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ABSTRACT
This paper describes work in progress about using AI technologies
to support diagnostic decision making. In particular, we analyse
clinical data of past cases to develop a data-driven prediction model
for future cases. To do so, we use a versatile AutoML platform
that applies a multitude of machine learning algorithms and their
configurations. Our results show initial promise, but also point
to limitations of currently available data, opening up avenues for
further research.
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1 INTRODUCTION
Autism spectrum disorder (ASD) is characterized by pervasive dif-
ficulties in reciprocal social cognition, alongside apparent strict
repetitive behaviors and interests. Currently, no biomarker for diag-
nosing ASD exists. Because of this, the diagnostic process tends to
be time consuming and costly for health services. The recommenda-
tion is that diagnosis of ASD in adulthood is reached on a consensus
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of expert opinion from observations by multidisciplinary teams,
which include observations of current behaviours and cognitive
abilities, alongside detailed history taking.

The process of diagnosing ASD in adulthood can be complex
for a variety of reasons, which can lead to underdiagnosis and
missed treatment opportunities. Ideally, information from a variety
of sources is required, and if the contribution of information from a
primary caregiver is not available, it may be difficult to build an ac-
curate interpretation, as self-insight from patients themselves may
be unreliable. Further, it requires a high level of specialisation by
professionals, as ASD symptoms can overlap with other disorders.

With pressure on health services to deliver efficient and effective
care for patients, employing screening measures can facilitate a
timely and economical system for specialist services to identify
those who are more likely to have the condition in question. Whilst
a varied collection of ASD screening measures is available for both
developmental and adulthood populations [7], for ASD in adult-
hood, the most generally used screening measures for ASD is the
Autism Questionnaire presented in [2], which forms the basis of
the analysis in this work. The objective of this work is to apply
machine learning for analysing Autism Questionnaire results and
investigating the components of the assessment, in relation to di-
agnostic outcome in a clinical setting. Analysis results in turn can
offer insights for decision support for Autism diagnosis.

The remainder of this paper is organised as follows. The assess-
ment data is presented in Section 2. The analysis procedure and
results are presented in Section 3. Conclusions and directions of
future work are presented in Section 4.

2 DATA DESCRIPTION
The dataset consists of autism assessment results for 192 patients,
from Adult ADHD and Autism Service, South West Yorkshire Part-
nership NHS Foundation Trust, in the South and West Yorkshire
geographical area, between 2017 and 2018. The Adult ADHD and
Autism Service is a specialist Service in diagnosing ADHD and
Autism in adulthood. Patients are referred to the Service by health
care professionals, whom deem it appropriate based on patient’s
history and current difficulties. Inclusion criteria dictated that par-
ticipants were over the age of 18 years (no cut off), had a good
comprehension of the English language, and IQ within normal

- 30 -

https://doi.org/10.1145/3444757.3485101
https://doi.org/10.1145/3444757.3485101
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3444757.3485101&domain=pdf&date_stamp=2021-11-09


MEDES ’21, November 1–3, 2021, Virtual Event, Tunisia S. Batsakis et al.

range. The assessment is designed to identify adults who may ben-
efit from a full diagnostic assessment for autism spectrum disorder.

The assessment procedure adopts the procedure proposed in [2]
and consists of two parts. The first part consists of a test that the
examined individual completes based on AAA AQ and AAA EQ
parts. The second part (AAA RQ score) is the result of answers
of persons familiar with the examined individual, typically close
relatives. Related to the diagnosis are social aspects, communica-
tion, imagination and obsessions of the examined individual (these
are features CLASS SOCIAL, CLASS COMMUNICATION, CLASS
IMAGINATION and CLASS OBSESSIONS, respectively) and they
are defined from responses to AAA AQ, EQ and RQ and clinician’s
input. These parts of the AAA examination in turn are the Autism-
Spectrum Quotient (AQ) score [3] and the Empathy Quotient (EQ)
score [1], in addition to Relatives Quotient (RQ). Given the AAA
AQ, AAA EQ and AAA RQ responses clinicians confirm answers
(Yes=1), which count towards CLASS classification. Thus, CLASS
classification is a function of AAA responses and clinician’s as-
sessment. The last feature of the dataset is the diagnostic outcome
which is a binary categorical feature that the machine learning
model has to predict. Overall the dataset is unbalanced with 28 of
the examined patients out of 192 (14.58%) being diagnosed with
autism after a full assessment is completed. Thus, in total the dataset
consists of seven numerical input features (three consisting solely
of questionnaire’s results and four based on questionnaire’s results
and clinician’s input) and an output categorical feature.

