the (in-sample) return of the portfolios,
as well as their standard deviation and CVaR.

The above testing procedure and all models were implemented in MATLAB, using the
Gurobi optimization solver.

3.2 Performancemetrics

The evaluation of the portfolios derived through the considered models, is based on various
indicators, categorized into two main categories. The first refers to the characteristics of the
portfolios regarding their composition,whereas the second involves commonly used portfolio
performance metrics.

For the analysis of the composition of the portfolios, first, we consider the number of stocks
included in each portfolio (NoAssets). The more assets in a portfolio, the more difficult
its management may be. On the other hand, investing in more assets improves portfolio
diversification. Thus, the second indicator focuses on the diversification of the portfolios,
defined through the Herfindahl–Hirschman index (HHI, Kim et al. 2013; Van Horne et al.
1975):

HH I =
N∑
i=1

x2i (18)

This HHI index ranges in [1/N , 1], with lower values indicating more diversified portfolios,
whereas the case HH I = 1 corresponds to a portfolio consisting of a single stock.

As noted above, the composition of a portfolio also affects the way it is managed. To take
this aspect into consideration, a turnover indicator is also used, in accordance with DeMiguel
et al. (2007):

Turnover =
N∑
i=1

|xt+1
i − xti | (19)

where xti and xt+1
i denote the weights of stock i in the portfolios in two successive time

periods. Lower values for this turnover ratio indicate that the composition of a portfolio
remains stable over time, thus leading to lower transaction costs.
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Table 1 Statistics on the
composition of the portfolios
(multi-portfolio frontiers,
averages over all tests)

MV CVaR MVBU MVEU WCVaR

Matching by return

NoAssets 9.75 7.10 2.52 21.22 6.68

HHI 0.21 0.26 0.59 0.09 0.28

Turnover 0.97 1.13 1.17 0.78 1.23

Matching by standard deviation

NoAssets 7.56 6.49 2.54 20.36 6.43

HHI 0.25 0.28 0.56 0.09 0.29

Turnover 1.05 1.16 1.17 0.80 1.17

Matching by CVaR

NoAssets 7.83 6.02 2.52 22.11 6.17

HHI 0.25 0.29 0.56 0.10 0.30

Turnover 1.06 1.18 1.14 0.75 1.16

Regarding the investment performance of the portfolios, the optimization criteria consid-
ered in the selected models are used, namely expected return, standard deviation of returns,
95% CVaR, and the Omega ratio. Moreover, two additional risk-adjusted performance indi-
cators are employed, namely the Sharpe and Sortino ratios:

Sharpe = μ

σ
Sortino = μ

σD
(20)

where μ is the expected return of a portfolio, σ the corresponding standard deviation, and
σD is the standard deviation of negative returns.

4 Results

This section presents the results of the analysis. We start with the analysis of the composition
of the portfolios and then proceed with the examination of their performance, on the basis of
the metrics presented in the previous section.

4.1 Composition of the portfolios

The results on the composition of the portfolios are summarized in Tables 1 and 2. The former
Table involves the optimization models that provide a set of efficient portfolios, whereas the
second Table refers to models that provide a single optimal portfolio, namely the two models
based on the Omega ratio (nominal-OR and robust-WCOR), as well as results obtained from
the minimum variance portfolio (MV∗) and minimum CVaR portfolio (CVaR∗). In both
Tables, the reported results are averages over all tests of the rolling-window approach.

It is evident that among the various approaches, the MVmodel with box uncertainty leads
to the most sparse portfolios, consisting (on average) of about 2.5 stocks, followed by the
CVaR and OR models, as well as the nominal MV model. The MV model with ellipsoidal
uncertainty leads to the largest portfolios, in terms of their number of assets (i.e., 20–22
assets). Of course, portfolios consisting of less assets are less diversified, as it is evident by
the HHI index of the MVBU model, which is the highest among all the approaches in the
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Table 2 Statistics on the
composition of the portfolios
(single portfolio models,
averages over all tests)

MV∗ CVaR∗ OR WCOR

NoAssets 11.34 8.19 6.64 5.62

HHI 0.20 0.24 0.31 0.35

Turnover 0.41 0.77 1.09 1.03

comparison, whereas the MVEU portfolios are the most diversified. The turnover indicator
is also affected by the number of assets in the portfolios, with more diversified portfolios,
generally having a lower turnover.However, the results show that this is not always the case, as
theminimumvariance andminimumCVaRportfolios (MV∗ andCVaR∗) have lower turnover
even compared to the portfolios obtained withMVEU. On the other hand, the CVaR/WCVaR
and MVBU portfolios are the ones whose composition varies more over time (i.e., higher
turnover).