3 DATA ANALYSIS
The objective of data analysis is to create a model for predicting the
diagnostic outcome given the AAA test data [2] as input. Specifically
the input data are AAA test results consisting of AAA AQ, AAA EQ
and AAA RQ scores. In addition the input data include the features
CLASS SOCIAL, CLASS OBSESSIONS, CLASS COMMUNICATION
and CLASS IMAGINATION derived from AAA test responses as
defined in [2]. The dataset consists of exam results of 192 individuals,
with 85.42% of diagnostic outcomes being negative. In this work,
various classification methods have been used for the analysis.

3.1 Analysis using WEKA
The fist part of the analysis consisted of the application of six ma-
chine learning algorithms using Weka [6] over the dataset. Three
of the algorithms are non interpretable and three are interpretable.
The non-interpretable algorithms are Myltilayer Perceptron (the
Neural Network implementation in Weka), SMO (Sequential Mini-
mal Optimization algorithm for training a Support Vector Classifier)
and Random Forest. The interpetable algorithms are the Decision
Tree (J48), Logistic Regression and Semantic Artificial Neural Net-
works (SANN) [4]. SANN is a variant of Neural Networks with
labeled hidden layer nodes which can be interpreted as logistic
regression over each layer given the previous one. In all experi-
ments, pre-processing has been applied by replacing missing values
with the average value, while performance estimation and model
selection was based on 10-fold cross validation.

The results of experiments using the non-interpetable classifi-
cation algorithms of Weka and the default hyperparameters are
presented in Table 1 (optimal values as marked in bold). Although

Table 1: Classification Results using non interpetable algo-
rithms of Weka

Model Total Positive Rate ROC Area
Multilayer Perceptron 0.885 0.805
SMO 0.854 0.500
Random Forest 0.859 0.870

Table 1 presents some basic results using the non-interpetable algo-
rithms, the imbalance of the dataset and the relative importance of
the different diagnostic outcomes and corresponding consequences
makes the overall precision of algorithms one (but not the only)
factor to take into account in the analysis. Thus, a detailed exam-
ination is required in order to assess the true usability of a data
driven analysis in the decision process. Specifically, the cost of error
varies given its type, typically it is a more serious error to predict a
negative diagnostic outcome when it is actually positive (namely,
a false negative) resulting in the patient not receiving the needed
treatment, compared to predicting a positive diagnosis when in fact
it is negative (namely, a false positive) with the cost being that of
conducting a full assessment that eventually leads to a negative
diagnosis. This observation in turn changes the use of a machine
learning model in practice.

Typically, when each class is considered equally important and
having similar costs for all types of errors a classifier selects the
class having the higher probability. However, when classes have
different importance and also different costs in case of classification
errors, then the selection threshold of an algorithmmust be adjusted
accordingly. Data driven analysis may help making such policies
more accurate and efficient. In practice, up to a certain degree, it is
better to make an additional assessment of positive diagnosis to the
patient rather than to select a negative diagnostic outcome (which
could actually be positive).

After taking the above observations into account the detailed
results for each algorithm are the following: SMO actually assigns
all instances as having negative diagnostic outcome where the total
positive rate is 0.854 (percentage of instances with negative diag-
nostic outcome) and the Receiver Operating Characteristic (ROC)
curve (or Area Under the Curve - AUC) is 0.500 corresponding to a
random classification, thus this model cannot be used in practice.
Random forest achieved better results with total positive rate 0.859
and the ROC curve is 0.870. In this case, the classifier can be useful
in practice. For example, given a policy that assigns much higher
cost to a false negative error than to a false positive, the diagnostic
outcome can be classified as positive even if the probability is low,
in order to avoid false negative errors. Subsequently, if an assess-
ment result is positive even if the probability of such outcome is
according to classifier just 1% then all 28 positive cases will be
classified correctly and so are 47 of the negative ones, with the cost
of having to provide full assessment in the 117 remaining negative
cases. Thus the classifier can be used for making a decision for
filtering out some cases, but also providing full assessment to all
cases that have a positive diagnosis. By increasing the threshold
to 2% the classification is correct for 26 out of the 28 positive cases
and 69 out of 164 negative cases (still 95 negative cases will have
full assessment). Thus reduction of false positives is combined with
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Figure 1: SANN for classification on autism dataset.

increase of false negatives and the relative cost of errors is used
for defining the proper threshold and decision policy rather than
the threshold value that maximizes classification accuracy, that
is reported in Table 1. In case of Multilayer Perceptron (Neural
Network) the total positive rate is 0.885 and the ROC curve is 0.805,
thus offering the possibility of implementing a selection policy
minimizing the cost of errors, but without creating an interpetable
model.

Even though non-interpretable algorithms can assist in decision
making by producing models that can predict the probability (given
the results of an assessment) of a specific diagnostic outcome, thus
facilitating the definition of a decision policy given the relative
costs of errors, interpetability of the prediction model is often an
important issue. Compliance to legal requirements and regulations
means that specific rules have been taken into account when ap-
plying an AI-based system and this in turn means that the system’s
functionality is transparent and interpretable. A proposed approach
is to employ interpretable machine learning algorithms, such as lo-
gistic regression and decision trees [5]. These algorithms are often
efficient but not always as performing as non-interpretable ones,
such as Support Vector Machines (SVM) and neural networks.

In the case of Neural Networks, using existing knowledge for
building neural networks was first proposed in [8] and further
developed in [9], introducing the Knowledge-Based Artificial Neu-
ral Networks (KBANN). These networks are constructed based on
knowledge represented using logic rules, and in [4] a variant of
KBANN called SANNs is proposed. SANNs are neural networks
with labeled hidden layer nodes as KBANNs, but the construction
of such neural networks is based on knowledge graphs rather than
rules. In this work the interpetable algorithms applied to the autism
assessment dataset are: Logistic regression, J48 decision tree and
SANN. The SANN is constructed by introducing to the hidden layers
nodes representing the AAA score (combining AAA AQ, AAA EQ
and AAA RQ scores) and the CLASS score (combining the CLASS
SOCIAL, CLASS OBSESSIONS, CLASS COMMUNICATION and
CLASS IMAGINATION scores). The resulting network is presented
in Figure 1.

The results using the interpetable algorithms of Weka are pre-
sented in Table 2 (optimal values as marked in bold). In medical
diagnosis, interpreting the models is significant for decision mak-
ing, thus we select to present the two categories of algorithms
separately, since in case that interpretability is not an option but a
strict requirement then only the corresponding algorithms can be

Table 2: Classification Results using interpetable algorithms
of Weka

Model Total Positive Rate ROC Area
Logistic Regression 0.844 0.814
Decision Tree (J48) 0.870 0.775
SANN 0.875 0.870

used. Decision Tree (J48) achieved total positive rate of 0.870 and
ROC curve of 0.775.

In the case of logistic regression the coefficients for predicting a
negative diagnosis result are AAA AQ: 0.0381, AAA EQ: -0.0064,
AAA RQ: -0.1282, CLASS SOCIAL: -0.585, CLASS OBSESSIONS:
-0.2791, CLASS COMMUNICATION: -0.371, CLASS IMAGINATION:
-0.6105 and Intercept: 7.344. These coefficients indicate factors cor-
related positively or negatively with negative diagnosis and the
degree of this correlation (with CLASS features and AAARQ having
more weight).