Overall, the conclusions from this part of the analysis can be summarized as follows:

1. MVEUprovides diversification benefits compared to the portfolios in the efficient frontier
of the MV model,

2. WCVaR and WCOR provide similar results to their nominal counterparts,
3. The minimum risk portfolios obtained with nominal models (MV∗ and CVaR∗) exhibit

more stable compositions over time.

4.2 Portfolio performance results

The results on the performance metrics of the considered approaches over all out-of-sample
tests in the rolling-window approach are summarized in Table 3. More specifically, the Table
presents the daily mean return, standard deviation, CVaR (at the 95% level), as well as the
Omega, Sharpe, and Sortino ratios. Results are reported for the five approaches that provide
a set of efficient portfolios (MV, CVaR, MVBU, MVEU, WCVaR) and the four single port-
folio models, namely the minimum variance portfolio (MV∗), the minimum CVaR portfolio
(CVaR∗), the maximum Omega ratio portfolio (OR), and the portfolio that maximizes the
worst-case Omega ratio (WCOR).

Regarding the approaches that lead to a set of Pareto optimal portfolios, the worst-case
CVaR model (WCVaR) leads to portfolios having the highest return, in all three schemes for
matching the efficient frontiers of the models. WCVaR is followed by CVaR and MVEU,
whereas MV and MVBU have lower returns. Among the single optimal portfolios, those
constructed with the worst case Omega ratio (WCOR) achieve the highest return, followed
by OR and CVaR.

In terms of risk, as measured by the daily standard deviation of returns and CVaR, the
MV and CVaR efficient portfolios are less risky compared to the robust models MVBU,
MVEU, andWCVaR, when the efficient frontiers are matched by the return of the portfolios.
However, when matching the efficient sets by risk criteria (standard deviation and CVaR), the
robustmodelsMVEUandWCVaRoutperform their nominal counterparts. On the other hand,
MVBU performs similarly to MV, whereas WCOR does not bring improvements compared
to its nominal counterpart (OR model). Nevertheless, the minimum variance and minimum
CVaR portfolios, are the ones that achieve the lowest levels of risk in the out-of-sample tests,
with standard deviation around 0.8% and CVaR approximately 1.7–1.8%.
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Table 3 Summary of performance metrics on the out-of-sample tests

Return (%) Std (%) CVaR (%) Omega Sharpe Sortino

Matching by return

MV 0.045 0.943 2.017 1.314 0.081 0.167

CVaR 0.050 0.969 2.056 1.309 0.080 0.166

MVBU 0.043 1.057 2.287 1.244 0.062 0.130

MVEU 0.052 1.011 2.191 1.346 0.089 0.179

WCVaR 0.057 1.021 2.157 1.325 0.083 0.173

Matching by standard deviation

MV 0.047 1.071 2.276 1.278 0.072 0.145

CVaR 0.052 1.041 2.202 1.295 0.077 0.157

MVBU 0.044 1.065 2.285 1.236 0.061 0.125

MVEU 0.051 1.022 2.224 1.339 0.087 0.175

WCVaR 0.060 1.034 2.190 1.346 0.090 0.186

Matching by CVaR

MV 0.048 1.060 2.247 1.286 0.074 0.150

CVaR 0.051 1.094 2.311 1.273 0.072 0.147

MVBU 0.049 1.059 2.234 1.260 0.067 0.139

MVEU 0.051 0.977 2.127 1.371 0.094 0.191

WCVaR 0.062 1.060 2.242 1.341 0.089 0.183

Single portfolios

MV∗ 0.042 0.795 1.707 1.359 0.090 0.194

CVaR∗ 0.049 0.831 1.770 1.349 0.089 0.186

OR 0.050 1.165 2.468 1.254 0.067 0.135

WCOR 0.072 1.218 2.562 1.318 0.082 0.164

As far as the risk-return performance measures are concerned (Omega, Sharpe, Sortino),
the robust modelsMVEU,WCVaR, andWCOR consistently outperform their nominal coun-
terparts, whereas MVBU provides inferior results compared to the standard MV approach.
Moreover, the MVEU and WCVaR models perform similarly to MV∗ and CVaR∗, respec-
tively.