The third algorithm, SANN, (using the network of Figure 1)
achieved total positive rate 0.875 and ROC curve of 0.870 outper-
forming the other two interpretable algorithms. There are two
hidden layer nodes in the SANN, the AAA Score node representing
the cumulative AAA score and CLASS Score node representing
cumulative CLASS score. The output node representing negative
diagnostic output has weights 3.21 at input from the AAA Score
Node and 4.84 at input from CLASS Score node, while the corre-
sponding weights at positive diagnostic outcome node are -3.21
and -4.48, respectively. Thus, the positive diagnostic outcome has
lower probability when cumulative AAA and CLASS scores are
higher. The AAA Score in turn has weights 5.07 from AAA AQ
input, -10.10 from AAA EQ and -12.39 from AAA RQ indicating
that overall the higher the AAA AQ the lower the probability of a
positive diagnosis and that lower AAA EQ and AAA RQ scores in-
crease the probability of positive diagnostic outcome. Furthermore
AAA EQ and AAA RQ scores have more weight than AAA AQ.
The corresponding weights for the cumulative CLASS Score are for
CLASS SOCIAL: -12.70, CLASS OBSESSIONS: -3.24, CLASS COM-
MUNICATION: -3.81 and CLASS IMAGINATION: -2.81 indicating
that lower CLASS scores increase probability of positive diagnostic
outcome.

Depending on the relative cost of classification errors, by setting
a low threshold for accepting a positive diagnosis, the created model
can be used to filter out cases which have a negative diagnostic
outcome with very high probability. For example setting a threshold
for classifying a case as positive to 1% then 26 out of 28 positive
cases are classified correctly and so are 86 out of 164 negative cases
(so a full assessment is applied for 78 negative cases). Thus, practi-
cally more than half of negative cases can be exempted from further
examination while keeping almost all of positive cases. This is actu-
ally similar to the clinical assessment practice. For example in this
dataset, out of the 192 cases, 28 are positive and 164 negative. In the
screening process 125 cases went through full assessment and 67
did not. Out of these 125 cases, finally 26 were positive and 99 nega-
tive. Out of the 67 cases not further assessed, 65 were negative and
2 positive. Thus the policy adopted in clinical practice corresponds
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Table 3: Area Under the Curve (AUC) results using JAD Bio

Interpetability required Interpetability not required
Feature Selection No Feature Selection Feature Selection No Feature Selection

Preliminary 0.756 0.794 0.750 0.833
Typical 0.778 0.807 0.798 0.830
Extensive 0.794 0.806 0.833 0.823

to that of applying a low threshold classifier, minimizing false neg-
atives for the positive diagnosis class. Notice that, although SANN
achieved high performance and is interpretable, a disadvantage of
this method is that the construction of network topology must be
done manually, thus this algorithm is incompatible with a fully
automated data analysis process.

3.2 Analysis using JAD Bio
Even though tools such as Weka can be used whether interpretabil-
ity is required or not, when using a tool such as Weka there are
two disadvantages; first the user must be familiar with machine
learning which is not always the case in an environment such as
the medical domain and second the analyst must apply various
algorithms and also has to tune their hyperparamets in order to
achieve optimal results. Overall this is a time consuming process,
and in addition to this it is also uncertain, especially in case of a
large search space for hyperparameter’s values, with respect to
the optimal selection of hyperparameters. This is the reason why
systems automating machine learning are very important for wide
scale adoption of machine learning for data analysis and decision
support in the medical domain.

In this work in addition to the analysis done manually using
Weka, the automated analysis tool called JAD Bio [10] has been
used as well. By using JAD Bio, users simply upload their data
and provide their preferences, subsequently the system selects the
optimal model. In an application domain such as medical diagnosis
where expertise on machine learning may not be available and a
series of trials with many algorithms and their hyperparameters
may not be an option due to limitations over resources such as time,
the use of tools that automate machine learning tasks is expected to
bewidespread. JADBio allows for setting user preferences related to
feature selection (optional or required), interpetability (optional or
required) and time preference (preliminary, typical and extensive).
Results using the above preferences are summarized in Table 3.