Opting for a more concrete understanding of the relative performance of the robust models
versus their nominal counterparts, the statistical significance of the differences was compared
using the paired samples t-test. The comparisons were performed for each performance
measure and matching scheme. Table 4 summarizes the results of the comparisons for the
full period and separately for crises. Two crisis periods are identified during the period
under examination, the first covering the period 2007q3–2009q1 (global financial crisis)
and the second involving the first quarter of 2020 (stock market crash due to the COVID-
19 pandemic). Moreover, for the comparisons involving the Pareto fronts derived with the
MV and CVaR models, as well as their robust variants (MVBU, MVEU, WCVaR), Table 4
reports results for the three matching schemes, i.e., matching by return (column labeled as
“Ret.”), matching by standard deviation (column labeled as “Std”), and matching by CVaR.
In each comparison scenario, a robust model is compared to its nominal counterpart with
the paired samples t-test (at the 5% significance level) across the six performance indicators
considered in the analysis, namely return, standard deviation, CVaR, the Omega ratio, the
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Table 4 Comparison results (wins–losses) for robust versus nominal models by period and matching scheme

Comparisons Full period Crisis periods
Ret. Std CVaR Ret. Std CVaR

Risk-return criteria MVBU-MV − 2 0 0 0 3 1

MVEU-MV − 1 2 2 − 2 − 1 − 3

WCVaR-CVaR − 1 1 3 0 2 2

WCOR-OR − 1 0

Risk-adjusted criteria MVBU-MV − 3 − 3 − 2 3 1 2

MVEU-MV 2 3 3 0 0 0

WCVaR-CVaR 0 3 3 3 3 3

WCOR-OR 0 0

Sharpe ratio, and the Sortino ratio. From these comparisons, we count the differences between
the number of performance criteria on which a robust model performs significantly better
than its nominal variant (wins) and the number of criteria where it performs worse than
the nominal approach (losses). Table 4 presents these “wins–losses” differences, separately
for the risk-return criteria (return, standard deviation, CVaR) and the risk-adjusted criteria
(Omega, Sharpe, Sortino ratios).

According to the results of Table 4 for the full period of the analysis, the MVBU model
is not found to bring any improvements compared to the standard MV approach. In fact, in
most cases, the MV model outperforms MVBU (i.e., the reported wins–losses differences
are mostly negative). The other robust models perform worse compared to their nominal
variants on the risk-return criteria when the adopted matching scheme is based on return,
but they provide superior results under the matching schemes that are based on the two risk
criteria (standard deviation and CVaR; i.e., positive differences). In terms of the risk-adjusted
performance criteria, all robust models (except for MVBU) perform at least as satisfactory
as their nominal counterparts.

Focusing on the results of the comparative tests on the crisis periods, it is evident that
all robust approaches perform at least equivalently to their nominal variants as far as the
risk-adjusted criteria are concerned. For instance, WCVaR outperforms CVaR on all three
risk-adjusted indicators, irrespective of how the Pareto fronts of the two models are matched.
MVBU also performs better than the nominal MV. For the MVBU and WCVaR approaches,
similar conclusions are also drawn when focusing the comparisons on the risk-return criteria.
The comparison of MVEU against MV shows that MVEU yields inferior results on the
individual risk-return criteria, but its performance is similar toMVwhen considering the risk-
adjusted metrics. Finally, no statistical differences are found for the comparison of WCOR
against its nominal variant (OR model).

Table 5 provides further details on the comparisons between the robust and nominal mod-
els, reporting the mean differences between the two classes of models for the six performance
criteria. The reported results are averages over all matching schemes, with positive figures
indicating superior performance of the robust approaches over their nominal variants. The
results are in linewith those discussed above.More specifically, for the full period, theMVBU
model provides worse results compared to MV, but it is consistently superior when focusing
only on the tests involving periods of stock market crisis. On the other hand, the MVEU
model outperforms MV in five of the six indicators for the full tests, but its performance
compared to MV is worse in crisis conditions. Nevertheless, in terms of the risk-adjusted
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Table 5 Mean differences between robust and nominal models for the performance indicators

Return Std CVaR Omega Sharpe Sortino

Full period

MVBU-MV −0.001 −0.036∗∗∗ −0.089∗∗∗ −0.046∗∗∗ −0.012∗∗∗ −0.023∗∗∗
MVEU-MV 0.004∗∗∗ 0.021∗∗∗ −0.001 0.059∗∗∗ 0.015∗∗∗ 0.028∗∗∗
WCVaR-CVaR 0.009∗∗∗ −0.004 −0.006 0.045∗∗∗ 0.011∗∗∗ 0.024∗∗∗
WCOR-OR 0.021∗ −0.053∗ −0.094∗∗ 0.065 0.015 0.029

Crisis periods

MVBU-MV 0.027∗∗∗ 0.019∗ 0.062∗ 0.035∗∗∗ 0.015∗∗∗ 0.029∗∗∗
MVEU-MV −0.013∗∗∗ −0.119∗∗∗ −0.309∗∗∗ −0.015∗ −0.001 −0.006

WCVaR-CVaR 0.032∗∗∗ −0.009 0.113∗∗∗ 0.066∗∗∗ 0.027∗∗∗ 0.048∗∗∗
WCOR-OR 0.067 0.000 0.362 0.098 0.04 0.065

Statistically significant differences at the 1%, 5%, and 10% levels are marked with ∗∗∗, ∗∗, and ∗, respectively.
Positive (negative) differences correspond to superior (inferior) performance for the robust models

performance criteria the MVEU-MV differences are not statistically significant at the 5%
level. The WCVaR-CVaR comparison leads to consistent results under both the full period
and the crisis periods, withWCVaR performing better in most of the considered performance
measures. It is worth noting that the differences in favor of WCVaR are higher during the
crisis periods. The same observation also applies to the comparison of WCOR against OR,
even though the differences in crisis periods are not found significant.1

5 Conclusions

The handling of uncertainty is a crucial issue for successful portfolio optimization and man-
agement. RO has attracted much interest over the years as a powerful tool to account for
estimation errors in this field. Except for theoretical developments on robust portfolio opti-
mization, empirical assessments are also important to understand the benefits and limitations
of RO approaches.

This study presented a comprehensive comparative analysis of various RO models for
portfolio optimization. Using a data set from the US market, different approaches were
considered not focusing solely on themean–variance framework, but also covering alternative
measures of portfolio risk and performance, such as CVaR and the Omega ratio. The results
showed that although in terms of their portfolio composition features (e.g., diversification
and turnover) robust models have limited differences compared to their nominal counterparts,
improvements were observed in portfolio performance. The improvements were larger for
risk-adjusted performance measures and under crisis conditions. Minimum risk portfolios
(i.e., minimum variance and CVaR portfolios) were also found to be competitive and provide
robust performance.

Future research could be extended towards various directions. First, alternative uncer-
tainty sets could be considered, such as the multiobjective scheme of Fliege and Werner
(2014) as well as improved estimation procedures for the modeling of RO approaches. Mul-

1 It is worth noting that in this comparison, the number of paired observations is limited to only eight cases,
i.e., quarters in the crisis periods, as the OR and WCOR models yield a single portfolio in each optimization
run, rather than a set of efficient portfolios.
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tiobjective formulations could also incorporate additional portfolio selection criteria, such as
environmental, social, and governance (ESG) factors (Ballestero et al. 2012; Utz et al. 2014),
thus advancing the risk-based RO framework to a more general context. Extensions to other
portfolio selection contexts are also worth the investigation, such as cardinality constrained
portfolio problems, index tracking, and dynamic portfolio management.
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