When using the JAD Bio system, in case that interpetability is
not required, a Support VectorMachines (SVM) is the optimal model
selected when combined with feature selection (and extensive time
preference) and Classification Random Forests training 100 trees is
the optimal algorithm when feature selection is not applied. In case
the algorithm must be interpretable then Ridge Logistic Regression
is the best performing algorithm when combined with feature selec-
tion (and extensive time preference) and without feature selection
(and typical time preference). Feature selection, pre-processing and
hyperparameter selection is performed automatically by the JAD
Bio system.

Specifically, after examining various possible settings the JAD
Bio system applied in preprocessing is constant removal and stan-
dardization. Then in feature selection the algorithm applied is Statis-
tically Equivalent Signature (SES) algorithmwith hyper-parameters:

maxK = 2, and alpha = 0.1. JAD Bio selected 3 out of the total num-
ber of features in the original dataset: CLASS SOCIAL, AAA RQ and
CLASS COMMUNICATION. Performance when using all features
instead of only these three remained almost identical. The feature
selection was applied by estimating the performance decrease when
the feature was removed.

The best predictive model was Support Vector Machines (SVM)
of type C-SVC with Polynomial Kernel and hyper-parameters: cost
= 0.001, gamma = 10.0, degree = 3 having an Area Under the Curve
(AUC) of 0.833. Notice that the corresponding algorithm usingWeka
(SMO) has lower performance because of the different hyperparam-
eter selection. The ROC curve of the best performing model using
JAD Bio is presented in Figure 2. Using the diagram the user can
specify the true positive rate for a specific class (in the case its class
2 indicating a positive diagnostic outcome) given the threshold
selected.

The best interpretable model with feature selection was Ridge
Logistic Regression with penalty hyper-parameter lambda = 100.0,
with AUC (ROC) 0.794. The ROC curve for Ridge Logistic Regres-
sion is presented in Figure 3. Based on the curve, we can see that
when setting the threshold to 9.4%, the true positive rate for the
positive diagnostic outcome class is 0.969 and false negatives rate
is 0.005. Taking into account the trade-off between false positive
error rate and false negative error rate and the corresponding costs
the optimal threshold can be defined for cost minimization.

Notice that JAD Bio adopts the bootstrap corrected cross val-
idation performance estimation protocol presented in [11]. The
objective of bootstrap corrected cross validation is to overcome the
optimistic bias of cross validation, that is the typical method for
performance estimation and model selection in machine learning
(notice that 10-fold cross validation was used as performance metric
in the experiments using Weka). The performance estimation is a
task both difficult and critical, especially in medical applications
were the reliability of the prediction model is a crucial parameter
in decision making. This means that the performance metric of
JAD Bio is less optimistic than this of Weka, but also this stricter
performance evaluation is desirable in critical applications.

Overall the JAD Bio system produced models (including inter-
pretable models) that offered high performance in addition to fully
automating the analysis process which is a great advantage over
traditional systems such as Weka. Although the dataset was not
balanced and the two classes were difficult to separate (this is illus-
trated by the poor performance of SMO algorithm using Weka), by
selecting carefully the threshold value of the classification model, af-
ter taking into account corresponding costs, the performed analysis
can assist the decision making process. Notice also that depending
on the cost estimation, a cost benefit analysis, when combined with
an examination of the classification models, may lead to a decision
to revise the assessment or even discontinue it in case there is no
benefit of applying this assessment before the full assessment. This
for example can be the case when the cost of making a false nega-
tive prediction regarding the diagnostic outcome is far greater than
this of false positives.
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Figure 2: ROC Curve of best performing model using JAD Bio.

Figure 3: ROC Curve of best performing interpretable model
with feature selection using JAD Bio.

4 CONCLUSIONS AND FUTUREWORK
This paper presented a data driven analysis over a dataset for autism
assessment. Preliminary results showed that various algorithms
achieved high performance although the diagnostic outcome classi-
fication was not an easy task because of the dataset characteristics
(unbalanced, having some features that were not useful and not
easily separable i.e. in a linear way). Furthermore, when applying

such an analysis in practice, there are other crucial factors besides
the total performance, such as the requirement of interpretability
and automation of the analysis process, in addition to optimal per-
formance for specific classes and the relative cost of various types
of errors when specifying the decision process.

Future workwill proceed in various directions. A particular direc-
tion will be to consider richer clinical data; there are even ideas to
capture neurological data and/or facial expressions through video.
Another interesting idea is to expand the AI technologies used by
capturing and representing explicitly, through declarative rules,
medical knowledge about how clinical data should be interpreted.
Such a knowledge model could be used in conjunction with a ma-
chine learning model as discussed in this paper, thus deploying a
hybrid AI approach.

REFERENCES
[1] Simon Baron-Cohen and Sally Wheelwright. 2004. The empathy quotient: an

investigation of adults with Asperger syndrome or high functioning autism, and
normal sex differences. Journal of autism and developmental disorders 34, 2 (2004),
163–175.

[2] Simon Baron-Cohen, Sally Wheelwright, Janine Robinson, and Marc Woodbury-
Smith. 2005. The adult Asperger assessment (AAA): a diagnostic method. Journal
of autism and developmental disorders 35, 6 (2005), 807.

[3] Simon Baron-Cohen, Sally Wheelwright, Richard Skinner, Joanne Martin, and
EmmaClubley. 2001. The autism-spectrum quotient (AQ): Evidence from asperger
syndrome/high-functioning autism, malesand females, scientists and mathemati-
cians. Journal of autism and developmental disorders 31, 1 (2001), 5–17.

[4] Sotirios Batsakis, Ilias Tachmazidis, George Baryannis, and Grigoris Antoniou.
2020. Semantic Artificial Neural Networks. In European Semantic Web Conference.
Springer, 39–44.

[5] Filip Karlo Došilović, Mario Brčić, and Nikica Hlupić. 2018. Explainable artificial
intelligence: A survey. In 2018 41st International convention on information and
communication technology, electronics and microelectronics (MIPRO). IEEE, 0210–
0215.

[6] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann,
and Ian H Witten. 2009. The WEKA data mining software: an update. ACM
SIGKDD explorations newsletter 11, 1 (2009), 10–18.

[7] Tanja Sappok, Manuel Heinrich, and Lisa Underwood. 2015. Screening tools for
autism spectrum disorders. Advances in Autism (2015).

[8] Jude W Shavlik and Geoffrey G Towell. 1991. An approach to combining
explanation-based and neural learning algorithms. In Applications Of Learn-
ing And Planning Methods. World Scientific, 71–98.

[9] Geoffrey G Towell and Jude W Shavlik. 1994. Knowledge-based artificial neural
networks. Artificial intelligence 70, 1-2 (1994), 119–165.

[10] Ioannis Tsamardinos, Paulos Charonyktakis, Kleanthi Lakiotaki, Giorgos Bor-
boudakis, Jean Claude Zenklusen, Hartmut Juhl, Ekaterini Chatzaki, and Vincenzo
Lagani. 2020. Just add data: Automated predictive modeling and biosignature
discovery. BioRxiv (2020).

[11] Ioannis Tsamardinos, Elissavet Greasidou, and Giorgos Borboudakis. 2018. Boot-
strapping the out-of-sample predictions for efficient and accurate cross-validation.
Machine Learning 107, 12 (2018), 1895–1922.

- 34 -


	Abstract
	1 Introduction
	2 Data description
	3 Data analysis
	3.1 Analysis using WEKA
	3.2 Analysis using JAD Bio

	4 Conclusions and future work
	References

